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ABSTRACT
We investigate the impact of f(R) modified gravity on the internal properties of Milky Way-
sized dark matter haloes in a set of cosmological zoom simulations of seven haloes from the
Aquarius suite, carried out with our code MG-GADGET in the Hu & Sawicki f(R) model. Also, we
calculate the fifth forces in ideal NFW-haloes as well as in our cosmological simulations and
compare them against analytic model predictions for the fifth force inside spherical objects. We
find that these theoretical predictions match the forces in the ideal haloes very well, whereas
their applicability is somewhat limited for realistic cosmological haloes. Our simulations show
that f(R) gravity significantly affects the dark matter density profile of Milky Way-sized objects
as well as their circular velocities. In unscreened regions, the velocity dispersions are increased
by up to 40 per cent with respect to �CDM for viable f(R) models. This difference is larger
than reported in previous works. The Solar circle is fully screened in f̄ R0 = −10−6 models
for Milky Way-sized haloes, while this location is unscreened for slightly less massive objects.
Within the scope of our limited halo sample size, we do not find a clear dependence of the
concentration parameter of dark matter haloes on f̄ R0.
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1 IN T RO D U C T I O N

The physical origin of the late-time accelerated expansion of the
Universe is an unsolved and highly debated issue in modern cos-
mology. Although the standard model of cosmology, the λ cold dark
matter (�CDM) model, successfully describes the acceleration and
a wide array of cosmological observations, it lacks a compelling
explanation for �, motivating the search for possible alternative
scenarios.

Such alternative cosmological models can be broadly character-
ized into two classes (see e.g. Clifton et al. 2012; Joyce, Lombriser
& Schmidt 2016). The first class consists of so-called dark energy
models which add a new type of field to the energy momentum
tensor, and hence modify the source terms in the gravitational field
equations. If the field features an equation of state with negative
effective pressure, it can account for the accelerated expansion at
late times.

The second class of models leaves the source tensor untouched but
changes the field equations themselves. In this work we consider f(R)
gravity (Buchdahl 1970), which is a representative of these modi-
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fied gravity models. Other examples include DGP gravity (Dvali,
Gabadadze & Porrati 2000), f(T) gravity (Bengochea & Ferraro
2009) and theories of massive gravity (e.g. Hassan & Rosen 2012).
These models have in common that they modify the laws of gravity
in order to explain the accelerated expansion. They also share the
need for some kind of screening mechanism which hides the mod-
ifications with respect to general relativity (GR) in our local envi-
ronment within the Milky Way, otherwise Solar system constraints
of gravity that are consistent with GR would be violated. Sev-
eral such screening mechanisms have been explored, including the
Chameleon (Khoury & Weltman 2004), the Vainshtein (Vainshtein
1972; Deffayet et al. 2002), the Symmetron (Hinterbichler &
Khoury 2010) and the Dilaton (Gasperini, Piazza & Veneziano
2002) screening. For f(R) gravity, the chameleon mechanism can
ensure GR-like forces in the Solar system (Hu & Sawicki 2007).

The nonlinearity introduced by the screening mechanism makes
numerical simulations essential to fully explore modified gravity
theories. Numerical works focusing on f(R) gravity have investi-
gated its impact on the matter power spectrum (Oyaizu 2008; Li
et al. 2012, 2013; Puchwein, Baldi & Springel 2013; Llinares,
Mota & Winther 2014; Arnold, Puchwein & Springel 2015), the
mass function of dark matter (DM) haloes (Schmidt et al. 2009;
Ferraro, Schmidt & Hu 2011; Li & Hu 2011; Zhao, Li & Koyama
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2011), cluster concentrations (Lombriser et al. 2012b) as well as on
density profiles (Lombriser et al. 2012a). Further works have inves-
tigated the integrated Sachs–Wolfe effect (Cai et al. 2014), redshift
space distortions (Jennings et al. 2012), the properties of voids
(Zivick et al. 2015), the velocity dispersions of haloes (Schmidt
2010; Lam et al. 2012; Lombriser et al. 2012b), and the properties
of semi-analytically modelled galaxy populations (Fontanot et al.
2013). Recently, hydrodynamical simulations have been used to
study galaxy clusters and groups in f(R) gravity (Arnold, Puchwein
& Springel 2014), the Lyman-α forest (Arnold et al. 2015), and
power spectra and density profiles (Hammami et al. 2015). In ad-
dition, zoom simulations have been employed to simulate galaxy
clusters (Corbett Moran, Teyssier & Li 2014).

In this work, we for the first time simulate Milky Way-sized
objects using high-resolution cosmological zoom simulations of
f(R) gravity. We employ an upgraded version of our modified gravity
simulation code MG-GADGET to resimulate a set of seven haloes from
the Aquarius project (Springel et al. 2008). Our analysis focuses
on the impact of modified gravity on density profiles, gravitational
forces, circular velocities as well as velocity dispersions. In addition,
we derive an analytic estimate for the f(R)-force profile in NFW-
haloes (Navarro, Frenk & White 1997) and compare this theoretical
approximation to the simulation results.

In Section 2, we introduce f(R) gravity and consider analytical
estimates for the modified force. Section 3 gives an overview of
the simulation code MG-GADGET and the performed simulations. Our
results are presented in Section 4. Finally, we summarize the results
and draw our conclusions in Section 5.

2 f(R) G R AV I T Y

f(R) models of modified gravity are a generalization and extension
of Einstein’s GR. In order to account for the accelerated expansion
of space at late times, a scalar function f(R) of the Ricci scalar R is
added to the action of GR,

S =
∫

d4x
√−g

[
R + f (R)

16πG
+ Lm

]
, (1)

where G is the gravitational constant, g is the determinant of the
metric gμν , and the matter Lagrangian is denoted as Lm. A suitable
choice of the function f(R) allows eliminating the cosmological
constant, which is needed in the standard cosmological model to
account for the accelerated expansion.

Carrying out the variation of the action with respect to the met-
ric in the usual way, one obtains the modified Einstein equations
(Buchdahl 1970),

Gμν + fRRμν −
(

f

2
− �fR

)
gμν − ∇μ∇νfR = 8πGTμν. (2)

Here fR ≡ df(R)/dR denotes the derivative of the scalar function
with respect to the Ricci scalar, Gμν = Rμν − R

2 gμν is the Einstein
tensor, and Tμν is the energy–momentum tensor. In the framework
of cosmological simulations, i.e. considering weak fields on scales
much smaller than the horizon, one can assume the quasi-static
limit and neglect all time derivatives in the above equation (Oyaizu
2008; Llinares & Mota 2013, 2014; Noller, von Braun-Bates &
Ferreira 2014; Bose, Hellwing & Li 2015). The limitations of this
approximation have recently been discussed by Sawicki & Bellini
(2015). The field equations then simplify to an equation for the
so-called scalar degree of freedom, fR, (Hu & Sawicki 2007)

∇2fR = 1

3
(δR − 8πGδρ) , (3)

and a modified Poisson equation,

∇2	 = 16πG

3
δρ − 1

6
δR, (4)

where δR and δρ denote perturbations to the background value of
the scalar curvature and the matter density, respectively. In order to
be consistent with observations, the model must satisfy |fR| � 1.
To carry out a cosmological simulation in f(R) gravity, one has to
numerically solve equations (3) and (4). In models with a screen-
ing mechanism, equation (3) typically involves a highly nonlinear
dependence on the density field. This is particularly challenging.

2.1 The Hu & Sawicki (2007) model

All models which modify the laws of gravity should reproduce GR
in our local environment in the Milky Way since GR is tested to
remarkably high precision in the Solar system. For f(R) gravity, this
requirement is fulfilled by a class of models featuring the chameleon
screening mechanism which suppresses the modifications to GR in
high density environments. A particularly well-studied member of
this class is the model proposed by Hu & Sawicki (2007),

f (R) = −m2 c1

(
R
m2

)n

c2

(
R
m2

)n + 1
, (5)

where m2 ≡ H 2
0 
m denotes the mass scale of the model. Another

requirement for the model is that it closely reproduces the well-
tested expansion history of a �CDM universe. This can be achieved
by appropriately choosing the three remaining parameters,

c1

c2
= 6


�


m
and c2

(
R

m2

)n

� 1. (6)

In our simulations, we adopt n = 1. In the limit c2( R
m2 )n � 1, one

can express the derivative of f(R) in terms of

fR = −n
c1

(
R
m2

)n−1

[
c2

(
R
m2

)n + 1
]2 ≈ −n

c1

c2
2

(
m2

R

)n+1

. (7)

Let us now replace the two parameters of the model, c1 and c2, by
a more natural choice. The background curvature of a Friedman–
Robertson–Walker universe is given by

R̄ = 12H 2 + 6
dH

d ln a
H. (8)

For a flat �CDM expansion history, this simplifies to

R̄ = 3m2

[
a−3 + 4


�


m

]
. (9)

At a = 1, the two parameters c1 and c2 are now fully constrained
by fixing 
�, 
m, H0, n, as well as the background value of the
scalar field fR0 ≡ fR(z = 0). In the following we will adopt fR0 as the
parameter specifying the Hu & Sawicki f(R)-gravity model.

2.2 The fifth force in a spherical overdensity

Given a complex density distribution, it is in general not possible
to solve the above equations of motion analytically. Nevertheless,
one can calculate an analytical estimate of the fifth force for a sim-
ple spherically symmetric problem (following Davis et al. 2012;
Sakstein 2013; Vikram et al. 2014). Consider a spherical overden-
sity of radius R and density profile ρ(r) which is embedded in a
homogeneous background density ρ0. If at least part of the object
is screened, there will be some screening radius rs inside which the
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f(R) modifications to gravity are completely suppressed (Davis et al.
2012). When approaching rs from the outside, the ratio of the fifth
force to the GR force will monotonically drop from its background
value to zero. The cases rs ≥ R and rs = 0 refer to the fully screened
and unscreened situations, respectively.

To estimate the fifth force due to f(R) (i.e. the excess force relative
to Newtonian gravity), let us first define a field φ via

e
− 2βφ

Mpl = fR + 1, (10)

where b = √
1/6 for the f(R)-models of interest (Brax et al. 2008),

and apply the conformal transformation

g̃μν = e
− 2βφ

Mpl gμν. (11)

The action (1) then becomes (Brax et al. 2008)

S =
∫

d4x
√−g̃

[
M2

pl

2
R̃ − 1

2
g̃μν∇μφ∇νφ − V (φ) + L̃m

]
, (12)

where

V (φ) = M2
pl[RfR − f (R)]

2(fR + 1)2
. (13)

R̃ is the Ricci scalar corresponding to the metric g̃μν .
In the Newtonian limit, the field equations for φ can be written

as

∇2φ = ∂V

∂φ
+ βρ

Mpl
. (14)

One now has to distinguish different cases. If the object is at least
partially screened, the effective potential will reach its minimum
inside rs and we have (Hui, Nicolis & Stubbs 2009)

∂V

∂φ
= − βρ

Mpl
. (15)

In other words, the derivative of the field φ will be constant inside
rs, and since there are no sources, φ = const. Far outside the sphere
(for r � R), the field φ0 is just given by the background value fR0 of
the scalar degree of freedom. To obtain φ in the remaining region
in between, i.e. in the partially screened shell of the sphere, one can
linearize equation (14) and express it in terms of perturbations of
the background value δφ = φ − φ0,

∇2δφ = ∂2V

∂φ2
δφ + β δρ

Mpl
. (16)

Writing the density in equation (16) in terms of the Newto-
nian potential ∇2	N = 4πGρ, integrating twice, and resubstitut-
ing the Newtonian potential for a spherical overdensity, d	N/dr; =
GM(< r)/r2, one arrives at an expression for the fifth force for r >

rs (Davis et al. 2012; Sakstein 2013):

Fmodgrav = α
GM(< r)

r2

[
1 − M(rs)

M(< r)

]
, (17)

where α = 2β2 = 1/3 is the coupling strength of f(R) gravity.
What remains to be done in order to obtain the fifth force is to

estimate the screening radius rs. It is implicitly given by the integral
equation (Sakstein 2013)

φ0

2βMpl
= 4πG

∫ R

rs

r ρ(r) dr. (18)

Equations (17) and (18) yield an estimate for the radius inside which
the object is fully screened as well as the fifth force profile for objects
which are roughly spherical (as the DM haloes we simulate in this

work). Given the density profile of a simulated halo, one can easily
compute an approximate estimate for the fifth force and compare
to the simulation outcomes. The only remaining question is which
radius one should choose for the outer boundary R, as in practice
it is hard to judge where an halo exactly ends. In this work, we
use r200 (the radius which encloses a sphere with a mean density of
200 times the critical density) as a natural choice for R.

Let us now assume that the density of the halo is given by a
NFW-profile (Navarro et al. 1997):

ρ(r) = ρcritδc(
r

rNFW

) (
1 + r

rNFW

)2 . (19)

To avoid confusion with the screening radius rs we denote the
scaling radius of the NFW-profile as rNFW here. Inserting equa-
tion (19) into (18), and solving for rs gives

rs = rNFW

1
1+r200/rNFW

− 3 ln(fR0+1)
8πGρcritδcr

2
NFW

− rNFW. (20)

The scale introduced by the screening radius will obviously break
the self-similarity of DM haloes with equal concentration but differ-
ent masses as known in the standard model of cosmology. Scaling
both halo mass and fR0 such that the ratio rs/r200 and the concentra-
tion parameter stay constant for different f(R) models is nevertheless
possible. This restores some kind of self-similarity in f(R) gravity:

(
M1

M2

) 2
3

= ln(fR01 + 1)

ln(fR02 + 1)
≈ fR01

fR02

, (21)

where M denotes M200 and the subscripts 1 and 2 refer to the first
and the second model/halo, respectively. As a cautionary remark
it is important to say that this involves a scaling of fR0 and will
therefore not work for a given fixed f(R) model.

3 SI M U L AT I O N S A N D M E T H O D S

Using the same initial conditions as the Aquarius project (Springel
et al. 2008; Marinacci, Pakmor & Springel 2014) we carry out for
the first time zoom simulations in f(R) gravity of a set of seven Milky
Way-sized haloes [A, B, C, D, E, G and H in the Marinacci et al.
(2014) terminology] employing the cosmological simulation code
MODIFIED GRAVITY GADGET (MG-GADGET; Puchwein et al. 2013). For
all haloes we simulate the evolution of the matter distribution for
f̄ R0 = −10−6 (referred to as F6), f̄ R0 = −10−7 (F7), and for the
�CDM cosmology as a reference. We use 
m = 0.25, 
� = 0.75,
h0 = 0.73 as our set of primary cosmological parameters. The mass
resolution in the zoomed region reaches 3.14 × 106 M
.

MG-GADGET is a modified cosmological simulation code based
on P-GADGET3, which in turn has its origin in GADGET2 (Springel
2005). It is currently capable of performing simulations of the Hu
& Sawicki (2007) f(R)-gravity model, both for collisionless and
hydrodynamical simulations. We note that MG-GADGET has recently
been tested against other f(R) simulation codes and was found to
produce comparable results (Winther et al. 2015). In this work, we
upgraded the modified gravity solver so that it can be used efficiently
for zoom simulations in f(R) gravity as well (see Barreira, Bose &
Li 2015; Winther & Ferreira 2015, for other ways to speed up
modified gravity simulation codes). In the following, we give a
brief overview of the inner workings of MG-GADGET, focusing on
the changes that were necessary for zoom simulations. A more
comprehensive description of the code can be found in Puchwein
et al. (2013).
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Zoomed simulations in f(R) gravity 1533

To solve equation (3) for the scalar degree of freedom, the code
employs an iterative Newton–Gauss–Seidel scheme. The iterations
are carried out on an adaptively refined mesh (AMR mesh) which
allows for higher resolution in high-density regions, and in particu-
lar in the zoom region of the simulation box. Since the refinement
criterion is based on the particle number in a mesh cell, there is
no need to modify the algorithm for zoom simulations, except for
the performance optimizations discussed below. The advantage of
this iterative method is that it can solve the highly nonlinear equa-
tions in a computationally efficient way. To ensure that the value of
the scalar field fR stays strictly negative (unphysical positive values
would prevent the code from continuing the iteration), MG-GADGET

does not solve for fR directly but for u ≡ ln[fR/f̄ R(a)] (a method
first introduced by Oyaizu 2008).

Knowing the value of the scalar field, one can rewrite the modified
Poisson equation in terms of an effective density

δρeff = 1

3
δρ − 1

24πG
δR, (22)

which accounts for all f(R) effects on gravity including the
chameleon mechanism. The modified Poisson equation then reads

∇2	 = 4πG(δρ + δρeff ). (23)

The curvature perturbation δR is obtained from

δR = R̄(a)

⎛
⎝

√
f̄ R(a)

fR

− 1

⎞
⎠ . (24)

By adding the effective density to the real mass density it is thus
possible to compute the gravitational forces employing P-GADGET3’s
TreePM gravity solver. In runs with hydrodynamics, the hydro-
dynamical forces can be computed using an entropy conserving
smoothed particle hydrodynamics scheme (Springel & Hernquist
2002) as already included in P-GADGET3.

In previous versions of MG-GADGET, all force computations were
carried out on the same timestep. This is rather time consuming,
especially for zoom simulations which span a wide dynamic range
of time-scales. We therefore employed the same operator split ap-
proach which is used in the TreePM force calculation scheme of
P-GADGET3. In the standard version of this method, the PM-force is
only calculated on (comparatively large) global timesteps, while the
timestep for the tree-force is individually adapted for each particle
based on an acceleration criterion (see Springel 2005, for a more
detailed description). For MG-GADGET, we now couple the calculation
of the modified gravity forces to the global PM-timestep. In order
to avoid loss of precision in the fifth force calculation, the criterion
for the global timesteps was adapted as well. In the new method,
the global modgrav-PM timestep size, tmodgrav PM, is given by

tmodgrav PM = min
(
t

global
modgrav, tPM

)
, (25)

where t
global
modgrav is the global modified gravity timestep and tPM is

the standard PM timestep. The modified gravity timestep is in turn
obtained from an acceleration criterion which is similar to the one
used for the tree-forces in P-GADGET3,

t
global
modgrav = min

particles

(√
f × li

soft/a
i
modgrav

)
. (26)

li
soft and ai

modgrav denote the softening length and the fifth force
acceleration for particle i, respectively. The prefactor f depends on
the integration accuracy parameter.

An important advantage of this scheme is that regions which
demand very small time-steps (such as the interiors of galaxies or

Figure 1. Convergence test for the time integration scheme: relative differ-
ence between the density profiles of a B halo simulated with the standard
modified gravity timestep and with a four times smaller one. Both simula-
tions were carried out for the F6 model.

galaxy clusters) are often screened. For many cosmological setups,
the permissible modified gravity timestep will thus be orders of
magnitude larger than the timestep required for standard gravity,
making this method particularly effective.

To ensure that the above time integration scheme converges for
zoom simulations, we performed a convergence test for the B halo
in the F6 cosmological model, comparing the above configuration
with a setup with four times smaller modgrav timestep: t̃modgrav =
1
4 tmodgrav. We find that density profiles, velocity dispersion and
acceleration profiles agree at the 2 per cent level for r > 10−2 r200.
Fig. 1 shows the relative difference in the density profile between
the two runs.

Our code MG-GADGET also includes an inlined version of the
SUBFIND algorithm (Springel et al. 2001), which we use to iden-
tify gravitationally bound haloes and subhaloes. We identify the
centres of haloes as the minimum of the gravitational potential. Be-
sides the standard outputs of an N-body code (particle positions,
masses, velocities, GR-gravity accelerations) we also include in the
output the modified gravity acceleration and the scalar field itself,
interpolated from the mesh points of the AMR grid to the particle
positions.

4 R ESULTS

4.1 Ideal NFW haloes

The theoretical estimates derived in Section 2.2 assume perfect
spherical symmetry. This is of course not true for the simu-
lated haloes from the Aquarius suite. To cross-compare the ac-
curacy of the simulations and the theoretical approximations in
a more controlled environment first, we set up initial condi-
tions for a collection of three perfectly symmetric haloes with
a NFW density profile. The haloes have equal concentration of
c ≈ 10 but different mass. Each object is situated in a cubic
box of 100 Mpc side-length and constant background density. The
haloes serve as initial conditions for MG-GADGET to obtain circular
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Figure 2. Upper panel: the circular velocity profiles for ideal NFW haloes
of three different masses but equal concentration c ≈ 10 for fR0 = −10−6

(solid lines) and �CDM (dotted line) scaled with the circular velocity at
r200. The velocities are derived from the enclosed masses, taking into ac-
count the increased gravitational forces for f(R) gravity in unscreened and
partially screened regions. Lower panel: the solid lines show the ratio of
total acceleration to GR acceleration for the three different haloes in fR0 =
−10−6 cosmology. Dotted lines show the theoretical expectations for this
force ratio. The corresponding values of the scalar field are plotted as dashed
lines. The theoretical values for the radius at which we expect screening to
set in (obtained from equation 18), rs, are shown as dash–dotted lines for
the heavy and the intermediate mass halo. For the least massive object, this
radius is zero. The grey shaded regions show an estimate for the uncertainty
of this radius. The highest and lowest allowed values for atot/aGR of 4/3
and 1, respectively, are indicated by the black dashed lines.

velocity profiles, accelerations and fR-profiles based on the code’s
multigrid f(R) solver.

Fig. 2 displays the results of these tests. The upper panel shows
the circular velocity profile in units of v200 ≡ √

GM200/r200 for
fR0 = −10−6 as well as for a �CDM reference simulation for
each of the haloes. Our values for the velocity profiles are obtained
from the enclosed mass but with an additional boost accounting for
the – in unscreened regions – higher accelerations in f(R) gravity
vc = √

GM/r × √
atot/aGR. In �CDM, the velocity profiles for

the three haloes overlap almost perfectly, which is expected due

to the self-similarity between haloes of equal concentrations. This
self-similarity is broken in modified gravity because of the scale
introduced by chameleon screening.

If the object is massive enough, the gravitational potential will
drop below a certain threshold at the screening radius rs, causing
the chameleon screening to set in. As a result, the fifth force quickly
decreases to zero. This is exactly what one can see in Fig. 2. The
circular velocity profiles in the upper panel do not coincide any-
more in f(R) cosmology. For the two more massive objects, there
is a tilt in the velocity curves at a certain radius depending on the
mass of the object causing the circular velocities to drop with in-
creased screening. Having a look at the lower panel, this can be
easily explained by the force ratio of total-to-GR force. For the
least massive halo, the force ratio stays roughly constant at the
theoretically expected value of 4/3 (indicated by the black dotted
line) because even in the centre the gravitational potential is not
deep enough to trigger screening. The slight deviations at small
radii are due to the lack of resolution in the AMR grid of the multi-
grid solver (the size of the grid cells is of the order 10−2r200 for
this object).

The force ratio of the intermediate mass object is very close
to the theoretically expected value for unscreened regions in the
outer part as well. But moving inwards, the ratio starts to decrease
and quickly drops to unity. The radius at which the fifth force
becomes negligible is almost exactly at the theoretically predicted
value for rs, which was calculated from equation (18). The grey
shaded regions indicate the uncertainty range of this radius. The
errors were obtained by varying the outer integration bound R in
equation (18) from r200/2 to 2 r200. Comparing the force ratio of
the simulation with the theoretical estimate calculated from equa-
tion (17) shows remarkably good agreement, too. The largest halo
is already partially screened at the outermost radius shown in Fig. 2.
The gravitational potential well of the object is so deep that it crosses
the screening threshold already in the outskirts of the halo. Again,
both the screening radius and the force ratio show a high level of
agreement with the theoretical expectations. From Fig. 2, one can
also see that the value of the scalar field drops by several orders of
magnitude at the screening radius, underlining its highly nonlinear
behaviour.

Next, we investigate if the self-similarity of the DM haloes in
the �CDM cosmology can be restored in f(R) gravity by a suitable
rescaling of the background field amplitude fR0. To this end, we scale
fR0 according to equation (21) such that the ratio rs/r200 of the high-
and low-mass haloes are the same as for the intermediate mass ob-
ject. We also use the same concentration. Fig. 3 displays the circular
velocity profiles and the total-to-GR force ratio for the objects. In
contrast to the previous plot, a good agreement of the f(R) circular
velocities can be observed. The force ratios and fR profiles are very
similar as well. Only the lowest mass halo shows a slight deviation
from the others which can again be explained by the worse resolu-
tion of the AMR-grid relative to the halo size in the centre of the
object. The screening radius is – by construction – exactly the same.
Knowing the impact of f(R) modified gravity on a certain property
for a given value of fR0, it is thus possible to predict how the property
would change for a different fR0 by scaling all masses according to
equation (21).

4.2 The Aquarius haloes

The ideal NFW haloes analysed in the previous section have iden-
tical density profiles in the f(R) and �CDM cosmological models.
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Figure 3. Same as Fig. 2, but with the masses and the background values
of the scalar field fR0 scaled such that the screening radius rs in units of r200

is constant for all three haloes.

Since f(R) gravity already modifies the gravitational forces during
structure formation, this will in general not be the case for the out-
come of self-consistent halo formation. Fig. 4 shows the density
profiles of the Aquarius haloes A, B and C, at z = 0, simulated in
the fR0 = −10−6 (F6), fR0 = −10−7 (F7) and �CDM cosmological
models. The upper panel displays the density profiles relative to
the critical density multiplied by (r/r200)2. The lower panel shows
the relative difference of the density curves in f(R) gravity rel-
ative to the GR runs. Clearly, the density profiles in F6 change
significantly compared to the cosmological standard model. The
density in the outer region decreases by about 10 per cent while
it increases by roughly 30 per cent in the inner part. The transi-
tion radius depends on the mass of the halo. For F7 the changes
are less significant. The density change in the C halo is about
10 per cent in the outer region but it is hard to tell if this is re-
ally a systematic effect or caused by small timing differences in
halo assembly.

To make a robust quantitative statement about the changes in
the halo densities, we stacked the density profiles of all simulated
Aquarius haloes. The profiles for the three cosmological models
as well as the relative difference between f(R) and �CDM are

Figure 4. Density profiles of the Aquarius haloes A (red lines), B (green
lines) and C (blue lines) for the three cosmological models �CDM (solid
lines), F6 (dashed lines) and F7 (dotted lines). Upper panel: the density
relative to the critical density multiplied by (r/r200)2. Lower panel: relative
difference between the densities in f(R) cosmology and the corresponding
�CDM values (this is not identical to the relative differences in the upper
panel, since no scaling with (r/r200)2 has been applied here). The solid black
line indicates equality.

illustrated in Fig. 5. The grey lines in the background show the
values for the individual haloes. As already expected from the pre-
vious plot, the change in the density is quite large for the F6 model.
Around r200 the density is about 10 − 15 per cent lower than in a
�CDM cosmology. At log10(r/r200) ≈ −0.5, the stacked density
ratio crosses equality and reaches a maximum of about 20 per cent
difference for the inner part of the objects. This is easily explained.
The higher gravitational forces in unscreened regions in f(R) gravity
move mass from the outer to the inner part of the haloes, thereby
steepening their density profiles. The difference of the stacked den-
sity profiles in the �CDM and F7 models is consistent with zero.
This shows that Milky Way-sized haloes are largely screened in F7.
Keeping in mind that the F6 model passes present constraints on fR0

(Lombriser 2014), we would like to stress that viable f(R) models
can hence change the density profile of Milky Way-sized DM haloes
by about 20 per cent. These results are qualitatively consistent with
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1536 C. Arnold, V. Springel and E. Puchwein

Figure 5. Upper panel: stacked density profiles for all simulated Aquarius
haloes for �CDM (red solid line), F6 (green dashed line) and F7 (blue
dotted line) cosmology. Lower panel: relative difference of the stacked
density profiles to the �CDM values. The grey lines indicate the densities
of the individual haloes. Again, this quantity is not equal to the relative
differences of the values in the upper panel as the latter were scaled with
(r/r200)2.

the findings of Shi et al. (2015) for Milky Way-sized haloes. A
direct quantitative comparison to that work is however not informa-
tive due to the much more limited resolution of the cosmological
simulations employed there.

Systematic differences in the density profiles are likely to affect
the concentrations of haloes. To investigate if the concentration
shows systematic changes in f(R) gravity as well, we fitted NFW-
profiles (Navarro et al. 1997) to the density of our simulated haloes
for each of the three simulated models. Unfortunately, we found
that the concentrations obtained from the fits show a relatively large
residual dependence on the radial fitting range, resulting in sizable
random scatter for our small halo sample. It is thus hard to judge
on this basis if f(R) gravity influences the concentration parameter
in a significant way. As an alternative to profile fitting, we also
employed another technique and obtained the concentration from
the maximum of the circular velocity curve in terms of vmax and

Table 1. vmax and rmax for the Aquarius haloes simulated in the models
�CDM, F6 and F7. The values for vmax, rmax and c are obtained with the
SUBFIND algorithm and neglect fifth-force contributions. c is the traditional
concentration parameter describing the shape of the density profile.

M200 r200 Vmax rmax c

(1012M
) (kpc) (km s−1) (kpc)

GR A 1.846 246.1 209.13 30.46 15.24
F7 A 1.954 250.8 206.52 40.79 11.95
F6 A 2.020 253.6 229.19 41.87 12.72

GR B 0.821 187.8 158.62 43.72 9.10
F7 B 0.863 191.0 160.54 42.78 9.36
F6 B 0.919 195.0 182.22 38.92 11.22

GR C 1.772 242.7 223.07 33.76 14.78
F7 C 1.811 244.5 222.08 32.96 15.01
F6 C 2.294 264.6 241.75 48.01 11.89

GR D 1.800 244.0 204.78 57.43 8.97
F7 D 1.871 247.2 206.28 56.46 9.16
F6 D 2.251 262.9 224.31 56.70 9.78

GR E 1.192 212.7 179.95 57.26 8.08
F7 E 1.229 214.9 183.08 58.94 8.00
F6 E 1.324 220.3 205.66 42.38 11.55

GR G 1.034 202.9 154.61 82.35 5.21
F7 G 1.077 205.6 154.02 60.11 6.81
F6 G 0.984 199.5 179.41 34.46 12.22

GR H 0.852 190.2 177.20 19.84 18.75
F7 H 0.910 194.4 176.77 19.60 18.89
F6 H 0.963 198.1 202.97 17.92 22.56

rmax (Springel et al. 2008):

δc = 7.213 δV = 7.213 × 2

(
vmax

H0 rmax

)2

,

δc = 200

3

c3

log(1 + c) − c/(1 + c)
. (27)

The results are summarized in Table 1, where vmax and rmax are
obtained from the density profile directly through the SUBFIND al-
gorithm. These values can be used to calculate the concentration
parameter of the NFW-profile. In computing vmax we ignore the
force modifications which occur in unscreened regions in f(R) grav-
ity, i.e. vmax and rmax are completely determined by the density
profile, as appropriate for measuring its concentration. They should
not be confused with the velocities shown in Fig. 7. The numbers
in Table 1 are rather connected to the curves in Fig. 6.

Comparing the concentration c of the objects simulated in F6 and
GR, we find that the concentrations are increased for the B, D, E
G and H halo. For the A and the C halo, however, the concentra-
tion parameter decreases in f(R) gravity compared to �CDM. One
can thus conclude that there appears to be a slight trend to higher
concentrations in f(R) gravity, but a much larger number of haloes
would be needed to establish this finding robustly. It would also be
important to carefully select sufficiently relaxed haloes (e.g. as in
Neto et al. 2007) to avoid influences from mergers or large sub-
structures. Because the effects in F7 are weaker, it is even harder to
demonstrate if and how the concentration changes for this model.

Fig. 6 shows stacked circular velocity profiles for the Aquarius
haloes in F6, F7 and GR as well as the relative differences between
the modified gravity models and �CDM. The grey lines in the
background display the velocity profiles of the individual haloes.
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Zoomed simulations in f(R) gravity 1537

Figure 6. Upper panel: stacked circular velocity profiles for the simulated
Aquarius haloes calculated only based on the enclosed masses in units of
v200 as a function of r200 for �CDM (solid line), F6 (dashed line) and F7
(dotted line). Lower panel: relative difference in the circular velocity of the
f(R) models compared to �CDM. The dotted black line indicates equality.
The grey lines in the background show the profiles for the individual haloes.

For this plot, the velocities were obtained from the enclosed masses
using the standard relation for Newtonian gravity, hence neglecting
any f(R) effects other than those encoded in the mass distribu-
tion. In order to clearly separate effects which are induced by the
slightly higher masses in f(R) gravity, the velocities are scaled with
v200 ≡ (GM200/r200)1/2. The velocity curves are therefore a direct
measure of the mass profile and useful to determine, for example,
the concentration of the mass profile in the standard way. It is not
surprising that the relative difference between the F6 model and
GR is of order 10 per cent compared to a 20 per cent difference in
density in the inner part of the halo (v ∝ √

M). In contrast to the
density, the velocity does not drop significantly below the �CDM
value in the outer regions since the velocities see the cumulative
mass profile which includes the higher density in the centre. The
slightly lower values outside of r200 are due to the rescaling with
v200. Since the density profile does not change noticeably in F7 the
change in circular velocities is negligible as well.

Figure 7. Same as Fig. 6 but with the circular velocities obtained from
the total accelerations taking increased gravitational forces in unscreened
regions for the f(R) models into account.

As a cautionary remark we would like to add that the velocities
shown in Fig. 6 should not be confused with observable circular
velocities. For those, the differences in the accelerations between
the different models must be included in the analysis. This was
done for Fig. 7, where we show stacked circular velocity profiles
obtained from the total accelerations. In the upper panel, the abso-
lute values of the velocities are displayed for the three simulated
models, the lower panel shows the relative differences of f(R) grav-
ity to GR. The velocities in the F6 model are significantly higher
compared to standard gravity and to the previous plot. This is easily
explained. In addition to the higher densities in the inner region of
the haloes, higher gravitational accelerations in unscreened regions
force the DM particles in the simulation to orbit faster in order to
prevent infall. As a result, the circular velocities are increased by
up to 25 per cent compared to GR in unscreened regions. Although
a 25 per cent difference in the velocity profile for an allowed f(R)
model seems large, one has to keep in mind that the effects will be at
least partially degenerate with (the quite uncertain) baryonic physics
(Marinacci et al. 2014; Vogelsberger et al. 2014) and uncertainty in
the halo mass. Also, the error bars of the current observational con-
straints (Avila-Reese et al. 2008; Hall et al. 2012; McGaugh 2012)
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Figure 8. Upper panel: stacked velocity dispersion profiles for the simu-
lated Aquarius haloes for the �CDM (solid line), F6 (dashed line) and F7
(dotted line) cosmological models. For the f(R) models the velocity disper-
sions were scaled according to σ 2

s = (MGR/Mf (R))2/3σ 2 to filter effects
due to the mass difference of the haloes in the different models. Lower
panel: relative difference in scaled velocity dispersion between f(R) gravity
and �CDM. The black dotted line indicates equality. The grey lines in the
background show the values for the individual haloes.

allow a broad range of velocities. It will therefore be hard to con-
strain fR0 relying on the rotation curves of Milky Way-sized objects.

For the F7 model, the circular velocities stay unchanged in the
inner region of the halo because the f(R) modifications to gravity are
screened by the chameleon mechanism. At around 0.5 r200 the rel-
ative velocity difference increases and reaches 20 per cent at 3 r200.
This can be explained by two mechanisms. On the one hand, the
halo becomes unscreened in the outer parts due to the shallower
gravitational potential. The gravitational forces are thus by a factor
of 4/3 higher and increase the velocities even if the density is the
same. On the other hand, all velocities increase outside r200 because
the particles start to see other objects and are not in virial equilib-
rium. In combination with higher forces, this adds another boost to
the velocities.

Fig. 8 shows the stacked velocity dispersion profiles for F6, F7
and GR (upper panel) as well as the relative difference of the mod-

ified gravity values to �CDM (lower panel). Since the difference
in halo mass between the models for a given object (see Table 1)
would also lead to differences in the velocity dispersion, we scaled
it according to σ 2

s = (MGR/Mf (R))2/3σ 2 for the f(R) curves to ac-
count for the mass difference. The scaled velocity dispersion shown
in the plot is therefore a measure of how the velocity dispersions
of haloes of a given mass would change in f(R) gravity. For the
F6 run, we find velocity dispersions increased by about 40 per cent
in the inner part (−1.5 < log10(r/r200) < −0.5) which is again a
result of the higher densities in this central part of the halo and the
increased gravitational forces. In the outer regions, the cumulative
mass profile stays unchanged compared to GR and thus only the
4/3 enhancement of the forces contributes to the about 30 per cent
higher velocity dispersion. Outside r200, the halo shows again larger
differences between the models due to a lack of virialization.

The 40 per cent difference between the f(R) and �CDM cosmo-
logical models is slightly higher than the values for unscreened
haloes of about 30 per cent reported in Schmidt (2010), Lam et al.
(2012), Arnold et al. (2014), Gronke et al. (2015) and Shi et al.
(2015). There are several reasons for this difference. First, all of
these other works used cosmological simulations with mass res-
olutions poorer by factors of 10–100 (relative to the mass of the
considered object) compared to the high-resolution simulations in
this work. They were therefore most likely not capable of captur-
ing the increased density in full in the inner region of the haloes.
Secondly, the previous works either present the averaged velocity
dispersion of the whole object or do not show the profiles in the
inner part. For both cases, the velocities will be dominated by the
outer regions which obey a smaller velocity dispersion. We note that
for the weaker F7 model, the velocity dispersion stays unchanged in
the central region because the fifth force is again screened. Further
out, the difference to GR grows to 10 per cent at r200.

In the following we like to extend our comparison of the theoret-
ically predicted screening radius and fifth force (see section 2.2) to
the simulated Aquarius haloes. In contrast to perfectly symmetric
NFW profiles the simulated haloes are ellipsoidal and feature sub-
structures which breaks spherical symmetry. Our goal is to find out
if the theoretical approximations are nevertheless applicable and
reasonably accurate for realistic haloes. The upper panel of Fig. 9
shows the circular velocity profiles of the Aquarius haloes A, B
and C, for F6, F7 and GR. The profiles are, as shown in Fig. 2,
obtained from the enclosed mass with an additional factor for the
increased forces in f(R) gravity. The small steps visible in some of
the f(R) profiles are due to the binning of the acceleration ratio.
For the A and the C halo, the velocities are increased by about
20–30 per cent with respect to GR in the outer region. Moving fur-
ther in, the difference between the f(R) and �CDM curves decreases
due to chameleon screening until they almost match. The B halo
has a slightly lower mass. Its velocity curve is by 20–30 per cent
higher than the curve obtained from the GR simulation over the
whole range of radii shown in the plot. This suggests that this halo
is largely unscreened.

These results are confirmed by the acceleration ratios for the F6
model displayed in the middle panel. For the two massive haloes, the
acceleration ratio drops to unity at r ≈ 0.02 Mpc. Inside this radius,
the f(R) modifications to gravity are screened by the chameleon
mechanism. For the B halo, the acceleration ratio stays at the the-
oretical maximum of 1.33 over almost the whole range shown in
the plot. Only in the innermost part there is a slight deviation which
could naively be interpreted as the onset of screening, but is more
likely an effect caused by the lack of resolution of the AMR-grid in
the central region of the least massive object.
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Figure 9. Circular velocity and acceleration profiles for the haloes A (red
lines), B (green lines) and C (blue lines). Upper panel: circular velocity
profiles for �CDM (solid lines), F6 (dashed lines) and F7 (dotted lines)
taking the increased accelerations due to modified gravity fifth forces in the
f(R) models into account. Centre panel: ratio of the total force to GR force
for the three haloes in the F6 cosmology. The results from the simulations
are shown as solid lines. Dashed lines indicate the theoretical expectations.
The predicted screening radii, rs, are shown as vertical dotted lines. The two
black horizontal dotted lines indicate equality and the maximum value for
the force ratio of atot/aGR = 4/3. For reference, the distance of the Sun from
the Galactic Centre is indicated by the vertical dashed dotted line. Lower
panel: same as the centre panel but for the F7 cosmology.

In the weaker F7 model, all three objects are almost totally
screened. The velocity profiles coincide with the �CDM curves.
Only in the very outer region, chameleon screening breaks down
and the velocities in F7 are increased with respect to GR. Again,
the acceleration ratios confirm this result. The lower panel of Fig. 9
shows that the fifth force vanishes everywhere, except in the out-
skirts.

The middle and the lower panel of Fig. 9 also display the the-
oretically expected screening radius and force ratio. It turns out
that the analytical screening radius rs (again, calculated from equa-
tion 18) is still a very good proxy for the radius where the actual
force ratio drops to unity, although it is unsurprisingly not as ac-
curate as for the ideal NFW profiles (Fig. 2). The force ratios are
also captured pretty well by the theoretical predictions, but are only
accurate to about 5 per cent for realistic haloes. As already men-
tioned, these differences occur due to the asymmetric shapes of the
simulated haloes and the presences of substructures. In the vicinity
of a large subhalo the main halo may already be screened while the
chameleon screening has not necessarily set in at the same radial
distance on the opposite side of the halo. So our results show that
the analytic model predictions are quite powerful for reasonably
smooth haloes whereas for objects with a high abundance of mas-
sive substructures, such as forming galaxy clusters or groups, their
accuracy is somewhat compromised. This then also underlines that
for scenarios with a very nonlinear dependence of the fifth force on
the density field, numerical simulations are essential to accurately
capture all relevant effects.

Coming back to the requirement that the Solar system should
be screened within the Milky Way, it is evident from Fig. 9 that
even the stronger F6 model fulfils this constraint. For the two more
massive objects A and C, which are closer to the Milky Way in mass,
the halo is already completely screened at the radius of the Solar
system, i.e. r ≈ 8 kpc. There is nevertheless not much space for more
strongly modified models. This finding is consistent with previous
constraints of the f(R)-model (see e.g. Terukina et al. 2014).

5 SU M M A RY A N D C O N C L U S I O N S

We analysed the properties of Milky Way-sized DM haloes in Hu
& Sawicki (2007) f(R) gravity employing cosmological zoom sim-
ulations. Using our simulation code MG-GADGET, we simulated a set
of seven DM haloes from the Aquarius suite in the F6 and F7 mod-
els, as well as in the �CDM cosmology, for comparison. We also
compared the simulation results against an analytical estimate of
the fifth force in DM haloes. Our main findings can be summarized
as follows.

(i) The theoretical predictions for the screening radius and the
fifth force inside a spherical object derived in Vikram et al. (2014)
(see also Section 2.2) reproduce the results obtained with our nu-
merical modified gravity solver to high precision for ideal NFW-
haloes. For realistic haloes from the cosmological simulations, the
applicability is somewhat limited due to triaxial halo shapes and
substructures. The theoretical estimate can nevertheless serve as a
proxy for reasonably smooth and relaxed haloes in relatively iso-
lated environments.

(ii) The self-similarity of DM haloes observed in �CDM is bro-
ken in f(R) gravity due to the scale introduced by the screening
radius for a given choice of fR0. It can be approximately restored by
appropriately scaling both fR0 and the mass of the object.

(iii) Our simulations show that the density of a Milky Way-sized
halo in F6 modified gravity is increased in the inner part, while it is
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slightly lower around r200 compared to GR. For the F7 model, the
density profiles are largely unchanged.

(iv) The impact of f(R) gravity on the mean halo concentration
parameter cannot be reliably quantified from our simulations due
to random scatter in fitting individual NFW density profiles and
the small sample size. The density profiles, nevertheless, suggest
a higher concentration of DM haloes in f(R) gravity compared to
�CDM (as previously reported in Shi et al. 2015). As higher con-
centrations imply a smaller Milky Way mass to match observational
constraints, this appears to provide yet another potential solution for
the too-big-to-fail problem (Boylan-Kolchin, Bullock & Kaplinghat
2011; Cautun et al. 2014).

(v) Circular velocities in f(R) gravity are increased in unscreened
regions with respect to the �CDM cosmology. Velocities calculated
in the standard way only from the enclosed mass show a relative
enhancement of about 12 per cent in F6, while there is almost no
difference for the F7 model due to the screening mechanism. For the
circular velocities calculated more appropriately from the accelera-
tions, there is an additional boost from the increased forces resulting
in up to a 30 per cent difference relative to GR for the F6 model,
and in about 10 per cent higher velocities for the F7 model in the
unscreened outer parts of the haloes. One should pay attention that
these two measures, which are equivalent in a �CDM cosmology,
yield different results in f(R) gravity.

(vi) The velocity dispersion inside the haloes is increased by up
to 40 per cent in F6 with respect to standard gravity. This relative
difference is larger than the enhancement of about 30 per cent which
is found in previous works. We conclude that earlier works most
likely did not have enough mass resolution to safely capture the ef-
fects on the density profile during structure formation and therefore
missed an imported contribution to the enhanced velocity disper-
sion. Although the size of our sample is limited and the scatter
between the haloes is quite large, we think that this result is still
reliable. The scatter is mainly induced by the screening mechanism
due to the different halo masses. Completely unscreened haloes
have an even larger difference in velocity dispersion in the central
region. Regardless of its small size, the sample is mass-selected to
match the mass of the Milky Way. In addition, the velocity disper-
sions in simulations carried out with MG-GADGET agree with results
from other codes when using the same resolution (see Winther et al.
2015). For the F7 model, the differences to GR are much weaker
due to the chameleon screening mechanism.

(vii) The simulations show that the ratio of total-to-GR accel-
eration is increased by the theoretically expected factor of 4/3 in
the outer parts of the haloes for F6 gravity. In the inner parts, the
more massive haloes of our sample are screened and thus show
no difference in the force compared to GR. In the F7 model, the
haloes are almost completely screened and exhibit only a small
force difference around r200.

(viii) The haloes which have a mass close to that of the Milky
Way are completely screened at the position of the Solar system
both in the F6 and the F7 model. Haloes with slightly lower mass
do not show screening at the Solar circle, underlining that F6 is the
strongest allowed f(R) model. This is consistent with Solar system
constraints on f̄ R0 from the literature.

All in all we conclude that the effect of viable f(R)-gravity models
on the density profiles and velocity dispersions of Milky Way like
haloes are quite large. Both simulated parameter values of the Hu
& Sawicki (2007) model, F7 and F6, are, according to our simu-
lations, fully consistent with local constraints. Even models which
are screened at the galactocentric radius of the Solar system can

exhibit large differences in the velocity dispersion and the density
profile. In the context of upcoming missions which are designed to
test gravity on large scales, it is therefore essential to explore the
alternatives to GR and the cosmological standard model, �CDM,
in detail in order to provide reliable information on the effect of
these theories on cosmological observables.
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