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Abstract

The Kutta condition is applied to aerofoils with sharp trailing edges to allow
for viscous effects to be considered within a simplified system of equations
that are inviscid. This paper discusses in detail the inclusion of an unsteady
Kutta condition at a sharp trailing edge during gust-aerofoil interaction,
and illustrates how the analytic solution for the far-field noise generated
by this interaction changes if the unsteady Kutta condition is neglected, or
more precisely, if the unsteady pressure is permitted to be singular at the
trailing edge. The analytic solution, both with and without the unsteady
Kutta condition, is compared with numerical results that have no imposed
unsteady Kutta condition. Importantly the results agree well only when the
unsteady Kutta condition is neglected in the analytic solution. This paper
highlights where the far-field acoustics are most affected by neglecting the
unsteady Kutta condition for a variety of singularities that can occur in
the unsteady pressure at the trailing edge, and shows that results permitting
different behaviour in the unsteady surface pressure at the trailing edge could
give significantly different far-field noise predictions, even though the surface
pressure elsewhere along the aerofoil surface agrees with benchmark solutions.
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1. Introduction

The unsteady Kutta condition is a well-known boundary condition ap-
plied at the trailing edge of aerofoils when investigating acoustic flow interac-
tions (see Crighton [9] for a review). In the context of this paper we take it to
enforce that the pressure jump across the trailing edge of the aerofoil is zero,
and singular velocities and pressures are not permitted at the trailing edge. It
allows potential-flow theory to be used in preference to the full Navier-Stokes
equations for high Reynolds number interactions, which is particularly bene-
ficial for obtaining analytical solutions to unsteady interaction problems. For
the case of the full Navier-Stokes equations, the Kutta condition is thought
to be valid in laminar boundary layers when unsteady (non-dimensionalised)
frequencies are less than O(Re'/*) [9] where Re is the Reynolds number based
on the chord length. In this paper we are concerned with potential-flow in-
teractions, in particular the noise generated by gust-aerofoil interaction in
steady flow (uniform far upstream), which has important applications to
rotor-stator interaction noise within turbo-machinery [27].

Analytically the unsteady Kutta condition is simple to impose, along with
the zero-normal velocity on the solid aerofoil surface. For flat plates in uni-
form steady flow at zero angle of attack with an unsteady incident gust, Howe
[19] and Amiet [3] discuss the analytic gust response function and the effect
of the unsteady Kutta condition at the trailing edge. In particular, Amiet [3]
quotes “for inviscid flow the Kutta condition is satisfied automatically as the
gust passes the trailing edge”. It is however less clear exactly what effect the
Kutta condition has on aerofoils with non-zero thickness or camber, and this
is a key problem in order to accurately predict gust-aerofoil interactions in
realistic situations. Also less clear is the most appropriate way to impose the
Kutta condition numerically and if it is required in real-geometry situations;
a variety of different techniques exist to impose the condition [6, 8, 10, 21],
and we draw particular attention to Bose [8, Fig. 2| which compares two
different numerical Kutta conditions, which yield different surface pressure
results at the trailing edge. A number of numerical methods do not impose
the condition [1, 15, 17, 22, 30|, and instead only a zero-normal velocity
condition is imposed.

The unsteady Kutta condition acts to control the unsteady velocities
and pressures at the trailing edge, therefore in this paper we pay particular
attention to the surface pressure at the trailing edge. Various numerical
results that do not impose an unsteady Kutta condition show singular or



“spiked” trailing-edge pressures even though the pressure along the remaining
aerofoil chord agrees with benchmark solutions [1, 17, 22, 30]. Only a few of
these papers go on to compare far-field noise predictions with previous results,
[30, 17|, and we see in these far-field results discrepancy between different
codes that do or do not have the unsteady Kutta condition imposed. Whilst
it has been reported in Sandberg & Sandham [28] and Sandberg et al. [29]
that the effects of the unsteady Kutta condition on the far-field noise can be
neglected, we highlight that this is only shown for flat plates, and not for
acrofoils with realistic thickness or camber (such as the cases in [30, 17]),
and indeed Amiet [3] predicts that the unsteady Kutta condition is not a
necessity for flat plates as it is self-imposed by the solution. It has been shown
analytically [32] and numerically [13] that introducing non-zero thickness has
a significant effect on sound generation for aerofoils of finite chord length,
therefore one should be cautious about classifying zero-thickness and non-
zero-thickness aerofoils in the same way.

We therefore investigate the effect of the unsteady Kutta condition on
the sound generated by gust-aerofoil interaction, for aerofoils with non-zero
thickness, analytically. We use this to determine whether singularities or
spikes appearing in numerical surface pressure results (due to the lack of an
unsteady Kutta condition) can affect the far-field acoustic results. We do so
by considering one particular numerical solution in detail, first presented in
Gill et al. [13], in which no unsteady Kutta condition is enforced and therefore
there is a singularity in the unsteady surface pressure at the trailing edge.

We discuss the analytical solution for gust-aerofoil interaction in Sec-
tion 2, and concentrate on the Wiener-Hopf solution for the trailing-edge
interaction in Section 3, highlighting where the unsteady Kutta condition is
imposed, and how the solution changes if we neglect it. We shall find that
some levels of singularity in the pressure jump across the trailing edge do not
alter the far-field acoustics, while others can have significant effects. Section
4 reviews the numerical method from Gill et al. [13], and Section 5 contains
results illustrating the effect of neglecting the unsteady Kutta condition on
the far-field acoustic pressure, along with a comparison of the analytical so-
lution with the numerical results in which the unsteady Kutta condition is
not imposed. Note the steady Kutta condition is imposed in the numerical
result. Section 6 contains concluding remarks.



2. Analytical Solution for Gust-Aerofoil Interaction

Gust-aerofoil interaction noise, and more generally leading-edge noise, is
a popular problem to study numerically [17, 13], experimentally [12, 11] and
analytically |2, 25, 32|. The analytical solution for gust-aerofoil interaction in
uniform flow from Myers & Kerschen [25] considers only zero-thickness aero-
foils, whilst the solution from Tsai [32] considers only symmetric aerofoils
with non-zero thickness. In this section we present a brief overview of the so-
lution for an aerofoil with small but non-zero thickness, camber and angle of
attack (however later we simplify for a zero-camber case to illustrate the ef-
fects of the unsteady Kutta condition on non-zero thickness aerofoils). These
small parameters scale with ¢ < 1, where lengths are non-dimensionalised
with respect to the aerofoil semi-chord length, b*. Specifically we focus on
high-frequency incident gusts, with reduced frequency 27xb*(A\*)™! = k > 1
(where A\* is the wavelength of the gust) and impose ek = O(1), in line with
Myers & Kerschen [25] and Tsai [32|. Further details of the model can be
found in Ayton & Peake [5] and Ayton [4].

We study the interaction using rapid distortion theory [14]. The governing
equation for the modified unsteady velocity potential, h, generated when a
gust, of the form (A, A, Ag)elF(kedthatthsz=kt) fay ypstream, interacts with
an aerofoil in uniform flow with Mach number M, is given by
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and the boundary condition of zero normal velocity on the solid surface is

oh dq A, A, M2 eq\
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The functions ¢(¢, 1) and p(¢, ) describe the perturbation to the steady
flow due to the presence of the aerofoil and are defined by Thwaites [31] as

(g =n)( T B / C— T ﬂﬁoo \/T/ CC), 2 ®)

where ¢ = ¢ + i), and the aerofoil boundary is given by ey(x) = +ey'(z) +
ey®(x), where y corresponds to the thickness and camber distributions re-
spectively.

The coordinates, ¢ and ¥ (non-dimensionalised by b*UZ, where UZ is
the steady flow speed), are potential-streamline coordinates, which have the
effect of mapping the aerofoil in Cartesian coordinates to a flat plate in (¢, )
coordinates. The spanwise coordinate is z, and we suppose the aerofoil ex-
tends infinitely in this direction. eq is the perturbation to the steady uniform
flow caused by the presence of the aerofoil, ex denotes the perturbation angle
the total steady flow makes with the physical x axis, and S = /1 — M2 is
the Prandtl-Glauert transformation factor. The forcing, S, arises from the
evolution of the gust in the steady flow.

The boundary condition, (2), is applied on the solid surface, ¢ = 0,0 <
¢ < 2+ ¢, where 2 + ¢. denotes the location of the trailing edge of the
aerofoil under the transformation from physical space to (¢, 1))-space. Since
this paper discusses only symmetric aerofoils at zero angle of attack, from
now on we assume y°(z) = 0.

For ( = O(1), i.e. away from the leading edge of the aerofoil, ¢, u = O(1).
Close to the leading edge, ¢ = O(k™!), there is a new scaling, ¢, u = O(k~'/?),
which gives rise to the leading-edge inner region that assesses the distortion
of the gust near the leading edge. This is typical of analytic models for gust-
aerofoil interaction using rapid distortion theory |25, 32|, and hence to solve
this problem we use the method of matched asymptotic expansions. All of
the asymptotic regions required for this problem are illustrated in Figure 1.
Importantly, within the inner regions at the leading and trailing edges, the
solid aerofoil appears to be semi-infinite in the downstream and upstream

directions respectively, therefore the problem is solved in these regions using
the Wiener-Hopf method [26].
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Figure 1: Asymptotic regions around the aerofoil; leading- and trailing-edge inner regions,
(i) and (iv), scale as O(k~1'), and the width of the transition regions, (iii) scale as O(k~1/?).
The outer region (ii) is O(1).

The leading-edge inner solution, in region (i), is obtained by converting
the governing equation to inner coordinates (®, W) = k(¢, ). The boundary
condition is imposed on ¥ = 0, ® > 0 and a condition of continuous upstream
pressure is imposed on ¥ = 0, ® < 0, where we use the modified unsteady
pressure, as defined by Myers & Kerschen |24, eq. (2.7)], given by

p=— (Z—Z -~ ik:dh) o kMO, (4)

The leading-edge transition region, (iii), ensures the normal velocity is zero
along the entire length of the aerofoil, and the solution here is found to
exponentially decay in the far field, » > 1. The trailing-edge inner solu-
tion, in region (iv), is obtained in trailing-edge inner coordinates, (®;, V;) =
k(¢ — 2 — ¢e,1). The boundary condition is imposed along ¥, = 0, d, < 0.
We assume the wake is a vortex sheet extending downstream from the trail-
ing edge, so we require continuity of pressure across the wake; the solution
emanating from the leading edge creates a discontinuity of pressure across
the wake, which we must correct at the trailing edge. In the analytical model,
we impose [p]iigf = —[p,}igoj for &, > 0, where p; is the pressure asso-
ciated with the leading-edge solution. The unsteady Kutta condition arises



at the trailing edge when we assume the velocity and pressure jump across
the trailing edge are finite. The trailing-edge transition region, (v), ensures
continuity of pressure and velocity across the wake.

The overall solution for the far-field noise generated by gust-aerofoil in-
teraction in the outer region, (ii), consists of a contribution propagating from
the leading edge due to the interaction of the solid surface and the gust, and
a contribution from the trailing edge due to the rescattering of the leading-
edge acoustics by the rigid edge. Since the trailing-edge field is key to the
far-field acoustics it is incredibly important to ensure that the trailing edge
is correctly modelled. This is investigated in the following section.

3. The Wiener-Hopf Solution at the Trailing Edge
The problem at the trailing edge is given by

0*°H, N 0% H,
002 | U2

+w?H; = 0, (5)

where H, is the trailing-edge inner unsteady velocity potential that we wish
to find. The pressure jump across the trailing edge generated by the leading-
edge solution can be written as

ik(w— 2 t
_[pl]ir = pl|¢:o_ - pl|¢:0+ = Ap((bt)e Rlw—0Me)é ) ¢ > 0. (6>
We enforce continuity of displacement across the wake

OH,|  _ 0H,
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and the continuity of pressure condition, (6), in trailing-edge inner coordi-
nates is

;>0
oH . ot : iwd,
{@T{Dt - 26Ht:| oo k}g& Ap(Pe/k)e™™, (8)
W =0—

for ®; > 0. The zero normal velocity condition on the aerofoil surface is
satisfied by a hydrodynamic solution (found by Myers [23]), which does not
affect the pressure condition nor radiate sound to the far field, therefore the
acoustic solution at the trailing edge must satisfy

OH,
- = 0. 9
oW, #;<o 0 ( )

Ty=0
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We also require the solution to be an outgoing acoustic wave thus impose a
radiation condition.

We use the Wiener-Hopf method to solve the Helmholtz equation, (5),
subject to (7), (8), and (9). We define the Fourier transform as

H<)\7 V) = / H(®,, ‘I’t)eimtdq)ta (10)
therefore the Helmholtz equation yields the solution
H(\, W) = sgn(W,) A(N)e VA 7w ¥l (11)
where A()\) is an unknown function. Applying (9), we find
—VAZ—w?A(N\) = Fy (N, (12)

where
P dd, (13)

is unknown. We know that F', is analytic in the upper half A-plane since
this is a positive half-range transform. Any such function that is analytic in
the upper half plane is denoted by a subscript + whilst functions analytic in
the lower half plane are denoted by a subscript —.

Using (8), we see that

—2AN) (N +0) = / h Ap(®,)e ATV qdp, — P (X)) + P_()), (14)

where P, (A) is known, and P_()) is unknown.

In (12), we can divide through by [v/A + w], (we take the positive root
in the definition of w in (1b) and allow w to have a small positive imaginary
part), therefore the resulting left hand side must be analytic in the upper

half plane, i.e. VA —wA) = [V - wA()\)}+.
Multiplying (14) by v A — w we obtain

2 A+ ANV —w =P, O0VA—w + [P_()\)\/)\ - w} (1)

where the left hand side is analytic in the upper half plane. On the right
hand side of (15), we need to additively split G(A\) = Py (\)vA —w into a
plus term and a minus term, G(\) = G4 (\) + G_(\). Therefore

“2i(\ + 6) AN)VA — w] G\ =G_(\) + [P_(A)\/A - w} . (16)

+

8



The right hand side is analytic in the upper half plane, whilst the left hand
side is analytic in the lower half plane. Therefore both sides must be equal to
an entire function, F(\), which by Liouville’s theorem is a polynomial in .
To determine the coefficients of the polynomial, we must consider the large-\
behaviour of (16). The continuity of displacement, (7), imposes g—\i — 0 as
®;, — 0, therefore F/{(\) = O(A™1) is the least singular behaviour of F, for
large A, hence A(A\) = O(A™?). The unsteady Kutta condition now arises
as we find the behaviour of Pr()\). Importantly, we cannot formally solve
the Wiener-Hopf equation, (16), without additional information about the
unknown function P_(\).

3.1. Imposing the Unsteady Kutta Condition

Across the wake we have already imposed continuity conditions for the
velocity and pressure via (7) and (8), however we have made no assumption
about the behaviour of the pressure as it approaches the trailing edge along
the aerofoil surface (as ®; — 0_). We use the unsteady Kutta condition
to consider the behaviour of P, for large A\ as required in the Wiener-Hopf
method to determine the entire function, F()), discussed at the end of the
previous subsection. If we suppose the pressure jump, Ap, is finite at the
trailing edge as ®; — 0, (the wake side), then P, ~ (X + w)~! for large \.
In the analytical solution, Ap is a constant for ®; > 0 and this is indeed the
case. We impose the unsteady Kutta condition to tell us that the pressure
jump is non-singular as ®; — 0_ across the trailing edge (the aerofoil side),
hence we obtain a large A scaling of our unknown function, P_(\) ~ O(A71).
Therefore the entire function, £(\) — 0 for large A\, and hence by Liouville’s
theorem the only possibility is F(\) = 0. Hence

_ 1G4
VA —w(h+6)

and we obtain H; by inverting the Fourier transform. The far-field noise
generated by the interaction at the trailing-edge is obtained by taking the
outer limit of this inner solution and matching to the outer solution (region
(ii) in Figure 1).

AN (17)

3.2. Neglecting the Unsteady Kutta Condition

If we do not impose the unsteady Kutta condition on the aerofoil side
of the trailing edge, we cannot determine a scaling for the unknown P_(\)



when A — oo, and therefore the entire function may be non-zero. If the
pressure jump is singular at the trailing edge, Ap = O(®, ™) as &, — 0_
for some 0 < n < 1, then P_(\) = O(A"™1) for large A (using the method
of stationary phase [7]). Therefore E()\) = O(A"=/2) where [-] denotes
the integer part. If the singularity has n < 1/2 we would not expect to
see an effect on the far-field acoustics; this could explain the results seen in
Sandberg & Sandham [28] which shows a flat plate without the unsteady
Kutta condition generates very similar far-field acoustics to a flat plate with
the imposed unsteady Kutta condition, despite a numerical surface pressure
singularity present at the trailing edge when the unsteady Kutta condition is
not imposed. For singularities with n > 1, P_(\) = O(A""'log \), therefore
by the extended Liouville’s theorem, E()) is a polynomial of degree no more
than m where m is such that A" ~%/?log A < ¢A™ for large A and some constant
c. Therefore we choose m to be the integer strictly greater than n — 1/2.

In the analytical solution we know P, (), so to retain consistency with
the analytical solution we still suppose Py ~ (A+w)~! for large ), but allow
P_()) to scale differently since this is an unknown in the formal Wiener-Hopf
equation. By allowing for a singularity in the surface pressure jump across
the aerofoil trailing edge this modifies the solution for A;

B 1GL()N) 1E()N)
2 A—w(A+0) 2VA—w(A+6)
which then affects the far-field noise generated at the trailing-edge.

We now give an example to illustrate this extra contribution. We suppose
1/2 < n < 1, so the entire function is a constant. Consider

A(N) (18)

Ap ~ D(=P;)™" (19)
as &, — 0_, therefore
DT(1—n)
(i(A +w))t =
hence the extra term added to A(\) is

P_(\) ~ (20)

e™/2DT(1 — n)
27/ (A —w)(A+6)’

(21)

which overall adds an additional term to the far-field noise emanating from
the trailing edge (obtained by applying the method of steepest descents to
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the inverse Fourier transform of H(\, ¥,) and taking |®|, |¥,| — co). This
additional far-field noise is

eFwomd) Disin(0/2)|T(1 — n) e™ /2
Vkr 2/7(6 — wcosB) ’

where (r,0) are (outer) polar coordinates centred on the leading-edge of the
aerofoil, and o is the far-field phase function for the trailing-edge acoustic
solution.

We conclude from this analysis that not imposing the unsteady Kutta
condition affects the trailing-edge field by producing a new contribution, (22).
Physically this field ought not to be present, as the trailing-edge field should
be produced only by the rescattering of the leading-edge field, which is given
by (17). This additional contribution can be thought of as the scattering of
an unphysical pressure field (the singularity) by the trailing edge. Since it is
a scattered trailing-edge field, we see the sin(#/2) directivity in (22), familiar
to trailing-edge scattered fields [18].

The extra contribution to the far-field noise, (22), is dependent on D and
n which represent the spike in the pressure at the trailing edge of the aerofoil.
The only way to determine D and n is to compare the proposed singularity,
(19) with the numerical pressure at the trailing edge. To illustrate the effects
of a singularity verses the solution with imposed unsteady Kutta condition,
we find suitable constants D and n by considering the numerical solution,
first presented in Gill et al. [13], which calculates the surface pressure and
far-field noise for gust-aerofoil interactions and does not impose an unsteady
Kutta condition. This method is briefly outlined in the following section.

(22)

4. Numerical Method

The numerical method uses a high-order computational aeroacoustics
(CAA) code to solve the linearized Euler equations (LEEs) in the time-
domain. This solver and methodology has been previously used to predict
turbulence-aerofoil interaction noise for a variety of aerofoil geometries and
flow speeds [13|. The finite difference solver uses sixth-order spatial [16] and
fourth-order temporal schemes [20] to solve the LEEs. Vortical waves are
imposed at the inflow boundary of the simulation, where they are super-
imposed onto a steady and inviscid mean flow solution that convects the
disturbances towards the aerofoil. Non-reflective buffer zone conditions are
used at the domain edges to prevent spurious reflection at domain boundaries

11
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Figure 2: Grid used in the numerical code.

from interfering with the simulation results, and the domain extends to eight
chord-lengths from the aerofoil in all directions. Far-field noise predictions
are made using a Ffowcs-Williams and Hawkings (FW-H) solver, with the
FW-H collection surface placed on the surface of the aerofoil. A grid resolu-
tion of at least 12 points-per-wavelength was used, and Figure 2 illustrates
the grid used for case b) presented in the following section. The steady Kutta
condition is imposed however the unsteady Kutta condition is not.

5. Results

In this section we consider the impact of neglecting the unsteady Kutta
condition on the total far-field noise generated by gust-aerofoil interaction.

5.1. Singularity in the Pressure

Since the constant in (22) arises from a singularity in the pressure jump
across the aerofoil as we approach the trailing edge, for each case we wish to
consider we must choose the constant differently. The three cases we consider
are a) NACA 0002 with &k = 27, b) NACA 0012 with k£ = 27, ¢) NACA 0012
with & = 67. In all cases M., = 0.6. Figure 3 illustrates the singularities
that are present in the numerically determined pressure as ®; — 0_, and the
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chosen best fitting functions of the form D(—®;)~*/2. The choices of D for
cases a, b, and c are

D,=0, D,=03, D,=10. (23)

We have fixed n for each case for two reasons. First, it is easiest to investigate
the case when 1/2 < n < 1 since the extra contribution then depends only on
one constant. Second, it seems sensible that the type of singularity arising
at the trailing edge in the numerical results is independent of thickness and
frequency. n = 1/2 is then chosen as a best fit to our cases of interest. With
this choice, the D; scale as O(ev/k), where € is the aerofoil thickness parame-
ter, indicating that the effects of the singularity may increase with thickness
and frequency. As flow reaches the sharp trailing edge in the simulations,
it is sharply turned from following along the aerofoil surface, to travelling
in a direction (usually) aligned with the blade chord. For a flat plate, these
two directions are the same. However, the thicker the aerofoil becomes, the
greater amount of turning occurs. This sudden change in the velocity at the
trailing edge is what we propose causes the spike in pressure jump, and thus
the spike will increase with thickness.

The numerical result only calculates the real values of pressure, therefore
as well as determining the value of D we are free to choose a phase. We select
this so that the overall (constant) phase for the extra term is e /4, since
there is a phase shift between the asymptotic first-order leading- and trailing-
edge acoustic sources of e™™/4 (the remainder of the phase shift between the
leading- and trailing-edge sources arises due to their differing spatial positions
which will contain the phase term o(r, ) seen in (22)).

We note from Figure 3 that case a) does not have a singularity in the
numerically calculated pressure jump at the trailing edge. Therefore, we ex-
pect the numerical result and the analytical solution (with imposed unsteady
Kutta condition) to have good agreement. This is indeed seen in Figure 4a.
We could have anticipated that the numerical solution satisfies the unsteady
Kutta condition for the flat-plate case despite not specifically enforcing it
since Amiet [2| predicts that symmetric flat-plate cases automatically satisfy
the unsteady Kutta condition.

Figure 4 illustrates the effects of including the additional term in the an-
alytical solution, and compares both analytical solutions with the numerical
results for the far-field sound pressure level. In case a), where there was no
spike in the numerical surface pressure at the trailing edge, we have good
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®; — 0_. Solid lines are the numerical results, dashed lines model Ap = D(—®;)~'/2. d)
full chord-length numerical surface pressure.

14



agreement, and we have not had to alter the unsteady Kutta condition im-
posed on the analytical solution. For case b), relaxing the unsteady Kutta
condition alters the SPL predominantly in the upstream region, 6 € (7w /2, 7),
and overall the resulting analytical curve matches the numerical result more
closely (the peaks and troughs are more aligned, and the magnitudes are
more accurate). Neglecting the unsteady Kutta condition in case c) has a
similar effect to case b) in the upstream region by increasing the overall SPL.
This also gives better agreement with the numerical result, however a fur-
ther increase of the SPL in the upstream region would be required for a good
agreement. This is perhaps due to the estimation of the pressure singular-
ity in case c) being less accurate than in case b), so that we might expect
neglecting the unsteady Kutta condition in case b) to yield a solution that
is in better agreement with the numerical result than case c¢). We can see
in (23) that increasing thickness or frequency increases the magnitude of the
required extra term, implying that the singularity becomes more pronounced
for thicker aerofoils at higher frequencies, and the unsteady Kutta condition
may become increasingly important in these cases. We have also neglected
the possibility that the pressure jump is singular downstream of the aerofoil
as ®; — 0, because this is inconsistent with the original analytical model.
We now discuss the accuracy of the analytical solution; it is obtained by
using the method of matched asymptotic expansions therefore the solution
is the first two terms, O(1) and O(evk), is an asymptotic series. Hence
the analytical solution has errors of O(k™!, ¢) in the amplitude and phase.
In Figure 4, the analytical solution when neglecting the unsteady Kutta
condition over-predicts the noise directly upstream of the aerofoil (§ = )
when compared to both the analytical solution with the unsteady Kutta
condition and the numerical result. In the analytical solution, the upstream
continuous pressure condition is imposed for the leading-edge solution at
O(1) and O(evk). The trailing-edge solution is then found at O(k~1/?),
and creates a discontinuity of pressure upstream (much like the leading-edge
solution created a discontinuity of pressure downstream). To correct this,
one would have to find further corrections to the leading-edge solution of
O(k™',€) which are negligible in the current analysis. We therefore expect
the analytical solution (both with and without the unsteady Kutta condition)
to have a discontinuity of pressure directly upstream which is not correct,
and that this discontinuity is different when the unsteady Kutta condition is
included or neglected. The analytical solution also neglects the O(e?) effects
of the perturbation of leading-edge stagnation point position (this could also
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Figure 4: Comparison of SPL at a radial distance of 100 chord lengths from the aerofoil
leading edge. Solid line is the numerical result, dashed line is the analytical solution with
the unsteady Kutta condition imposed, and dotted line is the analytical solution without
the unsteady Kutta condition but with a singularity in the pressure at the trailing edge
fitted to that seen in the numerical result.

be corrected with smaller asymptotic terms). For these two reasons, we
anticipate a small region, of angular extent O(e?k), close to the leading edge,
0 = m, where the asymptotic solution is not accurate; this is approximately
0.09 radians for case b) and 0.27 radians for case c¢), which is consistent with
the regions of over-predicted noise in Figure 4 when the unsteady Kutta
condition is neglected.

5.2. Sensitivity of the Upstream Acoustics to the Singularity

In this subsection we investigate the sensitivity of the far-field upstream
acoustic directivity to the level of singularity in the pressure jump at the
trailing edge. As seen in the previous subsection, a singularity of the form
(—®;)7", for 1/2 < n < 1 yields significant differences in the far-field up-
stream directivity pattern. We now consider various other singularities with
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Figure 5: Magnitude of the original trailing-edge solution with the unsteady Kutta con-
dition imposed (solid line) and the additional trailing-edge terms included if E # 0 as
functions of polar angle 6§ measured from the downstream direction. The legend denotes
the degree of the polynomial, FE, where all coefficients have been set to one. In all cases,
My, = 0.6.

n > 1 by allowing E()\) to be a polynomial of degree m, for various m > 1,
where m is the integer strictly greater than n — 1/2. Since the coefficients of
the polynomial would be obtained by matching the singularity to numerical
results which are not available, for illustration here we set all coefficients to
one.

Figure 5 illustrates why only the upstream far-field acoustics are modified
when we introduce a constant function £ (m = 0). For any non-zero E(\)
the values of the additional terms are much smaller than the original trailing-
edge solution for small values of 6 (in the downstream region near the wake)
whereas in the upstream region the contributions from the additional E(\)
terms are similar in size to the original solution. For m = 0 (the case we
discussed in the previous subsection) we see that the new terms only become
comparable to the original terms for § 2 7/2, therefore it is only in this
region that we see a noticeable difference to the far-field directivity. The
greater the singularity (larger values of m), the greater the additional terms
are in the downstream region and the wider the region of 6 values over which
the additional terms are of comparable size to the original solution. We
therefore expect that for stronger singularities, the effect on the far-field
directivity would be seen in a wider region, beginning at a smaller value of
than 7/2. Results in a portion of the downstream region would be unaffected
by the singularity. The original trailing-edge field rescatters the leading-edge
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field, and acts to ensure continuous pressure across the wake, therefore is
significant at 6 = 0. The additional trailing-edge field is generated by the
scattering of the (unphysical) pressure singularity by the trailing-edge and
hence has a directivity proportional to sin(6/2), which radiates upstream and
therefore will not significantly affect results in the downstream direction.

6. Conclusions

We have compared an asymptotic analytical solution for the sound gen-
erated by gust-aerofoil interaction with a numerical model. The numerical
model does not impose the unsteady Kutta condition, whilst the analytic so-
lution has been found both with and without the unsteady Kutta condition
imposed. The analytical solution that gives the best comparison to the nu-
merical result is one in which the unsteady Kutta condition is not imposed at
the trailing edge, allowing for an unsteady pressure jump singularity across
the aerofoil as we approach the trailing edge. This singularity, which arose
in the numerical results, has been implemented into the analytical solution
by neglecting the unsteady Kutta condition that is applied during the anal-
ysis of the inner trailing-edge region, which is solved using the Wiener-Hopf
method. The (analytical) effect of neglecting the unsteady Kutta condition
is an additional acoustic term radiating from the trailing edge that ought not
to be there. This term augments the total far-field noise in such a way as to
give better agreement with the numerical results, indicating that numerical
far-field results include an unphysical scattering of a pressure singularity at
the trailing edge if a singularity in pressure is permitted at the trailing edge.

We have investigated the sensitivity of the far-field acoustic results to the
level of singularity that could be present at the trailing edge in a numerical
solution, and found that different regions of the far-field acoustic directivity
can be affected by different singularities, governed by where the additional
term from the Wiener-Hopf analysis is comparable to the original (unsteady
Kutta condition imposed) solution. The downstream region saw little effect
of including or excluding the unsteady Kutta condition, but the sound in the
upstream region was modified significantly since the additional term takes a
sin(#/2) directivity pattern.

We can therefore conclude that neglecting the unsteady Kutta condi-
tion for gust-aerofoil interaction in steady uniform flow when aerofoils have
non-zero thickness does have a significant impact on the predicted levels of
far-field noise, and this effect seemingly increases with gust frequency and
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aerofoil thickness. It is therefore vital that numerical models correctly ad-
dress the pressure at the trailing edge of aerofoils when considering unsteady
interaction noise if they wish to accurately predict the far-field acoustics es-
pecially in the upstream observer direction. Alternatively, due to difficulties
in applying an unsteady Kutta condition numerically, the result in this pa-
per could be used to correct numerical far-field acoustic predictions where an
unsteady Kutta condition has not been imposed, by subtracting the relevant
far-field contribution generated by the scattering of the numerical pressure
singularity at the trailing edge.
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