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Abstract

A detailed first-principles investigation of the gas-phase precursor chemistry of

titanium tetrachloride (TiCl4) in an O2 environment is used to identify the

thermodynamically most stable oxidation products. Candidate species are sys-

tematically proposed based on twelve manually defined base moieties in com-

bination with possible functional groups attached to each moiety. The ground

state geometry and vibrational frequencies for each candidate species are calcu-

lated using density functional theory at the B97-1/6-311+G(d,p) level of theory.

A set of 2, 328 unique candidate species are found to be physically reasonable.

Their thermochemical data are calculated by applying statistical thermodynam-

ics. Standard enthalpies of formation are estimated, if unknown, by using a set

of error-cancelling balanced reactions. An equilibrium composition analysis of

a mixture of TiCl4/O2 (50 mol%) at 3 bar is performed to identify the thermo-

dynamically stable products. At low temperatures, below approximately 700 K,

trimer species are dominant. This is followed by a mid-temperature range of

700 to 1975 K where Ti2OCl6 is the most abundant species, before its ther-

modynamic stability decreases. Between 1200 and 1825 K TiCl4 is the most

stable monomer. At temperatures above 1975 K TiOCl2 becomes the dominant

species. This species has been measured experimentally. A structural analysis
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is used to suggest further potentially stable higher polymers and defines a start-

ing point to investigate the mechanisms leading to the formation of titanium

dioxide (TiO2) particles.

Keywords: titanium dioxide, titanium tetrachloride, thermochemical data,

thermochemistry calculations, electronic structure calculations, chemical

equilibrium

1. Introduction

The manufacture of pigmentary titanium dioxide (TiO2, titania) is a multi-

billion dollar business. In 2015 the U.S. Geological Survey estimated the annual

global TiO2 pigment production capacity at 7.2 million metric tons [1].

The oxidation of TiCl4, known as the chloride process [2, 3], is one of two

major routes used for the commercial manufacture of TiO2 particles. Purified

TiCl4 is oxidised in either a flame [4] or by stage-wise addition to an oxygen

plasma [5, 6] at elevated pressure [7] to produce TiO2 particles and chlorine.

The overall stoichiometry of the process is described by

TiCl4(g) + O2(g) −−→ TiO2(s) + 2Cl2(g). (1)

Physical parameters such as size, shape, morphology and crystalline phase

strongly influence the functional behaviour of the product particles and there-

fore their application. Improving the ability to control these properties is a key

strategic capability. Various investigations have sought to develop an under-

standing of the underlying chemical and physical processes in an attempt to

understand how to control the particle properties more efficiently.

Ghoshtagore [8] used chemical vapour deposition to investigate the surface

reaction of TiCl4 on single crystal silicon wafers with a TiO2 film at 673–1120 K.

The reaction was observed to display an Eley-Rideal dependence on TiCl4 and

O2. The global kinetics of TiCl4 oxidation in a hot wall reactor at 973–1273 K

was studied by Pratsinis et al. [9]. The reaction was first-order in TiCl4 and ap-

proximately zero-order in O2 up to ten-fold excess O2. Pratsinis and Spicer [10]

2
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inferred a rate for the gas-phase decomposition of TiCl4 based on the difference

between the surface growth rate [8] and the global oxidation rate [9] under the

assumption of monodisperse spherical particles. They showed that surface reac-

tion had a significant effect on the particle diameter. Later studies using more

detailed population balance models draw similar conclusions [11, 12, 13, 14].

West et al. [15, 16, 17] proposed the first detailed thermodynamically con-

sistent gas-phase kinetic model to describe the oxidation of TiCl4. This model

consists of 20 TixOyClz (x ≥ 1, y ≥ 0, z ≥ 0) species which were defined based

on the available literature and the authors’ expertise. Oxychloride species were

identified as important intermediates and the main reaction pathway was sug-

gested to proceed via Ti2O2Cl4. Thermochemical data were estimated by den-

sity functional theory (DFT) and statistical thermodynamics. Subsequent in-

vestigations presented an updated reaction mechanism [17] and considered the

role of hydrocarbon species [18] and aluminium trichloride (AlCl3) additives,

known to promote the formation of the rutile crystal phase [19]. By analysing

the combustion of TiCl4 in a methane flame it was shown that the mole frac-

tion of H-containing Ti-species is substantial at equilibrium and therefore likely

to be important [18]. It was found that negligible quantities of Al-containing

Ti-species were present at equilibrium. Consequently it was suggested that it is

more likely that AlCl3 acts via the particle processes to promote the formation

of rutile TiO2 particles [19].

A large number of modelling studies have assumed simplified reaction mech-

anisms and often a one-step mechanism [11, 20, 10, 21, 22]. In the work of

Kraft and co-workers [23, 24] it was observed that the choice of inception mech-

anism strongly affects the simulations of Pratsinis’ original experiment [9]. This

is consistent with the work of Mehta et al. [25] who compared the inception

behaviour of the mechanisms from Pratsinis and Spicer [10] (one-step mecha-

nism) and West et al. [17] (detailed mechanism). They showed that the choice

of inception model caused particle inception to occur at different locations in

simulations of a turbulent flame. Recently Mehta et al. [26] proposed a re-

duced version of the West et al. [17] mechanism to describe the oxidation of

3
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TiCl4 in simulations of turbulent methane flames suitable to be coupled with

computational fluid dynamics.

An accurate prediction of particle properties must consider the coupling

between the gas- and particulate phase. In the absence of a full understanding

of the gas-phase kinetics influencing the rate of nucleation and surface growth,

significant approximations have to be made that affect the quality of the model,

the level of predictability that should be expected from the results and our

ability to understand the processes that control the properties of the particulate

phase. A necessary step to improve the model is to develop a comprehensive

description of the gas-phase chemistry.

The purpose of this work is to extend the work of West et al. [15] . Possible

gas-phase species are systematically identified. The thermodynamic properties

of the full species set are calculated at a consistent level of theory. The resulting

thermodynamic properties are used to calculate the equilibrium composition to

identify thermodynamically stable species. This defines a subset of species that

should be considered when refining and extending the gas-phase kinetic model.

Like West et al. [15], we focus on the industrial process where TiCl4 reacts

in a pure oxygen environment. For this reason, we calculate the equilibrium

composition at 3 bar over a temperature range of 500 − 3000 K, and we do

not consider species that contain carbon or hydrogen. Subsequent steps (that

are beyond the scope of the current work) would be to identify key intermediate

species and reaction pathways, to calculate the corresponding reaction rates, and

to couple the resulting gas-phase chemical mechanism to a population balance

model describing the evolution of TiO2 particles. Whilst the scope of the current

work is limited to gas-phase species, the data provided with the manuscript

provide a solid and necessary foundation for such work.

The rest of this paper is organised as follows. Section 2 describes the iden-

tification of candidate species. Sections 3 and 4 describe the calculation of

the electronic structure and thermodynamic properties of the candidate species.

Section 5 presents an equilibrium composition analysis and identifies key species.

The results are critically assessed versus the findings of West et al. [15]. Sec-

4
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tion 6 discusses mechanistic considerations in the light of the equilibrium anal-

ysis. Section 7 draws conclusions and makes closing remarks about next steps.

2. Candidate Species Generation

An algorithm was applied to systematically identify possible titanium-containing

products created during the oxidation of TiCl4. It makes use of a set of base

moieties (molecules without their functional groups) in combination with pos-

sible functional groups to propose a set of candidate species.

2.1. Algorithm and Base Moieties

A set of titanium-containing base moieties is specified as input to the al-

gorithm. The moieties contain sub-valent sites to which functional groups can

be attached. The full set of moieties used in this work is shown in Figure

1. Species containing one titanium centre are addressed as monomers, those

with two titanium centres as dimers and those with three titanium centres as

trimers. Monomers with coordination numbers of four, five and six were consid-

ered. It was subsequently shown that that the impact of monomers with higher

coordination numbers was minor and therefore only dimers and trimers with a

coordination number of four were considered.

The algorithm systematically combines the moieties with possible functional

groups to generate a set of candidate species. The functional groups −OCl, −O

and −Cl as well as a possible sub-valent sites were considered in the algorithm.

Duplicates were identified using a molecular representation, for example InChI

[27, 28], SMILES [29, 30] or canonical SMILES [31, 30], and were rejected. An

illustration of the algorithm for two different species is given in Figure 2.

In addition, Ti2O2Cl5 (in this work labelled as Ti2O2Cl5−3), Ti2O2Cl6 (in

this work labelled as Ti2O2Cl6−2) and Ti5O6Cl8 were considered by West et al.

[15, 17] and were included in the set of candidate species for the purpose of

comparison.

The effect of spin multiplicity on the ground states of the titanium-containing

species derived from titanium tetraisopropoxide (TTIP, Ti(OC3H7)4) [32] was

5
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Monomer

Dimer

Trimer

Dimer-A Dimer-B Dimer-C

Trimer-A Trimer-B

Trimer-C Trimer-D

Trimer-E Trimer-F

Trimer-G Trimer-H

Figure 1: Manually defined base moieties for possible products which could be present during

the titanium tetrachloride (TiCl4) oxidation. These moieties consist of atomic titanium (grey),

oxygen (red) and sub-valent sites (.). Functional groups are able to be attached to the sub-

valent sites.

analysed. It was observed that bonds between two −O groups can increase

the stability of a species as illustrated in Figure 3. The algorithm automati-

cally identifies the combinations of functional groups that could lead to such

intramolecular interactions and a separate candidate species is generated for

each such case. The original species without any functional group interactions

6
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Selected base moiety
1

2 3

4

56

Selected combination of functional 
groups for chosen base moiety 
(order matters)

Combine functional groups with 
base moiety

Repeat until no new species for the 
given base moiety are found

1 2 3 4 5 6 1 2 3 4 5 6

Double bond Double bond

Sub-valent site
Sub-valent site

1.

2.

3.

4.

Ti

OCl

Figure 2: Principle of the species generation algorithm used to systematically generate possible

titanium tetrachloride (TiCl4) oxidation products. The algorithm is illustrated for a selected

base moiety and two combinations of functional groups.

also remains within the set. In this work only O−O interactions were considered.

The structural families in this paper are defined by classifying each candidate

species by its base moiety. For example, all species containing two titanium

atoms connected by two oxygen atoms is a member of the structural family

Dimer-B.

7
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Ti

Cl

Cl O

O

(a) No intramolecular inter-

action.

Ti

Cl

O

O

Cl

(b) With intramolecular in-

teraction.

Figure 3: Illustrative example of a possible intramolecular interaction between the two −O

groups.

2.2. Results

An initial set of 119, 148 TikOlClm (1 ≤ k ≤ 3, l ≥ 0, m ≥ 0) species was

generated, of which 5, 543 unique species remained after rejecting duplicates.

In order to keep the set at a manageable size, species with more than three Ti

atoms (other than the Ti5O6Cl8 pentamer considered by West et al. [15]) were

not considered due to the combinatorial increase in the number of species.

It was assumed that species with more than one radical site are likely to

be short-lived. Trimers with more than one radical site were rejected under

the assumption that they are unlikely to be thermodynamically stable and are

therefore unlikely to play an important role in the equilibrium composition

analysis. Radical monomers and dimers with more than one radical site were

kept on the basis that the resulting thermochemistry data may be important

for future refinement of the kinetic mechanism and that the number of these

species was small enough for this to be feasible. This reduced the set of candidate

species to a total of 2, 436 unique species.

3. Electronic Structure Calculations

3.1. Geometry Optimisations and Frequency Calculations

Geometry optimisation and frequency calculations were performed using

density functional theory (DFT) at the B97-1/6-311+G(d,p) level of theory

for each of the 2, 436 candidate species. All species in the current work were

8
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neutrally charged. The B97-1 hybrid functional has been shown to be accurate

[33, 34] and well suited for transition metal complexes [35, 36, 37, 38], including

titanium-containing species in the context of the thermal oxidation of TiCl4
[38]. Scaling factors were used as proposed by Merrick et al. [39] to compensate

for the overestimation of the calculated harmonic frequencies.

The Gaussian09 software package [40], running on Intel(R) Xeon(R) CPU

X5472 @ 3.00GHz / 8GB nodes with 8 cores per node, was used to perform all

electronic structure calculations. A tight convergence criterion and an ultrafine

(99,590) pruned grid were chosen. The calculations were set to distinguish be-

tween open- and closed-shell species. Analysing the effect of the spin multiplicity

on the calculated ground states of species derived from TTIP [32] showed that it

was valid to select the spin multiplicity based on the number of sub-valent sites

for each species. Besides the restricted DFT calculations, unrestricted compu-

tations were performed for the set of closed-shell species in order to investigate

the effect of spin contamination.

The initial guess of the geometry for each candidate species was extracted

from the optimised ground state geometry of the largest species in the structural

family. In this work, the largest species is formed from the base moiety with

only the −OCl functional groups attached. These species were optimised step-

wise, building the molecule atom-by-atom from the base moiety, re-optimising

the structure after adding each layer of new atoms. This reduced the overall

optimisation problem to a set of smaller problems. Each optimisation step was

started from a near-optimal geometry with the aim of increasing the likelihood

of finding the global minimum. In addition, the ground state geometries of

multiple conformers were calculated in the case of species showing high degrees

of freedom. This mainly included candidate species of the families Dimer-A

and Trimer-A. Also in cases were the geometry optimisation failed to converge,

multiple manually defined geometries were used as initial guesses.

This approach to calculating the ground state geometry was developed in

previous work [32], where it was shown that the algorithm was robust to the

problem of conformers, providing a basis to be confident about the current work.

9
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In several cases, initially distinct candidate species converged to the same

structure. The duplicates were identified using canonical SMILES as imple-

mented in OpenBabel [30] and were removed from the species set. Only the

lowest energy conformer was retained.

3.2. Results

The ground state geometries and vibrational frequencies were calculated

for all candidate species. It was verified that no imaginary frequencies were

present. The optimised ground state geometries of key species are presented in

Figure 4. The calculated ground state energies of restricted and unrestricted

DFT computations for closed-shell species were consistent.

It was observed that some structural families seem to be more physically

reasonable than others. For example, the convergence of an initial Dimer-A

type geometry into a Dimer-B type geometry, indicating that double oxygen

bridges are favoured over radical oxygen groups. Another observation was that

the cyclic structures (Trimer-E and Trimer-F) seemed to be more reasonable

than the non-cyclic ones. In particular Trimer-A and Trimer-B type species

often converged into more compact cyclic or bent unclosed-cyclic structures.

After removing duplicates, the final set of candidate species with optimised

ground state geometries and calculated scaled frequencies consisted of 2, 328

unique titanium-containing species.

4. Thermochemistry Calculations

4.1. Partition Functions

Statistical thermodynamics was used to calculate the heat capacity, entropy

and enthalpy of each species for the temperature range 200− 4000 K. Transla-

tional, vibrational, rotational and electronic energy contributions were consid-

ered. The standard classical approximation was used for the treatment of the

translational and rotational motion. A simple harmonic-oscillator approxima-

tion was used to approximate the effect of the vibrational motions. The effect

10
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Figure 4: Optimised ground state geometries for key species calculated at the B97-1/6-

311+G(d,p) level of theory. Bond lengths are reported in Ångströms.

of considering hindered rotors was investigated in our previous work [32], where

it was shown that the detailed treatment of internal rotations had a negligible

impact on the calculated equilibrium composition, and that a simple rigid-rotor
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harmonic oscillator (RRHO) approximation, without the explicit consideration

of internal rotations, was sufficient for the identification of important thermo-

dynamically stable products [32]. It was assumed that only the ground state

is accessible, which reduces contributions from the electronic mode to the spin

multiplicity (1 for non-radical species). Details about partition function calcu-

lations can be found in a number of textbooks [41, 42].

The calculation method has previously been validated against hydrocarbons

and showed very good agreement with available experimental data [32]. Molec-

ular symmetry numbers were determined using the Jmol software package [43].

4.2. Enthalpy Correction

The partition functions allow for the calculation of the enthalpy change,

∆H(T ) = H(T )−H(0 K), (2)

where H(T ) is the absolute enthalpy at temperature T . In order to calculate

the absolute enthalpy H◦(T ) it is necessary to calculate H◦(0 K), which is equal

to the standard enthalpy of formation at 0 K ∆fH
◦
0 K. Assuming a temperature

of 298.15 K, Equation (2) can be rewritten as,

∆H◦(298.15 K) = ∆fH
◦
298.15 K −∆fH

◦
0 K. (3)

Given the standard enthalpy of formation, ∆fH
◦
298.15 K, and the enthalpy change,

∆fH
◦
298.15 K, at 298.15 K, Equation (3) can be solved for ∆fH

◦
0 K and Equa-

tion (2) for H◦(T ).

The standard enthalpy of formation is not always known experimentally or

theoretically. In the case of species where data was not available, the concept

of error-cancelling balanced reactions (EBRs) was used to obtain an estimate

of the standard enthalpy of formation. By applying Hess’ law, the enthalpy of

formation of one of the species in an EBR can be calculated based on knowledge

of the enthalpies of formation of the other species in the reaction. This method

requires knowledge of the total energy for each species in the EBR and the
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standard enthalpies of formation for all except the species for which the enthalpy

is being calculated.

The isodesmic and isogyric reaction classes were used in this work [44, 45, 46].

Isogyric reactions conserve the number of spin pairs, whilst isodesmic reactions

conserve the bond types between two atoms on either side of the reaction, such

that systematic errors inherited from the electronic structure calculations ap-

proximately cancel out. The choice of the reaction has an effect on the accuracy

of the estimate of the standard enthalpy of formation. For this reason, an

automatically identified set of EBRs was used to derive a distribution of possi-

ble standard enthalpy of formation values from which an average value of the

enthalpy of formation was calculated. This has been shown to significantly im-

prove the accuracy of the method and to additionally provide an estimate of the

statistical uncertainty in the results. The width of the distribution, in form of

the empirical standard deviation, was used to define the statistical uncertainty.

This methodology has been extensively tested and validated for test data sets

including carbon, hydrogen, oxygen, chlorine and titanium [47, 48].

The reference data for the standard enthalpies of formation used in this

work are listed in Table 1. Absolute differences between literature data of

up to 94 kJ mol−1 were found for the oxychloride species. The effect of the

reference data (Table 1) on the accuracy of the method was assessed using a

cross-validation technique. The method was described in full elsewhere [47,

48] and is only summarised here. The standard enthalpy of formation was

iteratively estimated for each species in the reference set, assuming that the

enthalpy of the species under investigation is unknown. The estimated value

was then compared against the reference value and an accuracy metric assigned

to the data. The cross-validation was used to identify and avoid the use of

unreliable and inconsistent reference data. The data in Table 1 are the final

post cross-validation reference data that were used in this work.
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Table 1: Reference data for standard enthalpies of formation for relevant

species.

species
∆fH

◦
298.15 K species

∆fH
◦
298.15 K

[kJ mol−1] [kJ mol−1]

Ti−Cl species Other species

TiCl4 −763 [49, 50] ClO 102 [49, 50, 51, 52, 53]

TiCl3 −508 [54] ClO2 98 [49, 50]

TiCl2 −205 [54] ClO3 201 [55]

TiCl 171 [54] ClO4 229 [56]

OClO 95 [49, 50, 53, 57, 58]

Ti−O−Cl species Cl2 0 [49, 50]

TiOCl2 −593 [59] ClOCl 83 [51]

TiOCl −287 [48] Cl2O 90 [49, 50]

ClClO2 154 [49, 50, 60, 61]

Ti−O species Cl2O3 137 [51]

TiO2 −305 [49, 50] Cl2O4 186 [62]

TiO 54 [49, 50] Cl2O5 258 [62]

Cl2O6 279 [62]

Cl2O7 321 [62]

ClOClO 176 [49, 50, 61]

ClOOCl 133 [51]

O2 0 [49, 50]

4.3. Results

4.3.1. Cross-Validation of the Enthalpy of Formation

The cross-validation of the reference species (Table 1) was performed sepa-

rately using isodesmic and isogyric reactions. A mean absolute error of 12 kJ mol−1

was observed using isodesmic reactions and 48 kJ mol−1 using isogyric reactions.

In addition, the mean absolute error was also calculated separately for titanium-

containing species. The mean absolute error for titanium-containing species was

3 kJ mol−1 for isodesmic reactions and 20 kJ mol−1 for isogyric reactions.

The larger error for isogyric reactions was not unexpected because this re-

action class is far less restrictive than isodesmic reactions. These errors are

expected given the differences in literature data (for example up to 94 kJ mol−1

for the oxychloride species) and the corresponding reference data that are used

in the calculations (Table 1).
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4.3.2. Calculation of the Enthalpy of Formation

The enthalpy of formation of the candidate species was calculated using

isodesmic reactions wherever possible. However, the small number of species for

which reference data was available, meant that isogyric reactions had to suffice

for most species. A larger set of titanium-containing reference species would

enable the use of more isodesmic reactions and lead to lower uncertainties in

the estimated standard enthalpies.

The calculations in this work did not rely on a single EBR, but used a set

of EBRs for each species. This has been shown to significantly improve the

accuracy of calculations based on EBRs [47, 48], providing some compensation

from the use of isogyric reactions.

The largest discrepancy between the enthalpy estimates of West et al. [15]

and those calculated here is for TiO2Cl2. A set of 17 isogyric reactions was used

to estimate a standard enthalpy of formation of −627± 19 kJ mol−1 compared

to −558 kJ mol−1 for TiO2Cl2. None of the calculated isogyric reactions for

TiO2Cl2 were close to the value of −558 kJ mol−1 [15], which was estimated

using a single anisogyric reaction. The closest and largest value for TiO2Cl2
observed within the distribution was −590 kJ mol−1. For all other species

considered by West et al. [15, 17], the enthalpy estimates are in acceptable

agreement with those calculated in this work.

4.3.3. Thermochemistry

The calculated thermochemical data are in excellent agreement with those

proposed by West et al. [15]. Thermochemical data for key titanium-containing

species are reported in Table 2. In addition, the calculated thermochemical data

for the full set of candidate species are provided as supporting information.
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Table 2: Thermochemical data for TiCl4 and selected oxidation products. Where available,

reference data for the standard enthalpies of formation were taken from the literature.

species
∆fH

◦
298.15 K S◦

298.15 K C◦
P [J mol−1 K−1]

[kJ mol−1] [J mol−1 K−1] 300 500 1000 1500 2000 2500 3000

Monomer

TiCl4 -763 [50, 49] 355.66 96.17 103.43 106.82 107.51 107.78 107.87 107.94

TiOCl4−1 -759 422.66 114.43 124.68 130.61 131.92 132.43 132.62 132.73

TiCl3 -508 [54] 340.24 75.27 80.07 82.30 82.76 82.94 83 83.04

TiOCl3 -635 a 375.51 95.01 102.6 106.59 107.41 107.73 107.84 107.91

TiO2Cl3−5 -781 b 402.17 111.01 122.32 129.69 131.47 132.18 132.44 132.61

TiOCl2 -593 [59] 337.51 70.31 76.53 81.08 82.18 82.62 82.78 82.88

TiOCl -287 [48] c 292.45 49.34 53.34 56.66 57.48 57.81 57.93 58.01

TiO2Cl -493 318.34 70.23 76.84 81.26 82.27 82.67 82.82 82.91

TiO3Cl -673 340.24 83.58 94.78 103.79 106.06 106.97 107.32 107.54

TiO2
e -305 [50, 49] 258.69 43.54 49.87 55.56 56.96 57.52 57.73 57.87

Dimer

Ti2OCl6 -1587 562.33 180.56 196.41 204.64 206.39 207.08 207.32 207.47

Ti2O2Cl6 -1593 609.58 198.78 217.72 228.48 230.82 231.74 232.06 232.27

Ti2OCl5 -1334 543.83 159.78 173.09 180.14 181.65 182.24 182.45 182.58

Ti2O2Cl5 -1471 571.99 179.30 195.64 204.41 206.29 207.02 207.27 207.44

Ti2O2Cl4−5 -1541 d 451.87 149.84 168.50 178.86 181.06 181.92 182.23 182.42

Ti2O2Cl3−1 -1167 501.18 133.73 146.14 154.40 156.32 157.08 157.35 157.53

Ti2O3Cl2−9 -1218 471.20 128.39 142.51 153.17 155.73 156.75 157.13 157.37

Trimer

Ti3O3Cl6−3 -2362 657.17 234.08 261.43 276.67 279.94 281.21 281.66 281.96

Ti3O3Cl6−4 -2427 607.87 235.31 262.23 276.90 280.05 281.27 281.71 281.99

Ti3O2Cl8 -2411 740.58 264.80 289.38 302.47 305.28 306.37 306.76 307.01

a West et al. [15] reported a value of −639 kJ mol−1.
b West et al. [15] reported a value of −774 kJ mol−1.
c West et al. [15] reported a value of −274 kJ mol−1.
d West et al. [15] reported a value of −1552 kJ mol−1.
e Literature data taken from the database provided with Cantera [63, 64] and originating from the NASA

thermochemical database [65].
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5. Equilibrium Composition Analysis

Equilibrium composition analysis was used to identify the thermodynami-

cally stable TiCl4 oxidation products. In this work the thermodynamic stability

is defined by the relative mole fractions of each compound. Figure 5 presents

the calculated equilibrium composition for an initial mixture of TiCl4/O2 (50

mol%) at 3 bar, similar to those in an industrial reactor, for a temperature range

of 500−3000 K, where each point on the graph was calculated at constant pres-

sure and temperature. The full set of 2, 328 TikOlClm candidate species plus 20

OlClm (l ≥ 0, m ≥ 0) species were included in the calculation. The equilibrium

composition was calculated using Cantera [63, 64]. The thermochemical data

for O, O2, O3, Cl, Cl2, Ti, TiO and TiO2 were taken from the database provided

with Cantera [63, 64] and originated from the NASA thermochemical database

[65]. Thermochemical data for all other species considered in this work were

calculated as per Sections 3 and 4.

The titanium-containing species in Figure 5 are all present at high mole frac-

tions. This includes TiOCl2, Ti2OCl6, Ti3O3Cl6−4, TiCl4, Ti3O2Cl8, Ti3O3Cl6−3,

Ti2O2Cl4−5, TiOCl, TiO2Cl, TiCl3, Ti2O2Cl3−1, Ti2O3Cl2−9, TiOCl4−1,

TiO2, Ti2O2Cl6, Ti2O2Cl5, TiO3Cl, TiOCl3, TiO2Cl3−5 and Ti2OCl5. The

optimised ground state geometries for these species are shown in Figure 4.

Trimer species are found to be most stable at low temperatures, below ap-

proximately 700 K. The main trimer species are Ti3O3Cl6−4 and Ti3O2Cl8.

These are both non-radical species where the titanium atoms are connected by

single oxygen atoms (single oxygen bridges). The single-radical trimer species

are found to have low equilibrium mole fractions (none are visible in Figure 5).

Trimer species with more radical sites are expected to be less stable than single-

radical trimer species. This remains consistent with the decision to exclude

trimers with more than one radical site from the analysis.

Above 700 K, the Ti2OCl6 dimer becomes dominant up to 1975 K. This

also contains a single oxygen bridge. In addition, there are stable species with

titanium atoms connected by two oxygen atoms (double oxygen bridges) in this
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Figure 5: Calculated equilibrium composition as a function of temperature for an initial mix-

ture of TiCl4/O2 (50 mol%) at 3 bar. Only titanium-containing species are shown. Optimised

ground state geometries for these species are presented in Figure 4.

temperature range. This includes Ti2O2Cl4−5 and Ti3O3Cl6−3. A rapid in-

crease in the thermodynamic stability of TiOCl2 is observed above 1400 K. This

species has also been observed experimentally [66] and becomes the most ther-

modynamically stable species above 1975 K. The TiCl4 precursor is present at

notable mole fractions at temperatures between 1200 and 1825 K. Its thermo-

dynamic stability significantly decreases at high temperatures. The geometries

of all of these species are shown in Figure 4. Only low mole fractions of the

dimers Ti2O2Cl6−2 (labelled Ti2O2Cl6 by West et al. [17]) and Ti2O2Cl5−3

(labelled Ti2O2Cl5 by West et al. [17]), which possess titanium atoms with co-

ordination numbers of five, were observed. Across the full temperature range,
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other monomers with a coordination number of five or six were not stable.

The mole fractions of radical species such as TiOCl or TiO2Cl are observed

to increase with increasing temperature. Out of the species shown in Figure

5 only TiOCl4−1 and Ti2O2Cl6 were found to have an OCl functional group.

Across all candidate species it was observed that the thermodynamically more

stable species typically have fewer −OCl functional groups.

The systematic extension of the species set enables an assessment of whether

any stable species were missing from the set proposed by West et al. [15]. Over-

all, a significant degree of agreement is found with the equilibrium composition

calculated by West et al. [15], where species such as TiOCl2, TiCl4, TiO2Cl3
(in this work labelled as TiO2Cl3−5) and Ti2O2Cl4 (in this work labelled as

Ti2O2Cl4−5) were found to be stable. Some differences are observed where

West et al. [15] truncated the species set. For example, the mole fractions of

the single trimer Ti3O4Cl4 (in this work labelled as Ti3O4Cl4−6) and pentamer

Ti5O6Cl8 considered by West et al. [15] were found to be significantly lower in

this work. Such differences are to be expected because the species considered in

the current work are a significant superset1 of the titanium-containing species

considered by West et al. [15].

Figure 6a summarises the equilibrium data in terms of monomers, dimers

and trimers. As expected, larger polymers (trimers) are found to be thermo-

dynamically most stable at lower temperatures below 700 K and their stabil-

ity decreases with increasing temperature. It is observed that dimers are the

thermodynamically most stable species group at temperatures between approx-

imately 700 and 1975 K. The thermodynamic stability of monomers gradually

increases with temperature and they are dominant at temperatures above ap-

proximately 1975 K.

Figure 6b shows the species mole fractions grouped by their structural family

(Figure 1). The most abundant structural family at temperatures below 700 K

1120 monomers, 366 dimers, 1, 841 trimers and the Ti5O6Cl8 pentamer versus 18 titanium-

containing species considered by West et al. [15].
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is Trimer-E. This contains cyclic species with single oxygen bridges. A rapid

decrease in the thermodynamic stability of Trimer-E species is observed with

increasing temperature. The Trimer-A and Trimer-B families are also observed

at significant mole fractions. Both contain non-cyclic species. Trimer-A species

contains single oxygen bridges. Trimer-B species contain both a single and dou-

ble oxygen bridge. The Dimer-A family is dominant at temperatures between

700 and 1975 K. This contains species with single oxygen bridges. The Dimer-B

family is also observed but at lower mole fractions. Over the full temperature

range, Dimer-A was found to be thermodynamically more stable than Dimer-B.

At temperatures above 1975 K, monomer species are most stable.
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(a) Grouped species as monomers, dimers and

trimers.
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(b) Structural families as defined in Figure 1.

Figure 6: Summary of species groups for TiCl4 oxidation products.

The structural analysis is useful to suggest further potentially stable higher

polymers, whilst keeping the set of candidate species at a manageable size,

rather than considering a combinatorially increasing number of species. This

provides a starting point to investigate the mechanisms leading to the formation

of TiO2 particles.
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6. Mechanistic Considerations

It is possible to gain some mechanistic insight based on the equilibrium com-

position analysis, presented in Section 5, and the existing reaction mechanism

[16, 17].

Ti2OCl6 could be the product of a bimolecular reaction between TiCl3 and

TiOCl3. Other pathways producing Ti2OCl6 are also possible and would need

to be considered. In the mechanism proposed by West et al. [16, 17], TiOCl3 is

an essential intermediate on pathways to TiO2Cl4−5. It is assumed that TiOCl3
may also be an important intermediate on pathways involving Ti2OCl6.

Depending on the temperature, Ti3O2Cl8 could perhaps be involved in path-

ways that include Ti2OCl6 and TiOCl3, Ti2O2Cl5 and TiCl3, and Ti2OCl5 and

TiOCl3. The abstraction of a chlorine atom from Ti2O2Cl5 followed by an inter-

nal restructuring could lead to Ti2O2Cl4−5. A similar internal restructuring of

Ti2O2Cl5 might also produce Ti2O2Cl5−3. Both Ti2O2Cl4−5 and Ti2O2Cl5−3

were found to be important and are discussed in detail by West et al. [15, 16, 17].

This is certainly not a complete list and is not the focus of this work. Many

other pathways may need to be considered. Likewise, many intermediate species

are not thermodynamically stable, yet will play a critical role in the reaction

mechanism. One way to approach this problem systematically could be to define

reaction rules for the functional groups in each structural family. This would

enable the automatic generation of an initial mechanism, similar to previous

investigations of tetraethoxysilane (TEOS) [67] and titanium tetraisopropoxide

(TTIP) [68]. The mechanism could then be refined iteratively.

7. Conclusions

An extended first-principles investigation of the gas-phase precursor chem-

istry of TiCl4 in an O2 environment was conducted using quantum chemistry,

statistical thermodynamics and equilibrium composition analysis. A simple

rigid-rotor harmonic-oscillator approximation was assumed. Thermochemical

data for a large set of possible Ti−O−Cl species were calculated and analysed.
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Possible candidate species, which could be present during the reaction of

TiCl4, were systematically identified. Species with up to three titanium atoms

were considered, including monomer species with coordination numbers of four,

five and six. Trimer species with more than one radical site were assumed to

be short-lived and excluded from further analysis. Monomers and dimers with

multiple radical sites were assumed to be important in the initial stages of the

precursor chemistry, even though they might not be thermodynamically stable,

and were kept in the species pool. The algorithm used to identify the species

could be extended to other polymer species following the same geometric prin-

ciples. The ground state geometry and scaled harmonic vibrational frequencies

were calculated using the B97-1/6-311+G(d,p) level of theory for 2, 328 unique

titanium-containing candidate species.

In cases where no standard enthalpy of formation was known, an automat-

ically identified set of error-cancelling balanced reactions was used to calculate

an informed estimate. Isodesmic reactions were preferentially used over isogyric

reactions. It was found that due to the scarcity of reference data for titanium-

containing species, the application of isodesmic reactions was limited and iso-

gyric reactions had to suffice for most species. Acceptable mean absolute errors

were calculated by performing a cross-validation for the titanium-containing

species using each reaction class. Significant uncertainties in the calculated

standard enthalpies of formation were shown to result from the necessary use

of isogyric reactions and the limited set of error-cancelling balanced reactions

that can be found given a small set of reference species. Additional experimen-

tal data would be beneficial in enabling the use of a wider range of balanced

reaction and therefore in achieving higher accuracy estimates.

Equilibrium analysis was used to identify the thermodynamically stable

titanium-containing species for an initial mixture of TiCl4/O2 (50 mol%) at

3 bar. Trimer species were found to be dominant at temperatures below 700 K.

A mixture of trimers, dimers and monomers were stable between 700 to 2500 K.

Ti2OCl6 was the most stable species between 700 and 1975 K, after which its

stability decreased rapidly. At temperatures above 1975 K, TiOCl2 became the
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dominant species.

The equilibrium composition was analysed in terms of the structural families

of the species. Trimer species including both cyclic and non-cyclic structures

were dominant at low temperatures. Their stability decreased with tempera-

ture. At mid-temperatures, a mixture of structural families were present. This

includes trimers, dimers with a single and double oxygen bridge and monomers.

The Dimer-A family (single oxygen bridge) was prevalent over the Dimer-B fam-

ily (double oxygen bridge) across the full temperature range. At temperatures

above 1975 K, monomers were the most stable family.

The obvious next step would be to use these observations and the thermo-

chemical data set generated in this work to refine the existing gas-phase chemical

mechanism leading to the formation of particles. This will require the identifica-

tion of reaction pathways, using the identified thermodynamically stable species

as guide. An automated reaction mechanism generator could be employed to

suggest possible pathways. Reaction rules could be defined based on structural

families and attached functional groups. Thermochemical data for key species

could be further refined by considering internal rotational motion to improve

the quality of the reaction mechanism.

Acknowledgements

This project is partly funded by the National Research Foundation (NRF),

Prime Minister’s Office, Singapore under its Campus for Research Excellence

and Technological Enterprise (CREATE) programme, and by the European

Union Horizon 2020 Research and Innovation Programme under grant agree-

ment 646121. The authors thank Huntsman Pigments and Additives for finan-

cial support.

Supplemental Material

Thermochemical data for the 2, 328 candidate species are provided in the

form of NASA polynomial coefficients in CHEMKIN format and as comma

23



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

separated (.csv) files tabulating the heat capacity, entropy and absolute enthalpy

as a function of temperature. A table mapping each species to a SMILES string

is also provided. The molecular geometries are available on request.
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