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Abstract
Wind turbines of larger power ratings have become increasingly prevalent in recent years, improving the viability of
wind energy as a sustainable energy source. However, these large wind turbines have been subjected to higher rates
of failure of the wind turbine gearbox, resulting in larger downtime of operation and an increase in cost due to repairs.
These failures most frequently initiate in the gearbox’s bearings, especially in the planetary bearings of the planetary
stage and high-speed bearings. Currently, most of the research on the detection of planetary bearing faults only address
the case of localised faults in the outer bearing race, while little research considers the detection of distributed bearing
faults. The research that does consider distributed bearing faults relies on techniques – such as machine learning for
the identification of faulty bearings – that do not account much for the underlying physics of the bearing. In this paper,
a model is developed to simulate and analyse the dynamic interaction of a planetary bearing in the presence of surface
roughness – which can be used to represent a distributed fault. The model presented uses random vibration theory for
simulating the response of the planet bearing induced by distributed faults. The input of the model considers statistical
expressions of the roughness geometry using multiple parallel tracks. Numerical simulation of the random vibration of
the model is performed using 16 tracks, and the power spectral density of the radial deflection of the roller and the
roller-race contact force is determined. The results of the simulation with the multi-track model show that a single-track
model significantly overestimates the power spectral densities, and also suggests the stiffness of the bearing race is
too high to have an effect on the roller dynamics for a planet bearing.
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Introduction
Wind turbines have been increasing in power rating over
recent years. However, failure of the gearbox – one of
the most expensive components of the wind turbine – has
in turn become prevalent. Based on around 350 off-shore
wind turbines in Europe, the gearbox and generator alone
account for 95% of failures that result in repairs excessive
of 10,000 euros1. One of the most prevalent sources of
failure in the gearbox are the planetary bearings, in which
failures commonly take the form of distributed faults. The
study of these faults themselves have been the subject of
much research. Kotzalas and Doll2 write that there are
three main types of failure in wind turbine planet bearings,
these being micropitting, smearing and white etching cracks.
Ruellan et al.3 and Evans4 investigate further white etching
cracks, noting these cracks are responsible for flaking of
the material structure of the bearings. Both micropitting and
white etching cracks influence the microstructure, and can be
characterised as surface roughness.

The use of vibrational analysis to model roller bearings
with distributed faults has been used by Sawalhi and
Randall5, who model the surface roughness as low-pass
filtered Gaussian noise, and a cyclostationary analysis is
performed to account for the roller entering and exiting
distributed fault regions. This was then modified by Dolenc
and Bokoski6 to then account for variations in bearing roller
diameters. Roller bearings with surface roughness were

investigated by Takabi and Khonsari7 with considerations to
the lubrication schemes of roller bearings.

The modelling of the dynamics of a roller bearing with
distributed faults may be considered as a cylinder rolling on a
rough surface. This consideration allows research from other
fields to be applied to this context. For instance, research has
been performed in the dynamics of train wheels rolling over
a corrugated rail, where Bogacz and Kowalska8 consider a
deterministic profile for the rail. The use of multiple tracks
to determine the impact of roughness on rolling wheels
has been applied to modelling the response of a car to
road roughness9. However, no research has been found that
applies this multi-track model to the dynamics of roller
bearings. The length of cylindrical rollers are considerable
to the extent that consideration of the surface roughness in
two dimensions may have a significant impact. Therefore,
this paper aims to model a roller bearing with a rough surface
represented by a series of parallel rough tracks.

The novelty of this approach lies in the use of random
vibration theory to simulate the vibrational behaviour of
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a planet bearing with distributed faults, and how this
allows determination of a vibration response arising from
a statistical geometric representation of the fault using
purely physically reasoning. No research has been found
that investigates the dynamics of random vibrations in
cylindrical roller bearings in the presence of distributed faults
considering the flexibility of the raceways and the contact
stiffness. The power spectral density is a powerful approach
that can be used to quantify the roughness of a distributed
fault, and therefore it is desirable to be able to understand
how the transmission of vibration induced from a fault to
a sensor impacts the power spectral density. Furthermore,
an analysis of the power spectral density of the contact
forces that arise due to distributed faults will prove useful
in estimation of the influence of the fault on fatigue life.
While the type of bearing analysed in this paper has a fixed
axis of rotation, the authors intend to extend the research to
the case of planetary gearing, a type of gearing prevalently
used in modern wind turbines, for the detection of faults of
planet bearings in wind turbine gearboxes. The transmission
path from the distributed fault of a planet bearing to an
accelerometer on the ring gear is complicated and time-
varying, and so an understanding of the dynamics and its
effect on the fault-induced random vibration is desired:
the model presented would provide the foundation for this
approach.

The primary planetary bearing used in Nejad et al.10 was
used as a reference bearing for the variables used to perform
the simulations. Table 1 summarises the variables associated
with this reference bearing.

Bearing-roughness model
Figure 1 displays the dynamic model used in this paper. The
model consists of three main elements:

1. The cylindrical bearing roller
2. The beam-foundation system
3. Several tracks of roughness

The beam-foundation system is used to model the
dynamics of the bearing race, and consists of an Euler-
Bernoulli beam – with bending stiffness EI and mass-
per-unit-length m – resting on an elastic foundation with
stiffness-per-unit-length k. y(x, t) is the transverse deflection
of the beam at a point x along its length. On the surface
of the beam are several tracks of roughness, and the profile
of each track εj(x) is modelled as a random process, for
j = 1, 2 . . . Nε, where Nε is the number of tracks used to
represent the rough surface. At this stage, the curvature of
the bearing race (as opposed to being straight like a beam)
had been neglected. This was done initially for simplifying
purposes. However, one way the results could be improved is
by incorporating the radius of the race into an effective radius
instead of using just the roller radius. That is,

1

Ref
=

1

R
+

1

Ri/o
. (1)

where Ri/o is the signed radius of the inner/outer race
(negative for the concave outer race). In the future, the effect
of curvature of the bearing race will be better incorporated
into the model.

The stiffness-per-unit-length of the foundation is based on
the results of Vesic11; the bearing outer race is contained
within the bore of one of the planet gears. Assuming the
planet gear is sufficiently solid, the race-bore interface can
be likened to a beam on an elastic half-space.

In this model, the roller is constrained from motion in
the horizontal direction, and the tracks of roughness are
travelling at constant velocity V . The assumption that the
velocity of the roller relative to the tracks of roughness
is constant is suitable given that the amplitude of the
roughness is sufficiently small to have a negligible influence
of the horizontal motion of the roller. In the frame of
reference adopted, the beam-foundation system would also
be travelling at velocity V . However, for reasons that will be
later justified in this paper, the beam-foundation system is
stationary in the horizontal direction. Therefore, the model
is analogous to a sheet of roughness being pulled out from
between a roller and a beam-foundation system. The impact
that rotation of the roller has is neglected in this model.

The contact between the roller and each track of roughness
is modelled by connection of the roller to each track with a
spring and damper. The spring stiffness is selected based on
a linearisation of Hertzian contact theory, and the damper is
selected to achieve a desired damping ratio of 0.01.

Dynamics of beam-foundation system
The undamped equation of motion governing the dynamics
of an Euler-Bernoulli beam on a Winkler elastic foundation
in response to a point force, of time-varying magnitude travel
with constant velocity V , is

EIy′′′′ +mÿ + ky = −F (t)δ(x− V t). (2)

The dot notation is used to represent ∂/∂t, and the
prime notation to represent ∂/∂x. A positive value for F
corresponds to a downward-pointing force. Many vibrating
systems in reality have some degree of damping present.
Rayleigh damping is incorporated into the beam-foundation
system by making the following substitutions in frequency
domain

m→ m (1− iαm/ω)
E → E (1 + iβEω)

k → k (1 + iβkω) ,

(3)

where αm is the mass-proportional damping coefficient
associated with the mass of the beam, and βE and βk are the
stiffness-proportional damping coefficients, associated with
the stiffness of the beam and the foundation respectively. The
resulting equation of motion in time domain is

EI (y′′′′ + βE ẏ
′′′′) +m (ÿ + αmẏ)

+ k (y + βkẏ) = −F (t)δ(x− V t). (4)

In order to be of use to the roller-roughness interaction
model, a frame of reference following the point force
would be adopted. However, if the velocity of the roller is
considerably less than a critical velocity, then the velocity of
the point force will have negligible impact. The value of the
critical velocity is given by12

Vc =

√
k

m

(
4EI

k

)1/4

. (5)
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Table 1. The parameters based on the reference bearing.

Variable Value Units Description

M 5.5 kg Mass of roller
K 2× 1010 Nm−1 Contact stiffness
C 6.6× 103 Nm−1 s Contact damping
V 0.25 m s−1 Roller velocity
R 3× 10−2 m Roller radius
B 250 mm Length of roller
m 40 kgm−1 Beam mass per unit length
EI 3500 Nm2 Beam bending stiffness
k 3.5× 1011 Nm−2 Foundation stiffness per unit length
αm 1× 103 s−1 Mass-proportional damping in beam
βE 1× 10−7 s Stiffness-proportional damping in beam
βk 1× 10−7 s Stiffness-proportional damping in foundation

𝜀1

𝜀2

𝜀3

𝐾1 𝐶1

𝐾2 𝐶2

𝐾3 𝐶3 𝑧(𝑡)

𝑘, 𝛽𝑘

𝑚,𝐸𝐼, 𝛼𝑚, 𝛽𝐸

𝑦(0, 𝑡)

𝑉

𝑀

Figure 1. The roller-roughness interaction model, consisting of a beam-foundation system, a number of tracks of roughness, and a
cylindrical roller.

For the reference planetary bearing, the critical velocity is
around 1320m s−1, whereas the roller velocity V is only
0.25m s−1, and so the impact of velocity on the beam-elastic
system can be neglected. Therefore, the following equation is
sufficient in describing the dynamics of the beam-foundation
system in the model,

EI (y′′′′ + βE ẏ
′′′′) +m (ÿ + αmẏ)

+ k (y + βkẏ) = −F (t)δ(x). (6)

Equation of motion of the model
With reference to Figure 1, the compressive contact force that
the roller and bearing race mutually exert is given by

F (t) =

Nε∑
j

{Cj (ẏ(0, t) + ε̇j − ż)

+Kj (y(0, t) + εj − z)} , (7)

where Kj and Cj are the contact stiffness and damping
between the roller and the jth track, and εj is the roughness
of the jth track. Therefore, the equation of motion governing
the roller is

Mz̈ + CΣż +KΣz = CΣẏ(0, t) +KΣy(0, t)

+

Nε∑
j

(Cj ε̇j +Kjεj), (8)
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where M is the roller mass, KΣ =
∑Nε

j Kj , and CΣ =∑Nε

j Cj . Therefore, from (7) and (8), the contact force can
be re-expressed more compactly as

F (t) =Mz̈, (9)

and so the equation of motion governing the beam-
foundation system becomes

EI (y′′′′ + βE ẏ
′′′′) +m (ÿ + αmẏ) + k (y + βkẏ)

= −Mz̈(t)δ(x). (10)

Equations (8) and (10) are sufficient in governing the
dynamic behaviour of the system.

Frequency response functions
In order to perform random vibration analysis, the frequency
response function for the output z(t) in response to each
input εj(t) for j = 1, 2 . . . Nε needs to be determined. This
is defined as

Hzεj (ω) =
ẑ(ω)

ε̂j(ω)
, (11)

where the ˆ notation refers to the Fourier transform of the
variable, and ω is the frequency, in radians per unit time. It
is also convenient to define a frequency response function of
y(x, t) in response to z(t),

Hyz(x, ω) =
ŷ(x, ω)

x̂(ω)
. (12)

Performing the (temporal) Fourier transform on both sides of
Equation (10) yields{

EI (1 + iβEω)
∂4

∂x4
+m

(
−ω2 + iαmω

)
+k (1 + iβkω)

}
ŷ(x, ω) =Mω2ẑ(ω)δ(x), (13)

and so an equation for Hyz(x, ω) is obtained:

{
EI (1 + iβEω)

∂4

∂x4
+m

(
−ω2 + iαmω

)
+k (1 + iβkω)

}
Hyz(x, ω) =Mω2δ(x), (14)

To determine Hyz(x, ω) involves having to solve a
differential equation. Alternatively, the spatial Fourier
transform can be performed to yield

Ĥyz(γ, ω) =
Mω2

2π

{
EI (1 + iβEω) γ

4

+m
(
−ω2 + iαmω

)
+ k (1 + iβkω)

}−1
, (15)

where γ is the wavenumber, in radians per unit length. Now
it is possible to obtain values for Ĥyz(γ, ω) over the desired
range of γ and ω, from which Hyz(x, ω) can be obtained by
performing the spatial inverse Fourier transform.

Considering the response from only track j, taking the
Fourier transform of Equation (8) gives(
−Mω2 + iCΣω +KΣ

)
ẑ(ω)

= (iCΣω +KΣ) ŷ(0, ω) + (iCjω +Kj) ε̂(ω), (16)

and so the frequency response functions can be expressed as

Hzεj (ω) =

iCjω +Kj

(−Mω2 + iCΣω +KΣ)− (iCΣω +KΣ)Hyz(0, ω)
.

(17)

It is also useful to obtain an expression for the frequency
response of the contact force HFεj , which – from equation
(9) – can be shown to be

HFεj (ω) =

−Mω2(iCjω +Kj)

(−Mω2 + iCΣω +KΣ)− (iCΣω +KΣ)Hyz(0, ω)
.

(18)

In this paper, the contact stiffness and damping are taken to
be uniform across the lines of contact, so Cj = C = CΣ/Nε
and Kj = K = KΣ/Nε, and so each frequency response
function become equal to the transfer function for a single-
track case divided by the number of tracks.

For the parameters provided in Table 1, the frequency
response functions are obtained for both z(t) and F (t), and
shown in Figures 2 and 3 respectively. For each, two curves
have been plotted: the solid lines represent the frequency
response for the model as described above. The dashed lines
represent the frequency response for the model excluding the
effect that the deflection of the beam has, i.e. EI, k →∞.
Note the resulting shift in resonant frequency due to the
beam-foundation element of the model: the peak shifts from
6000 rad s−1 to 3950 rad s−1.

Transmission of random vibrations
The theory of random vibrations is applied to the model in
order to determine the statistics of the response of the bearing
system to the surface roughness without unnecessarily
narrowing down to the case of a single instance of a random
surface. This subject is covered extensively by Newland13. It
can be shown that the power spectral densities of the outputs
z(t) and F (t) are related to those of the inputs εj(t) by the
following equations13:

Szz(ω) =

Nε∑
j=1

Nε∑
k=1

H∗zεj (ω)Hzεk(ω)Sεjεk(ω), (19)

SFF (ω) =

Nε∑
j=1

Nε∑
k=1

H∗Fεj (ω)HFεk(ω)Sεjεk(ω), (20)

where ∗ represents the complex conjugate operator. Sff (ω)
is the power spectral density of a signal f(t), and Sfg(ω) is
the cross spectral density between signals f(t) and g(t).
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Figure 2. The absolute value of the frequency response function of the roller height in response to the surface roughness, using
the parameters listed in Table 1. For Nε = 1.
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Figure 3. The absolute value of the frequency response function of the roller-race contact force in response to the surface
roughness, using the parameters listed in Table 1. For Nε = 1.

Modelling of a single track of roughness

Each track is modelled as a random process, and – in order to
perform a random vibration analysis – is defined by its power
spectral density.

For any random signal in time x(t), its autocorrelation
function is defined as13

Rxx(t, τ) = E[x(t)x(t+ τ)], (21)

where E[·] is the average over the ensemble of possible
instances of the random signal. It is assumed that all random
processes considered in the model are stationary; that is, the
auto-correlation functions are independent of absolute time t:
Rxx(t, τ) = Rxx(τ). From this, the power spectral density
is defined as the Fourier transform of the autocorrelation
function:13

Sxx(ω) =
1

2π

∫ ∞
−∞

Rxx(τ)e
−iωτ dτ . (22)

These definitions also extend to spatial signals. At this
stage, a highly simplified model for the surface roughness
is used; this is chosen to be white noise with a sharp cut-off

wavenumber. For a single track ε(x), this is defined as

Sεε(γ) =

{
S0 for |γ| ≤ γmax

0 otherwise.
(23)

A cut-off frequency is specified as, above a certain
wavenumber, the curvature of the roughness κε begins to
exceed that of the roller 1/R, and so the roller can only
physically make contact with the asperities of the roughness,
which is unaccounted for by the current model. Therefore,
the value of γmax is selected so that the curvature of
the roughness does not exceed the roller roughness for a
sufficiently high proportion of the roughness. If the curvature
of the roughness is assumed to be a random process with
a Gaussian distribution, it is possible to ensure that the
roughness curvature remains below 1/R for around 99.73%
of the roughness length. That is, the standard deviation of the
curvature σκ and the roller radius are related by

3σκ =
1

R
. (24)
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An exact expression for the curvature of ε(x) is

κε =
ε′′(

1 + (ε′)
2
)3/2

. (25)

However, by assuming that ε′ is small – which is indeed the
case for a surface whose curvature and amplitude is less than
that of the roller – the curvature can be approximated by the
linear expression

κε = ε′′. (26)

Therefore it is possible to obtain the spectral density for
the curvature. The relationship between the power spectral
densities of ε(x) and its derivatives is given as13

Sε′ε′ = γ2Sεε, Sε′′ε′′ = γ4Sεε. (27)

Then the standard deviation of the curvature can be
calculated with

σ2
ε′′ = E

[
(ε′′)

2
]
= Rε′′ε′′(0) =

∫ ∞
−∞

Sε′′ε′′(γ) dγ (28)

Then by substituting the expression for Sεε(γ) into (27),

σ2
ε′′ =

∫ γmax

−γmax

S0γ
4 dγ =

2

5
S0γ

5
max. (29)

From (24),

18R2S0γ
5
max = 5. (30)

The value of S0 can be related to σε,the standard deviation
of ε(x), by noting that the area under Sεε(γ) is equal to σ2

ε ,
and so,

S0 =
σ2
ε

2γmax
. (31)

Now values for γmax and S0 can be obtained in terms of R
and σε:

γmax =

√ √
5

3Rσε
≈ 0.8633

1√
Rσε

, (32)

S0 =

√
3Rσ5

ε

4
√
5
≈ 0.5791

√
Rσ5

ε . (33)

Now that the spatial spectral density for the surface
roughness Sεε(γ) is determined, the temporal spectral
density Sεε(ω) can be determined with13

Sεε(ω) =
1

V
Sεε

(
γ =

ω

V

)
. (34)

Modelling of multiple tracks of roughness
Because the roller is a three-dimensional cylinder that
makes contact with the bearing race over a finite length,
using a single track of roughness may not be sufficiently
representative of the roughness of the race surface. For this
reason, finitely many parallel tracks are included. Note that
the roughness for each track εj(x) is correlated to one

another, and we should expect this correlation to increase for
tracks of lower separation, becoming perfectly correlated as
the separation tends toward zero. It is therefore necessary to
determine the cross spectral density between the tracks, and
this can be done by determining the power spectral density
of the two-dimensional surface, S2D

εε (γ1, γ2).
It is assumed that the surface is isotropic, which allows the

two-dimensional power spectral density to be inferred from
any one-dimensional power spectral density. The following
steps are performed13:

1. Perform the inverse Fourier transform on the spectral
density of a rail Sεjεj (γ) to obtain the auto-correlation
function Rεjεj (χ).

2. If the surface is isotropic, the auto-correlation function
of the surface will be equal to the auto-correlation
function of a track, revolved about the origin axis. i.e.
R2D
εε (χ1, χ2) = Rεjεj (

√
χ2

1 + χ2
2).

3. Perform the two-dimensional Fourier transform on
R2D
εε (χ1, χ2) to obtain S2D

εε (γ1, γ2).

For the power spectral density as defined earlier for a
single track, an analytical expression for the autocorrelation
function of each rail – and therefore for the autocorrelation
function of the surface – can be obtained. Taking the inverse
Fourier transform of the rectangular function yields the
following:

Rεjεj (χ) = 2S0γmaxsinc(γmaxχ), (35)

where sinc(x) = sin(x)/x, and so

R2D
εε (χ1, χ2) = 2S0γmaxsinc

(
γmax

√
χ2

1 + χ2
2

)
. (36)

Now the autocorrelation function is sampled over the desired
range for χ1, χ2, and the double Fourier transform is
performed to obtain a matrix of values for S2D

εε (γ1, γ2). With
the power spectral density of the surface determined, the
cross spectral density can be calculated using the following
equation13:

Sεjεk(γ1) =

∫ ∞
−∞

S2D
εε (γ1, γ2)e

iγ2χjk dγ2, (37)

where χjk = (k − j)χ0 = (k − j)B/Nε is the signed
separation between rails j and k. Note that if j = k, the
power spectral density (in this case, rectangular shaped)
should be re-obtained, offering a means to verify the 2D
power spectral density. For a surface of σε = 1µm with a
roller of radius R, the following 2D power spectral density
shown in Figure 4 is obtained.

With the 2D spectral density of the surface obtained, the
cross-spectral densities are determined using equation (37).
For any given one-dimensional power spectral density, it can
be shown that all cross-spectral densities are real for a surface
of isotropic roughness: the two-dimensional power spectral
density is rotationally symmetry, and therefore, for each
value γ1, is even in γ2. In the integral of (37), the imaginary
part S2D

εε (γ1, γ2) sin (γ2χjk) is odd, and so cancels out in the
infinite integral.

Using the above method, a series of cross spectral
densities have been computed for a surface of rms
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Figure 4. (left) The 2D spatial PSD of an isotropic surface corresponding to a rectangular PSD for a straight line along the surface,
and (right) a cross-sectional view of the left.
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Figure 5. The cross spectral densities between parallel tracks for different separations for a surface of rms roughness σε = 1µm
and roller radius R = 30mm.

roughness σε = 1µm and roller radius R = 30mm, as
can be seen in Figure 5. For zero separation, the original
rectangular function of the power spectral density of a
single track is re-obtained: the input power spectral density
was defined to have parameters (from Equations (32) and
(33)) γmax = 4980 radm−1 and S0 = 1.00× 10−16 m3. For
small separation distances (∼ 0.1mm) between tracks, the
cross spectral density is approximately equal to the input
power spectral density. For the region of the cross spectral
density within γmax, the curve first touches zero when the
separation is increased to χjk = π/γmax = 0.631mm. As

the separation increases, the cross spectral density decreases
for γ < γmax, but remains unchanged at γ = γmax.

As is, the cross spectral densities obtained are defined
spatially for the surface roughness. To be used in the
model, temporal cross spectral densities need to be obtained
corresponding to the surface roughness at the point of
contact with the roller. This transformation can be observed
by extending Equation (34). Now that the cross-spectral
densities can be output, the inputs into the model have been
fully defined.
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Table 2. The rms roller height, corresponding with Figure 6.

B σzz

0mm 1.0003× 10−6 µm
1mm 7.5196× 10−7 µm
10mm 2.5116× 10−7 µm
250mm 2.5110× 10−7 µm

Table 3. The rms contact force, corresponding with Figure 7.

B σFF

0mm 3.8219N
1mm 3.3586N
10mm 1.2954N
250mm 0.9555N

Results and discussion
The power spectral densities of the roller height and
the contact force are obtained by inputting the calcu-
lated frequency response functions and the (cross) spectral
densities of the parallel tracks of roughness into Equa-
tions (19) & (20). The parameters defined in Table 1
are used, a surface of rms roughness 1µm and roller
radius of 30mm were selected, and Nε = 16 tracks of
roughness are used. The resulting power spectral densi-
ties are displayed in Figures 6 and 7. Note that this is
performed for a number of values of B, which is the
total width that the tracks of roughness cover, and can
be thought as the effective length of the cylindrical roller.
For the values B = 0mm, 1mm, 10mm, 250mm, the cor-
responding separation between neighbouring tracks are
B/Nε = 0mm, 0.0625mm, 0.625mm, 15.625mm respec-
tively. These various values, which includes the width of the
reference bearing 250mm, are investigated to see the impact
of the separation between neighbouring tracks.

Note that since the maximum wavenumber of the input
roughness power spectral density is γmax = 4980 radm−1,
the maximum frequency of the power spectral density in
time domain is ωmax = 1245 rad s−1. This means that the
frequency content at frequencies higher than this in the
frequency response function have no role in the random
vibration dynamics. As a result, in the range of interest,
the frequency response function for this model including
the beam-foundation system and that for a model excluding
beam-foundation effects are very similar, which therefore
suggests that the bulk deflection of the bearing race in a roller
bearing has little influence on the response of the roller to
surface roughness.

In Figure 6, the B = 0 case is very similar to the temporal
power spectral density of a single track of roughness. For
B = 0, it is expected that the results become the same as
that for a single-track case: the separation between the 16
tracks are zero, so that all the tracks are exactly the same
as one another, i.e. they are perfectly correlated. As a result,
Equations (19) and (20) become the same as that for a single
track. Note that the power spectral density is effectively the

same as that for a track of roughness: the roller follows the
surface roughness with relatively small contact deflections
or bulk deflections of the beam, which is a result of the
relatively high stiffnesses K, EI and k.

As B increases, the correlation between the neighbouring
tracks decrease. In response, Szz also decreases. Troughs
along one track no longer necessarily correspond with
troughs of other tracks, and so z(t) deviates from zero to
a lesser extent. Table 2 contains the rms values of z(t)
for each of the power spectral density curves, and indeed
shows the corresponding decrease for increasing separation.
The lowest possible value the rms can reduce to as a result
of decreasing correlation is 1/

√
Nε of the fully correlated

value, provided the frequency response functions are the
same for each track. Note how in the B = 250mm curve
that sharp features are present that are characteristic of the
oscillating curves in Figure 5, which may coincide with the
separation between neighbouring tracks (15.625mm) being
greater than the value required for the cross spectral density
curve to first touch zero (0.631mm).

As for Figure 7, the same decrease in spectral density for
increasingB is observed. Table 3 displays the calculated rms
values of the contact force. From a single-track model, the
rms contact force is estimated to be 3.8219N. However, for
a 16 track model with B = 250mm, this value drops to just
above a quarter. The use of 16 tracks to cover a width of
B = 250mm therefore suggests that a single-track model
significantly overestimates the rms response.

The roller height and the contact force in the model
then correspond to the radial position of a single bearing
roller and the roller-race contact force in the actual bearing.
Determining the power spectral density of the roller-race
contact force provides stochastic information on the load
cycle experienced between the roller and race due to the
surface roughness, and this information could be used in
assessing the impact of the loading cycle due to roughness
on the fatigue life of the bearing.

Ideally, the addition of more tracks would allow results
that are more representative of a cylinder of finite
width, reducing more of the aforementioned overestimation.
Eventually, we would expect the results to converge after a
sufficiently large number of tracks. For the given number of
tracks investigated (up to 16), no convergence was observed,
and so more tracks are required. An estimation of the
number of tracks required can be made by considering
neighbouring tracks to be highly correlated. For instance,
the case of 0.2mm separation between neighbouring tracks
(see Figure 5) suggests high correlation, and would require
1250 tracks. A disadvantage with the proposed method is
that the computational complexity climbs rapidly, limiting
the number of tracks that can be computed: convergence of
results could not be obtained at this stage.

Conclusions

A model is developed to determine the response of a bearing
roller to surface roughness, incorporating a beam-foundation
system to model race deflections and using multiple tracks of
roughness to better model the roughness of a surface.
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Figure 6. The power spectral density of the height of the roller, for a surface of rms roughness σε = 1µm and roller radius
R = 30mm. Different lines correspond to different roller lengths.
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Figure 7. The power spectral density of the roller-race contact force, for a surface of rms roughness σε = 1µm and roller radius
R = 30mm. Different lines correspond to different roller lengths.

A simplified model for surface roughness is used: white
noise with a sharp cut-off frequency to account for the roller
size.

For a surface of rms roughness 1µm and roller radius
30mm, the contact stiffness and beam-foundation system
stiffness has negligible impact on the response of the
cylindrical roller. For the planet bearing considered, the
influence of such stiffness would be negligible up to
frequency contents around 20 krad s−1: such frequencies
only arise for roughness below 0.06µm. Therefore, it can
be concluded that this influence of stiffness can be neglected
for wind turbine planet bearings.

At this stage, the curvature of the bearing race (as opposed
to being straight like a beam) had been neglected. This was
done initially for simplifying purposes. However, one way
the results could be improved is by incorporating the radius
of the race into an effective radius instead of using just the
roller radius. That is,

1

Ref
=

1

R
+

1

Ri/o
. (38)

where Ri/o is the signed radius of the inner/outer race
(negative for the concave outer race). In the future, the effect

of curvature of the bearing race will be better incorporated
into the model.

The use of multiple tracks of roughness can be used to
model the roughness of a surface better than a single track
model does. The power spectral densities of the roller height
and contact force are overestimated in single track models.
More tracks would reduce the overestimation, and the results
would be expected to eventually converge. However, no such
convergence was observed due to limitations of computation:
the expense of the computation increased rapidly with the
number of tracks.

At this stage, the results produced so far are obtained from
numerical simulations of the model. This therefore begs the
question of whether these results are indeed representative
of real bearings. To answer this question, the authors intend
to validate the model experimentally. That is, to compare
an artificial signal generated by the model with a vibration
sensor measured from an experimental rig using bearings
with distributed faults.
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