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Abstract

Energy Absorption Interferometry was recently proposed as an interferometric technique
capable of fully characterizing the optical response of single-mode, few-mode and multi-
mode power-absorbing structures, such as near-infrared detectors. A detector’s output
can be written as the full spatial contraction of the external field correlation tensor and
detector response correlation tensor representing their respective spatial coherence states;
EAI recovers the latter, solely using power measurements. EAI is essentially a generalization
of holography, and allows the reconstruction of the individual degrees of freedom through
which the device under test can absorb energy, including their relative sensitivities and spatial
forms. The natural modes of the detector response are intimately related to its optical coupling
mechanisms and the underlying solid-state phenomena responsible for power absorption:
their study therefore has direct applications in improving current infrared detector technology.
In particular, device properties dependent on its geometry and material are directly obtained,
such as the absorber’s spatial coherence length. EAI yields an experimental procedure where
the system under test is excited with two external coherent sources, and the fringe in the total
power dissipated is measured as the relative phase between the sources is varied. Iterating
for multiple source positions, the fringes’ complex amplitudes allow the two-point detector
response function to be retrieved: this correlation function can then be decomposed into a set
of natural modes.

In this thesis, we demonstrate the application of EAI at near-infrared wavelengths. We
describe the theoretical basis of EAI and numerically investigate its feasibility at infrared
wavelengths. We present for the first time the design of a room-temperature, fiber-based,
1550 nm-wavelength experiment and its performance. We report the first measurement of
the complex-valued DRF of fiber-coupled photodetectors, with single-mode, few-mode
and multi-mode behaviors; this includes extending the experimental system to suppress
environmental phase drift in optical fibers. We recover the natural modes of the devices
under test, and compare their spatial forms to numerical simulations. Finally, we discuss the
application of EAI to many-body structures as varied as spin systems and energy-harvesting
absorbers, and its extension to measure quantum correlation functions using a pair of probes
creating generalized forces.
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Chapter 1

Introduction

1.1 Characterizing Power-Absorbing Structures

1.1.1 Natural Modes and their Measurement

Power-absorbing structures whose optical response exhibit few-mode behavior are of prime
importance in a large number of fields. In the telecommunications industry, significant
effort is placed in optimally coupling the signal transmitted by optical fibers into high-
speed photodiodes, including using few-mode fibers where each mode constitutes a data
channel [1]. CCD and CMOS cameras with ever smaller pixels are used in a large number
of applications [2], from medical imaging [3, 4] to astronomy [5] and Earth observation
[6]. Energy harvesting, using photovoltaic cells to generate electricity from sunlight or
antenna arrays to extract energy from radio waves in the environment, would be significantly
improved by accurately measuring the degrees of freedom through which these systems
absorb optical power [7]. Muller cells in the retina of animal and human eyes are expected to
be few-mode, based on geometrical arguments [8]: precisely measuring their optical response
would allow the confirmation of this hypothesis, and provide a deeper comprehension of
vision mechanisms.

The understanding, engineering and practical use of such power-absorbing structures
requires methods to measure the number of natural modes present and their respective spatial
and polarimetric forms. In the context of power-absorbing structures such as detectors,
modes are the set of fully-coherent field patterns through which the system can incoherently
absorb energy [9]. These modes are mutually orthogonal with respect to some inner product,
typically defined as the spatial integral of the product of fields. Precisely measuring a device’s
reception modes is critical to exploring its photon absorption mechanisms, to produce an
optimal coupling to its environment including the reduction of optical noise, to perform
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optimization of its power absorber’s design, and to engineer it as part of a larger optical
system [10, 11].

The optical response of such devices greatly influences other key performance character-
istics, including the responsivity spectrum, the output rise time, noise metrics such as the
Noise-Equivalent Power measuring the device’s sensitivity, and the gain pattern of the device,
among many others [12, 13]. While well-established measurement methods are available
for these characteristics, even if they differ depending on the type of device and operating
wavelength considered [14], standardized characterization methods to recover the number
and forms of the natural modes of a device of interest are singularly limited.

1.1.2 Motivation and Thesis Objectives

Measurement schemes exist for coherent systems such as antennas, whose response is defined
by a single mode, generally at radio wavelengths: radiometric techniques are broadly used
to measure the spatial pattern of the reception mode [15, 16]. Analogous characterization
methods are used to study incoherent systems including bolometers, whose response is
composed of a very large number of modes, generally at optical wavelengths [14]. For
power-absorbing structures whose optical behavior falls between these two limiting cases,
understanding the number of natural modes present and their spatial forms is much more
complex and current characterization methods are unsatisfactory. The results presented in
this dissertation directly address these issues by answering the two following questions:

• What is the appropriate theoretical description of the optical response of power-
absorbing structures, including those with few-mode behavior?

• Is it possible to experimentally characterize their full optical response using only power
measurements, including to recover their natural modes?

In this thesis, we conclusively answer both questions by developing and demonstrating a
powerful interferometric technique called Energy Absorption Interferometry. Although the
emphasis in this dissertation is placed on fiber-coupled photodetectors at infrared wavelengths,
the theoretical framework and experimental techniques presented are applicable much more
broadly, both in terms of detector technologies and of operating wavelengths.

1.1.3 Existing Methods

Many fields and applications would profit from an experimental method capable of measuring
the reception modes of few-mode power-absorbing structures; however, few such schemes
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exist, most of which utilize optical fibers. One example is the measurement of coupling
efficiencies between optical fiber modes and superconducting detectors [17]. In the context
of optical fibers, modes are the eigensolutions of Maxwell’s equations in the propagating
medium, i.e. the fiber core, and are called Linearly Polarized (LP) modes [18]. In this
scheme, the fundamental LP mode is generated by a laser source and illuminates spatial light
modulators used to produce phase holograms: the expected high-order LP modes of fibers
are artificially created, and then projected onto a power detector. This method effectively
measures the sensitivity of the detector to each incident LP mode, but does not directly allow
the reconstruction of the natural modes of the detector.

Polarization and spatial modes of optical fibers are also particularly important in temper-
ature and strain sensors. Fiber characteristics such as the temperature and strain dependences
of their stimulated Brillouin scattering parameters can be measured by leveraging high-order
LP modes produced by spatial light modulators [19]. A complex measurement system
involving pulsed pump and probe laser signals, optical circulators, a 3 km-long test fiber, and
a 6⇥6 set of coherent receivers is required, with significant assumptions made about their
respective optical behavior.

It is also possible to produce a second-order LP mode by applying pressure periodically
along a fiber, using a mechanical grating: periodic alternations of the fiber’s refractive index
appear due to the photo-elastic effect, producing a coupling of the fundamental LP mode into
the second-order LP mode [20]. In this technique, the produced signal is interfered with a
reference first-order mode to obtain the conversion efficiency.

It is important to note that these characterization methods use artificially generated optical
fiber modes, in effect probing the fibers’ optical behavior with a selected basis set of field
patterns, rather than the fibers’ natural modes. Additionally, the techniques discussed are not
able to measure the natural modes of the detectors used.

1.2 Detector Technology

1.2.1 Near-Infrared Detectors based on Semiconductors

Having described the various methods that are currently available to characterize the optical
response of near-infrared detectors, as well as their limitations, it is important to consider
the variety of technologies to which they are applicable. We start with semiconductor-based
detectors, which are generally suitable for optical and near-infrared operating wavelengths.

Charge Coupled Devices (CCD) are currently a technological reference for a large range
of applications, from astronomical detectors to Earth observation and medical imaging, due
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to their well-understood physics, very large megapixel arrays, and the experience from their
use at room-temperature [2, 21]. However in semiconductor detectors including CCDs,
single-photon avalanche photodiodes (SPADs) and photomultiplier tubes (PMTs), strong
charge multiplication and similar amplification mechanisms are necessary: these lead to high
noise levels and dark-count rates of order 100 kHz, even when the operating temperatures
are decreased to 200-250 K to reduce thermal noise contributions [22]. CCDs also have a
low time resolution, of the order of a tens of milliseconds.

Whereas CCD pixels are passive, active-pixel sensors such as Complementary Metal-
Oxide-Semiconductor (CMOS) sensors have pixels each built from a photodetector and
an active amplifier [23]. CMOS sensors are generally less expensive than CCD cameras
and generally display lower cross-coupling between saturated pixels and their neighbors, a
phenomenon known as blooming. Their pixel sidelength is as small as 1.7 µm, i.e. a large
fraction of their operating 400-900 nm wavelengths [24].

At near-infrared wavelengths, the semiconductor-based technology of choice is InGaAs
PIN-junction photodiodes, particularly in telecommunications [25]: they feature high speeds
up to a few GHz, high sensitivities and large wavelength range from 800 nm to 1700 nm.
Their physical size ranges from 0.1 mm to 2 mm, such that they are generally considered
to be fully incoherent detectors. The same InGaAs architecture is also used in line and
area image sensors, which can contain several hundreds to hundreds of thousands of pixels
respectively, with applications in spectrometry and scientific cameras for microscopy. The
choice of their pixel size, in the 20-200 µm range, largely depends on applications, which
include spectroscopy and optical imaging [26].

1.2.2 Near-Infrared Detectors based on Superconductors

Infrared detectors based on superconducting materials exhibit superior sensitivity and intrinsic
energy-resolving capabilities, with important applications applications in astronomy [27] and
in quantum communications [22]. Superconducting Tunnel Junctions (STJs) are historically
the first superconducting detector still currently in use. STJs are composed of a thin insulating
barrier between two superconducting layers, through which quasiparticles created by photon
absorption events can tunnel: tunnelling events generate current pulses, proportional to the
photon energy. STJs have to be operated well below the superconductor’s critical temperature
Tc to avoid dark currents from thermally excited quasiparticles, and must be voltage-biased.
Multiplexing STJs to simplify their readout is notoriously difficult.

Transition-Edge Sensors (TESs) are microcalorimeters made of a superconducting film
generally less than 10 nm thick, balanced thermally at its superconductivity transition: heat
from an absorbed photon creates a very sharp resistivity increase. TESs are voltage-biased
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for balance at their optimal operating point, through an electro-thermal feedback caused
by the Joule heating of the bias current. The feedback also implies a reduction in the
pulse recovery time constant and an improved linearity of the device. SQUID multiplexing
schemes have been demonstrated successfully [28], but require complex cryogenic electronics.
Moreover, TESs have intricate fabrication procedures because they are required stand on
fragile suspended membranes for precise thermal coupling, which is a major drawback for
potential space-based applications. Optical fiber coupling to TESs has been successfully
shown to increase their total coupling efficiency [29].

Superconducting Nanowire Single-Photon Detectors (SNSPDs / Nanowires) are thin
superconducting wires biased precisely below their critical current density, such that an
incoming photon creates a normal-state hotspot. Because the nanowires are thin, normal
hotspots disappear very quickly and their recovery time is extremely short, typically a few
nanoseconds: this makes them very interesting for quantum information applications where
high count rates are important. However, SNSPDs are single-photon detectors, so parallel-
SNSPD arrays are required for photon-counting. Moreover, nanowire detector efficiencies
are currently low, rarely above 10%. While the optical response of SNSPDs are expected to
be single-moded, there has recently been interest in coupling with few-mode fibers [17].

Kinetic Inductance Detectors (KIDs) are thin superconducting film resonant circuits with
extremely high quality-factors, coupled in whole arrays to a single transmission line [30].
Quality-factors above 106 [31] imply that KIDs only affect a small frequency-window around
their resonance frequency, such that they can be passively frequency-multiplexed and read
out independently using room-temperature electronics. Experimental results indicate that
antenna-coupled KIDs are likely few-moded, due to spurious modes appearing from the
interaction between bridge structures and the substrate [32].

1.2.3 Optical Fibers

Having discussed the use of optical fibers in many applications and highlighted their impor-
tance at optical and infrared wavelengths, it is beneficial to describe their characteristics and
different types, which will inform their extensive use throughout this thesis. Optical fibers
are manufactured from two transparent, concentric silica glass cylinders [33], an inner core
and an outer cladding, whose refractive indices are carefully selected to provide total internal
reflection to transmitted optical power. Optical fibers therefore act as waveguides, with a
maximum input angle defined by the core and cladding refractive indices. Choosing low-loss
materials, attenuations as low as 0.2 dB/km are routinely obtained in optical fibers suitable
for transmission at optical and infrared wavelengths; this characteristic in particular makes
optical fibers the technology of choice in telecommunications.
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The number of transmission modes supported by optical fibers depends on the refractive
indices of the core and cladding layers, as well as the core radius, which can range from
several microns to tens of microns; the most widely used diameter for fiber claddings is
125 µm. Optical fibers are generally classified by the number of modes supported:

• Single-mode fibers support only the fundamental LP mode; they are used for single-
channel long-distance communication [1], high-precision strain, temperature, pressure,
and rotation measurements [34], as well as for chemical and biological sensors [35].

• Multi-mode fibers support hundreds of modes, which allows them to carry very high
powers, such as for laser welding; other applications include extrinsic temperature or
electromagnetic sensors, for instance in environments with large magnetic fields where
metallic wires are unsuitable [36].

• Few-mode fibers are generally understood to support between 2 and 6 modes; this
property is widely exploited in multi-channel communication using mode division
multiplexing [37], in few-mode amplifiers via active rare-earth doped fibers [38], and
in applications requiring low nonlinearities [1].

Additionally, multi-core fibers have been developed to bundle several single-mode fibers,
where each constitutes data channel using multiple-input multiple-output digital signal
processing [1]. In recent years, fibers based on photonic crystals have been introduced
in high-power applications and for the development of mode-locked fiber lasers. A large
number of unique properties are achievable by design, including nonlinearities used in
supercontinuum generation [39].

1.2.4 Theoretical and Numerical Investigations

Beyond these practical applications, a better understanding of the behavior of few-mode
systems is also required in theoretical investigations. Given the reception pattern of a detector,
propagating the beampattern from the detector surface back through an optical system is only
possible for a single-moded optical response, using Maxwell’s equations or for highly multi-
mode responses using ray optics [40]. For intermediate systems with few-mode behavior, the
full state of coherence of the detector response is required [41]. Commercial electromagnetic
modelling packages are very accurate in the same extreme cases, but are similarly ill-suited
to partially coherent behavior. This is particularly relevant to telescopes used in astronomy,
for instance to maximize the telescope’s throughput, a metric for the quality of its optical
response [42, 43]. In antenna engineering, the reception pattern of an antenna is often
considered to be identical to its transmission pattern, based on the reciprocity theorem;



1.3 Measuring Optical States of Coherence 7

Detector

Signal

Source A Source B

z = z0

y

x

z

Fig. 1.1 Schematical representation of the detector volume illuminated by an incident field
produced by two sources, on the detector surface z = z0.

however, proving reciprocity is difficult in few-mode systems, for instance in the presence of
evanescent waves [44, 45]. Similar investigations have been performed for blackbodies made
of a polar material, whose emission spectra exhibit temporal coherence caused by thermally
excited surface waves [46].

Additionally, as high-precision instrumentation progresses and noise contributions and
systematics are reduced, more accurate theoretical frameworks and expressions for power ab-
sorption become necessary. Using formulae suitable for the single-mode or extremely highly
multi-mode extreme cases is insufficient for few-mode systems. For instance, bolometric
detectors used in the investigation of the polarization pattern of the Cosmic Microwave Back-
ground require careful design to avoid polarization contamination [47, 48]. Similarly, the
optical response of CCD arrays in spectrographs for exoplanet detection needs to be known
very accurately to produce high-sensitivity radial velocity measurements: this includes the
effective position of the CCD pixels [49] and the effect of colored noise [50].

1.3 Measuring Optical States of Coherence

1.3.1 Energy Absorption Interferometry

Energy-Absorption Interferometry (EAI) is an interferometric technique capable of fully
characterizing the optical response of single-mode, few-mode and multi-mode detectors [51].
Its principle is illustrated in Figure 1.1: two phase-locked sources illuminate the device under
test, and we measure the fringe in its output as the relative phase between the two sources is
modulated. The complex fringe amplitude recorded contains information about the optical
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response of the device under test. It has been shown that the power absorbed by a detector can
be written as the full spatial contraction of the coherence tensors respectively describing the
external field and of the detector response: EAI recovers the latter, named Detector Response
Function (DRF) [52]. If a sufficiently large number of source position pairs are sampled, the
complex-valued DRF can be totally reconstructed, producing a full characterization of the
detector response’s state of coherence. It can be shown that the required number of scanned
positions is finite, such that the accrual of information from fringes’ complex amplitudes
leads to a convergence towards the true DRF of the device under test.

It is important here to note that both the states of coherence of the incident field and the
detector response are completely general. EAI is therefore applicable to all power detectors,
of any mode number, for any source and detector bandwidths, with sources under both pulsed
and continuous-wave operation, and for both near-field and far-field measurements. EAI
can be interpreted as a generalization of holography: the measured DRF is effectively the
state of coherence of the external field to which the device under test is maximally sensitive.
Diagonalizing the measured DRF produces the natural modes of the detector response [53],
yielding the number and spatial forms of the individual degrees of freedom through which
the device under test incoherently absorbs power. EAI therefore successfully fulfills the goal
stated in Section 1.1.2.

1.3.2 Aperture Synthesis Interferometry: EAI in Reverse

Just as EAI measures the state of coherence of the optical response of the device under test,
it is possible to use two coherent detectors illuminated by an external field to recover the
state of coherence of its optical response. Aperture Synthesis Interferometry (ASI) is an
interferometric method used in astronomy, in which the signals from a system of telescopes
are combined to obtain images whose resolution is equal to that of a virtual detector as large
as the system considered [54]. In the case of a system of two telescopes, a signal from
the source will be detected by the two detectors with a phase delay, whose magnitude is
proportional to their projected spatial separation as seen from the source, called the baseline.
For a system of n telescopes, (n2 �n)/2 baselines are available simultaneously. For a given
baseline, an interferometer measures a fringe as the angle between the source and the normal
baseline is varied as the Earth rotates: the complex fringe amplitude is the Fourier component
of the source field for the corresponding baseline. Long baselines measure the smallscale
structure of the source field, but fringe washout prohibits largescale structure from being
recovered; the opposite applies to short baselines, due to the resolution limit. Repeating
this procedure for many different baselines, the Fourier transform may be inverted to find
the source brightness distribution. A fully filled aperture is effectively synthesized when
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Chapter 7: Experimental Characterisation
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Figure 7.3: The experimental arrangement.

where

Dmn =

Z Z
b�

(r1�rm, �m, z0+d, �0)· ¯̄D(r1, r2, z0+d, �0)·b(r2�rn, �n, z0+d, �0) d2r1d
2r2. (7.11)

For small probe apertures, it will usually possible to approximate the sources as point-like

b(r, �, z0, �0) ⇡ p̂(�)�(r), (7.12)

in which case
Dab ⇡ p̂(�a) · ¯̄D(ra, rb, z0 + d, �0) · p̂(�b). (7.13)

Under these assumptions, it can be seen that the fringe visibility in a near-field measurement
corresponds to a direct measurement of ¯̄D(r1, r2, z0 + d, �0) at the location of the sources. By
scanning both sources around and changing the orientations, ¯̄D(r1, r2, z0 + d, �0) can be mapped
out in full over z = z0 + d, then the methods of Section 2.2.6 can be used to transfer the ORF
back to the reference surface z = z0. If the sources cannot be treated as point-like, then standard
techniques employed in radio astronomy [97] can be used to deconvolve the probe fields from the
visibility data.

7.3 The Experimental System

In order to demonstrate the technique, we have assembled a scanning system for making measure-
ments of the state of spatial coherence of the reception patterns of power detectors at frequencies

206

Fig. 1.2 Labeled photograph of the EAI experimental system for the study of submillimeter-
wavelength power detectors; reproduced from [58].

the number of baselines is sufficiently large, even if the Fourier Transform is not fully
sampled: non-linear deconvolution algorithms, such as maximum entropy methods [55],
produce high-resolution reconstructions for relatively sparse sets of baselines. In effect, ASI
produces the measurement of the astrophysical source’s state of coherence, using two or
more phase-locked detectors.

ASI was historically first realized in the 1950s at radio wavelengths, where the amplitude
and phase of the incoming signal are measured electronically by each telescope [56]. The
same method is unfeasible at optical and infrared wavelengths: the signals need to be
interfered optically instead, which limits the baselines to distances covered by optical fibers
[57]. The development of techniques such as closure-phase mapping and self-calibration
in the 1990s have largely removed these constraints, as well as increased the telescope
sensitivities by suppressing atmospheric phase fluctuations and wavefront aberrations.

1.3.3 EAI at Submillimeter Wavelengths

A proof-of-concept EAI experiment was implemented by Thomas et. al [59, 58], for the
study of submillimeter-wavelength power detectors, and is presented in Figure 1.2. The goal
of this study was to characterize the full optical behavior of multi-mode power detectors at
submillimeter wavelength, using a THz power meter that had its front window reduced to a
15 mm ⇥ 15 mm square aperture, in order to synthesize the behavior of a spatially-incoherent
planar absorber. The targeted frequency range was from 195 GHz to 270 GHz (equivalently,
from 1.54 mm to 1.11 mm), such that the input aperture of the power meter had a side length
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between 10 and 14 wavelengths. Two signal generation systems were used to generate the
illuminating field with a pair of waveguide probes, both driven in the fundamental Transverse
Electric TE01 mode [60]. Phase modulation was produced by locking the signal generators
together, with the probe frequencies differing by 8 Hz. Each probe was mounted on a
two-dimensional motorized scanning system.

The experimental system was successful in recovering the DRF of the device under test,
for sources scanned over a uniformly sampled line, although the work undertaken with this
prototype did not include a full development of the technique. The measured DRF was
decomposed to obtain the spatial forms and sensitivity spectrum of approximately 15 detector
modes. In particular, the modes’ amplitude and phase patterns were found to be in good
agreement with the forms expected for the detector’s square aperture. As we will discuss in
this dissertation, the choice of the operating wavelength dictates many design considerations
for an EAI experimental system. The work presented in this manuscript will therefore have
significant differences with the proof-of-concept experiment at submillimeter wavelengths.

1.4 Thesis Outline

The primary goal of this thesis is to demonstrate, develop and investigate the characteristics
of EAI at near-infrared wavelengths, through its application to fiber-coupled photodetectors
with a wide variety of modal behaviors. This objective entails exploring the technique’s
feasibility at infrared wavelengths using such fiber-coupled detectors, designing and con-
structing an experimental system and data analysis procedure to carry out these studies,
and performing EAI measurements on a range of devices with single-mode, few-mode and
multi-mode behaviors in order to ultimately recover their natural modes. The main topics of
this dissertation are divided into chapters as follows:

• Chapter 1 introduces Energy Absorption Interferometry and the scientific motivations
behind its development.

• Chapter 2 derives the theory underlying EAI based on writing the power absorbed
by an optical detector as the full contraction of the two-point correlation functions
characterizing the incident field and the detector response, describes how the DRF
can be experimentally measured from fringes in the detector output as the relative
phase between two illuminating sources is varied, and explains how this DRF can
be written in terms of the so-called natural modes, individually fully-coherent field
patterns through which the device under test absorbs optical power.
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• Chapter 3 reports on numerical simulations of EAI produced using assumed circularly
symmetric DRFs, built from linear superpositions of Linearly Polarized or Laguerre-
Gaussian modes (respectively, of transmission in a fiber core and of free-space laser
light propagation), studies the effect of changes of representations between the various
bases at play, and investigates the efficiency of scanning strategies that could be relevant
in experimental settings.

• Chapter 4 describes the design of the experimental system, from qualitative choices
(such as the 1550 nm wavelength for its importance in applications, and a fully fiber-
based architecture) to quantitative requirements (including the necessary scanning
range and resolution, the laser source’s power as a tradeoff between high signal-to-
noise ratio and operability simplicity, and how interchangeable optical fiber lengths
coupled to the photodetector recording the fringes acts as a mode filter).

• Chapter 5 explains the choice of specific components fulfilling our experimental design
requirements, the construction and testing of the experimental system, as well as noise
measurements characterized by spectra and Allan Variance computations, and the first
measurement of fringes in the detector output.

• Chapter 6 details the experimental method for measuring the amplitude pattern of the
DRF as sources are scanned over one-dimensional grids, presents the control and data
analysis software implemented, reports on the first such measurement of the DRF of
single-, few- and multi-mode devices, and derives a bound on the number of modes
that can be obtained solely from the DRF amplitude patterns.

• Chapter 7 describes several possible phase correction methods, argues for the imple-
mentation of a particular technique based on adding a reference channel close to the
device under test, illustrates its effects using numerical simulations including a study
of the eigenspectrum and eigenvectors obtained with a phase-corrected DRF.

• Chapter 8 describes the choice and characterization of additional elements to implement
this phase correction scheme, studies the performance enhancement obtained in terms
of the fringe phase coherence time, performs EAI studies of single-, few- and multi-
mode devices using either a two-fiber phase correction system with 10 mm separation
or a fiber array with 125 µm separation.

• Chapter 9 discusses a reconstruction method for the missing diagonal band in measured
DRFs, caused by the finite size of sources, and its application to simulated and
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experimental data; reconstructed DRFs are diagonalized to obtain their natural modes
and the corresponding sensitivity spectrum.

• Chapter 10 summarizes the achievements attained during our studies, and discusses the
future outlook based on our investigations, including additional experiments possible
with our current system, with further system extensions, and with a cryogenic analogue
for low-temperature detector, as well as potential applications of EAI to pairs of probes
acting through generalized forces.



Chapter 2

Theoretical Description of
Power-Absorbing Detectors

2.1 Introduction

While existing methods and models for describing detectors, such as those discussed in
Chapter 1, are dependent on the devices’ particular nature including their geometry, we
seek a general framework to deal with detectors having any modal behavior. Such a general
description was first proven by Withington and Saklatvala [61, 52]. The starting point for
their framework is the assumption that the output P of any detector should scale as the square
of the incoming field amplitude. Regardless of their specific forms, it was shown that the
optical response of the absorbing structure and the incident radiation are fully characterized
by two-point correlation functions. They are represented as dyadic functions, second-order
tensors used to deal with multilinear algebra, and can also be viewed respectively as the states
of coherence of the detector’s optical response and the external field. Moreover, the detector
output can be written as the full contraction of these two dyadic functions. This result also
provides a framework for numerically computing the power absorbed by a detector from a
partially coherent field, based on their parametrization, namely the assumed model for their
optical response.

The first goal of this chapter is to summarize the model derived by Withington and
Saklatvala. The second will be to use this formalism to obtain an experimental method for
reconstructing the two-point correlation function describing the detector’s optical response,
called the Detector Response Function (DRF), and its decomposition into natural modes,
defined as the set of mutually orthogonal field patterns through which the detector absorbs
power. This experimental technique will be referred to as Energy-Absorption Interferometry
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(EAI). The results in this chapter will be used throughout this thesis: the following chapters
will deal with numerical studies, the design of an experimental system and experimental
characterization of a set of infrared power detectors, all of which will make direct references
to the equations and concepts derived in this chapter.

Section 2.2 will review the essential elements of EAI theory, introducing both notation and
concepts: most of this section will be a condensation of the successive articles published on
the topic, leaving out the details of some topics that will be referred to qualitatively. In Section
2.3, we derive an alternative formulation for these results. We first prove rigorously that the
incident field and detector response correlation functions can be decomposed in terms of their
respective modes. We then show that the power absorbed in the detector can be written as the
weighted sum of projections of these sets of modes onto one another, which we refer to as a
coupled-mode model. Section 2.4 discusses the choice of two coherent, phase-locked sources
to generate the incident field. In particular, choosing fully-coherent quasi-monochromatic
sources, we obtain a powerful experimental method to measure the DRF. Placing the two
sources at fixed positions, partial information about the DRF can be extracted from the
fringes in the detector output as the relative phase between sources is varied; repeating
over a number of source positions, the entire DRF can be recovered. In Section 2.5, we
will transform previous results into a discretized formulation based on matrices rather than
continuous-variable dyadics, in order to make them usable for computational studies and
experimental data analysis. Section 2.6 will make important remarks about experimental
considerations. These include how one can recover the DRF from a set of measurements
of the detector output and how to assess whether enough data was acquired to successfully
reconstruct the DRF. The retrieval of other quantities of interest will be discussed, such as
the characteristic distance inside the detector volume over which correlations in the detector
response are observed, also called the absorbing structure’s coherence length.

2.2 Characterization of Detectors

2.2.1 Assumptions

We start by summarizing our assumptions about the properties of the incident field and the
detector operation:

1. The detector response is quadratic in the electromagnetic field. This assumption,
discussed in Section 2.1, means that, if the incoming field amplitude is scaled by some
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factor l 2 R, then the output P detector should scale as |l |2. Stated mathematically,

EEE(rrr, t) ! lEEE(rrr, t) 8rrr 2 R2, t 2 R =) P ! |l |2P, (2.1)

where rrr is the transverse position on the reference surface through which we consider
the incident power flow. Note that this operation is a multiplication by a scalar, and
leaves the spatio-temporal state of coherence of the incident field unaltered.

2. The detector output is proportional to the power absorbed in the device. A well-
defined sub-volume of the detector is sensitive to the incoming radiation and absorbs
a fraction of it according to its optical response, as described in the first assumption.
In other words, the detector output is linear in the power absorbed, and in turn in the
incident optical power. For this reason, we may use the terms “absorbed power” and
“detector output” nearly interchangeably, with the important caveat that these values
have different units, respectively of power and of the measured quantity, such as a
voltage or current.

3. The incoming field has finite bandwidth. The range of radiation frequencies consid-
ered w satisfies w 2 [wl;wh], where wl/h respectively denote the lowest and highest
signal frequencies. We remark that this is not a strict requirement, and Withington
and Saklatvala demonstrated a more general theory applicable to detectors of all band-
widths [61]. We choose to apply the finite bandwidth assumption here as it offers
useful simplifications, and because the practical applications considered in the rest of
this dissertation fulfill this condition.

4. The duration of measurement of the detector output is finite. Again, this assump-
tion is in line with realistic situations, where the instantaneous detector output is not
generally measurable. We further remark that, because real detectors operate with
finite response time, the true time-domain response function of detectors is most often
time-integrated. The detector output is also independent of absolute time.

5. A constraint on the detector output bandwidth wp is placed by the incident radi-
ation frequency. The spectral domain description of external radiation is often based
on analytical signals, the use of which here is only valid if the following two conditions
are fulfilled: wh < 3wl and wp < wh � wl , where wl/h are defined as in the assump-
tion 3. In the case of long-term averaging, i.e. integration of signal over a duration
much longer than these characteristic times, the conditions above can be replaced by
wp < 2wl . As the detector output corresponds to the square of the incident signal’s



16 Theoretical Description of Power-Absorbing Detectors

Detector Ur
i j(rrr1,rrr2) Signal hPi

Incident field
Xr

i j(rrr1,rrr2) z = z0

y

x

z rrr1

rrr2

Fig. 2.1 Schematical representation of the detector volume, whose optical response is char-
acterized by the two-point correlation tensor Ur

i j(rrr1,rrr2), illuminated by an incident field,
characterized by the corresponding dyadic Xr

i j(rrr1,rrr2), at two points rrr1 and rrr1 on the detector
surface z = z0.

envelope function, this condition prohibits the detection of spectral components above
2wl directly in the output.

6. The incoming field has time-invariant statistics. In most signals of interest, such as
detecting thermal power at infrared wavelengths, electromagnetic sources are assumed
to be temporally stationary. The formalism can be extended to non-stationary statistics,
suitable for describing pulsed illuminating fields, but will not be done so here.

2.2.2 Generic Model of a Linear Detector

We first consider a standard result of linear systems theory [62], in order to introduce the
necessary notation for the following derivation. The response y(t) of a system with impulse
response function h(t, t1) to a time-dependent excitation x(t1) is given by

y(t) =

Z
+•

�•
dt1h(t, t1)x(t1), (2.2)

where the impulse response function h statisfies causality, i.e. h(t, t1) = 0 for t < t1. The
response of the system at time t is written in Equation (2.2) as the weighted integral of the
excitation over all times.

We need to extend this form to deal with the output of a device that measures power,
and must therefore be quadratic in the incoming field. In stricter terms, the ratio of the
detector output to the integrated Poynting flux must depend only on the form of the incoming
field, rather than its magnitude. This implies that the detector output must be linear in



2.2 Characterization of Detectors 17

the correlation function Er
i (rrr1, t1)Er

j(rrr2, t2), with Er
i (rrr, t) denoting the ith component of the

external field vector EEEr
(rrr, t), where the r superscripts indicate that the fields are real-valued

[61]. We extend Equation (2.2) to describe the output of any linear power detector in terms of
generic real external fields EEEr

(rrr, t) and a detector bilinear response function Ur
i j(t;rrr1, t1;rrr2, t2)

at observation time t:

P(t) = Â
i, j

ZZ

S 2
d2rrr1d2rrr2

ZZ
+•

�•
dt1dt2Ur

i j(t;rrr1, t1;rrr2, t2)Er
i (rrr1, t1)Er

j(rrr2, t2), (2.3)

where rrri with i 2 {1,2} stands for the transverse distance from the origin in some reference
plane S . Note here that the integration surface S can be chosen as convenient, for instance
the detector plane or some intermediate plane to which the external field and detector response
patterns are propagated. Figure 2.1 illustrates this configuration with the the incident field
and detector response specified at two points rrr1 and rrr2 of the detector surface, defined by the
constant z = z0 plane. In the general case where the external fields are stochastic, we need to
take the ensemble average of fields and obtain

hP(t)i = Â
i, j

ZZ

S 2
d2rrr1d2rrr2

ZZ
+•

�•
dt1dt2Ur

i j(t;rrr1, t1;rrr2, t2)Xr
i j(rrr1, t1;rrr2, t2), (2.4)

where we have defined Xr
i j(rrr1, t1;rrr2, t2) = hEr

i (rrr1, t1)Er
j(rrr2, t2)i.

The fields Er
i (rrr, t) with finite duration and bandwidth, as stated in Assumptions 3 and 4

in Section 2.2.1, have the Fourier Transform definition in the frequency domain

Er
i (rrr, t) =

1
2p

Z
+•

�•
dwEr

i (rrr,w)exp(�iwt). (2.5)

This leads to the transformation of the tensor Xr
i j,

Xr
i j(rrr1, t1;rrr2, t2) =

1
(2p)2

ZZ
+•

�•
dw1dw2Xr

i j(rrr1,w1;rrr2,w2)exp(�iw1t1)exp(+iw2t2),

(2.6)
where Xr

i j(rrr1,w1;rrr2,w2) = hEr
i (rrr1,w1)Er⇤

j (rrr2,w2)i. We can similarly transform the tensor
Ur

i j representing the detector response:

Ur
i j(t;rrr1, t1;rrr2, t2) =

1
(2p)2

ZZ
+•

�•
dw1dw2Ur

i j(t;rrr1,w1;rrr2,w2)exp(�iw1t1)exp(+iw2t2).

(2.7)
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We substitute the forms in Equations (2.6) and (2.7) into Equation (2.4), evaluate the integrals
with respect to times t1 and t2, and obtain

hP(t)i =
1

(2p)2 Â
i, j

ZZ

S

d2rrr1d2rrr2

ZZ
+•

�•
dw1dw2Ur⇤

i j (t;rrr1,w1;rrr2,w2)Xr
i j(rrr1,w1;rrr2,w2).

(2.8)

Because Er
i (rrr, t) is real-valued, Er

i (rrr,w) is Hermitian, i.e. Er
i (rrr,�w) = Er⇤

i (rrr,w). This
also implies that Xr

i j is Hermitian as well. By noting that hP(t)i in Equation (2.8) is real, it
must be that Ur⇤

i j is also Hermitian. Therefore, we can split both integrals with respect to
angular frequencies w1 and w2 in Equation (2.8), with

ZZ 0

�•
dw1dw2Ur⇤

i j (t;rrr1,w1;rrr2,w2)Xr
i j(rrr1,w1;rrr2,w2)

=

✓ZZ
+•

0
dw1dw2Ur⇤

i j (t;rrr1,w1;rrr2,w2)Xr
i j(rrr1,w1;rrr2,w2)

◆⇤
. (2.9)

But because the integral is real and both field correlation tensors in the integrand are Hermi-
tian, the equality holds even without the complex conjugation. Therefore, we obtain

hP(t)i =
2

(2p)2 Â
i, j

ZZ

S 2
d2rrr1d2rrr2

ZZ
+•

0
dw1dw2U⇤

i j(t;rrr1,w1;rrr2,w2)Xi j(rrr1,w1;rrr2,w2),

(2.10)
where the r superscripts can be suppressed by recognizing that we can now equivalently work
with complex analytic fields, instead of real fields, defined as

Ei(rrr,w) =

8
<

:
Er

i (rrr,w) , w � 0

0 , w < 0.
(2.11)

Analytical signals arise in optics when time-domain signals are reconstructed only from their
positive-frequency spectrum. The use of analytical signals is valid only as long as Assumption
5 in Section 2.2.1 is fulfilled. As the detector response and external field correlation functions
Ui j and Xi j are second-order tensors, we can simplify our notation by using their dyadic

representations [63]. Recalling the dyadic property Âi, j A⇤
jiBi j = A

†
· · B, where † denotes

the conjugate transpose operator, Equation (2.10) becomes

hP(t)i =
2

(2p)2

ZZ

S 2
d2rrr1d2rrr2

ZZ
+•

�•
dw1dw2U

†
(t;rrr1,w1;rrr2,w2) · ·X(rrr1,w1;rrr2,w2).

(2.12)
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Assume now that the incoming fields are statistically stationary. This violates the finite
duration assumption (Assumption 4) in general, but since we only record the detector output
for a finite amount of time in practice, we continue without loss of generality:

X(rrr1,w1;rrr2,w2) =

ZZ
+•

�•
dt1dt2X(rrr1,0;rrr2, t2 � t1)exp(+iw1t1)exp(�iw2t2)

=2pd (w1 �w2)

Z
+•

�•
duX(rrr1,0;rrr2,u)exp(�iw2u)

=2pd (w1 �w2)X(rrr1,rrr2,w2). (2.13)

Substituting into (2.12), we obtain

hP(t)i =
1
p

ZZ

S 2
d2rrr1d2rrr2

Z
+•

0
dw U

†
(t;rrr1,w;rrr2,w) · ·X(rrr1,rrr2,w). (2.14)

We can directly introduce the finite measurement duration, using some temporal filtering
function h(t), such as a top-hat function for an ideal finite-duration measurement, and write
the integrated detector output P as follows:

hPi =

Z
+•

�•
dth(t)hP(t)i

=
1
p

ZZ

S 2
d2rrr1d2rrr2

Z
+•

0
dw
✓Z

+•

�•
dth(t)U

†
(t;rrr1,w;rrr2,w)

◆
· ·X(rrr1,rrr2,w)

=
1
p

ZZ

S 2
d2rrr1d2rrr2

Z
+•

0
dwV

†
(rrr1,rrr2,w) · ·X(rrr1,rrr2,w), (2.15)

where we have defined the time-integrated response function as

V(rrr1,rrr2,w) :=
Z

+•

�•
dth(t)U(t;rrr1,w;rrr2,w). (2.16)

Note that, instead of taking the time-integrated output, we could have considered the time-
averaged output, by inserting a factor of 1/

R
+•
�• dth(t). However, this factor can just as well

be included in the definition of V, such that the formalism is identical.

For single-frequency sources, the frequency-domain w-dependence can be discarded (or
more generally, integrated into the definitions of the dyadics). In order to indicate explicitly
that the detector response and external field only contain a single frequency w0, we relabel
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their dyadics as

D(rrr1,rrr2) := X(rrr1,rrr2,w = w0) (2.17)

E(rrr1,rrr2) := V(rrr1,rrr2,w = w0). (2.18)

We then obtain
hPi =

ZZ

S 2
d2rrr1d2rrr2D

†
(rrr1,rrr2) · ·E(rrr1,rrr2), (2.19)

where we have used the relabeled detector response and external field dyadics D and E.
Equation (2.19) allows us to write the output of a (potentially partially-coherent) detector
illuminated by a temporally stationary external field as the full contraction of two dyadics;
E(rrr1,rrr2) represents the state of spatial coherence of the incident field, and D(rrr1,rrr2) repre-
sents the state of coherence of the detector response. As such, the latter will be referred to as
the Detector Response Function (DRF) throughout this manuscript. The DRF can also be
interpreted as the state of coherence of the incident field to which the detector is maximally
sensitive; in other words, for a given incident intensity, the power absorbed is maximal
when D µ E. We can also understand the full contraction in Equation (2.19) as the inner
product between the two dyadics in the vector space of complex, bilinear, three-dimensional
vector fields, as projected on the reference surface S . This inner product is then maximal
when the two dyadics are parallel in this vector space. It is important here to recall that we
have only made one supposition about the detector response, namely that it is linear with
incoming electromagnetic radiation. No assumptions have been made about the nature of its
absorption mechanisms, such as the creation of an electron-hole pair in the depletion region
of a PIN photodiode or the breaking of superconducting Cooper Pairs in a Kinetic Inductance
Detector; nor about its geometry or type, for instance whether the absorptive region of the
detector is a thin film structure or a bulk volume of material.

Note that the form in Equation (2.19) is cast in a position-dependent representation, but
wavevector and directional forms are analogous. In particular, in the far-field limit, we can
view the problem in the Fourier domain by using transverse wave-vectors kkk:

D(rrr1,rrr2) =
1

(2p)2

ZZ
+•

�•
d2kkk1d2kkk2D(kkk1,kkk2)exp(ikkk2.rrr2)exp(�ikkk1.rrr1) (2.20)

E(rrr1,rrr2) =
1

(2p)2

ZZ
+•

�•
d2kkk1d2kkk2E(kkk1,kkk2)exp(ikkk2.rrr2)exp(�ikkk1.rrr1). (2.21)

Moreover, we can use unit vectors of direction of propagation ŴWW = sin(q)cos(f)x̂xx+sin(q)sin(f)ŷyy+

cos(q)ẑzz rather than transverse wave-vectors kkk = �2pw/c(x̂xxx̂xx+ ŷyyŷyy) · ŴWW, where c is the speed
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of light in a vacuum, such that

hPi =

ZZ

S 2
dŴWW1dŴWW2 D

†
(ŴWW1,ŴWW2) · ·E(ŴWW1,ŴWW2), (2.22)

where all constant factors are inserted into the definition of D and E.

2.3 Coupled-Mode Formulation

2.3.1 Mercer’s Theorem

In Chapter 1, we discussed the concept of modes by addressing the terms “single-mode”,
“few-mode” and “multi-mode” that are often present in the literature. Our definition of
modes was then as an orthonormal basis for describing a general state of coherence, and we
noted that the concept would be applied to both the incoming field correlation function and
the detector response function. Here, we provide a formal mathematical description of the
origin and properties of these modes. Representing partially coherent field as coherent-mode
sums was first introduced by Wolf [40, 41]. Note that we consider only traveling waves
for the incident field such that it does not possess an evanescent component, although this
generalization has been accomplished [64].

Using the notation in Equation (2.19), we recall that the field correlation dyadic is written
in terms of the external analytical fields as E(rrr1,rrr2) = hEEE(rrr1)EEE(rrr2)i. We assume nothing
about the fields EEE(rrr), which could be partially coherent. Hence we wish to expand E as
an incoherent superposition of a set of fully spatially coherent fields UUUm(rrr), known as the
coherent or natural modes of the field, defined by the eigenvalue equation

bmUUUm(rrr1) =

Z

S

d2rrr2E(rrr111,rrr222) ·UUUm(rrr2) (2.23)

() bmdmn =

ZZ

S 2
d2rrr1d2rrr2UUU⇤

n(rrr1) ·E(rrr1,rrr2) ·UUUm(rrr2), (2.24)

where Z

S

d2rrrUUU⇤
m(rrr) ·UUUn(rrr) = dmn 8m,n. (2.25)

It is now important to investigate how these modes are related to the detector and field
correlation dyadics. They appear naturally in this context in Mercer’s Theorem, which is
stated as follows [65]:
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Theorem 1 (Mercer’s Theorem). Let A be the integral operator on L2[a,b], with a,b finite,

y(s) =

Z b

a
R(s, t)x(t)dt, a  t  b,

corresponding to a real-valued function R that is continuous, symmetric, and non-negative
definite. Let {en, n = 1,2, . . .} be an orthonormal basis for the space spanned by the
eigenvectors corresponding to the nonzero (hence positive) eigenvalues of A. If the basis is
taken so that en is an eigenvector corresponding to the eigenvalue ln, then

R(s, t) =

•

Â
n=1

ln en(s)en(t)

where the series converges absolutely, converges to R(s, t) uniformly in both variables, and
also converges to R(s, t) 2 L2([a,b]⇥ [a,b]).

Theorem 1 proves that dyadics such as the correlation functions discussed admit such a
decomposition, in a way that is analogous to matrix diagonalization. The eigenfunctions and
eigenvalues are precisely those defined by Equation (2.24). Note that Theorem 1 is a special
case of the Hilbert-Schmidt decomposition: in the latter, the dyadic function is separated
over two distinct inner product spaces [66]. The Hilbert-Schmidt decomposition is then the
dyadic analogue of the Singular Value Decomposition for matrices.

We can notice several properties of the correlation dyadic E(rrr1,rrr2), the first of which is
Hermicity, by definition using the exchange symmetry of the fields EEE(rrr):

E
†
(rrr1,rrr2) = E(rrr2,rrr1). (2.26)

We also know that E(rrr1,rrr2) is continuous with respect to rrr1 and rrr2, which implies that
ZZ

d2rrr1d2rrr2I · ·E(rrr1,rrr2)  • (2.27)

We further remark that, for any modulus-squared integrable function fff (rrr) 2 L2
[a,b],

h
����
Z

d2rrr fff ⇤
(rrr) ·E(rrr)

����
2
i � 0, (2.28)

in the Hilbert space of complex vector functions, subject to the following definition of the
inner product �:

fff (rrr)�ggg(rrr) =

Z
d2rrr fff ⇤

(rrr) ·ggg(rrr). (2.29)
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Rearranging Equation (2.28), we obtain that
ZZ

d2rrr1d2rrr2 fff ⇤
(rrr1) ·E(rrr1,rrr2) · fff (rrr2) � 0. (2.30)

E(rrr1,rrr2) therefore fulfills all of the properties of a Hermitian, positive semi-definite Hilbert-
Schmidt operator.

The detector response dyadic D(rrr1,rrr2) can be shown to have the same properties. Using
the Hermicity of E(rrr1,rrr2) and noting that the absorbed power in Equation (2.19) is real, it
follows that D(rrr1,rrr2) is also Hermitian:

D
†
(rrr1,rrr2) = D(rrr2,rrr1). (2.31)

In [53], Saklatvala proved the continuity of the detector output, by arguing that the change
in detector output arising from an infinitesimal change in the incident field could not be
discontinuous, which requires that

ZZ
d2rrr1d2rrr2I · ·D(rrr1,rrr2)  •. (2.32)

Finally, following the properties of modulus-squared integrable functions as in Equation
(2.28), we can set fff (rrr) = E(rrr). Because the detected power in Equation (2.19) is non-
negative, it is required that

ZZ
d2rrr1d2rrr2 fff ⇤

(rrr1) ·D(rrr1,rrr2) · fff (rrr2) � 0. (2.33)

Applying Mercer’s Theorem to the incident radiation and detector response dyadics, they
can be written in diagonalized form, as follows:

E(rrr1,rrr2) = Â
n

bnUUUn(rrr1)UUU⇤
n(rrr2) (2.34)

D(rrr1,rrr2) = Â
m

amRRRm(rrr1)RRR⇤
m(rrr2), (2.35)

where UUUn is defined as previously in Equation (2.24), and RRRm is recognized as the mth

natural mode of the detector’s reception pattern. The complex coefficients bn and an in these
decompositions are respectively the occupancy of the nth field mode and the sensitivity of
the mth detector mode. We have effectively decomposed the tensors representing the states of
coherence of the incident field and detector response into a weighted sum of outer products
of waveforms on a two-dimensional surface. The field modes in Equation (2.34) correspond
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to the field patterns incident on the surface of interest S , for instance the detector surface;
the detector modes in Equation (2.35) are the propagating field patterns to which the detector
is sensitive.

Mandel and Wolf also provide a formal demonstration that the modes are indeed fully
coherent in the spatial (and space-frequency) domain [9]. By taking the Fourier Transform
of the wave equation on the time-dependent external field dyadic E, it can be shown that it
satisfies the two Helmholtz equations:

—1E(rrr1,rrr2)+ k2E(rrr1,rrr2) = 0 (2.36)

—2E(rrr1,rrr2)+ k2E(rrr1,rrr2) = 0. (2.37)

where k = 2pw/c is the wavenumber associated with the frequency w , and —1/2 denote the

vector differential operator along rrr1/2 respectively. Defining E
(n)

(rrr1,rrr2) = UUUn(rrr1)UUU⇤
n(rrr2), it

is proven that E
(n)

also satisfies the two Helmholtz equations:

—1E
(n)

(rrr1,rrr2)+ k2E
(n)

(rrr1,rrr2) = 0 (2.38)

—2E
(n)

(rrr1,rrr2)+ k2E
(n)

(rrr1,rrr2) = 0. (2.39)

This implies that E
(n)

represents a mode of the field, and therefore that Equations (2.34)
and (2.35) describe the field and detector response correlation functions as a weighted
superposition of fully-coherent modes.

2.3.2 Coupling Field and Detector Modes

Substituting the two dyadic decompositions in Equations (2.34) and (2.35) into Equation
(2.19) describing the detector output as the contraction of these two dyadics, and using the

Hermicity of D, D
†
(rrr1,rrr2) = D(rrr2,rrr1), we obtain

hPi =

ZZ

S 2
d2rrr1d2rrr2

✓
Â
m

amRRRm(rrr2)RRR⇤
m(rrr1)

◆
· ·
✓

Â
n

bnUUUn(rrr1)UUU⇤
n(rrr2)

◆

= Â
m,n

ambn

✓Z

S

d2rrr1RRR⇤
m(rrr1) ·UUUn(rrr1)

◆✓Z

S

d2rrr2RRRm(rrr2) ·UUU⇤
n(rrr2)

◆

= Â
m,n

ambn|Smn|2, (2.40)
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Fig. 2.2 Schematic representation of the coupled-mode formulation.

where
Smn =

Z

S

d2rrrRRR⇤
m(rrr) ·UUUn(rrr) (2.41)

is the overlap between natural mode m of the detector and natural mode n of the field.
Equation (2.40) then expresses the power absorbed by the detector as a weighted sum of
overlap integrals of field and detector modes; the sum is over all field and detector mode
combinations and the weighting is given by the product of the relevant field mode occupancy
and detector mode sensitivity. The overlap integral defined by Equation (2.41) can be
understood as the complex coupling coefficients of the natural modes of the external field
with those of the detector response. Figure 2.2 depicts the coupled-mode model schematically.
In other words, the coupled-mode formulation allows us to substitute the propagation of
two-point correlation functions for the propagation of sets of fully coherent fields.

Equation (2.40) also provides an expression for the minimum number of degrees of
freedom required to reconstruct the detector output. In particular, if the incident field is
single-moded, the detector output and detector response will have the same number of degrees
of freedom, namely the number of terms in the decomposition of Equation (2.35).

2.3.3 Fully Coherent Detector

We now consider the two extreme cases, fully coherent and fully incoherent detectors,
discussed in Section 1.1. Here, we consider the former, whose coherence tensor can be
decomposed using Mercer’s Theorem with only one mode and corresponding eigenvalue:

D(rrr1,rrr2) = aRRR(rrr1)RRR⇤
(rrr2). (2.42)
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Substituting in Equation (2.19), the detector output becomes

hPi = a
����
Z

S

d2rrrRRR(rrr) ·EEE(rrr)
����
2
. (2.43)

This corresponds to the standard form describing single-mode systems, as is found for
instance in the literature on antennas [60].

2.3.4 Fully Incoherent Detector

At the other extreme, we consider the response of a fully incoherent detector. Its response
tensor is

D(rrr1,rrr2) = d (rrr1,rrr2)l (rrr1), (2.44)

where l (rrr) denotes the position-dependent sensitivity of the detector response. We can then
write the detector output as

hPi =

Z

S

d2rrrl (rrr)I(rrr) (2.45)

where I(rrr) = |E(rrr)|2 describes the position-dependent intensity of the external radiation of
complex amplitude E(rrr). This is again in agreement with the standard form describing a fully
incoherent system such as bolometers, where the power absorbed is the surface-integrated
product of the incident intensity with the absorber sensitivity.

It is important here to emphasize that, because detectors are in general neither fully
coherent nor incoherent, the full expressions described in this chapter are necessary to
describe the full range of modal behaviors. This illustrates the importance of the coupled-
mode model.

2.4 Two Phase-Locked Sources Configuration

We now have two formulations at our disposal to express the power absorbed by a generic
detector in terms of the incident field and the detector’s optical response. It is important here
to note that we have made no assumption regarding the physical origin of the incident field.
We can therefore investigate the case where the external field is generated by two sources;
we suppose only that they are phase-locked and individually fully-coherent, but make no
assumption regarding their origin or specific spatial forms.

Consider N positions in space to which each source can be moved, with corresponding
non-orthogonal vector field set E= {eeen(rrr),8n 2 {1, ...,N}}, where eeen(rrr) is the field produced
by a source at position rrrn as measured at the point rrr of the surface S . The configuration is
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Fig. 2.3 Configuration for an EAI experiment using two coherent, phase-locked sources;
rotation of their relative phase yields a fringe pattern in the detector output.

summarized in Figure 2.3. The elements of D(rrr1,rrr2) in the basis E are

Dnn0 =

ZZ

S 2
d2rrr1d2rrr2eee⇤

n(rrr1) ·D(rrr1,rrr2) · eeen0(rrr2). (2.46)

Because the elements of the set E are not necessarily mutually orthogonal, we reconstruct
D(rrr1,rrr2) via

D(rrr1,rrr2) ⇡ Â
n,n0

Dnn0 ẽeen(rrr1)ẽee⇤
n0(rrr2), (2.47)

where Ẽ = {ẽeen(rrr),8n 2 {1, ...,N}} is the dual set of E [67]. The utilization of the dual
vectors ẽeen(rrr) is necessary because we do not know whether the basis E is undercomplete,
perfectly complete or overcomplete. Moreover, Equation (2.47) is an equality only if the basis
E, and hence its dual Ẽ, is complete or overcomplete. By column-wise concatenating the
vectors eeen(rrr) into a matrix E, the completeness of the basis E can be assessed by considering
the so-called “frame” matrix, defined as

S = EE†
=

N

Â
k=1

eeekeee†
k , (2.48)

which is the sum of all outer products of the vectors of the basis E with their respective
conjugate transpose. Because S is not generally invertible, we consider its pseudoinverse
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S̃�1, which can be obtained by minimizing the residual e = kS̃�1S � Ik, where I denotes
the identity matrix. The property S̃�1

= S�1 only holds when S is invertible. The dual basis
vectors ẽeen(rrr) can then be defined as

ẽeen(rrr) = S̃�1eeen(rrr). (2.49)

We can note that the duals defined in this way only satisfy the orthogonality condition
Z

S

d2rrr ẽee⇤
m(rrr)eeen(rrr) =

Z

S

d2rrr ẽeem(rrr)eee⇤
n(rrr) = dmn (2.50)

if the basis E is linearly independent. It is also important to remark that the dimensionality
of the matrix of singular values S will be set by some sampling of the reference surface S ,
which will be discussed in Section 2.5; up to now, this dimensionality has been assumed to
be infinite, such that the sampling of the reference surface can be considered continuous.

Then, assuming two sources are respectively at positions labeled n and n0, we can write
the total field EEE(rrr) as

EEE(rrr) = eeen(rrr)+ eeen0(rrr)eif , (2.51)

where f is the relative phase of the sources. The correlation dyadic can then be written as

E(rrr111,rrr222) ={eeen(rrr1)+ eeen0(rrr1)eif}⇥{eeen(rrr2)+ eeen0(rrr2)eif}⇤

=eeen(rrr1)eee⇤
n(rrr2)+ eeen(rrr1)eee⇤

n0(rrr2)e�if
+ eeen0(rrr1)eee⇤

n(rrr2)eif
+ eeen0(rrr1)eee⇤

n0(rrr2). (2.52)

Substituting into Equation (2.19),

hPi =

ZZ

S 2
d2rrr1d2rrr2

⇣
Â

m,m0
Dmm0 ẽeem(rrr1)ẽee⇤

m0(rrr2)
⌘†

· ·
⇣

eeen(rrr1)eee⇤
n(rrr2)+ eeen(rrr1)eee⇤

n0(rrr2)e�if

+ eeen0(rrr1)eee⇤
n(rrr2)eif

+ eeen0(rrr1)eee⇤
n0(rrr2)

⌘
.

(2.53)

Using the dyadic property (aaabbb) · ·(cccddd) = (aaa ·ddd)(bbb · ccc),

hPi =

ZZ

S 2
d2rrr1d2rrr2 Â

m,m0

⇣
D⇤

mm0 ẽeem0(rrr2)eee⇤
n(rrr2)ẽee⇤

m(rrr1)eeen(rrr1)

+D⇤
mm0 ẽeem0(rrr2)eee⇤

n0(rrr2)ẽee⇤
m(rrr1)eeen(rrr1)e�if

+D⇤
mm0 ẽeem0(rrr2)eee⇤

n(rrr2)ẽee⇤
m(rrr1)eeen0(rrr1)eif

+D⇤
mm0 ẽeem0(rrr2)eee⇤

n0(rrr2)ẽee⇤
m(rrr1)eeen0(rrr1)

⌘
. (2.54)
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Using the definition of dual vectors
R
S

d2rrr ẽee⇤
m(rrr)eeen(rrr) =

R
S

d2rrr ẽeem(rrr)eee⇤
n(rrr) = dmn, and the

Hermicity of D such that D⇤
mm0 = Dm0m, we obtain

hPi = Â
m,m0

(Dm0mdnmdnm0 +Dm0mdnmdn0m0 +Dm0mdn0mdnm0 +Dm0mdn0mdn0m0)

= Dnn +Dn0ne�if
+Dnn0eif

+Dn0n0

= Dnn +Dn0n0 +2¬{Dnn0eif}
= Dnn +Dn0n0 +2|Dnn0 |cos(f +qnn0), (2.55)

where |Dnn0 | and qnn0 are the magnitude and phase of Dnn0 respectively. The last term is
proportional to cos(f): by varying the phase difference f , we obtain fringes in the detector
output, as illustrated in Figure 2.3. The amplitude, phase and constant offset of the fringe
respectively correspond to |Dnn0 |, qnn0 and Dnn + Dn0n0: measuring a fringe allows us to
extract information concerning the detector response function D. Equation (2.55) expresses
the detector output hPi as the sum of the two single-source terms and the cross-source
contributions. While Dnn0 is a complex quantity and is therefore not strictly defined as a
measurable, it still possesses the unit of the detector output.

It is important here to reflect on the importance of Equation (2.55), as it provides a
powerful experimental method for reconstructing the detector response function. By illumi-
nating some power detector whose optical response, as described by its state of coherence, is
unknown using two coherent, phase-locked sources, we can measure fringes in the measured
detector output as the relative phase between the sources is varied. These fringes contain
information about the detector response function, which can be fully recovered by repeating
the fringe measurements over a number of source position pairs. This experimental method
is called Energy-Absorption Interferometry (EAI). Moreover, from the theory developed in
Section 2.3, we know that the detector response function can be decomposed into its natural
modes. EAI therefore allows us to determine the spatial forms of the individual degrees of
freedom through which the detector structure absorbs external power.

It is also important to remember that the fringe measurements are performed with
monochromatic sources at a single frequency. As opposed to other less powerful character-
ization methods such as those discussed in Chapter 1, sweeping the sources’ frequency is
not required. Just the opposite, by repeating a full set of measurements for various radiation
frequencies, EAI experiments could obtain the frequency-dependent behavior of the detector
response function as well.

While the following sections will in part discuss how repeating fringe measurements over
a sufficiently large number of source position pairs guarantees that we are able to retrieve the
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full DRF, we can already link this topic to Aperture Synthesis Interferometry (ASI), which
we described in Chapter 1. In the context of ASI, one wishes to retrieve the state of coherence
of the incoming radiation, and can generally describe the incident field in terms of plane
waves. The separation between the telescopes used sets the (spatial) Fourier frequency of the
fringe in the signal, also called the baseline. In EAI, assuming that the two sources produce
plane waves at the surface of the detector, we can analogously think of the separation between
the two sources as setting the baseline for the reconstruction of the DRF. By repeating fringe
measurements for multiple source position pairs, we measure the DRF with an increasing
number of baselines.

2.5 Matrix Formulation

In order to obtain a formulation suitable for computational studies and experimental data
analysis, we turn to a notation based on matrices rather than dyadics. This implies discretizing
the detector surface S into J points, using an appropriate sampling convention, such that the
field eeen(rrr) produced by a source at position n becomes the vector en 2 CJ . Concatenating
these column-wise, we obtain a matrix of source fields E 2CJ⇥N , such that the nth column of
E corresponds to en. We can then write the decomposition of the detector response function
D(rrr1,rrr2) into the dual vectors of fields generated by sources at the N allowed positions,
Equation (2.47), as

M = ẼDẼ†, (2.56)

where the nth column of Ẽ corresponds to ẽn, the discretized version of the dual vector ẽeen(rrr),
in which any rrr dependence is omitted since it is already included in the definition of the
source position n, and the components of the measurement matrix D are given by Dnn0 , related
to the power measurements by Equation (2.55).

Considering two coherent, phase-locked sources at positions m and m0, with phase
difference f , as in Section 2.4, we obtain the following form for the detector output as a
function of the relative phase f between the sources:

Pnn0 = Â
m,m0

Dmm0

h
em + em0eif

i†
ẽnẽ

†
n0

h
em + em0eif

i

= Â
m,m0

Dmm0

h
e†

m + e†
m0e�if

i
ẽnẽ

†
n0

h
em + em0eif

i

=Dnn +Dn0n0 +2|Dnn0 |cos(f +qnn0), (2.57)
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Fig. 2.4 Schematical illustration of the relations between the spatial, source-numbered and
modal representations of the DRF; the basis of each matrix is stated in parentheses.

using emẽ†
n = ẽme†

n = dmn. This reveals the general form for the response matrix in basis of
source fields:

D = E†ME. (2.58)

Note that Equation (2.58) corresponds to an embedding of the detector’s response to the field
in the detector plane, M, into the detector’s response to sources some distance away from the
detector, D. This operation can be seen as a filtering of the measured DRF from the domain of
M, indexed by the sampled positions on the reference surface, into the domain of D, indexed
by the scanned source positions. Similarly, Equation (2.56) describes a deconvolution from
the domain of D into the domain of M.

In general experimental cases, we may actually not wish to use the transformation in
Equation (2.56). Indeed, the matrices D and M can both be diagonalized, to retrieve the
eigenvectors and eigenvalues of the detector response function in their respective bases:

D = L†WL (2.59)

M = R†WR, (2.60)

where W is the diagonal matrix of eigenvalues, containing the relative sensitivities of the DRF
to the modes appearing column-wise in L (for their representation in the basis of source fields)
and R (for their representation in the spatial basis). Columns of R correspond to the modes
RRR(rrr) in Equation (2.35), discretized over the reference surface using the same sampling
convention as chosen above to construct the matrix E. Elements of the matrix L are the
overlap integrals of the detector modes in the spatial basis with the incident external fields at
the chosen set of source positions; they are given by Lmn =

R
S

d2rrrRRRm(rrr) · eeen(rrr). The matrix
L0

= RE, which appears when substituting Equation (2.60) into Equation (2.59), converges
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towards the integral form above as the number of sample points J over the integration surface
becomes infinite. Figure 2.4 depicts the relationships between the three bases discussed,
namely the basis of source positions, the basis of sampled spatial points on the detector
surface, and the basis of eigenmodes. The transformations between the former two are
described by Equations (2.56) and (2.58), while their respective transformations into the
modal basis are given by the diagonalizations in Equations (2.59) and (2.60).

Substituting Equation (2.58) into Equation (2.56), we obtain the measured response
matrix M0 in terms of the actual response matrix M:

M0
= ẼE†MEẼ†. (2.61)

If the measurement set E is complete or overcomplete, i.e. if dual vectors ẽn are contained in
the columns of Ẽ, then by definition E†Ẽ= I = Ẽ†E. In that case, M0

= M: we can completely
retrieve the response matrix from the measured matrix. In the opposite case, where the
measurement source fields do not completely span the fields to which the power detector
is sensitive, we use Singular Value Decomposition (SVD) to compute the pseudo-inverse
matrices:

E = U⌃V† (2.62)

=) Ẽ = U⌃�1V†, (2.63)

where U 2 CJ⇥J and V 2 CN⇥N are unitary matrices whose columns correspond to the
left-singular and right-singular vectors respectively, and ⌃ 2 CJ⇥N is a positive semidefinite
diagonal matrix containing the singular values of E. We then obtain:

EẼ†
= U⌃⌃�1U† (2.64)

E†Ẽ = V⌃�1⌃V†. (2.65)

Equation (2.64) corresponds to the projection of the natural modes onto measurement space,
followed by the application of a diagonal filter, and the reconstruction of the measured modes.
Information is lost in the imperfect filtering step if ⌃⌃�1 is not the identity matrix.

It is important to note that multiplication by EẼ† is very different from applying EE†,
which corresponds to mappings between the source and detector planes, with some informa-
tion loss if the set of vectors {en} does not span the space of the matrix onto which EE† is
applied. We can also remark that EE† 2 CN⇥N is the discretized version of the frame matrix
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defined in Equation (2.48). Using Equation (2.62), it can be re-written as

S = U⌃⌃†U†. (2.66)

The frame matrix measures the completeness of the basis set E over the J sampled points
on the reference surface S , as the number of nonzero singular values in the frame matrix
corresponds to the number of degrees of freedom representable in the basis E [68]. Similarly,
we can define the Gram matrix T 2 CJ⇥J as

T = E†E =

N

Â
k=1

eee†
keeek. (2.67)

Using Equation (2.62) as for the frame matrix, the discretized Gram matrix can be re-written
as

T = V⌃†⌃V†. (2.68)

and provides a measure of the basis set’s linear dependence. Berry et al. proved that the
number of non-zero singular values is equal to the number of linearly independent vectors
in the basis [67]. Note that the diagonal matrices ⌃⌃† 2 RJ⇥J and ⌃†⌃ 2 RN⇥N have
components |⌃ii|2 for i 2 {1,2, ...,min(N,J)} and zero otherwise.

2.6 Experimental Considerations

2.6.1 Populating the Detector Response Matrix

Equation (2.57) gives interesting insights into possible experimental procedures to populate
the response matrix D. In particular, D can be populated using measurements for two
different values of the relative phase between sources, f . The simplest form is obtained when
f 2 {0,p/2}; we can then split measurement data into three types:

8
>><

>>:

P0
nn =Dnn

Pc
nn0 =Dnn +Dn0n0 +2¬{Dnn0ei0}

Ps
nn0 =Dnn +Dn0n0 +2¬{Dnn0eip/2}

=)

8
>><

>>:

P0
nn =Dnn

Pc
nn0 =Dnn +Dn0n0 +2¬{Dnn0}

Ps
nn0 =Dnn +Dn0n0 �2¡{Dnn0},

(2.69)
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Fig. 2.5 Graphical illustration of plots obtained by moving along various rows of a measured
detector response function D; the black envelope is the matrix diagonal, corresponding to
the single-source power elements; the width of the enclosed structures is recognized as the
coherence length x .

where the first line corresponds to single-source measurements. This can be rearranged to
obtain the elements of D in terms of the measurements:

8
>><

>>:

Dnn =P0
nn

¬{Dnn0} =(Pc
nn0 �P0

nn �P0
n0n0)/2

¡{Dnn0} =� (Ps
nn0 �P0

nn �P0
n0n0)/2.

(2.70)

Note that this is only the method that requires the minimum theoretical number of required
measurements. As will be discussed in much more detail in following chapters, when
performing fringe measurements in experiments, we will in practice use different phase
modulation schemes to extract the amplitude and phase of the Dnn0 elements.

2.6.2 Coherence Lengths and Other Quantities of Interest

While we have only considered the measured detector response until now, other associated
quantities are of significant interest. In particular, the complex fringe visibility gnn0 , also
called the Michelson visibility in the context of classical optics, is defined as the ratio of the
amplitude of the fringe pattern over the sum of individual sources’ powers. It measures the
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contrast of interference phenomena [69], and is related to the elements of D as follows:

gnn0 =
2Dnn0

Dnn +Dn0n0
. (2.71)

It is possible to plot gnn0 by moving along the nth row of D, which reveals the transverse
coherence length graphically. For a given source position, the other source can be scanned
to obtain the two-source correlation function, which goes to 0 as the distance between the
sources is increased. Choosing an appropriate cutoff, the two-source correlation gives the
coherence length explicitly. Figure 2.5 is an illustration of this scheme. It shows how, for
various positions of the second source n0, plots of |gnn0 | as a function of the first source
position n fit under the plot of the normalized single-source beampattern. In particular,
their widths are all identical and, choosing a uniform cutoff at a certain percentage of the
maximum value, can be used to graphically infer the transverse coherence length x .

We can also apply another normalization to the DRF, to obtain the complex fringe
coherence defined as

Gnn0 =
Dnn0p

DnnDn0n0
. (2.72)

The starting observation is that Equation (2.57) has integrated the source intensities into the
definition of EEE(rrr) and E(rrr1,rrr2) because they were assumed to be identical. In practice, this
assumption will be difficult to achieve, and we must consider the case where the sources’
amplitudes are different. The total external field can be re-written as

EEE(rrr) = Enêeen(rrr � rrrn)+ eif En0 êeen0(rrr � rrrn0), (2.73)

where êeen is the unit vector for the external field generated by the source at position n. Using
the definition of the external field dyadic, it becomes

E(rrr111,rrr222) = |En|2êeen(rrr1 � rrrn)êee⇤
n(rrr2 � rrrn) (2.74)

+EnE⇤
n0e�if êeen(rrr1 � rrrn)êee⇤

n0(rrr2 � rrrn) (2.75)

+E⇤
n En0e+if êeen0(rrr1 � rrrn)êee⇤

n(rrr2 � rrrn) (2.76)

+ |En0 |2êeen0(rrr1 � rrrn0)êee⇤
n0(rrr2 � rrrn0) (2.77)

(2.78)

We then obtain
P = |En|2D̃nn + |En0 |2D̃n0n0 +2¬

h
E⇤

n En0D̃nn0eif
i
. (2.79)



36 Theoretical Description of Power-Absorbing Detectors

where
D̃nn0 =

ZZ

S 2
d2rrr1d2rrr2êee⇤

n(rrr1 � rrrn) ·D(rrr111,rrr222) · êeen(rrr2 � rrrn0). (2.80)

D̃nn0 is related to the definition of Dnn0 in Equation (2.46) by Dnn0 = |EnEn0 |D̃nn0 . We therefore
obtain that the coherence function Gnn0 can be re-written as

Gnn0 =
D̃nn0p

D̃nnD̃n0n0
= D̃nn0 , (2.81)

as D̃nn = 1 by definition. This clearly shows that Gnn0 corresponds to the fringe amplitude
that would be obtained for identical sources producing unit response in the detector output.
Note also that the width of the structure observable in fringe visibility plots, such as in Figure
2.5, will be identical when plotting the fringe coherence function. The latter however corrects
the effect of the source intensities, which is particularly important if they are unequal, as we
may expect in experimental configurations.

2.6.3 Convergence

Because the number of natural modes in the detector response is typically unknown, it is
important to have a method for analyzing the number of measurements required [59]. The
number of measurements required goes as O(N2

), because we need to fill in the matrix
M 2 CN⇥N ; on the other hand, the amount of information required to reconstruct the modes
in the system goes at most as O(mN), because the information required grows as the number
of modes m and the number of eigenvalues of a N ⇥N matrix. Therefore, any data analysis
algorithm will eventually converge, when a complete set of measurement fields is attained:
the measured detector response then matches the actual response, and the detector’s modes
can be recovered.

While this guarantees convergence, additional issues such as the choice of source scanning
strategies and impact of noise make monitoring the accrual of experimental data more difficult.
However, techniques for real-time analysis are available, even with incomplete data and an
undercomplete set of basis vectors. Using incremental SVD (iSVD) on successive matrices
constructed from data acquired [70], it is possible to iteratively check whether a sufficient
number of measurements has been performed to successfully reconstruct the detector response
function. The iSVD technique will converge when there is sufficient information to find all
degrees of freedom, i.e. the detector’s natural modes. It also has the advantage of being able
to deal with missing and untrusted values, contrary to standard SVD algorithms [71].
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2.7 Conclusion

We have summarized the derivation of a model showing that a linear power detector’s output
can be expressed as the full contraction of two tensor fields, respectively corresponding to the
states of coherence of the detector’s response function and of the external electric field. We
have further introduced the notion of natural modes, for both the optical field and the detector
reception pattern, corresponding to the set of independent field modes through which the field
transmits power and the detector absorbs power. While the natural modes of the field and
detector are based on their physical properties only, the problem to be solved can also be cast
in a large number of representations, for instance spatially-dependent or angular-dependent.
Physically motivated bases can also be chosen, such as Hermite-Gaussian functions [72] or
Laguerre-Gaussian functions [73, 74].

We have also seen how the detector response function, and its (possibly partially coherent)
decomposition in the basis of the detector’s natural modes, can be fully reconstructed from
a finite number of power measurements. This formalism yields an elegant experimental
method, called Energy-Absorption Interferometry: at various location pairs attained by some
scanning system, power measurements of the field emitted by two coherent, phase-locked
sources reveals the full information of the detector response function. This method was
demonstrated successfully in a proof-of-concept experiment at submillimeter wavelength
[58]. In the next chapter, we will use the theory developed here to numerically investigate
model infrared systems. In Chapter 4, we will examine the design of an experimental system
at infrared wavelength, while the following chapters will deal with the system’s performance
and its utilisation to perform EAI on infrared detector systems with various modal behaviors.

The EAI theory is valid for a very large number of situations, far beyond those allowed by
the assumptions made in Section 2.2.1. For instance, it should be noted that the EAI theory
applies to all electromagnetic radiation. Ongoing work deals with the case of electromagnetic
excitation of sets of magnetic dipoles, including the emergence of long-range order [75].
A further extension, to quantum correlation functions and incident fields generated by two
(potentially different) generalized forces, has been proven by Withington [51]. Furthermore,
it was shown by Withington and Saklatvala that EAI could reveal the link between fluctuations
in the field and in the detector response [53], as well as be used for the study of quantum
states of light, photon-number statistics and correlations between detectors in a single array
[61].





Chapter 3

Simulating EAI on Infrared Detectors

3.1 Introduction

The Energy-Absorption Interferometry theory developed in Chapter 2 is used in this chapter
to create a numerical simulation framework for the investigation of the optical response of
near-infrared detectors. The main goal is to study simulated single-mode, few-mode and
multi-mode systems based on realistic assumptions, and find differentiating features in their
simulated DRFs. This constitutes the first numerical demonstration of EAI at near-infrared
wavelengths, and will have particular importance when considering experimentally measured
DRFs, particularly in Chapters 6 and 8. Their comparison will provide an additional practical
confirmation of EAI’s power and versatility.

More generally, we want to root our numerical investigations in physical rationales.
For instance, we choose a 1550 nm operating wavelength for the sources, as it is a key
wavelength in near-infrared technology, particularly in the telecommunications community;
its significance will be explored again when designing an EAI experimental system, in
Chapter 4. Much discussion in Chapter 2 revolved around the use of physically motivated
modal bases, such as the Laguerre-Gaussian (LG) modes describing the propagation of
circularly symmetric beams in free-space and Linearly Polarized (LP) modes for radiation
transmission in optical fibers: we also wish to investigate optical responses built from these
mode sets. These observations, among others, will be directly applicable to designing
and operating an experimental system to demonstrate EAI on near-infrared detectors, from
Chapter 4 onwards.

The recovery of the DRF’s natural modes via its diagonalization is not explored in
this chapter, as it is technically straightforward for simulated DRFs that are effectively
noiseless and devoid of measurement imperfections, but rather in Chapter 9 in the context of
experimentally measured DRFs. Instead, we here report on a broad study of the requirements
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placed on source scanning strategies to recover the system’s modes, in a more general and
powerful scheme. This examination will echo discussions from Chapter 2 regarding the
completeness of the set of scanned source positions.

In Section 3.2, we create a powerful and versatile numerical simulation framework,
allowing us to compute the DRF of a large variety of systems; significant computational
simplifications are introduced, including to reduce the scheme’s algorithmic complexity.
Section 3.3 presents the first simulations of DRFs for infrared detectors, modelling both the
detector’s response and the sources’ beams as field from point-like antenna structures. In
Sections 3.4 and 3.5, the finite-sized sources are modeled as generating Gaussian beams, and
the detector response is built from the incoherent sums of LG and LP modes, respectively.
Qualitative features of single-mode, few-mode and multi-mode systems are explored, and
the comparison yields differentiating structures for LG-based and LP-based systems. Section
3.6 discusses a functional form for the detector’s response that is not based on modes, but
rather on a finite-coherence response. In particular, we explore the interplay between three
characteristic lengths: the 1550 nm operating wavelength, the absorber sidelength and its
coherence length. In Section 3.7, we study the importance of scanning strategies for the
source positions. This produces significant insight into how information is accrued as the
sources are scanned over various sampling schemes, such as Cartesian and polar grids.
Furthermore, it reveals how the dynamic range of the experimental system, an important
metric of its performance measuring the range between the largest and smallest recoverable
eigenvalues, influences the convergence of the scanned source fields towards a complete set.

3.2 Implementing a Numerical Simulation Framework

3.2.1 General EAI Framework

An important first and non-trivial step is to choose a representation for the DRF datasets
obtained from the simulated fringes’ complex amplitudes, given a set of sampled positions
over which each source is scanned. In Chapter 2, we discussed the DRF’s elements Dmn as
denoted by the indices m and n of the positions at which the first and second sources are
placed. We differentiate between the functional form D(ri,r j) of the DRF in the spatial basis,
which we substitute into Equation (2.19) and here call the assumed DRF, and the matrix of
computed DRF elements Dmn in the basis of sampled source positions, which we here call
the simulated DRF.

While the experimental method derived in Chapter 2, and which will be implemented
in Chapters 4 and 5, is fully capable of performing two-source scans over two-dimensional
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sampling grids, a large part of this manuscript is dedicated to one-dimensional sampling
grids. As such, the matrix Dmn can be represented as a matrix, with row and column indices
respectively corresponding to the two sources’ positions along the sampled line. To preempt
experimental considerations in later chapters, we label the two sources R and L. Without
loss of generality, the uniformly sampled line is taken along the x-axis; the positions of
the sources are then denoted xR and xL. The visibility and coherence matrices, defined in
Equations (2.71) and (2.72), then follow the same indexing convention.

3.2.2 Simplifications for Computation

We recall that the DRF elements Dmn in the basis of source positions are given by

Dmn =

ZZ

S 2
eee⇤

m(rrr1) ·D(rrr1,rrr2) · eeen(rrr2)d2rrr1d2rrr2, (3.1)

where eeem(rrr) is the field produce at a point rrr on the reference surface by a source placed at the
position labeled m. Performing the double-integral described in Equation (3.1) is computa-
tionally intensive, as it involves numerical integration of multi-dimensional complex-valued
functions. Additionally, the number of two-source position pairs grows as the square of the
single-source sampled positions. It is therefore important to investigate what simplifications
can be applied to reduce the computational complexity of a brute force algorithm, in which
each DRF element is simulated independently. We remark that symmetry arguments on the
radially symmetric source beams are not applicable as their origins are generally displaced
with respect to the detector’s on-axis position.

Using a functional form for the detector’s optical response written as an incoherent sum,
such as the Hilbert-Schmidt form of the DRF given in Equation (2.35),

D(rrr1,rrr2) = Â
k

akRRRk(rrr1)RRR⇤
k(rrr2), (3.2)

the simulated DRF measurement elements Dmn defined in Equation (2.46) can then be written
as

Dmn = Â
k

ak

ZZ

S 2
d2rrr1d2rrr2 eee⇤

m(rrr1) ·
�
RRRk(rrr1)RRR⇤

k(rrr2)
�
· eeen(rrr2). (3.3)

Importantly, we can thus simulate and store the response of each mode separately, and later
add each with a chosen sensitivity factor, rather than simulating the system’s total response
at one time, which has the same total computational duration and does not allow tuning of
each mode’s sensitivity. Wherever possible, we have therefore used this simplification.
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For spatially-separated forms of the detector response, such as in Equation (3.3), we
obtain

Dmn = Â
k

ak

✓Z

S

d2rrr1 eee⇤
m(rrr1) ·RRRk(rrr1)

◆✓Z

S

d2rrr2 RRR⇤
k(rrr2)

�
· eeen(rrr2)

◆
, (3.4)

where the two integrals are complex conjugates. It is therefore only necessary to compute one
integral for each source position, concatenate these values as a vector, and compute its outer
product with its conjugate transpose, to obtain all Dmn elements. Considering N positions to
which every source is scanned, this simplification reduces the algorithmic complexity from
O(N2

) to O(N).

We note however that, in order to reproduce the conditions of experimental measurements,
we can use the simulated DRF to produce fringe patterns at every position pair (m,n) and
extract the fringe parameters from the fringes. For instance, the detector output P(f) as a
function of the relative phase between the probes f can be computed as

P(f) = Dmm +Dnn +2¬{Dmneif}. (3.5)

This allowed us to investigate the effect of methods of extracting the fringe amplitude, phase
and offset, for instance with least-squares fitting of a sinusoid. These three parameters
can also be extracted from the Fast Fourier Transform (FFT) of such simulated detector
output measurements, respectively by selecting the amplitude and phase of the element
corresponding to the relative phase modulation frequency, and the first element corresponding
to the DC term of the Fourier Series. Both the fitting and FFT methods were implemented
and applied to emulated fringes using the DRF elements Dmn simulated using the methods
described in this section. We found that the fringe parameters were very accurately retrieved
in both cases, providing solid benchmarks for their use to recover the fringe parameters of
experimental DRFs, for which the elements Dmn are not directly accessible.

Additionally, this capability allows the exploration of the accuracy of the extracted fringe
amplitude and phase for various sampling rates and measurement durations. More generally,
this form also provides a natural way of inserting noise contributions into the simulated
detector output measurements and studying their effect on the extracted fringe parameters.
These opportunities will be further discussed in Chapter 10.



3.3 Point-Like Sources and Detectors 43

3.3 Point-Like Sources and Detectors

3.3.1 Theory

In order to perform simulations, we need to choose the nature of the sources and of the
detector. In practice, this means selecting models for the fields produced, physically by
the sources and virtually as reception patterns by the detector system. The simplest model
available is that of point-like sources and detector. It is characterized by an infinitesimal
physical size and an azimuthally uniform radiation transmission or reception pattern. We
use the standard formula for the field produced by an electric dipole oscillating in time
with dipole moment p0 along the ẑzz direction and an angular frequency w , related to the
wavenumber k = w/c where c is the speed of light [76]:

E =
1

4pe0

⇢
k2

r
(r̂⇥p)⇥ r̂+

✓
1
r3 � ik

r2

◆
(3r̂ [r̂ ·p]�p)

�
ei(kr�wt). (3.6)

In the far-field, i.e. for kr � 1:

E = �w2µ0 p0

4p
sin(q)

�
f̂ ⇥ r̂

� ei(kr�wt)

r

= �w2µ0 p0

4p
sin(q)

ei(kr�wt)

r
q̂ . (3.7)

3.3.2 Implementation

Using the far-field expression for a point-like source from Equation (3.7), we can define its
field at a position rrr on the detector surface when the source is at the sampled position with
index n as:

eeen(rrr) = E(rrr � rrrn). (3.8)

While Equation (3.7) can also be used for the assumed DRF of a point-like detector, the
problem can be significantly simplified by considering a reference surface S containing the
detector position rrrd . In that case, the assumed DRF reduces to

D(rrr1,rrr2) =

8
<

:
d (rrr1 � rrr2) rrr1,rrr2 = rrrd

0 otherwise,
(3.9)
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where a proportionality constant can be introduced to account for non-unity response. We
then obtain the following form for the measured DRF elements, from Equation (2.46):

Dmn =

ZZ

S 2
eee⇤

m(rrr1) ·D(rrr1,rrr2) · eeen(rrr2)d2rrr1d2rrr2 (3.10)

=

Z

S

eee⇤
m(rrr) · eeen(rrr)d2rrr

= eee⇤
m(rrrd) · eeen(rrrd). (3.11)

In practice, we used the simplification discussed in Section 3.2.2: a vector was constructed,
whose nth element is eeen(rrrd), and the outer product with its conjugate transpose was computed
to obtain all matrix elements Dmn simultaneously.

3.3.3 Results and Discussion

Figure 3.1 presents the simulated DRF for the sources labeled R and L scanned over 151
positions on a uniformly sampled line segment along the x-axis, x 2 [�15;15] mm, at a
normal distance z = 100 mm of the detector, whose on-axis position is x = 0 mm. We observe
a slowly-varying amplitude pattern in Figure 3.1a, and a quickly-varying phase pattern in
Figure 3.1b, both of which have symmetries along the center row and column, as well as the
diagonal and antidiagonal.

The simulated DRF phase pattern shown in Figure 3.1b can be shown to correspond to a
fast-wrapping phase, caused by the geometric phase contribution of the point-like sources’
fields. Using a much finer step size, equal to 1 µm, we computed the DRF phase pattern for
xL = 0 and xR = 0, i.e. respectively the central row and column of the DRF matrix: Figure
3.2 shows these phase-unwrapped patterns, whose peak-to-peak magnitude over the scanning
range is approximately 4 500 rad and whose form is in line with the spherical phase due to
the displacement of sources off-axis.

3.4 Laguerre-Gaussian Modes

3.4.1 Theory

Many experimental systems use a laser for radiation generation, and fiber-coupled detectors
as a convenient way of restricting the number of modes that enter the power-absorbing
structure. It is therefore important to investigate detector responses built from the basis
describing such systems, known as the Laguerre-Gaussian (LG) modes. LG modes are the
modes for free-space propagation of radially symmetric beams, solutions of the Helmholtz
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Fig. 3.1 Simulated DRF assuming point-like sources and detector.
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Fig. 3.2 Unwrapped phase patterns of the simulated DRF assuming a point-like detector and
two sources, labeled R and L, for xR = 0 and xL = 0.

equation in the paraxial approximation, i.e. for small angles j  10° such that sin(j) ⇡ f
[77]. The complex amplitude of an LG mode with radial index p � 0 and azimuthal index l,
as measured at an on-axis distance z and a transverse position (r,j) in cylindrical coordinates,
is given by [73, 74]:

LGpl(r,j,z) =

CLG
pl

w(z)

 
r
p

2
w(z)

!|l|

exp
✓

�r2

w2(z)

◆
L|l|

p

✓
2r2

w2(z)

◆

⇥ exp
✓

�ik
r2

2R(z)
+ ilj � ikz+ iy(z)

◆
. (3.12)

where we denote:

• CLG
pl = p!

q
2

p p!(|l|+p)! =

q
2p!

p(|l|+p)! : normalization constant;

• w(z) = w0
p

1+(z/zR)2: beam spot size at a distance z along the focus of the beam,
defined as 1/e-amplitude radius;

• w0 = w(z = 0): waist size;
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Fig. 3.3 Spatial forms of the low-order LGpl modes, for p, l  3; the opacity is proportional
to the mode’s amplitude, and the blue and red colors respectively correspond to the positive
and negative sign of the phase.

• zR = pw2
0/l : Rayleigh length, generally considered as the boundary between the

near-field and far-field regimes, for which the beam spot size w(z = zR) =
p

2w0 and
the on-axis intensity is twice the peak intensity at z = 0;

• R(z) = z(1+(zR/z)2
): radius of curvature of the wavefront;

• Ll
p(r): generalized Laguerre polynomial;

• y(z) = (N + 1) tan�1
(z/zR): Gouy phase shift, which accounts for an increase of

effective wavelength near the beam waist;
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• N = |l|+2p: combined mode number.

In the case of fibers, the waist size w0 is equal to half of the mode field diameter (MFD), typ-
ically specified as a characteristic of the fiber by the manufacturer. The analogue description
for beams with two orthogonal symmetry axes are Hermite-Gaussian modes, i.e. rectangular
beams for which the Helmholtz equation is separable along the Cartesian x and y axes [72].

Figure 3.3 illustrates the spatial forms of low-order LGpl modes, for p, l  3: the
increasing number of roots of the generalized Laguerre polynomials are visible along the
radius, while the increasing number of phase changes corresponds to the larger azimuthal
index l. Note that the width of LG modes increases with both p and l indices; indeed, the
beam width of high-order LG modes is approximately w0

p
2p+ l +1 [78].

While the functional form in Equation (3.12) describes the LG modes, these are only valid
in the paraxial approximation. In order to better deal with sources illuminating a detector at
larger angles, it is necessary to generalize the parabolic wavefront into a spherical wavefront.
In practice, we replace the phase contribution r2

2R(z) by
p

R(z)2 + r2 �R(z).

3.4.2 Implementation

The simulation algorithm follows a number of steps:

1. Values for the source and detector beam waists are selected, and the indices of LG
modes of interest are chosen;

2. The vector of single-source, single-point power contributions is computed by perform-
ing a two-dimensional integral of the product of the source beam (projected LG mode)
with the detector response (LG mode) over the integration surface;

3. The outer product of this vector with its conjugate transpose is computed to obtain the
single-mode simulated DRF;

4. Steps 2 and 3 are repeated for each LG mode;

5. Multi-mode DRFs are assembled from the sum of single-mode DRFs, weighted by
selected sensitivities.

For the two-dimensional integration step, absolute and relative tolerances must be selected for
Matlab’s numerical integrator: we selected 10�10 and 10�6 respectively. Computing the DRF
by taking the outer product of a vector whose elements have these accuracy characteristics,
we obtain DRF elements with 10�20 absolute and 10�12 relative accuracy respectively.
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3.4.3 Single-Mode Systems

We used this simulation procedure with the same source scanning configuration as Section
3.3: the sources labeled R and L are scanned over xR,xL 2 {�15,�14.8, . . . ,15} mm, at
a normal distance z = 100 mm of the detector, whose on-axis position is x = 0 mm. The
simulated DRF amplitude in Figure 3.4a has a distinctive Gaussian-like shape. The DRF
phase pattern presented in Figure 3.4b includes a large contribution from the geometric phase
of the sources, similar to that observed in the case of point-like sources and detectors in
Figure 3.1b. At this time, we do not wish to remove this contribution: the phase pattern
contains important information and it is non-trivial to prove that an operation removing the
geometric phase term allows the simulated DRF’s modes and sensitivity spectrum to be
recovered properly. This topic will be revisited in Chapter 7, in the context of experimental
datasets.

Figure 3.5 presents the DRF’s visibility and coherence patterns, as defined by Equations
(2.71) and (2.72); their respective phase patterns are identical to that of the complex DRF
amplitude, and therefore not shown again. The visibility’s diagonal cross shape is caused by
the sum of single-source contributions in the denominator and reaches a maximum value of 1
along the diagonal and antidiagonal; this corresponds to measuring a fringe in the detector
output whose peak-to-peak amplitude is equal to the sum of single-source powers. The DRF
coherence is constant and equal to 1, within the computational precision. This behavior is
characteristic of single-mode systems.

The same simulation procedure can be repeated for detector responses built from LG
modes other than the fundamental LG00. Figure 3.6 presents the single-mode DRF obtained
assuming that the detector response has functional forms based on either the LG01, LG10 or
LG11 mode. For the LG01 and LG11 modes, we observe a four-fold symmetry associated
with the l = 1 azimuthal index; while the fine structure in the phase patterns is dominated
by the geometric phase contribution, we clearly observe different symmetries compared to
the LG00 and LG10 cases. For cases where p = 1, secondary amplitude maxima are visible,
separated from each other (and the global maximum, in the case of LG10) by zero-amplitude
lines along xR and xL. These simulated DRFs differ from the assumed LG modes used to
model the detector’s response, shown in Figure 3.3. Indeed, the simulated DRFs in Figure
3.6 are the projections of LG modes from the spatial basis on the detector surface into the
basis of sampled source positions, subject to the chosen model for the source fields, as was
discussed in Section 2.5.
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Fig. 3.4 Simulated single-mode DRF, built from the LG00 mode.
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(b) DRF coherence amplitude, relative to a constant pattern with value 1.

Fig. 3.5 Simulated single-mode DRF, built from the LG00 mode.
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Fig. 3.6 Simulated single-mode DRF amplitude (left column) and phase (right column)
patterns, respectively built from the LG01, LG10 and LG11 modes.

3.4.4 Few-Mode Systems

Figure 3.7 presents the simulated DRF amplitude and phase patterns, obtained by building
the detector response as an incoherent sum of the LG00 and LG01 modes, i.e. the two
lowest order LG modes. We observe a primary maximum at the on-axis position, with
decreases along the main diagonal. Along the antidiagonal, the DRF amplitude decreases
rapidly, reaches a zero-amplitude point before increasing monotonically towards a secondary
maximum approximately at xR/L = ±7 mm. This behavior is symmetric along the main
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(b) DRF phase

Fig. 3.7 Simulated two-mode DRF, built from the LG00 and LG01 modes.
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Fig. 3.8 Simulated two-mode DRF, built from the LG00 and LG01 modes.
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Fig. 3.9 Position along the antidiagonal xR = �xL for which the fringe amplitude is zero, in
a two-mode simulated system built from the LG00 and LG01 modes with varying relative
sensitivity of the second mode; a value of -15 mm indicates that the zero-amplitude line is
outside of the scanning range considered.

diagonal. The simulated DRF’s visibility and coherence patterns shown in Figure 3.8 clearly
display a zero-amplitude line in the antidiagonal corners, separating the pattern’s global
maximum from the local maxima. Both patterns have value 1 along the diagonal, with
structure appearing rapidly as the sources are moved to unequal positions.

In general systems, the two lowest-order modes do not necessarily have equal sensitivities.
We studied the effect of changing the relative sensitivities of the two-modes by decreasing
that of the second mode, and found that the position of the zero-amplitude line recedes
towards the antidiagonal corners. For the chosen scanning configuration, the zero-amplitude
lines disappears from the scanning range when the ratio of sensitivities falls below 0.24. In
Figure 3.9, we show the off-axis position corresponding of the antidiagonal element closest
with value nearest zero, as a function of the relative sensitivity of the second mode. If instead
we keep the ratio of mode sensitivities fixed, i.e. vary their absolute values by a unique factor,
we observe that the position for which the fringe amplitude is zero remains constant. In
other words, the zero-amplitude line’s position with respect to the antidiagonal corners is
dependent only on the ratio of the two modes’ sensitivities, not their absolute values.
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3.4.5 Multi-Mode Systems

An important subtlety in the case of multi-mode systems is the choice of the sequence in
which high-order LG modes appear; indeed, we were unable to find a definitive ordering
of LG modes in the literature, i.e. a list of index pairs from lowest to highest order. We
choose to use as a proxy the ordering of Linearly Polarized (LP) modes, describing radiation
transmission in optical fibers, which will be investigated in Section 3.5. The order of
appearance is related to the roots of the Bessel function of the first kind Jl , with the order l
equal to the azimuthal index defined in Equation (3.12):

• For azimuthal index l = 0, we consider the p�1th root J1 for the the pth mode;

• For azimuthal indices l > 0, we consider the pth root Jl�1 for the the pth mode;

• The nth LG mode has the l and p indices of the mode with nth largest corresponding
Bessel function root.

We remark that this order approximately corresponds to the order of increasing LG mode
width, illustrated in Figure 3.3.

By generating a large enough number of Bessel function roots, we can sequentially find
the index pairs of the LG modes up to an arbitrarily large order. In Figure 3.10, we show the
simulated DRF amplitude and phase patterns of a system built from the 121 lowest-order LG
modes. The amplitude pattern displays structure with smaller width than in the few-mode
case, with zero-amplitude lines between local maxima; the latter decrease with the distance
from the on-axis position. The phase pattern retains many of the symmetries observed
in single-mode and few-mode systems, indicating that the geometric phase remains the
dominating contribution. Differences between the multi-mode DRF phase pattern in Figure
3.10b and those of single-mode and few-mode systems are noticeable; we hypothesize that
these are linked to the zero-amplitude boundaries between local amplitude maxima, and will
study this in Chapter 8.

We also investigated highly multi-mode DRFs obtained from the incoherent sum of single-
mode DRFs using non-uniform sensitivities, rather than equal sensitivities. An unambiguous
order must be chosen for the application of these weights to the collection of single-mode
DRFs: for simplicity, we can choose the order in which they were computed. Figure 3.11
presents the DRF amplitude pattern of the incoherent sum of the same 121 modes as Figure
3.10, but with sensitivities set by the opposite of an “S”-shaped function; we choose the
opposite of the logistic function, defined as

f (x) = 1� L
1+ e�k(x�x0)

(3.13)



3.4 Laguerre-Gaussian Modes 57

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

xR /mm

x L
/m

m

0

0.2

0.4

0.6

0.8

1
·10�5

Fr
in

ge
am

pl
itu

de
/V

(a) DRF amplitude

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

xR /mm

x L
/m

m

�3

�2

�1

0

1

2

3

Fr
in

ge
ph

as
e

/ra
d

(b) DRF phase

Fig. 3.10 Simulated multi-mode DRF, built from the 121 first LG modes using equal sensitiv-
ities.
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Fig. 3.11 Simulated multi-mode DRF, built from the 121 first LG modes using a tapered
sensitivity spectrum defined by the logistic function in Equation (3.13) with L = 1, k = 0.1
and x0 = 60.
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where x0 is the sigmoid’s midpoint, L is the curve’s maximum value, and k is the logistic
growth rate or steepness of the curve; we selected L = 1, k = 0.1 and x0 = 60. We observe
that the amplitude structure is wider in the case of the tapered sensitivity spectrum, and that
the global and local maxima are decreased; the phase pattern remains largely unchanged.

In all of the results above, the detector beam waist was assumed to be 5 µm, in line
with the MFD of single-mode and few-mode fibers measured by manufacturers. However,
this argument is less applicable for multi-mode fibers, whose MFDs are measured for their
total beampattern: the beam waist of their first mode cannot be inferred from their MFD,
because the width of LG modes increases with their order, as we had seen in Figure 3.3.
To investigate the effect of changing the beam width, we repeat the simulation procedure
assuming a detector beam waist of 25 µm, instead of 5 µm. The simulated DRF, presented in
Figure 3.12, displays the same qualitative features as Figure 3.10 but seemingly zoomed out;
in particular, the phase pattern appears to wrap more rapidly, while retaining its symmetries.
Using sensitivities set by the logistic curve with width k = 0.1 and midpoint x0 = 60 instead
of uniform sensitivities, as for Figure 3.11, has the same qualitative effect: the amplitude
structure has reduced widths and a lower maximum, while the amplitude pattern is largely
identical.

3.5 Linearly Polarized Modes

3.5.1 Theory

In keeping with basing the selection of a modal basis for the assumed DRF on physical intu-
ition, such as the properties of the detector system, we may ask whether the optical behavior
of fiber-coupled detectors is determined by LG modes, from the free-space propagation of
the virtual detector beampattern, or by LP modes, from the radiation transmission inside
the fiber. Indeed, both of these sets of modes must come into play in the total system. It
is therefore important to investigate assumed DRFs built from LP modes, analogously to
Section 3.4.

LP modes arise when considering the complex electric field E(r,f) in an optical fiber, a
radially symmetric medium; its propagation is determined by the wave equation

∂ 2E
∂ r2 +

1
r

∂E
∂ r

+
1
r2

∂ 2E
∂f 2 +bE = 0, (3.14)

with b denoting the imaginary part of the propagation constant in the medium. Solving
Equation (3.14) relies on the radial symmetry of the medium, where its refractive index is
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Fig. 3.12 Simulated multi-mode DRF, built from the 121 first LG modes with 25 µm width,
using equal sensitivities.
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dependent only on the radius r: an ansatz E(r,f) = Elm(r)eilf is introduced, where l � 0
and m � 1 are integer indices respectively denoting the angular dependence and the ordering
number of the mode for the corresponding l-value. Simplifications are obtained for two-layer
“step-index” fibers: when the refractive indices of the concentric core and cladding are almost
identical, the weak guidance limit is used [18]. Equation (3.14) for an optical fiber of core
radius a then has the solutions

LPlm(r,f) = Nlmeilf

8
>><

>>:

Jl(nlmr/a)

Jl(nlm)
for r < a

Kl(µlmr/a)

Kl(µlm)
for r � a

(3.15)

where Jl and Kl are respectively the Bessel functions of the first and second kind, of order
l, and nlm and µlm are respectively the normalized propagation constants of the core and
cladding [79].

The propagation constants are found by solving the eigenvalue equation:

n Jl+1(n)

Jl(n)
= µ Kl+1(µ)

Kl(µ)
(3.16)

subject to
n2

+ µ2
= V 2, (3.17)

where
V =

2p
l

NA a (3.18)

is the fiber’s V-number, set by the operating wavelength l , the fiber core radius a and its
numerical aperture NA, a dimensionless characteristic of the maximum angle at which the
fiber accepts radiation. The V-number is a dimensionless quantity loosely interpreted as a
normalized optical frequency and related to the number of modes supported by the fiber; this
will be discussed further in Chapter 4. Equations (3.16) and (3.17) are solved numerically for
the V-number of interest. For each value of l, there may be one or more (n ,µ) pair satisfying
the eigenvalue equation (3.16); in the latter case, they can be ordered by increasing n , giving
rise to the second index m. In practice, we subtract the left- and right-hand sides of Equation
(3.16) and use (3.17) to obtain

n Jl+1(n)

Jl(n)
�
p

V 2 �n2 Kl+1(
p

V 2 �n2)

Kl(
p

V 2 �n2)
= 0. (3.19)
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Fig. 3.13 Propagation constant of low-order LP modes, as function of the fiber’s assumed
V-number V , displaying the appearance of higher-order modes for increasing V 2 [0;10].

Here, we consider only step-index fibers, rather than graded-index. While the latter often
have superior performance (such as lower loss when bent), step-index are the simplest case
to evaluate because their behavior is well understood theoretically, the most readily available
commercially, and therefore the most likely to be used in the future experiment that will be
discussed in the next chapters.

3.5.2 Implementation

We first verified our ability to properly solve the eigenvalue equation (3.16), by numerically
solving Equation (3.19) for various order indices l. In Figure 3.13, we show the computed
values of the propagation constant of low-order LP modes in the fiber core, as the fiber
V-number is varied. This result is found to be in exact agreement with the literature [18]. As
V is increased, solutions become available for larger values of the order index l. The values
of V for which each mode appears is equal to the corresponding root of the Bessel function of
the first kind, found in Section 3.4.5. We also demonstrated our ability to correctly compute
the corresponding cladding propagation constants [18]. Together, these were used to obtain
the spatial forms of the 10 lowest-order LP modes, presented in Figure 3.14. Note that,
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Fig. 3.14 Spatial forms of the 10 lowest order LP modes, arranged by their azimuthal index l
and order index m; the opacity is proportional to the mode’s amplitude, and the blue and red
colors respectively correspond to the positive and negative sign of the phase.
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contrary to LG modes, the width of LP modes is similar for all indices because it is related to
the core radius a.

Using this capability, the simulation algorithm has the following steps:

1. Values of the fiber core radius a and its numerical aperture NA are selected, and the
fiber’s V-number V is computed using Equation (3.18);

2. Equation (3.19) is solved to obtain the propagation constants of all modes present;

3. The vector of single-source, single-point power contributions is computed by perform-
ing a two-dimensional integral of the product of the source beam (projected LG mode)
with the detector response (LP mode) over the integration surface;

4. The outer product of this vector with its conjugate transpose is computed to obtain the
single-mode simulated DRF;

5. Steps 3 and 4 are repeated for each LP mode;

6. Multi-mode DRFs are assembled from the sum of single-mode DRFs, weighted by
user-selected sensitivities.

We note that the source beam is still modeled using projected LG modes, rather than LP
modes because (i) we know that the free-space behavior is described by LG modes, and (ii)
we do not have a way of propagating LP modes in free-space. As for Laguerre-Gaussian
modes in Section 3.4, we computed the DRF of each LP mode individually.

3.5.3 Single-Mode Systems

The same source scanning configuration as Sections 3.3 and 3.4 is used: the sources labeled R
and L are scanned over xR,xL 2 {�15,�14.8, . . . ,15} mm, at a normal distance z = 100 mm
of the detector, whose on-axis position is x = 0 mm. We proceeded using the core radius
a = 4.1 µm and the numerical aperture NA = 0.14, to simulate the behavior of a single-mode
optical fiber with these characterstics. The simulated DRF, presented in Figure 3.15, has a
clear resemblance with the single-mode DRF assuming LG modes: its amplitude pattern is
Gaussian-like, while its phase pattern is nearly identical and dominated by the geometric
phase contribution observed in Section 3.3.3. Similarly, the DRF visibility and coherence
have the same qualitative features as those observed with a single-mode system based on LG
modes, in Section 3.4.3.
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Fig. 3.15 Simulated single-mode DRF, built from the fundamental LP10 mode.
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Fig. 3.16 Simulated single-mode DRF amplitude (left column) and phase (right column)
patterns, respectively built from the LP10 and LP11 modes, with a = 5.5 µm and NA = 0.12.

3.5.4 Few-Mode Systems

The same simulation procedure is repeated using the core radius a = 11 µm and the numerical
aperture NA = 0.12, characteristics typical of an optical fiber whose behavior is two-moded
at l = 1550 nm operating wavelength. In Figure 3.16, we present the amplitude and phase
patterns of the two modes’ individual responses, which are in line with our qualitative
expectations: the LP10 mode’s DRF has a Gaussian-like amplitude and a phase pattern
similar to the single-mode’s due to the geometric phase, while the LP11 mode’s DRF has
four-fold symmetry from the eilf term and zero amplitude at xR = xL = 0 due to the J1 term.

For low-order modes, the LGp,l mode has a functional form that most resembles the
LPl,p+1 mode. For example, Figures 3.3 and 3.14 show that the LG00 and LP01, LG10

and LP02, LG01 and LP11, and LG02 and LP21 modes are qualitatively similar, both in
their amplitudes’ radial symmetry and the angular phase factor. These pairs can indeed be
coupled to each other with very high fractional efficiencies, provided that the LG modes’
width is adjusted to that of the corresponding LP mode. For instance, it is possible to
generate a specific LG mode using a spatial light modulator and project it onto a correlation
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filter emulating an LP mode: the coupling efficiency is then measured experimentally [80].
However, for the purpose of confirming whether the optical response of a more general
system, such as a fiber-coupled detector, is set by LG or LP modes as mentioned in Section
3.5.1, we require another method; EAI is a strong candidate. Its success in an experimental
setting may depend on the impact of noise in the measured datasets, as well as imperfections
in the experimental apparatus and uncertainties in the detector system, including the typical
5% manufacturing precision of optical fiber core sizes.

We investigated the two-mode system built from the incoherent sum of the LP10 and
LG11 modes presented in Figure 3.16. In Figure 3.17, we present its amplitude and phase
patterns; the former has an oval shape that is slightly concave along the antidiagonal, with
opposite local maxima separated from the on-axis maximum by a zero-amplitude line. When
applying a relative sensitivity coefficient to the LP11 mode, the position of the zero-amplitude
lines moves towards the antidiagonal corners as the coefficient is decreased, similarly to what
we had observed with LG modes.

We notice that the two-mode LG-based system has a concave zero-amplitude line near
each antidiagonal corners, while the two-mode LP-based system’s is convex. This is clearly
observable in the DRF visibility and coherence patterns, presented in Figure 3.18. We were
unable to resolve theoretically the question of whether LG or LP modes are appropriate as
modes for the assumed DRF of a fiber-coupled detector system. This open question will be
settled experimentally, in Section 6.5.2.

3.5.5 Multi-Mode Systems

The same simulation procedure is repeated using the core radius a = 25 µm and the numerical
aperture NA = 0.22, characteristics typical of an optical fiber with multi-mode behavior at
l = 1550 nm operating wavelength. Figure 3.19 presents the simulated amplitude and phase
patterns of the first four LP modes, namely LP10, LP11, LP12 and LP20 modes. Contrary to
the low-order modes in the two-mode system shown in Figure 3.16, we observe secondary
maxima in the amplitude patterns for these four first modes. Local maxima were observed in
LG modes with radial index p � 1, shown in Figure 3.6, but to a much lesser degree. The
presence of multiple local maxima with large amplitude in Figure 3.19 is indicative of a
highly multi-mode system.

In Figure 3.20, we observe that the amplitude and phase patterns of the multi-mode DRF
obtained from the incoherent sum of the 68 first LP modes is qualitatively similar to the
multi-mode DRF obtained from LG modes, presented in Figure 3.20. The DRF amplitude
decreases rapidly off-axis, albeit more gradually along the diagonal and antidiagonal, and
displays local maxima that are separated by zero-amplitude lines. As observed previously,
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(b) DRF phase

Fig. 3.17 Simulated two-mode DRF, built from the LG00 and LG01 modes.
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Fig. 3.18 Simulated two-mode DRF, built from the LP10 and LG11 modes.
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Fig. 3.19 Simulated single-mode DRF amplitude (left column) and phase (right column)
patterns, respectively built from the LP10, LP11, LP12 and LP20 modes, with a = 25 µm and
NA = 0.22.
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Fig. 3.20 Simulated multi-mode DRF, built from the first 68 LP modes.
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DRF visibility and coherence patterns have similar structure, with generally higher contrast
due to the normalization procedure used.

Contrary to the ambiguity we faced when simulating multi-mode systems using LG
modes, LP modes are generated with the selected core radius a, which is always provided
by fiber manufacturers. We note that the multi-mode system simulated in Figure 3.20
qualitatively resembles that simulated from LG modes with 5 µm width, rather than with
25 µm width.

We again used the logistic function defined in Equation (3.13) to produce a tapered
sensitivity spectrum; with k = 0.2 and x0 = 35, its median has half-maximum sensitivity
and its smallest sensitivities remain non-negligible. These sensitivities were applied to the
individual modes’ DRFs in the order that they were simulated. This operation produces
similar effects to the case with LG-based DRFs: the DRF amplitude is generally decreased,
including the local maxima, whose positions are displaced slightly away from the main
diagonal.

3.6 Non-Modal DRF: Coherence Lengths

3.6.1 Theory

While choosing a modal basis can allow us to base our assumed DRF’s functional form
on physical arguments, it is not a necessary step. Indeed, any two-point two-dimensional
function can be used as the assumed DRF. Non-separable forms will require a full four-
dimensional integral to be computed, but this is not prohibitive conceptually, only perhaps in
terms of computational resources.

In particular, we can model the detector as a square absorbing structure of sidelength w
with finite coherence length L, whose detector response is given by

D(r1,r2) =

8
<

:
exp
⇣
�kr1�r2k

L

⌘
kr1k ,kr2k  w/2

0 otherwise
, (3.20)

where k·k denotes the vector’s `2-norm, i.e. its Euclidean length [81]. A proportionality
constant could be added to Equation (3.20) to account for a non-unity response at the origin
or for a normalization of the DRF, but is ignored here without loss of generality. In the
limit where the coherence length L is infinite, the assumed DRF reduces Equation (3.20) to a
constant equal to 1 over the absorber’s surface.
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3.6.2 Implementation

In the general case where L < •, a practical implementation cannot use the simplifications
discussed in Section 3.2.2, because the assumed DRF is not separated between the two spatial
coordinates. We therefore need to explicitly perform the four-dimensional integral defined in
Equation (3.1), for which dedicated Matlab functions are available [82], at every position
pair. To reduce the computational load, we can note that the sources’ configuration has two
symmetries: the exchange of sources, i.e. along the DRF matrix diagonal, and right-left
symmetry of the scanning range, i.e. along the matrix antidiagonal. We therefore only need
to compute the positions in one of the four DRF quadrants defined by the diagonal and
antidiagonal lines. The full DRF is then obtained using appropriate symmetries, including
the corresponding complex conjugation operations. Without loss of generality, we select the
north quadrant.

For L = •, the assumed DRF’s functional form is separable, such that we can apply the
simplifications discussed in Section 3.2.2. Because the method’s algorithmic complexity
in the number of source positions N is O(N2

), we increased the step size from 200 µm to
400 µm: the sources labeled R and L are scanned over xR,xL 2 {�15,�14.6, . . . ,15} mm. We
note that the numerical results obtained are identical without these simplifications, confirming
that these hold.

Absolute and relative tolerances must be selected for the four-dimensional numerical
integration: we specified 10�6 and 10�3 respectively. However, we found that the simulated
DRF was identical when selecting 10�8 and 10�5 absolute and relative tolerances, and
some elements were different for 10�10 and 10�7: the effective accuracy of the numerical
integrator is therefore better than the former, even when weaker tolerances are specified in
the algorithm. This feature of the algorithm’s behavior was expected [82].

3.6.3 Infinite Coherence

We first performed simulations in the case of a detector whose response has infinite coherence
length, L = •. Figure 3.21 presents the simulated DRFs for square detectors with sidelength
w 2 {4,10,20,40} µm. The DRF amplitude pattern in the cases with w = 20 µm and w =

40 µm have local maxima along xR and xL, and regularly spaced zero-amplitude lines. The
phase pattern has structure with similar boundaries, indicating that the DRF amplitude and
phase are intimately linked. On the other hand, the w = 4 µm and w = 10 µm cases both have
Gaussian-like amplitude patterns, and display identical phase patterns.

An important verification for our simulation scheme is to perform the same procedure
with D(r1,r2) = 1, and compare the simulated DRFs obtained for various integration areas
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Fig. 3.21 Simulated DRF amplitude (left column) and phase (right column) patterns, assuming
infinite coherence length L = • and detector sidelength w 2 {4,10,20,40} µm respectively.



3.7 Sampling Requirements and Strategies 75

to the corresponding DRFs simulated with L = •. We indeed find that the two configurations
produce identical DRFs, within the accuracy limits of the numerical integrator. Additionally,
we simulated DRFs using the mode-based method described in Sections 3.4 and 3.5 with a
single mode of amplitude 1 throughout the integration surface, and again found it to match
the case of a detector with infinite coherence length.

3.6.4 Finite Coherence

We then proceeded with simulations assuming a DRF functional form described by Equation
(3.20), with L < •. We chose a set of coherence lengths L 2 {2,5,20} µm, and repeated
each with detector sidelength w 2 {4,10,20,40} µm. The amplitude patterns of the resulting
12 simulated DRFs are presented in Figure 3.22. The structure is Gaussian-like for small
w values and increasingly diagonal for large w/L ratios, i.e. when the coherence length is
significantly shorter than the detector sidelength. The on-axis maximum of DRFs increases
with w, which is expected as a larger detector will absorb more of the incident power, and
is consistently smallest for L = 5 because it is the transition between the w ⇡ l and w � l
regimes. We found the corresponding DRF phase patterns to be less instructive and largely
dominated by the geometric phase contribution, which is difficult to interpret due to the larger
scanning step size used.

In order to further verify the results obtained in Section 3.6.3, we repeated this proce-
dure with very large values of the coherence length L 2 {2000,10000,100000} µm. The
simulated DRFs are identical to those obtained with L = • within the integration precision
selected.

3.7 Sampling Requirements and Strategies

3.7.1 Metrics for Mode Recovery

Having simulated DRFs for a large number of systems, it is crucial to investigate whether
their natural modes can be recovered. Their recovery using a diagonalization method will be
discussed in Chapter 9 in the context of experimentally measured DRFs. A more general
study is presented here, to explore the number and locations of source positions required to
successfully recover a given number of the detector’s natural modes.

Several choices are required: a sampling strategy for the sources, a model for their
generated beam and a set of modes for the detector’s reception pattern. We considered
sources producing an LG00 beam and LG modes for the optical response of the detector,
which is placed at a normal distance z = 100 mm of the source plane, i.e. in the same
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Fig. 3.22 Simulated DRF amplitude patterns, assuming infinite coherence length L 2
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configuration as Section 3.4. Given a source sampling strategy, the matrix of single-source
beam overlaps with each detector response mode can be computed as

Li j =

Z

S

d2r Ri(r) ·E⇤
j(r), (3.21)

where S is the chosen integration surface, i is the index of the assumed detector mode
Ri(r) in the selected basis set, i.e. LG modes, and j is the index of the source position in
the scanning set. The matrix L defined by Equation (3.21) was introduced in Chapter 2 as
containing in each of its columns the eigenvectors of the DRF in the basis of source positions,
if these eigenvectors are the chosen basis set. An important metric to consider is the condition
number of the matrix L, defined as the ratio of the largest to smallest singular values of
the matrix’s Singular Value Decomposition (SVD) [83]. Effectively, the condition number
measures the dynamic range required for an experimental system to accurately retrieve all of
the modes present in the detection system, given the set of sampled positions over which the
sources are scanned. The dynamic range is defined as the ratio of largest and smallest signals
recordable by an experimental system: generally, the former is set by a saturation signal
of one of the experiment’s components, and the latter is determined by the measurement
system’s noise floor [84].

In practice, each element Li j is computed independently by performing the two-dimensional
numerical simulation. The jth column of L corresponds to the jth sampled position: the
condition number of any matrix built from a subset of columns of L can then be computed to
study the dependence of the mode reconstruction efficiency on the corresponding subset of
source positions sampled. In particular, concatenating columns of L into increasingly large
submatrices emulates the accrual of information as the source is scanned over the sampled
positions. The dependence on the number of modes of interest can be studied analogously by
selecting the corresponding rows of L. For a given submatrix, a smaller condition number
indicates a lower required dynamic range and lower vulnerability to noise, and is therefore
preferable; the best case of is a condition number of 1, where all singular values are equal.

Because the numerical simulations’ accuracy is essentially perfect, given that we can
set an arbitrarily small machine precision, the distribution of singular values is also of great
interest. For instance, the number of singular values l larger than a fraction of the largest
singular value lmax provides a metric for the number of modes recovered given a fixed
experimental dynamic range. The best case corresponds to all considered modes being
recoverable for the largest possible fraction of lmax.
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Fig. 3.23 Evolution of the L matrix’s condition number and singular values l such that
l > lmax/10 and l > lmax/50, as a single source is scanned over the uniformly sampled
line segment x 2 {�20,�19.5, . . . ,20} mm.

3.7.2 Cartesian Grid Sampling Strategies

We start by considering 81 positions uniformly sampled over a line segment, with coordinates
x 2 {�20,�19.5, . . . ,20} mm. The L matrix is computed using Equation (3.21) for each
position and using the 16 LG modes with indices p, l  3. For each submatrix width, the
condition number is computed as well as its SVD. Figure 3.23 presents the condition number
as the number of sampled positions increases, and the number of singular values l that are
larger than lmax/10 and lmax/50, where lmax is the largest singular value. The condition
number appears to converge towards a minimum of 4⇥105 as positions are added; on the
other hand, the number of modes recovered with a dynamic range of 10 or 50 continues
to increase. We note that the modes recovered here would be those in the projected basis
of one-dimensional source positions, as discussed in Section 3.4.3; we expect to recover a
lower number of modes than the 16 LG modes considered, because of a degeneracy in their
symmetries.
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Fig. 3.24 Evolution of the L matrix’s condition number and singular values l such that
l > lmax/10 and l > lmax/50, as a single source is scanned over the uniformly sampled
line segments of length 20 mm, 40 mm and 80 mm.

While a large portion of this dissertation will consider one-dimensional scanning strate-
gies, it is important to explore two-dimensional sampling as well. The conclusions obtained
below are identical in both cases. Scanning over Cartesian grids, the source positions are
taken in the order of increasing y values, then increasing x values; we call this ordering
“column-by-column”. Figure 3.24 explores the effect of scaling the scanning range and step
size between neighboring positions: 41 points are sampled along both the x and y axes for
scanning ranges of 20 mm, 40 mm or 80 mm. The case with 20 mm scanning range is found
to be inferior: the much larger condition number for more than 600 sampled positions reflects
the scanning strategy’s inability to include information from far off-axis positions. We notice
that the case with 80 mm scanning range displays a clear minimum between 50 and 100
sampled points, followed by a local maximum and a subsequent monotonic decrease. We
understand the first minimum to be a feature of the sampled subset of positions, which are
very far off-axis: a distorted basis is recovered for this subset of sampled positions, before
converging to the correct basis as additional positions are sampled.
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Fig. 3.25 Condition number of the matrix L for various numbers of modes to be recovered;
the Cartesian grid is either scanned column-wise, i.e. with increasing y values then increasing
x values, or modulo 17, i.e. selecting every 17th position in the original order.

3.7.3 Mode Number and Scanning Order

We can also consider how the number of modes we wish to retrieve affects the condition
number of the L matrix. The L matrix is computed for the 36 LG modes with indices p, l  5,
with sources scanned on a Cartesian grid of 41 ⇥ 41 points uniformly sampled over the
range x,y 2 {�20,�19, . . . ,20} mm. In Figure 3.25a, we present the condition number when
selecting only the LG modes with p, l  2,3,4 and 5: as the number of modes to recover
increases, the maximum condition number is greater and reached for larger numbers of
sampled positions.

The same procedure can be repeated, but changing the order in which the positions are
sampled, to explore the effect of position ordering on the convergence towards the condition
number obtained when the entire sampling grid is scanned. Every 17th position of the
original column-by-column order is selected, looping around at the end of the grid until all
positions are sampled. We refer to this ordering as “modulo 17”. Figure 3.25b shows the
condition number using this order: while the position of the maximum is identical to the
column-by-column order, its value is significantly reduced and the condition number then
decreases much more rapidly as sampled positions are added. Similar results are obtained
when selecting the sampled positions in a random order. Using a random or pseudo-random
order, such as the modulo 17 order, information about the DRF modes is accrued much more
rapidly than by scanning the source column-by-column.
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Fig. 3.26 Comparison of the evolution of the L matrix’s condition number and singular values
l such that l > lmax/50, for scanning strategies with identical ranges using a uniform
Cartesian grid, two-dimensional random samples and a Cartesian grid with hyperbolic sine
step size.

3.7.4 Comparing Sampling Strategies

We explored different grid patterns, choosing 41 ⇥ 41 positions over a given range x,y 2
{�20,�19, . . . ,20} mm: (i) Cartesian with step size 1 mm, (ii) random points over this
two-dimensional area, and (iii) Cartesian with step size set by the hyperbolic sine function of
appropriate range. Figure 3.26 compares these three scenarios, as positions are added in the
order that they appear in L, i.e. without random or modulo ordering. The random sampling
strategy has faster convergence to the condition number minimum of 200, and qualitatively
similar to random reordering of the Cartesian grid.

As the assumed detector response is based on the circularly-symmetric LG modes, we
also explored whether scanning sources on a polar grids was more efficient than on Cartesian
grids. In order to properly compare with our previous results, we chose appropriate radial
and angular step sizes to obtain 41⇥41 sampled positions, with both the radial and angular
directions uniformly sampled with 41 points. We found that the condition number of the
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Fig. 3.27 Comparison of the evolution of the L matrix’s condition number and singular
values l such that l > lmax/50, for scanning strategies using Cartesian and polar grids with
identical ranges.

L matrix was considerably improved by discarding the repeated r = 0 positions. This case,
with radial sampling r 2 {�20,�19, . . . ,20} and angular sampling q 2 {0,p/40, . . . ,p}
is compared in Figure 3.27 to the case of a Cartesian grid with similar range (previously
presented in Figure 3.26). We observe that the Cartesian grid strategy has a lower condition
number and higher number of singular values l > lmax/50, for any number of source
positions selected. The same conclusion is reached when changing the radial sampling range
or when trading resolution between the radial and angular components, for instance choosing
81 samples along the radial direction and 21 along the angular direction. Considering a
different order of the polar grid, we obtain a slight improvement when ordering by increasing
x and a large improvement with random ordering, similarly to the case of a Cartesian grid.

In the context of experimental procedures, these observations indicate that randomness
in either the sampled positions or the order of regularly sampled positions allows the rapid
accrual of information in order to accurately recover the DRF modes. On the other hand,
randomness in either the sampling strategy or order implies much longer displacements
between consecutive positions, both in terms of distance and displacement durations, whereas
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the column-wise scanning of a Cartesian grid is arguably optimal. We should also recall that
this time penalty will apply to each of the sources scanned to measure the DRF elements.
This trade-off would be best investigated in the context of experimental measurements, where
the effect of finite signal-to-noise ratio may also be revealed.

3.8 Conclusion

We have performed a large variety of numerical simulations to investigate how EAI allows
us to measure the optical response of the device under test, regardless of its assumed
functional form. By generating an illuminating field using two phase-locked sources, we
have reconstructed the DRF of the modeled detector, under a large variety of conditions. In
particular, we have studied cases where sources and detectors are either point-like or have
finite size.

Many of the simulations performed and explored in this chapter are highly informative
for the experimental EAI system that will constitute the basis for the rest of this dissertation.
In particular, its design will be greatly helped by the scanning ranges investigated in this
chapter, while the scanning strategies examined in Section 3.7 could contribute to optimizing
its operation. We have paid particular attention to the simulated DRFs which we may expect
from fiber-coupled systems. A large fraction of our simulated DRFs assume Laguerre-
Gaussian modes, but we have also taken care to explore the Linearly Polarized modes that
theoretically characterize optical power transmission in optical fibers, as well as a non-modal
functional form based on a finite-sized absorber with finite or infinite coherence length.
More generally, the simulation framework implemented in this chapter can take any one-
dimensional or two-dimensional, two-position functional form as an input for the assumed
DRF, demonstrating its versatility.

While the next step is to design an experimental system to perform EAI on infrared
detector systems, the results obtained in this chapter give valuable insights into the expected
behavior of single-mode, few-mode and multi-mode systems. In particular, we have investi-
gated the case of two-source one-dimensional scans and chosen a matrix representation for
the simulated complex fringe amplitude, which is directly applicable to experimental data
as well. Additionally, we have implemented a numerical simulation method that artificially
creates fringes as the relative phase between sources is varied. This has allowed us to recreate
the dataflow expected from an experimental system, with an FFT-based extraction technique
for the recorded fringe’s amplitude, phase and offset parameters.





Chapter 4

Designing an Infrared EAI Experiment

4.1 Introduction

We present the design of an EAI experimental system for the characterization of detectors at
infrared wavelengths. As described in Chapter 2, we can obtain all of the information about
a detector’s state of coherence by measuring the fringes in the output as we modulate the
relative phase between two phase-locked electromagnetic sources. The central goal for the
experimental system is to perform EAI in order to find the electromagnetic modes through
which optical power is coupled into detectors with a wide range of modal behaviors.

Starting from the theory described in Chapter 2, various basic technical capabilities
are required. These can be summarized in the form of the block diagram shown in Figure
4.1. First of all, we need some electromagnetic radiation generator: it is clear that the
experimental method can be simplified by considering the case of identical, individually
highly-coherent phase-locked sources with a well-defined polarization. We then need some
way of manipulating the emitted radiation, in particular creating two arms whose optical
power output and polarization are as identical as possible, and whose relative phase can
be controlled. Post-measurement analysis can be greatly simplified if we have well-known
source beam patterns; we must therefore ensure that we can precisely ascertain the form of
the beams illuminating the device under test as well as the positions of the probes. Some
scanning system, preferably motorized and computer-programmable, is necessary to move
the two sources precisely to relevant position pairs. A power-absorbing structure must be
chosen to produce an output that displays fringes as the relative phase between the sources
is varied, with appropriate characteristics such as a sufficient signal-to-noise ratio (SNR).
Finally, we need a way of acquiring this signal data and storing it in a computer-readable
format for post-measurement analysis. Fulfilling all of these requirements amounts to a
significant technical challenge, which we start undertaking with a blank slate at the conceptual
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Fig. 4.1 Block diagram illustrating the required successive steps of the experimental system.

level. The goal of this chapter is therefore to prove the feasibility of an EAI experiment at
near-infrared wavelengths, and converge towards a design that will allow us to perform such
experiments to characterize a wide range of devices.

In this chapter, we will describe the different elements that we considered in the design
of the EAI experiment. In Section 4.2, we will present design choices for the experiment’s
general architecture, including the decision towards a fully fiber-based system. Section 4.3
will cover the quantitative study of a wide number of topics: (i) optical sources and the
required coherence length, losses in optical components and required power, (ii) mechanical
design, minimum sampling, minimum and maximum distance, (iii) gaussian beam propa-
gation, diffraction of gaussian beams through apertures and effective numerical apertures,
(iv) power detection, restriction of the number of detector modes, and signal conversion and
amplification, and (v) numerical cases, illustrating typical experimental values. Section 4.4
will summarize safety issues and how they have been dealt with throughout the design phase
of this EAI experiment. In Section 4.5, we will briefly reflect on the differences between our
near-infrared experimental architecture and the system built by Thomas et al. for the study
of power detectors at submillimeter and microwave frequencies [58]. In particular, we will
discuss how the difference of operating wavelength range implies significant contrasts in
design choices.

4.2 General Architecture Choices

In this section, we qualitatively argue for specific choices regarding the overall architecture
of the experiment. Quantitative investigations of many of these topics will be conducted in
Section 4.3. The general requirements listed in Section 4.1 and illustrated in Figure 4.1 can
be fulfilled as follows:

• Generating infrared radiation. An electromagnetic radiation generator is needed,
with a well-defined polarization and high enough spatial coherence to allow the coher-
ent illumination of the detector surface with two distinct probes. A narrow-linewidth
laser that can be considered quasi-monochromatic corresponds ideally.
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• Creating two identical arms. We then require a method for producing two probes
that are individually highly coherent. While this could be obtained using two locked
lasers, a simpler solution is to use a 50%-50% beamsplitter to obtain two equal beams
that are intrinsically phase-locked and have the same polarization.

• Controlling the probes’ properties. Delay lines can be used to adjust the path lengths
of each arm, while phase modulators are able to accurately control the relative phase
difference. Depending on the application, ascertaining the shape of the source beam
patterns may be necessary; in a fiber-based system, it is possible to use shaped-tip fiber
assemblies or to add pinholes at the exit of the probe fibers.

• Placing the two probes. We must find a method to reliably position the probes for
long periods of time, as even sub-micron movements will correspond to displacements
of large fractions of a wavelength. Moreover, a motorized and computer-programmable
scanning system is required, in order to place the two probes precisely at large numbers
of chosen position pairs.

• Detecting radiation. The modal behavior of the device under test will depend on
the characteristics of the photodetector, but also on any optics in the optical path. In
order to demonstrate the technique, a photodetector is used to absorb optical power;
an output amplifier is required in order to obtain high SNR. It is possible to choose a
fiber-coupled detector, where the optical fiber would act as a mode filter and determine
the modal behavior of the fiber-plus-photodetector system. We also note that, while a
photodetector is our choice of power-absorbing structure, other power detectors could
be used, such as an energy-harvesting antenna or a solar cell.
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• Recording the signal. A method of acquiring the detector output signal and trans-
forming it into computer-readable data is required. An Analog-to-Digital Converter
(ADC) with sufficient bandwidth connected to a computer is an appropriate option.

More generally, it is important at this point to choose whether the four first bullet-pointed
items will be realized using a free-space or fiber-based system. We opted for the latter, using
a fiber-coupled laser fed into a fused-fiber beamsplitter and fiber-coupled delay lines and
phase modulators. The main reason is the ease of use of optical fibers: significantly more
precise positioning possibilities are available by simply placing the open end of an optical
fiber on a positioning stage, rather than resorting to an elaborate set of mirrors to channel a
collimated beam. A corollary of this choice is the intrinsically safer operation of the system,
which will be the topic of Section 4.4. All of these design choices are summarized as a block
diagram in Figure 4.2.

Another critical choice is the operating wavelength. Our decision towards the wavelength
l = 1550 nm is primarily motivated by its importance as a standard wavelength in the
communications industry, and the wide availability of a large range of products for all
components including lasers and optical fibers. Demonstrating EAI at this wavelength will
therefore allow many direct applications on widely used technology.

4.3 Design Topics

4.3.1 Optical Radiation Generator

Lasers are the ideal choice to obtain narrow-linewidth highly-coherent radiation. In the
context of this experiment, their radiation coherence length Dx must be far greater than the
differential optical path length to the device being tested, with

Dx ⇡ c
Dn

⇡ l 2

Dl
, (4.1)

where l is the central wavelength, and Dl and Dn are respectively the radiation linewidth
in units of length and frequency [85]. At l = 1550 nm, we have the following equivalence:
Dx = 1m () Dl = 2.4pm () Dn = 300MHz. Because the maximum optical path
length will be at most of the order of meters, a laser with Dn < 1 MHz is sufficient.

We also wish to keep a well-defined polarization from the laser through the beamsplitter,
delay line, phase modulator, and up to the probe tips. We therefore need to use polarization-
maintaining fibers and components without polarization-dependent loss or polarization
cross-coupling. In order to further ensure that a single polarization is selected, a polarizer



4.3 Design Topics 89

Component Typical insertion loss (dB)
Beamsplitter (input to single output) 3.6±0.2

Delay line 1.5±0.3
Phase modulator 3.2±0.5

Fiber connection (with index-matching gel) 0.5±0.1
Propagation in optical fiber (⇡6m) < 0.01

Table 4.1 Table of power losses for the successive components and steps of the experimental
system.

can be introduced at the end of the optical system; phase modulators with a built-in polarizer
are also available.

In order to choose the power output of the laser, which can range from a few milliwatts
to several watts, it is necessary to know the ratio between the power at the laser output and at
the probe tips. This ratio corresponds to the optical power loss in the system up to the probes
and comes mainly from insertion loss in the different components of the fiber circuit. Typical
experimental values are listed in Table 4.1.

Summing these contributions, and assuming 3 connectors are on the path of each source
(beamsplitter to delay line, delay line to phase modulator, phase modulator to source fiber),
the expected total loss is approximately 10 dB, i.e. a reduction by a factor 10: a laser with
optical power output 50 mW implies two fiber sources of 5 mW each.

4.3.2 Mechanical Considerations

In order to find constraints on scanning ranges and accuracy, we must first compute the
minimum sampling of the detector beam pattern. Using the Nyquist-Shannon sampling
theorem [86, 87], the step size Dx between source positions is such that

Dx  1
2C

, (4.2)

where C is determined by the larger of three lengths:

• The source radiation’s center wavelength l ;

• The physical size of the source, its diameter dsource;

• The spot size of detector beam pattern s(z) at an on-axis distance z from the source
plane.

The comparison of these three lengths is summarized in Figure 4.3. Using l = 1550 nm,
the wavelength is always much smaller than the other two quantities in any reasonable
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Fig. 4.3 Diagram of concentric limits placed on the maximum measurable two-dimensional
wavevector.

experimental system. Moreover, because we will only consider diverging beams in the
far-field regime, we conclude that d < s(z); therefore

Dx  s(z)
4p

. (4.3)

This implies a very powerful result: taking s(z) = NDx, we see that we can sample success-
fully if we take N identical steps over the detector spot size, with

s(z)
N

 s(z)
4p

() N � 4p ⇡ 13. (4.4)

Assume that s(z) is entirely due to the divergence angle q of the beam coming out of the
detector fiber, also called its acceptance angle. It is related to another key quantity in optics,
its numerical aperture, by NAdetector = sin(q). Then, we have a spot size

s(z) = 2z tan(q)+ s(0) = 2z tan(sin�1
(NAdetector))+ddetector. (4.5)

Therefore, the largest acceptable step size of the sources is

Dxmax
=

2z tan(sin�1
(NAdetector))+ddetector

4p
. (4.6)
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Fig. 4.4 Top-view diagram of the experimental system’s optics, showing the extreme case
of source 1 at one end of the detector beam pattern while source 2 is scanned over its width
s(z); beam sizes of detector, source 1 and source 2 are black, red and blue respectively.

As Equation (4.6) does not define any requirement on the distance z, we now wish to
compute the optimal distance between the sources and the detector. There are additional
constraints to be taken into account:

• The divergence angle of the sources must be larger than the acceptance angle of the
detector fiber,

• The information loss due to the minimal distance between the sources, at best approxi-
mately 250 µm, must be as small as possible,

• The power coupled into the detector must allow sufficient SNR.

Consider the beam sizes in the far-field and compute using numerical apertures, i.e. using
the 1% power cone, as in Figure 4.4. The first contraint simply requires

NAdetector  NAsource. (4.7)
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The second constraint requires that the spot size of the source be larger than the spot size of
the detector (at a given distance z) plus the assumed physical size of each source, 250 µm:

sdetector(z)+250 µm  ssource(z)

() 2z tan(sin�1
(NAdetector))+ddetector +250 µm  2z tan(sin�1

(NAsource))+dsource

() 250 µm+(ddetector �dsource)  2z
�
tan(sin�1

(NAsource))� tan(sin�1
(NAdetector))

�

() 250 µm+(ddetector �dsource)  2z
�
tan(sin�1

(NAsource))� tan(sin�1
(NAdetector))

�

() 250 µm+(ddetector �dsource)

2
�
tan(sin�1

(NAsource))� tan(sin�1
(NAdetector))

�  z. (4.8)

Lastly, we can obtain a maximum distance by requiring the detector SNR to be sufficiently
high. This is critically dependent on the behavior of the source beams, as we will discuss in
Section 4.3.4.

4.3.3 Source Beams and Optical Coupling

We consider a monochromatic beam with wavelength l exiting a single-mode fiber. Its beam
pattern is Gaussian, namely that of the fiber’s fundamental Laguerre-Gaussian mode LG00

[88]. As in Chapter 3, we assume that we operate under the paraxial approximation, which
holds for any angular divergence qdiv < 0.5 rad. We compute the width of the gaussian beam,
i.e. its half-radius in a plane normal to the propagation direction, at distance z from the fiber
exit:

w(z) =

"
1+

✓
l z

pw2
0

◆2
#1/2

, (4.9)

where w0 is half the mode field diameter MFD, defined as the diameter at which the power
density is reduced to e�2 of its maximum value. We recall the definition of the Rayleigh
length zR, which defines the limit between near- and far-field regimes:

zR =
pw2

0
l

; (4.10)

it corresponds to half of the confocal parameter in optics [89]. In the near-field case where
z ⌧ zR, the beam is considered to be well-collimated. In the far field case where z � zR, the
beam width grows linearly with z: the beam has a divergence angle qdiv such that

nsin(qdiv) ⇡ l
pw0

=
w0

zR
, (4.11)
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where n is the refractive index of the medium outside the fiber, with nair ⇡ 1. The numerical
aperture stated by manufacturers is typically obtained by measuring the far-field 1% power
level; the ratio of the e�2-power to 1%-power radii is 1.51742. Therefore, the equivalent
numerical aperture of step-index fibers NAeq can be obtained by

NAeq = sin
✓

tan�1
✓

1.51742
w(z)

z

◆◆
. (4.12)

Note that this equation gives satisfactory results only for step-index fibers, as opposed to
graded index fibers, including power-law index profiles often used in multi-mode fibers. In
general, in the far-field case, all computations of w(z) should be made using the mode field
diameter provided by the manufacturer. Furthermore, we obtain the intensity I, i.e. surface
power density, in a beam with total propagating power Ptot at a distance z from the fiber exit
and a distance r orthogonal to the propagation axis as

I(z,r) = Ptot
2

pw(z)2 exp

"
�2
✓

r
w(z)

◆2
#

. (4.13)

Because the beam pattern of laser light exiting an optical fiber is highly dependent
on the fiber’s properties, such as whether the core-cladding interface has a step-index or
graded-index profile, we need to prepare a correction method to produce a beam of known
form. More generally, various applications may require control over the beam form, for
instance through the use of shaped-tip optical fibers, such as conical or spherical assemblies
[90]. Using flat-faced optical fibers, a possible waveform control method is to use the beam
diffracted through an aperture of easily measurable size. While this option was ultimately
shelved because the selected fiber system produced a clean beam, we derive the relevant
analytical formulae here to underline the range of extensions to our experimental system.
Taking A(x0,y0

) to be the amplitude of the field at coordinates (x0,y0
) in the aperture plane,

the amplitude of the diffracted beam pattern at distance z is

U(x,y,z) =

ZZ

Aperture

A(x0,y0
)exp

✓
�ik(xx0

+ yy0
)

z

◆
dx0 dy0, (4.14)

where k = 2p/l . For a circularly symmetric aperture and incoming beam, this reduces to

U(r,z) = N
Z a

0
rA(r)J0

✓
k
z

rr
◆

dr, (4.15)
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Fig. 4.5 Diagram of experimental system for sources: laser light exits a fiber with given
mode field diameter MFD, diverges as a gaussian beam with full width w(z) at distance z
from fiber exit, before hitting the aperture plane at distance d1; light passing through the
aperture of radius a is diffracted, leading to a well-defined beam pattern on the detector plane
at distance d2 from the aperture plane, with maximum intensity I0 and 1%-power level radius
q, corresponding to a diffraction angle q .

where a is the aperture radius and N is a normalization factor such that the total power at
distance z is equal to the total power passing through the aperture:

N2
=

Z a

0
2prA(r)

2 dr
�Z •

0
2pr

✓Z a

0
rA(r)J0

✓
k
d

rr
◆

dr
◆2

dr, (4.16)

for any distance z = d > 0. The power density pattern is obtained by taking the square of the
amplitude: I(r,z) = [U(r,z)]2.

For an input Gaussian beam with finite width, we replace A(r) by a Gaussian amplitude
and integrate numerically. In particular, when considering the light from a fiber,

A(r) =

p
Pd(z = d1,r) =

s
2Ptot

pw(d1)2 exp

"
�
✓

r
w(d1)

◆2
#

, (4.17)
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where d1 is the fixed distance between the fiber end and the aperture. The general beam
intensity pattern is then given by

I(r,z) =
2Ptot

pw2
0

R a
0 2pr exp(�2 r2

w(d)2 )dr
R •

0 2pr 0
⇣R a

0 r exp
⇣
� r2

w(d)2

⌘
J0 (krr 0) dr

⌘2
dr 0

⇥
✓Z a

0
r exp

✓
� r2

w(d)2

◆
J0

✓
k
z

rr
◆

dr
◆2

. (4.18)

The configuration is summarized in Figure 4.5, with radiation from an open-ended fiber
being diffracted through a circular aperture onto a plane normal to the propagation direction
at a fixed distance d2. Using Equation (4.18), we can numerically find the radius r such
that I(r,z = d2) = 0, or the radius q such that I(q,z = d2) = I(0,d2)/100 to compute the
equivalent numerical aperture NAeq as

NAeq = sin
✓

tan�1
✓

q�a
z

◆◆
. (4.19)

The 1%-power radius q will also provide an appropriate metric for discussing the required
signal-to-noise ratio in Section 4.3.4.

4.3.4 Detection

While semiconductor photodetectors are expected to be highly multi-mode, we wish to
control the number of degrees of freedom in the context of this experimental demonstration,
to obtain a detector system that has single-mode, few-mode or multi-mode behavior. By
coupling the detector to a length of optical fiber, the latter acts as a mode filter and we obtain
a mode reconstruction problem with a limited number of modes. Using an optical fiber for
the demonstration introduces two advantages: (i) fibers can be selected and interchanged
to obtain the modal constraints desired, and (ii) we can estimate the number of modes of
step-index fibers, with the same computation giving a lower bound to the number of modes
for a few-mode fibers and an accurate estimate for multi-mode fibers.

First, we define a fiber’s V-value as

V =
2p
l

a.NA, (4.20)

where l is the operating wavelength, a is the fiber core radius and NA its numerical aperture
[11]. If a fiber has V < 2.405, it is single-mode at that wavelength. For highly multi-mode
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fibers, the number of modes N can be approximated by

N =
AW
l 2 , (4.21)

where A is the fiber core area and W is the fiber beam pattern’s solid angle, taken as a cone
with half-angle q such that NA=sin(q). Then, with A = pa2 and W = 2p[1 � cos(q)] =

2p[1�
p

1�NA2
] ⇡ pNA2, we obtain

N ⇡ pa2 ⇥pNA2

l 2 =
V 2

4
. (4.22)

It should be noted that fibers labeled as single-mode, but with a second-mode cutoff wave-
length slightly higher than the operation wavelength, can be used as few-moded fibers. Setting
V = 2.405 in Equation (4.20), we can obtain the second-mode cutoff wavelength l0 for fibers
of known radius a and numerical aperture NA, as would be typical for commercial fibers
characterized by manufacturers. For instance, a fiber with second-mode cutoff wavelength
l0 = 1700 nm is expected to behave as a two-moded fiber at l = 1550 nm [19]. This can be
approximately tested in Equations (4.20) and (4.22), using V = 2.405 at l0 = 1700 nm; then,
V (l = 1550nm) = 2.405⇥1700/1550 ⇡ 2.64, and N ⇡ 1.74 ⇠ 2.

It is important to note that V is also related to the MFD and beam waist; in step-index
fibers, their relationship is given by

w0

a
= 0.65+

1.619
V 3/2 +

2.879
V 6 , (4.23)

where a is the fiber core radius as defined in Equation (4.20) [91]. In the case of multi-mode
fibers, Equation (4.23) applies to the fundamental mode. A modified form,

w0

a
= 0.634+

1.619
V 3/2 +

2.879
V 6 � 1.561

V 7 , (4.24)

has an accuracy of better than 1% above V = 1.5, which corresponds to all of the cases
considered here [92]. Equation (4.24) has further importance as it is most closely related
to the commonly used far-field definition of the MFD in circularly symmetric fibers, the
so-called “Petermann II mode field diameter definition” [93],

MFD =
l
p

vuut2
R p/2

0 I(q)sinq cosqdq
R p/2

0 I(q)sin3 q cosqdq
. (4.25)
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Fig. 4.6 Diagram showing the proportion of 2-D locations inside 5% of the 1% power-level
radius, taking Dx = s(z)/14, i.e. 15 sample points for each movement axis.

Commercially available photodetectors generally have outputs that take the form of
current sources. Typical responsivities are 1 A/W, such that 1 nW of optical power produces
a 1 nA current signal: such small currents need to be amplified before being read out as
a voltage by a computer through an analog-to-digital converter. Several different noise
specifications are used to characterize an amplifier, two of which are particularly important
for our design:

• Input noise current density: measured at a given bandwidth and is a good estimation
for any bandwidth chosen manually below the upper cut-off frequency;

• Integrated input noise current: corresponds to RMS noise at bandwidth equal to upper
cut-off frequency; it is typically much larger than the input noise current density times
that bandwidth.

We must choose a post-detection measurement bandwidth. By the sampling theorem, the
sampling steps in phase-space must be at least half of the 2p rad periods. If we want to
have one visibility measurement per second, with the fringe measurement taking 10ms to
minimize errors linked to source movements, and 10 optical power measurements to create
the visibility plot, then the required bandwidth is 1 kHz.

For an input noise current density of 30 fA/
p

Hz, a 1 kHz bandwidth implies a noise of
1 pA, corresponding to a 1 pW optical power required for a unit SNR. Note that we want a
high SNR even in the case of a single source at a location on the detector’s 1% power-level
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radius, where the power incident on the detector will be minimal; for an SNR of 10, we
require P(r = s(d2)) > 10 pW. When measuring fringes for a fixed pair of source positions,
the cases where both sources couple minimal power into the detector fiber will be quite rare,
corresponding to having both sources on the detector’s 1% power ring. If considering a circle
with radius equal to 7 Dx steps as in Figure 4.6, this corresponds to at most 26 positions out
of 150, which implies less than 4% of all 2-sources 2-D position pairs.

4.3.5 Numerical Cases

Having listed the main constraints and requirements for the design of the experiment, the goal
in this section is to create a table of realistic scenarios. We now proceed through an entire
computation of the different parameters for which equations were established in previous
sections, in order to produce the first column of Table 4.2. In all of these scenarios, we
assume that the source optical fiber has a mode field diameter MFD= 10 µm with total power
output is 5 mW, at wavelength l = 1550 nm.

In the first scenario, we assume a pinhole with aperture radius a = 2 µm and that the
source optical fiber is glued directly on the pinhole plate, meaning that d1 = 0 mm. This
configuration is that in which the Gaussian beam is the most collimated, equivalently the least
spread-out; its spot width is the mode field diameter. We first compute the power through
the pinhole aperture, P0, obtained by numerically integrating the source intensity over the
aperture; in this scenario, P0 = 1.37 mW. We can also obtain a figure for the flatness of the
incoming beam at the pinhole aperture by considering the ratio of intensities at the edge
and center of the aperture is I(r = a,z = 0)/I(r = 0,z = 0) = 0.726. If the distance between
the detector plane and the aperture plane is assumed to be d2 = 10 mm, then the equivalent
numerical aperture of the beam diffracted through the pinhole is NAeq = 0.395, corresponding
to an acceptance angle of q = 23.3° and implying a 1% power radius q = 2.15 mm on the
detector plane z = d2.

Further assuming that the detector fiber has core radius ad = 4.5 µm, the power incident
on its core is obtained by numerical integration. When the detector fiber is aligned with the
pinhole, the incident power on the core surface is 5.63 nW. Moreover, assuming this detector
fiber has a numerical aperture of NAd = 0.13, if the source center sits on the detector’s 1%
power ring, the power incident on its core is 4.05 nW. With these dimensions, the detector
fiber has a Rayleigh length zR = 36.6 µm.

We can use Section 4.3.2 to compute the minimum distance between the aperture plane
and the detector plane zmin

= 427 µm: this is much smaller than the 10 mm chosen. Then,
we compute the maximum acceptable step size: Dxmax

= 209 µm. Finally, Equation (4.22)



4.4 Safety Considerations 99

Experimental parameter Symbol Value
Aperture radius a (µm) 2 2 4 2 2.5

Fiber-aperture distance d1 (mm) 0 0 0 0 0.015
Aperture-detector normal distance d2 (mm) 10 50 50 50 50

Detector radius ad (µm) 4.5 4.5 4.5 25 4.5
Detector numerical aperture NAd 0.13 0.13 0.13 0.22 0.13

Power through aperture P0 (mW) 1.37 1.37 3.61 1.37 1.84
Aperture edge/center intensity I(a)/I(0) 0.726 0.726 0.278 0.726 0.631
Equivalent numerical aperture NAeq 0.395 0.395 0.223 0.395 0.328

Source 1% power radius q (mm) 4.30 21.5 11.5 21.5 17.3
Max power on detector P(r = 0) (nW) 5.63 0.182 1.86 5.63 0.382
Min power on detector P(r = s(d2)/2) 4.05 0.138 0.619 2.34 0.246

Detector Rayleigh length zd (µm) 36.6 36.6 36.6 534 36.6
Minimum distance zmin (mm) 0.427 0.427 1.29 0.724 0.589

Maximum step size at d2 Dxmax (mm) 0.209 1.04 1.04 1.80 1.04
Mode number estimate Nmodes 1 1 1 125 1

Table 4.2 Given experimental parameters (top), the values (bottom) are computed assuming
the presence of a pinhole at a distance d1 from the source, with power at output of fiber
Ptot = 5 mW and fiber MFD= 2w0 = 10 µm, at wavelength l = 1550 nm; i.e. source Rayleigh
length zR = 50.7 µm.

provides an estimate for the number of modes of the detector system: N = 1 given the
detector fiber dimensions in this scenario.

The same procedure was used to compute the elements of Table 4.2, with the top five
parameters stating fixed experimentally-achievable values, and the items below stating the
corresponding computed values. In Table 4.3, similar inputs are used to compute the design
parameters, in the case where no pinhole is used and the source beam propagates in free-space
without diffraction. Together, these scenarios demonstrate the feasibility of carrying out an
EAI experiment at infrared wavelengths using a laser source of relatively low power, for
which constraining safety measures are not unduly restrictive.

4.4 Safety Considerations

In parallel to considering the constraints for the design of the experiment, we must ensure that
it fulfills important safety requirements. Rather than approaching this topic as a limitation
on the capabilities of the system, the trade-off between gains in SNR from higher optical
powers and the necessary safety precautions while operating the experimental system drives
its design. For instance, it is important that the range of optical powers available is sufficient
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Experimental parameter Symbol Value
Aperture-detector normal distance d2 (mm) 10 50 50 100

Detector radius ad (µm) 4.5 4.5 25 4.5
Detector numerical aperture NAd 0.13 0.13 0.22 0.13

Source 1% power radius q (mm) 1.50 7.49 7.49 15.0
Equivalent numerical aperture NAeq 0.10 0.10 0.10 0.10

Max power on detector P(r = 0) (nW) 208 8.32 25.7 2.08
Min power on detector P(r = s(d2)/2) 6.00 0.243 0.007 0.061

Detector Rayleigh length zd (µm) 36.6 36.6 534 36.6
Minimum distance zmin (mm) 3.99 3.99 1.18 3.99

Maximum step size at d2 Dxmax (mm) 0.209 1.04 1.80 2.09
Mode number estimate Nmodes 1 1 125 1

Table 4.3 Given experimental parameters (top), the values (bottom) are computed assuming
the absence of a pinhole, with power at output of fiber Ptot = 5 mW and fiber MFD= 2w0 =

10 µm, at wavelength l = 1550 nm; i.e. source Rayleigh length zR = 50.7 µm.

to characterize a wide range of infrared detectors, but also that the experiment can easily and
safely be run by a non-technical expert, in order to make it attractive for a large number of
applications.

The main hazard is the use of laser radiation, in particular in the free-space section be-
tween the open-ended optical fiber probes and the fiber-coupled detector. Because diffraction
through an aperture never leads to a power density larger than in the non-diffracted case, we
only consider the safety of the beam exiting the source fibers. However, it should be noted
that, for positions where the non-diffracted beam is considered dangerous, the diffracted
beam may be dangerous at larger angles.

The main risk is associated with damage to the human eye. The Maximum Permissible
Exposure (MPE) is the widely recognized safety metric, and is defined as the radiation
intensity above which the human eye becomes damaged. For a laser of 1550 nm wavelength,
the MPE is 1000 W/m2 [94], so we compute the minimum distance at which the power
density drops below this value, for a given total power output and fiber properties. Note
that this assumes that the laser input fills the acceptance angle of the optical fiber to which
it is coupled: if the laser input is focused into the optical fiber at an angle smaller than the
acceptance angle, the output light exits the fiber with roughly the same angle. In practice,
fiber-coupled laser sources are designed to fill the acceptance angle of the output fiber.

The computation based on the MPE also assumes a uniform power density over the eye’s
cross-section, modeled as a 3.5 mm diameter aperture; we therefore choose the center power
density, in order to get an upper bound. Using a fiber with MFD= 10 µm, we obtain the safe
distances as a function of the laser output power in Table 4.4. For instance, for a 60 mW laser,
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Laser output power (mW) 10 20 30 40 50 60 80 100
Safe distance (mm) 25.6 36.2 44.3 51.1 57.2 62.6 72.3 80.9

Table 4.4 Table of safe viewing distance upper bounds versus laser output powers, for a
typical single-mode fiber MFD= 10 µm

the MPE is reached at a distance of 63 mm. Personal protective equipment is also available
as a final safety measure; protective glasses are rated with an optical density, defined as the
base-10 logarithm of the attenuation factor through the glasses. A typical optical density of
commercially available protective glasses for infrared radiation is 4; using the example of a
60 mW laser, the safe distance decreases to 0.6 mm.

4.5 Comparison of Designs at Infrared and Submillimeter
Wavelengths

Having overcome significant challenges in completing the design of an EAI experiment for
the study of near-infrared detectors, it is interesting to reflect on the differences with the
experimental system demonstrated at submillimeter wavelengths by Thomas et al. [59], which
was briefly described in Chapter 1. While some similarities are expected for systems that
are built to achieve the same goal, the difference in wavelength range implies a considerable
contrast in the design choices made and the technologies chosen:

• In the submillimeter wavelength experiment, an electrical signal was produced by
the phase-locked synthesizers, a temporal phase modulation was applied, and then
fed to the probes to produce an electromagnetic field. At infrared wavelength, there
is no analogue where the signal provided to the sources is identical in nature to the
signal generated by the synthesizer. Instead, an optical signal must first be generated,
modulated and transmitted to the probe tips.

• At optical and infrared frequencies, frequency multipliers are not readily available,
particularly for a ⇥24 frequency multiplication; moreover, frequency multiplication
or division is generally impractical as it requires elaborate up- or down-conversion
techniques. It is far more advisable here to look for a signal generator that intrinsically
provides the desired infrared wavelength, as well as a well-defined polarization.

• As a source is moved relative to the detector, the spherical phase of the beam changes.
The phase shift induced by moving a source is important for displacements larger than
a fraction of a wavelength. At infrared wavelengths, this corresponds to sub-micron
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displacements, even for small off-axis distances. More generally, the fringe phase will
wrap quickly for consecutive source positions. This also implies stringent requirements
on the positional stability of the infrared probes over time.

• An important limitation of the submillimeter experimental system was the slow re-
sponse time of the device under test. At infrared wavelength, readily available detectors
have far greater bandwidth, in the MHz to GHz range, in part due to technological
advances for uses in optical fiber telecommunication. The readout scheme is therefore
greatly simplified.

4.6 Conclusion

We have completed the design of a room-temperature EAI experiment to fully characterize
the optical behavior of infrared detectors, and have studied all necessary specifications
and performance parameters needed to fulfill the requirements set out in Section 4.1. In
other words, we have demonstrated the feasibility of a fiber-based experimental system
to perform EAI at near-infrared wavelengths, using commercially available components;
the realization of this system will be the topic of Chapter 5. Figure 4.2 summarizes the
proposed experimental system, and convincingly responds to the required steps illustrated
in Figure 4.1. A narrow-linewidth generates high-coherence radiation, which is coupled
into a polarization-maintaining optical fiber and a 50%-50% split ratio beamsplitter. Phase
modulators provide accurate control of the relative phase between the two arms, while delay
lines and polarizers ensure that the high coherence and polarization are preserved throughout
the fiber lengths. A system of motorized linear stages places each of the open-ended fibers,
which constitute the probes. An amplified photodetector provides a signal linear in the input
power through an interchangeable optical fiber, which acts as a modal filter for the system
under test. The analog signal is converted into a digital signal and recorded by a computerized
system.

Further to the design of the experiment, we realized a search for commercially available
components. The choice of operating at l = 1550 nm was greatly beneficial for the range of
components available, and multiple options were considered for critical components, such as
the laser source and motorized stages. The decisions were made on the basis of component
performance and flexibility; for instance, some motorized stages models have a sufficient
acceleration to allow raster scans to be envisioned without large time penalties for starting
and stopping the scan movement. In the next chapter, we will discuss the specific components
chosen to fulfill the design requirements listed in this chapter, and in particular the choice and
performance of commercially-available components. Additionally, we will describe some
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additional custom parts required, including fiber holders for sources, which we designed and
manufactured.

While the design described in this chapter fulfils the requirements listed in Section 4.1,
its potential goes far beyond the application we have chosen, and many extensions of the
current system are possible. The most obvious one is the straightforward adaptation of the
architecture to optical wavelengths, where a large majority of components are also available
with similar specifications. The current room-temperature experiment design can also be
upgraded easily and is attractive in many other contexts, some of which will be discussed
in Chapter 10. In particular, it constitutes an important step forward towards a potential
future objective of applying EAI to the study of low-temperature detectors. These could
include cooled CCD arrays or even superconducting detectors such as those mentioned in
Chapter 1, in particular KIDs. Such an investigation would require a cryogenic version of
the experimental system, in which optical fibers could be run down into a cryostat and their
open ends could be positioned with cryo-compatible piezoelectric stages. While some of
the required technologies would differ, a significant fraction of the design considerations
discussed in the context of our room-temperature experiment could be directly leveraged.





Chapter 5

Construction and Characterization of
the Experimental System

5.1 Introduction

Having fully investigated the design of an EAI experiment at infrared wavelengths in Chapter
4, we now turn to the construction of the system we have described and its characterization.
We have chosen an all-fiber design and the operating wavelength of l = 1550 nm, both
of which are crucial in terms of the technologies available and the potential applications
for our EAI technique. The goal of this chapter is to demonstrate that the experimental
system was successfully constructed, using a combination of commercially available and
custom-made components, and that its performance is well within the specifications we had
set out in Chapter 4. In particular, this will bring us to attempt the measurement of fringes
in the detector output as the relative phase between the sources is modulated. This alone
corresponds to an important milestone towards performing EAI on infrared devices, as the
measurement of the DRF characterizing their optical response is based on the extraction of
the parameters of the measured fringes.

In Section 5.2, we introduce the choice of specific components to complete the design
presented in Chapter 4. In particular, we discuss the components’ specifications that will
be of importance for the assembly of the experimental system. Sections 5.3 and 5.4 will
describe the construction of the experimental system, naturally splitting the topic between the
generation of the external field and the creation of the detector system. More specifically, in
Section 5.3 , we will discuss the half of the experimental system that deals with the sources,
from the laser source up to the open-end optical fibers that serve as the probes for the EAI
experiment. In Section 5.4, we will then discuss the second half that deals with the detector,
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in other words the fiber-coupled detector system that constitutes the device under test, and
the signal treatment and data acquisition system. This includes the first measurement of a
fringe in the detector output as the phase between the sources is rotated, for sources in fixed
positions set manually. In Section 5.5, we continue by performing calibration measurements,
in two key areas: the detector output linearity with the incoming optical power and the phase
modulation linearity with input voltage from the waveform generator. These are critical to
building confidence in the experimental system and setting up standard procedures for future
measurements. In Section 5.6, we proceed with a full characterization of the performance
of the detection system. This includes its noise characteristics and its optimal measurement
time, which is found using a metric called the Allan Variance, to be discussed in detail.
An important additional measurement is that of the settling time of the system after source
displacements, necessary to appropriately delay the start of fringe measurements and obtain
bias-free, high-SNR fringe complex amplitude values.

5.2 Experiment Components

In order to fufill the design requirements listed in Chapter 4, the following components were
chosen:

• Laser source: PurePhotonics PPCL300 laser source has a 1550 nm center wavelength
and achieves a 10 kHz linewidth corresponding to a 30 000 m coherence length, much
larger than the few meters strictly required. It produces a tunable output power between
6 dBm and 18 dBm (4 mW to 63 mW), allowing us to perform important calibration
measurements in Section 5.5. Its output is an angled FC/APC female connector,
compatible with the polarization-maintaining fiber used in the experimental system.

• Beamsplitter: Thorlabs PMC1550-50B-APC beamsplitter is built from fused polarization-
maintaining optical fiber with a 1550 nm center wavelength and ±15 nm bandwidth. It
has one input and two outputs, a 50%-50% split ratio with precision within 0.3 dB (i.e
7%), and a 55 dB directivity that prohibits reflections at output connectors from travel-
ling in the opposite direction into the laser source. Its 18 dB Polarization Extinction
Ratio ensures that cross-coupling between polarization modes is minimized, and its
FC/APC connectors provide polarization alignment with connected components.

• Phase modulators: Two Thorlabs LN65S fiber-coupled phase modulators were cus-
tomized with polarization-maintaining fibers and narrow-key FC/APC connectors and
each include a 40 dB polarizer aligned with the slow polarization axis: this ensures
a well-defined polarization at their respective outputs. Phase modulation is obtained
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by feeding a low-voltage [�10V,+10V] signal with frequency up to 10 GHz, much
larger than our expected target fringe frequency.

• Motorized stages: Two sets of three Zaber X-LSM050A-E03 were chosen. Each set
of stages includes an adapter plates to create three-axis sets. Each linear stage has a
50 mm travel range, with 4 µm absolute accuracy and 1 µm unidirectional repeatability,
significantly smaller than our projected step size during scans. An integrated controller
and motor encoder are included, providing communication capability with a computer
and protection against slipping and stalling.

• Manual stage: We selected a Thorlabs PT3A/M manual stage for precise placement
of the device under test. Thorlabs DM12 differential micrometers produce a 25 mm
travel range, and include a 0.5 µm fine tuning resolution that allowed us to verify the
presence of standing waves with a precision smaller than a wavelength.

• Detector: Thorlabs DET01CFC InGaAs photodetector is operated under -12 V re-
verse bias to obtain peak performance that includes a 4.5 fW/Hz1/2 NEP and 1.2 GHz
bandwidth; these performances exceed those of the rest of the measurement system,
ensuring that these two metrics are not limited by the photodetector. The fiber-coupled
optical input uses a female flat-faced FC/PC connector, the industry standard.

• Amplifier: LaserComponents DLPCA-200 is a low-noise transimpedance amplifier
that produces a large voltage signal from the current input from the photodetector. It
has a variable gain setting, from 103 V/A to 109 V/A gain over 7 settings; these have
corresponding bandwidths, from 500 kHz to 1 kHz, and NEP, from 20pA/Hz1/2 to
4.3 fA/Hz1/2. An extra ⇥100 voltage gain is available in high-gain mode.

• ADC: National Instruments PCIe-6321 has a 250 kS/s maximum sampling rate, cu-
mulative over all analog inputs. Digital inputs are available for operations such as
triggering. The ADC is provided with a LabVIEW driver and library, which was used
to control measurements of the detector output. The ADC’s output uses National Instru-
ment’s proprietary 68-pin SHC68-68-EPM cable, for which we required a custom-built
adapter to BNC cables, described in Section 5.4.2.

• Fiber connections: Thorlabs ADAFCB3 mating sleeves were used to couple opti-
cal fibers with FC/APC connectors, guarantee their polarization alignment, and are
mountable on the optical table.

Figure 5.1 shows a top-down view of the optical table used for the experiment, which
includes the listed components as well as custom components, the fabrication of which will
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Fig. 5.1 Labelled top-view photograph of the experimental system.

be discussed in detail in this chapter. The fiber-based components, namely the beamsplitter
and phase modulators, were installed in plastic trays to protect them from accidental damage
and minimize any environmental perturbations such as mechanical vibrations.

5.3 Source System

5.3.1 Requirements

In this section, we discuss the construction of the part of the experimental system that creates
the two phase-locked probes necessary to an EAI experiment. This corresponds to the system
from the laser source up to the open-end optical fibers, mounted on the motorized stages for
scanning. There are several key requirements that this section will address:

• The motorized scanning stages must communicate with the computer and be control-
lable;

• The two open-ended optical fibers that constitute the probes must be secured to their
respective motorized stage sets, with adequate stress relief, while minimizing their
physical sizes and the distance between the fiber cores;
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• The polarization axis at the connection with the laser and phase modulation system
must be aligned;

• The polarization axis at the output of the source fibers must be set such that they are
parallel;

• The motorized scanning system must maximize the useful scanning range;

• Complex scanning instructions must be generated;

• Given a set of scanning instructions, an independent method must verify whether these
are safe, i.e. that they do not lead to a collision between the probes.

Many other requirements, such as the details of how to produce the phase modulation, are
also necessary but require a functional detection system. These will be discussed in Section
5.5.

5.3.2 Motorized Stages’ Performance

Communication between the control computer and the motorized stages was achieved
straightforwardly by configuring the computer’s USB ports. The stages of each three-axis
set were daisy-chained to use a single communication channel. A manufacturer-provided
computer console was used for manual stage-level positioning instructions and movement
settings, including the acceleration and deceleration used at the beginning and end of each
movement, as well as the maximum travel velocity. In practice, each motorized stage’s
position is given by a distance relative to its “home”, defined in the stage’s hardware by a
magnetic Hall sensor. The stages’ positions are provided in units of microsteps, abbreviated
µsteps; the conversion to metric units is 1 µstep = 0.047625 µm. In other words, the 50.8 mm
scanning range corresponds to 1 066 700 µsteps, which will be important when considering
simultaneous scans of the two sources, a topic discussed in Section 5.3.5. The computer
console also includes a function that returns the stages’ positions as read by the rotary
quadrature encoder on their motor, with a resolution of 8 µstep. This provides a way to verify
each stage’s position during multi-displacement scans, as will be presented in Chapter 6.

An important verification was that the positioning repeatability of each individual stage
was in agreement with the manufacturer’s specifications. These measurements were per-
formed using a dial gauge, measuring the relative distance of the stage’s travelling plate to
the gauge along the direction of movement, as the motorized stage was repeatedly scanned
back and forth to a target position. The dial gauge used has a resolution of 1/10 000" =
2.5 µm. We tested each of the scanning stages individually, and found that the repeatability
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was within a fraction of the dial gauge’s resolution, in line with the specification stated by
the manufacturer of within 1 µm.

Three motorized stages were mounted together to create a three-axis set, using the
mounting holes in the stage plates and a custom adapter plate produced by the stages’
manufacturer. These sets were mounted with right-left symmetry, i.e. symmetrical about
the plane x = 0; in this configuration, the probes are closest when both stages are at their
maximal x positions. The two x-axis stages were mounted such that their structures are
almost touching, with a sub-centimeter gap. The mounting holes have a small tolerance,
equal to a few degrees; orthogonality between the motorized stages was ensured by carefully
mounting them with a set square. More generally, this tolerance also allowed us to relax the
strict orthogonality and carefully adjust the mounting angle between the three stages of each
set, in order to align the propagation of the source beams with one another and the detector,
in Section 6.3.2. Once the three-stage axis sets were mounted together, we reiterated these
repeatability measurement for both horizontal stages, as these bear loads from the other
stages mounted on them. Again measuring the position of the stage plate relative to the dial
gauge for repeated movements back and forth to a target position, we found that the stages’
movements have sub-micron repeatability.

It is important here to make a few remarks about the symmetry of the scanning system.
We will denote the right and left sources as viewed in the direction of the source beams,
i.e. towards the detector. We note that, under the current configuration, it is not possible to
exchange the positions of the two sources: the right source is always to the right of the left
source and vice versa. This implies that right-left symmetry of the source system assumes
that the sources are identical, i.e. that they have identical power output, beam pattern and
beam direction, as well as perfect positioning. When scanning the two sources over all
position pairs, as will be discussed in Chapter 6, we only considered position pairs where the
right source position along the x-axis, xR, is smaller than the left source position along the
x-axis, xL. This reduced by a factor 2 the number of position pairs to which the sources were
scanned, and thus the duration of such measurement sets.

5.3.3 Mounting the Probes

We elected to use two open-ended source fibers that will constitute the probes in our EAI
experiment. The first key item to consider is the holder system to mount each of them onto
their respective motorized stages’ plates. These holders are particularly important, as their
design determined the minimum distance between the probes, which in turn set a limit on
the number of sampled position pairs that could actually be physically achieved without a
collision between the probes. The main requirements were to find a way of reliably securing
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Fig. 5.2 Schematical drawing of a fiber holder; values are in millimeters.

an open-ended optical fiber to the motorized stages’ structure, and to bring the optical fiber
cores as close as possible to each other. We therefore wished to reduce the physical size of
the mounting structure; in practice, this must be achieved for three of the top, bottom, left
and right sides, in order to bring the probes as close as possible to each other horizontally
and vertically. Figure 5.2 shows the schematical design of one fiber holder: two “v”-shaped
grooves along tapered structures of an aluminum block, into which a small hollow cylindrical
ferrule can be glued, with the optical fiber epoxied inside. By doing so, the minimum distance
between two such probes placed vertically or horizontally with respect to each other is set
by the size of the ferrule itself. We chose aluminum as the fabrication material chiefly for
its manufacturing simplicity and its low thermal expansion coefficient. The holder structure
could then be mounted onto a motorized stage’s travelling plate using a single screw, allowing
vertical alignment as will be discussed in Section 6.3.2.

The next step was the choice of the fiber to be mounted on these fiber holders. In
order to keep the polarization axis at the connectorized end known, we chose a Thorlabs
P3-1550PM-FC-2 polarization-maintaining fiber patch cable with FC/APC connectors, com-
patible with the optical fiber used in the system and particularly for the pigtails of the phase
modulators they are directly connected to. The 2 m-long patch cable was cut in two equal
parts, straightforwardly with a cable cutter. We then obtained two identical lengths with the
slow polarization axis aligned to the connector key. For each fiber length obtained, we then
needed to secure the open end of the fiber on the motorized stage with a set polarization. To
reach this goal, we followed part of standard instructions for connectorizing fibers [95]. We
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removed approximately 60 mm of the patch cable’s external plastic tubing, and 20 mm of its
kevlar mesh and internal plastic tubing. The 250 µm diameter fiber was then stripped of its
coating layer using a specialized stripping tool, down to the cladding-core, circular, concen-
tric bilayer with 125 µm diameter. We chose a cylindrical ceramic ferrule for securing the
fiber, with 127 µm bore size (i.e. inner diameter) and 1.25 mm outer diameter. Stainless steel
ferrules were also available but rejected, because they are mostly designed for applications
in optogenetics; while their bore size is specified analogously to ceramic ferrules, the inner
diameter is larger for most of the ferrule length for increased contact with the bonding agent,
which is not relevant to our application. Ferrules with 2.5 mm outer diameters exist as well,
but these defeat the explicit goal we had of reducing the physical size of the probes.

The ferrule were first cleaned in an ultrasound bath of isopropyl alcohol for 3 minutes,
and dried using compressed air. In order to adhere the stripped optical fiber to the ferrule’s
internal surface, we chose a two-component epoxy with a 30-minute pot life, i.e. duration
over which the mixture is malleable enough to work, and a relatively low viscosity of
1 800 mPa.s, compared to 4 000 mPa.s to 20 000 mPa.s for most other commercial epoxies.
The advantage of these two properties is that this type of epoxy is among the easiest to
work with during the most delicate step of this fabrication process, fitting a 125 µm-diameter
stripped optical fiber inside a ferrule with 127 µm bore size. As the optical fiber was slid
through the ferrule, a small bead of epoxy formed at the outer tip of the ferrule: this was
necessary for the following polishing steps. The curing time for the chosen epoxy at 25°C
is 24 hours. After this waiting period, a piece of heat-shrink tubing was applied around the
back of the ferrule and the inner plastic tubing of the patch cable, to reinforce the main weak
point that is the stripped fiber epoxied at the back end of the ferrule. We needed to leave
a minimum length of 5 mm of ferrule without heat-shrink tubing, out of the 6.4 mm total
ferrule length, in order to properly place the ferrule in the aluminum holder v-groove.

The final step is to polish the optical fiber at the tip of the ferrule. We start off by cutting
the protruding optical fiber with a ruby fiber scribe at the top of the epoxy bead. This is
necessary to avoid the fiber snapping off with the epoxy blob, which would damage the
optical fiber inside the ferrule. The main tools for the polishing step are a set of 5 sheets of
lapping film, with decreasing grain sizes (30, 6, 3, 1, 0.02 µm grit), and the custom aluminum
holder. The small holes on either side of both v-grooves are used to temporarily mount
clamping brackets, which secure the ferrule and fiber tubing in their respective v-grooves.
We set the optical fiber and ferrule in the two v-grooves of the holder with the bracket, such
that the ferrule sticks out by approximately 1 mm, as shown in Figure 5.3. A purpose-made
polishing disc would generally be used, but the smallest hole for securing the connector
ferrule is 2.5 mm, rather than 1.25 mm in our case; given the fragility of our setup, we have
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Fig. 5.3 The open end of a polarization-maintaining optical fiber is epoxied in the ceramic
ferrule, and secured in the custom fiber holder’s two v-groove structures with brackets, prior
to polishing.

found it best to use the custom aluminum holder. Once secured in this way, the ferrule
and optical fiber setup is moved across the 30 µm grit polishing sheet; starting with no
downward pressure, increasing force is applied until the epoxy bead is gradually removed.
Our experience showed that the figure-eight motion widely recommended indeed provides
the best results, and that adding a drop of water prevents excessive friction between the
ferrule surface and the polishing sheets, which could damage the fiber. Note also that the
epoxy chosen has a dark blue color; it is therefore simple to inspect the ferrule by eye to
verify whether this polishing action has removed the epoxy bead entirely. The same process
is repeated four more times, with polishing films of decreasing grain size. For the two final
grit sizes, we found it most helpful to look at the polished face under a microscope, in order
to directly assess the polish achieved: for instance, when using the 1 µm grit film, viewing
under the microscope at 200⇥ magnification clearly showed whether small scratches from
the previous 3 µm grit film remained. This was particularly important for the final polishing
step, using the 0.02 µm grit film, which removed any visible grooves from the polished face.

Once the optical fiber had been properly polished, we viewed it under the microscope
at 200⇥ magnification. When the fiber is properly polished, the stress members of the
panda-type polarization-maintaining fiber are visible as off-axis circles in the cladding layer,
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Fig. 5.4 Ferrule tip with polished fiber, viewed under a microscope with 200⇥ magnification;
the blue circle denotes the optical fiber core, the red dotted circles outline the stress members
of the panda-style polarization-maintaning fiber, and the red dashed line passes through the
centers of the three circles and represents the slow polarization axis of the fiber.

on opposite sides of the fiber core. Figure 5.4 shows the view through the microscope at
200⇥ magnification: the slow polarization axis is defined by the line between the centers of
the stress members, which also crosses the center of the fiber core, shown as a red line in
the figure. By slightly loosening the clamping screws on the ferrule and plastic tubing, we
were able to accurately rotate the ensemble, and thus the polarization axis, with respect to the
fixed holder and clamp system. Under a lower magnification, we placed the holder such that
the v-groove axis is accurately known. Once the desired polarization axis had been achieved,
the ferrule and plastic tubing were again solidly clamped with the bracket screws. We chose
to align the stress members with the holder v-groove. Setting the v-groove length normal
to the detector surface, this implies that the slow polarization axis was aligned horizontally
along the orthogonal direction, i.e. along the x scanning axis, and the fast polarization axis
was aligned vertically.

After setting the polarization axis, we permanently fixed it by gluing the ferrule into the
holder’s v-groove. We carefully applied superglue into front and back v-grooves, using a
single drop of superglue at the end of a thin pointed tip, such as a needle or cocktail stick.
Gravity and capillarity ensured that the superglue ran down the entirety of the v-groove and
correctly filled the volume between the aluminum holder and ceramic ferrule surfaces. For
the front v-groove in particular, we found it critical to pour the superglue from the top, near
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Fig. 5.5 Labelled probes mounted on the motorized stages.

the polished face, so that gravity pulls glue down into v-groove, away from polished surface.
Note also that, even after polishing, the tip of the ferrule had enough of a tapered geometry
to avoid the superglue flowing up the taper onto the polished surface. The curing time for the
chosen superglue is 24 hours, after which the clamps were unscrewed and the ferrule safely
released. The same procedure was applied to both open-ended fibers.

Figure 5.5 is a picture of the arrangement in its near-final configuration. On the right side,
the left source fiber is epoxied in the white ceramic ferrule, which is glued to the aluminum
holder. The yellow heat-shrink tubing wraps around the back end of the ferrule and the
front end of the patch cable’s optically transparent inner plastic tubing. On the left side, the
same system is still held by the clamping bracket used for the polarization alignment and
gluing steps of the manufacturing process. This bracket was removed when performing EAI
experiments, such that the two probes approached one another up to contact of the ceramic
ferrules. Overall, this process was found to be highly effective and repeatable.

5.3.4 Maximizing the Scanning Range

Having manufactured the probes, we turned to the means by which the sources were scanned.
In the configuration with two sets of three axes described in Section 5.3.2, the sources
could be brought close enough that they collide. However, this could only be achieved for
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Fig. 5.6 Schematical drawing of an extender for the fiber holder; values are in millimeters.

a very limited range of (xR,xL) values, where xR and xL denote the right and left sources’
position along their respective x scanning axes, following the convention discussed in Section
5.3.2. Instead, one of the goals stated in Section 5.3.1 was to maximize the useful scanning
range, in other words, the range of (xR,xL) for which the probes are minimally distant.
We note that, because the motorized stage system has x-axis symmetry, increasing xR and
xL values mean scanning the right and left probes towards the left and right, respectively,
i.e. towards one another. In practice, the probes should ideally be infinitesimally close to
touching when xR + xL = 1066700 µsteps. In that case, the probes would nearly collide for
both (xR,xL) = (1066700steps,0) and (xR,xL) = (0,1066700steps), i.e. when either of the
sources is at the home position and the other is at its maximal x position.

In order to achieve such a configuration while keeping the system symmetry, we chose to
add extending structures to each of the y-axis plates. The total extension length along the
x-axis needed to be 44±1 mm. In order to preserve symmetry, we chose to add one extender
on each y-axis plate with 22 mm in length.

In practice, the extender was designed as an L-shaped structure, as shown in Figure 5.6,
with the shorter side resting vertically against the y-axis plate and the longer side providing
the extension along the x-axis. A mounting hole was included at the bottom of the vertical
side for securing to motorized stage and vertical alignment, as will be discussed in Section
6.3.2, and another on the arm’s vertical face to mount the fiber holder. Two additional
properties of aluminum are here also advantageous: the aluminum structure is rigid, such
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that bending of the large section with respect to the mounting screw can be neglected, and
has low density, therefore avoiding any complicating considerations regarding the load on
the motorized stage system. Lastly, the motorized stages’ structures were made of aluminum
as well, so the entire system has a unique thermal expansion coefficient. We manufactured
these extending structures with a precision within 10 µm; this includes the overall dimensions
of the manufactured pieces, as well as the placement of the screw holes. We can therefore
assume spatial positioning symmetry of the sources on the right and left motorized stage sets.
This was partially verified during specific calibration procedures, which will be described in
Chapter 6.

Using these extenders, the sources can come into contact when the sum of the right and left
stage plates’ x-axis positions is xR + xL = 1062000 µsteps, very close to the maximal range
of 1 066 700 µsteps targeted. The source radius was measured as 1.19 mm, corresponding
to 25 000 µsteps. We remark that this is larger than the radius of the ceramic ferrule used,
0.625 mm or 13 000 µsteps: the probe size is limited by the heatshrink tubing used to connect
the optical patch cable’s plastic tubing and the ceramic ferrule, and therefore has a larger
radius than the latter.

5.3.5 Scanning Instructions

While moving the probes to chosen positions is feasible using the manufacturer’s proprietary
console, this method requires manual input and is unsuitable for scanning the sources as
rapidly as possible over a large number of position pairs in an automated manner. A library
of LabVIEW commands is available to control the motorized stages, corresponding to the
commands and settings entered manually via the manufacturer’s console. In particular,
commands for movements of a chosen stage and of given magnitude, in relative or absolute
terms, are available. It is therefore possible to instruct the motorized stages to move through
a series of coordinate vectors, for instance for the four left and right, horizontal and vertical
axes (i.e x and y axes, respectively), by using one vector as movement instructions for each
iteration of a for loop.

Rather than providing the movement instruction set through a table filled manually, we
decided to generate text files readable by our LabVIEW program, where each line corresponds
to one set of target coordinates, in either absolute or relative terms. We wrote a Matlab script
that generates such a file in the appropriate format, given a two-dimensional array of absolute
coordinates to which we wish to move the stages. From these coordinates, our algorithm
creates a list of two-source position pairs, removing those that are not achievable due to
the physical size of the probes, based on the measurements performed in Section 5.3.4. We
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considered scanning instructions for the x- and y-axis stages of the left and right motorized
stage sets, but adding the two z-axis stages is straightforward.

Once we had a method for generating scanning instructions for the probes, we needed
to ensure that the probes did not collide during their movements. This was particularly
important as our EAI experimental method requires us to bring the sources as close as
possible, while contact between the probes is strictly forbidden. We therefore also included a
method to generate only “safe” scanning instructions, to avoid the unlikely scenario where
the two motorized stage sets’ movements do not start simultaneously. In practice, this was
implemented by splitting each 4-stage displacement instruction into 3 separate movements:
moving x-axis stages in the negative direction first, then proceeding with y-axis movements,
and finally with positive x-axis movements. The idea is that the first movement type takes the
sources away from the other horizontally, the axis along which the collision paths are most
likely. An additional option was added so that, if the probes’ start or end y values are close,
the “safe” mode is automatically triggered and an extra 50 000 µsteps movement is added
in both the negative and positive x directions for this displacement’s set of three movement
instructions.

More generally, avoiding potential collisions during the scanning of the motorized stages
has required us to write a second Matlab script to check whether a collision occurs given
a set of scanning instructions, irrespective of their generation method. Here, we chose to
work in absolute coordinates, but conversion from relative coordinates is straightforward.
This algorithm verifies whether the two sources ever come to within a probe diameter of one
another. The radius of a single probe was set as 25 000 µsteps in the program, in line with the
measurement described in Section 5.3.4.

While this can be done straightforwardly by checking the distance between the sources
for each two-dimensional position pair, such a method does not check for collisions along
the movement course. Figure 5.7 illustrates such an example, showing the case of the right
probe performing a vertical movement (i.e. with no horizontal component), colliding with a
stationary left probe parked at the same horizontal position; in this case, the start and end
points of the probe pair are allowed. Figure 5.8 describes an illustrative case where both
sources move: the right source’s movement intersects the left source’s, even though their start
and end positions do not violate the minimal distance condition. The method we implemented
to extend our checks to such cases was to repeatedly verify that the minimal distance between
probes is respected after a small displacement d r, in units of µsteps, until the final position of
this movement is reached. This procedure is repeated for every movement in the instruction
set. d r can be chosen by the user, as small as d r = 1 µsteps. We used d r = 50 µsteps, as a
trade-off between precision and computational efficiency. The movements are reproduced in
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Fig. 5.7 Single-source vertical movement causing a collision, even though start and end
positions are not prohibited.

this algorithm as in practice, with the x- and y-axis components of the movement for each
probe independently stopping as soon as their target value is reached.

There are two main limitations of this method. The first is that it assumes that the source
movements are at constant speed, equal for both sources; this is realistic as long as the
settings for the acceleration and maximum speed for the sources are identical. A possible
issue occurs in the case of a slip or stall of one of the sources; this has however never been
observed, and is unlikely in the current configuration as the loads on the stages are well
within the manufacturer’s specifications. A second limitation is that the movements of the
two sources are assumed to start at the same time. In practice, this is the case to within a
fraction of a second; issues would arise if the LabVIEW script for controlling the stages
failed between sending a movement order to one source’s stages and the other’s. This is
solved by the “safe” path provisions in the scanning instruction generation method described
in this section, but does limit the generality of the collision checking algorithm.
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5.4 Detection System

5.4.1 Requirements

We now list the required basic capabilities for the detection system of our experimental
apparatus:

• The amplified photodetector must produce a measurable signal in response to optical
detection;

• Appropriate connectorized optical fibers must be prepared for coupling to the photode-
tector;

• Optical power from the laser source must couple into the detector fiber and detected by
the photodetector.

In this section, as in the rest of this chapter, we will restrict ourselves to the study of the
detection system with the sources either placed at fixed position pairs, or moving to this
target position pair. Investigations with the sources being scanned over multiple positions
across the detector surface, as well as the software infrastructure to perform this, will be
discussed in Chapter 6.
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5.4.2 Analog-to-Digital Converter

The first step in the construction of the detection system was to connect our signal recording
device, a National Instruments PCIe-6321 analog-to-digital converter, to the computer that
controls the entire experiment, from the data logging to the laser output power and scanning
of the motorized stages. In practice, the ADC was plugged into the computer’s PCIe port;
communication was achieved straightforwardly using the driver and the set of LabVIEW
functions provided.

The input/output connector on the back of the ADC board is a 68-pin proprietary con-
nector. We therefore manufactured a custom BNC board, with two female BNC connectors
and a female connector for the ADC cable. We connected all necessary pins to BNC cables:
one BNC carrying the detector output signal to an analog input for measurement recording
and one BNC carrying a synchronization signal to ensure that measurements are triggered
precisely with respect to the modulation signal.

An important verification was the correct retrieval of synthesized fringes. In practice,
we used an Agilent 33220A waveform generator to produce a sinusoidal waveform with
known properties, connected it with a BNC cable directly into the analog input of the
ADC, and recorded the signal. We verified that the amplitude and phase of the measured
fringes were as expected by recording a time series of the ADC’s analog input, performing a
Discrete Fourier Transform and extracting the amplitude and phase of the DFT’s component
corresponding to the modulation frequency. For a measurement of Nsamples = 2 MS at
fsampling = 250 kS/s sampling frequency and fmodulation = 2.5 kHz modulation frequency, we
selected the component with index

iDFT = Nsamples fmodulation/ fsampling +1, (5.1)

equal to 20,001 in this example; the addition of 1 comes from the labelling of the DFT’s DC
component as index 1. The extracted complex fringe amplitude and phase were found to be
in excellent agreement with the synthesized sinusoidal signal; deviations were smaller than
0.1%. We also verified that there was no measurable cross-coupling between the analog and
digital inputs, by recording the former connected to a shorted BNC cable while feeding the
waveform generator’s synchronization signal into the latter.

5.4.3 Detector Fiber Fabrication

The photodetector we have chosen is not free-space coupled, but rather has a female FC/PC
connector with a glass ball lens, for coupling to a connectorized optical fiber. The latter acts
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as a mode filter and sets the modal behavior of our device under test, which corresponds to the
fiber-coupled detector. We argued that, because the optical fiber coupled to the photodetector
would in general not be polarization-maintaining, we wanted its length to be as short as
possible in order to avoid any effect of cross-coupling between the two polarization modes.
Such short optical fiber lengths are only obtainable by cutting commercially available bare
fibers, and it was necessary to connectorize them for use in our system.

The fabrication procedure for connectorizing these lengths of fiber is similar to the
process described in Section 5.3.3, except for the tools used in the polishing step. One
end of the fiber needed to be mated with a male FC/PC connector to be compatible with
the photodetector’s connector, while the other end needed to be mounted in an appropriate
structure to be held; as in Section 5.3.3, we chose a ceramic ferrule with 127 µm bore size to
fit stripped optical fibers, but with a 2.5 mm outer diameter compatible with commercially
available clamping structures.

The main weak point of the construction is at the contact between the back of the ferrule
and the optical fiber, as this is the boundary between the stripped and unstripped portions of
the fiber. In order to strengthen this region, an additional drop of epoxy was added to the
concave tapered end of the ferrule. This polishing procedure was repeated for connectorizing
the other end of the optical fiber length with an FC/PC connector. The fabrication was
somewhat less delicate, as the fragile section of optical fiber at the back end of the connector
ferrule was reinforced by pushing the 0.9 mm plastic tubing into the connector and sliding a
strain relief boot over it. We then followed the polishing procedure set out in Section 5.3.3.
For both the FC/PC detector and the large-diameter ferrule, a custom holder was not necessary
for the polishing steps. Instead, we used a polishing disc with a 2.5 mm-diameter hole, in
which the ceramic ferrules can be secured for the polishing procedure, with a clamping screw
tightened onto the ferrule.

The holder for the ferrule is built from a plastic clamp, which is slitted into two arms
with a circular void region of diameter 2.5 mm, obtained from semi-circular holes in each
of the arms. The latter can be tightened with a single screw close to their common base.
Figure 5.9 shows the experimental arrangement with a bare single-mode fiber coupled to the
DET01CFC photodetector with an FC/PC connector and secured to the manual stage using a
plastic clamp to firmly hold the ferrule.

5.4.4 First Fringes

At this point, we attempted the recording of fringes in the detector output as the relative phase
between the two arms of the experiment is modulated. Although all tests of the experimental
system had yet to be performed, the ability to record fringes would open the possibility of
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Fig. 5.9 Fiber-coupled detector mounted on the manual stage, with open-ended fiber epoxied
in the ferrule and held in a clamp.

more sensitive calibration procedures, as we will discuss in Sections 5.5 and 5.6. We found
the on-axis position of each source rudimentarily by manually scanning their respective
x-axis stage and identifying the position for which the detector output is maximal. A more
precise approach will be developed in Section 6.3.2. The two probes were placed as close as
possible to their respective measured on-axis position, without making contact, at a distance
of approximately 100 mm to the detector.

Each phase modulators was connected in turn to a signal generator, for which we selected
an Agilent 33220A function waveform generator. There are five key settings for the input
waveform:

• the waveform type: among several options (such as a sinusoidal, square or pulse shape),
we chose the linear ramp waveform, as it corresponds to a continuous linear waveform
if the appropriate voltage range is chosen;

• the peak-to-peak voltage: selected with a resolution of 0.1 mV, we first chose twice
the phase modulator manufacturer’s stated Vp = 4 V DC voltage corresponding to a
constant p rad phase shift, before performing a calibration procedure in Section 5.5.2;

• the waveform symmetry: selected as a percentage, we chose 0% symmetry in order to
have only an increasing voltage in seesaw form, such that the phase modulation wraps
around at Vp to V�p = �Vp ;

• the constant voltage offset: selected with a resolution of 0.01 mV, we chose 0 V in
order to obtain a waveform that is symmetric in time about 0 V, which corresponds to
Df = 0 rad phase shift;
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Fig. 5.10 First experimental measured fringe, at 2.5 kHz modulation frequency.

• the frequency: selected with a resolution of 0.1 µHz, we first chose 2.5 kHz to sample
100 points per fringe period using the maximum 250 kS/s sampling frequency on the
ADC.

With the system in this configuration and the sources placed as close as possible to their
on-axis position, we turned on the laser source, modulated the relative phase between the
arms of the experiment and recorded the detector output, amplified with a gain factor of
G = 107 V/A. We observed a fringe pattern precisely at the modulation frequency selected.
Figure 5.10 shows our first successful measurement of fringes in the detector output as the
sources’ relative phase is varied. It is important to remark here that the observation of fringes
at this point is already an important achievement. Indeed, even before proceeding with the
careful calibration of the experimental system, we were able to record fringes in the detector
output as the relative phase between the two arms of the experiment is rotated, with the
sources placed in fixed positions. This is a critical milestone in the objectives we outlined in
Chapter 1, and following the experimental system’s design started at the early conceptual
stage in Chapter 4.
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Fig. 5.11 Calibration of detector linearity, with comparison between the measured detector
output voltage and the ideal linear behavior as the laser power output is changed (lines), and
when calibrated attenutors are added at fixed laser power output (crosses).

5.5 Calibration Measurements

5.5.1 Detector Linearity

In Chapter 2, we emphasized the importance of a fundamental assumption for our derivation
of EAI theory, that the detector output is quadratic in the incoming field, i.e. linear in the
incident power. It was worth at this point verifying whether this assumption holds in practice
for the chosen photodetector.

To begin, we connected the laser source directly to the left source fiber, and placed the left
probe directly opposite the bare Thorlabs DET01CFC detector (i.e. with no coupled fiber),
at a distance of approximately 80 mm. The detector output was not amplified, but rather
fed directly to a calibrated Keithley 196 System DMM voltmeter. The distance between the
source and detector was chosen specifically such that the minimal 6 dBm power setting (equal
to 4 mW) for the laser output produced a 0.500 V signal at the detector’s output. This was
necessary to avoid running into the detector’s maximum voltage output of 10 V at the highest
laser output power; starting from a 0.500 V signal at 6 dBm optical power, we expected
the signal at 18 dBm optical power to be 7.92 V. The laser power output was increased in
0.5 dBm increments from 6 dBm until the maximum setting of 18 dBm (equal to 63 mW),
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and the detector output voltage was measured for each successive setting. Figure 5.11 shows
the relationship between these measured voltages and the laser output power for which they
are obtained; it is extremely close to proportional, with an error reaching at most 2% for the
highest power values. We observed small fluctuations in the detector output of the order of
±2%, which are the dominant noise contribution for the measured voltage. We therefore
conclude that the detector output signal is indeed proportional to the laser power output.

These measurements require the assumption that the laser power reading on the computer-
control console is correct. To avoid this assumption, we used six fixed optical fiber attenuators,
with attenuations of 2.84 dB, 3.20 dB, 5.40 dB, 5.50 dB, 9.84 dB and 10.32 dB, calibrated
by the manufacturer with 0.01 dB precision. The detector output voltage measured for each
of these attenuators inserted in our system, with the laser power output held constant at
its 18 dBm setting, are shown as black crosses in Figure 5.11. The limiting precision of
this measurement procedure is the repeatability of adding the attenuator to the fiber system:
depending on the force applied when joining the attenuator’s FC/APC connectors to the
rest of the system, respectively a female mating sleeve connector and a male patch cable
connector, the detector output can be modified by up to 2%. Nevertheless, the results obtained
with this second measurement procedure confirm those produced with the first, independently
of the laser’s power reading on the computer console, showing that the detector output is
indeed linear in the incident optical power.

5.5.2 Phase Modulation

As discussed in Section 5.4.4, modulation of the relative phase between the sources is obtained
by driving either (or potentially both) of the phase modulators using a time-dependent voltage
output of an Agilent 33220A waveform generator. The chosen waveform is a linear ramp,
with 0% waveform symmetry, and 0 V DC offset; the modulation frequency was selected to
be 2.5 kHz, such that recording the signal with the ADC’s maximum sampling frequency
of 250 kS/s implies 100 datapoints per fringe period, which simplifies the extraction of
fringe parameters in post-measurement analysis. We had left unanswered the question of
the appropriate value for the peak-to-peak amplitude necessary to obtain a precise phase
modulation from �p rad to p rad. The next step was therefore to calibrate the two phase
modulators independently. In practice, this meant finding the peak-to-peak voltage of the
linear ramp input signal for which a full 2p phase rotation is achieved. Assuming that the
center of this voltage range is taken to be 0 V, i.e. choosing a 0 V constant offset in the
waveform generator settings, the maximum input voltage would then be Vp . In Section 5.4.4,
this value was taken to be 4 V, as stated by the manufacturer. We placed the two sources
close to the detector axis and modulated their relative phase at 2.5 kHz, as in Section 5.4.4.
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Fig. 5.12 Measured fringe in the detector output as the right phase modulator is fed a linear
ramp waveform of various peak-to-peak voltages; the photodetector is coupled to free-space.

The shape of the measured fringe in the detector output provides a first-order indication of
the phase modulation achieved with the input peak-to-peak amplitude selected, as shown in
Figure 5.12. Discontinuities in the fringe correspond to an inaccurate input voltage setting:
a discontinuity before the full sinusoid is completed indicates that Vp is larger than the
maximum voltage setting selected, while a discontinuity after a full sinusoid and a fraction of
the next implies that Vp is smaller than the maximum voltage setting. From Figure 5.12, we
see that Vp is neither 7 V nor 9 V; 8 V is likely the appropriate value, but the signal-to-noise
ratio (SNR) is too low for this determination to be confident.

The optimal way of achieving this was by using a beamcombiner, to combine the outputs
of the phase modulators and use the photodetector on either of the beamcombiner outputs.
In practice, the optical power obtained in this manner saturated the detector unless a fixed
attenuator was used: we therefore added a 3.20 dB attenuator at the chosen beamcombiner
output, and set the optical power of the laser source to the minimum 6 dBm setting. The
fringes in the detector output as the relative phase of between the system’s arms is modulated
were observed with an SNR in excess of 2 000. In Figure 5.13, we show the fringes observed
for various amplitudes of the input linear ramp waveform to the right phase modulator. We
observe discontinuities for all peak-to-peak amplitudes, but these are clearly minimized for
7.85 V: we therefore consider the phase modulator has 2Vp = 7.85 V at 2.5 kHz modulation
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Fig. 5.13 Measured fringe in the detector output as the right phase modulator is fed a
linear ramp waveform of various peak-to-peak voltages; the photodetector is coupled to the
beamcoupler’s output.

frequency. The same procedure was repeated by modulating the left phase modulator, and
we find that 2Vp = 8.1 V.

5.6 System Noise Characteristics

5.6.1 Vibration and Stage Settling

Before studying more traditional noise properties such as optical noise for one or two fixed
sources illuminating the detector system, we considered sources of transient noise in the
system. There are two main causes: vibrations of the entire experimental system through the
optical table, and the settling of the motorized stages after their scanning movements. In order
to measure these noise sources, we proceeded with two types of tests. The first consisted
in measuring variations in the detector output signal with a single-source illuminating the
fiber-coupled detector; the second consisted in measuring the fringe amplitude and phase
variations when two sources are illuminating the device under test with their relative phase
modulated. It is important to note that the second is generally more sensitive, because the
fringe is an interferometric phenomenon, much more dependent on the precise positioning
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Fig. 5.14 Measured detector output and power spectrum, with two sources illuminating it at
fixed positions while environmental disturbances are applied, displaying a settling time of
0.5 s and vibration frequencies of 62 Hz and 80 Hz.

of the sources than the slowly-varying amplitude of a single source beam projected on the
detector surface.

A first key measurement was the assessment of the effect of environmental vibrations on
the measured detector output. The goal is to simulate extreme environmental perturbations
caused by human activity around the experimental system; in practice, this means vibrations
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Fig. 5.15 Extracted fringe amplitude and unwrapped phase as the left source is scanned to its
target position, displaying a settling period with a 0.03 s timescale.

in the optical table, which were produced by purposefully hitting table in qualitatively
reproducible ways. Using the same configuration as in Section 5.4.4, over an 8 s duration, we
measured the detector output at 250 kS/s sampling frequency as the sources were placed as
close as possible to their on-axis position, while successively walking around the optical table,
jumping twice next to it, and lightly drumming the table corner farthest from the sources.
Figure 5.14a shows the detector output without modulation of the probes’ relative phase:
the voltage measured is severely disturbed by the environmental perturbations, in particular
direct contact with the optical table. It is therefore crucial to ensure that the immediate
surrounding of the experimental system is free of such mechanical vibrations during sets
of fringe measurements. Studying the spectrum of perturbed periods indicated in Figure
5.14b, we observed two distinct peaks at 62 Hz and 80 Hz: we believe these correspond to
the frequencies of the vibrational modes of the stage systems or of the optical table. We also
remark that, repeating these measurements when using the beamcoupler discussed in Section
5.5.2 instead of the free-space section, similar perturbations were observed in the detector
output, albeit with smaller magnitude. This indicates that perturbations of the optical fibers
contributes at least partially to the variations observed in the detector output.

The second key measurement performed was the investigation of vibrations in the sources’
arrangement after they are moved, in order to assess the precautions needed under the normal
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Fig. 5.16 Extracted fringe amplitude and phase, displaying large phase drift.

utilization of the motorized stages. In practice, we measured the settling time of the source
system after displacing the stages. This was done by starting a long measurement, which
we chose again to last 8 s at a sampling rate of 250 kS/s, as the stages were scanned to their
target position, which we selected as identical to the study of environmental perturbations
and to Section 5.4.4. The fringe amplitude and phase were extracted for 0.4 ms blocks,
corresponding to 100 samples or equivalently 1 fringe period. In Figure 5.15, we show the
extracted fringe amplitude and phase as the left source is moved to its target position, with
the right source already placed at its own. Large variations were observed while the source
is scanned, as expected, followed by a transient oscillatory period once the movement had
stopped, with a timescale of 0.03 s. In subsequent measurements, it was therefore important
to add a delay between the end of the stages’ movements and the start of the detector output’s
measurement; we chose a 0.5 s delay, implemented in the LabVIEW code described in
Section 6.2.1.

5.6.2 Fringe Phase Drift and Amplitude Noise

An important observation made during both of these measurements is the temporal evolution
of the detector signal, when the two sources are held in fixed positions and their relative phase
is not modulated, as in Figure 5.14. At this point, we did not attempt to characterize this
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Fig. 5.17 Extracted fringe real and imaginary parts, fitted with a circle.

phenomenon any further than observing that the signal’s evolution is slow and continuous,
seems random, and is bounded by the maximum and minimum signal values obtained in
fringe measurements as the relative phase is modulated. This implies that the detector output
time variations are a true phase drift, caused by a temporal variability in the relative phase
shift between the two sources, rather than an additional signal from some other origin. When
performing a continuous measurement of the fringe in the detector output over long time
periods, with the sources held in fixed positions and the relative phase modulated as described
in Section 5.6.1, we observed that the extracted fringe phase drifts in a similar fashion. This
is shown in Figure 5.16 for an 80 s measurement at 250 kS/s sampling frequency, which will
use as an example dataset throughout this subsection. This topic will be discussed in greater
detail in Chapter 7. In the meantime, we conclude that fringe phase measurements are valid
over timescales shorter than 1 s; beyond this, only the fringe amplitude measurements can be
considered accurate.

While we elected not to study further the nature of the observed fringe phase drift, it
was important to investigate whether it contributes to noise in the fringe amplitude. A first
measure of the relationship between the fringe amplitude and phase was to study the shape
of the extracted fringe real and imaginary parts in the Argand plane. By using a circle fitting
procedure, we found that the representation of the complex fringe amplitude in the Argand
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Fig. 5.18 Eigenvectors of the amplitude-phase spectral covariance matrices for the 15 lowest
frequencies; the corresponding eigenvalues l are zero and positive. Components of vectors
along the horizontal and vertical axes denote fringe amplitude and phase contributions,
respectively.

plane is a perfect circle. In Figure 5.17, we show the extracted fringe amplitude and phase
for our reference dataset, for which the fitted circle has a radius of 24.2 mV, in line with
the fringe amplitude extracted via our FFT-based method described in Section 5.4.2, and
a center with coordinates (129.7 µV, -52.7 µV). The small off-origin displacement of the
circle’s center can be fully attributed to noise and asymmetry in the distribution of datapoints
around the circular shape.

A second metric to consider, given that the phase drift is slow, is the eigenvectors for
the low-frequency elements of the cross-spectrum between the extracted fringe amplitude
and phase. In practice, this is done by computing the 2 ⇥ 2 covariance matrices for the
amplitude and phase spectra and cross-spectrum elements at each frequency, and operating
an eigenvalue decomposition on each. We found that one of the eigenvalues is always zero,
within the machine precision used for the eigenvalue decomposition, while the other is
positive. The corresponding eigenvectors are directed precisely along the axes corresponding
to the amplitude and phase contributions, respectively. This is shown in Figure 5.18 for
the 15 lowest frequency elements of our example dataset. We also note that the spectrum
obtained from the non-zero eigenvalues is almost identical to the phase spectrum, further
indicating that the fringe amplitude and phase evolutions are not related.

It is also interesting at this point to consider the fringe visibility, which we defined
in Chapter 2 as gmn = Dmn/(Dmm + Dnn) where Dmn is the complex fringe amplitude, for
sources placed at positions m and n. This quantity is of crucial interest, particularly in fringe
measurements as the two sources are scanned, discussed in Chapter 6. For a single set of
position indices m and n, the fringe visibility g can be extracted from one fringe measurement
as

g =
Vmax �Vmin

Vmax +Vmin
, (5.2)
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Fig. 5.19 Extracted fringe visibility, and comparison with the extracted fringe amplitude and
DC offset.

where Vmax and Vmin are the maximum and minimum recorded voltages in the detector output.
The fringe visibility corresponds to the ratio of the fringe amplitude, (Vmax �Vmin)/2, to the
fringe DC offset, (Vmax +Vmin)/2. In Figure 5.19, we observe oscillations in our example
dataset’s fringe visibility that are qualitatively similar to those measured in the fringe phase.
When separating the fringe amplitude and offset, we found that it is indeed the fringe offset
that fluctuates by up to 6%, rather than the fringe amplitude. In conclusion, the fringe
amplitude stability was demonstrated to be independent of the phase drift observed.

5.6.3 Electrical and Optical Noise Characteristics

Returning to more standard noise characteristics, we investigated the spectra of measured
datasets, under various experimental conditions. These include, for instance, the noise of
an ADC input connected to a 50 W termination, a shorted input to the amplifier with a
chosen amplification setting, and the optical power detected by the photodetector illuminated
by one or two sources. We first considered the second example, with the transimpedance
amplifier input shorted and its gain setting selected as G = 107 V/A without additional
filtering, recorded by our ADC with the maximal [-10 V,+10 V] input range setting. A 10 s
measurement of its output was performed, at a sampling rate of 200 kS/s: the results presented
in Figure 5.20 show a nearly flat spectral density, characteristic of white noise, with small
peaks at 50 Hz and its odd multiples, indicative of a mains hum of limited amplitude. These
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Fig. 5.20 Power spectral density of the transimpedance amplifier at G = 107 gain setting,
with shorted input.

characteristics, and the 100 fW/Hz power spectral density, are in line with the manufacturer
specifications.

Secondly, we returned to the reference dataset used in Section 5.6.2, and computed its
power spectrum. In Figure 5.21, we observe very sharp peaks for the 2.5 kHz modulation
frequency and its harmonics. The width of the fundamental tone is approximately 2 Hz, and
its amplitude is several orders of magnitude larger than the nearest noise tones, indicating we
obtain a very high SNR in our fringe parameter extraction method. The mains hum at 50 Hz
is also noticeable, as well as a small peak at 100 Hz: we believe that this tone corresponds
to power from the laboratory’s ceiling lights. Both of these signals are sufficiently small
compared to the phase modulation signal that they can effectively be neglected in future
fringe measurements. We also notice a significant peak of larger width at 888 Hz, as well as
its harmonics: this corresponds to the frequency of the laser source’s stabilization system.
We verified that these peaks indeed disappear when this active stabilization is turned off, in
the laser’s computer console; in other measurements, it remained turned on, as our primary
goal was stability and repeatability over long periods of time, up to several hours in Chapter
6.
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Fig. 5.21 Power spectral density of the measured fringe, displaying high peaks at the 2.5 kHz
modulation frequency and its harmonics.

5.6.4 Allan Variance

In order to go beyond the noise spectra presented in Section 5.6.3, we turn to an additional
quantity called the Allan Variance. Computing the Allan Variance of a sufficiently long
time series measured under constant experimental settings produces important insights into
the stability, and indeed the instability mechanisms, of the apparatus used. In particular,
the integration time for which the Allan Variance is minimized corresponds to the system’s
optimal measurement duration, the so-called Allan stability time. Historically, the concept of
Allan Variance was developed to study the statistics of clock pairs, including the frequency
stability of atomic clocks, and of gyroscopes. In the context of astronomical instruments,
Allan Variance has been used to find the characteristic timescales of noise and drift, which
can be compensated for instance by using the reference signal from a known calibrator [96].

In practice, Allan Variance can be viewed as the statistical variance of the difference
between the signal of interest and some reference signal, dependent on the duration of the
measurement integration [97]. This is why the Allan Variance is sometimes also know as the
“two-sample variance”, and is a special case of the M-sample variance [98]. When such a
reference signal is not available, the Allan Variance can be redefined in terms of the signal of
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Fig. 5.22 Schematic of two Allan Variance computations with 100 data points, for integration
times equal to 10t0 (red) and 25t0 (blue).

interest and itself shifted by the integration period; the computation then uses the difference
of consecutive time-integrated datapoints. This is the case we will consider here.

We consider a time-domain signal xi, discretely sampled at intervals t0 = 1/ f0, defined
as the inverse of the sampling frequency f0; i 2 {1, ...,N} is the sample label, where Nt0 is
the total measurement duration. In practice, the sampling period t0 is set by the user for the
measurement device used such as an ADC: the data we have access to is inherently discrete.
We compute the average signal value for groups of m samples, with duration t = mt0, which
corresponds to the effective averaging time (proportional to the integration time, used in
other derivations):

yK(t) =
1
t

K+m�1

Â
j=K

x j (5.3)

where K is the index of the first sample in the averaged cluster. Assuming we choose m to be
a divisor of N, we can then create N/m such clusters without overlap. The Allan variance as
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a function of the cluster duration t is defined as:

s2
A(t) =

1
2
h(yK+m � yK)

2i, (5.4)

where hi denotes the ensemble average over all clusters. Expanding the ensemble average,
the Allan variance is computed as mean square difference between consecutive clusters:

s2
A(t) =

1
2(

N
m �1)

N
m �2

Â
i=0

�
ym(i+1)+1 � ymi+1

�2
. (5.5)

Computationally, it is often advantageous to consider the integrated signal Si from the
first to the ith sample,

Si =

i

Â
j=1

x j. (5.6)

The t-average signal yK(t) is related to the total integrated signal Si by

yK(t) =
SK+m �SK

t
. (5.7)

The Allan variance is then computed as

s2
A(t) =

1
2t2(N

m �1)

N
m �2

Â
i=0

�
Sn(i+2) �2Sn(i+1) +Sni

�2
. (5.8)

Figure 5.22 provides an example of the computation of the Allan Variance of a dataset of
100 points, for two cluster durations of 10t0 and 25t0. The 100 data points can be subdivided
into 10 or 4 non-overlapping clusters of 10 or 25 data points, respectively, and averaged to
obtain the time-averaged signal Ai with i 2 {1, ...,10} and B j with j 2 {1, ...,4}. The Allan
Variance for each integration time is then the variance of the arrays A and B. We remark that
some sources use the Allan deviation sA(t), square root of Allan Variance s2

A(t), rather than
the latter [99].

A second option for the computation of the Allan variance of a dataset is based on the
same method to cluster samples, but the summation over differences of sample clusters is
different. Instead of summing over clusters starting at multiples of the integration time t , we
can sum over clusters starting at multiples of the sampling period t0. The Allan variance is
then defined as

s2
A(t) =

1
2t2(N �2m)

N�2m

Â
k=1

(Sk+2m �2Sk+m +Sk)
2 , (5.9)
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Fig. 5.23 Schematic of an Allan Variance computation using the overlap method, with 10
data points, for integration time equal to 5t0.

where the prefactor is adjusted to account for the new number of summed terms. This
new computation method therefore has clusters that overlap, and we refer to this version as
“overlapping”. In practice, this provides a greater density of integration times, as we are no
longer limited to multiples of t , and leads to lower error on the computed Allan variance.

Figure 5.23 illustrates the computation of the Allan Variance of a set of 10 data points,
for integration time equal to 5t0, i.e. over 5 data points. The successive integration clusters
are simply displaced by the sampling period t0, i.e. one data point. Using this overlapping
method, the Allan Variance is computed as the variance of the data integrated over 6 clusters.
Using the simple method instead, the Allan Variance would have been computed as the
variance of the data integrated over only 2 clusters. Considering this example with 10 data
points, the maximum integration time with the overlapping method is 9t0 (with two clusters),
and the minimum integration time of 2t0 has 9 clusters. Using the simple method, the
maximum integration time is 5t0 (with two clusters), and the minimum integration time of
2t0 has 5 clusters.

Once we have computed the Allan variance for several integration times t , we can
find the value of t which minimizes the Allan variance. This value is the so-called Allan
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Noise mechanism Allan Variance feature
Quantization noise Constant slope, coefficient -2

White noise, random walk (angle) Constant slope, coefficient -1
Correlated noise Single local peak

Single frequency (e.g. 50 Hz noise) Repeated peaks of decreasing amplitude
Bias instability, 1/f noise Constant slope, coefficient 0

Rate random walk Constant slope, coefficient +1
Rate ramp, drift noise Constant slope, coefficient +2

Table 5.1 Noise mechanisms and their corresponding features in Allan Variance plots with
logarithmic scales

stability time, denoted TA, and effectively provides the optimal measurement duration under
the experimental configuration chosen. We can also produce a plot of the Allan variance
computed using the various integration times t . The minimum on this plot is the Allan
stability time. Such a figure provides significant additional information: using a logarithmic
scale on both axes, it displays regions of fixed slope, the coefficient of which corresponds to
a specific noise source. Some of the typical observed slope coefficients and features, and
their corresponding instability mechanism are listed in Table 5.1. In effect, this allows us
to understand which noise mechanism is dominant for a chosen measurement duration, and
provides a powerful tool for understanding the behavior of an experimental system.

We produced a Matlab implementation that includes a choice of between the simple and
overlapping methods, and a generation method of the integration time vector optimizing the
number of durations. This method can be used on large datasets, for instance measuring the
noise of an ADC input connected to a 50 W terminator, a shorted input to the amplifier with a
chosen amplification setting, or the optical power detected by a photodetector. Figure 5.24
shows an example of this second case, where we measured the output of the transimpedance
amplifier with G = 106 V/A gain setting and a shorted input, during 40 000 s or 11 hours. The
Allan Variance was computed for integration times from 2 ms to 16 000 s, and fitted using a
polynomial functional form. We observe three distinct regions, with slope coefficients -1, 0
and approximately 2: these are understood to be contributions respectively from white noise,
flicker or 1/f noise, and drift noise [100].

We also wish to understand our system under the precise settings of used in experimental
fringe measurements, and to compute the Allan Variance of extracted fringe amplitude
and phase datasets. We used the extracted amplitude and phase of the FFT component
corresponding to the phase modulation frequency for a window with size equal to the chosen
integration time as datapoints. These were then fed into our Allan Variance computation
algorithm as previously. Figure 5.25 shows the Allan Variance of the fringe amplitude
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Fig. 5.24 Allan variance as a function of the integration time t , for a 20 MS measurement of
the transimpedance amplifier output with G = 106 V/A gain setting, at 500 S/s sampling rate.

extracted in 0.4 ms blocks for two measurements, performed before and after the phase
modulation calibration (using 2V p = 8.0 V and 8.1 V respectively) and the fabrication of an
improved ADC-to-BNC adapter card. The Allan stability times were measured to be 0.15 s
and 0.3 s respectively, at Allan variance values equal to 1.05 ⇥ 10�7 V2 and 2 ⇥ 10�8 V2.
This proves that our work on the experimental system indeed improved its performance. In
particular, the optimal measurement duration was significantly improved to approximately
0.3 s: this parameter was used for fringe measurements during scans, as described in Chapters
6 and 8.

5.7 Conclusion

We have described the construction and characterization of our EAI experimental system
at infrared wavelength. The main outcomes from this chapter are that our experimental
system has been successfully built, including custom parts designed to optimize the potential
capabilities of the system, and that its performance has been characterized. These tests have
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Fig. 5.25 Allan variance of the extracted fringe amplitude as a function of the integration
time t , for fringe measurements before and after the phase modulation calibration and the
fabrication of an improved ADC-to-BNC adapter card.

confirmed that our system’s capabilities fulfill the requirements we had set out in Chapter 4.
In particular, we have demonstrated that fringes in the detector output as the relative phase
between the probes is modulated can be observed with high signal to noise ratio, and their
amplitude and phase can be extracted using a simple FFT-based method. In and of itself,
this is already an important achievement, as such fringe measurements underpin the entire
EAI experimental technique. Furthermore, we have developed tools that will be critical to
performing future experiments. A significant amount of time and attention was devoted
to writing various programs for generating scanning instructions following user-declared
scanning strategies, checking that it is safe to proceed by avoiding any trajectories in which
the finite-sized probes would collide, and performing simple measurements of the detector
output.

At this point, a large portion of the infrastructure required for the realization of an
EAI experiment on the chosen fiber-coupled infrared detector is in place and has been
tested extensively. Along the way, several parameters with particular importance for the
methodology of future experiments have been chosen. The settling timescale of the sources
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was measured to be 0.03 s, and we have chosen a 0.5 s delay between the end of the motorized
stages’ movements and the start of the recording of the detector output by the ADC. The
optimal measurement time, as characterized by the minimum of the Allan Variance as a
function of integration time, was found to be 0.3 s. To preserve a workable multiple number
of points acquired per fringe period, we have chosen that the measurement time would be set
to 0.2 s; at 2.5 kHz modulation frequency, this corresponds to 500 fringes per measurement.
These tools and measured optimal parameters will be used directly in Chapter 6 when
performing EAI on fiber-coupled detectors.

Furthermore, we have identified an important limitation of the current experimental
system: the presence of a drift in the relative phase between the two arms of the experiment.
This was observed as a slow, continuous and seemingly random temporal drift in the fringe
phase measured in the detector output. The main implication is that the fringe coherence time
of our system is only a few seconds, much too small to measure the fringe phase reliably as
the sources are scanned over a large number of positions, which would take several minutes
to several hours. The next chapter will therefore be devoted to measurements of the detector
response function’s amplitude pattern. Appropriate extensions to the experimental system
to correct for this phase drift will be discussed in Chapter 7, and full measurements of the
fringes’ amplitude and phase will be presented in Chapter 8.





Chapter 6

Amplitude-Sensitive Experimental
Characterization

6.1 Introduction

Fringes in the detector output as the relative phase between the probes is modulated were
recorded in Chapter 5, proving the capability of our experimental apparatus to measure
such coherent phenomena. In particular, these were used as sensitive tools to characterize
important parts of the experimental system itself. In this chapter, we extend these newly
developed tools in order to perform EAI on, and to characterize the optical response of,
the device under test, i.e. the system created by coupling a length of optical fiber to the
chosen InGaAs biased photodetector. The EAI theory derived in Chapter 2 had indicated
an experimental method for measuring the Detector Response Function (DRF) which fully
characterizes the optical behavior of the device under test, by extracting the properties of
the fringes recorded for multiple pairs of positions of the sources illuminating the detector
surface. In this chapter, we perform these measurement sets and extract the amplitude of the
recorded fringes to obtain the characteristic DRF features of single-mode, few-mode and
multi-mode devices. Another main objective is the comparison of the DRF structure observed
in experimentally measured DRFs with those of simulated DRFs presented in Chapter 3. In
order to gain a deeper understanding of the relationship between these DRF features and
the number of optical reception modes of the device under test, we also seek quantitative
methods to estimate the latter using only the measured DRF amplitude. Particular care is
required to clarify how the modes’ sensitivity eigenspectrum is reduced to a single metric.

Section 6.2 describes the experimental method for obtaining the detector output amplitude
as one source is scanned over a one-dimensional position grid. This method is then extended
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to perform measurements of the fringe in the detector output as the relative phase between
sources is modulated, with the two sources scanned over all pairs of positions on a similar
one-dimensional grid. In Section 6.3, we apply the method for single-source scans to a system
constructed from the photodetector and a short length of optical fiber; we describe the issues
with this arrangement and how longer optical fiber cables solve these. Additionally, we per-
form final calibration procedures, including the angular alignment of source beams. Section
6.4 presents the application of this method to obtain the first experimental measurement of the
DRF amplitude of a large variety of infrared systems. In Section 6.5, we discuss these results,
including the distinctive characteristics of patterns obtained with single-mode, few-mode and
multi-mode devices, as well as compare them to the simulated DRFs obtained in Chapter 3.
In Section 6.6, we derive bounds on the number of modes present in the system under test:
an upper bound on the number of modes that have quasi-constant relative magnitude and a
lower bound on the total number of modes. These bounds can be computed using only the
amplitude component of the measured fringes, and an algorithm is implemented to apply this
theory to our experimental datasets.

6.2 Experimental Method and Verifications

6.2.1 Control and Measurement Software

While we have previously discussed the generation of scanning instruction sets in Section
5.3.5, it is important at this point to describe the LabVIEW software that used these instruc-
tions to control the motorized stages, as well as perform and synchronize the measurement
of the detector output. In part, we built on the simple software used in Chapter 5 to record
single-shot measurements of noise characteristics and fringes. The LabVIEW code we
implemented has several core capabilities:

• Initialize all systems. The computer communication to each set of three motorized
stages is initialized, and the x- and y-axis stages of the right and left scanning systems,
labeled R and L, are sent to their home positions, i.e. xR = xL = yR = yL = 0 µsteps, to
ensure the proper starting position for the scanning procedures. This is a far off-axis
position where no optical power is coupled from either of the sources into the detector.
We found that individually instructing each axis is more reliable than using the “home
all” function, which is unsuitable. Some additional properties must be set, including
whether the movement instructions are displacements in relative or absolute terms,
i.e. with respect to the current position of the stage or to its home, respectively; the
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former is chosen by default. Computer communication with the ADC is initialized, the
measurement channels are set, and the sampling number and rate are selected.

• Move sources to given position list. The table of scanning instructions, generated
with our Matlab script described in Section 5.3.5, is read; alternatively, manual entries
into a LabVIEW table are available. The first 4 elements in each row correspond to
relative displacement instructions (with an option to change to absolute positions) for
the right x- and y-axis, and left x- and y-axis; the row is split into single elements and
fed to each stage, which start their movement immediately.

• Synchronize movements and measurements. We use the error messages from the
motorized stages’ idle signal as inputs for a case structure containing the measurement
commands, which forces the program to wait for all variables to be provided, i.e. until
all stages are indeed idle. Once all stage movements are complete, a 0.5 s delay time is
executed to allow the stages to settle, as decided in Section 5.6.1. Additionally, the
voltage and position measurements are not triggered if a fifth component in source
position list exists and is equal to 0, as this is used to indicate the first two of three-
displacement instructions in the “safe” generation mode, discussed in Section 5.3.5, to
avoid source collisions during complex displacement patterns.

• Synchronize measurement and phase modulation. The synchronization output of
the waveform generator is connected to one of the ADC’s digital inputs. Its rising edge
serves as a digital trigger for starting a measurement of the voltage inputs to the ADC;
this ensure that every measurement in a set begins at the same relative phase shift.

• Measure ADC input voltage with given sampling rate and sample number. The
appropriate sub-VI provided by the ADC manufacturer’s library is called: triggered
by the rising slope of the selected digital input, it measures the voltage input to the
selected ADC pins for the chosen sampling duration and frequency.

• Save measurements. The raw waveform data is saved as a single file for each fringe
measurement; at the end of the measurement run, the table of extracted complex fringe
parameters is saved in a separate file.

• Real-time fringe parameter extraction. In parallel with the recording of the raw
voltage input waveforms, we extract the complex fringe amplitude at the modulation
frequency, by selecting the corresponding FFT element, as defined by Equation (5.1).
For future computational simplicity, the complex amplitude is transformed into its
magnitude and argument, as well as its real and imaginary components. An array is
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created with these 4 parameters and the DC component, extracted from the first FFT
element, and appended to a Matlab-compatible file for further off-line analysis.

• Measure source positions. Simultaneous to the voltage measurement, the motorized
stages’ positions as given by their respective motor encoders are measured. The four
position values, in units of µsteps, are concatenated into an array (in the same order as
stages in the instruction list), which is appended as a line to a purpose-made file.

6.2.2 Method: Single-Source Scans

We used the Thorlabs DET01CFC photodetector, with its current output signal amplified
by the LaserComponents DLPCA-200 transimpedance amplifier. While the amplifier has
the capability of providing a bias voltage to the photodiode between -10 V and +10 V, we
chose to operate the photodetector with a 12 V reverse bias to obtain best performance.
The G = 107 V/A amplifier gain setting was selected, providing a 50 kHz bandwidth, with
low-noise mode (i.e. no additional ⇥100 voltage gain), full-bandwidth mode rather than
10 Hz ultra-low-noise mode as the latter would be insufficient for kHz-frequency fringes, and
DC coupling rather than AC coupling as we wanted to record the DC component of the signal
to study the fringe visibility as the sources are scanned. The transimpedance amplifier also
allows a constant voltage offset to be added to the output, in the range between -0.1 V and
+0.1 V; we use this to nullify the DC voltage measured when the sources are very far off-axis
and no optical power is coupled into the photodetector, and caused by contributions from the
amplifier noise and an imperfect DC offsetting of the ADC, specified by the manufacturer up
to 2.2 mV.

The transimpedance amplifier output was connected to the appropriate ADC pin using a
custom-made adapter card, described and tested in Chapter 5. The measurement performed
at each source position is 0.25 s long, recording 500 S at 2 kS/s sampling frequency. The
laser source’s output power was set to its maximum value of 18 dBm (i.e. 63 mW) to obtain
maximal SNR. Its “dither” mode was selected to provide long-term frequency and power
stability, at the expense of a noise peak at 888 Hz, as discussed in Chapter 5.

The next step was to choose the properties of the sampled source positions, in order to
produce appropriate scanning instructions. At a distance between the source and detector
planes of 105.0 mm, we found the position range for which the recorded amplitude is
non-zero to be approximately 500 000 µsteps (i.e. 25 mm). We chose an scanning range
of 600 000 µsteps, with a step size of 2 000 µsteps. While precise calibration of the two-
dimensional on-axis positions of each source will be performed in Section 6.3.2, approximate
values were obtained by manually scanning each source across the detector and finding the
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position for which the amplitude is maximized, as was done in Section 5.4.4. These were
used to set the center of the scanning range. Two such sets of scanning instructions were
then generated, one for each of the sources. Performing this measurement set produced 301
detector output amplitude values and the source positions at which they were recorded.

6.2.3 Method: Two-Source Scans

Measuring the DRF involves performing a measurement of the fringe in the detector output
at each position pair of the sources. In practice, we considered scanning strategies for
the sources over one-dimensional, uniformly sampled grids with fixed scanning range; our
method can however be applied to general two-source, two-dimensional scanning strategies.
In order to ensure that our measurements maximized the recorded information for the
selected scanning range, we chose to center each stage’s sampled grid on their respective
on-axis postions, as for single-source scans. The scanning range was again selected to be
600 000 µsteps. The step size, i.e. the distance between neighboring positions to which the
sources are scanned, can be chosen between the sampled source positions, for the given
range of 600 000 µsteps held fixed. For simplicity, the step size is chosen to be a divisor of
the scanning range. In practice, we will use a step sizes of 4 000 µsteps, or alternatively of
10 000 µsteps for comparative studies discussed in Section 6.6.5. Given alignment properties
and physical size of probes, some position pairs are not achievable; these details will be
described in Section 6.3.2. Scanning instructions are generated using the method described
in Section 5.3.5, and checked for any mistakes with our collision verification script.

For each fringe measurement performed at given source position pairs, we used the same
photodetector and amplifier configuration as in the single-source scans. The laser output
power was also set to 18 dBm, again in “dither” mode for maximal temporal stability, and
each measurement consisted in recording 50 kS at 250 kS/s sampling frequency; this 0.2 s
measurement duration is in line with the optimal duration obtained from our Allan Variance
analysis in Chapter 5. In order to produce a modulation of the relative phase between the
sources, we fed the left phase modulator with a ramp voltage waveform using the Agilent
33220A signal generator, with 0% symmetry, 2.5 kHz frequency, and 8.1 V peak-to-peak
amplitude, and 0 V constant offset; these settings are based on the calibration performed in
Section 5.5.2.

It is important at this point to remark that the duration of a measurement set is quadratic
in the number of positions to which each source is scanned, i.e. inversely quadratic in the step
size. For a resolution of 4 000 µsteps, fringe measurements are performed at 10 011 position
pairs and the entire measurement set lasts 4 hours; for a resolution of 10 000 µsteps, the
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scanning lasts 1 hour with 1 653 measurements; for a resolution of 20 000 µsteps, scanning
lasts approximately 16 minutes with 435 measurements.

The extracted fringe data produced by the measurement procedure corresponds to the
parameters of the complex fringe amplitude Dmn for right and left sources at positions m
and n, respectively. We implemented a method to transform the recorded table of fringe
parameters into matrix form, to obtain a lower triangular matrix; the elements in the center
diagonal band are missing, the width of which is set by the number of positions that cannot
be attained because of the physical size of the probes. This technique provides the desired
representation of the DRF amplitude, an important milestone in the characterization of the
optical response of infrared detectors. In addition, we discussed in Chapter 2 two related
quantities:

• The fringe visibility, defined as

gmn =
2Dmn

Dmm +Dnn
, (6.1)

is the fringe amplitude normalized by the fringe’s DC offset.

• The fringe coherence, defined as

Gmn =
Dmnp

DmmDnn
, (6.2)

is the fringe amplitude normalized by the single-source beampattern amplitudes.

These two quantities, along with the complex fringe amplitude, can be represented as matrices
and visualized as image or surface plots, as will be presented in Section 6.4.

We can however also perform other scanning strategies, each of which corresponds to a
subset of the full two-source one-dimensional strategy. Keeping the same set of positions
along a uniform one-dimensional grid, these include the following cases:

• The sources are scanned in opposite directions, symmetrically about their centers: this
corresponds to the counter diagonal of the matrix;

• The sources are scanned at a fixed distance from each other: this corresponds to the
nth diagonal of the matrix, where n is the distance between the sources in units of the
chosen step size;

• The left source remains fixed while the right source is scanned: this corresponds to a
row of the matrix;
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• The right source remains fixed while the left source is scanned: this corresponds to a
column of the matrix.

In practice, the latter two cases can be achieved by generating scanning instructions to move
the second source to a fixed positions and instruct movements of 0 µsteps. In Section 2.6.2,
we had discussed the use of such scanning strategies: the width of the fringe amplitude
structure as one source is scanned while the other remains fixed provides a measurement of
the DRF’s coherence length. In addition, comparing the geometric mean of the single-source
beampatterns with these one-dimensional slices of fringe amplitude matrix is expected to
give an estimate of the number of modes composing the DRF; this topic will be investigated
in Section 6.6.

6.3 Verifications and Alignment

6.3.1 Suppressing Cladding Modes

In Chapter 5, we first measured optical radiation by placing one of the probes at the approxi-
mate on-axis position relative to the detector. Fringes in the detector output as the relative
phase between the probes was varied, with the two sources placed as close as possible to
each other and to their respective on-axis positions. In this section, we wish to expand on
these results with two key capabilities: the measurement of the detector beampattern as a
single source is scanned across the detector, and the accurate determination of the on-axis
position of each source.

Scanning a single source while the other is left at a far off-axis position, and recording
the detector output for each sampled position as described in Section 6.2.2, we measure the
single-source beampattern of the detector response. The beampatterns obtained have irregular
shapes, particularly for sampled positions near the on-axis position, where the amplitude of
the recorded signal is greater than half of the beampattern’s amplitude. Figure 6.1 shows one
such example, obtained with a short, 20 cm-long single-mode non-polarization maintaing
fiber, and scanning the right source only. The observed beampattern shape disagrees with the
numerical simulations we had performed in Chapter 3, as highlighted in Figure 6.1 by the
least-squares fit of a Gaussian functional form of the recorded amplitude A(x),

A(x) = a exp
✓

�(x�b)
2

2c2

◆
, (6.3)

where x is the off-axis position, and a, b and c are respectively the maximum beampattern
amplitude, its center and its width.
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Fig. 6.1 Beampattern measurement using the right source, displaying cladding mode contri-
butions; the fitted parameters a, b and c are the maximum amplitude, center and width of the
Gaussian functional form described in Equation (6.3).

The irregularities in its shape are reminiscent of those caused by standing waves [101].
However, after careful minimization of reflective areas that could potentially contribute, by
adding optically scattering “wet-and-dry” paper on these surfaces, we obtained no noticeable
improvement. To test this hypothesis further, we used the manual stage that the detector
system is mounted on and varied the distance between the detector and source planes with a
precision of 0.25 µm. Figure 6.2 shows the results of 8 consecutive beampattern measure-
ments, between which the detector was repeatedly moved forward by 0.25 µm, and moved
back to its original position for the final measurement. We find that the beampattern shape
shows little dependence to the chosen source-to-detector distance; instead, the beampattern
shape seems to vary with time, over timescales of several minutes. For instance, the 8
measurement runs presented in Figure 6.2 were performed over 30 minutes.

The cause of this behavior was found to be cladding modes, transmission modes for
the incident optical power inside the optical fiber’s large cladding layer that is concentric
with the core. While these modes have large loss coefficients of several dB/m, they still
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Fig. 6.2 Comparison of 8 consecutive beampattern measurements using the right source, with
small displacements of the detector position.

transmit enough power to be significant at the fiber-coupled detector input, when using short
optical fibers. The characteristic fiber length for cladding modes to become suppressed
depends on the fiber type and geometry, and is several tens of centimeters for single-mode
step-index fibers [102]. Incoming radiation always couples into the optical fiber’s cladding
as well as the core, because these have very similar refractive indices. However, while the
radiation coupled into the fiber’s core is transmitted with minimal loss due to total internal
reflection for incident angles smaller than the critical angle, as discussed in Section 1.2.3,
transmission in the fiber’s cladding is very lossy. The main loss mechanism is transmission
through the cladding-coating boundary, as the coating material is specifically chosen with a
high refractive index for this purpose. That process is illustrated in Figure 6.3, in the context
of cladding modes, of radiation incident at an angle larger than the fiber’s critical angle, and
of radiation incident on an improperly polished fiber core region.

In practice, the radiation transmitted in cladding modes is considered negligible versus
the power transmitted in the fiber core for fiber lengths greater than 1 m. On the contrary, in
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q < qc
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q < qc

Fig. 6.3 Transmission in an optical fiber of incoming radiation with incident angle q smaller
than its critical angle qc via core modes (red) and cladding modes (green); the former display
total internal reflection at the core-cladding surface, while the latter are largely scattered at
the cladding-coating surface due to uneven surfaces and refractive index choices. The same
mechanism produces large losses for radiation incident on the fiber core with incident angle
q > qc (blue), as well as for radiation incident on imperfections in the fiber’s core (orange).
The refractive index values indicated are representative for single-mode fibers.

optical fibers of lengths below 20 cm, such as those we connectorized in Section 5.4.3, power
transmission in cladding modes cannot be neglected.

The intuitive solution to the problem of cladding modes is to use a longer piece of optical
fiber to couple the incoming radiation into the photodetector. This was done straightforwardly
with a commercially available optical fiber patch cable of appropriate length. We chose a
2 m-long connectorized polarization-maintaining patch cable. Its connector ferrule is also a
2.5 mm ceramic ferrule, and was therefore fitted into the holder without any change. Figure
6.4 presents the detector beampattern measurement performed with this optical patch cable,
and otherwise unchanged settings compared to Figure 6.1: the beampattern shape no longer
has irregularities, and is in excellent agreement with the Gaussian least-squares fit. The same
measurement procedure was repeated with the 2 m-long Thorlabs 1550BHP single-mode
(non-polarization-maintaining) optical fiber patch cable. The beampattern obtained as a
single source is scanned across the detector again has a Gaussian shape, and is very well
fitted by a Gaussian functional form. This confirms that the irregular beampattern shapes,
such as presented in Figure 6.1, were indeed caused by cladding modes and not influenced
by the presence or absence of polarization-maintaining properties.
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Fig. 6.4 Beampattern measurement using the right source, displaying no cladding mode
contributions, contrary to Figure 6.1; the fitted parameters a, b and c are the maximum
amplitude, center and width of the Gaussian functional form described in Equation (6.3).

6.3.2 Source Alignment

Now that we are able to reproducibly measure single-source beampatterns of the detector
response, we can perform a final key calibration procedure, in addition to those performed
in Chapter 5: the sources’ alignment, i.e. the angle of their respective beam’s direction
relative to the target direction, that of the detector fiber’s virtual beam. In order to obtain a
measure of the misalignment angle of each source, we can perform single-source beampattern
measurements at two different distances between the source and detector planes. Using the
least-squares fitting procedure on the measured beampattern, as presented in Section 6.3.1,
with the Gaussian functional form defined in Equation (6.3) produces a fitting value for
the source position corresponding to the center of the beampattern, i.e. when the source is
on-axis with the detector fiber. As illustrated in Figure 6.5, we can deduce the following
relationship between the horizontal misalignment angle qx and the measured values of the
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Fig. 6.5 Schematic drawing of the alignment procedure for the source direction; the green
dashed polygons represent the on-axis positions of the source when it is perfectly aligned
with the detector axis.

beampattern centers obtained for scans at distances z1 and z2:

tan(qx) =
Dx
Dz

=
DD
z1

, (6.4)

where Dx = xz2 � xz1 is the difference between the fitted beampattern centers for measure-
ments at distance z2 and z1, Dz = z2 � z1 is the difference of distances between the source
and detector planes for the two measurement sets, and DD is the distance along the x-axis at
z = z1 between the current fitted beampattern center xz1 and the ideal center position. The
same holds for the vertical misalignment angle qy, using vertical single-source scans.

In practice, the distance z1 between the source and detector planes is defined when the
sources’ z-axis motorized stage are at their minimal position; we measure z1 = 105.0 mm. In
order to obtain maximally sensitive estimates of the misalignment angle q , we choose z2 to
be as close as possible to the z1/2 as possible. As the stages’ scanning range is 50.8 mm, we
choose Dz = 50.8 mm and obtain z2 = 54.2 mm.

One-dimensional or two-dimensional scans can be used to obtain the beampattern centers
along either or both x and y, respectively. In practice, a one-dimensional scan with 301
sampled positions lasts 3 minutes, while a two-dimensional scan with 31⇥31 sampled
positions lasts 9 minutes. We choose to use two-dimensional scans, and perform the alignment
of each source along the x- and y-axis simultaneously, rather than consecutively.

The calibration procedure starts with a first set of measurements at z1 and z2; this provides
a value for the current misalignment q , as well as a total spatial displacement DD at distance
z1. To change the horizontal alignment, a rotation of the vertical stage structure with respect
to the horizontal stage’s plate can be applied; for vertical alignment, we can rotate the
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extender arm structure with respect to the vertical stage plate. The beampattern measurement
is reiterated at z1 to compute an updated DD, and small angular adjustments are repeated
until the fitted center of the beampattern has been displaced by DD. A final beampattern
measurement at z2 confirms that the source alignment is correct.

A number of assumptions are made for this calibration procedure to hold. First, small
rotation adjustments are made by rotating the fiber about its tip; while this is not quite correct
as we rotate either the vertical stage’s structure, onto which the source’s extender arm and
holder are mounted, or the extender arm itself, the approximation is sufficiently accurate
for small angles. More generally, the final measurement of alignment does not depend on
the angular adjustment method. We also suppose that the least-squares fit of the measured
single-source beampattern with a Gaussian fit is perfectly accurate; as the beampatterns
observed have nearly Gaussian shapes and the fitting procedure employed has an arbitrarily
small accuracy threshold, this assumption holds broadly. Finally, we assume that the set of
scanned positions are perfectly orthogonal to the detector’s virtual beam direction, and that
the motorized stages place the sources at their target positions with perfect accuracy; given
the motorized stages’ accuracy of within 4 µm, i.e. a small fraction of the chosen 100 µm
step size, stated by the manufacturer and tested in Chapter 5, this assumption holds.

We perform this alignment procedure for both the left and right sources. After sev-
eral iterations, we obtain near-perfect alignment of the sources; the main limitations to
this procedure are the precision with which small correcting rotations can be applied,
and sub-degree rotations occurring when tightening the mounting screws. For the right
source, the two-dimensional beampattern scan results, and their least-squares fit with a
two-dimensional Gaussian function, are shown in Figure 6.6. The measured center po-
sitions are (xc

R,yc
R) = (4.868 ⇥ 105,4.032 ⇥ 105

) µsteps at z1 = 105.0 mm, and (xc
R,yc

R) =

(4.892 ⇥ 105,4.103 ⇥ 105
) µsteps at z2 = 54.2 mm. This implies 2.2 mrad horizontal and

6.7 mrad vertical misalignments, respectively. For the left source, the center positions
are measured to be (xc

L,y
c
L) = (6.021 ⇥ 105,3.994 ⇥ 105

) µsteps at z1 = 105.0 mm, and
(xc

L,y
c
L) = (6.044 ⇥ 105,4.115 ⇥ 105

) µsteps at z2 = 54.2 mm; this implies 2.2 mrad hori-
zontal and 11 mrad vertical misalignments, respectively. The fitted Gaussian center values at
z = 105.0 mm steps are considered to be the on-axis positions of each of the sources, and
used as the two-dimensional center positions (xc

R,yc
R) and (xc

L,y
c
L) to generate well-centered

scanning instructions, using the methods described in Section 6.2. We note that, by symmetry
of the right and left motorized stages’ mounting configuration, discussed in Section 5.3.2,
these residual misalignments mean that the source beams are very slightly converging to-
wards the detector. This in turn implies that more source position pairs are attainable without
collision, equivalent to 10 000 µsteps. On the other hand, the y-axis directions are identical
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Fig. 6.6 Right source beampattern measurements at different distances between the source
and detector planes, with two-dimensional Gaussian least-squares fit; center positions (xc

R,yc
R)

are extracted.
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Fiber name Core
diameter

Numerical
aperture

Mode
number

Cutoff
wavelength

Polarization
maintaining Section

1550BHP 9 µm 0.13 1 1400 nm No 6.4.1PM1550-XP 8.5 µm 0.125 1 1380 nm Yes
SM2000 11 µm 0.12 2 1750 nm No

6.4.2P1-23Z 9 µm 0.19 2 2300 nm No
P1-32F 9 µm 0.26 4 3200 nm No

FG050LGA 50 µm 0.22 125 N/A No 6.4.3
Table 6.1 Properties of the various 2 m-long optical fiber patch cables used as interchangeable
mode filters for the photodetector, for operating wavelength l = 1550 nm.

for the two motorized stage systems; the residual misalignments are therefore approximately
aligned with respect to each other.

6.4 Experimental Results

6.4.1 Single-Mode

Following our investigation of cladding modes in 20 cm-long optical fibers in Section 6.3.1,
we elected to use 2 m-long optical patch cables for coupling to our photodetector. We recall
that the modal behavior of the optical fiber determines that of the device under test, i.e.
the photodetector and optical fiber system. Table 6.1 summarizes the various optical fiber
patch cables that were used for performing EAI, as presented in this section, including their
properties and expected number of modes.

We begin by considering the case of coupling the detector to the Thorlabs PM1550-XP
single-mode, polarization maintaining optical fiber patch cable. We performed a beampattern
measurement for each source, as described in Section 6.2.2, and a two-source scan measuring
fringes in the detector output, as described in Section 6.2.3. In Figure 6.8a, we observe that
the fringe amplitude pattern is nearly circular. We recall that the true measured data is in
the lower triangle of the depicted matrix; the upper triangle is the transpose of the former,
which assumes symmetry of the DRF under the exchange of sources. Figure 6.8b presents
the corresponding fringe coherence matrix, which is constant. The upper triangle of the
fringe coherence matrix is different from the lower triangle matrix because this assumption
does not strictly hold: the complex DRF amplitude is divided by the outer product of the two
entire single-source scans, which is not precisely symmetric under exchange of sources, i.e.
about the matrix’s main diagonal. In effect, this means that we use pairs of single-source
optical power measurements at position pairs that are not reached during the two-source
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Fig. 6.7 Left and right source beampattern measurements obtained with the PM1550-XP
fiber-coupled system, with one-dimensional Gaussian least-squares fit.

fringe measurements. We also note that the near-constant value of the fringe coherence
matrix is approximately 0.9. This is close to the value of 1 expected from our simulations in
Chapter 3, shown in Figure 3.5b; this discrepancy will be addressed in Section 6.5.2. The
center diagonal, filled with the element-wise product of the single-source beampatterns, is
equal to 1 by construction.

The same measurement procedure was repeated with the photodetector coupled to the
Thorlabs 1550BHP single-mode optical fiber patch cable. In Figure 6.9a, we observe that the
fringe amplitude pattern is nearly circular. Figure 6.9b shows that the fringe coherence is
constant with the source positions, and has a value approximately equal to 0.9. The results
obtained are qualitatively similar to those presented with the PM1550-XP polarization-
maintaining fiber. This confirms that our concern that a long length fiber without polarization-
maintaining properties may lead to loss of coherence, which had led us to manufacture shorter
lengths of optical fibers in Section 5.3.3 and test them in Section 6.3.1, was unfounded.

6.4.2 Few-Mode

In Figure 6.10a, we observe that the fringe amplitude pattern obtained with the SM2000
fiber-coupled system, which we expect to be two-moded, has a slightly oval shape, as well as
a nearly circular, concave line of zero-amplitude near the anti-diagonal corners. Note that
the asymmetry between the top-left and lower-right portions of the central fringe amplitude
peak is caused by the asymmetry and non-Gaussian shape of the single-source beampatterns,
which is expected for few-mode systems in the presence of experimental imperfections.
Figure 6.10b presents the corresponding fringe coherence matrix, with a qualitatively similar
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(b) Fringe coherence

Fig. 6.8 Measured DRF fringe amplitude and coherence for the PM1550-XP fiber-coupled
system.
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Fig. 6.9 Measured DRF fringe amplitude and coherence for the 1550BHP fiber-coupled
system.
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Fig. 6.10 Measured DRF fringe amplitude and coherence for the SM2000 fiber-coupled
system.
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Fig. 6.11 Detector beampattern measured with right source, for various bend diameters of
detector fiber.

pattern. The contrast of the line for which the fringe coherence is equal to zero is even
greater than the corresponding zero-amplitude line. The coherence increases to 0.6 at the
antidiagonal corners, and approaches 1 towards the center diagonal; the fringe coherence
pattern is approximately symmetric about the antidiagonal, indicating that the asymmetry
in the fringe amplitude pattern was indeed caused by the asymmetry of the single-source
measurements.

We repeat the measurement procedure with the detector fiber wrapped around cylinders
of decreasing diameter. By applying decreasingly small bend diameters to the optical fiber
around the chosen mandrel, we expect to produce the effect of a mode scrambler [103].
Figure 6.11 presents detector beampatterns as the right source is scanned, for various bend
diameters: as the bend diameter is decreased, the beampattern shape becomes Gaussian
and its maximum amplitude decreases, indicating that less optical power is coupled into the
detector. We also observe an increase of the beampattern center: this is likely caused by a
combination of some tension on the optical fiber, very slightly changing its alignment angle,
the right source’s small but non-zero misalignment angle, and the decreasing influence of the
second mode. The latter phenomenon is most clearly seen in the fringe coherence matrix
obtained for a two-source scan with a 40 mm bend diameter: its pattern is constant, with a
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value approximately 0.85, in line with the single-mode behavior presented in Section 6.4.1.
Moreover, the fringe amplitude pattern is circular and does not display a zero-amplitude line,
when applying a 40 mm bend diameter to the SM2000 fiber. We therefore conclude that
wrapping the two-mode SM2000 fiber around a mandrel of small diameter suppresses the
system’s second mode, and produces a single-mode system.

Repeating the same measurement procedure with the P1-23Z fiber-coupled system,
Figures 6.12a and 6.12b show that the fringe amplitude and coherence structures are generally
similar to the case of the SM2000-coupled system. However, it appears that the fringe
amplitude structure observed here is a slightly zoomed-in version of the one observed with
the SM2000 fiber; this is most noticeable with the zero-amplitude lines, which are closer
to the antidiagonal corners. This is surprising given that the P1-23Z-coupled system’s
second mode is expected to have a greater sensitivity, given that the operating wavelength,
l = 1550 nm, is further from the second mode’s cutoff wavelength, lc = 2300 nm, instead of
lc = 1700 nm for the SM2000 optical fiber. Our understanding is that this phenomenon stems
from the difference of numerical aperture, which is equal to 0.12 for the SM2000 optical fiber
and 0.19 for the P1-23Z optical fiber. In general, a larger numerical aperture corresponds
to a larger acceptance angle for the incoming radiation. However, in our configuration, the
sources’ numerical aperture of 0.13 are the limiting factor, and the additional portion of the
acceptance cone when using the P1-23Z optical fiber is never reached. Instead considering
the virtual beam emitted by the detector system, a larger numerical aperture implies a larger
virtual spot size. Because our scanning range and the distance between the source and
detector planes remain fixed, we effectively sample a smaller fraction of the virtual detector
beam cone. This qualitatively explains why the fringe amplitude pattern obtained for systems
with larger numerical apertures seems focused on the center fraction of the fringe amplitude
pattern obtained for systems with smaller numerical apertures, assuming their modal behavior
is approximately similar.

Figure 6.13a presents the P1-32F fiber-coupled system’s amplitude pattern, an oval center
peak with large width and no zero-amplitude lines in the antidiagonal corners. In Figure
6.13b, we observe that the fringe coherence pattern has a somewhat diagonal shape. However,
its slightly concave curvature is reminiscent of that observed for the SM2000- and P1-23Z-
coupled systems: it seems that the observed fringe amplitude structure is further zoomed-in
on the center portion of the fringe amplitude pattern recorded with the SM2000 fiber. This
further confirms our earlier hypothesis that choosing a fiber with a larger numerical aperture,
0.26 in the case of the P1-32F optical fiber, implies a larger virtual detector spot size, for
which we only scan the center region when keeping the scanning range fixed.
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Fig. 6.12 Measured DRF fringe amplitude and coherence for the P1-23Z fiber-coupled
system.
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Fig. 6.13 Measured DRF fringe amplitude and coherence for the P1-32F fiber-coupled
system.
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6.4.3 Multi-Mode

We now turn to the case of highly multi-mode systems. We first investigate the coupling
of the photodetector to a multi-mode fiber, with an expected 125 modes. In Figure 6.14a,
we observe that the fringe amplitude pattern has a strong diagonal structure, of decreasing
amplitude moving along the anti-diagonal, i.e. for greater distance between the sources, and
moving along the diagonal, i.e. for greater off-axis distances. The structure width is much
smaller than in the case of few-mode systems, and the experimental system’s capability to
reproducibly measure such fine features is a testament to its multi-hour time stability. Figure
6.14b presents the corresponding fringe coherence matrix, which clearly displays a similarly
diagonal structure, but with constant magnitude along the diagonals. This diagonal pattern
means that the fringe coherence is dependent only on the distance between the sources, but
independent of the distance of the sources to their on-axis positions.

The same experimental procedure can be repeated with no optical fiber coupled to the
photodetector, and instead illuminating its open female FC/PC connector. As we do not
couple the highly multi-mode detector to any optical fiber that would act as a mode filter,
we expect the number of modes present in the detector-only system to be maximal, and set
by the photodetector properties itself. Using Equation (4.21), we can estimate the number
of modes of the bare photodetector from its dimensions, a 0.12 mm diameter and a 0.21 rad
acceptance angle (effectively set by the dimensions of the female FC/PC connector, a cylinder
12 mm in length and 2.5 mm in diameter), would indicate 650 modes in two-dimensional
scans. However, the ball lens in front of the photodiode as well as the acceptance angle of
the detector system require a more complex analysis to obtain a more reliable estimate. Note
that the FC/PC connector only limits the acceptance angle in the open-detector case, as the
radiation is directly incident on the connector; when using a fiber-coupled system, the optical
fiber transmits the incident beam such that the radiation is coupled onto the photodiode from
the fiber’s output tip, at a few millimeters from it.

Regardless of the mode estimate accuracy, it is interesting to repeat the measurement set
using the detector-only system. In Figure 6.15a, we observe that the fringe amplitude pattern
displays a clear diagonal structure with small width, a clear indicator of highly multi-mode
behavior. Nearest to the center diagonal, the fringe amplitude displays three distinct peaks:
we understand the two side peaks to be caused by reflection of the incident beams in the
FC/PC connector for small position ranges, i.e. for appropriate solid angles. The fringe
coherence matrix, presented in Figure 6.15b, also displays this diagonal structure. As for
the FG050LGA-coupled system, the fringe coherence value is constant along the diagonals.
However, the maximal fringe coherence is much smaller, approximately 0.06 rather than 0.2.
The width of the diagonal structure is also smaller: considering the fringe amplitude for fixed
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(b) Fringe coherence

Fig. 6.14 Measured DRF fringe amplitude and coherence for the FG050LGA fiber-coupled
system.
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Fig. 6.15 Measured DRF fringe amplitude and coherence for the detector-only system.
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Fig. 6.16 Measured DRF fringe amplitude for fixed xL values and along the DRF diagonal,
for the FG050LGA-coupled and bare detector systems.
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xL values as in Figure 6.16, the coherence length is estimated to be 50 000 µsteps with the
FG050LGA-coupled system in Figure 6.16a, compared to 20 000 µsteps for the bare detector
in Figure 6.16b. These observations indicate a greater number of reception modes present in
the detector-only system.

6.5 Discussion of Experimental Results

6.5.1 Qualitative Differences Between Modal Behaviors

It is helpful at this point to summarize the achievements attained, starting from a well-
calibrated system and the successful observation of fringes with high SNR for sources in
fixed positions. We have implemented a standardized experimental method to allow us to
repeat fringe measurements for a large number of position pairs over which the sources
are scanned. The resulting fringe amplitude datasets, represented as matrices with indices
corresponding to the left and right source positions, display characteristic patterns depending
on the number of modes present in the response of the device under test. We also remark that
these results prove a critical hypothesis we had made during the design of our experimental
system, in Chapter 4: coupling a highly multi-moded photodetector to a length of optical
fiber creates a system whose modal behavior is determined by the fiber.

We can summarize the differences between systems coupled to single-mode, few-mode
and multi-mode fibers:

• Single-mode systems: The fringe amplitude pattern is circular and has decreasing
magnitude with off-center distance and source-to-source distance, reaching small but
non-zero magnitudes at the extremes of the scanning range; the fringe coherence is
nearly constant, with a value approximately equal to 0.9; we observed no significant
difference between polarization-maintaining and other single-mode optical fibers.

• Few-mode systems: The fringe amplitude pattern has a main peak with a slightly
oval shape, with decreasing magnitude to a zero amplitude line curved around the
antidiagonal corners of the scanning range, and a minor peak beyond; the fringe
coherence is quasi-constant near the center diagonal, with a zero-magnitude line
similar to the fringe amplitude, and increases again to values approximately equal
to 0.5 at the antidiagonal corners; the specific behavior is highly dependent on the
coupled fiber’s properties.

• Multi-mode systems: The fringe amplitude pattern has a diagonal structure, with con-
secutive peaks and zero-amplitude lines along the anti-diagonal; the fringe coherence
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Fig. 6.17 Detector beampattern measured with right source, compared to simulations and
least-square fit results.

is constant along the diagonals, and both the fringe visibility and coherence have much
lower values than for lower-moded systems.

For all systems, we successfully measured the coherence length of the DRF from the width
of the fringe amplitude structure. In Section 2.6.2, we had discussed a hypothesis that the
number of modes is approximately equal to the ratio of the coherence length to the width of
a single-source beampattern. This qualitative hypothesis is indeed observed in experimental
datasets, and needs to be confirmed by a quantitative investigation: this will be discussed in
Section 6.6.

6.5.2 Comparison with Simulations

It is instructive at this point to compare the wide variety of results obtained experimentally
with the simulations performed in Chapter 3. We can start by investigating whether the
shape and width of the single-source beampattern measurements corresponds to the results
of simulations. There is however some ambiguity about how to accurately simulate this
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configuration, where the distance between source and detector planes is assumed to be
105 mm, and the simulated sources are placed at the experimentally sampled positions:

• With a single-mode source of output beam radius w0s = 4.5 µm and point-like detector;

• With a point-like source and a single-mode detector with beam radius w0d = 5 µm;

• With a single-mode source of output beam radius w0s = 5 µm and a single-mode
detector with beam radius w0d = 5 µm.

Figure 6.17 shows the comparison of the experimental dataset obtained by scanning the left
source across the PM1550-XP fiber-coupled detector, its least-squares fit using a Gaussian
functional form, and the results of these three simulations. We find that the first two simulated
beampatterns, assuming either point-like sources or detector, have much larger width. On
the other hand, the simulated beampattern assuming finite-sized sources and detector is in
excellent agreement with the experimental data, and almost identical to the best least-squares
fit. This indicates that the simulation framework described in Chapter 3 produces an accurate
representation of experimental behavior.

For single-mode systems, the circular shape of the fringe amplitude and the quasi-constant
pattern of the fringe coherence are in excellent agreement with simulations presented in
Chapter 3. However, the value of the near-constant fringe coherence is experimentally found
to be approximately 0.9, rather than the value of 1 expected from our numerical investigations.
We believe that two main mechanisms contribute to lowering the fringe coherence value:

• Source misalignment: In an angular representation as was described by Equation (2.22),
slightly misaligned sources imply not being able to scan the full two-dimensional
two-position hypercone, thus never reaching the fully constructive and destructive
interference between the sources that is required to obtain a unit fringe coherence.

• Polarization misalignment: The polarization alignment of the source beams was
performed in Section 5.3.3 with a precision of a few degrees. A misalignment of
this magnitude would imply imperfect coherence phenomena and reduce the fringe
visibility and coherence.

Neither of these mechanisms is a fundamental defect of the EAI method, but rather features
of any experimental system: there are opportunities for improvement, through alignment
with higher sensitivity or calibration procedures.

At this point, it is also interesting to answer a question we had asked in Section 3.5.4:
whether modes that compose the DRFs of fiber-coupled detectors are Linearly Polarized
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(LP) modes, corresponding to the propagation modes inside an optical fiber, or Laguerre-
Gaussian (LG) modes, describing the modes of circularly-symmetric beams in free-space.
We had observed that the zero-amplitude line of a simulated two-mode system, near the
antidiagonal corners of the measured DRF matrix, was concave for LG modes and convex
for LP modes. We see in Section 6.4.2, using the zero-amplitude lines of the two-moded
systems investigated, that the experimental behavior corresponds to the case of LG modes.
It will be important to confirm these results using the DRF phase patterns, which will be
discussed further in Chapter 8.

Using LG modes, we had also investigated in Section 3.4.4 the impact of changing
the relative sensitivities of the modes, in the case of a two-moded DRF. In particular, we
observed that the zero-amplitude line recedes towards the anti-diagonal corner as the ratio
of the sensitivities of the first to the second mode increases, until it disappears from the
matrix obtained for the chosen scanning range. This qualitative behavior is observed between
the SM2000- and P1-23Z-coupled systems, and in some respects with the P1-32F-coupled
system, although its behavior is further complicated by the effects of its large numerical
aperture.

For multi-mode systems, the experimentally measured DRFs are qualitatively similar
to the simulated DRFs presented in Chapter 3: the fringe amplitude structure has clear
diagonal patterns, of width comparable to that of the simulated 121-moded system shown in
Figure 3.11a. In particular, the latter displays a structure along the anti-diagonal with several
consecutive minor peaks, resembling the patterns seen in Figure 6.14. We hypothesize that
the strong diagonal pattern with small structure width observed in Figure 6.15 may require
simulations with much larger numbers of modes.

6.6 Mode-Number Bounds

6.6.1 Theory

The results presented in Section 6.4 have enabled us to clearly differentiate between single-
mode, few-mode and multi-mode regimes; we wish to go beyond this qualitative understand-
ing and obtain a quantitative metric for the number of modes present in the system. Although
the goal of EAI is to measure the eigenvalue spectrum of a DRF using the methods described
in Chapter 2, it is beneficial to obtain the number of modes of the device under test without
explicitly calculating the spectrum. In this section, we therefore derive and apply a technique
to obtain a bound on the number of modes present in the system using only the measured
DRF amplitudes. The starting hypothesis is that the number of modes is related to the number
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of coherence lengths that can fit under a beampattern, which we had discussed in Section
2.6.2.

For now, we consider only two-source scans over one-dimensional sampling grids for co-
aligned polarization, corresponding to our experimental configuration, barring imperfections
in the system. In the reduced dimensionality problem, we can express the power absorbed in
the detector analogously to Equation (2.19), as

P =

ZZ
D(x,x0

)E(x,x0
)dxdx0 (6.5)

where D(x,x0
) is the detector response function, E(x,x0

) is the single-polarization incident
field correlation function

E(x,x0
) = hE(x)E⇤

(x0
)i, (6.6)

and the integrals are taken over the domain of the sweep on the source plane. We approximate
the sources as ideal point-like sources using delta-functions, and obtain the incident field at
position x on the source plane:

E(x) = |E1|d (x� x1)+ |E2|eif d (x� x2), (6.7)

where |E1| and |E2| are the magnitudes of the two sources, labeled 1 and 2 and placed at
positions x1 and x2 respectively. The output for a single source configuration (characterized
by a set of values of x1, x2 and the relative phase between the sources f ) is then

P(x1,x2,f) = |E1|2D(x1,x1)+ |E2|2D(x2,x2)+2|E1||E2||D(x1,x2)|cos(f +Arg[D(x1,x2)]).

(6.8)
In Section 6.4, we effectively measured three functions: the single-source scans

f11(x1) = |E1|2D(x1,x1) (6.9)

and
f22(x2) = |E2|2D(x2,x2), (6.10)

along with the fringe amplitude

f12(x1,x2) = 2|E1||E2||D(x1,x2)|. (6.11)

We can then ask how we can use the measured function to estimate the number of
reception modes of the system. We recall from Equation (2.35) that the detector response
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function admits a decomposition

D(x1,x2) =

•

Â
m=1

l 0
mUm(x1)U⇤

m(x2). (6.12)

where the mode sensitivities l 0
m, which we will refer to as singular values, are real and

positive and satisfy the orthogonality property
Z

U⇤
m(x)Un(x)dx = dmn. (6.13)

In practice, only some finite subset of the singular values will be non-zero. Let N denote
the number of modes with non-zero singular value and denote this set by {lm}, then we can
simplify Equation (6.12) to

D(x1,x2) =

N

Â
m=1

lmUm(x1)U⇤
m(x2), (6.14)

with lm > 0, for all m 2 {1, ...,N}.

It is possible to obtain several sums over the singular values by integrating the detector
response response function. Integrating Equation (6.9) over x1, using Equation (6.14) to
substitute for D(x1,x1) and then using Equation (6.13), we find

Z
f11(x1)dx1 = |E1|2

N

Â
n=1

ln. (6.15)

Repeating the process for f22(x2), we have

Z
f22(x2)dx2 = |E2|2

N

Â
n=1

ln. (6.16)

Now consider integrating | f12(x1,x2)|2 over both x1 and x2,

ZZ
| f12(x1,x2)|2 dx1dx2 = 4|E1|2|E2|2

ZZ ���
N

Â
m=1

lmUm(x1)U⇤
m(x2)

���
2

dx1dx2. (6.17)
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The integral evaluates as

ZZ ���
N

Â
m=1

lmUm(x1)U⇤
m(x2)

���
2

dx1dx2

=

N

Â
m=1

N

Â
n=1

ZZ
lml ⇤

n Um(x1)U⇤
n (x1)U⇤

m(x2)Un(x2)dx1dx2

=

N

Â
m=1

N

Â
n=1

lml ⇤
n dmn

=

N

Â
n=1

|ln|2,

(6.18)

giving
ZZ

| f12(x1,x2)|2 dx1dx2 = 4|E1|2|E2|2
N

Â
n=1

l 2
n . (6.19)

Equations (6.17), (6.15) and (6.16) taken together imply

4(
R

f11(x1)dx1)(
R

f22(x2)dx2)RR
| f12(x1,x2)|2 dx1dx2

=
(ÂN

n=1 ln)
2

ÂN
n=1 l 2

n
. (6.20)

Notice that as formulated the source amplitude factors E1 and E2 drop-out; this ratio can be
calculated without worrying about calibrating the amplitude of the sources.

A bound can be put on the value of Equation (6.20) by using the Chebyshev sum inequality
[104]:

N
N

Â
m=1

l 2
m �

⇣ N

Â
n=1

ln

⌘2
, (6.21)

which is the restricted case of Chebyshev’s sum inequality for two series with equal terms.
Combining Equations (6.21) and (6.20), we obtain the inequality

N � 4
R

f11(x1)dx1
R

f22(x2)dx2RR
| f12(x1,x2)|2 dx1dx2

, (6.22)

which provides an upper bound on the total number of modes N that have non-zero sensitivi-
ties.

As an alternative to N as measure of the number of modes, we can define an effective
number of modes Neff. Let lmax be the largest lm. We define Neff by

Neff =
ÂN

m=1 lm

lmax
. (6.23)
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Physically, Neff corresponds to the number of modes that would be required to absorb the
same amount of power from an isotropic, spatially-incoherent, field (i.e. blackbody) as the
actual mode structure of the detector if all the mode singular values where equal to lmax.
Define a new set of values {em} by

lm = lmaxem. (6.24)

By definition of lmax, we must have 0 < em  1 for all m. The following inequality holds,

N

Â
m=1

e2
m 

N

Â
m=1

em. (6.25)

Multiplying both sides of Equation (6.25) by l 2
max and using Equations (6.24) and (6.23) to

simplify, we find
M

Â
m=1

l 2
m  l 2

maxNeff, (6.26)

then dividing both sides by the square of Âlm yields

ÂM
m=1 l 2

m

(ÂM
m=1 lm)2

 1
Neff

. (6.27)

Combining this inequality with Equation (6.20), we find

Neff  4
R

f11(x1)dx1
R

f22(x2)dx2RR
| f12(x1,x2)|2 dx1dx2

, (6.28)

which provides a lower bound on the effective number of modes Neff.

In summary, we have shown

Neff  4
R

f11(x1)dx1
R

f22(x2)dx2RR
| f12(x1,x2)|2 dx1dx2

 N, (6.29)

where N is the number of modes in the singular-value decomposition of D(x1,x2) with
non-zero singular values and Neff is an effective number of modes defined by

Neff =
ÂN

m=1 lm

lmax
, (6.30)

where lmax is the largest member of {lm}. Thus we can use the ratio of the integrals to
provide both an upper bound for Neff and a lower bound for N.
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The difference between Neff and N essentially provides a measure of the spread of values
within the set of singular values {lm}. To illustrate this, we first consider the case where all
the lm are similar in value, i.e. lm ⇡ lmax for all m. Then

Neff =
ÂN

m=1 lm

lmax
⇡ lmax ÂN

m=1 1
lmax

= N. (6.31)

Therefore, low spread in singular values, i.e. when (lmax �lmin) ⌧ lmax, results in Neff ⇡ N.
Now consider the opposite limit, where one eigenvalue dominates over the others. Now we
have

Neff =
ÂN

m=1 lm

lmax
⇡ lmax

lmax
= 1, (6.32)

indicating high spread, i.e. when (lmax �lmin) ⇡ lmax, gives low values of Neff. As a result,
we expect the integral ratio to give a very good measure of the number of modes when all of
the modes are equally responsive, e.g. as expected for an optically large, uniform, absorber
or for a very small absorber with unpolarized response. However, the estimate number of
modes (as measured by the equality) will be be larger for intermediate systems where a few
modes are excited with a range of singular values.

Finally, it is worth making a brief comment about the effect of experimental noise on
this measure. The results have been derived assuming no noise. The presence of noise in
the measurements effectively adds degrees of freedom to the measured detector response
function and so will tend to increase N, assuming the noise has been made Hermitian, as will
be the case in experimental datasets where we assume symmetry under the exchange of the
sources. However, provided the signal-to-noise ratio is high, it will have little effect on Neff.
Therefore, we expect the estimated number of modes to be pulled up slightly by the presence
of noise.

6.6.2 Example: Absorber with Finite Coherence Length

As an example, we consider a detector response function with some finite coherence length L
over a region of size w, as given by

D(x1,x2) =

8
<

:
ae�|x2�x1|/L |x1|, |x2|  w/2

0 otherwise,
(6.33)

where a is the appropriate normalization constant. This is the one-dimensional version
of the finite-coherence DRF discussed in Section 3.6. Then for equal source amplitudes
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E1 = E2 = 1, we have

Z
f11(x1)dx1 =

Z
f22(x2)dx2 = a

Z
+w/2

�w/2
dx = aw (6.34)

and ZZ
| f12(x1,x2)|2 dx1dx2 =4a2

ZZ
e�2|x2�x1|/L dx1dx2

=8a2
Z

+w/2

�w/2

Z x2

�w/2
e�2(x2�x1)/L dx1dx2

=8a2
Z

+w/2

�w/2
e�2x2/L

Z x2

�w/2
e+2x1/L dx1dx2

=4a2wL


1+
L

2w

⇣
e�2w/L �1

⌘�
.

(6.35)

Applying Equation (6.29), we find

Neff  w
L


1+

L
2w

⇣
e�2w/L �1

⌘��1
 N. (6.36)

For w/L � 1, where the absorber size is much larger than the coherence length, we can
approximate this result by

Neff  w
L

 N, (6.37)

as we might have expected from physical reasoning about degrees of freedom. Now let

g(x) = x


1+
1
2x
�
e�2x �1

���1
(6.38)

which is simply the value of the integral ratio with x = w/L. For small x = w/L, we have

g(x) ⇡ x


1+
1
2x

✓
1�2x+2x2 � 4

3
x3 �1

◆��1

= x


x� 2
3

x2
��1

⇡ 1+
2
3

x,

(6.39)

giving

Neff  1+
2w
3L

 N. (6.40)

This is what we expect, as there will always be at least one mode present however small the
absorber is made.
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6.6.3 Example: Positive-Definite Hermitian Matrices

This analysis maps over to the singular-value decomposition of Hermitian matrices. Let H
be a Hermitian matrix, then Equation (6.29) becomes

Neff  (Tr[H])
2

Âm,n |Hmn|2
 N, (6.41)

where Tr[] denotes the trace of the matrix and the sum is taken over all matrix elements.
We have implemented a program that generates a Hermitian matrix with a known number
of non-zero singular values and then calculates N, Neff and the central ratio in Equation
(6.41), which we will refer to as the test-value. Repeating this algorithm for a wide variety of
Hermitian matrices, it becomes evident that the test value tends to fall near to

(Tr[H])
2

Âm,n |Hmn|2
⇡ N +Neff

2
. (6.42)

This is an extremely useful observation, as it tells us the test value tends not favour one or
other of N or Neff, which should also map over to Equation (6.29). This is not guaranteed by
the equality and gives us an extra piece of information. For example, we know

Neff � 1. (6.43)

Then taking Equation (6.42) as an equality, we have

(Tr[H])
2

Âm,n |Hmn|2
� N +1

2
=) N  2(Tr[H])

2

Âm,n |Hmn|2
�1. (6.44)

Whereas Equation (6.29) provided a lower bound on N, this provides an approximate upper
bound, which is informative in its own right but is also extremely useful when we try to
calculate modal decompositions on full amplitude and phase data.

6.6.4 Application to Discrete Datasets

In this section, we briefly consider the details of how the method can be applied to DRF
amplitudes obtained for discretely scanned sources, as would be relevant to simulated
and experimental datasets. The integrals over the single source scans are easily treated
numerically and we will concentrate on evaluating the integral over both coordinates of the
detector response function. Throughout we will assume the absolute positions of the sources
are known source that the sources can be put on the same grid of points {xm} in space.
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Fig. 6.18 Illustration of the linear interpolation for missing elements of a fringe amplitude
pattern, for a fixed source position x0.

If we represent the sampled detector response as a matrix, as in Section 6.4, the problem
is that we do not have access to the elements in a band along the diagonal due to restrictions
on how closely the sources can be placed together. As a start, the single source scans can be
used to fill in the on-diagonal elements. What we want for the integral is the quantity

| f12(x,x)|2 = 4|E1|2|E2|2|D(x,x)|2. (6.45)

However, given the single source scans are

fnn(x) = |En|2D(x,x), (6.46)

where n 2 {1,2} represents the source label, we have

| f12(x,x)|2 = 4| f11(x)|| f22(x)|. (6.47)

However, this still leaves some diagonals unfilled.
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To see how to address this problem, we first consider the set of intermediate integrals of
the form

I(x) =

Z
| f12(x,x0

)|2 dx0 (6.48)

that we must evaluate. The function to be integrated is illustrated in Fig. 6.18; the blue line
shows the true function and the red crosses the sampled data as taken from the corresponding
row of the matrix of fringe amplitudes, with the diagonal elements filled in using Equation
(6.47). As can be seen, the problem is we are missing some data for small values of |x� x0|.
The simple approach is to approximate the data in the gap by linear interpolation, represented
by the green dotted line in Figure 6.18, which can be done automatically by using the
trapezium rule with non-uniform node spacing for the numerical integration step [105]. The
final integral can then be calculated using

ZZ
| f12(x,x0

)|2 dxdx0
=

Z
I(x)dx, (6.49)

where again the trapezium rule can be used to calculate the integral. This should provide
a reasonable approximation to the integral, which can be improved by moving the sources
back to widen the response pattern, at the expense of signal-to-noise ratio,

6.6.5 Application to Experimental Datasets

We then sought to apply to experimental results this method for placing bounds on the number
of modes through which the device under test can absorb power. The algorithm described
in Section 6.6.4 was implemented straightforwardly to accept the measured DRF matrices
obtained in Section 6.4, where the unknown elements are excluded from the computation.

In Table 6.2, we summarize the results obtained by applying the algorithm to our various
experimental datasets, part of which are presented in Section 6.4. The bound values obtained
are consistent with our expectations: they are just above 1 for single-mode fibers, including
few-mode fibers that are rolled on a mode scrambler; they are slightly larger than 2 for few-
mode fibers expected to be 2-moded, and slightly below for the P1-32F which seemed to have
smaller relative sensitivity; they are approximately equal to 8 for multi-mode systems. This
observation for multi-mode devices may seem far from the expected 125 modes; however,
this estimation was obtained assuming two-dimensional scans. As we are performing scans
over a one-dimensional sampling grid, we are implicitly projecting all modes onto this
restricted basis, where many of the modes are degenerate. The expected number of modes for
one-dimensional scan is 11, such that the bound obtained with our method is quite accurate.
The remaining discrepancy can be explained by the use of the single-source scan to fill the
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Fiber name Section Configuration Theoretical
mode number

Computed
bound

1550BHP 6.4.1 1 1.10
PM1550-XP 6.4.1 1 1.21

SM2000 6.4.2

>100 mm bend diameter

2

2.43
>100 mm bend diameter

vertical scan 2.08

40 mm bend diameter 1.22
40 mm bend diameter

vertical scan 1.29

P1-23Z 6.4.2 2 1.83
P1-32F 6.4.2 4 1.53

FG050LGA 6.4.3 Step size 10 000 µsteps 11 7.91
Step size 4 000 µsteps 7.87

Bare
detector 6.4.3 Step size 10 000 µsteps N/A 11.20

Step size 4 000 µsteps 11.25
Table 6.2 Properties of the various 2 m-long optical fiber patch cables used as interchangeable
mode filters for the photodetector, and their corresponding computed mode number bound;
the experimental configuration is as described in Section 6.4, including the scanning step
size of 4 000 µsteps, unless stated otherwise.

diagonal elements, which produces an artificially large fringe amplitude peak for multi-mode
systems where the fringe amplitude structure is expected to have small widths, visible in
Figure 6.16. This would increase the denominator in Equation (6.29), and decrease the
computed bound. The results obtained for vertical scans, rather than horizontal, are identical;
this is understood as the circular symmetry of the device under test’s optical response.

Finally, the experimental procedure utilized in Section 6.4 was repeated using the pho-
todetector without any coupled optical fiber length. The estimated number of modes obtained
with the bound derived in Section 6.6.1 is approximately 11, higher even than with the
multi-mode fiber. In Section 6.4.3, we had crudely estimated its modal behavior to contain
650 modes in two dimensions, hence approximately 25 for one-dimensional scans.

6.6.6 Entropy

In order to investigate the significance of the number of modes as defined by the quantities N
and Neff, we wish to compare them to other metrics related to the sensitivity eigenspectrum.
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We can define an entropy-like measure S for the detector response function D(x,x0
) by

S
⇥
D(x,x0

)
⇤
= �

N

Â
m=1

pm ln pm, (6.50)

where
pm =

lm

ÂN
n=1 ln

(6.51)

are the normalized singular values for all m 2 {1, ...,N}, the latter being defined by Equation
(6.14), satisfying the property

N

Â
n=1

pn = 1. (6.52)

As we have defined it, this “entropy” can be seen to have the same mathematical form as the
Von-Neumann entropy of the density matrix in quantum mechanics, or the Shannon entropy
in information theory [106]. As such, S as defined perhaps provides the best measure of
the degrees of freedom of the detector response function, although we cannot calculate it in
the first instance without phase data. However, we can put bounds on S and show that our
measure of the mode number calculated from purely amplitude data must provide a rough
estimate of S.

Since Equation (6.50) has the same mathematical form as the Shannon entropy, it is
maximised when p1 = p2 = · · · = pN , or equivalently when the singular values lm are all
equal. Explicitly, we must maximise S with respect to variations in the set of normalized
singular values {pm} subject to Equation (6.52). To do so, we maximise the auxiliary
function

L(p1, p2, . . . , pN) = S(p1, p2, . . . , pN)+a
N

Â
m=1

pm, (6.53)

where a is a Lagrange multiplier. At the stationary points of L, we have

∂pkL(p1, p2, . . . , pN) = � ln pk �1+a = 0 (6.54)

for all k 2 {1, ...,N}. Equation (6.54) has one solution:

pk = ea�1 (6.55)
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for any k. This corresponds to all lm equal to some constant k and S = lnN. To prove this is
indeed a maximum, we differentiate Equation (6.54) again to yield the Hessian

∂ 2L
∂ p j∂ pk

= �
d jk

pk
, (6.56)

which is negative definite as required. Hence we have shown

exp(S)  N, (6.57)

under all condition.

Using the definitions of em and Neff from previously, we may write

exp(S) = exp

 
�

N

Â
m=1

pm ln pm

!

= exp

 
�

N

Â
m=1

em

Neff
ln

em

Neff

!

= Neff exp

 
� 1

Neff

N

Â
m=1

em lnem

!
.

(6.58)

By definition, 0 < em  1, which implies

� em lnem > 0; (6.59)

hence

�
N

Â
m=1

em lnem > 0. (6.60)

The exponential term in Equation (6.58) is therefore always greater than unity and so

eS � Neff. (6.61)

Combining Equations (6.57) and (6.61) yields

Neff  exp(S)  N, (6.62)

which suggests the exponential of the entropy provides a measure of the modes in the same
way as the measure calculated from only the amplitude data, in Equation (6.29). This is
perhaps not unsurprising, as the entropy in thermodynamics is related to the logarithm of
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the number of microstates available to the system that give the same measured macroscopic
parameters; equivalent, very loosely, to the degrees of freedom of the system.

6.7 Conclusion

We have demonstrated that the near-infrared experimental system designed in Chapter 4 and
constructed in Chapter 5 is capable of performing EAI on fiber-coupled infrared detectors
with a large range of modal behaviors. Measurement of fringes in the detector output as
the relative phase between the sources is modulated, first successfully presented in Chapter
5, was implemented in a standardized manner, for sources scanned over larger numbers
of position pairs along a uniformly sampled one-dimensional grid. Using this method, we
reported the first measurement of the DRF amplitude of near-infrared detectors.

We found that the extracted DRF amplitude, represented as a matrix in terms of the right
and left source positions, and its corresponding coherence matrix, i.e. its amplitude corrected
with the amplitudes of the single-source beampatterns at the corresponding positions, have
patterns that are characteristic of single-mode, few-mode and multi-mode behaviors. This
was achieved by creating a standard measurement set and experimental method, in which
we first performed the single-source beampattern measurements of the right and left sources
individually, and then measured the fringe in the detector output as we rotated the relative
phase of the sources placed at all available position pairs. Multiple devices were investigated
in this manner, with single-mode, few-mode and multi-mode behavior. For instance, we used
our EAI method to show how tightly wrapping a few-mode optical fiber around a mandrel
decreased the sensitivity of high-order modes until they have disappeared, experimentally
proving the function of mode scramblers.

In addition, we demonstrated a method to estimate the number of modes present in
a DRF using only the amplitude of its components, rather than its amplitude and phase;
the measurement of the latter will be the subject of Chapters 7 and 8. The algorithmic
implementation is able to deal with missing data, which appears in DRF amplitude matrices
as an empty diagonal band. The resulting estimate provides a lower bound for the total
number of modes in the optical response of the device under test and an upper bound for the
number of modes that have approximately unit relative sensitivity. We found that applying this
method to experimentally measured DRF quantitatively confirms our qualitative observations:
the estimate for single-mode devices is approximately 1 and it increases approximately as
the square root of the expected number of modes, as we are projecting the two-dimensional
space of modes onto the one-dimensional space of scanned source positions.
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A limitation of our existing experimental method is the presence of the missing data in the
central diagonal band, which is expected to contain the most information characterizing the
DRF. However, this is not a fundamental flaw of either EAI or the experimental system, but
rather the result of a trade-off of far-field operation, between signal-to-noise ratio and angular
resolution. Importantly, this has not impeded our qualitative and quantitative investigations
of devices over a wide range of modal behaviors: the assessment of this limitation is indeed
only possible because the experimental system’s performance has exceeded our expectations
in many other regards. In order to move beyond amplitude-only measurements of DRF
elements, and to achieve the full characterization of the devices’ optical response, the next
step is to introduce a scheme to accurately measure the DRF phase.





Chapter 7

Phase-Sensitive Characterization:
Theory and Design

7.1 Introduction

In Chapter 5, we observed experimentally that the extracted fringe phase measured with
sources placed at fixed positions drifts over time. Figure 7.1 presents a typical example of
this phenomenon, illustrating how a fringe drifts over a total measurement time of 8 seconds,
corresponding to 20 000 periods of the 0.4 ms-long phase modulation period, at the selected
2.5 kHz phase modulation frequency. The total drift is approximately p rad over 8 seconds,
which is typical of the phase drift observed with our experimental system. It is important
to note that the evolution of the fringe phase is seemingly random and always smooth (i.e.
without discontinuities), in the absence of extreme disturbances such as mechanical vibrations
applied to the optical table.

This drift is consistent with environmental fluctuations affecting the optical fibers, leading
to a slowly-varying differential phase between the two arms of the interferometer. For
single-mode optical fibers, the expected phase shifts due to temperature fluctuations are
approximately 100 rad/K/m [107]; those caused by pressure fluctuations are approximately
2 rad/Pa/m [108]; finally, those caused by strain fluctuations are estimated to be 10 rad/m
[109]. In our experimental system, such mechanisms would need to apply to the differential
temperature, pressure or strain variations between the interferometer’s arms. Recalling that
each arm is approximately 4 m long, the differential variations in temperature, pressure
or strain expected in a laboratory environment have the appropriate order of magnitude to
explain the observed phase drift between the two sources. For instance, a phase drift rate of
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Fig. 7.1 Extracted fringe amplitude (blue) and phase (orange) for a 2 MS measurement at
250 kS/s sampling rate, with 2.5kHz phase modulation frequency; each point corresponds to
the extracted fringe amplitude and phase (in blue and orange, respectively) for one 0.4 ms-
long phase modulation period.

0.4 rad/s as observed in Figure 7.1 could be explained by a differential temperature variation
of 1 mK over 1 s.

We also remark that such a large phase drift means that the measured fringe phase can be
considered roughly 1 s. This is insufficient to produce DRF phase patterns corresponding to
the DRF amplitude patterns measured in Chapter 6, as the two sources are scanned over large
numbers of positions, taking an appreciable amount of time. Another concern is differential
phase drifts occurring in the fibers as the interferometer’s arms are moved. The required
fringe phase stability is ideally several hours; even the minimum duration of fringe scan
measurements, approximately 15 minutes obtained with a large step size of 20 000 µsteps,
requires an additional phase correction method to be implemented.

In order to theoretically investigate methods that would allow us to experimentally correct
the phase drift observed, the first goal set out for this chapter is to describe two classes of
proposed solutions to this issue, based respectively on implementing a fiber-based system at
the phase modulators’ outputs and on adding a “reference” fiber-coupled detector near the
device under test. We will argue why the latter extension to the experimental system was
chosen over the former. A second objective is to investigate the effects of the phase correction
scheme on the expected experimental results using numerical simulations. Additionally, we
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seek to describe potential further improvements to the experimental system, in particular by
reducing the distance between the reference detector and the device under test.

In Section 7.2, we discuss several potential phase correction methods based on analyzing
the Lissajous figures obtained from two signals, either from time-domain splitting of the
device under test’s output or from the signal of additional photodetectors, fed by the split
optical power output of the phase modulators. While these options were ultimately rejected,
this discussion highlights the versatility of our experimental system and the potential for
applications of EAI far beyond the study of near-infrared photodetectors. Section 7.3
describes a phase correction method based on measuring fringes in the output of a reference
detector placed near the device under test, and subtracting the former’s extracted fringe phase
from the latter’s. The reference detector is effectively used as a phase reference channel, and
the plane of constant phase is moved from the plane of sources to the surface of this second
channel. In particular, if the spatial distance between the reference and the device under test
is reduced, the residual geometric phase is significantly diminished. In Section 7.4, we used
the numerical framework built in Chapter 3 to accurately investigate the effect of the phase
correction scheme using a reference channel. In particular, we prove that this technique does
not affect the sensitivities of the reconstructed modes nor their amplitude patterns, rather
only their phase patterns. Assuming that the DRF elements can be simulated numerically
or measured experimentally, the numerical investigations demonstrate that phase-corrected
DRFs contain a very large amount of information.

7.2 Fiber-based Correction Schemes

7.2.1 Introduction

In an EAI experiment, the phase-shift of the fringe must be measured against the relative
phase between the sources. In a system with high phase-stability, it is sufficient to plot
against the set value y of the phase modulator. However, in an unstable system the actual
phase shift is y + Df(t), where Df(t) is a colored noise term. In general, the goal is to
modify the current experimental system such that the optical power measured is related to
cos(y + Df(t)) and/or sin(y + Df(t)). With y set by the phase modulator, Df(t) can be
retrieved. If only y is known, the stability time of the phase may make comparing the phase
of fringes within a sweep extremely difficult, or may even prevent the phase being measured
at all. This had been observed in Chapter 6.

In this section, we propose several methods to measure the phase drift term Df(t), using
fiber-based extensions of the experimental system at the outputs of the phase modulators.
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Fig. 7.2 Proposed experimental arrangement, using an optical switch and a beamcoupler to
create a two-probe and a single-probe operation configurations.

Our objective is then to correct for the differential phase drift between the two arms of the
experiment caused by environmental fluctuations on the fiber lengths between the beamsplitter
and the outputs of the phase modulator pigtails.

7.2.2 Optical Switch

A first solution, illustrated in Figure 7.2, uses a single-pole double-throw optical switch
to connect the outputs of the two phase modulators, labeled 1 and 2 in the figure, either
to the two open-ended fiber probes as previously, or to a single probe. This experimental
arrangement assumes that such optical switches are available; commercial components exist
with lifetimes of the order of 109 cycles, and switching speeds approximately 1 ms, much
smaller than the stability time of the phase drift. A beamcoupler is also needed, in order
to combine the optical power into one of the probes, in the latter configuration. A 2x2
beamcoupler would be appropriate, using a beam dump on the tap output. The beamcouplers
are built by fusing two fibers together, and the transfer of power from one fiber to another is
obtained by evanescent wave coupling. The coupled signal has its phase shifted by p/2, with
respect to the transmitted signal [110]. For instance, if the input signals are p/2 out of phase,
then one output will have zero power (complete destructive interference) and the other will
have the sum of input powers (complete constructive interference).

The usefulness of this method assumes that the major source of phase-drift is prior to the
switch. It will not work, for example, if the switch or beamcoupler introduce significant drift,
or there is significant drift in the differential path between the sources and the detector. In the
following analysis, we will assume the phase shifts in the switch box and from propagation
are time-independent.

In operation, the switch changes the system between two configurations. In the first,
the two signals (un-shifted and shifted) drive separate probes, i.e. the normal experimental
configuration. In the second, both signals are routed through the same probe to provide a
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Fig. 7.3 Lissajous figure obtained from the near-simultaneous measurements in the two-
source configuration P1 and the re-routed single-source configuration P2, as the relative phase
y between the two arms of the system is rotated.

phase reference. In the first configuration, the measured fringe is

P1(t) = DAAG2
AG2

A1E2
1 +DBBG2

BG2
B2E2

2

+2|DAB|GAGBGA1GB2E1E2 cos(y(t)+Df(t)+fBA +fB �fA +fB2 �fA1) .
(7.1)

Here the Dmn are the elements of the detector response matrix for the sources labeled A
and B at positions m and n respectively, with fBA the phase of the fringe. E1 and E2 are the
amplitudes of the input signals. GA is the amplitude gain on propagation from emitter to
detector and GA1 the gain along the path through the switch box from port 1 to emitter A,
with fA and fA1 the phase-shifts along the same paths. GB, GB2, fB and fB2 are the equivalent
quantities for the second path. In the second configuration, the measured fringe is

P2(t) = DAAG2
AG2

A1E2
1 +DAAG2

AG2
A2E2

2

+2|DAA |G2
AGA1GA2E1E2 cos(y(t)+Df(t)+fA2 �fA1) .

(7.2)

Assume we can switch between the two configurations within a time d t. On an (x,y)-axis,
we plot the set of points

(xn,yn) = (P1(tn),P2(tn +d t)), (7.3)

where tn denotes the time of the nth sample. Provided we switch sufficiently quickly that
y(t +d t)+Df(t +d t) ⇡ y(t)+Df(t), the points should trace out a Lissajous figure as y
is slowly varied with t [111], or even if Df is left to drift. This is illustrated in Figure 7.3.
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Fig. 7.4 Proposed extension to the experimental system, with 99%-1% beamcouplers added
to create a phase reference.

By fitting an ellipse to the figure and noting the direction of rotation with increasing y , it
is possible to extract the phase shift q between the oscillations in the two directions, which
from (7.1) and (7.2) is

q ⇡ fBA +fB �fA +fB2 �fA2. (7.4)

This allows measurement of the phase shift of the fringe, comprising the detector response
and the path difference between the sources. The additional term fB2 �fA2 is constant within
our assumptions. The attraction of fitting an ellipse to the Lissajous figure is we do not have
to assign a phase to each point before fitting, which is why we can deal with drifts.

7.2.3 Beamcoupler-based Methods

The methods presented in this section are discussed as if we were looking to measure the
relative phase difference between the two arms of the experiment, at the output of the phase
modulators. We therefore disregard the free-space section, i.e. (i) the 50 cm polarization-
maintaining optical fibers whose respective outputs are mounted on the motorized stages,
(ii) the air over the source-to-detector distance, and (iii) the optical fiber connected to the
detector. In order to use these methods in parallel with the normal operation of the EAI
experiment, we suggest inserting 20 dB beamsplitters at the output of the phase modulators,
as illustrated in Figure 7.4. The 1% of redirected optical power is used to create the phase
reference channel, following one of three schemes below. For simplicity, we assume that the
power redirected from each arm is equal to P0/2.

I. 2x2 beamcoupler

A first solution based on a standard fiber-based Mach-Zehnder interferometer [113] is illus-
trated in Figure 7.5. A 2x2 beamcoupler is used to recombine the arms of the interferometer.
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Fig. 7.5 Phase reference system with one 2x2 output coupler, a fiber-optic Mach-Zehnder
interferometer; adapted from [112].
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Fig. 7.6 Phase reference system with four 2x2 output couplers; adapted from [112].

Its outputs are then given by

PA,Ā =
P0

2
[1⌥ cos(y +Df(t))]. (7.5)

As the two outputs are p out of phase, we can avoid uncertainties linked to low signal by
measuring the two outputs simultaneously. For instance, we may consider DP = PĀ �PA =

2cos(y + Df(t)). Note however that the sensitivity of this setup is still dependent on the
relative phase y +Df(t), and maximal when PA,Ā = P0/2. The main drawback here is that
we do not measure y +Df(t) directly, but rather only its cosine.

II. Four 2x2 beamcoupler set

In order to obtain an instantaneous measurement of the relative phase between the two arms
of the experiment, we need to utilize more elaborate methods. A first possibility based on
four 2x2 beamcouplers is illustrated in Figure 7.6, and is referred to as a Passive Quadrature
Demodulator [112]. This method is based on an output coupler matrix, constructed with
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four 2x2 beamcouplers: the two arms of the experiment are each connected to one input
of two couplers, whose outputs are then crossed into the inputs of two additional couplers.
The outputs of one of the final couplers, called A, are then simply that of a Mach-Zehnder
interferometer:

PA,Ā =
P0

2
[1⌥ cos(y +Df(t))]. (7.6)

The outputs of the other final coupler, called B, can be shown to have the form

PB,B̄ =
P0

2
[1⌥ cos(y +Df(t)+hAB)]

=
P0

2
[1± sin(y +Df(t)+ e)], (7.7)

where we have used the differential phase shift hAB to define the phase shift error e as

hAB =
2pnDl

l
= (2N +1)

p
2

+ e

=) e =
2pnDl

l
� (2N +1)

p
2
, (7.8)

and Dl = (l13 � l23)� (l14 � l24) is the differential pathlength of the coupler matrix.

Consider then the difference between the outputs of each of the two final couplers:

DPA = PA �PĀ = �P0 cos(y +Df(t))

DPB = PB �PB̄ = P0 sin(y +Df(t)+ e). (7.9)

Approaches are suggested in the literature to obtain only the slowly-varying Df(t), including
a variety using Lissajous patterns [34]. It remains however that this technique is complicated
by the appearance of the extra phase contribution e , which may itself be subject to drift
caused by temperature or pressure variations within the coupler matrix.

III. 3x3 beamcoupler

Another system, based on the Mach-Zehnder interferometer architecture with a 3x3 output
beamcoupler, avoids these complications. The experimental apparatus, illustrated in Fig-
ure 7.7, is significantly simpler than the 2x2 coupler matrix, and provides an elegant way of
retrieving the relative phase difference of interest [114].
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Fig. 7.8 Electronic system to process the output of the 3x3 output coupler apparatus; adapted
from [114].

This technique is based on the ability to obtain two optical outputs, X and Y , with a p/2
phase difference:

X = Acos(q)

Y = Bsin(q), (7.10)

where A and B are constants, and q denotes the relative phase between the two input arms of
the interferometer, which we wish to measure. Then, we can apply the following functional
operation:

Z = X
∂Y
∂ t

� ∂X
∂ t

Y

= AB
∂q
∂ t

[cos2
(q)+ sin2

(q)]

= AB
∂q
∂ t

=) Z0
=

Z
Zdt = ABq . (7.11)

This produces a value that is directly proportional to q .
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In order to obtain forms similar to X and Y in Equation (7.10), we can use a 3x3
beamcoupler with the arms of the interferometer connected to inputs 2 and 3. The outputs of
the 3x3 coupler, Pi with i 2 {I, II, III}, are given by

PI = �B2[1+ cos(q)]

PII,III = B1 +B2 cos(q)±B3 sin(q), (7.12)

where Bi, i 2 {1,2,3}, are constants dependent only on the coupling coefficients of the
coupler [115]. We then consider the sum and difference of PII,III ,

P+
= PII +PIII = 2[B1 +B2 cos(q)]

P�
= PII �PIII = 2B3 sin(q). (7.13)

IV. Processing

Processing these signals as suggested above, we obtain

D = P+
∂P�

∂ t
� ∂P+

∂ t
P�

= 4B1B3
∂q
∂ t

cos(q)+4B2B3
∂q
∂ t

(7.14)

E =

Z
Ddt = 4B1B3 sin(q)+4B2B3q . (7.15)

As B1 is simply the DC component of PII,III , we may introduce an offset to set B1 = 0. Then,

D = 4B2B3
∂q
∂ t

=) E =

Z
Ddt = 4B2B3q . (7.16)

An important advantage of this scheme is the absence of additional phase drift in the
measurement section, unlike in the 2x2 coupler matrix case for instance. This simplifies the
direct recovery of the relative phase shift q = y + Df(t). The processing step detailed in
Equation (7.11) can be obtained in software or using electronic hardware, as described in
Figure 7.8.

An alternative way of retrieving the relative phase shift q is to use the Lissajous figures
described by the two channels’ voltage outputs [30]. It assumes that the two outputs voltages
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of an IQ mixer can be measured as

I = I0 +AI cos(q)

Q = Q0 +AQ cos(q + g). (7.17)

Comparing with Equation (7.13), we expect to obtain I0 = 2B1,Q0 = 0,AI = 2B2,AQ =

2B3,g = p/2. For a non-ideal IQ mixer, these two outputs produce an ellipse, centered at
(I0,Q0). As we modulate the phase using the phase shifter to obtain fringes from the device
under test, we also produce the required q -sweep to trace the ellipse. Fitting this ellipse to
extract the half long axis a, half short axis b, and the orientation angle F, we can retrieve the
mixer parameters as

AI =

p
a2 cos2 F+b2 sin2 F

AQ =

p
a2 sin2 F+b2 cos2 F

g = arctan
bsinF
acosF

+ arctan
bcosF
asinF

�p. (7.18)

7.3 Reference Channel

7.3.1 Experimental Scheme

While the methods described in Section 7.2 correct for phase drifts caused by environmental
variations in the optical fiber system up to the output of the phase modulators, they require
long additional optical fiber systems to be added, in which phase drifts could appear as well.
Moreover, none addresses a second key phenomenon: the fast wrapping of the fringe phase
pattern as either or both of the sources are scanned. Indeed, as the 1550 nm wavelength
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is significantly smaller than path length differences of the spherical wavefront between
successive positions to which each of the sources is scanned, we expect the phase of the
fringes recorded in the detector output to vary quickly, up to several radians for consecutive
position pairs such that it wraps on the [0,2p] rad range. This had been observed in Chapter
3 in the form of irregular phase patterns, which were explained as a fast-wrapping phase
pattern aliased by the relatively large spatial resolution used in the simulations, i.e. step size
between neighboring sampled source positions.

Instead of modifying the section of the experiment producing and controlling the sources,
a second class of phase correction methods can be obtained through the addition of a second
detector system near the device under test, i.e. by modifying the section of the experiment
dealing with signal detection. The experimental arrangement is schematized in Figure 7.9.
The outputs of these two detector systems then constitute two channels: the “signal” channel
is the device under test, including the interchangeable fiber, and the “reference” channel
provides the simultaneous phase reference. In practice, the two channels’ optical fibers are
held at constant displacement throughout fringe measurements over scanned source positions
and are coupled to independent detectors. Subtracting the fringe phase extracted in the
reference channel from the signal channel’s produces a corrected fringe phase, whose pattern
can be presented and analyzed in the same way that we did with the fringe amplitude patterns
in Chapter 6. The scheme should also take out to some extent imperfections in the FFT used
to extract the fringe parameters, as long as the data sets are collected simultaneously, for
instance on two inputs of the same ADC; additionally, the phase noise in the laser source is
removed, out to the bandwidth determined by the sampling and FFT.

An important advantage of this method is that it does not require any change to the optical
configuration for the sources. As the channels operate independently, each can be checked
on its own against the results obtained before the system extension, presented in Chapter 6.
This arrangement provides a total correction of the phase drift for mechanisms affecting the
fiber system from the laser source up to the source fibers’ open ends, as well as significant
correction of air refractive index fluctuations on the optical path between probe tips and
detector fiber surfaces, because the signal and reference channel beams essentially share
the same volume of space. A second crucial advantage is to move the constant-phase plane
from the source tips to the reference detector fiber input. In practice, the fringe phase wraps
much less rapidly as the sources are scanned towards and away from the on-axis position,
as an intrinsic effect of the scheme. Additionally, as the scanning plane is moved closer to
the source, the reference wavefront automatically adjusts. The phase correction method also
decreases the effect of imperfections in the scanning plane, and sampling points used; for
example, if the scanning plane is tilted or varies from one scan to the next.
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In addition to element-wise subtracting the reference and signal channels’ extracted
fringe phases, numerous analysis methods are possible. For instance, we could look at the
correlations between the two recorded phases, or produce Lissajous figures on the basis
of the recorded outputs and analyze them as suggested in Section 7.2.3. Regarding the
diagonalization of the corrected-phase DRF to obtain its modes, if the individual modes of
the device under test have significantly different phase centres, these would show up through
the radii of curvature left over after a common reference phase front had been subtracted.
This phase correction method also has the potential to be extended further. For instance,
three reference fibers could be used to define a plane against which the positions of the pixels
in a photodetector array could be measured.

A few limitations to this scheme should be noted. The reference beam must have an
appreciable response over the region for which the device under test has an appreciable
response. Assuming that the beam width of the sources are the limiting factor, as is the
case in our experimental system and was discussed in Chapter 6, this requires the signal
and reference channels to be spatially close. Note however that we could also expand the
reference beam to have a wide angle, say using a lens or an optical fiber with a shaped tip
[90]; this avenue will be discussed further in Chapter 10. A second limitation may appear
when the SNR of the reference is low: the phase of the reference would rotate over a full
2p rad, and it would not be helpful to subtract it off. Additional precautions, such as placing
an SNR-dependent coefficient on the subtracted phase, may be necessary in experimental
realizations of this scheme.

7.3.2 Simulated DRF Corrected Phase

Considering only the fringe phase and discarding its amplitude, a simulation framework can
be created for the study of geometric phase factors. For simplicity, we model the detectors
and sources as point-like objects with spherical phasefronts, as we had done in Section
3.3. Assuming a point-like detector, its DRF can be written as D(rrr1,rrr2) = d (rrr1 � rrr2),
where rrr1 and rrr2 are positions on the chosen reference surface. For point-like detectors,
we can also choose the reference surface to be the detector surface: S = rrrd . A point-
like source with spherical phasefront at the sampled position labeled n produces a field
eeen(rrr) µ exp[ikkk · (rrrn � rrr)], where kkk is the source beam wavevector, as defined in Chapter 2.



204 Phase-Sensitive Characterization: Theory and Design

-300 -150 0 150 300

-300

-150

0

150

300

xR - xc
R /103µsteps

x L
-x

c L
/1

03 µs
te

ps

0

2

4

6

/rad

(a) Single detector case; placed opposite cen-
ter of scanning range

-300 -150 0 150 300

-300

-150

0

150

300

xR - xc
R /103µsteps

x L
-x

c L
/1

03 µs
te

ps

0

2

4

6

/rad

(b) Difference of two measured fringe
phases; second detector placed 10 mm
right of the first

-300 -150 0 150 300

-300

-150

0

150

300

xR - xc
R /103µsteps

x L
-x

c L
/1

03 µs
te

ps

0

2

4

6

/rad

(c) Difference of two measured fringe
phases; second detector placed 10 mm
above the first

Fig. 7.10 Simulated fringe phase for various detection systems, as a function of sources’
positions; the sources are scanned horizontally over a 30 mm range opposite detectors placed
at a distance z = 100 mm.

We then obtain the following form for the measured DRF elements, from Equation (2.46):

Dmn µ
ZZ

S 2
eee⇤

m(rrr1) ·D(rrr1,rrr2) · eeen(rrr2)d2rrr1d2rrr2 (7.19)

µ
Z

S

eee⇤
m(rrr) · eeen(rrr)d2rrr

µ eee⇤
m(rrrd) · eeen(rrrd)

µ exp[ikkk · (rrrn � rrrd)� ikkk · (rrrm � rrrd)]. (7.20)
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While obtaining the fringe amplitude requires a full projection of the source beam, we are
only interested in the fringe phase, more specifically the difference of measured phases
between two detectors, labeled A and B:

fAB = arg(DA
mn)�arg(DB

mn) (7.21)

= [kkk · (rrrn � rrrA)� kkk · (rrrm � rrrA)]� [kkk · (rrrn � rrrB)� kkk · (rrrm � rrrB)]

= [k|rrrn � rrrA|� k|rrrm � rrrA|]� [k|rrrn � rrrB|� k|rrrm � rrrB|] (7.22)

as kkk and rrrn � rrrd , for d 2 {A,B} are always colinear in point-like objects.

In Figure 7.10, we show the results of numerical simulations obtained using this simplified
framework, where the source-to-detector distance is set to 100 mm and the sources are
scanned over the position pairs (xR,xL) 2 {�15mm,�14.8mm, ...,15mm}2, with yR = yL =

zR = zL = 0 mm. Note that these values are specifically chosen to replicate the configuration
of the experimental system. Two notable exceptions are that the source-to-detector distance
is 105 mm in practice, and the sources are scanned from -300 000 µsteps to +300 000 µsteps,
i.e. from -14.3 mm to +14.3 mm. These differences nearly cancel each other out, as the ratio
of the experimental to numerical distances, 105/100 = 1.05, is nearly equal to the ratio of
the experimental to numerical scanning ranges, 15/14.3 = 1.049. Figure 7.10a presents the
simulated fringe phase measured by one on-axis detector, with no phase correction, displaying
a very complex structure associated with aliased fast-wrapping phase contributions as the
sources are scanned off-axis; the same configuration was simulated without simplifying
assumptions in Chapter 3. Figure 7.10b presents the difference between this DRF phase
and that obtained with a reference placed at (x,y) = (10,0) mm, i.e. offset along the x-axis
with respect to the signal channel. The corrected DRF phase pattern is evidently altered, but
still varies very fast between neighboring source position pairs. On the other hand, the DRF
phase pattern obtained with a reference channel placed at (x,y) = (0,10) mm, i.e. displaced
by the same magnitude along the y-axis with respect to the signal channel, varies much more
slowly, as shown in Figure 7.10c. We note that, simulating a second detector at the same
position as the first, we effectively correct the device under test’s phase with itself and obtain
a constant phase pattern. This corresponds to a change of the constant-phase plane from the
source plane to the surface of the reference detector.

A crucial result is that the phase correction method is most effective when the two
detectors positions are offset in the direction orthogonal to the scanning direction. Under the
experimental scanning configuration used in Chapter 6, where the sources were scanned over
a horizontal one-dimensional grid, we would need to place the two detectors vertically with
respect to each other. More complex cases can be simulated using the framework built in
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Chapter 3, for instance to deal with few-mode and multi-mode detector responses, and will
be discussed in Section 7.4.

7.3.3 Effect of Phase-Correction on Eigenmodes and Eigenspectrum

It is crucial to investigate theoretically whether this two-detector phase correction scheme
will influence, or perhaps even limit, our ability to successfully perform EAI, i.e. to measure
the device under test’s true DRF and its decomposition into the system’s natural modes.
Suppose that we have a single-mode reference detector (RD) whose amplitude pattern is as
least as extensive as the amplitude pattern of the primary device under test (DUT). We can
measure the response matrix of the RD, R, at that same time as response matrix D of the
DUT itself without any loss of time or source power.

Suppose that the correlation matrices of both detectors are measured on a point-by-point
basis as the sources are scanned over sampled position pairs. For an ideal measurement
system, the elements of the two matrices are Di j and Ri j. Suppose, however, that the system
has poor phase stability; then we actually measure

Dm
i j = Di je�iDi j (7.23)

Rm
i j = Ri je�iDi j .

The phase error is the same on both measurements because we are assuming that the outputs
of the DUT and RD can be read out on a differential timescale that is much smaller than the
phase coherence time of the test system.

Because the RD is single mode, it has the decomposition

R = rrr† (7.24)

Ri j = rrir jei(fi�f j)

Rm
i j = rrir jei(fi�f j)e�Di j ,

where r is the eigenvalue, and r is the column eigenvector of the reference detector, where
ri exp [ifi] is the field pattern of the mode.

We can divide each element of Rm
i j by its modulus to obtain its phase,

Rp
i j = ei(fi�f j)e�Di j , (7.25)
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and then we form the corrected-phase DRF elements,

Dc
i j = Dm

i j Rp⇤
i j (7.26)

= Di je�i(fi�f j)

= e�ifiDi je+if j .

In other words we subtract the phase of the RD on an element by element basis. The last line
is

Dc
= �†D�, (7.27)

where � is a diagonal matrix containing the phases of the beam pattern of the RD. We note
that

��†
= I (7.28)

�†� = I;

in other words, the transformation is unitary, complete, and orthogonal.
Now the response matrix of the DUT can be diagonalized:

Dc
= �†U⌃U†�

= W⌃W†, (7.29)

where ⌃ is a diagonal matrix whose elements are the sensitivities corresponding to the
eigenvectors of the corrected response matrix, contained in the columns of

W = �†U. (7.30)

Then, the recovered modes of the phase-corrected DRF are related to the recovered modes of
the uncorrected DRF by

dc
i = die�fi . (7.31)

The recovered modes have the phase response, at the sample points, of the RD subtracted, but
otherwise they remain the same; importantly, the spectrum of eigenvalues remains the same.
Any structure in the phase fronts of the individual modes of the DUT remain the same; we
have simply subtracted off the single-mode reference phase. In antenna engineering, when
displaying the beam patterns of antennas, the phase front would usually be subtracted off



208 Phase-Sensitive Characterization: Theory and Design

anyway, because it does not have any intrinsic interest, and indeed varies with the distance
of the observation point to the antenna [60]. This general analysis method could be used to
reveal various aspects of the scheme; for example, we may ask what happens if the reference
detector is few-mode.

7.4 Study of Simulated Phase-Corrected DRFs

7.4.1 Single-Mode Phase-Corrected DRFs

Having chosen a phase correction method, it is important to investigate numerically the
effects of this technique and the phase patterns of the DRFs to be measured experimentally,
in Chapter 8. For this study, it is possible to use the simulation framework built in Chapter 3.
We recall that it relies on projecting the beams of two sources built from the fundamental
Laguerre-Gaussian mode, LG00, onto the detector surface whose reception pattern is defined
by the incoherent sum of individually fully-coherent modes, each of which is a two-point
function built from the outer product of single-point functions such as Laguerre-Gaussian
modes, LGpl , where p and l are the radial and azimuthal indices respectively, as described
in Section 3.4.1. The projection of the incident field onto the detector response provides a
single element of the DRF matrix in the basis of source position indices. This calculation
procedure is then repeated over all position pairs of a pre-defined sampling grid; depending
on the configuration, simplifying assumptions can be made to reduce the problem and speed
up the computation.

We start with the case of a single-mode DRF built from the LG00 mode, where we correct
fringe phase with itself, i.e. use the signal channel as its own reference channel: we obtain a
constant phase pattern, with value equal to 0 rad. Although this operation seems trivial, the
result clearly indicates that this procedure moves the constant-phase surface from the plane
of sources to the detector surface. In Section 7.3.3, we had also proved theoretically that the
eigenspectrum of DRFs, i.e. their representation in the modal basis, with and without the
phase correction are identical. It is important at this point to verify this phenomenon with the
simulated single-mode DRF phase. We diagonalized the simulated DRF without and with the
phase correction; in this configuration, this corresponds to diagonalizing the simulated DRF’s
complex amplitude and its amplitude only, respectively. We found that the eigenspectrum is
identical within the machine computational precision, as shown in Figure 7.11. Figure 7.12
compares the spatial forms of the first mode, the only one with non-negligible eigenvalue, in
the case without and with prior phase correction: their amplitudes are identical, while their
phases are respectively quickly varying and constant, as expected. These observations are in
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Fig. 7.11 Comparison of the eigenspectrum of simulated single-mode DRFs, built from the
LG00 mode, without and with phase correction. The single large eigenvalue corresponding to
the simulated mode is identical; the two plateaus respectively correspond to the eigenvalues
of modes from the finite computation precision of the DRF, and to the finite precision of the
eigenvalue decomposition procedure.

agreement with our theoretical investigations of our phase correction scheme. We note that
the eigenmode’s phase in the case with no correction is an aliased fast-wrapping phase.

We repeated these numerical simulations with the center of the detector surfaces placed
at different positions, in particular slightly displaced along the y-axis, which was found to be
the preferred option in Section 7.3.2. We then used the phase of this displaced single-mode
DRF to correct the phase of the on-axis single-mode DRF; this procedure is identical to the
one described in Section 7.3.2, except that we do not work within the simplified framework
where assumed that the sources and detectors were point-like. Using the same configuration
as in Figure 7.10c, where the signal detector is on-axis with the origin while the reference is
displaced to y = 10 mm, we show in Figure 7.13 that the corrected fringe phase pattern is
almost identical. This indicates that the simplifying assumptions used in Section 7.3.2 that
the sources and detectors are point-like are broadly valid.

Our investigation of the effect of the phase correction scheme on the eigenmodes obtained
was repeated in the case of a reference channel placed at a different position shown in Figure
7.13. Again, we found that the eigenspectra obtained in the uncorrected and corrected
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Fig. 7.12 Comparison of the first eigenmode of simulated single-mode DRFs, built from the
LG00 mode, without and with phase correction.

phase cases are identical within the machine’s computational precision. The first eigenmode,
the only one with non-negligible eigenvalue, obtained from the cases without and with
phase correction have identical amplitude patterns. Their phase patterns are compared in
Figure 7.14: the phase for the former case is identical to Figure 7.12, displaying an aliased
fast-wrapping phase pattern, while the latter case is varying much more slowly. In this
configuration, the geometric phase factor is significantly, albeit not entirely, eliminated by
the phase correction scheme. Again, these results are in line with our expectations from the
theory derived in Section 7.3.3.

7.4.2 Few-Mode Phase-Corrected DRFs

In the case of investigating the behavior of few-mode and multi-mode devices, we may ask
whether we would still use a reference channel with single mode behavior. Our intuition is
that the single-mode behavior of the reference guarantees a constant phase on the reference
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Fig. 7.13 Simulated fringe phase for a single-mode system, built from the LG00 mode,
corrected with the phase of a single-mode system, built from the LG00 mode, displaced at
y = 10 mm.

plane, namely the surface of the reference channel. This result is obtained straightforwardly
from the DRFs that were simulated for each individual mode, as was described in Chapter 3.

We began with the case of a two-mode simulated DRF, assuming a 10 µm mode field
diameter to simulate individual LG modes, similarly to Section 3.4. The simplest configura-
tion is to use the corresponding fundamental mode’s phase to correct the few-mode system’s
phase. As shown in Figure 7.15, we observe that the simulated DRF phase is separated
into several regions, each of which is constant within the 10�11 rad computation precision.
The phase difference between neighboring regions is p rad. The lines where the xR- and
xL-gradients of the signal channel fringe amplitude are equal to zero, as represented in
Figure 7.15: the circular lines in the anti-diagonal corners correspond perfectly with the
boundary of the phase-reversal between constant phase regions. This is a clear characteristic
of few-mode behavior. It is important here to note that we use the xR- and xL-gradients are
proxies for finding the zero-amplitude lines, which correspond to where both gradients are
zero simultaneously. This observation holds when varying the relative sensitivities of the two
modes, which displaces the zero-amplitude line towards the anti-diagonal corners, eventually
taking it out of the considered scanning range; this is in agreement with the results obtained
with the amplitude of simulated DRFs, in Figure 3.9.
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Fig. 7.14 Comparison of the first eigenmode of simulated single-mode DRFs, built from the
LG00 mode, without and with phase correction by a reference channel placed at y = 10 mm.

Figure 7.16 shows the DRF’s eigenspectrum in the uncorrected and corrected cases,
which are identical within the machine’s computation precision and both show that two
modes dominate. We note that the two largest eigenvalues are not identical, by approximately
a factor 4, contrary to the equal sensitivities used in the LG00 and LG01 modes’ incoherent
addition to create the simulated DRF. This difference is caused by unequal power coupling
from the incident field into each of the modes, such that the normalization of the recovered
eigenmodes induces a difference in the recovered sensitivities. Figure 7.17 presents the
comparison of the second eigenmode of the uncorrected and corrected DRF decompositions.
Their amplitude patterns are again equal; while the uncorrected DRF’s seconde mode has a
phase pattern displaying aliased wrapping, the corrected DRF’s is symmetric about x = 0,
similarly to the second mode in the spatial basis used to simulate the DRF.

We also investigated cases where the signal and reference detectors have different posi-
tions along the y-axis. In Figure 7.18a, we present the fringe phase pattern of a two-mode
system at y = 0 mm corrected with the fringe phase of a single-mode reference system placed
at y = 1 mm. In Figure 7.18b, the fringe phase pattern has a small anti-symmetric component
about the antidiagonal; it is qualitatively similar to the phase pattern observed in Figure
7.10c, with a smaller magnitude due to a reduced distance between the signal and reference
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Fig. 7.15 Simulated fringe phase for an on-axis two-mode system, built from the LG00 and
LG01 modes, corrected with the phase of a single-mode system at the same location, built
from the LG00 mode; the structure observed in the anti-diagonal corner regions are caused
by the 10�11 rad computation precision. The black and red lines correspond to the zeros in
the xR- and xL-gradients of the signal channel fringe amplitude, respectively.

channel positions (1 mm instead of 10 mm). We note that the fringe amplitude pattern in the
former case has a zero-amplitude line corresponding to the phase-reversal boundary. In the
latter case, however, the fringe amplitude pattern does not present a zero-amplitude line. This
highlights the fact that the fringe phase correction moves the phase reference plane from the
source plane to the surface of the reference detector, but does not influence the DRF phase
pattern which is solely defined by the signal channel’s modal behavior.

We repeated these investigations with the signal and reference channels placed sym-
metrically about y = 0, which cancels out the phase contribution due to the differential
path lengths, such as observed in Figure 7.18. While the corrected DRF phase patterns
are qualitatively similar, we notice that the boundary between the phase-reversed regions
is less sharp when the distance between the channels is increased. Figure 7.19 shows this
phenomenon for simulated fringe phase patterns of a two-mode system, corrected with the
phase of a single-mode system, placed symmetrically about y = 0.

Figure 7.20 presents the DRF phase of a four-mode system, built from the LG00, LG01,
LG10 and LG11 modes with equal sensitivities, corrected with the phase of a single-mode
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Fig. 7.16 Comparison of the eigenspectrum of simulated single-mode DRFs, built from the
LG00 and LG01 modes, without and with phase correction.

reference at the same on-axis position. The zero-magnitude lines of the DRF amplitude
pattern again correspond to the boundaries between the constant regions of the DRF phase.

We also investigated the case where the phase correction is performed using a few-moded
reference channel system. As in the single-mode case, if the modal behavior and positions of
the signal and reference channels are identical, the corrected fringe phase pattern is constant,
with a value of zero. In Figure 7.21, we present the DRF phase of a simulated four-moded
signal channel corrected with the phase of a two-moded reference channel. The DRF phase
pattern obtained is the difference of the four-moded case shown in Figure 7.20 and the
two-moded case shown in Figure 7.15. The structure observed becomes more complex to
interpret, and the DRF amplitude’s zero-magnitude lines no longer correspond to all of the
phase reversals observed, as additional modal behavior is introduced. A key result is that we
should always prefer using a single-mode reference channel system to perform our phase
correction scheme.

7.4.3 Multi-Mode Phase-Corrected DRFs

Using this insight, we pursued our investigation of the phase correction scheme on multi-
mode systems. Figure 7.22 presents the DRF phase of a 121-mode system, whose DRF
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Fig. 7.17 Comparison of the second eigenmode of simulated single-mode DRFs, built from
the LG00 and LG01 modes, without and with phase correction.

amplitude and uncorrected phase had been presented in Figure 3.11, corrected with the
DRF phase of a single-mode system placed at the same on-axis position; Figures 7.22a and
7.22b show different sensitivities applied to this set of 121 modes, respectively uniform
and following a logistic function with center index 60 and 0.1 inverse width, i.e. the 40
first modes have relative sensitivities larger than 0.9 and the first 60 modes have relative
sensitivities larger than 0.5. Both cases display a large number of regions with constant
phase; the phase difference between neighboring regions is p rad. As for few-mode systems,
the corresponding DRF amplitude pattern’s zero-magnitude lines correspond precisely to
the p rad transitions between near-constant phase regions. In the case with non-uniform
sensitivities, the smaller number of phase structures, each with larger width, implies a lower
modedness of the DRF, accounting for the small sensitivities applied to high-order modes.

We diagonalized the 121-moded DRF with equal sensitivities, whose corrected phase is
presented in Figure 7.22a, with and without the phase correction step. Figure 7.23 compares
their eigenspectrums, which are identical as expected: this confirms our theoretical result
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(a) Signal at y = 0 mm, reference at y = 1 mm
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(b) Signal at y = 1 mm, reference at y = 0 mm

Fig. 7.18 Simulated fringe phase for a two-mode system, built from the LG00 and LG01
modes, corrected with the phase of a single-mode system, built from the LG00 mode.
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(a) Signal and reference at y = ±1 mm
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(b) Signal and reference at y = ±0.125 mm

Fig. 7.19 Simulated fringe phase for a two-mode system, built from the LG00 and LG01
modes, corrected with the phase of a single-mode system, built from the LG00 mode.
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Fig. 7.20 Simulated fringe phase for a four-mode system, built from the LG00, LG01, LG10
and LG11 modes, corrected with the phase of a single-mode system, built from the LG00
mode.

from Section 7.3.3 for multi-mode systems. However, we observe that the spectrum does
not have 121 large eigenvalues. As in the few-mode DRF case, this is partly due to the
normalization of the eigenmodes; however, in the multi-mode DRF case, many of the
modes are degenerate when projected onto the basis of two-source one-dimensional sample
positions, reducing the apparent number of modes in the system. In 7.24, we present the
amplitude and phase patterns of the eigenmode with largest eigenvalue, in the cases of the
DRF with uncorrected and corrected phase. The amplitude patterns are identical, but not
Gaussian as in the decomposition of the single-mode and few-mode systems’ DRFs, rather
presenting several local peaks symmetric about the on-axis maximum. In the corrected DRF’s
first eigenmode, the phase jumps by p rad at every successive zero in the amplitude; this
behavior is not clear in the uncorrected DRF’s first eigenmode, as it is hidden by the aliased
fast-wrapping phase. These observations hold for all eigenmodes with large corresponding
eigenvalues, while the eigenmodes with small eigenvalues correspond to artifacts from the
finite precision of the DRF computation.
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Fig. 7.21 Simulated fringe phase for a four-mode system, built from the LG00, LG01, LG10
and LG11 modes, corrected with the phase of a two-mode system, built from the LG00 and
LG01 modes.

7.5 Conclusion

We have described several experimental methods that allow us to correct for the drift in the
fringe phase recorded by the device under test in an EAI experiment. Two broad categories
were considered, the first of which relies on creating Lissajous figures from two signals,
separated either by time-domain splitting of the output of the device under test or by routing
a small fraction of the output power from the phase modulators into beamcoupler-based
systems to obtain a real-time phase reference. The second method uses a second photodetector
forming a phase reference channel, placed spatially close to the device under test: its output
also displays a fringe as the relative phase between the sources is modulated, and the phase
component of its complex amplitude can be subtracted from the fringe phase of the signal
channel.

This category of phase correction methods was selected, as it subtracts the environmental
phase drift fully and reliably. It also has the important advantage of subtracting a significant
fraction of the phase wrapping that appears in the fringe phase as either or both sources are
scanned over a plane. We have further investigated the effects of such a phase-referenced
system on the measured DRF. We have proven theoretically that the phase correction using
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(a) Equal relative sensitivities
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(b) Sensitivities defined by logistic function, with center index 60 and 0.1 inverse width

Fig. 7.22 Simulated fringe phase for a 121-mode system, built from the 121 first LG modes,
corrected with the phase of a single-mode system, built from the LG00 mode.
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Fig. 7.23 Comparison of the eigenspectrum of simulated single-mode DRFs, built from the
121 first LG modes, without and with phase correction.

a nearby phase reference channel only changes the phase pattern of the eigenvectors of the
signal channel’s detector response, while its eigenspectrum remains unchanged. Numerical
studies showed this phenomenon in a large number of simulated systems, and the effect of
finite distance between the two channels was explored.

These investigations have provided important insights into how such a scheme should be
implemented experimentally. In particular, the relative position of the two channels should
be orthogonal to the direction of the source scans. Moreover, the distance between the two
channels significantly influences the magnitude of the residual geometric phase difference
that appears in the fringe phase pattern as the sources are scanned. Finally, choosing a single-
mode system to serve as the reference channel significantly simplifies post-measurement
analysis.

Additionally, we have repurposed the simulation framework built in Chapter 3, based on
the projection of an incident field produced by two scanned single-mode sources onto the
assumed reception pattern of a detector system. By subtracting element-wise the DRF phase
of a reference detector from the device under test’s DRF, we obtain a DRF with corrected
phase. In particular, we repeated the simulations of single-mode, few-mode and multi-mode
detectors to obtain characteristic DRF phase patterns for these different modal regimes, in
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Fig. 7.24 Comparison of the first eigenmode of simulated single-mode DRFs, built from the
121 first LG modes, without and with phase correction.

addition to the characteristic DRF amplitude patterns simulated in Chapter 3 and measured
experimentally in Chapter 6.

In the next chapter, we will use the insights gained to implement this phase reference
correction scheme, with the goal of stabilizing the measured fringe phase up to a level
that will allow us to perform a full EAI of several hours with a reliable phase reference.
Deep understanding of the system’s behavior can be gained by carefully comparing the
experimental results obtained and the numerical results presented in this chapter. In particular,
we will wish to confirm the scheme’s strong ability for differentiating between single-mode,
few-mode and multi-mode regimes.



Chapter 8

Phase-Sensitive Experimental
Characterization

8.1 Introduction

In the previous chapter, we have investigated several schemes to stabilize the measured fringe
phase and chosen a method based on correcting the phase data in the device under test with
that obtained in a nearby reference channel. In particular, numerical studies have revealed
that this scheme has two main consequences: (i) the correction of the phase drift caused by
environmental instabilities, and (ii) the near-perfect cancellation of the geometric phase shift
accumulated as the sources are scanned.

In this chapter, we will present the experimental realization of this scheme and the results
obtained with the new two-detector phase correction system. In particular, we will pay special
attention to the effects predicted by numerical simulations and to the large improvement
in phase coherence time obtained with this extension to the experimental system. More
generally, the work described in this chapter culminates in the measurement of the DRF
phase, in addition to the measurement of the DRF amplitude performed in Chapter 6. In
other words, we describe a major achievement: the complete measurement of the DRF of
infrared detectors over a wide range of modal behaviors. As we discussed in Chapter 2, such
measurements of the DRF complex amplitude allows us to fully characterize the optical
response of the device under test.

The first objective for this chapter is to describe our implementation of this experimental
system extension, and to discuss what improvements were achieved with the extended
experimental system. Once fulfilled, the main goal is to perform the first measurements
of the DRF’s phase, for a wide range of behavior for single-mode, few-mode and multi-
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Fig. 8.1 Schematic drawing of extended experimental system, with a reference channel
constructed using a reference fiber and amplified detector (yellow).

mode systems. We will seek to leverage simple numerical simulations, as well as those
presented in Chapter 7, to gain valuable insights into the strengths and limitations of the
phase stabilization system, for instance any remaining variability in the phase measurements.
Further improvements to the experimental system can then be discussed, two of which we
will implement: reducing the distance between the signal and reference channel fibers, and
varying the distance between the source and detector planes.

Section 8.2 describes the extension of the experimental system in detail, from the speci-
fications of the reference channel detector to the custom parts required for the realization
of the scheme. In Section 8.3, we present a first set of experimental results, including a
characterization of the hours-long phase coherence time obtained and its robustness against
vibrations of the optical table. In Section 8.4, we numerically investigate the planar phase
slope observed experimentally, and whether it originates as part of the geometric phase
factor that the two-detector phase correction method does not rectify. Section 8.5 describes a
further improvement of the phase correction scheme, based on the use of fiber arrays where
neighboring fibers are densely packed. The repeatability of fringe phase measurements is
discussed in Section 8.6; in particular, we explore the effects of variability in the source
height. In Section 8.7, we investigate the effect of changing the distance between the source
and detector planes, and how the amount of useful information in the DRF can be maximized
by choosing an optimal distance.

8.2 Extension of Experimental System

Figure 8.1 shows the extended experimental system, and can be compared to the diagram of
the single detector system in Figure 4.2 in Chapter 4. A second detector is added and coupled
to an open-ended length of optical fiber; its signal is amplified and converted into a digital
signal by an ADC. This extension clearly leaves a significant majority of the experimental
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Fig. 8.2 Two-detector holder mounted on the manual stage, with two optical fiber patch
cables’ connector ferrules secured.

system unaltered, and the fringe phase correction will be obtained from post-measurement
analysis of the two channels. In this section, we present the technical details of this extension.

A Thorlabs PDA20CS-EC variable-gain amplified InGaAs photodetector was added
to serve as the reference channel detector. As it contains a transimpedance amplifier with
gain factor up to 70 dB, an external amplifier is not required, contrary to the DET01CFC
photodetector that will be used for the signal channel. On the other hand, their responsivity
at 1550 nm wavelength is nearly identical, as the photodiode is based on a similar InGaAs
architecture. While the detector is coupled to free-space using a flat glass window, an adapter
can be used to mount flat-faced FC/PC and angled FC/APC fiber connectors. This adapter
is designed such that the photodiode diameter is larger than the size of the divergent input
beam from the coupled optical fiber. The distance between the optical fiber end and the
photodetector is less than 4.1 mm, such that the e�2-power diameter of the beam is at most
0.8 mm, smaller than the 2 mm diameter of the photodiode: we conclude the power exiting
the coupled fiber is entirely incident on the photodiode surface.

In order to properly secure the two optical fibers coupled to the two detectors, we designed
and manufactured a new holder, shown in Figure 8.2. The structure is essentially shaped
as an L, with 25 mm side length. One side was placed against the manual stage’s vertical
slide and secured to it using a single screw for convenient vertical alignment. The other
side was placed vertically, normal to the sources’ propagation direction, and contains two
holes of diameter equal to 2.5 mm fitting standard connectors ferrules, aligned vertically at a
distance of 10 mm, corresponding to the diameter a standard FC/PC connector. The vertical
arrangement of the two fibers is in line with the optimal configuration studied numerically
in Chapter 7. The two detector fibers’ connector ferrules were inserted in the holes, and
each secured using two orthogonal fastening screws (one vertical and one horizontal) in the
width of the side. We remark that an initial design with one fastening screw was rejected,
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because the detector fibers’ ferrules were found to be able to rotate by several degrees, both
during the tightening of the screws and afterwards, depending on the tension applied to the
connectorized optical fiber. A known issue with such configurations where beams propagate
between large reflective surfaces is optical standing waves [101]. Although none were
measured with our system, some scattering wet-and-dry paper was added on the mounting
structure’s surface to minimize this risk. In this configuration, the only reflective surfaces
facing each other are those of the polished fiber ferrules of the two source fibers and two
detector fibers; each is approximately 1 mm in diameter.

In order to use the two-detector system, we designed and manufactured a custom three-
input ADC adapter card, an extension of the two-input adapter described in Section 5.4.2.
This PCB contains two analog inputs, connected to the relevant pins of the ADC’s input
cable, and one digital input, for the synchronization of the measurements on the two analog
inputs. The ADC chosen in Chapter 5 and used in Chapter 6 was retained: its 250 kS/s
maximum sampling frequency is cumulative over analog inputs, such that in our two-detector
configuration, each channel can be sampled at 125 kS/s. This means that 2.5 kHz-frequency
fringes are measured at a rate of 50 points per fringe period in each channel, far above the
Nyquist sampling requirement.

Our LabVIEW measurement program was straightforwardly extended. The ADC’s
measurement VI was modified to measure the two channels; the synchronization output
signal from waveform generator remains used as the digital trigger for the multi-channel
measurement. The individual waveforms are saved consecutively, the real-time FFT fringe
amplitude and phase extraction process was extended to accept two-channel waveforms,
and the extracted parameters are saved as a concatenated vector. Additionally, comparative
tests were successfully run to confirm that the fringe parameter extraction procedure outputs
results identical to our benchmark post-processing Matlab script applied to each waveform
individually.

8.3 Measuring a Stable Fringe Phase

8.3.1 System Characterization

We recall that the reason for the system extension was the drift in the relative phase between
the experimental system’s two arms, which was measured to be approximately p rad every
3 s, as first observed in Chapter 5 and described in Chapter 7. The metric to evaluate the
improvement obtained with our extended system should be the time stability on the difference
of phases extracted from fringes recorded in the outputs of the two detectors, when the two
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Fig. 8.3 Extracted fringe phase of the signal channel (blue) and reference channel (orange),
and their difference (yellow), for a measurement of 1 MS at 125 kS/s sampling frequency for
each channel, 2.5 kHz phase modulation frequency.

sources are held at a fixed set of positions. In other words, the key characteristic of our
extended experimental system we wish to measure is the coherence time of the fringe phase
after applying the phase correction scheme.

In order to perform this, we can first straightforwardly use the LabVIEW code executed
in Chapter 5 for the characterization of the detector system: it consisted of one continuous
measurement of the detector output, for instance over 8 s to simultaneously record 1 MS at
125 kS/s sampling frequency for each channel. In Figure 8.3, we present such an 8 s-long
simultaneous measurement of the signal and reference channels’ fringe phase, as well as their
difference, which corresponds to the instantaneous corrected phase. The fringe phase was
extracted for blocks of 50 datapoints, corresponding to a 0.4 ms-long phase modulation period.
While each channel’s phase drifts over several radians, the corrected phase is extremely
stable: our phase correction method provides a fringe phase coherence time in excess of 8 s.

We recall that performing such measurements required full utilization of the control
computer’s performance, particularly its RAM. In order to accomplish similar measurements
for longer time periods, we need to find a measurement scheme that is feasible with the
computing resources available. The solution we chose was to perform shorter, 40 ms-long
measurements (i.e. 100 periods of the 2.5 kHz fringe) repeated at fixed time intervals. Note
that LabVIEW contains a particular VI, Wait (ms), that ensures the precise timing between
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Fig. 8.4 Extracted fringe phase of the signal channel (blue) and reference channel (orange),
and their difference (yellow), for measurements separated by 1 s of 5 kS at 125 kS/s sampling
frequency for each channel, 2.5 kHz phase modulation frequency.

the repeated runs, with a 1 ms resolution. Each 40 ms-long measurement is then analyzed
independently, producing one datapoint consisting of the fringe amplitude, phase and offset.
In Figure 8.4a, 100 such measurements are performed at 1 s intervals to obtain the fringe
stability over 100 s; in Figure 8.4b, this procedure was repeated with 36 000 measurements
separated by 1 s. These effectively provide the fringe phase stability respectively for 100 s
and 36 000 s (i.e. 10 hours) with a time resolution of 1 s. Figure 8.4b presents a fringe
stability better than 1 rad over 10 hours. This result shows that our fringe phase correction
scheme provides an enormous improvement over the 3 s observed in Chapter 5. Recalling
that the operating wavelength is l = 1550 nm, this time stability corresponds to an effective
spatial stability of 250 nm over a period of 10 hours.

Additionally, we repeated the measurements we had performed with the single-detector
system in Section 5.6.1, to assess the impact of environmental disturbances. In particular,
we are interested in quantifying how the two-detector phase correction method responds to
these perturbations. We simultaneously measured the two channels’ output over 8 s at the
maximum sampling frequency, meaning 1 MS at 125 kS/s for each channel. As in Section
5.6.1, the data was analyzed by extracting the fringe amplitude and phase for blocks of
data lasting 1 fringe period, i.e. 0.4 ms. The results are presented in Figure 8.5: the fringe
phase for each channel is very disturbed, but the corrected phase is much more stable, with
a variability reduced by a factor 5 for all types of perturbations. This proves that the phase
correction system significantly reduces the effect of environmental perturbations around



8.3 Measuring a Stable Fringe Phase 229

Walking Drumming

Jumping

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

Time /s

Fr
in

ge
ph

as
e

/ra
d

Signal channel
Reference channel
Signal - Reference

Fig. 8.5 Extracted fringe phase of the signal channel (blue) and reference channel (orange),
and their difference (yellow), for a measurement of 1 MS at 125 kS/s sampling frequency for
each channel; the environment was perturbed by walking around the optical table, jumping
next to it and drumming on it for 1 s.

and on the optical table that could result from human activity. We also remark that we can
quantify the sensitivity of the measured fringe phase to perturbations in the individual source
and detector fibers by applying a small vibration to each successively. Perturbations of either
of the detector fibers has no noticeable effect; on the other hand, perturbations of the source
fibers produces variations in the fringe phase, approximately 2 rad in magnitude for both
channels, which are reduced to 0.2 rad variations in the corrected fringe phase.

8.3.2 Experimental Results: Single-Mode Systems

We perform two-source one-dimensional scans using the same procedure as for amplitude-
only measurement sets, in Section 6.2.3. Table 8.1 summarizes the key properties of the
various optical fiber patch cables we will use; those with single-moded behavior will be
investigated in this section, while the few-mode and multi-mode optical fibers will be studied
in Section 8.3.3.

The 2 m-long, single-mode Thorlabs 1550BHP patch cable is used for the signal channel
with the DET01CFC detector and its transimpedance amplifier; the 2 m-long, single-mode,
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Fig. 8.6 Extracted DRF amplitude for single-mode signal and reference channels.

Fiber name Core diameter /µm Numerical
aperture

Number of modes
at l = 1550 nm

Polarization
maintaining

Thorlabs 1550BHP 9 0.13 1 No
Thorlabs PM1550-XP 8.5 0.125 1 Yes

Thorlabs SM2000 11 0.12 2 No
Thorlabs P1-23Z 9 0.19 2 No
Thorlabs P1-32F 9 0.26 4 No

Thorlabs FG050LGA 125 50 0.22 No
Table 8.1 Properties of the various 2 m optical fiber patch cables used as interchangeable
mode filters for the photodetector

polarization-maintaining Throlabs PM1550-XP patch cable is used for the reference channel
with the PDA20CS-EC amplified detector. The fringe amplitude patterns are measured
for the signal and reference channels simultaneously, and shown in Figures 8.6a and 8.6b
respectively, as functions of the right and left source positions, xR and xL, relative to their
on-axis positions, xc

R and xc
L. The results are qualitatively identical to those obtained in

Section 6.4.1, but with some quantitative differences because the vertical alignment with
the sources is not identical, as the sources’ scanned position set is approximately midway
between signal and reference channel heights.

Figures 8.7a and 8.7b show the phase data extracted from the fringes recorded by the
signal and reference detectors, respectively. These extracted fringe phase datapoints are not
individually true DRF phase values, as the fringe phase drifts randomly for approximately
0.75 s between each measurement, corresponding to an estimated 0.5 rad average angular drift.
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Figure 8.7c shows the element-wise subtraction of the extracted fringe phase of the reference
channel from the signal channel: we obtain the so-called corrected fringe phase, with an
obvious structure. Figure 8.7d shows the corrected phase after a 2p-period phase unwrapping
procedure, based on applying Matlab’s unwrap function, consecutively along xR and xL. We
obtain a near-perfect plane, with a phase difference of approximately 60 rad between adjacent
corners of the triangular DRF matrix. In Figure 8.7e, we perform a least-square fit on the
same unwrapped, corrected fringe phase data with a planar functional form

f = p00 + p10(xR � xc
R)+ p01(xL � xc

L), (8.1)

where we retrieve the slope coefficients p10 and p01 along xR and xL, and the phase offset
p00 at (xR,xL) = (xc

R,xc
L) µsteps. The fitted slope coefficients are similar but not identical; the

origin of this fringe phase plane and its small asymmetry will be discussed in Section 8.4.
After having fitted the planar functional form, it can be subtracted from the fitted corrected
phase data. This procedure reveals an underlying structure, which is nearly constant, as
shown in Figure 8.7f. Further investigation is needed to confirm whether this remaining
pattern is the true phase structure of the device’s DRF (or more precisely, the difference
of phase patterns of the signal and reference channel detector systems), or if it is due to
additional non-planar contributions that were not cancelled by our plane fitting procedure.
This study is performed with simulations in Section 8.4.

8.3.3 Experimental Results: Few-Mode and Multi-Mode Systems

We repeat the same measurement set with the 2 m-long Thorlabs P1-23Z few-mode fiber
patch cable (lc ⇡ 2.3 µm cut-off wavelength) on the signal channel; the reference channel
fiber remains the Thorlabs PM1550-XP polarization-maintaining optical fiber. The signal
channel’s amplitude is approximately identical to the results obtained with the single-detector
system, in Section 6.4.2. The DRF’s phase component is best represented for the two-
dimensionally unwrapped, corrected fringe phase with the planar fit subtracted, shown in
Figure 8.8: we observe a p rad phase difference between the nearly constant regions in the
center and the anti-diagonal corners. In Figure 8.8, we plot the lines where the xR- and
xL-gradients of the signal channel fringe amplitude are equal to zero: the circular lines in the
anti-diagonal corners correspond perfectly with the boundary of the phase-reversal. This is a
clear characteristic of few-mode behavior. It is important here to note that we use the xR- and
xL-gradients as proxies for finding the zero-amplitude lines, which correspond to where both
gradients are zero simultaneously.
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(d) 2-D unwrapped phase
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(e) Planar fit of the 2-D unwrapped corrected
fringe phase
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Fig. 8.7 Extracted DRF phase for single-mode signal and reference channels.
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Fig. 8.8 Corrected DRF phase for few-mode signal fiber; the black/red lines correspond to
the zeros in the xR- and xL-gradients of the signal channel fringe amplitude.

Lower variability over the regions of nearly constant phase can be obtained when, instead
of subtracting the planar fit from the signal channel’s unwrapped corrected fringe phase, we
directly subtract the two-dimensionally unwrapped, corrected phase matrix measured with
the single-mode optical fiber (i.e. the data represented in Figure 8.7f). The resulting matrix
is shown in Figure 8.9. The fact that lower variability over the quasi-constant regions is
achieved, which we view as a metric for the quality of the DRF’s measurement, also implies
that the phase slope is very stable over time. Indeed, given that the measurements with the
few-mode and single-mode fibers, presented in this section and Section 8.3.2 respectively,
were performed one week apart, we can infer that the phase slope is stable over at least this
amount of time.

The same measurement procedure is repeated with the signal channel detector coupled to
a 2 m-long Thorlabs FG050LGA step-index multi-mode optical fiber patch cable, with core
radius a = 25 µm and numerical aperture NA = 0.22. This optical fiber was used in Section
6.4.3; the amplitude pattern obtained with our two-detector system is qualitatively identical.
Using Matlab’s unwrap method twice on the corrected fringe phase, consecutively along the
horizontal and vertical axes, generates poor results with horizontal bands that differ from the
neighboring bands by 2p rad multiples, as shown in Figure 8.10. A more complex method
is needed to deal with the combination of the planar phase slope and the underlying phase
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Fig. 8.9 Two-dimensionally unwrapped, corrected DRF phase for few-mode signal fiber; the
single-mode two-dimensionally unwrapped corrected DRF phase has been subtracted.

structure, which appears to be structured in diagonal bands of roughly constant width. We use
the unwrap_phase method [116] that relies on a quality-guided path unwrapping algorithm,
in which the two-dimensional path is allowed to be discontinuous [117]. The results obtained
when applying this unwrapping function to the multi-mode phase data corrected with the
single-mode phase data clearly show diagonal bands with p rad phase jumps between these
regions, without the artificial horizontal bands that plagued our initial method. Rather than
performing a least-squares fit for a planar function, which would be limited by the fringe
phase’s diagonal structure, we subtracted the unwrapped corrected fringe phase obtained with
the single-mode signal channel in Section 8.3.2. Figure 8.11 shows the output of this method
for the same dataset as in Figure 8.10, after the some additional manual 2p rad modifications.
The dataset is shown with superimposed lines representing the locations where the xR- and
xL-gradients of the signal channel fringe amplitude are equal to zero. This result is much
more convincing than Figure 8.10, devoid of artificial horizontal bands, and clearly illustrates
how the regions of near-constant phase are delimited by lines where the fringe amplitude
is equal to zero. This behavior observed in the diagonal amplitude and phase structure is a
distinctive feature of a system’s multi-mode behavior, demonstrating that our experimental
system has the capacity to characterize highly multi-mode devices.
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Fig. 8.10 Corrected DRF phase for multi-mode signal fiber; two-dimensionally unwrapped
and planar least-squares fit subtracted.

8.4 Numerical Study of the Phase Slope

While we have found post-measurement tools to subtract the large phase slope observed in
the measured DRF as sources are scanned, its origin needs to be investigated. We suggest
several possible mechanisms:

1. Imperfect definition of source beampattern centers: the assumed values for the on-axis
position (xc,yc

) of each of the sources are inaccurate;

2. Misalignment of one or both sources: the small misalignment of the sources charac-
terized in Section 6.3.2 contributes to the phase slope, individually or collectively or
both;

3. Difference in position between detectors: the known position difference between the
two detector fibers produces a contribution to the phase slope;

4. Misalignment of one or both detectors: the experimental imperfections of the two-
detector system means that either or both of the detector fibers are slightly misaligned;

5. Misalignment of one or both source scanning planes: the experimental imperfections
of the sources’ respective scanning systems imply that the plane over which they are
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Fig. 8.11 Corrected DRF phase for multi-mode signal fiber; the corrected SM phase is
subtracted, and the result is 2D-unwrapped (using unwrap_phase) and improved manually;
the black/red lines correspond to the zeros in the x- and y-gradients of the signal channel
fringe amplitude.

scanned (for a fixed z value) are not identical, and slightly rotated with respect to the
detector plane.

We can use the simplified simulation framework developed in Chapter 7, which assumed
the detectors and sources as point-like objects with spherical phasefronts, in order to simulate
the corrected fringe phase patterns as the sources are scanned. This simplification means that
a translation of the source or detector position is equivalent to an angular misalignment. In
the enumeration at the beginning of this section, cases 2 and 4 can therefore be identified
with cases 1 and 3. Three classes of imperfections are tested, namely the cases 1, 3 and 5 in
the list. In Section 7.3.2, we had obtained the following form for the difference of measured
phases between two detectors, labeled A and B:

fAB = arg(DA
mn)�arg(DB

mn)

= [k|rrrn � rrrA|� k|rrrm � rrrA|]� [k|rrrn � rrrB|� k|rrrm � rrrB|] . (8.2)
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Using this formalism, we can simulate the effect of various misalignment types. For sim-
plicity, we consider cases where only a single imperfection is applied. The base configuration
is:

• The detectors, labeled A and B, are placed at positions defined by the vectors rrrA/B =

(xA/B,yA/B,zA/B) = (0,⌥5,100) mm;

• The right and left sources, labeled R and L, are placed at positions defined by the
vectors rrrc

R/L = (xR/L,yR/L,zR/L) = (0,0,0) mm;

• The right and left sources are scanned in the directions ŝssR/L = (1,0,0), i.e. along the
x-axis, with a step size equal to 2 mm.

The latter two statements imply that the right and left sources are scanned over the position
pairs (xR,xL) 2 {�15mm,�14.8mm, ...,15mm}2, with yR = yL = zR = zL = 0 mm. In this
configuration, the corrected fringe phase is 0 at all source position pairs. Note that these
values are again chosen to replicate the configuration of the experimental system.

We can then investigate the various imperfections relative to the base configuration: a
change of detector A and/or B’s position rrrA/B, a change of source R and/or L’s center position
rrrc

R/L, or a rotation of source R and/or L’s scanning direction ŝssR/L . In Figure 8.12a, we show
the corrected fringe phase pattern when detector A is displaced by 0.05 mm along the x-axis: it
forms a plane with equal and positive slopes along xR and xL, with a 60 rad difference between
the corrected fringe phases at (xR,xL) = (0,0) µsteps and (xR,xL) = (300000,300000) µsteps.
In Figure 8.12b, the detector A is displaced by 1 mm along the z-axis: the corrected fringe
phase pattern has the form of a saddle, with a 40 rad difference between the corrected fringe
phases at (xR,xL) = (0,0) µsteps and (xR,xL) = (±300000,0) µsteps, and -40 rad difference
with (xR,xL) = (0,±300000) µsteps. Using the same procedure for all possible unique
imperfections, we summarize our results in Table 8.2.

These observations provide a large range of behaviors, even from unique imperfections.
Some combinations would lead to the observed plane with slightly different slopes along xR

and xL, such as an increase in xA and a small rotation of ŝssR about ẑzz. The orders of magnitude
of the example cases are also sufficient to explain the measured experimental phase slopes.
We therefore conclude that the observed phase slope is of geometric origin.
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(a) Detector A’s position along the x-axis is xA = 0.05 mm, instead of xA = 0 mm
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(b) Detector A’s position along the z-axis is zA = 101 mm, instead of zA = 100 mm

Fig. 8.12 Simulated corrected DRF phase pattern for point-like sources and detectors, with
small deviations from the base configuration.
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Fig. 8.13 Diagram of an 8-channel fiber array, modified from manufacturer’s documentation.

8.5 Fiber Arrays

8.5.1 Characteristics of Fiber Arrays

In previous sections, we have successfully implemented a phase stabilization method based
on a second optical fiber and detection system constituting a reference channel, placed near
the original fiber-coupled detector system, which can be viewed as the signal channel. While
this has allowed us to measure the phase of the DRF with a good accuracy, these results
remained limited by the large geometric phase slope observed, which needs to be subtracted.
In addition, we will investigate variability in the measured corrected fringe phase in Section
8.6, and show that it is highly dependent on the distance between the signal and reference
fiber channels. The goal of this present section is to describe further improvements obtained
by using fiber arrays, in which the distance between neighboring fibers is substantially
reduced.

The main insight is that, by reducing distance between channels by a given factor, we
expect to obtain a decrease in the geometric phase slope by the same factor. Indeed, using the
simulation framework introduced in Section 8.4 and repeating it with the base configuration
of the detectors labeled A and B at positions rrrA/B = (0,⌥0.065,100)mm respectively, rather
than rrrA/B = (0,⌥5,100)mm, we observe an 80-fold decrease in the effects summarized in
Table 8.2.

We chose to use custom-made fiber arrays, with densely packed optical fibers placed
at 127 µm distance [118]. The fiber arrays are built from a borosillicate glass wafer with a
structure of “v”-shaped grooves in which the coating-stripped optical fibers with 125 µm
diameter are slotted; a glass lid placed on top of the fibers firmly secures them in the v-
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grooves. The entire structure has a width of 2.5 mm, a length of 10 mm and a height of
2.5 mm; the dimensions of the various components are described in further detail in Figure
8.13. The pitch between the neighboring fibers’ cores is 127 µm with accuracy better than
1 µm; it is limited by the concentricity of individual fibers’ core with their cladding, rather
than the v-groove structure precision. The angular precision, i.e. the angular misalignment
of each individual fiber beam with respect to the target direction, is better than 1°.

Two fiber arrays were used. The first has 8 identical Corning SMF-28e single-mode
fibers, with 9 µm core diameter and 125 µm cladding diameter, identical to the Thorlabs
1550BHP used in Section 8.3. The 8 individual pigtails are numbered 54 through 61. The
second array has 4 fibers, in following order: a single-mode Corning SMF-28e, a few-mode
Thorlabs SM2000, another single-mode Corning SMF-28e, and a multi-mode Thorlabs
FG050LGA. In this second array, with few-mode and multi-mode fibers, we chose the few-
mode Thorlabs SM2000 fiber rather than the fluoride-based ZrF4 and InF3 fibers, which were
also investigated in Section 8.3.3. This choice is made for manufacturing purposes: fluoride
fibers are significantly more fragile, and arrays incorporating such fibers have not been
produced in the past and would have required a long study phase by the manufacturer. This
would have applied even to unstripped, 250 µm-diameter fibers, as well as the fiber stripped
down to the cladding with 125 µm diameter. As previous results in Chapter 6 did not show a
significant qualitative difference between the Thorlabs SM2000 and the fluoride-based fibers,
we chose the former.

Several alternatives to fiber arrays were considered but ultimately rejected. One of these
was a fiber bundle, produced by various companies: several optical fiber cores are embedded
into a single large-diameter cladding layer, and split after several centimeters into individual
connectorized pigtails. These fan-out fiber bundles have many applications in spectrometry.
The main motivations for rejecting these are:

• the lack of customization possibilities: the available fiber cores did not have the same
behavior as the fiber patch cables used in Chapter 6 and Section 8.3, meaning that
results would not be directly comparable;

• the lower manufacturing precision: the pitch between fiber cores is specified to within
10 µm only, and manufacturers are not able to provide specifications on the potential
misalignment between the fiber cores.

An additional custom part is needed to reliably mount the fiber array to the manual stage.
We designed and manufactured this structure based on a rectangular bloc of aluminum with a
rectangular groove; its dimensions are chosen precisely such that it is just large enough to
fit the array. Two plastic strips are used to clamp the fiber array in the rectangular groove.
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(a) Bare array (b) Array in holder

Fig. 8.14 8-channel, single-mode fiber array and its custom holder.
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Fig. 8.15 Single-source beampattern measurement of a single-mode fiber in the fiber array,
with least-squares fit of Gaussian function.

Each is secured with two small screws to the aluminum structure: one to clamp down the
lid of the array, the other to secure the set of individual fiber leads inside the groove. The
dimensions of the aluminum bloc and plastic strips were chosen precisely to secure the array
without damaging it. Figure 8.14 shows the fiber array with 8 identical single-mode fibers
and the custom holder we fabricated. The small lines visible in the middle of the array
wafer in Figure 8.14b are fibers in the v-groove structures. The fiber array is placed inside
the rectangular groove such that the fibers are aligned vertically, in line with the vertical
configuration of Section 8.2.
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8.5.2 Experimental Results: Single-Mode Systems

We aligned the fiber array using a set square, by ensuring the top surface of the holder is
orthogonal to the vertical surface of the manual stage. The precision of this arrangement
is expected to be better than 1°. Two fibers from the array are selected and used for the
signal and reference channels respectively; we later found that these fibers are neighbors,
meaning that their core-to-core distance is 127 µm. The first is used for the signal channel
with the PDA20CS amplified photodetector at 70 dB amplification; the other is chosen for
the reference channel and fed into the DET01CFC photodetector, with its amplifier set to
G = 107 V/A gain factor. Apart from this change of detectors used for the two channels, all
other settings are identical to Section 8.3.2.

We first proceeded with single-source beampattern measurements, in part to calibrate
the sources’ on-axis positions, as the new holder secures the optical fibers at a different
position with respect to the manual stage’s vertical plate, compared to the former holder
with 10 mm distance between fiber cores. The beampatterns observed deviate from their
expected Gaussian shape, mostly for the source positions at which the signal is greater than
the beampattern’s half maximum. Figures 8.15a and 8.15b show these small distortions for
scans of the left and right source, respectively. Wrapping the fiber tightly around a mandrel,
such as the 40 mm-diameter cylinder used to suppress the few-mode Thorlabs SM2000
fiber’s second mode in Section 6.4.2, does not reduce the distortions observed. The way
we understand the distortions to the expected Gaussian shape is that the electromagnetic
behavior of the optical fiber’s surface has been changed by the borosilicate v-groove structure
in which it is set, compared to the concentric 127 µm bore size ceramic ferrule it was epoxied
into in the case of connectorized optical fiber patch cables, such as those used in Section 8.3.
In the v-groove, the surface of the stripped fiber’s cladding layer is exposed: small sections
are in contact with the borosilicate glass v-groove and lid structures, while the majority is in
direct contact with air from the v-groove’s gap. In an FC/PC connector, the entirety of the
stripped fiber’s cladding outer boundary is covered with high refractive index epoxy with a
maximum thickness of 2 µm and tightly fitted inside the optically opaque ceramic ferrule.
Not only does the fiber array allow for additional radiation input through the air-cladding
boundary, the circular symmetry of the medium outside the cladding layer is also broken.
However, we conclude that the beampattern distortions are an intrinsic part of the system’s
optical response, which EAI is fully capable of measuring.

Figure 8.16a shows the DRF amplitude for a two-source fringe scan, measured with
the same settings as in Section 8.3.2. It displays an amplitude pattern almost identical to
that measured with the single-mode fiber patch cable, in Section 8.3.2, and in line with the
results presented with the same optical fiber in the single-detector system in Section 6.4.1.
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(a) DRF amplitude
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(b) DRF coherence

Fig. 8.16 Measured DRF fringe amplitude and coherence of single-mode fiber in array.
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Fiber number p10 (⇥10�6
) p01 (⇥10�6

)

59 7.193 -6.510
61 -6.885 6.036
58 35.00 -31.92
57 13.73 -12.44
56 27.95 -25.49
55 20.95 -19.07
54 41.89 -38.38

Table 8.3 Fitted corrected fringe phase parameters for 8-channel single-mode fiber array,
with fitting function f = p00 + p10(xR � xc

R)+ p01(xL � xc
L) defined in Equation (8.1)

The measured reference channel’s DRF is qualitatively similar. The signal channel DRF’s
coherence matrix is presented in Figure 8.16b. We observe a constant pattern, characteristic of
single-mode devices. This confirms that, while the single-source beampattern measurements
produced distorted Gaussian shapes, the behavior of the detector under test remains single-
mode.

Figure 8.17a shows the near-planar phase pattern. Performing a least-squares fit to a
planar functional form in Equation (8.1), we obtain the linear coefficients of the plane,
p10 = 7.193⇥10�6 rad/µsteps and p01 = �6.510⇥10�6 rad/µsteps. These are smaller than
those measured in Section 8.3.2 using the two-detector system at d = 10 mm distance, p10 =

9.092 ⇥ 10�5 rad/µsteps and p01 = �1.199 ⇥ 10�4 rad/µsteps. This reduction is however
not by the factor 80 that we had expected. We also remark that the slope coefficients
along xR and xL again have different magnitude, but their comparison has changed. Figure
8.17b is similar to Figure 8.17a, but the plane obtained by a least-squares fit on the data is
subtracted. We clearly see that the fringe phase pattern is almost flat, and that the largest
deviations of magnitude approximately 0.5 rad correspond to datapoints obtained with low-
SNR measurements. Some small structure of magnitude within ±0.1 rad can be observed. It
has strong qualitative similarities with the structure observed when using the two-detector
system with 10 mm core-to-core pitch in Section 8.3.2, for instance in Figure 8.7f. This
observation strongly suggests that the structure observed is a nonlinear remnant of the
geometric phase slope, after the linear contribution has been subtracted.

By repeating these two-detector measurements using various fibers for the signal channel,
while keeping the reference channel fiber identical, we can obtain a table of least-squares
fitting parameters to the planar model in Equation (8.1), presented in Table 8.3. In the
two-fiber system described in Section 8.3.2, we had seen that a positive slope in xR, i.e.
p10 > 0, and a negative slope in xL, i.e. p01 < 0, corresponded to the signal channel fiber
being below the reference channel fiber. From this information, we observe that the slope
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(a) DRF phase, corrected with phase of neighboring single-mode fiber
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(b) Corrected DRF phase with planar least-squares fit subtracted

Fig. 8.17 Measured DRF phase of single-mode fiber in fiber array.
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54 58 56 55 57 59 60 61 y

Bottom Top

Fig. 8.18 Order of labeled fibers in array.

parameters are proportional to the distance between the chosen channels’ fiber cores, and
we deduce the vertical order of the 8 single-mode fibers in the array. Figure 8.18 shows the
inferred configuration of the fiber array. More generally, we remark that the phase slope’s
proportionality to the distance between channels’ fibers further confirms that the phase slope
is geometric, as suggested by the simulations performed in Section 8.4.

8.5.3 Experimental Results: Few-Mode and Multi-Mode Systems

We can repeat the same measurement procedure using the fiber array containing the few-mode
and multi-mode fibers, starting with the few-mode Thorlabs SM2000 fiber, which has a cutoff
wavelength of lc ⇡ 1.7 µm. Finding which of the single-mode fibers is located between the
few-mode and multi-mode fibers can be done by comparing the phase slope fit coefficients as
in Section 8.5.2, or by straightforwardly following the fiber to the corresponding connector.
This center single-mode fiber is used for the reference channel, while the few-mode fiber
is used for the signal channel; all other settings are identical to Section 8.5.2. Figure 8.19a
shows the measured DRF’s amplitude, which has a slightly oval shape, characteristic of
few-mode behavior; the DRF’s coherence matrix also decreases from a value close to 1 along
the diagonal towards 0 at the anti-diagonal corners. In Figure 8.19b, we present the corrected
fringe phase. We again observe a clear reduction in the phase slope, compared to those
obtained with the same fibers in patch cables at 10 mm core-to-core pitch, in Section 8.3.3.
Contrary to this latter case, we do not observe the phase-reversed region nor the corresponding
zero-amplitude line. However, the fringe amplitude pattern is slightly ellipsoidal and the
fringe coherence decreases to values close to zero at the anti-diagonal corners. Together,
these observations indicate that a second mode is present in the measured DRF, but that its
relative responsivity is lower than in Section 8.5.3.

We then turn to using the multi-mode fiber for the signal channel, and keep the center
single-mode fiber for the reference channel. We perform the same measurement set under
otherwise identical conditions. Figure 8.20a presents the measured DRF’s amplitude: its
diagonal structure is characteristic of multi-mode behavior. Its coherence matrix has the
same structure: the band closest to the center reaches a value of 0.37, constant along its
entire length, and the local maxima decrease towards the antidiagonal corners. In Figure
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(a) DRF amplitude
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(b) DRF phase, corrected with phase of neighboring single-mode fiber

Fig. 8.19 Measured DRF amplitude and phase of few-mode fiber in fiber array.
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8.20b, we present the corrected fringe phase; using the unwrap_phase method discussed
in Section 8.3.3 was not necessary here, as the geometric phase slope is small and does
not interfere with Matlab’s standard unwrap method. We again observe diagonal bands of
quasi-constant phase, with p rad differences between neighboring bands; their boundary
correspond to zero-amplitude lines, as in Section 8.3.3.

Our observations in both few-mode and multi-mode cases confirm our expectation that
reducing the distance between the optical fibers corresponding to the signal and reference
channels has greatly reduced the geometric phase slope. We argue that this amounts to an
improvement to the quality of the measured fringe phase patterns, as it relies less on accuracy
of post-measurement operations. More importantly, they confirm the insights discussed in
Section 8.3 into the differences between the single-mode, few-mode and multi-mode behavior
of fiber-coupled photodetector’s modal behavior.

8.5.4 Synthesizing DRFs by Summing Measured DRFs

We can now ask whether summing the DRFs from two separate detectors synthesizes a multi-
mode DRF. Our intuition starts from recalling that multi-mode DRFs can be diagonalized
as incoherent sums of fully-coherent modes. If we add two or more DRFs, it remains an
incoherent sum of fully-coherent modes. By carrying out this technique with experimentally
acquired DRFs, we may be able to synthesize DRFs with a larger number of modes than the
summed DRFs individually.

In order to avoid using one channel as its own reference, we can extend our experimental
system to a three detector configuration. One detector serves as the reference channel, and the
two others corresponds to independent signal channels. A third detector is required to realize
this arrangement; we chose a Thorlabs PDA20CS amplified PIN photodiode detector: its
photodiode and amplification electronics are strictly identical to the Thorlabs PDA20CS-EC
detector, and we assume their equal performances are as characterized in Section 8.3.1. We
also require a new multi-input ADC adapter card, in order to measure the three detectors’
outputs simultaneously. We designed and manufactured a custom PCB board that allows the
connection of our ADC’s relevant connector pins to ten BNC cables. Eight are connected to
analog inputs and two to digital inputs, for the synchronization of measurements on analog
inputs. We continue to use the same National Instruments PCIe-6321 ADC, with a 250 kS/s
maximum cumulative sampling frequency: we can therefore set the sampling rate to 80 kS/s
for each channel, producing 32 points per fringe period at a phase modulation frequency of
2.5 kHz.

Using this extended experimental system, we can proceed with the simultaneous mea-
surement of three fiber-coupled detectors. In practice, we use the DET01CFC detector
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(a) DRF amplitude
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(b) DRF phase, corrected with phase of neighboring single-mode fiber

Fig. 8.20 Measured DRF amplitude and phase of multi-mode fiber in fiber array.
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Fig. 8.21 DRF synthesized from addition of two single-mode DRFs.

(and its transimpedance amplifier) as the reference channel detector and the two identical
PDA20CS(-EC) amplified detectors for the two signal channels. In order to obtain the best
results, these detectors are coupled to three optical fibers from the fiber arrays, either the full
single-mode or the few- and multi-mode designs. Figure 8.21 presents the amplitude and
phase of the DRF obtained by adding two single-mode DRFs, with their phase corrected by a
third, single-mode reference channel. There is some ambiguity regarding whether we should
add one DRF to the other without modification or after applying the complex conjugation
operator. Figure 8.22 shows the amplitude and phase of the DRF obtained by adding two
single-mode DRFs, with the second complex conjugated. By adding the unconjugated or
conjugated DRF, we obtain the symmetric and anti-symmetric parts of the DRF sum with
respect to the reference detector. This can be understood by considering how the geometric
phase slope is added without and with complex conjugation: in this configuration where the
phase reference is placed between the two summed channels, complex conjugation inverts the
phase slope. In effect, complex conjugation maps the geometric phase difference to the other
signal channel, such that both signal channels have the same geometric phase contribution
with respect to the reference channel.

We perform a similar measurement set using both few- and multi-mode fibers in the fiber
array as signal channels. In Figures 8.23 and 8.24, we present the amplitude and phase of
the two DRFs obtained by adding a few-mode and multi-mode DRF, with the latter without
and with complex conjugation respectively. Again, the case with the complex conjugation is
qualitatively most resemblant to the original multi-mode DRF, as the maximum amplitude is
attained in the centermost diagonal band. The DRFs’ corrected phase shows nearly diagonal
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(b) DRF phase

Fig. 8.22 DRF synthesized from addition of two single-mode DRFs, after complex conjuga-
tion of the second.

features, but slightly circular towards the extreme xR and xL values. We also remark that the
phase pattern of the conjugated and unconjugated addition cases are different, and do not have
the same boundaries. These are again understood to be the symmetric and anti-symmetric
parts of the DRF sum with respect to the center reference channel.

8.6 Repeatability

8.6.1 Limited Fringe Phase Repeatability

We have demonstrated that the extension to our phase correction scheme has provided an
improvement of the phase stability over time from a few seconds to several hours. This
has allowed us to successfully perform simultaneous measurements of fringe amplitude
and phase for two-source one-dimensional scans lasting up to four hours. In particular,
being able to subtract the corrected fringe phase pattern obtained with single-mode signal
and reference channels from that obtained with a few-mode or multi-mode fiber on the
signal channel has shown that the results have good repeatability, even for datasets recorded
several days apart. However, we also observe that the repeatability is limited not by time,
but rather by the reiteration of the measurement process. For instance, when we repeat the
same scanning strategy of moving the sources at a fixed distance of 10 positions, equivalent
to 40 000 µsteps, with a 10 mm core-to-core pitch, the comparison in Figure 8.25 shows
differences in the corrected fringe phase between scans of up to 1 rad. We may then ask
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Fig. 8.23 DRF synthesized from addition of a few-mode and a multi-mode DRF.

whether this observation is caused by a variability mechanism in the measured corrected
fringe phase, or by some underlying structure that requires finer spatial sampling. In either
case, the goal of the work presented in this section will be to locate the origin of this lack of
repeatability, understand the mechanism causing it and address it to reduce the variability on
our experimental results.

In order to further investigate a potential spatial dependence of the corrected fringe phase,
rather than the temporal stability studied in Section 8.2, we perform a first measurement run,
that will serve as the benchmark when the procedure is reiterated under different settings. We
move the sources to the target position (xR,yR,xL,yL) = (470000,360000,585000,360000) µsteps
where they are next to each other and closest to their respective center values, perform a fringe
measurement of 50 kS at 125 kS/s sampling frequency per channel, move the sources back to
some reference position such as (xR,yR,xL,yL) = (0,360000,0,360000) µsteps, i.e. move
the right and left sources by DxR = 470000 µsteps and DxL = 585000 µsteps respectively,
and repeat this procedure a number of times, chosen to be 50. Doing so with the Thorlabs
1550BHP single-mode optical fiber on the signal channel and the Thorlabs PM1550-XP
polarization-maintaining fiber on the reference channel, the 50 corrected fringe phase values
are distributed randomly over a range of approximately 1 rad, as shown in Figure 8.26. This
indicates that the variability observed in Figure 8.25 is not temporal, but appears as a mea-
surement is repeated identically. In order to compare different measurement runs, the fringe
phase dataset’s range, standard deviation and mean absolute difference (i.e. the mean of the
absolute values of the difference between successive fringe phase datapoints) are computed;
larger values in these metrics imply larger variability.
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Fig. 8.24 DRF synthesized from addition of a few-mode and a multi-mode DRF, after
complex conjugation of the latter.

This same experimental procedure can be slightly modified by choosing different scanning
parameters. Various attempts are made:

• Scanning the right or left source only: the corrected fringe phase variability statistics
are slightly decreased, by approximately 30%;

• Changing the delay time after the movements: the phase variability is considerably
increased for delay times shorter than 0.3 s, in line with the stages’ settling time of
0.2 s, but constant for longer delay times, tested up to 5 s;

• Adding a delay time once the probes have been moved back: the phase variability is
independent of the time spent by the stages at their reference position;

• Changing the number of samples per measurement: between 50 S and 50 kS measured
at 125 kS/s for each channel, the phase variability is independent of the number of
samples recorded;

• Changing the magnitude of the back-and-forth movement DxR/L: the phase variability
increases with the magnitude of the sources’ movement between their target and
reference positions, as shown in Figure 8.27.

We conclude that the fringe phase variability is linked to the movement of the motorized
scanning stages.
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Fig. 8.25 Repeatability of unwrapped corrected fringe phase over three identical scans, during
which the sources scanned at fixed distance of 10 sampled positions.

8.6.2 System Verifications

We continue our investigation by performing various troubleshooting tests. The first of
these is to verify the performance of the motorized slides in their current configuration.
This includes the loads from mounting the three linear stages together, torque from the
extender arm and optical fiber holder, the weight from the fiber patch cable that extends for
approximately 20 cm in length until it rests onto the optical table, as well as any tension
resulting from the fiber being moved as the sources are scanned. Two main aspects of the
slide performance are verified:

• The motorized slides’ positioning precision: The stage plate’s position is measured,
using a mechanical dial gauge with a graduated scale of 1/10 000", i.e. 2.5 µm, as
movements are repeated to the same target position. The repeatability is measured
to be within 1 µm, which corresponds to the manufacturer’s specifications, and is in
agreement with the repeatability measured in Chapter 5.

• The motorized slides’ angular precision: The angle of the slide plate with respect to the
ẑzz direction is measured using a red Helium-Neon (632.8 nm wavelength) collimated
free-space laser illuminating a 45°-angle mirror placed on the horizontal slide’s plate
next to the mounted vertical slide. The laser beam is reflected onto a screen placed at a
distance of 2 m, as movements are repeated to the same target position; the variability
of the reflected dot on the screen is smaller than 1 mm, implying an angular precision
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Fig. 8.26 Corrected fringe phase as the two sources are moved back and forth to their target
position from (xR,xL) = (0,0) µsteps, i.e. DxR = 470000 µsteps and DxL = 585000 µsteps.

better than tan�1
(1mm/2m) = 0.5 mrad. This is in line the manufacturer’s maximal

specifications of 0.349 mrad pitch, 0.08 mrad roll and 0.349 mrad yaw.

Another factor that could contribute to the fringe phase variability is perturbations in the
refractive index of the air between the sources and each of the detector fibers. The refractive
index of air is dependent on the medium temperature t, relative humidity RH and pressure p
[119], so this investigation covers a large variety of phenomena, such as local temperature
fluctuations or air flows. Note that this is not straightforward in the current experimental
configuration, as we are considering the corrected phase, i.e. the fringe phase difference
between the signal and reference channels, for which the optical path of the radiation from
the sources is quite similar. In the case of a single source and detector, the phase change on
the source’s phasefront at a point some distance d away is given by

Df = kDl =
2p
l

dDn, (8.3)

where Dl = dDn is the optical path length variation over the distance d caused by a variation
in refractive index Dn = n f �ni, and ni/ f are the refractive indices of the initial and disturbed
environment respectively. To compute the refractive indices ni/ f , we use the modified Edlen
equation [120, 121].
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Fig. 8.27 Corrected fringe phase statistics over 50 repeated measurement, for different
movement magnitudes.

Considering our initial configuration as (t0,RH0, p0) = (20�C,30%,101.325kPa), we
can compute the phase change caused by perturbations in either of the temperature, relative
humidity or pressure parameters. For (t = 21�C,RH0, p0), Df = �0.378 ⇡ �p/83 rad; for
(t0,40%, p0), Df = �0.0352 ⇡ �p/90 rad; for (t0,RH0,100kPa), Df = �1.42 ⇡ �p/2.2 rad.
While the Df values obtained with reasonable changes in temperature and pressure are of
the order of magnitude required in the naive case of a single source and detector, this cannot
be extended to the two-source, two-detector measurement of the corrected fringe phase. As
the paths from one source to the two detector fibers are nearly identical, such temperature
or pressure differences would imply very large gradients, which are unlikely to occur in a
laboratory environment. For instance, considering the example of a pressure perturbation
from 101.325 kPa to 100 kPa, having such a difference between the detector locations would
imply a pressure gradient of 132.5 kPa/m, whereas pressure gradients responsible for wind
are of the order of 0.1 Pa/m. We therefore conclude that variations in the refractive index of
air in the free-space section of our experimental system are not the origin of the corrected
fringe phase variability.
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8.6.3 Source Height Variability

In order to further investigate the limited repeatability of the fringe phase as the sources are
scanned back and forth to the same position, we want to devise an experimental method to
simultaneously measure the corrected fringe phase and the source height. While repeating
the back and forth movements between a reference and a target position, as described in
Section 8.6.1, we can use a confocal sensor that measures the distance to some surface,
which we choose to be the flat surface of the left source’s extender arm. Confocal sensors
function by focusing polychromatic white light onto a target surface using an optical system
with multiple lenses; by controlling the chromatic aberration, a single wavelength of the
dispersed white light corresponding to a calibrated distance is focused on the surface and
reflected onto a sensor. The confocal sensor used is a Micro-Epsilon confocalDT IFS2401-1,
which is controlled by and feeds back a signal to a Micro-Epsilon IFC2451 controller. Key
specifications of this system include its 10 mm minimum distance to surface, 1 mm range
between the minimum and maximum measured distance, 40 nm resolution and 27° acceptance
angle, which is the maximum angle of the beam to the target surface. The controller provides
integrated software via Ethernet communication to a computer, which allows the user to start
and end measurements as well as control measurement settings. The two most important
are the measurement bandwidth, which we choose to be fixed at a fixed value of 3.33 kHz
rather than an adaptative value dependent on the signal strength, and the low-signal rejection
threshold, which we set to 5%. The confocal sensor is held by a clamp secured on a retort
stand; we choose to place the sensor vertically above the left source’s extender arm when it is
in its target position, xL = 585000 µsteps. Figure 8.28 shows the experimental arrangement.
It is important to note that, while the placement of the confocal sensor in the clamp has a
settling time of several tens of minutes after installing the confocal sensor, it is considered
stable after this period of time.

All experiments use the same procedure: the sources are controlled by our LabVIEW
script with displacement instructions requesting 50 back and forth movements to the same
target position, and the height measurement is manually started on the confocal sensor’s
console as soon as the scan begins. The measurement and analysis of the fringes in the detec-
tors’ outputs is performed as described in Sections 8.6.1 and 8.6.2. The height measurement
dataset corresponds to a list of time and height datapoints, uniformly spaced for analysis
simplicity by 300 ms at the chosen fixed sampling rate of 3.33 kHz, recorded as a text file
and which can easily be read into a Matlab script. This dataset is first cleaned by deleting all
elements where the height is out of range, corresponding to time periods when the source has
moved back from the center position, and is associated with a recorded value of 2147. We
then further clean and split the remaining data by considering only the time periods during
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Fig. 8.28 Experimental arrangement with confocal sensor measuring its distance to the
surface of the left source’s extender; the small bright dot on the extender is the confocal
sensor’s focused beam.

which the time-derivative of the height data is small; an appropriate threshold is set manually
in our data analysis script, and generally has a value of 0.2 nm/µs. Thus, we obtain 50 time
segments, over which the height data is averaged to produce a single datapoint, in one-on-one
correspondance with the 50 extracted fringe phase values. Similarly to Section 8.6.2 with
fringe phase datasets, we can obtain important insight from the measured height variability
datasets by using the range, standard deviation and mean absolute difference of these 50
height values.

Using this system, we obtain three main products: (i) the corrected fringe phase versus
the measurement number, and the statistics of this dataset, (ii) the target surface’s height
versus the measurement number, and the statistics of this dataset, and (iii) the corrected
fringe phase versus the source height, for which we can compute a linear regression to
obtain a correlation measure. We perform a first measurement run using the multi-mode
Thorlabs FG050LGA and polarization-maintaining single-mode Thorlabs PM1550-XP fiber
patch cables respectively as the signal and reference channels, in the two-fiber system
with 10 mm pitch. The sources are placed at their center positions xR = 470000 µsteps and
xL = 585000 µsteps, and the left source is scanned to its home position xL = 0 between each
measurement. Figure 8.29a presents the corrected fringe phase, while the measurements of
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Fig. 8.29 Simultaneous corrected phase and surface height measurement, for 50 consecutive
measurements, with left source moved back to xL = 0 between each. Multi-mode signal and
single-mode reference channels, 10 mm separation.

the confocal sensor height with respect to the left source’s extender arm are shown in Figure
8.29b. The source height range over the 50 measurements is approximately 3 µm, and the
standard deviation and mean absolute difference statistics are similar to those obtained for
the fringe phase, in relative terms. In Figure 8.30a, we show the corresponding corrected
fringe phase and height measurements. We observe a clear correlation between the source
height and the corrected fringe phase.

The same procedure is repeated with the left source is moved to and from the reference
position xL = 485000 µsteps, i.e. DxL = 100000 µsteps, rather than xL = 0 µsteps. In Figure
8.30b, we observe that the range of height measurements is reduced to approximately 1 µm,
outside of one outlier datapoint that corresponds to the first measurement; the range of
corrected phase values is also reduced to approximately 0.4 rad, and the correlation between
the two quantities is less visible than in Figure 8.30a. This same process can be repeated
with both sources moved rather than only the left, in which case the fringe phase statistics are
increased by roughly a factor 2 and the goodness of fit of the linear regression is worsened.
When scanning only the right source and leaving the left source fixed, the corrected fringe
phase shows similar variability while the left source height is constant. We therefore conclude
that the limited corrected phase reproducibility is caused by variability in the source height.
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Fig. 8.30 Scatter plot of corrected fringe phase against confocal sensor distance. Multi-mode
signal and single-mode reference, 10 mm separation. 50 measurements, with back and forth
movement to reference position between each. Line: linear regression of scatter.

8.6.4 Effect of Reduced Two-Detector Pitch

We can now perform the same investigation using the fiber arrays, in which the distance
between the signal and reference channel optical fibers is reduced by factor 80, from 10 mm
to 127 µm. First, we numerically investigate the effect of reducing the core-to-core pitch
on the measured corrected fringe phase, when one source’s location along the y-axis is
imperfect. Assuming point-like sources and detectors at fixed positions, as in Section 8.4,
we can compute the corrected fringe phase when the position of a source along the y-axis
is changed. In Figure 8.31, we show the corrected fringe phase when varying the height
of the left source, yL 2 [0;0.1] mm, for core-to-core pitches of 10 mm and 130 µm. In both
cases, the evolution of the corrected fringe phase is linear with yL; the range of the corrected
fringe phase is decreased 80-fold, from 40 rad for a 10 mm core-to-core pitch to 0.5 rad for a
130 µm pitch.

In order to perform similar experiments to those described in Section 8.6.3, we install
the fiber array with 8 single-mode fibers in its dedicated holder as in Section 8.5.1. We
choose two neighboring fibers to serve as signal and reference channels, numbered 59 and 60
respectively as studied in Section 8.5.2, and couple them to the DET01CFC detector (and
its transimpedance amplifier) and the PDA20CS amplified detector respectively. Again, we
perform 50 simultaneous measurements of the corrected fringe phase and sensor height with
respect to the left source’s extender surface. Figure 8.32a shows the corrected fringe phase
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Fig. 8.31 Simulated corrected fringe phase for yL displacements, for 10 mm and 130 µm pitch
between the signal and reference channel fibers.

repeatability as the left source only is scanned back from xL = 585000 µsteps to xL = 0 µsteps
between measurements and the right source remains fixed. Its range is reduced by a factor 30,
its standard deviation by a factor 40, and its mean absolute difference by 20 compared to the
same measurement with a 10 mm pitch presented in Figure 8.29a. Importantly, these statistics
are identical in datasets obtained when the left source is moved only to xL = 485000 µsteps,
i.e. with a movement of DxL = 100000 µsteps, indicating that the dominating factor is now
caused by a different mechanism, potentially limited by the detectors’ noise. In Figure
8.32b, we observe that the dataset shown in Figure 8.32a no longer has a correlation with the
recorded height variability, even though the latter is similar to what was observed in Section
8.6.3.

Figure 8.33 compares the fringe phase for 3 repeated scans of the two sources at a fixed
distance of 40 000 µsteps, corresponding to an interval of 10 sampled positions, similarly
to the results presented in Figure 8.25. We observe a significantly smaller phase slope
of 0.3 rad over the scanning range, instead of 12 rad, and the repeatability is improved to
within ±0.05 rad over the high-SNR central region and within ±0.5 rad over the entire
range. The latter corresponds to a greater repeatability than even in high-SNR section of the
dataset obtained with a 10 mm core-to-core pitch. Figure 8.34 shows the fringe phase as the
sources are scanned in opposite directions, symmetrically from their center positions. The
observations are identical: the repeatability has been greatly improved by the change from
the 10 mm pitch system to the fiber array with 127 µm pitch.
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Fig. 8.32 Simultaneous corrected phase and surface height measurement, for 50 consecutive
measurements, with left source moved back to xL = 0 between each. Single-mode signal and
reference channels, 127 µm separation.

While the use of the fiber array has allowed us to overcome the phase variability, further
investigation is still necessary to find the origin of the mechanical variability in order to
attempt to solve it. This would allow us to extend the areas of use of the phase correction
method, as placing a reference channel closer than several millimeters may not be feasible in
all applications. We repeated the measurements of height variability using the confocal sensor,
first by comparing the cases when the left source was placed at a height of yL = 0 µsteps and
yL = 1000000 µsteps, corresponding to the extreme top and bottom of its vertical scanning
range. The height variability was significantly better in the latter case, by approximately
a factor 2. In order to further test its dependence on yL, we proceeded with other rounds
of height measurements, but this time with respect to the plate of the horizontal stage. We
observe sub-micron variations, significantly smaller than those measured with respect to the
source extender surface. Together, these observations strongly indicate that, the higher the
surface probed by the confocal sensor, the larger the height variability measured. We also
remark that, during measurements of the height variability with respect to top of encoder-
motor stack, i.e. the highest point in the source scanning system, this conclusion seemed
further confirmed but our observations were limited by a slow monotonic drift in the height
measurement, which we did not attempt to resolve.

In order to test whether this height variability comes from the flexing of the vertical stage
structure with respect to the horizontal stage plate onto which it is bolted, we added custom-
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Fig. 8.33 Repeatability over three identical runs, sources scanned at fixed distance; corrected
fringe phase from two single-mode fibers in fiber array.

made stiffening square brackets. These produced no clear improvement of the repeatability
of height measurements.

Having ruled out all other degrees of freedom, the last possibility is a small rotation of
the horizontal stage’s plate, with the vertical stage firmly secured to it. Under this hypothesis,
the rotation’s effect would be amplified by the distance of the source to the horizontal stage’s
plate; to produce a height offset of 3 µm over a distance of 105 mm, the rotation angle would
have to be 0.03 mrad. There is no straightforward way of checking this more precisely with
our current apparatus than in Section 8.6.2, which gave an upper bound of 0.5 mrad. One
hypothetical arrangement would be to use at least two confocal sensors at different corners
of stage plate, in order to measure much more precisely its height variability.

In conclusion, we have completed our primary objective for this study: the mechanism
causing the variability in the measured corrected fringe phase between scans was found to
be micron-size errors in vertical position. While it was not possible to precisely pinpoint
the origin of this position variability, we have reduced the possibilities to one highly likely
mechanism, sub-degree rotations of the horizontal stage’s plate. Using our two-detector
phase correction method with 127 µm-pitch fiber arrays, we have obtained reduced fringe
phase variability, in line with expectations and results from numerical simulations.
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Fig. 8.34 Repeatability over three identical runs, sources scanned in opposite directions;
corrected fringe phase from two single-mode fibers in fiber array.
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Fig. 8.35 Illustration of the experimental configuration when the distance between the source
and detector planes z is changed, as the sources’ scanning positions (red crosses) are fixed.

8.7 Changing source-to-detector distance

8.7.1 Experimental Results: Single-Mode Array

Up to this point, all of our experimental measurement sets have been performed at a single
distance between the source and detector planes, d = 105 mm. In this section, we investigate
whether the measured DRF is qualitatively and quantitatively different for other distances,
using the same position sets for scanning the sources.

We choose a new distance between the source and detector planes of d = 155 mm, by
moving the detector system and the manual stage it is mounted on back by 50 mm. This is
achieved straightforwardly by securing the manual stage onto the optical table two additional
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mounting holes away from the sources’ motorized stages. The main intuition is that, by
keeping the same scanning range and spatial resolution, we effectively zoom in on the pattern
obtained at d = 105 mm distance. This reasoning is best visualized when considering the
projection of the virtual detector response beam onto the plane of source locations. This
configuration is represented schematically in Figure 8.35, and is valid because the surface
on which the projection of the incident field correlation dyadic with the detector response
correlation dyadic occurs is generic, and its specific choice is left to the user, as discussed in
Section 2.2.2. If the sources’ scanning locations are kept identical and the distance between
the source and detector planes is increased, we effectively probe the detector response over a
conic section with a smaller angle.

We need to carefully recalibrate the virtual source centers, as we know from Section 6.3.2
that the sources have a small angular misalignment: they point slightly inwards horizontally.
The resulting effect is that the virtual centers are further out, i.e. at smaller xR/L values for
the right and left sources respectively. In particular, this implies that more of the scanning
locations can be reached before being prohibited by the physical size of the probes. In
scans with step size Dx = 10000 µsteps, only the center diagonal element is missing; for
Dx = 4000 µsteps, such as presented in Figure 8.36a, the number of missing elements along
the diagonal is brought down from 10 to 3.

We perform single-source beampattern scans using the same settings as in Section 8.7.1,
with the right and left sources successively, which clearly show that we are now focusing
on the center of the beampattern. The measured signal at the outermost positions of the
scan range now has non-zero amplitude. Note that this will also reduce the effect of noise
around zero amplitude, with a direct effect on the measured fringe coherence matrices, where
near-zero single-source amplitude values had led to very large peaks in Sections 6.4.1 and
8.3.2.

Figure 8.36a shows the fringe amplitude pattern, where elements with significant mag-
nitude indeed fill a much larger portion of the recorded DRF matrix. In effect, we have
significantly increased the amount of useful information acquired for a given scanning con-
vention. We also remark that the smaller missing diagonal band allows us to reach many
more position pairs and fill a significantly larger portion of the triangular matrix. Figure
8.36b shows the corrected fringe phase pattern, after subtracting the plane obtained by a
least-squares fit. The pattern is nearly constant, as had been observed in Figure 8.17b, and
is qualitatively similar to the latter with small-amplitude structure along the xR and xL axes.
This indicates that the measured pattern is not qualitatively dependent on the distance d
between the source and detector planes.
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(b) DRF phase, corrected with phase of neighboring single-mode fiber

Fig. 8.36 Measured DRF amplitude and phase of single-mode detector in single-mode array,
at d = 155mm distance.
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8.7.2 Experimental Results: Few-Mode and Multi-Mode Array

We then turn to the case of the fiber arrary containing the few-mode and multi-mode fibers.
We first reproduce the same measurement set at a distance between the source and detector
planes of d = 85 mm, by setting the z-axis position of the sources to z = 20 mm, using either
the few-mode or multi-mode fiber for the signal channel, and the center single-mode fiber
for the reference channel. The results are qualitatively similar to those presented in Section
8.3.3. In particular, the expected zoom-in effect onto the central section of the measured
DRF is not observed. The way to understand this observation is to recall that the few-mode
and multi-mode fibers used have larger numerical apertures than the sources; in effect, the
sources’ numerical aperture are the limiting factor.

The same measurement set is repeated under identical settings, except for a distance
between the source and detector planes of d = 155 mm; this is achieved by moving the
detector’s manual stage back by 50 mm, as in Section 8.7.1. By keeping the same scanning
range and resolution, we again effectively reduce the portion of the beampattern that is
scanned, i.e. zoom into the DRF measured for d = 105 mm. In this manner, we have
again reduced the importance of the center missing diagonal band and recorded more useful
information.

The fringe amplitude pattern of the few-mode fiber is shown in Figure 8.37a. The pattern
is significantly more oval than the few-mode case at d = 105 mm. The slightly concave nature
of the pattern is interpreted as being caused by the non-Gaussian single-source beampatterns,
rather than a true effect of the few-mode behavior. Figure 8.37b shows the fringe phase
pattern for the few-mode signal channel, corrected using single-mode reference channel. In
particular, there is a clear presence of phase jumps with p rad magnitude at the anti-diagonal
corners. This observation is contrary to our intuition of zooming into the pattern obtained
at d = 105 mm distance by moving to d = 155 mm. The phenomenon is therefore more
complex than can be understood with the simplified view of point-like sources probing the
detectors’ virtual beams: the detector response is a two-point correlation function with points
in two-dimensional space, and sources have finite width.

The DRF amplitude pattern of the multi-mode fiber is shown in Figure 8.38a. It is
qualitatively similar to the results obtained in the d = 105 mm case, but is indeed “zoomed
in”. This is particularly visible in the width of the diagonal features. The same is true for
the DRF phase pattern for the multi-mode signal channel, corrected using the single-mode
reference channel, as Figure 8.38b shows. We remark again that we use the single-mode
fiber used for the reference is the one between the few-mode and multi-mode fibers; the
subtracted phase plane therefore has opposite slope coefficients. The results are similar to
the center region of those presented in Figure 8.20b in the case where d = 105 mm. We also
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(b) DRF phase, corrected with phase of neighboring single-mode fiber

Fig. 8.37 Measured DRF amplitude and phase of few-mode detector in few-mode/multi-mode
array, at d = 155mm distance.



270 Phase-Sensitive Experimental Characterization

remark that the centermost diagonal band, in light blue in Figure 8.38b, has a smaller width
compared to the other bands, by approximately a factor

p
2; this indicates that the center

band is qualitatively different from the others.

8.8 Conclusion

We have demonstrated the experimental realization of a robust method for correcting the drift
in fringe phase caused by environmental fluctuations, based on the addition of a reference
channel constructed from a single-mode fiber near the signal channel fiber and coupled to
an amplified detector. We have effectively obtained a fringe phase that is spatially stable to
within 300 nm deviations over several hours, long enough to accurately measure the fringe
phase pattern as the two sources are scanned over finely sampled one-dimensional grids. By
repeating the experimental process described in Chapter 6 with our extended experimental
system, we performed fringe measurements for one-dimensional scans of the two sources
and extracted both the amplitude and phase of the measured detector response. These results
were obtained using single-mode, few-mode and multi-mode detector systems, and confirm
our capacity to differentiate their behavior. In doing so, we have fulfilled the major objective
set out in Chapter 1: we have measured the complex-valued DRF of devices under test,
which fully characterizes their optical response, in a way that is independent of their modal
behavior.

These investigations also brought us to ask whether incoherently summing the extracted
fringe parameters of multiple fiber-coupled detectors measured simultaneously was equivalent
to synthesizing a single detector system with the sum of their modal behaviors. The answer
is yes, but with an important subtlety linked to the fact that the phase correction method
effectively moves the plane of reference of the recorded phase from the plane of sources to
the surface of the reference channel optical fiber. An extended three-detector system, using
one fiber-coupled detector as the reference for two others placed on either side of it, further
confirmed this understanding.

In this chapter, we have also investigated the limit on the repeatability of the fringe
phase measurements. While we were not able to reduce the observed variability, our study
rejected many potential origins and determined that it is most likely caused by small angular
imperfections of the motorized slides’ stages, in particular the horizontal stage commanding
the x-axis.

Finally, increasing the distance between the source and detector planes, we focused on
the substantive part of the DRF pattern. We also used the slight misalignment of our sources
to our advantage, by realizing that the virtual centers of the source scans were divergent and
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(b) DRF phase, corrected with phase of neighboring single-mode fiber

Fig. 8.38 Measured DRF amplitude and phase of multi-mode detector in few-mode/multi-
mode array, at d = 155mm distance.
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that more positions could be attained without having the probes collide. In practice, this
means that the diagonal band of missing data is reduced by at least 60%, and up to the single
center diagonal elements for medium spatial resolution scans.



Chapter 9

Full DRF Reconstruction and Mode
Recovery

9.1 Introduction

In Chapter 8, we made significant progress towards completing our goal of measuring the
DRF of various detector systems. The main limit to the experimental datasets recorded is
the presence of a diagonal band of missing data, caused by the finite size of the probes.
The presence of this diagonal band of unknown elements is not a fundamental flaw of EAI,
but rather a feature of the experimental system; in this chapter, we seek to find numerical
methods to circumvent this issue. Its significance can be reduced by moving further into
the far-field, for instance, with a trade-off between an improved angular resolution and a
decreased signal-to-noise ratio. Moreover, the missing diagonal band means that we are
lacking access to potentially valuable information and prohibits the proper diagonalization
of the DRF to recover its constituent modes, i.e. the spatial patterns of the modes through
which the device under test absorbs incident optical power. These modes are obtained in the
basis of the sampled source positions, but can also be represented in the spatial basis of the
detector surface, as discussed in Chapter 2.

The goal of this chapter is to fully use the datasets produced during numerical simulations
and experimental measurements, in order to attain two objectives sequentially: reconstructing
the DRF to fill the missing diagonal band, and recovering the DRF modes. While several
different missing-band reconstruction schemes were implemented, we discuss in this chapter
the implementation of the most successful method and its application to simulated and
experimental datasets. Other classes of reconstruction methods also exist, such as Maximum
Entropy Methods [122, 123], used among other fields in Aperture Synthesis Interferometry



274 Full DRF Reconstruction and Mode Recovery

[124]. We chose to develop application-specific methods, to fully exploit the structure of
missing elements along the diagonal, rather than spread throughout the DRF matrix.

In Section 9.2, we derive the theory behind this technique, based on partitioning the
measured DRF into 9 rectangular submatrices: two are fully known off-diagonal square
matrices, one corresponds to the fully unknown center square matrix, and the six remaining
contain some unknown elements. Using the singular vectors obtained from the SVD of
the former, we can find the unknown elements in all other submatrices. In Section 9.3, we
investigate the effect of our diagonal filling scheme on the reconstruction of the device under
test’s natural modes, i.e. the reception field patterns through which the device absorbs the
incident optical power. In particular, using simulated DRFs with a large variety of modal
behaviors, we find that the recovered modes are not the projections of the LG modes onto
the set of sampled source positions. The same mode recovery method is then applied to
reconstructed experimental DRF datasets, to extract the modes of the device under test.

9.2 Filling in the Missing Diagonal

9.2.1 SVD-based Scheme

Let D be the measured detector response matrix. D is Hermitian by construction, assuming
symmetry under exchange of the sources, and positive definite in the absence of noise. D
admits an eigenvector decomposition

D = E ·S ·E†. (9.1)

Assume D is an N ⇥ N matrix. We will assume that Equation (9.1) is the reduced
eigenvector decomposition, so if D has M non-zeros eigenvalues, S is an M ⇥M diagonal
matrix with the eigenvalues on the diagonal. E is then an N ⇥M matrix, and

E† ·E = IM⇥M 6= E ·E†. (9.2)

We will ignore the effects of measurement error and noise for now.
We partition D into submatrices using the elements we can and cannot measure, as in

Figure 9.1. All elements of D31 and D13 are known, while all elements of D22 are unknown.
We define k as the number of elements along the half-width of the missing diagonal band,
and we wish to find l, the length of the largest square matrix that can be formed with no
missing elements, labeled D13. The number of elements along the antidiagonal of D22 is at
least k �1 and at most k. Considering the number of elements along the antidiagonal of the
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D21 D22 D23

D31 D32 D33
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N
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elements

Known
elements

Fig. 9.1 Partitioning of the D matrix.

matrix D of sidelength N, we must therefore have

(k �1)  N �2l  k

=) N � k +1
2

� l � N � k
2

=) l =

�
N � k +1

2

⌫
=

⇠
N � k

2

⇡
. (9.3)

We can also partition E in Equation (9.1) with the same divisions:

E =

0

B@
E1

E2

E3

1

CA (9.4)

D =

0

B@
D11 D12 D13

D21 D22 D23

D31 D32 D33

1

CA=

0

B@
E1SE†

1 E1SE†
2 E1SE†

3
E2SE†

1 E2SE†
2 E2SE†

3
E3SE†

1 E3SE†
2 E3SE†

3

1

CA . (9.5)

Similarly, Equation (9.2) implies

E†
1 ·E1 +E†

2 ·E2 +E†
3 ·E3 = IN⇥N . (9.6)
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We now look at the decomposition of D13, which we obtain from Equation (9.5):

D13 = E1 ·S ·E†
3. (9.7)

However, since we have all the elements of D13, we can also find its reduced Singular Value
Decomposition:

D13 = UlV †, (9.8)

where UU†
= I, V †V = I. Critically, the set of vectors formed from the columns of U spans

the same space as the set of vectors formed from the columns of E1. The same is true for the
columns of V and E3.

We now turn to reconstructing D11. We start by showing the structure of U and E1,
obtained above:

U =

⇣
uuu1 uuu2 ... uuuK

⌘
(9.9)

E1 =

⇣
eee1 eee2 ... eeeM

⌘
. (9.10)

Using the fact that vectors formed from the columns of U and E1 span the same space, we
obtain that

eeem =

K

Â
n=1

Tmnuuun, (9.11)

and from Equation (9.5),

D11 =

M

Â
p=1

Speeepeee†
p (9.12)

=

K

Â
m=1

K

Â
n=1

M

Â
p=1

SpTpmuuupT ⇤
pnuuu†

p. (9.13)

But D11 is Hermitian, so we can simplify this result to

D11 =

l

Â
m=1

l

Â
n=m

dmnEmn, (9.14)

where l is the sidelength of D11, as illustrated in Figure 9.1,

Emn = uuumuuu†
n +uuunuuu†

m, (9.15)
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Fig. 9.2 Partitioning of the D11 matrix.

and

dmn =

M

Â
p=1

SpTpmT ⇤
pn. (9.16)

So we use U to generate the basis for expanding D11.

D11 is an l ⇥ l complex Hermitian matrix. Let HN be the set of all N ⇥ N complex
Hermitian matrices. It can be shown that HN is a real inner product space with respect to the
inner product [125]

hA,Bi = Tr
⇥
A† ·B

⇤
=

N

Â
m=1

N

Â
n=1

A⇤
mnBmn. (9.17)

D11 can be split into known and unknown parts, as illustrated in Figure 9.2. The two subsets
of HN with either all of the unknown elements set to zero, or all of the known elements set to
zero, form two disjoint subspaces of HN : the inner product, as defined by Equation (9.17),
of a member from the former with a member from the latter is always zero. Let D0

11 equal
D11 with all unknown elements set to zero; then we can treat D0

11 s a projection of D11 into a
subspace. Further, let f be a function that sets unknown elements to zero, so

D0
11 = f (D11). (9.18)

For notational convenience, we order the Emn so

{E11,E12, ...,Ell} = {E1,E2, ...,EK} (9.19)
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where K is the total number of Emn elements. Then

D11 =

K

Â
p=1

apEp, (9.20)

and

D0
11 =

K

Â
p=1

ap f (Ep) (9.21)

Then taking the inner product of D0
11 with each of the Ei, we obtain the matrix equation

ppp = CCC ·aaa (9.22)

where

{ppp}i = hEi,D
0
11i (9.23)

Ci j = hEi, f (E j)i (9.24)

{aaa} j = a j. (9.25)

We can then use the pseudo-inverse of CCC to find

aaa = CCC�1 · ppp, (9.26)

effectively obtaining the best fit of the matrix D11 with unknown elements using the basis set
of singular vectors of D13. This lets us reconstruct D11. The same procedure with V and E3

can be used to reconstruct D33.

We now wish to reconstruct D12.

D12 = E1SE†
2 = Â

m
Smeee(1)

m eee(2)†
m . (9.27)

So the columns of D12 can be expressed as

D12 =

⇣
Âm c1muuum Âm c2muuum ... Âm cKmuuum

⌘
. (9.28)

Therefore, we can treat each column as a separate vector and reconstruct any missing values
by working out the decomposition coefficients cim from the values we have. The same can
be done for D23.
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We now only have D22 left to reconstruct. At this point, we have D11, D12 and D13. We
can use this to make a full sub-block DS of the matrix D:

DS =

0

B@
D†

11
D†

12
D†

13

1

CA . (9.29)

Then, we can take the SVD of DS,

DS = USlSV †
S , (9.30)

where lS is the diagonal matrix containing the singular values of DS and the columns of US

and VS are respectively the corresponding left- and right-singular vectors. We use the column
vectors of US to reconstruct D in full using the method previously utilized for D11.

9.2.2 Algorithm

We have written a Matlab implementation of the algorithm described in Section 9.2.1.

1. Initialization: load the DRF, choose or find the width of the missing diagonal band k,
compute the sidelength l of the largest submatrix with all elements known, and select a
threshold for small singular value rejection;

2. Partitioning: divide the measured matrix D into 9 submatrices, as in Figure 9.1, and its
matrix of eigenvectors E into 3 corresponding blocks;

3. Creating a basis: perform an SVD on the fully known matrix D13, and keep only large
singular values above the selected threshold;

4. Reconstructing D11: perform the on-diagonal reconstruction method, using the singular
vectors of D13 to fill in the missing diagonal band elements of D11;

5. Reconstructing D12: perform the off-diagonal reconstruction method, using the singular
vectors of D13 to fill in the missing off-diagonal elements of D12;

6. Creating a second basis: create the DS matrix using the construction in Equation 9.29,
perform an SVD on it, and select the left-singular vectors with singular values above
the selected threshold;

7. Reconstructing D: perform the on-diagonal reconstruction method, using the singular
vectors of DS to fill in the missing elements of D.
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We remark that the algorithm described maximizes the information used from the known
elements of the measured D matrix by construction. Contrary to many other schemes, it does
not rely on an iterative process and is therefore immune to convergence issues.

An important step is the suppression of small singular values, obtained in the SVD of D13

and in the SVD of DS. Many possibilities are available for the choice of a threshold, in partic-
ular the choice between an absolute or a relative tolerance, the value of the chosen tolerance,
and whether to apply the same condition to the SVDs of both D13 and DS. Assuming that the
signal-to-noise ratio of the DRF to be reconstructed is high, the singular value spectrum of
the matrices D13 and DS displays two distinct regions with different slopes. The first region
contains relatively large singular values, whose corresponding singular vectors account for
the DRF’s behavior; the second region contains relatively small singular values, whose
corresponding singular vectors account for the noise contributions to the DRF, including
numerical or experimental imperfections in the DRF computation or measurement. Ideally,
the selected threshold suppresses the singular values of the latter category to avoid creating a
basis that partially accounts for noise contributions. As we will see in applications of this
algorithm, the distinction between the two categories becomes harder as the signal-to-noise
ratio decreases.

9.2.3 Application to Simulated DRFs

We first consider the application of our SVD-based missing diagonal reconstruction method
to simulated data. The main reason is that the DRF datasets obtained using simulations are
not contaminated by noise and experimental errors; the only limitation is numerical, but
we have already seen that the machine precision of 10�16 utilized is more than sufficient.
We can study the effect of the additional reconstruction algorithm step, by comparing the
eigenvectors obtained from the (near-)perfect simulated matrix and the reconstructed matrix.
We use simulated datasets presented in Chapters 3 and 7, which assumed a distance of
100 mm between the source and detector planes, and sources scanned over 151 positions
along the x-axis, distributed uniformly over the range x = [�15,15] mm; the sources are
considered to be on-axis along the y-axis, i.e. y = 0 mm.

Figure 9.3a shows simulated DRF using two identical sources, the assumed detector
response is fully-coherent, with D(ri,r j) = LG00(ri)LG⇤

00(r j). The measured DRF simulated
is a 151⇥151 matrix; we apply a phase correction with itself, meaning that the corrected
DRF phase is zero throughout. We apply a diagonal mask with width equal to 10 elements,
in order to replicate the diagonal band of missing data in equivalent experimental datasets.
This partially masked DRF is the original data that is fed into the algorithm, and accurately
represents the configuration we would have in experimental measurement sets, such as those
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(a) Simulated DRF amplitude, with applied diagonal band mask of width equal to 10 elements; the
red lines indicate the boundaries between the 9 partitioned submatrices.
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(b) Reconstructed DRF amplitude.

Fig. 9.3 DRF amplitude of simulated single-mode system, built from LG00 mode.
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Fig. 9.4 Singular Value Decompositions of the D13 and DS matrices, obtained in the recon-
struction algorithm applied to the simulated single-mode DRF built from the LG00 mode; the
red line shows the 0.01 relative threshold selected.

used in Chapters 6 and 8. We obtain an excellent reconstruction, with all features of the
original dataset recovered, as shown in Figure 9.3b. The relative reconstruction error matrix,
defined as

emn =

�����
Dreconstructed

mn �Doriginal
mn

Doriginal
mn

����� , (9.31)

was computed and found to be smaller than 10�10 for all elements of the DRF matrix. For this
DRF, the choice of the threshold for discarding small singular values (and their corresponding
singular vectors) in the SVDs of the D13 and DS matrices is simple. Figure 9.4 shows the
singular value spectrum of these two matrices: only one singular value is non-negligible, and
can be selected with an appropriate threshold, for instance the 0.01 relative threshold shown
in the figure.

Figure 9.5 shows the simulated DRF in the same configuration, but using a two-moded
detector response, obtained using an incoherent sum of the LG00 and LG01 modes: D(ri,r j) =

LG00(ri)LG⇤
00(r j)+LG01(ri)LG⇤

01(r j). The original DRF amplitude pattern was presented
in Figure 3.7a while the original phase, corrected with the single-mode phase, was presented
in Figure 7.15. Again, we can apply a diagonal mask of width equal to 10 elements, as shown
for the DRF amplitude in Figure 9.5a, and proceed with the reconstruction algorithm, using a
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(a) Simulated DRF amplitude, with applied diagonal band mask of width equal to 10 elements
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(b) Reconstruction error

Fig. 9.5 Reconstruction of simulated two-mode DRF, built from the LG00 and LG01 modes.
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relative threshold of 0.01 to discard all negligible singular values. The reconstruction quality
is still excellent, with errors smaller than 3%, as shown in Figure 9.5b; the largest errors are
found along the zero-amplitude lines corresponding to the p rad jump in phase. This was to
be expected because of their near-zero amplitude, where the machine precision is the limiting
factor. Indeed, the simulated DRFs are computed with a 10�10 absolute precision and saved
in files with 5 significant digits; we understand that the large singular vectors therefore pick
up the large-amplitude behavior, while numerical errors on these as well as small-amplitude
elements are bundled into the high-order singular vectors, which are suppressed in our
algorithm when selecting only large singular values. On a more general note, compared
to the single-mode case, the reconstruction quality is not degraded for elements of similar
amplitude.

We repeated the same procedure with a four-moded detector response, simulated using
D(ri,r j) = LG00(ri)LG⇤

00(r j)+LG01(ri)LG⇤
01(r j)+LG10(ri)LG⇤

10(r j)+LG11(ri)LG⇤
11(r j).

The corrected DRF phase pattern was shown in Figure 7.20. The reconstructed DRF am-
plitude is in excellent agreement with the original’s, while the reconstructed DRF phase
presented in Figure 9.6a displays a very slight broadening of the boundary between the
regions of constant phase, compared to the original corrected DRF phase pattern. This causes
the reconstruction error to increase sharply along the zero-amplitude lines, as shown in Figure
9.6b, while remaining significantly below 1% for all large-amplitude elements. Figure 9.7
presents the singular value spectra computed during the reconstruction algorithm: only four
singular value are non-negligible, and can be selected with an appropriate threshold, for
instance the 10�4 relative threshold shown in the figure. The small, quasi-constant offset
factor between the first four singular values of the two SVDs can be explained by the presence
of larger amplitude values in the DS matrix, in which the missing diagonal band is partially
reconstructed.

Finally, we used the same reconstruction algorithm on a simulated highly multi-mode
detector response, namely with 121 modes. While we use the LG modes here, their order
of simulation is the same as that of LP modes, as discussed in Chapter 3. Figure 9.8
shows the amplitude and phase patterns of the reconstructed 121-mode DRF, whose original
amplitude and phase patterns were presented in Figures 3.10a and 7.22 respectively, when a
diagonal mask of width equal to 10 elements is applied. Important qualitative features of the
original DRF are reconstructed, but significant differences arise, including the appearance of
discontinuities at the boundaries between the matrix partitions.

We investigated the nature of the discontinuities at the matrix partition boundaries
observed in Figure 9.8 by considering the sub-block matrix DS, built from the reconstructed
D11, D12 and D13 matrices, as defined in Equation (9.29). We found that the boundary
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(a) Reconstructed DRF phase
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(b) Reconstruction error

Fig. 9.6 Reconstruction of a simulated four-mode DRF, built from the LG00, LG01, LG10 and
LG11 modes with equal sensitivities, with applied diagonal band mask of width equal to 10
elements.
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Fig. 9.7 Singular Value Decompositions of the D13 and DS matrices, obtained in the recon-
struction algorithm applied to the simulated single-mode DRF built from the LG00, LG01,
LG10 and LG11 modes; the dashed lines show the 10�4 relative threshold selected.

between the former pair displays a discontinuity, not the latter pair, as illustrated in Figure 9.9
at xR �xc

R = 20000 µsteps. We understand this to be caused by the on-diagonal reconstruction
method for D11, which relies on the projection of small-magnitude elements onto the column
vectors of the matrix U containing the largest amplitude elements of the matrix D Additionally,
the D11 submatrix has the largest proportion of missing elements, and consequently that
many elements need to be filled in using the limited information contained in the known
elements. The number of missing elements in D11 is particularly dependent on the missing
diagonal width k, increasing linearly from 1% for k = 1 to 50% for k = 20, whereas this
effect is much less pronounced for D12, hence its relative ease of reconstruction: this explains
why the boundary between D11 and D12, rather than D12 and D13, displays a discontinuity
in the case of multi-mode DRFs. Note also that the algorithm’s behavior is analogous if we
reconstruct D13/23/33 instead of D11/12/13: the submatrix D33 then is the one displaying such
reconstruction artefacts.

Figure 9.10 presents the singular value spectra computed during the reconstruction
algorithm. We found that we obtained optimal reconstruction results using a relative threshold
of 10�8, for which the 9 largest singular values are selected. Note that this number is
significantly smaller than the 121 input modes, because the latter are modes over the two-



9.2 Filling in the Missing Diagonal 287

-300 -200 -100 0 100 200 300

-300

-200

-100

0

100

200

300

xR - xc
R /103µsteps

x L
-x

c L
/1

03 µs
te

ps

0

0.2

0.4

0.6

0.8

1

·10�5

Fr
in

ge
am

pl
itu

de
/V

(a) Reconstructed DRF amplitude
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(b) Reconstructed DRF phase

Fig. 9.8 Reconstructed DRF complex amplitude components of simulated 121-mode system,
built from LG modes, with applied diagonal band mask of width equal to 10 elements.
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(a) Reconstructed DRF amplitude
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(b) Reconstructed DRF phase

Fig. 9.9 Sub-block matrix DS, defined in Equation (9.29) and built from the reconstructed
D11, D12 and D13, during the reconstruction of a simulated 121-mode system’s DRF, built
from LG modes, with applied diagonal band mask of width equal to 10 elements.

dimensional spatial basis of the detector surface, but not in the basis of sampled source
positions, as discussed in Section 3.4.3.

When the width of the missing diagonal band is reduced to 3 elements, as is the case in
experimental datasets presented in Section 8.7, where the distance between the source and
detector planes is 155 mm, the reconstructed DRF is very good agreement with the original
DRF. For instance, the DRF amplitude and phase presented Figure 9.11 are obtained with the
same reconstruction parameters as Figure 9.8, and no longer display discontinuities at the
matrix partitioning boundaries. Small additional improvements can be obtained with finer
tuning of the tolerance parameters used to reject small singular values of D13 and DS: this
clearly indicates that our algorithm is limited when the proportion of missing elements in
D11 is high, rather than by an intrinsic inability to deal with the reconstruction of multi-mode
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Fig. 9.10 Singular Value Decompositions of the D13 and DS matrices, obtained in the
reconstruction algorithm applied to the simulated single-mode DRF built from the first 121
LG modes; the dashed lines show the 10�8 relative threshold selected.

DRFs. We conclude that our reconstruction scheme is less accurate as both the number of
missing element and the number of modes increase, i.e. when we attempt to reconstruct a
larger number of unknown elements while having less information available from the known
elements. While the scheme’s performance is degraded for such highly multi-mode DRFs, it
performs very well for the few-mode DRFs, its main target.

9.2.4 Application to Experimental DRFs

We used the same algorithm on DRFs obtained from experimental measurements of the
device under test. In particular, we chose to work with the DRF measurements obtained with
the fiber arrays, presented in Section 8.5. As this data already contains the missing diagonal
band, the diagonal mask is not applied; instead, its width is recovered from the number of
missing elements along the diagonal.

Figure 9.12 shows the result of the reconstruction method on a single-mode dataset,
obtained with the SM fiber array, which was displayed in Figure 8.16a; the measured DRF
phase is corrected with itself, meaning that it is zero throughout. The DRF reconstruction is
very good, with some artificial structure is visible, linked to partitioning of the matrix for
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(a) Reconstructed DRF amplitude
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(b) Reconstructed DRF phase

Fig. 9.11 Reconstructed DRF amplitude of simulated 121-mode system, built from LG modes,
with applied diagonal band mask of width equal to 3 elements.
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(a) DRF amplitude
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(b) Reconstruction error

Fig. 9.12 Reconstructed DRF amplitude of single-mode system, measured experimentally,
with missing diagonal band of width equal to 10 elements.
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the various reconstruction steps. We remark that this artefact appears in only a fraction of
reconstructed single-mode datasets; for instance, reconstructing the DRF amplitude of the
reference channel measured simultaneously to the signal channel presented in Figure 9.12a
does not produce this feature. The reconstruction error, presented in Figure 9.12b, is low.
Note also that a point with lower amplitude, on the centermost diagonal, has disappeared
with the reconstruction method, indicating that it is robust against discrete experimental
imperfections.

We repeat the same procedure with the same dataset, but using the corrected phase with
respect to the neighboring fiber, as shown in Figure 8.17a. The missing diagonal band is
again successfully filled: the DRF amplitude is very similar to that shown in Figure 9.12a,
while the DRF phase is presented in Figure 9.13a. The reconstruction quality is similar to that
of the self-corrected DRF case, presented in Figure 9.12b, showing that our reconstruction
method is able to deal simultaneously with the amplitude and phase of experimental datasets.
Note that the phase slope on the mirrored upper triangle section of the matrix is the transpose
of the phase slope from the original. After the reconstruction, however, this phase slope has
largely disappeared, at the cost of relatively large variations in the DRF phase patterns, up to
0.5 rad. We also note the presence of a discontinuity at the same boundary between the matrix
partitions that displayed a discontinuity in amplitude in Figure 9.12a. We also investigated
the effect of subtracting the plane-like geometric phase prior to the reconstruction, using the
dataset presented in Figure 8.17b. The reconstructed DRF phase is shown in Figure 9.13b,
and is almost constant, with a small structure up to 0.1 rad in magnitude that is similar to
the structure observed before the reconstruction. This quasi-constant pattern is in agreement
with the expected behavior of single-mode systems, and is well reconstructed by our diagonal
filling algorithm. As discussed in Chapter 8, the remaining phase structure has potentially
two contributions: non-planar geometric phase terms that are not subtracted by our planar fit,
and true structure from the device under test’s optical behavior.

We also considered the reconstruction of datasets taken at a distance between the source
and detector planes equal to 155 mm, rather than 105 mm, which were discussed in Section
8.7. For scans using a small step size of 4000 µsteps, the width of the missing diagonal
band is reduced to 3 elements, because of the small converging misalignment of the sources,
discussed in Section 8.7. In Figure 9.14, we present the reconstructed DRF amplitude and
phase patterns for the experimental DRF shown in Figure 8.36a: these are qualitatively
similar to those shown in Figures 9.12a and 9.13b. While we may have expected a higher
reconstruction quality than with datasets having a larger missing diagonal band, we found
that the main contribution to the discontinuities between matrix partitions comes from the
on-diagonal filling of D11, which is only mildly influenced by the change in the missing
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(a) Without phase slope subtraction
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(b) With phase slope subtraction, prior to reconstruction

Fig. 9.13 Reconstructed DRF phase of single-mode system, measured experimentally, with
missing diagonal band of width equal to 10 elements.
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(a) Reconstructed DRF amplitude
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(b) Reconstructed DRF phase

Fig. 9.14 Reconstructed DRF phase of single-mode system, measured experimentally at
155 mm distance between the source and detector planes, with missing diagonal band of
width equal to 3 elements; planar fit of phase pattern subtracted before reconstruction.
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Fig. 9.15 Comparison of the reconstructed DRF matrix’s diagonal with the geometric mean
of corresponding single-source scans, measured experimentally with single-mode signal and
reference channels.

diagonal band’s width from 10 to 3 elements. More generally, the reconstructed DRF is in
excellent agreement with the expected behavior of single-mode systems.

It is interesting at this stage to compare the results of the reconstruction of the single
center diagonal elements with those that could be expected with the geometric mean of
single-source measurements. Figure 9.15 clearly shows that the expected diagonal, based
solely on single-source measurements, has its center elements approximately 10% larger than
the reconstructed DRF values. This is in line with the 10% difference between the measured
DRF coherence value for a single-mode system, approximately 0.9, and the expected value
of 1. Calibrating for this discrepancy, we could appropriately scale the geometric mean of
single-source measurements and include it as the center diagonal of the DRF matrix to be
reconstructed: as it potentially contains additional information, it may produce an improved
DRF reconstruction.

We then repeated the same procedure with DRFs measured experimentally using the
fiber array comprising a few-mode and a multi-mode fiber. In both cases, we find that the
reconstruction quality is slightly improved when considering the DRFs measured at 155 mm
distance between the source and detector planes. Figure 9.16 shows the reconstructed DRF
amplitude and phase patterns for the experimental DRF shown in Figure 8.37b. The DRF
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(a) Reconstructed DRF amplitude
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(b) Reconstructed DRF phase

Fig. 9.16 Reconstructed DRF complex amplitude of the few-mode system, measured experi-
mentally at 155 mm distance between the source and detector planes, with missing diagonal
band of width equal to 3 elements; planar fit of phase pattern subtracted before reconstruction.
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amplitude is well reconstructed, and the phase pattern displays a relatively wide transition
between the center region of constant phase and regions in the off-diagonal corners. In
practice, we found that the on-diagonal matrix filling, used first for the submatrix D11 and
later the entire matrix D, is the main contributor to the discontinuities seen between the
reconstructed matrix partitions. There are indications that DRF asymmetries about the
antidiagonal participate strongly to the appearance of these discontinuities. In particular,
important information is lost when selecting the left-singular vectors from the SVD of D11

and DS, and ignoring the right-singular vectors.

Lastly, we used the reconstruction scheme on the DRF measured experimentally using
the multi-mode fiber in the relevant fiber array, at 155 mm distance between the source and
detector planes. The DRF with the missing diagonal band was presented in Figure 8.38b.
Figure 9.17 shows the reconstructed DRF, using a relative threshold of 1/40 to select the
four largest singular values; we found that this threshold produced optimal reconstruction
results, and the corresponding SVDs are shown in Figure 9.18. As with the experimental
few-mode DRF, the reconstructed DRF has a good reconstruction quality for each partitioned
submatrix, although the full reconstruction is distorted by differences between submatrices.
While the DRF phase in Figure 9.17 retains a clear diagonal pattern with a structure width
identical to that of the un-reconstructed case, the representation of the DRF amplitude is
particularly prejudiced by the presence of a few high-amplitude reconstructed elements along
the diagonal. However, we note that the total power absorbed during the scan, measured as
the two-dimensional integral of the DRF surface, remains unaltered; this behavior will be
explained in the following section as we consider the individual modes of the reconstructed
DRF.

9.3 Recovering DRF modes

9.3.1 Mode Recovery Method

Now that we are able to reconstruct DRF matrices with missing diagonal bands, we turn
to recovering the DRF’s modes from these reconstructed matrices. In Chapter 7, we had
investigated the effect of the two-detector phase-correction scheme on the measured DRF’s
recovered modes. In particular, we had concluded that only the DRF modes’ phase patterns
were affected by the phase correction step, while their amplitude patterns and sensitivity
spectrum were unaltered. In much the same way, we want to understand the effect of
the missing diagonal band reconstruction technique on the reconstructed DRF’s modes
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(a) Reconstructed DRF amplitude
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(b) Reconstructed DRF phase

Fig. 9.17 Reconstructed DRF complex amplitude of the multi-mode system, measured
experimentally at 155 mm distance between the source and detector planes, with missing
diagonal band of width equal to 3 elements.
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Fig. 9.18 Singular Value Decompositions of the D13 and DS matrices, obtained in the
reconstruction algorithm applied to the experimental multi-mode DRF, measured at 155 mm
distance between the source and detector planes; the dashed lines show the 1/40 relative
threshold selected.

and sensitivity spectrum, using simulated DRFs, before moving on to its application to
experimentally measured DRFs.

The general method is to diagonalize the DRF matrix of interest, and straightforwardly
plot the outer product of the selected eigenvector. In practice, this is performed using
Matlab’s eigenvalue decomposition methods: selecting the nth column of the matrix of
eigenvectors, we compute its outer product with its conjugate transpose to obtain the nth

mode. It is important here to recall that this computation of each mode of the measured DRF
corresponds to the goal of EAI. Indeed, this method is the final step to recover the modes
through which the detector system absorbs power from its environment; the eigenspectrum
obtained from the decomposition is the spectrum of mode sensitivies. In Chapter 2, we had
discussed the diagonalization of the DRF, in particular in Equation (2.59).

As we discussed in Chapter 3, as well as in Section 9.2.2 in the context of suppressing
low, the eigenspectrum will display two distinct regions corresponding to two types of modes:
In practice,

• Natural modes of the detector: modes with large eigenvalues indicating high sensitivity
of the detector to these modes;
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• Background noise modes: modes with significantly lower eigenvalues, potentially by
several orders of magnitude, are dominated by background noise.

Assuming the signal-to-noise ratio is high, these two types of modes can be distinguished by
a large difference in eigenspectrum slope.

9.3.2 Application to Simulated DRFs

Just as we first investigated the missing diagonal band reconstruction scheme using simulated
DRFs in 9.2.3, we initially considered the recovery of DRF modes using reconstructed
simulated DRFs. As previously, the data obtained using simulations is not distorted by
noise and experimental errors. More importantly, we can study the effect of the additional
reconstruction algorithm step, by comparing the eigenvectors obtained from the quasi-perfect
simulated matrix and the reconstructed matrix.

We make a first attempt with a simulated DRF based on a single-mode response,
namely the LG00 mode, and 151 positions distributed uniformly over the scanning range
x = [�15,15] mm, as in Section 9.3.2. Phase correction with the first mode of the incoherent
sum is performed to obtain the DRF, which is here the single-mode DRF itself. In Figure
9.19a, we present the eigenspectrum of the original and reconstructed DRFs with 10 missing
elements: both display a single element with non-negligible magnitude, while other elements
amount to contributions from the imperfections in the simulation method, i.e. the finite ma-
chine precision used. The sensitivity spectra are nearly identical; in particular, the magnitude
of the first eigenvalue is identical within 10�23. Figure 9.19b shows the amplitude of the first
mode of the reconstructed DRF. We see that it is in excellent agreement with the original
single-mode DRF; the scale difference is equal to the first eigenvalue.

The same procedure was repeated for a two-moded system, effectively the simplest
model of a few-mode behavior. We chose the simulated dataset obtained from an assumed
DRF built from the LG00 and LG01 modes, where reconstruction with a missing diagonal
band 10 elements in width was presented in Figure 7.15. In Figure 9.20, we present the
nearly-identical eigenspectrum of the original and reconstructed DRFs with 10 missing
elements. As we had noted in Section 7.4 in the context of investigating the effect of the
phase-correction method on simulated DRF eigenspectra, the normalization of the recovered
eigenmodes induces a difference in the recovered sensitivities, even though the sensitivities
used to create the simulated two-mode DRF are equal. The first and second modes are in
excellent agreement with the original modes, showing that the phase reconstruction method
does not impact the recovery of the simulated two-mode DRF’s modes.
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(a) DRF eigenspectrum, before and after the reconstruction of the missing diagonal band.
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(b) Amplitude pattern of reconstructed 1st mode

Fig. 9.19 Simulated DRF amplitude built from the LG00 mode; the missing diagonal band is
obtained by applying diagonal band mask of width equal to 10 elements.
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Fig. 9.20 Eigenspectrum of simulated DRF built from the LG00 and LG01 modes, before and
after the reconstruction of the missing diagonal band obtained by applying diagonal band
mask of width equal to 10 elements.

We also compared the mode recovery accuracy for various mode sensitivity profiles in few-
mode systems. Indeed, there are indications that the missing diagonal band reconstruction
may be more efficient for single- and few-mode systems, but the definition of the number of
modes is quite loose. We therefore wanted to understand whether a constant or a decreasing
eigenspectrum yielded different results. We investigated the existence of this phenomenon
a four-mode system, built from the LG00, LG01, LG10 and LG11 modes , either with equal
sensitivity, as in Figure 9.6, or with decreasing sensitivities (namely 1, 0.8, 0.8, and 0.3
respectively). In Figure 9.21, we compare the reconstruction qualities of these two cases,
and observe that the reconstruction is indeed more accurate with the tapered sensitivity
spectrum, i.e. with a lower effective number of modes. The eigenspectra obtained from
the diagonalization of the two simulated DRFs also reflect this difference: the difference
between the eigenspectra of the original and reconstructed DRFs is smaller for the case with
tapered sensitivities than for the case with equal sensitivities.

It is also worth at this point to study the patterns of the recovered modes of the recon-
structed DRF, in particular in comparison (i) to the individual Laguerre-Gaussian modes used
to build the assumed DRF in the spatial basis and (ii) to the original DRF without the appli-
cation of a diagonal mask and its subsequent missing diagonal reconstruction. The recovered
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(a) Equal sensitivities
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(b) Decreasing sensitivities

Fig. 9.21 Reconstruction quality for the simulated DRF with LG00, LG01, LG10 and LG11
modes, with missing diagonal band obtained by applying diagonal band mask of width equal
to 10 elements; the color scale is selected to be identical, and smaller than in Figure 9.6b.
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Fig. 9.22 Comparison of the normalized amplitude patterns of the four single-mode DRFs
obtained from the LG00, LG01, LG10 and LG11 modes (left), and of the modes of the
simulated DRF built from the incoherent sum of these four modes, after reconstruction of the
DRF’s missing diagonal band obtained by applying diagonal band mask of width equal to 10
elements (right).
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Fig. 9.23 Eigenspectrum of simulated DRF built from the first 121 LG modes, before and
after the reconstruction of the missing diagonal band obtained by applying diagonal band
mask of width equal to 3 elements.

modes of the reconstructed matrix are qualitatively different from those used to created the
four-mode simulated DRF, as shown in Figure 9.22; however, they are identical to the four
modes recovered from the total simulated DRF. This can be understood by considering the
effect of projecting a two-dimensional basis set onto a one-dimensional representation: the
LG modes used to create the four-mode simulated DRF are two-dimensional in the spatial
basis on the reference surface used for the numerical integration (here, the detector surface),
but are no longer a basis set once projected onto the sampled source positions. This did not
occur in the two-mode case because the LG00 and LG01 modes are still orthogonal in the
one-dimensional basis of sampled source positions.

We repeated the same mode recovery procedure using the simulated 121-mode DRF,
after applying the reconstruction algorithm to fill a missing diagonal band of width equal
to 3 elements, which was presented in Figure 9.11. The DRF’s eigenspectrum, shown in
Figure 9.20, displays how the reconstructed DRF’s largest eigenvalues are well recovered
compared to the original DRF: 9 modes have non-negligible eigenvalues, 8 of which are
almost identical to that of the original DRF. We note that lowering the threshold for singular
value suppression in the reconstruction algorithm allows us to have a greater number of
identical eigenvalues, but the overall reconstruction quality is not improved. Part of the
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Fig. 9.24 Amplitude and phase patterns of the four first modes of the simulated 121-mode
DRF, built from the from the LG00, LG01, LG10 and LG11 modes, after reconstruction of the
missing diagonal band of width equal to 3 elements.
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Fig. 9.25 Eigenspectrum of single-mode DRF amplitude measured experimentally, before
and after the reconstruction of the missing diagonal band of width equal to 3 elements.

reason can be seen in Figure 9.24, which presents the amplitude and phase patterns of the
first four modes recovered from the reconstructed DRF: contrary to the case of the simulated
four-mode system shown in Figure 9.22, we observe that the modes with largest eigenvalues
have several zero-amplitude lines and corresponding quasi-constant phase regions. This is a
qualitative feature of multi-mode systems.

9.3.3 Application to Experimental DRFs

Having investigated the effect of our missing diagonal filling algorithm on the modes and
sensitivities of simulated DRFs, we applied the diagonalization procedure to experimentally
measured DRFs after their reconstruction, to retrieve the natural modes of the device under
test. We diagonalized the matrix obtained with the reconstructed single-mode dataset, pre-
sented in Figures 9.12a and 9.13b. Figure 9.25 shows the eigenspectrum of the reconstruction,
which clearly displays that a single mode is present. The spatial form of the mode is identical
to that of the DRF, presented in Figures 9.12a and 9.13, because the mode is the only one
with non-negligible eigenvalue.

Similarly, we show in Figure 9.26 the eigenspectra of the DRF before and after the
reconstruction of the missing diagonal band of the DRF obtained with the few-mode fiber
in the fiber array, at a distance between the source and detector planes equal to 155 mm,



308 Full DRF Reconstruction and Mode Recovery

100 101 10210�20

10�16

10�12

10�8

10�4

100

104

Eigenvalue number n

Ei
ge

nv
al

ue
|l

n|
Original
Reconstructed

Fig. 9.26 Eigenspectrum of few-mode DRF amplitude measured experimentally, before and
after the reconstruction of the missing diagonal band of width equal to 3 elements.

presented in Figure 9.16. Two large eigenvalues form a sharp slope, while the following
eigenvalues decrease more slowly: the former are associated with the two natural modes of
the device under test, while others account largely for noise and experimental imperfections.

Figure 9.27 shows the amplitude and phase patterns of the first two modes after recon-
struction. We find that the two modes are in very good agreement with the recovered modes
of the simulated two-mode system: the first mode is similar to that of a single-mode system,
with an approximately Gaussian amplitude pattern and constant phase pattern, while the
second mode has four-fold symmetry in amplitude with a p rad phase difference between
neighboring quadrants. We remark that the irregularities in the shape of the recovered
experimental modes are caused by the artefacts of the reconstruction method, rather than
the diagonalization of the reconstructed DRF: refinements of the missing diagonal filling
methods would therefore have a direct positive impact on the quality of the recovered modes.

We repeated this procedure with the reconstructed experimental multi-mode DRF pre-
sented in Figure 9.17. We found that its eigenvalue decomposition contains four modes
with non-negligible eigenvalues; their amplitude and phase patterns are shown in Figure
9.28. We observe that these modes contain many zero-amplitude lines and corresponding
quasi-constant phase regions: this is very different from the two recovered modes in the
few-mode system, and indicative of highly multi-mode behavior in the device under test.
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Fig. 9.27 Amplitude and phase patterns of the first and second modes recovered from the
few-mode DRF, after reconstruction of the missing diagonal band of width equal to 3
elements.

It also indicates that the device under test has many more modes than the 121 studied in
the simulated DRF presented in Figure 9.11, and whose recovered modes were presented
in Figure 9.24. In relation to the elements with large amplitude observed in Figure 9.17 in
the corner of the D11 submatrix, we see from the mode decomposition that several modes
constructively contribute. In particular, the corresponding elements in each mode have large
magnitudes with respect to the rest of the mode pattern, even though each mode displayed is
normalized (i.e. its two-dimensional integration is equal to 1); its contribution to the total
DRF is then weighted only by its corresponding eigenvalue. More generally, we conclude
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Fig. 9.28 Amplitude and phase patterns of the four modes of the experimental DRF measured
with the multi-mode fiber system, after reconstruction of the missing diagonal band of width
equal to 3 elements.
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that such large-magnitude elements are artifacts caused by the trade-off in the reconstruction
threshold, and hence the number of available modes, between intentionally discarding noise
modes and unwillingly losing some valid information. The amplitude and phase patterns of
higher-order modes, which are not displayed here and have significantly smaller eigenvalues,
are much more erratic and readily attributed to noise and experimental imperfections.

9.4 Conclusion

We started this chapter with a large collection of experimental complex fringe amplitude
datasets, obtained with a large variety of modal behaviors of the device under test. The
use of these datasets was limited by the absence of data along a diagonal band, caused by
the physical restrictions on the scanned source positions due to the probes’ finite size. In
particular, this missing diagonal prohibited the diagonalization of the measured DRF to
obtain its constituent natural modes, the key product of performing EAI on the devices under
test.

We have demonstrated a numerical method used to fill in the missing diagonal band data,
based on partitioning the DRF matrix into 9 submatrices, and using the singular-vectors of the
fully known submatrices to sequentially reconstruct those with missing elements. We found
that this technique produced good results, using both simulated DRF matrices presented in
Chapter 3 and experimentally acquired datasets described in Chapter 8. Two other methods
were implemented, but not discussed here as they were generally less successful. Further
progress still needs to be made on datasets obtained with highly multi-mode systems, where
the combination of noise and number of missing elements degrades the reconstruction quality.
However, this limitation is mainly a computational challenge rather than one related to the
physics of EAI. More generally, the difficulties encountered do not fundamentally negate
the strong results obtained with EAI, and the reconstructed DRFs that fully characterize the
device under test’s optical behavior.

Finally, we have used these reconstructed DRFs to successfully recover the natural
modes of the device under test. In particular, in Section 9.3.3, we recovered the modes
of experimental datasets of single-mode, few-mode and multi-mode systems, built from a
fiber-coupled photodetector. This achievement is the realization of the objective we had
initially set out for ourselves, in Chapter 1. We recall that our goal was to reconstruct the
natural modes of the detector response for a wide variety infrared detector systems. This has
now been achieved successfully for single-mode, few-mode and multi-mode systems.

As we had discussed in Chapter 2, the recovered modes are in the basis of sampled
positions. For the chosen one-dimensional sampling grid, these modes do not have the
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same forms as the original LG modes, because the latter are not orthogonal in the basis
of sampled source positions. All of the methods presented in this chapter are directly
applicable to simulated and experimental datasets obtained for sources scanned instead over
two-dimensional sampling grids. In that case, the recovered modes would be those of the
DRF in the basis of selected source positions.



Chapter 10

Conclusion

10.1 Review of Key Achievements

In Chapter 1, we set out the ambitious goal of demonstrating Energy Absorption Interferome-
try at infrared wavelengths, an experimental method to fully characterize the optical response
of detectors using only power measurements. This work involved showing the technique’s
feasibility at infrared wavelengths using fiber-coupled near-infrared detectors, designing
and constructing an experimental system to carry out such studies, and performing these
measurements on a range of systems with single-mode, few-mode and multi-mode behaviors
in order to ultimately recover their natural modes.

Throughout this thesis, we have systematically carried out this plan and have successfully
measured the optical response correlation functions of a variety of detectors and reconstructed
their natural modes:

• In Chapter 2, we summarized the theoretical description of power-absorbing structures,
which states that their optical response can be written in the form of a two-point
Detector Response Function (DRF) [61]. We further described an experimental method
to fully recover a device under test’s DRF solely using power measurements, from the
fringe displayed in the detector output when the relative phase between two highly-
coherent sources is modulated.

• In Chapter 3, we created and implemented a simulation framework to numerically
investigate EAI for any functional form of the two-point DRF. In particular, we first
studied simulated DRFs under the assumption of point-like sources and detectors, then
assuming finite-sized sources and detectors based on Laguerre-Gaussian free-space
modes, Linearly Polarized fiber modes, and even using a non-modal finite-coherence
functional form.
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• In Chapter 4, we qualtiatively and quantitatively explored the feasibility of an experi-
mental system to perform EAI on near-infrared detectors. A fiber-based architecture
was designed, which includes a detector coupled to an interchangeable optical fiber,
whose properties set the modal behavior of the device under test. Functional forms
for performance requirements were proposed, and applied to our conceptual system
for all components, including the minimum linewidth of the laser source, an upper
bound on the step size of the motorized stage system used to position the probes, and
the required sensitivity and noise characteristics of the detector system.

• In Chapter 5, we discussed the choice of specific components for the construction
of the experimental system, including the fabrication of several custom-made items.
Their performance was tested at each stage of the construction, and found to fulfill all
specified requirements. Fringes in the detector output for sources at fixed position pairs
were measured, demonstrating the operation of the experimental system and allowing
additional tests with increased sensitivity. These results, along with those of Chapter 4,
were presented and published as a conference proceeding [126].

• In Chapter 6, we devised a standardized experimental procedure to perform EAI on a
wide range of fiber-coupled detection systems, consisting of two single-source mea-
surements of the detector beampattern and a two-source measurement of fringes in
the detector output, as the sources are scanned over a finely-sampled one-dimensional
grid. The first measurements of the DRF amplitude of infrared detectors were thus
performed for single-mode, few-mode and multi-mode devices, and differentiating
characteristics were observed. We additionally derived that the amplitude-only mea-
surements could produce a lower bound for the number of modes with non-negligible
sensitivity, and an upper bound for the number of modes with quasi-constant sensitivity.
This relationship was successfully applied to estimate the number of modes of DRFs
measured experimentally.

• In Chapter 7, we described several classes of phase-correction schemes, allowing
either offline or real-time suppression of the observed phase instabilities caused by
temperature variations and mechanical vibrations. We chose to further study a scheme
where a reference detector is added to the experimental system near the device under
test: subtracting the reference’s fringe phase from that of the device under test produces
a corrected fringe phase. This technique fully removes the phase drift up to the probe
tips, and partially up to the detector surfaces; additionally, it subtracts a significant
fraction of the fast geometric phase wrapping which occurs when scanning the sources.
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• In Chapter 8, we implemented this real-time phase-correction scheme by adding a
reference channel spatially close to the device under test, and obtained a significant
improvement of the phase stability time from a few seconds to several hours. We found
that the phase-correction method is extremely robust against environmental differential
phase drift and mechanical vibrations. The first simultaneous EAI measurement of the
DRF amplitude and phase components was performed on a large variety of devices;
these included tightly-packed fiber arrays, which allowed us to decrease the distance
between the measurement channels.

• In Chapter 9, we presented the most successful of several reconstruction schemes we
implemented to fill the diagonal band of missing data, caused by the finite size of the
probes. We investigated the strengths and limits of the technique on simulated DRFs,
and successfully applied it to a large number of experimentally-measured DRFs. These
reconstructed DRFs were then decomposed to recover their natural modes.

10.2 Overall Conclusions

This work produced the following scientific advances:

• A bespoke simulation framework numerically explored EAI at infrared wavelengths,
for a variety of assumptions and models for the source and detector beams.

• The feasibility of EAI at infrared wavelengths was theoretically investigated, and an
experimental architecture was created and implemented.

• The first EAI study of fiber-coupled infrared detector systems was performed to recover
their DRF amplitude pattern; the DRF amplitude, visibility and coherence of single-
mode, few-mode and multi-mode systems were shown to have clear differentiating
characteristics.

• The DRF of few-mode fiber-coupled systems was shown to be in agreement with
simulations using Laguerre-Gaussian modes, indicating that the latter is a suitable
basis to describe the far-field optical response of optical fibers.

• The DRF amplitude pattern was shown to contain sufficient information to estimate
the number of modes of the device under test, without the need for phase information.

• Hour-long phase stability times were reproducibly obtained using a purpose-built phase
reference scheme, to correct for the relative phase drift between the two probes caused
by environmental variations.
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• The simultaneous measurement of the DRF amplitude and phase patterns of single-
mode, few-mode and multi-mode fiber-coupled near-infrared photodetectors was
performed; this unique work demonstrated that EAI can be applied at near-infrared
wavelengths.

• An algorithm to fill missing elements of the DRF was successfully implemented and
applied to simulated and experimental DRFs.

• The modes of experimental DRFs were recovered, producing the individually fully
coherent, mutually independent field patterns through which the device under test
absorbs incident optical power.

10.3 Improvements and Extensions

10.3.1 Numerical Studies

Having successfully demonstrated EAI in the context of near-infrared fiber-coupled photode-
tectors, a large number of opportunities become available. First, simple additions can be
made to the simulation framework implemented in Chapters 3 and 7, in order to study the
effects of particular phenomena:

• The large square integration surface used in Chapter 3 can be replaced by a form,
shape and size corresponding to different kinds of physical realizations, for instance
an absorber wrapped on a sphere. This would be performed by directly changing the
surface of integration, or by applying an appropriate two-dimensional top hat function
to the integrand.

• In the same way that we investigated the impact of experimental imperfections in the
sources’ positioning on the phase correction scheme, in Chapter 7, imperfections can
be added to source and detector positions and directions in the non-simplified DRF
simulations; for instance, their impact on the recovery of DRF modes could be studied.

• Noise could be introduced to simulated DRFs, including those produced by fitting
simulated fringes for each source position pair, to study its effect on the recovery of
DRF modes, including their quality and the rate of convergence as source positions are
sampled. In effect, this would imitate the presence of a finite measurement SNR.

Other numerical investigations would require significant extensions or modifications to
the simulation framework presented in this manuscript:
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• In extending our study of the convergence towards a complete basis of sampled source
positions, the implementation of incremental SVD could be used on numerical DRFs
[70] to study its impact on EAI performance. This would provide important experience
in order to add iSVD to the real-time processing of experimental data, for instance
using intelligent source scanning methods to minimize the total number of source
sampling positions required.

• A more detailed understanding of the electromagnetic behavior of step-index fibers is
required to precisely simulate high-order modes, beyond assuming a single value of
the Gaussian beam waist for all simulated modes. In particular, this would provide the
ability to simulate the behavior of fluoride-based fibers more precisely. Extensions to
account for fibers with graded refractive index profiles are also conceivable [127].

• While our simulation framework has allowed us to study a broad variety of assumed
DRF functional forms, full electromagnetic simulations are necessary to account for
complex processes. For instance, Thomas et. al studied the application of EAI to sets
of electric dipoles to reveal long-range coherent phenomena [128], while Thion et. al
investigated nanoparticle-based periodic structures [129, 64]. In the case of infrared
devices, the study of polarization-dependent behavior would be of particular interest,
in analogy with simulations performed for submillimeter systems [59].

10.3.2 Experimental Studies

The experimental system in the configuration described can be used for several further
investigations:

• Having realized two-source scans over a uniformly sampled scanned, a straightforward
extension is to perform scans over two-dimensional grids. In fact, a demonstration of
fringe measurements for uniformly sampled source positions on a circle was success-
fully achieved; the step size considered was large and the on-axis position not known
with sufficient accuracy, rendering the data interpretation difficult. For two-dimensional
Cartesian grids, a critical choice would be the choice of a graphical representation
of the data, in what can be viewed as a four-dimensional dataset; all of the technical
capabilities to perform such scans are available.

• A more speculative study would be to perform z-axis scans in order to measure coher-
ence volumes. The DRF measurement and mode reconstruction would then effectively
become a six-dimensional problem: while choosing an appropriate representation is
non-trivial, the EAI theory described in this manuscript is fully applicable.
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• Other detector systems can be investigated. Replacing the flat-faced detector fiber by
one with a shaped tip would offer further insights into the coupling of incident radiation
and fiber modes [90]. A detection system based on a PIN photodiode array [130] with
25 ⇥ 25 µm2 pixels has been planned, but a custom transimpedance amplifier array
would be required. The investigation of solar cells is feasible with our experimental
architecture, but choosing an appropriate operation wavelength below 1000 nm: an
optical-wavelength analogue of the experimental system would be suitable.

• Further improvements on current experimental imperfections coud be made, such
as the angular misalignment of the sources, their polarization misalignment, and the
physical size of the probes. In particular, we hypothesized that the former two could
contribute to non-unity coherence values in the measured single-mode DRFs: under
this assumption, improvements to the experimental system would directly translate
into increased fringe visibility and coherence.

• An experimental system has been built by Hall et. al for the measurement of the
effective position of pixels in CCD arrays, used for exoplanet-searching spectrographs
[49]: comparing the recorded fringe pattern over the CCD array surface, deviations
from the ideal configuration produce estimates of the true position of each pixel [131].
Our experimental system should be able to reproduce these results, in addition to
measuring each pixel’s DRF.

Other further experimental studies would require small to significant extensions of the
experimental system:

• By increasing the optical power output of the laser, we would improve the SNR of
measured fringes. This could be particularly helpful at far off-axis source positions,
where we observed that low SNR had led to variability in the measured fringe amplitude
and phase. Such an extension may have important safety implications, beyond those
discussed in Section 4.4.

• Improved SNR could also be achieved using a lock-in system on the two-detector
sytem’s outputs, using the fact that we are modulating the relative phase of sources
illuminating all detectors equally [79]. The experimental system’s dynamic range for
detecting fringes would then be increased.

• A custom tightly-packed fiber array could be built to obtain good phase correction
capability without the observed electromagnetic modification caused by the borosilicate
v-groove structures of fiber arrays used in Chapter 8.
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• We have created a conceptual design for a dual-polarization system, in which an optical
switch would select either of two channels to each probe, built from a dual fiber ferrule
assembly with orthogonal polarizations [132]. Its implementation would allow the
study of polarization-depedent DRF behavior.

• Other phase correction methods, such as those presented in Chapter 7, could be
implemented to investigate experimentally the effect of phase drift correction without
geometric phase cancellation.

10.4 Future Research Outlook

As part of the broader study of the optical behavior of low-temperature devices, the work
described in this manuscript presents important lessons towards the possible application of
EAI to superconducting detectors such as KIDs and TESs. Many of the design choices for
the room-temperature experimental system can be translated to a low-temperature system: a
fiber-based architecture would retain many of its room-temperature advantages, and the list
of required components would be similar. The fiber-based scheme described here lends itself
exceptionally well to applications at low-temperature: the two source fibers, and possibly
a reference fiber, would simply need to be fed into the cryostat and onto the cold stage
where the low-temperature detector is mounted. Additional considerations are necessary,
starting with the mechanical constraints of placing a large part of the experimental system
on a cryostat’s cold stage, whose size is limited and where the distance to the detector
may be smaller [133]. Solving these would also open new opportunities, such as near-
field characterization of the device under test; for instance, cryogenic motorized stages
are available in the form of piezo-activated stages, with position resolutions as small as
100 nm [134]. Additionally, the phase correction scheme introduced in Chapter 7 could
suppress the effect of large temperature gradients along the optical fibers fed into the cryostat.
Finally, the broad spectral sensitivities of superconducting detectors provide the opportunity
to investigate their wavelength-dependent DRFs, by repeating EAI for different operating
wavelengths [27].

The work presented in this dissertation can also influence the realization of EAI using
sources acting on the device under test with other forces. For instance, numerical investiga-
tions have been produced in the case of two magnetic sources, to recover the spatial, spectral
and polarimetric forms of collective dissipative modes of correlated spin systems [135]. The
classical and quantum correlation functions of chains of electric dipoles were also studied
through computational spectroscopy followed by EAI [136]. The theoretical application
of EAI to two sources acting through generalized forces of possibly different natures, was
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proven by Withington [137] and implemented numerically in the case of an elasto-electric
source pair applied to amorphous materials incorporating coupled two-level systems [138].
There is significant potential for such studies to be extended to other examples, and for
experimental realizations of EAI on such systems: these would continue to demonstrate the
power and versatility of Energy Absorption Interferometry.
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