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Abstract

The heritability of most complex traits is driven by variants throughout the

genome. Consequently, polygenic risk scores, which combine information on

multiple variants genome‐wide, have demonstrated improved accuracy in

genetic risk prediction. We present a new two‐step approach to constructing

genome‐wide polygenic risk scores from meta‐GWAS summary statistics. Local

linkage disequilibrium (LD) is adjusted for in Step 1, followed by, uniquely,

long‐range LD in Step 2. Our algorithm is highly parallelizable since block‐wise
analyses in Step 1 can be distributed across a high‐performance computing

cluster, and flexible, since sparsity and heritability are estimated within each

block. Inference is obtained through a formal Bayesian variable selection

framework, meaning final risk predictions are averaged over competing models.

We compared our method to two alternative approaches: LDPred and lassosum

using all seven traits in the Welcome Trust Case Control Consortium as well as

meta‐GWAS summaries for type 1 diabetes (T1D), coronary artery disease, and

schizophrenia. Performance was generally similar across methods, although our

framework provided more accurate predictions for T1D, for which there are

multiple heterogeneous signals in regions of both short‐ and long‐range LD.

With sufficient compute resources, our method also allows the fastest runtimes.
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1 | INTRODUCTION

The heritability of most complex traits is driven by
variation throughout the genome, with a large number of
loci contributing small or modest effects (Dudbridge,
2013; 2016). Polygenic risk scores, which combine
information on multiple variants genome‐wide into

weighted sums of trait‐associated alleles, have been
found to improve prediction of a variety of traits
(Dudbridge, 2013; Evans, Visscher, & Wray, 2009;
Pharoah, Antoniou, Easton, & Ponder, 2008; Purcell
et al., 2009; Stahl et al., 2012; The International Multiple
Sclerosis Genetics Consortium (IMSGC), 2010). Even for
a modestly heritable trait such as breast cancer, a
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comprehensive polygenic score could improve discrimi-
natory power sufficiently for use in a targeted screening
program (Pharoah et al., 2002). However, the predictive
accuracy of current GWAS “hits” falls well short of what
is theoretically possible based on familial and genomic
heritability estimates (De Vries et al., 2015; Eriksson
et al., 2015; Talmud et al., 2015; Wacholder et al., 2010).
Realizing the full potential of polygenic risk prediction
will require much larger sample sizes than offered by a
typical single cohort GWAS (Chatterjee et al., 2013;
Dudbridge, 2013; Wray et al., 2013). In a recent trend
large‐scale “meta‐GWAS”, comprising 10s of 1000s of
people amassed over multiple studies, have boosted the
power of genetic association studies, increasing the
number of unambiguously associated regions into the
10s or even 100s for some traits (Lango Allen et al., 2010;
Morris et al., 2012; Teslovich et al., 2010). Building
predictive models from meta‐GWAS results is therefore
of great importance, since these consortia often represent
the totality of GWAS information for a particular trait.

A simple yet surprisingly effective approach is to select a
subset of variants according to a p‐value threshold and build
an additive score, weighting the contribution of individual
variants according to their associations with the trait. This is
easy to do from summary results alone, and requires
minimal computation. The main drawback is that genetic
correlations due to linkage disequilibrium (LD) are ignored,
which leads to bias in the weights, and, consequently,
suboptimal predictive accuracy. Ideally, multivariate regres-
sion would be used to estimate weights adjusted for LD.
Unfortunately, however, this is complicated for two reasons.
The first is that privacy concerns and the logistics of sharing
data on such a large scale mean that meta‐GWAS typically
only conduct one‐at‐a‐time association tests of each variant,
based on simple summaries shared between the cohorts.
The final univariate results ignore correlations among the
variants, and consequently signals tagged by multiple
correlated variants would be overrepresented in a polygenic
risk score constructed according to a simple threshold on
statistical significance. This issue is usually dealt with by
pruning variants until they are approximately independent,
although information is inevitably discarded (Dudbridge &
Newcombe, 2015). The second issue relates to the challenge
of dimensionality. Ideally, we would jointly model all
important predictors, in order to account for genetic
correlations due to LD. However, traditional regression
methodology suffers from over‐fitting when applied to large
numbers of covariates; information is spread too thinly
leading to unstable estimates with high standard errors.
This latter issue inspired the development of lasso penalized
regression by Tibshirani (1996), whereby a large number of
predictors are jointly modelled with a penalty term included
in the likelihood to encourage sparsity. The penalty term

modifies the likelihood of the regression coefficients, with a
large penalty leading to the exclusion of many variables.
Typically, the penalty is tuned through cross‐validation
such that covariates with negligible predictive effects are
removed. The over‐fitting problem is thus avoided and
prediction is improved. Various extensions to the original
method have been successfully applied in genomics to
explore multi‐single nucleotide polymorphism (SNP) mod-
els of disease (Vignal, Bansal, & Balding, 2011; Wu, Chen,
Hastie, Sobel, & Lange, 2009) or to search for master
predictors (Peng, Zhu, & Bergamaschi, 2010). Bayesian
versions of the LASSO have also been described (Griffin &
Brown, 2010; Park & Casella, 2008) and used for efficient
variable selection in genetics (Bottolo et al., 2013; New-
combe, Conti, & Richardson, 2016; Servin & Stephens,
2007; Tachmazidou, Johnson, & De Iorio, 2010; Wallace
et al., 2015). Attractive features of Bayesian sparse
regression include inference of posterior probabilities for
each predictor, posterior inference on competing combina-
tions, and, potentially most importantly, the possibility of
incorporating prior information into the analysis. In a
related approach, the over‐fitting problem has been
addressed by recasting the animal model of classical
quantitative genetics as a ridge regression model with a
Gaussian prior on genetic effects. This does not in itself
impose sparsity on the fitted model but has been extended
in various ways to allow for a sparse component
(Meuwissen, Hayes, & Goddard, 2001; Moser et al., 2015;
Zhou, Carbonetto, & Stephens, 2013).

Although most sparse regression methods require
individual level data, two frameworks have recently been
proposed that allow construction of high‐dimensional
polygenic risk models from meta‐GWAS summaries.
“LDPred” is a sparse Bayesian regression framework in
which multivariate weights are estimated using a combina-
tion of Markov Chain Monte Carlo (MCMC) and empirical
Bayes (Vilhjálmsson et al., 2015). The framework is
empirical Bayes in that a fixed value is estimated from
the data for the residual variance (derived from a
heritability estimate). A large proportion of variants are
assumed to have no effect, and the proportion of causal
variants is selected from a range of values according to
performance in the validation data, with those variants
assumed to have effects following a Gaussian distribution.
The second method, “lassosum”, uses a non‐Bayesian
penalized‐regression framework with a Lasso type penalty
(Mak et al., 2017). The penalization parameters are
optimized according to predictive performance in the
validation data, similarly to LDPred, but a “pseudo‐
validation” approach is also proposed to obtain near‐
optimal values of the two tuning parameters. Both LDPred
and lassosum account for LD using genetic correlation
estimates from external reference data. In a comparative
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study they performed similarly, both outperformed simple
approaches based on pruning and p‐value thresholding,
which is to be expected if there are multiple causal variants
in LD (Dudbridge & Newcombe, 2015).

In this work, we propose a new two‐step framework for
constructing polygenic risk scores from summary data,
which builds on our method “JAM”, a sparse Bayesian
regression model for multivariate fine‐mapping from sum-
mary data (Newcombe et al., 2016). In the first step, models
are fit independently to chromosomal blocks of limited size,
and then combined in a second step to account for long‐
range LD. This obviates a practical need to define LD blocks
as required, for example, by LDPred, but, more pertinently,
provides the flexibility to capture highly complex genetic
models, since sparsity and heritability are calibrated
individually within each LD block at step one. A further
advantage is that our approach is extremely parallelizable,
since the block‐specific analyses can be distributed across a
high‐performance cluster, offering potentially much faster
performance when hundreds of computing cores are
available. In comparison to penalized regression approaches
such as lassosum, our approach provides predictions that are
model averaged, that is, they reflect uncertainty in the best
selection of variants since they are averaged over competing
combinations. Notably, the use of Bayesian model averaging
means that all SNPs may enter the polygenic score, even
though each evaluated model is sparse.

2 | METHODS

Our aim is to build a high‐dimensional sparse regression
model using summary data. We start with a brief summary
of our previous “JAM” model, which allows multivariate
fine‐mapping from univariate summary data, and how
this framework can be used to construct polygenic risk
models. Second, we describe a two‐step extension for the
adjustment of long‐range LD, facilitating genome‐wide
application.

2.1 | Inference of multivariate
polygenic weights from univariate
summary data

We start by defining the standard multivariate linear
regression of a vector of n trait values y on P variants in
the columns of an n × P genotype matrix X :

y XβN σ~ ( , )2 (1)

β denotes the P‐length vector of multivariate, that is,
correlation‐adjusted, genetic effects, and σ2 denotes the

residual variance. Note that both trait and genotypes are
mean‐centred, allowing a simplification of the standard
regression model to exclude the intercept term. Our
previous summary data method JAM (Newcombe et al.,
2016) is based on the following model:

X y X Xβ X XMVN σ′ ~ ( ′ , ′ )2 (2)

which is derived from Equation (1) by multiplying
through by X ′. X′y, which has as many elements as
genetic variants, can be derived from univariate effect
estimates from regressions of each variant and the trait
(Newcombe et al., 2016; Verzilli et al., 2008; Yang et al.,
2012), as are reported by a typical GWAS or meta‐GWAS.
Using a plug‐in estimate for the genetic correlation
matrix X X′ , as obtained from a reference data set, the
model depicted in Equation (2) can therefore be fitted
using summary data. Crucially, inference is obtained for
the same correlation‐adjusted vector of genetic effects, β.
To ease the computational burden, we invoke a Cholesky
decomposition of X X′ to map Equation (2) to a set of
independent Gaussian distributions. The Cholesky de-
composition of X X′ provides an upper triangular and
therefore invertible matrix, L, which satisfies:

X X L L= ′′

Multiplying Equation (2) through by L′−1, we obtain:

L X y LβMVN σ′ ~ ( , )′ 1 2− (3)

that is, a model with the same form as a standard linear
regression with independent residual errors.

2.1.1 | Sparsity inducing prior on which
variants have predictive effects

To avoid over‐fitting in the context of potentially many
genetic effects, we use a Bayesian sparse regression
framework to draw inference under the model de-
scribed by Equation (3). This is facilitated by introdu-
cing a latent binary vector γ γ γ= ( , … )P1 of indices for
whether each variant has a nonzero effect, that is,
included in the model. Denoting the proportion of
variants with nonzero effects as π , sparsity is induced
via a β prior distribution:

π Beta λP~ (1, ) (4)

This prior formulation is widely used in Bayesian
variable selection due to the intrinsic correction for
multiplicity; the marginal prior odds of any single
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variable having an effect is λP1/ , and therefore
decreases with the total number of variables P, whereas
the global prior odds of any effect is constant at λ1/

(Wilson, Iversen, Clyde, Schmidler, & Schildkraut,
2010). λ can be chosen to induce more or less sparsity,
depending on prior beliefs. In practice, we recommend
trying a range of several λ and picking the value which
optimizes predictive performance in the validation
data. For the analyses presented in the results, we
tried λ = 0.001, 0.01, 0.1, 1. Note that λ is a hyper‐
parameter for the distribution of π , the proportion of
variants with nonzero effects, and conditional on λ, we
allow the proportion π to be random; thus we allow
greater flexibility than approaches that consider a set of
fixed values for π (Vilhjálmsson et al., 2015)

2.1.2 | Prior on variant effects

Conditional on a selection of variants indicated in γ , we
place a hierarchical normal prior over the corresponding
subvector of multivariate effects, which we denote by βγ :

β IN σ~ (0, )γ β
2

σβ
2 may be interpreted as the variance among the

“true” genetic effects. To estimate this crucial parameter
largely from the data, we assign a vague hyper‐prior
(rather than choosing a fixed value), which we have used
previously in an ′omics setting (Newcombe et al., 2014):

σ Unif~ (0.05, 2)β

Our polygenic prediction model is completed with a
prior on the residual variance, σ 2. We use a standard
vague prior:

σ Inv Gamma~ − (0.01, 0.01)2

For many traits, there will be prior information
available on the heritability, and therefore on the residual
variance of a whole genome predictor. However, as we
explain below, in the first step of our parallelized
approach, the algorithm is only applied to a small
number of SNPs simultaneously. Hence the use of the
vague priors above.

2.1.3 | Binary traits

So far, our framework has assumed the trait of interest is
continuous. This is because we rely on a linear modelling
framework to relate univariate summaries to multivariate

effects via the linear transformation X′y. In the case of
binary traits, we derive X′y after first mapping univariate
log‐odds ratios to approximate linear effects via their
z‐scores. That is, we infer the univariate effects that
would have been estimated if the binary outcome has
been modelled by linear regression, allowing construc-
tion of X′y. This strategy is employed in other linear‐
based summary data frameworks (Chen et al., 2015)
including LDPred (Vilhjálmsson et al., 2015), to which
we refer readers for a detailed description of this
mapping.

2.1.4 | Inference of a posterior model
averaged polygenic risk score via reversible
jump Markov Chain Monte Carlo

We cannot derive analytical expressions for the poster-
ior of β and so use reversible jump MCMC (Green,
1995) to sample from the required posterior distribu-
tion. The reversible jump sampling scheme starts with
an initial model, γ (0), which is a selection of variants
in Step 1 and corresponding parameter values, θ (0). To
sample the next model and set of parameters, which we
denote by γ (1) and θ (1), we propose moving from the
current state to another model and/or parameter
values, γ* and θ*, using a proposal function q
(γ θ γ,θ, | )* * . The proposed model and parameters are
accepted with probability equal to the Metropolis‐
Hastings ratio:

D γ θ θ γ γ

D γ θ θ | γ γ

γ θ γ θ

γ θ γ θ
MHR

P P P

P P P

q

q
= ×

(

( | *, *) ( *| *) ( *)

( | , ) ( ) ( )

( , | *, *)

*, *| , )

where D is the observed data, and D γ θP ( | , ) is the
multivariate likelihood described by Equation (3).
P γ( )⁎ is the β‐binomial model space prior defined in
Equation (4) and P θ γ( | )* * is the prior on the
parameters conditional on (i.e. included in) the model.
The proposed model and parameter values are there-
fore accepted with a probability proportional to both
their likelihood and prior support. If this new set of
values is accepted, we set γ (1) = γ* and θ θ(1) = *,
otherwise they are discarded and the current values are
retained; γ (1) = γ (0) and θ (1) = θ (0). It can be shown
that this produces a sequence of parameter/model
samples, which converge to the target posterior
distribution (Green, 1995). After obtaining a posterior
sample of effects, β, for each variant (note that many of
these values may be zero corresponding to exclusion
from the model at a particular iteration), we average to
obtain the final weighted polygenic risk score across all

variants, β̂ . This may also be interpreted as the vector
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of posterior mean variant effects, averaged over the
posterior distribution of models.

2.1.5 | Two‐step approach to the
adjustment of long‐range linkage
disequilibrium

A practical limitation to the use of the method outlined
above is that a full rank genotype matrix is required to
construct the plug‐in estimate for X X′ . This is due to
the necessary inversion during inference (Newcombe
et al., 2016). Therefore, the number of variants that can
be simultaneously modelled must necessarily be less
than the number of individuals in the reference data,
and, in practice, depending on the amount of correla-
tion, considerably less. In fine‐mapping applications,
this is generally not a problem. In the genome‐wide
context, Mak et al. (2017) regularized X X′ with a
further penalty parameter, transforming their original
Lasso model to an elastic net problem. LDpred uses a
Gibbs sampler that essentially models a sliding window
of variants, of fixed size. Here we suggest the following
two‐step approach to build models within blocks,
under the Bayesian sparse regression outlined above,
and then account for cross‐block correlation to arrive
at a genome‐wide model.

Step 1: Block‐specific polygenic scores
In step one, the P variants genome‐wide are split into B
small blocks of 100 variants each, and JAM is used to
derive posterior mean weights for the variants within

each block: β̂b for =b B1, .. . For the analysis of each
block b, the input data is the set of marginal variant
effects as well as the columns of the reference genotype
matrix corresponding to the variants in block b. The
block size choice of 100 could be varied but we found that
100 worked well in practice (see Section 3).

Step 2: Between‐block adjustment
In the absence of correlations across blocks, an unbiased
genome‐wide polygenic risk score, with weights which

we denote by β̂G, could then be constructed by simply
appending the block‐specific scores:

β β β^ = ( ^ ,.., ^ )G B1

However, this risk score will be biased in the presence
of correlations across blocks, since they were ignored in
Step 1. To account for cross‐block correlations, we
introduce a second layer of multivariate weights,
δ δ δ= ( , .. )B1 , which adjust the “marginal” block‐specific

scores for one another. Specifically, we seek to estimate
the “block‐adjusted” risk score:

β β βδ δ^ = ( ^ , .. ^ )G B B1 1

It is instructive to consider the block‐specific scores as
a set of B covariates, and view δ as the multivariate vector
of effects, we would obtain from a regression of y on
an n × B matrix of the block‐specific scores, S. For
clarity, the element of S corresponding to individual i and
block b is:

∑ βs x= ^
i b

p

i b p b p,

=1

100

, , , (5)

where xi b p, , is their genotype at variant p in block b, and
β̂b p, is the corresponding weight from the block‐specific
score as estimated in Step 1. It transpires that the
estimation of δ is straightforward, by reapplying the same
methodology used to estimate multivariate SNP weights
for each block in Step 1, except now we wish to adjust the
“marginal” block‐scores for the block‐block correlation
structure S′S. The analogy of Equation (2) is:

S y S Sδ S SMVN σ′ ′~ ( , )′ 2 (6)

By applying Equation (5) to the reference matrix X ,
we also obtain a plug‐in estimate for S′S. In the same
way X′y for Equation (2) is constructed from the
marginal variant effects (and their minor allele
frequencies) we can construct S′y from the marginal
block‐score “effects” and the column means of S. By
construction, the “marginal” effect of each block‐
specific score is 1; a unit increase in each risk score
is associated with the same unit increase in the trait y.
Intuitively, all scores have equivalent unit effects on y

because the variant‐specific effects from which they are
composed are on the same scale as per Equation (1),
which defines the unit SNP effects within each block. If
a block contains variants with small effects, a large
number is required for a score of 1. Conversely, for a
block containing larger effects, fewer variants are
required to achieve the same score. We obtain a
maximum likelihood estimate for δ̂ after multiplying
both sides of Equation (6) through by the inverse
Cholesky decompositon of correlation matrix S′S to
obtain a linear regression analogous to Equation (3).
Note that model selection is not carried out in Step 2
since sparsity among the genetic effects has already
been imposed in Step 1 under the prior in Equation (4),
and we do not expect sparsity at the block level.
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Obtaining δ̂ completes our genome‐wide polygenic
score in which correlations are accounted for both
within and across regions:

β β βδ δ^ = (^ ^ , .. ^ ^ )G B B1 1

Note that the first step of our algorithm is why it is
highly parallelizable. Although, in principle, joint analy-
sis of multiple blocks would help inform estimation of
the residual variance, σ2, as well as the proportion of
“causal” variants, θ, in practice we found no difference

compared to estimating each block‐specific score, β̂b,
independently. By running the block‐specific analyses
independently, we could take advantage of large numbers
of CPU cores available to us via a high performance
computing cluster (HPC). In each of the following real
data applications we ran our algorithm for 200,000
iterations in the Step 1 block‐specific analyses.

3 | RESULTS

3.1 | Cross‐validation in the Welcome
Trust Case Control Consortium

We first compared performance of our proposed method
against LassoSum and LDPred using individual level
genotypes, measured using the 500K Affymetrix Chip,
for seven traits in the Welcome Trust Case Control
Consortium (WTCCC, 2007). In total, data were available
for 2,835 common controls, 1,827 bipolar disorder, 1,880
coronary artery disease (CAD), 1,684 Crohn’s disease, 1,904
hypertension, 1,834 rheumatoid arthritis, 1,933 type 1
diabetes (T1D), and 1,872 type 2 diabetes cases, respectively.
For each trait, the WTCCC cases and controls were
randomly partitioned such that 2/3rd of the samples were

used to train all models and 1/3rd of the samples were used
for testing. The random partitioning was conducted in a
stratified manner, such that each of the three folds had the
same proportion of cases and controls. After pruning
variants with missing rates above 1%, and for maximum
LD below r2 95% using the Plink software package (Purcell
et al., 2007), we were left with between 255,781 and 256,925
variants for each trait. LDPred and lassosum were run with
default parameters as described in their papers. Results are
presented in Table 1. Out‐of‐sample predictive results were
pooled across all three folds before calculating the final
performance summaries. 95% confidence intervals (95% CI)
for the receiver operating characteristic area under the
curves (ROC AUCs) were calculated using 2,000 stratified
bootstrap replicates and the pROC R package. We also
checked results using a different cross‐validation partition-
ing seed, which were indistinguishable (not shown).

For most traits, the performance of LDPred and
LassoSum was similar, although LDPred offered improve-
ments for Crohn’s disease, AUC of 0.69 (95% CI: 0.66–0.72)
versus 0.65 (95% CI: 0.62–0.68), and T1D, AUC of 0.87 (95%
CI: 0.85–0.89) versus 0.83 (0.80–0.85). Our two‐step JAM
method appeared the most robust, generally resulting in
performance on par with the best performing of LDPred
and lassosum. Runtimes for our two‐step approach ranged
between 3 and 4min when running different prior settings
and chromosomes in parallel on different computing nodes,
with block parallelization across the 16 cores of each
compute node. These runtimes were similar, though
slightly faster than lassosum, which typically took an extra
minute to run. Conversely, LDPred took several hours.
Therefore, with a large numbers of compute cores available,
our parallelizable approach was the fastest, while offering
typically better predictive performance. However, in terms
of total computational cost, LassoSum is the most efficient

TABLE 1 Application of three summary statistics prediction methods in the Welcome Trust Case Control Consortium under three‐fold
cross‐validation

Trait

LassoSum LDPred JAM

AUC r2 AUC r2 AUC r2

Bipolar disorder 0.67 (0.64, 0.69) 0.09 0.66 (0.63, 0.69) 0.08 0.70 (0.67, 0.73) 0.13

Coronary artery disease 0.59 (0.56, 0.62) 0.02 0.59 (0.56, 0.62) 0.02 0.65 (0.62, 0.67) 0.08

Crohn’s disease 0.65 (0.62, 0.68) 0.07 0.69 (0.66, 0.72) 0.10 0.69 (0.66, 0.72) 0.12

Hypertension 0.61 (0.58, 0.64) 0.04 0.59 (0.56, 0.62) 0.03 0.58 (0.55, 0.61) 0.02

Rheumatoid arthritis 0.71 (0.68, 0.73) 0.12 0.72 (0.69, 0.75) 0.14 0.74 (0.71, 0.76) 0.16

Type 1 diabetes 0.83 (0.80, 0.85) 0.30 0.87 (0.85, 0.89) 0.39 0.86 (0.84, 0.88) 0.36

Type 2 diabetes 0.62 (0.60, 0.65) 0.04 0.60 (0.57, 0.63) 0.05 0.64 (0.61, 0.67) 0.08

Note: ROC AUCs and predictive r2 are presented, with ROC AUC 95% confidence intervals calculated via 2,000 stratified bootstrap samples. For each method,
performance is presented for the best performing sparsity.
Abbreviations: AUC, area under the curve; ROC, receiver operating characteristic.
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method, achieving these runtimes when only a single
compute node is available.

3.2 | Meta‐GWAS applications for type 1
diabetes, coronary artery disease, and
schizophrenia

Next, we exemplify our method in three case studies
using summary statistics from meta‐GWAS for T1D
(T1DGC; 3,983 cases, 3,999 controls), CAD (cardiogram;
40,170 cases, 97,365 controls), and schizophrenia (PGC;
34,241 cases, 45,604 controls). Summary statistics from
the T1DGC study were available for both genotyped SNPs
(Illumina 550K) as well as imputed SNPs unique to the
older Affymetrix 500K array. The imputation, originally
conducted to facilitate meta‐analysis with the WTCCC,
was based on a substantial subset of controls for which
both arrays were available. Details of the original QC,
imputation method, and meta‐analysis can be found in
Barrett et al. (2010). The cardiogram summary statistics
came from a meta‐analysis after excluding the WTCCC
and restricting to the 37 remaining studies with white
European ancestry. Studies contributed either genotypes
from the Metabochip array or GWAS data imputed using
HapMap; further details on QC, imputation, and the
meta‐analysis may be found in Nikpay et al. (2015). The
schizophrenia summary statistics correspond to a meta‐
analysis of 46 European studies from the Psychiatric
Genomics Consortium (PGC), each of which contributed
both genotyped SNPs (from various arrays) as well as
imputed SNPs using a 1,000 genome reference panel.
Further details of the QC, imputation, and meta‐analysis
may be found in Ripke et al. (2014). Case and control
samples from the WTCCC were used as independent
testing data for CAD (n= 4,715) and T1D (n= 3,308). For
the latter, the 1958 birth cohort was removed since these
samples were used as controls in the T1DGC. For
schizophrenia, testing data comprised genotypes mea-
sured using the Affymetrix 6.0 array in 5,334 samples
from the Molecular Genetics of Schizophrenia (MGS)
study (Shi et al., 2009). Since the MGS results were
included in the PGC meta‐GWAS, we excluded their
influence using a technique detailed by Mak et al. (2017),
whereby the hypothetical meta‐analysis of the PGC
excluding MGS is inferred according to the results from
each. In each case study, the SNPs used for polygenic
model building were the subset that appeared in the
intersection of SNPs available in both the summary
statistics and testing datasets, and remained after pruning
for less than 1% missingness and LD less than r2 95%
in the corresponding testing data. This left 231,510
SNPs for T1D, 211,263 for CAD, and 385,474 for
schizophrenia.

All three sparse regression methods—JAM, LDPred, and
lassosum—were run with the same parameters as described
in the WTCCC cross‐validation analyses above. We also
compared against a simple p‐value thresholding approach,
as well as a combined clumping and p‐value thresholding
approach, which selectively removes less significant SNPs to
reduce LD (Wray et al., 2014). For the p‐value thresholding,
we used the set of p‐values {5e‐8, 1e‐5, 1e‐4, 1e‐3, 0.0015,
0.0025,…0.995}, and when combined with clumping, we
used r2 thresholds of 0.2, 0.5, and 0.8.

For T1D, all sparse regression methods surpassed
simpler p‐value thresholding, with JAM offering the
best predictive performance; r2 of 0.38 compared to
0.35 for LDPred and 0.30 for lassosum, AUC of 0.86
(95% CI: 0.85–0.88) compared to 0.85 (95% CI:
0.83–0.86) for LDPred, and 0.82 (95% CI: 0.81–0.84)
for Lassosum. We suspect the improved performance
from JAM is due to the large number of correlated
signals in regions of both short‐ and long‐range LD
within the major histocompatibility complex (MHC)
on chromosome 6, for which a more sophisticated
model search and averaging algorithm should offer
greater accuracy. To confirm, we reran JAM, LDPred,
and lassosum after excluding chromosome 6 from the
training data. As expected, performance was consid-
erably diminished for all three methods but was
indistinguishable between JAM, LDPred, and lasso-
sum (r2 of 0.08 and AUC of 0.66 for all), indicating
that JAM’s improved performance for T1D is indeed
driven by a more flexible model for the MHC. For
schizophrenia and CAD, where the polygenic signal is
weaker and more dispersed through the genome, all
methods performed similarly (Figure 1).

A unique feature of our method is the ability to adapt
sparsity within local SNP blocks. To demonstrate how
this looked in practice, we plotted the posterior mean
selected number of variants for each block from each case
study (Figure 2). As expected for T1D, a number of blocks
within the MHC on chromosome 6 had considerably
more SNPs selected, indicating that JAM adapted to
impose less sparsity, in a region containing strong signals.
For CAD and schizophrenia, the spread of block‐specific
selections was more similar across chromosomes, but
there was still variation, demonstrating block‐to‐block
adaption. Note that the larger number of total SNPs
selected for CAD and schizophrenia was due to much
larger training samples, which allowed the estimation of
many more smaller effects—see Table 2. The pattern of
runtimes across all three case studies was similar to the
WTCCC cross‐validation study above, with JAM offering
the best runtimes when different priors and chromo-
somes were run in parallel, lassosum not far behind, and
LDPred significantly slower (Table 2).
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4 | DISCUSSION

We present a novel, flexible, and parallelizable approach to
the construction of genome‐wide polygenic risk scores from
meta‐GWAS summary statistics. In cross‐validation analyses
of all seven traits in theWTCCC, and three case studies using
meta‐GWAS summary results, our method offered similar
predictive performance to two alternative approaches,
lassosum and LDPred, while achieving the fastest runtimes.

The improved runtimes were due to the highly parallelizable
nature of our algorithm, whereby genetic correlations are
adjusted for in two steps, allowing the analysis of many small
groups of SNPs independently at Step 1, in which we only
account for short‐range LD. Because we partition the
genome into blocks rather arbitrarily at Step 1, we allow
for LD straddling block boundaries, as well as longer range
LD, in Step 2. The adjustment for both short‐ and long‐range
LD is novel to our method, and is more satisfactory than
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FIGURE 1 Receiver operating characteristic area under the curves ROC AUCs and predictive r2 for various predictive methods in three
case studies training polygenic predictive models using meta‐GWAS summaries. For type 1 diabetes, the T1DGC (n= 8,005) was used for
training and the Welcome Trust Case Control Consortium for validation. For coronary artery disease (CAD), cardiogram (n= 137,535) was
used for training and the WTCCC for testing. For schizophrenia, the Psychiatric Genomics Consortium (n= 74,511) was used for training
and the MGS study for testing. For each analysis and method, results are presented for the best performing sparsity. ROC AUC 95%
confidence intervals were calculated using 2,000 stratified bootstrap replicates
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simple block‐wise model fitting since LD decays stochasti-
cally and any attempt to partition the genome will result in
some correlations across blocks. The most important
instance of long‐range LD in the genome is in the human
leukocyte antigen (HLA) complex, and it is those diseases
with HLA associations where our method, and others that
account for LD, did best. There is a particularly strong and
complex HLA signal for T1D, consisting of multiple
heterogeneous signals in regions of both short‐ and long‐
range LD, and it was here, in both the WTCCC and T1DGC

case studies, that performance gains were greatest compared
to LDPred and lassosum, which only model short‐range LD.
A further novel feature of our method, compared to LDPred
and lassosum, is that we allow for different genetic models,
that is, signal sparsities, across different blocks. This is
achieved by treating sparsity and local heritability as random
quantities rather than fixed hyperparameters, which should
offer increased statistical robustness over repeated replication
studies, as well as inference on where highly polygenic
predictive signals are concentrated (see Figure 2).

(a)

(b)

(c)

FIGURE 2 Block‐specific posterior mean numbers of selected single nucleotide polymorphisms by the JAM method in each of the three
meta‐GWAS case studies. The vertical spread indicates the variation in block‐specific adapted sparsities from step one of our proposed
framework. Note that the global average varies across the case studies owing to different optimal λs, which control the global sparsity. For
CAD and schizophrenia, summary statistics were available from considerably larger training datasets, allowing the estimation of many more
small effects (see Table 2). CAD, coronary artery disease

TABLE 2 Computational aspects of JAM and runtimes (in minutes) of the different methods applied to the meta‐GWAS case studies

Case study

Total JAM JAM JAM lassosum LDPred

SNPs λ SNPs Runtime Runtime Runtime

T1D 231,510 0.01 712 4.6 10.3 61.5

CAD 211,263 0.001 7233 5.1 7.5 27.5

Schizophrenia 385,474 1E‐04 30544 16.6 17.4 157.2

Note: The total number of SNPs analyzed (i.e., after QC), for all methods, is shown in the first column. The next two columns correspond to the optimal value of
for use with JAM—smaller values encourage more sparsity—and the posterior average number of SNPs selected into the corresponding optimal JAM model
Abbreviations: CAD, coronary artery disease; SNP, single‐nucleotide polymorphism; T1D, type 1 diabetes.
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Although we demonstrate the two‐step approach in
a Bayesian model averaging framework, the idea is
generic to regression and could be leveraged for gains
in other frameworks too. There are, however, some
conceptual advantages to using a formal Bayesian
model averaging approach. First, we do not have to fix
an assumed proportion of causal variants, but instead
treat this as an unknown parameter with a prior that
is integrated over separately for each block. Conse-
quently, we observed that predictive performance
under different priors was more robust than, analo-
gously, LDPred and lassosum across the range of their
respective sparsity tuning parameters. Although the
standard practice is to choose the sparsity tuning
parameter for each method according to best perfor-
mance in the test data, as we do here, this will, in
principle, lead to a degree of optimism, that is,
overfitting. Ideally, an independent data set should
be used to select tuning parameters such that the
predictive algorithm is entirely finalized before
application in the test data. This was not practical in
the data sets we considered here, but the observation
that our fully Bayesian approach is more robust to the
sparsity choice provides confidence that results from
the case studies are less likely to suffer from
optimism. A further appeal of our approach is that it
provides a unified analytical model for fine mapping
and polygenic score estimation. In the fine mapping
context, the genetic effects can be integrated out as
nuisance parameters (Newcombe et al., 2016), with
the objects of inferences being the probabilities of
including each SNP in the model. Here, by contrast,
but under the same framework, the SNP effects are
obtained by averaging over the inclusion probabilities.

Further flexibility is possible through the prior on
effect sizes for selected SNPs. We have used a
conjugate Gaussian prior, which after averaging over
sparse models leads to a marginal posterior distribu-
tion similar to that obtained from a slab‐and‐spike
prior. Thus our approach is conceptually similar to
LDpred at the block level, but we allow for different
posterior distributions across blocks, related by a
common vague prior distribution. Now our approach
can readily be extended by letting each SNP belong to
one of several classes, with class membership prob-
abilities drawn from a multinomial distribution and
distinct Gaussian distributions for the effects in each
class. After model averaging, this would be analogous
to some mixture models recently proposed for
individual level data (Moser et al., 2015; Zhou &
Stephens, 2014), with the advantage that we can use
summary statistics and fit distinct models to blocks of

SNPs in parallel. Thus, while the present work
provides a proof of principle with comparable accu-
racy to competing methods for summary statistics, it is
readily extensible in ways that mirror the best current
models for individual level data. Furthermore, a
mixture modelling formulation may provide a natural
way to accommodate external SNP‐specific functional
annotation information from public resources, such as
annotation databases, expression, and methylation
quantitative trait locus analyses. An extension is
conceivable whereby SNP‐specific functional annota-
tions would influence class assignments within the
mixture of Gaussian distributions. For example,
rather than using a naïve multinomial distribution,
an informative β prior could be constructed across the
class assignment ratios. Indeed, it has previously been
shown that reflection of prior annotation when
constructing polygenic risk scores is advantageous
(Shi et al., 2016). We plan to pursue all these ideas in
future work.

Assuming availability of a large number of comput-
ing nodes, our method offered the fastest performance
with similar predictive performance to lassosum and
LDPred. The level of computing resources required for
these runtimes (~100 compute nodes) is available to
many researchers today, however, our parallelization
approach can take advantage of even more resources
as they inevitably become available over the coming
years, since many of the individual block analyses are
still being run sequentially in Step 1. With sufficient
computing resources, in principle, every single 100
SNP block could be run be run in parallel, which
would reduce runtimes to well under a minute in our
three case studies. Relatedly, while we found the use
of 100 SNP blocks in Step 1 worked well in practice,
this choice is likely to be dependent on marker
density, which will determine the average genomic
length of these blocks. Using microarray data, as in
our case studies, the 100 SNP blocks span genomic
lengths the order of 100 kb for microarray data, but,
when, for example, using imputed sequence data
larger blocks may lead to better performance. We
intend to explore this in more detail in future work.

We have incorporated our algorithm “JAMPred”
into our existing fully documented R package for
Bayesian model selection “R2BGLiMS”, which also
contains the original “JAM” software, and is freely
available to download via github https://github.com/
pjnewcombe/R2BGLiMS. We have included scripts
demonstrating the JAMPred syntax, and how to
distribute a genome‐wide analysis on an HPC, in the
Supporting Information.
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