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The field of nonlinear regression is a long way from reaching a consensus. Once a method

decides to explore nonlinear combinations of predictors, a number of questions are raised, such

as what nonlinear combinations to permit and how best to search the resulting model space.

Genetic Association Studies comprise an area that stands to gain greatly from the develop-

ment of more sophisticated regression methods. While these studies’ ability to interrogate the

genome has advanced rapidly over recent years, it is thought that a lack of suitable regression

tools prevents them from achieving their full potential.

I have tried to investigate the area of regression in a methodical manner. In Chapter 1, I

explain the regression problem and outline existing methods. I observe that both linear and

nonlinear methods can be categorised according to the restrictions enforced by their underly-

ing model assumptions and speculate that a method with as few restrictions as possible might

prove more powerful. In order to design such a method, I begin by assuming each predictor is

tertiary (takes no more than three distinct values). In Chapters 2 and 3, I propose the method

Sparse Partitioning. Its name derives from the way it searches for high scoring partitions of

the predictor set, where each partition defines groups of predictors that jointly contribute

towards the response. A sparsity assumption supposes most predictors belong in the “null

group” indicating they have no effect on the outcome. In Chapter 4, I compare the perfor-

mance of Sparse Partitioning to existing methods using simulated and real data. The results

highlight how greatly a method’s power depends on the validity of its model assumptions.

For this reason, Sparse Partitioning appears to offer a robust alternative to current methods,

as its lack of restrictions allows it to maintain power in scenarios where other methods will fail.

Sparse Partitioning relies on Markov chain Monte Carlo estimation, which limits the size of

problem on which it can be used. Therefore, in Chapter 5, I propose a deterministic version of

the method which, although less powerful, is not affected by convergence issues. In Chapter 6,

I describe Bayesian Projection Pursuit, which adds spline fitting into the method to cope with

non-tertiary predictors.
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Glossary of Symbols

Below is an outline of the notation I use throughout this thesis.

Data Variables

n - number of samples, indexed by the variable i.

N - number of predictors, indexed by the variable g.

X - predictor matrix (size n×N).

Y - response vector (length n).

Subscripts are used to indicate particular elements of a vector or matrix.

Negative subscripts indicate a vector/matrix with those elements removed.

Regression Equation

l(E(Y )) = f(X) - l is the link function, while f is the underlying relationship.

Partitioning Notation

G = {G0, G1, . . . , GK} - a partitioning of (up to C copies of) {1,2,. . . ,N}.
The null group G0 indexes predictors not associated,

G1, . . . , GK index groups of at most S associated predictors.

I = (I1, I2, . . . , IN) - alternative representation of G.

Ig ∈ {0, 1, . . . , K} denotes to which group predictor g belongs.

f = {f1, f2, . . . , fK} - functions acting on each non-null group.

SI lists the associated predictors: g ∈ SI ⇔ Ig 6= 0.

[I] denotes an equivalence class of partitions: I ′ ∈ [I]⇔ SI′ = SI .

The underlying relationship is modelled as f(X) = f1(XG1) + f2(XG2) + · · ·+ fK(XGK
).

Projection Pursuit

ξk = (ξk1, ξk2, . . . , ξkN) - direction coefficients for the kth group.

Υ = (Υ1,Υ2, . . . ,ΥN) - condensed representation of Ξ = {ξ1, ξ2, . . . , ξK}.
Can merge ξ1g, ξ2g, . . . , ξKg → Υg, as at most one is non-zero.

The projection pursuit model is f(X) = f1(Xξ1) + f2(Xξ2) + · · ·+ fK(XξK).

Miscellaneous

P(�) denotes a probability mass/density function of the random variable �.

� discrete⇒ P(�) is a mass function; � continuous⇒ P(�) is a density function.
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List of Abbreviations

Below are some abbreviations and phrases I use more than once in this thesis.

Regression Methods

Single - Tests each predictor individually for association (my own implementation).

Pairs - Tests all pairs of predictors for association (my own implementation).

CART - Classification and Regression Trees (Breiman et al., 1984).

RF - Random Forests (Breiman, 2004).

SSS - Shotgun Stochastic Search (Hans et al., 2007).

Logic - Logic Regression (Ruczinski et al., 2003).

MARS - Multivariate Adaptive Regression Splines (Friedman, 1991).

Genetic Terms

SNP - Single nucleotide polymorphism - a single base pair mutation.

LD - Linkage disequilibrium - the tendency of nearby genetic variants to exhibit

strong correlations, due to being frequently inherited jointly through generations.

Mathematical Terms

MCMC - Markov chain Monte Carlo - A stochastic technique for sampling from a

posterior distribution when explicit calculation is not (readily) possible.

δ{a} - The delta function - a point mass function at a, whose integral is defined as 1.

1(·) - The indicator function which takes value 1 if and only if its argument is true.

U(a, b) - A uniform distribution on the interval [a, b].

β(a, b) - A Beta distribution with shape parameters a and b.

B(a,b) - The Beta function, the normalising constant of the Beta distribution β(a, b).

N(a, b) - A normal distribution with mean a and variance b.

φ(a) - The probability density function of the standard normal distribution N(0, 1).

Φ(a) - The cumulative density function of the standard normal distribution N(0, 1).

Link Functions

Logit(a) - The logit function, equal to log(a/(1− a)) - a commonly used link function

which maps a probability to a real value.

Probit(a) - The probit link function, equal to Φ−1(a), the inverse cumulative density

function of the standard normal distribution - an alternative to the logit link.
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Overview of Sparse Partitioning Algorithms
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Three are three Sparse Partitioning algorithms. Solid lines indicate steps involved in the

original version, dotted lines refer to the two alternatives. The original version, suitable for

tertiary predictors, implements Markov chain Monte Carlo sampling. It performs Sampling

Stages One, Two and Three once per iteration. The deterministic version (Deterministic

SP) replaces the MCMC iterations with a hill-climbing search. The spline version (Bayesian

Projection Pursuit), which can also be applied to non-tertiary predictors, carries out MCMC

sampling with the addition of Sampling Stage Four.
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Chapter 1

Introduction

Regression problems occur in all walks of life. Whenever we encounter an outcome whose be-

haviour we do not adequately understand, our instinct is to seek an explanation. The obvious

first step is to look for all variables (the predictors) we think might affect the outcome (the

response). If we are able to measure both the response and predictors across a sample, we

have a regression problem. It is at this point statistical analysis is required, as we hope to

determine how the predictors influence the response.

The field of genetics provides countless examples of this type. Perhaps the most famous

concerns human height. For over 100 years, geneticists have studied the heritable nature of

this trait (Galton, 1886). It is anticipated that at least 80% of the observed variation can be

assigned to genetic factors, but so far the actual amount explainable falls comfortably short

of this figure (Visscher, 2008). There are two possible reasons why our understanding of

genetic problems is so poor: either the catalogue of variants that we have built up, which on

the surface appears increasingly comprehensive, continues to overlook the true source; or our

methods for analysing these data are not sufficient (Manolio et al., 2009; Cordell, 2009).

In this thesis, I investigate ways to better analyse regression problems. After a brief

overview of the problem, I introduce Sparse Partitioning, a nonlinear Bayesian method de-

signed for predictors taking no more than three distinct values. I then discuss two extensions:

Deterministic SP, an adaptation which removes the random component to improve speed and

usability, and Bayesian Projection Pursuit, a version which no longer insists upon three-valued

predictors. My work is heavily motivated by genetic problems, so I intersperse description with

examples from association studies, but hopefully is in no way limited to this field.
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Figure 1.1: Notation. The predictor values
are stored in the matrix X, the response val-
ues in the vector Y . In both cases, rows indi-
cate samples. The predictor values for the ith
sample are represented by (Xi1, Xi2, . . . , XiN ),
while Yi denotes its response.

1.1 Regression Notation

Consider a regression problem involving n samples, N predictors and a single response. Fig-

ure 1.1 demonstrates how the data are stored. The matrix X (size n × N) contains the

predictors, while the column vector Y (length n) contains the response values. Throughout

this thesis, the subscript i corresponds to a sample and g to a predictor. I will use notation

of the type Xi or Xg to refer to the rows or columns of a matrix corresponding to particu-

lar samples or predictors. A negative subscript designates a matrix or vector with elements

excluded; for example, X−g denotes X with the gth column taken out, while Y−i denotes Y

with the ith value removed.

A predictor can be treated as either categorical or quantitative. A categorical predictor

records values on a nominal scale, where its value indicates in which state the predictor oc-

curs. I will often talk about “binary” or “tertiary” predictors. These are categorical predictors

which occur in only two or three states. As the choice of labelling is of no consequence, I will

assign these predictors values from {0, 1} or {0, 1, 2}, respectively.

Quantitative predictors are ordinal; their values serve a greater purpose than simply dis-

tinguishing group membership. Continuous predictors are one such example. Suppose we are

told three individuals weigh 50 kg, 51 kg and 70 kg. This provides us with more information

than the fact their weights are different; it tells us that the second sample weigh more than

the first, but less than the third. Based simply on these values, it would be natural to assume

the first two individuals are more closely matched than the second and third.

In a similar fashion, the response can be either categorical or quantitative. The two most

common situations involve either a binary or a continuous response. When binary, the la-

belling is again of no importance, so I will use values from {0, 1}.

A regression method is interested in deducing properties of the regression equation, the

formula which connects a sample’s predictors to its response. This is typically written as

l(E(Y )) = f(X), where l is termed the link function and I refer to f(X) as the “underlying

2



relationship”. When the response is continuous, the link function is typically the identity func-

tion, so that f(Xi) determines the expected response for the ith sample. When the response

is binary, the link function relates f(Xi) to the probability that the ith sample’s response is

1, mapping a real value to the interval [0, 1]. In this case, either the logit or probit function

(both of which are defined later on) provide a convenient choice.

With the link function specified, the task of the regression method is to identify details of

the underlying relationship f(X). Ideally, we wish to know the exact form of the relationship,

however, details of which predictors contribute most can still prove very informative.

1.2 Association Studies

Association studies seek to answer the question “Which genetic variants affect a phenotypic

trait?” There are many reasons why association studies might be of interest. To provide just

two, first suppose the phenotype is disease-based. If we are able to understand the biologi-

cal system underlying this response, it will hopefully result in better preventative measures

and allow more specialised treatment. If instead the phenotype measures crop performance,

understanding what causes some plants to thrive more than others should suggest ways to

increase overall yield.

Reworded as a regression problem, each study asks “Which predictors are associated with

the response?” An association study’s first step is to select a set of samples. If the phenotype

to be investigated has already been decided, it is natural to choose samples providing a broad

spectrum of response values, as these will be expected to highlight causal variants most clearly.

The second step is to type each sample for a number of predictors. Over the past decade,

there has been a rapid progression in the ability to record genomic variants, both in terms of

the types of variants explored (Manolio et al., 2008) and the density at which they can be

measured (The International HapMap Consortium, 2003, 2004, 2007).

When comparing two genomes, one commonly considered variant is the “SNP” (single nu-

cleotide polymorphism). A SNP is known to exist once more than one base pair value has been

observed at a particular location. Owing to the vastness of DNA and the rarity of mutations,

SNPs are generally considered “biallelic”, meaning that the location assumes one of only two

states (“alleles”). On a population level, it is often required that this variation is sufficiently

wide-spread before a SNP is declared. For example, it is customary to insist the “minor allele

frequency”, the proportion at which the least common allele is observed, is at least 1%. For

many species, chromosomes occur in closely matched (“homologous”) pairs. As chromosomes

within a pair are hard to distinguish, a SNP value is generally recorded by how often the minor

3



allele occurs across both, so equals 0, 1 or 2, depending on whether the sample is homozygous

wildtype, heterozygous, or homozygous mutant.

As a child’s DNA is a composition of its parents’, it would, in theory, be possible to con-

struct a tree detailing the origin of every sequence position in the current generation. Each

ancestral allele could be traced back to the founder generation, while each mutant allele could

be traced back to the time it first appeared. The manner in which alleles are passed through

generations is far from random, and modelling this process forms the basis of coalescent theory

(Hein et al., 2005). In particular, neighbouring base pairs will very often originate from the

same parent, resulting in high concordance between nearby variants. On a population level,

this phenomenon is referred to as “linkage disequilibrium” (LD) and is recognised by local

patterns of strong correlation between groups of predictors (Nordborg and Tavaré, 2002).

Association studies are able to exploit LD to reduce the experimental workload. For exam-

ple, the HapMap Project estimates there to be of the order 10 million SNPs in the human

genome, but because of the strong correlations present, much of the variation can be captured

by genotyping a much smaller subset of these (Conrad et al., 2006). Having typed a set

of “tagging” SNPs, a study can then choose either to analyse this subset directly, or impute

untyped variants using reference genomes (Marchini and Howie, 2010).

Association studies vary greatly in scale, depending on the density of variants and the

length of genomic sequence typed. With current technology, it is common-place for whole

genome studies to interrogate up to a million SNPs (Psychiatric GWAS Consortium

Coordinating Committee, 2009), yet an experiment with a more focused objective might

concentrate on less than a few hundred. Either way, the majority of studies are classed “large

p, small n” problems, an expression used to describe regression problems where the number

of predictors far exceeds the number of samples. This has implications in their analysis. With

access to enough predictors, it will be possible to find models which perfectly explain any set

of observed response values, but there is no guarantee these models are meaningful.

The heritability of a trait represents the proportion of phenotypic variation which can be at-

tributed to genetic effects. At one extreme are Mendelian traits, named after Gregor Mendel,

an Austrian monk whose experiments were fundamental to their understanding (Mendel,

1865). For these traits, the presence/absence of (typically) one causal allele will explain 100%

of the observed variation. For example, much of Mendel’s work concerned Pisum sativum, the

seed colour of which is controlled by a single genomic location. If at least one copy of the

“dominant” allele is present across the homologous pair, the seed is yellow; whereas if two

copies of the “recessive” allele are present, the seed is green. The alleles underlying Mendelian

traits should be fairly easy to detect; assuming the causal variant has been typed (or well-

tagged), one simply has to look for the predictor whose values correlate perfectly (or very
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highly) with the response. The fact that the majority of phenotypes can not so easily be

explained, strongly suggests that their underlying systems are far more complex, with more

than one variant causal and/or a greatly reduced heritability.

Following the acceptance that most traits are unlikely to be Mendelian, much attention

became focused on the “common disease, common variant” hypothesis. This supposes that the

genetic variation underlying many phenotypes can be attributed to a relatively small number

of reasonably common variants. While association studies were in their infancy, this hypothe-

sis agreed with many of the known findings (mainly discovered through family-based studies)

and with the genetic models being proposed (Risch and Merikangas, 1996; Kruglyak,

1999; Reich and Lander, 2001). However, in recent times, this hypothesis has been called

into question. Although there have been a number of successes, most notably those of The

Wellcome Trust Case Control Consortium (2007, 2010), there remain many exam-

ples, like that of human height, of highly heritable traits for which association studies have

not lived up to expectations.

There has been much speculation as to why this should be the case (Maher, 2008; Gold-

stein, 2008; McCarthy et al., 2008). One conclusion is that the causal variants are more

abundant and/or much rarer than was first thought. On the other hand, the success of a study

will always be limited by the efficiency of its analysis. In particular, the majority of analysis

methods assume an additive model, however, there has been evidence for interactions affecting

a phenotypic outcome, in animals at least (Fraser, 2007; Shao et al., 2008), thus raising the

question of whether the current approaches are sufficient (Balding, 2006; Thomas, 2010).

1.3 Linear Models

An underlying relationship f is classed as linear, with respect to J1, J2, . . . , JD, if it can be

written as a linear combination of these predictors:

f(J1, J2, . . . , JD) = J1θ1 + J2θ2 + . . .+ JDθD,

where D is referred to as the degrees of freedom, the minimum number of parameters required

to describe the model. If we create J = [J1 J2 · · · JD], a design matrix whose columns are the

predictor values, and a vector of regression coefficients θ = (θ1, θ2, . . . , θD)T, then the linear

model can be written as f(J) = Jθ.

If {J1, J2, . . . , JD} is a subset of {X1, X2, . . . , XN}, then the underlying relationship is also

a linear function of the original predictors. But this is by no means required, as linear models

also play a part in nonlinear regression. Suppose we let J1 = X1×X2, which for binary X1 and
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X2 indicates whether or not both equal one. By considering linear models involving J1, we are

able to consider nonlinear models with respect to the original predictors. This is a strategy

I will use repeatedly, using indicator matrices to construct nonlinear functions of columns ofX.

Given a linear model involving J , we are interested in finding the most suitable values for

the regression coefficients. In terms of the regression equation, this corresponds to finding θ̂

such that f(J) = Jθ̂ is the “best fit” to l(E(Y )). How we decide upon the best fitting θ̂ is

an entirely subjective choice, dependent on our aversion to error and insights regarding the

regression coefficients. When the response is continuous, by far the most common frequentist

strategy is least squares regression, which picks θ to minimise

(Y − Jθ)T (Y − Jθ) =
∑
i

(Yi − Jiθ)2.

This expression represents the sum of the squares of the residuals, the difference between the

predicted and observed values for each response. In many cases, the least squares estimate θ̂

can be calculated explicitly as

θ̂ = (JTJ)−1JTY .

This relies on the matrix JTJ being invertible, which in turn relies on linear independence of

the observed predictor values. Put simply, if two predictors are identical, for example, J1 = J2,

the model lacks identifiability, as increasing θ1 while decreasing θ2 by the same amount will

have no change on the underlying relationship. More formally, this phenomenon will exist

whenever the predictor set is linearly dependent, as then one predictor can be expressed as a

linear combination of the others.

This concept is closely related to the idea of saturation. For a sample of size n, there

can be at most n linearly independent predictors. Once the number of linearly independent

predictors equals the number of samples, the model is termed saturated and a perfect fit will

always be achievable. As a result, adding further predictors to the linear model will have no

effect on the goodness of fit, while the lack of identifiability means there will be no unique

solution.

It is often possible to avoid problems of saturation by introducing a penalty term. For

example, rather than finding the least squares estimate, we could consider minimising the

penalised residual sum of squares

(Y − Jθ)T (Y − Jθ) + Pen(θ).

The scalar penalty function Pen(θ) generates additional constraints and often allows models
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with more than n degrees of freedom to be uniquely solved. This penalty term will be picked

to reward models with desirable properties, so typically reflects a preference for simplicity.

Least squares estimation ties in nicely with maximum likelihood statistics. A common

assumption is that the residuals are independent draws from a normal distribution, in which

case their likelihood, the probability function corresponding to a set of observed values, takes

the form

(2πσ2)−
n
2 exp

{
− 1

2σ2 (Y − Jθ)T (Y − Jθ)
}
.

The choice of θ which maximises the likelihood will be that which minimises the exponent.

Therefore, the maximum likelihood and least squares estimates are the same.

1.3.1 Significance Tests

Having found a best fit, we often wish to attach significance to this finding. For example,

we might like to investigate how much evidence there is that a regression coefficient is non-

zero, indicating that the corresponding predictor has an effect on the response. A frequentist

solution is to perform a likelihood ratio test. When the null hypothesis is nested within the

alternative, this test calculates the statistic

Λ = −2 log
L(θ̂0)

L(θ̂1)
,

where θ̂0 and θ̂1 correspond to the best fitting models under the null and alternative hypothe-

ses. The greater the value of Λ, the more evidence there is to reject the null hypothesis. For

the test statistic, we generally wish to calculate a “p-value”, which represents the probability

under the null hypothesis of obtaining a value at least as extreme as that seen. This requires

knowledge of the distribution of Λ when the null hypothesis is true. If this distribution can not

be calculated directly, it can often be approximated through use of an asymptotic argument.

Suppose a significance test leads to the rejection of the null hypothesis. This result will

be a “true positive” if the right decision was made, but a “false positive” when the null

hypothesis was in fact correct. Typically, we will choose a significance level α′ and reject the

null hypothesis if the p-value falls below this level. The “power” of a test, for a particular

significance level, is the probability it will correctly reject, should the null hypothesis be false.

1.3.2 Multiple Testing

When performing a number of significance tests, it is common to consider the “family-wide

error rate” (FWER), the chance of incorrectly rejecting one or more null hypotheses. If we per-

form T independent tests, each with a significance level of α′, the FWER will equal 1−(1−α′)T.
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Therefore, if we wish to set the FWER to α, it is straightforward to calculate the required

value for α′ (Šidák, 1967).

Problems arise when the tests are not independent. Boole’s Inequality states that the prob-

ability of one or more events happening is no greater than the sum of the events’ individual

probabilities. Based on this fact, Bonferroni correction suggests we set α′ = α/T , as then the

FWER can not exceed α. However, this approach will often prove overly conservative. Con-

sider an extreme case, when we perform the same test for two identical predictors. Each test

will calculate the same test statistic, make the same distributional assumptions and therefore

produce the same p-value and outcome. If we obeyed Bonferroni correction and set α′ = α/2,

the FWER would actually be half what we desired. One approximate solution might be to

estimate the effective number of independent tests (which in this simple case would be 1) and

perform Bonferroni correction using this value in place of T .

Permutation testing provides an alternative means of assessing significance, one which re-

quires no knowledge of the null distribution of the test statistic. Suppose our null hypothesis

states that there is no true association between the response and a predictor. We can replicate

this situation by permuting the response values, as then any observed association will have

occurred purely through chance. Therefore, any test statistic calculated on the permuted data

will represent a draw under the null hypothesis; with sufficient permutations, we can obtain a

p-value by comparing these draws with the test statistic calculated for the actual data.

Permutation testing is suitable even when the tests are correlated. Suppose we wish to

test each of T predictors for association with a response. If we record, for each permutation,

the collection of T test statistics, we can estimate the joint distribution of these statistics

under the null hypothesis. This then allows us to calculate a suitable threshold, one which

takes into account any possible dependencies between tests. The drawbacks of permutation

testing stem from their computational burden. The resolution of the p-value obtained is con-

strained by the number of permutations, but each permutation requires the entire analysis be

repeated. For example, to be able to declare a result significant at a 0.001 threshold requires at

least 1000 permutations, and many more if we desire reasonable certainty. By approximating

the shape of the tail of the null distribution, Knijnenburg et al. (2009) examine ways to

increase the accuracy of extreme p-values obtained through permutation testing. But while

they demonstrate the resolution of very small values can be increased by upwards of 3 orders

of magnitude, to get to this point a minimum of a few thousand permutations are still required.

In some situations, we may no longer be interested in controlling the FWER. Suppose we

are testing very many predictors-response pairs and expect there to be a reasonable number

of true associations. In this case, we might be content to declare a few incorrect associations
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provided the majority of our declarations are accurate. The proportion of declarations which

are incorrect is known as the false discovery rate (FDR; Benjamini and Hochberg, 1995).

Allowing a higher FDR indicates that we are willing to sacrifice specificity (allow more false

positives), in the hope of greater sensitivity (more true positives).

1.3.3 The Bayesian Approach

Frequentist methods base parameter inferences almost exclusively on the evidence provided

by the data. By contrast, Bayesian methods incorporate prior knowledge as well. Bayesian

methods are concerned with the evaluation of the posterior distribution of the parameters

P(Parameters|Data), at the centre of which is Bayes’ formula:

P(Parameters|Data) ∝ P(Data|Parameters)× P(Parameters).

Here P(Data|Parameters) is the likelihood of the data, while P(Parameters) is called the prior

distribution. As the equation shows, the posterior distribution provides a compromise between

the evidence offered by the data and the beliefs held by the prior.

Finding the maximum likelihood estimate corresponds to finding the mode of the posterior

distribution when the prior is uniform. The use of more informative priors, i.e. ones which

reflect a preference for certain models, can be compared to the introduction of penalty terms

in the frequentist set-up. For example, consider the linear model, again treating the residuals

as draws from a normal distribution, and assign independent, identically distributed, normal

priors, with mean zero and variance σ2/r, to each element of θ. The equation for the posterior

distribution of the coefficient takes the form

P(θ|X,Y ) ∝ exp
{
− 1
σ2 (Y − Jθ)T (Y − Jθ)

}
× exp

{
− r
σ2θ

Tθ
}
.

Finding the posterior mode for θ equates to minimising

(Y − Jθ)T (Y − Jθ) + rθTθ,

which, in the frequentist setting, corresponds to least squares regression with the addition of

a penalty term based on the sum of squares of the regression coefficients.

The Bayesian analogy to the likelihood ratio test involves calculation of a Bayes factor

(Jeffreys, 1935):

BF =
P(Data|Model 1)

P(Data|Model 0)
,

where Models 0 and 1 represent the null and alternative hypotheses. The Bayes factor measures
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the relative evidence for the observed data under each hypothesis; higher Bayes factors indicate

greater support for the alternative. Equivalently, a Bayes factor can be expressed in terms of

posterior and prior odds:

BF =
P(Model 1|Data)/P(Model 1)

P(Model 0|Data)/P(Model 0)
=

Posterior Odds

Prior Odds
,

and it is often reasonable to use just the posterior odds in its place. One advantage of the Bayes

factor is its ability to consider strength of evidence for the alternative hypothesis, whereas the

likelihood ratio test focuses on finding evidence against the null. Saying this, in many cases,

the two tests produce very similar results. For example, Wakefield (2009) formally demon-

strates how, when testing for association between SNPs and a binary response, a particular

choice of prior will result in p-values and Bayes factors having identical rankings.

Even when their results are comparable, I personally feel the Bayesian approach is more

elegant and better equipped to cope in a range of situations. One example concerns “forwards

regression” methods. These begin with an empty model, then sequentially add predictors until

the decision is taken to stop. Generally the model fit will improve with each addition, so if

based on fit alone, these methods would continue until saturation. Therefore, the frequentist

solution is to introduce a penalty term to offset the inevitable improvement in fit. However,

this term can appear quite arbitrary and lack interpretation.

In the Bayesian setting, we are able to base moves within the model space on posterior

probabilities. Explicit penalty terms are no longer required, as the prior distribution of the

parameters assumes this role. Quite often, our prior belief concerning a predictor’s role in the

underlying relationship will be two-part. Consider a linear model, in which the contribution of

Xg to f(X) is determined by the coefficient θg. When deciding upon a prior for θg, we might

begin by estimating the probability that it is non-zero, indicating that Xg is in some way

involved. Given that Xg is in some way involved, we can then consider a suitable distribution

for its values. Here, “spike and slab” priors prove very useful, providing a formal way to

represent this information. A prior of this type consists of a mixture of a point mass at

zero (the spike) combined with a second distribution (the slab). The weighting given to the

point mass reflects our belief that the predictor is involved; while, given that it is, the second

distribution reflects our belief in its contribution.

1.3.4 Estimating the Posterior Distribution

Ideally, Bayesian methods will be able to calculate the required posterior distribution explic-

itly. In practice, this is often not possible. Consider a problem using spike and slab type priors.

These priors “discretise” the space of possible models based on whether or not each predictor
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contributes to f(X). If we are given a vector from {0, 1}N, whose elements indicate which

components of θg are non-zero, it might be possible to calculate the posterior distribution for

all models corresponding to this vector. However, as we wish to find the posterior across all

possible states, it will be necessary to evaluate for all 2N vectors. Except for the most simple

problems, this will not be possible.

Markov Chain Monte Carlo (MCMC) is often used for approximating the posterior distri-

bution in these circumstances. In this case, the Markov chain represents a sequence of states

within the model space, defined by the probabilities of moving from one state to another. A

key property is that these probabilities depend only on the current state. If M1,M2, . . . ,M t

represent the first t states of the chain, then state t+ 1 will be picked according to

P(M t+1|M1,M2, . . . ,M t) = P(M t+1|M t).

The premise of MCMC is to define move probabilities so that sampling from the Markov

chain corresponds to sampling from the posterior distribution being sought. A Markov chain

displays “detailed balance” for the distribution π if, for any two states M1 and M2,

π(M1)× P(M2|M1) = π(M2)× P(M1|M2).

Should this property hold, then π represents the chain’s “stationary distribution”, the marginal

probabilities of each state occurring. This fact can be appreciated by considering the different

ways the chain can arrive at state M2:∑
M1

(
π(M1)× P(M2|M1)

)
= π(M2)×

∑
M1

P(M1|M2) = π(M2).

If a chain is “irreducible”, meaning that there is a non-zero probability of moving between

any two states within a finite number of steps, then its stationary distribution will be unique

(Gilks et al., 1996).

Metropolis-Hastings theory (Hastings, 1970) simplifies the task of creating a chain whose

stationary distribution matches the posterior distribution. Suppose that, while at state M1,

we propose a new state M2 with probability Q(M2|M1). Metropolis-Hastings dictates that we

should accept this proposal with probability min(1, αM2|M1), where

αM2|M1 =
P(M2|Data)

P(M1|Data)
× Q(M1|M2)

Q(M2|M1)
.
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If we obey this acceptance probability, we see that

P(M1|Data)× P(M2|M1) = P(M1|Data)×Q(M2|M1)×min(1, αM2|M1)

= min
(
P(M1|Data)×Q(M2|M1),P(M2|Data)×Q(M1|M2)

)
= P(M2|Data)×Q(M1|M2)×min(1, αM1|M2)

= P(M2|Data)× P(M1|M2).

Therefore, the resulting chain displays detailed balance, so its stationary distribution is the

posterior distribution of models, as required. We are permitted to use more than one proposal

distribution, provided we obey the appropriate acceptance probability for each. Single-update

Metropolis-Hastings does not move directly from M t to M t+1, but instead breaks this down

into a number of steps, each of which proposes a change to one component of M t. If the

proposal distribution for each component is picked to equal that component’s conditional

posterior distribution, then the acceptance probability will always equal one and the move

will always be accepted. This case is referred to as Gibbs’ sampling.

1.4 Existing Regression Methods

I now describe some methods currently available for analysing high dimensional regression

problems. In anticipation of the next chapter, consider writing the underlying relationship as

a sum of functions of groups of predictors:

f(X) = f1(XG11 , . . . , XG1s1
) + f2(XG21 , . . . , XG2s2

) + · · ·+ fK(XGK1
, . . . , XGKsK

),

where sk indicates the number of predictors contributing to fk. Under this representation,

f(X) is influenced by additive contributions from groups of “interacting” predictors. There is

no requirement that contributing predictors appear in only one group, however, for the existing

methods, this is usually the case. Throughout this thesis, I consider two predictors to interact

if their joint contribution to the underlying relationship can not be described by an additive

model. For example, if the true underlying relationship takes the form f(X) = f1(Xg, Xg′),

this implies it can not be written as f(X) = f1(Xg) + f2(Xg′). As a result, I consider

predictors in each group to interact with each other, but not to interact with predictors in

different groups. Importantly, this representation incurs no loss of generality, as it includes

the most complicated model possible, when all N predictors feature in a single group.

1.4.1 Sparsity Assumption

Each regression method explores a subspace of all possible underlying relationships. Its choice

of subspace will be influenced by a combination of computational issues and intuition concern-
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ONE GROUP MULTIPLE GROUPS

OF PREDICTORS OF PREDICTORS

LINEAR
Y = f1(XG11)

e.g. Single

Y = f1(XG11) + · · ·+ fK(XGK1)

e.g. SSS

NONLINEAR
Y = f(XG11 , . . . , XG1s1

)

e.g. Pairs, CART, RF

Y = f(XG11 , . . . , XG1s1
) + · · ·+ f(XGK1 , . . . , XGKsK

)

e.g. Logic, MARS and Sparse Partitioning

Figure 1.2: Classification of regression methods. I have categorised methods according to two fea-
tures of their underlying relationships: whether they permit more than one group of predictors and
whether they permit more than one predictor in each group. This table shows the four possibilities and
lists some methods in each category. Single, Pairs and Sparse Partitioning are my own implementa-
tions, while CART, RF, SSS, Logic and MARS refer to existing methods, all of which I describe in
the main text.

ing the form of the true underlying relationship. In large p, small n problems, it is common

to apply a sparsity assumption, one which supposes that only a small number of predictors

are causal. This assumption might seem debatable. In the context of association studies, it is

in line with the common disease, common variant hypothesis, the validity of which has been

questioned. Similarly, from speaking to members of the Nordborg Lab, who concentrate on

Arabidopsis thaliana, they are coming around to the idea that some traits may be affected by

many tens of causalities, many of which have only a tiny effect on the phenotype.

Fortunately, I feel that, in some sense, the validity of this sparsity assumption is irrelevant.

If it is the case that vast numbers of causal predictors do influence a response, there is no

hope of identifying them all for standard sample sizes, so an assumption of this nature is nec-

essary. Perhaps more accurately, however, the assumption can be worded as a prior belief in

the number of “strong associations”. Therefore, when I discuss “the search for associations”,

this phase can be interchanged with “the search for strong associations”, depending on one’s

point of view.

A regression method can be classed as linear or nonlinear, depending on whether or not it

permits interactions between predictors. In terms of my expression for the underlying relation-

ship, this very closely corresponds to whether the method allows only one, or more than one,

predictor in each group. In a similar fashion, a method can be classified based on whether it

permits only one, or more than one, group of predictors. This creates four possible categories,

as demonstrated in Figure 1.2.

When discussing the methods in each category, I focus mainly on those suitable for cate-
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gorical predictors. There are areas, most notably that of functional data analysis, which are

devoted to regression with quantitative predictors. Typically, these are designed for small

numbers of predictors, and their focus is on prediction (explicitly calculating f(X)), rather

than variable selection (identifying the groupings). Methods in this area often opt for spline

fitting, a topic I discuss more in Chapter 6.

1.4.2 One Group, Maximum Group Size One

f(X) = f1(XG11)

The simplest assumption supposes that the underlying relationship, and therefore the response,

is influenced by only one predictor. If predictor g takes only two values, any non-trivial func-

tion of Xg will have two degrees of freedom and can be written as f1(Xig) = θ1Xig
. If Xg takes

more than two values, it is necessary to decide whether to treat these values as categorical or

quantitative. If categorical, the function is again a mapping of distinct points, taking the form

f1(Xig) = θ1d, where d indicates to which image the state Xig is assigned. This can be written

as the linear model f1(Xg) = J1θ1, where the dth column of J1 indicates which samples are

mapped to θ1d. The most general form for f1(Xg) has degrees of freedom equal to the number

of distinct values for Xg. However, we can also consider forms with less degrees of freedom,

insisting that distinct predictor states are mapped to the same image: f1(Xig) = f1(Xi′g) for

some Xig 6= Xi′g.

If quantitative, the function can be viewed as a curve, whose domain includes the possible

predictor values. In theory, there is no limit to the degrees of freedom of this curve; in practice,

when the degrees of freedom exceeds the number of unique values observed for Xg, there will

be some redundancies. For genetic applications, it is very common to use the simplest non-

trivial curve, a straight line, in which case the model takes the form f1(Xig) = θ10 + θ11Xig.

Here, the intercept term θ10 represents the baseline value, while the gradient θ11 indicates how

much each unit change in Xg affects the underlying relationship. Again, this is easily written

as f1(Xg) = J1θ1, by letting J1 = [1 Xg], where 1 is a vector of ones.

As there are only N choices for the causal predictor, it is straightforward to explore all

possibilities. Having decided on a functional form, most frequentist methods in this category

are equivalent to performing a maximum likelihood test for each predictor, comparing the

null hypothesis, f(X) = constant, with the alternative, f(X) = f1(Xg). It is easy to create

a Bayesian counterpart (e.g. Balding, 2006), which instead calculates the Bayes factor or

posterior probabilities for the null and alternative hypotheses. Such a version is useful when

we have prior knowledge of how likely it is that each predictor is associated.

The ability of these methods to detect an associated predictor depends on the strength of
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its marginal effect. For example, when testing whether a binary predictor Xg is associated, the

methods will compare the response values when Xg = 0 to those when Xg = 1. Discordance

between these two sets of values provides evidence that Xg has an effect on the response. Nat-

urally, these methods perform best when the true underlying relationship actually is affected

by just one predictor. When this is not the case, the presence of additional causal predictors

will generally diminish each association’s marginal effect and so these methods’ power to de-

tect.

These methods have proven very popular for the analysis of association study data. This

owes much to their simplicity; they only require N comparisons, so computation time is kept to

a minimum, and their conclusions can be explained to someone with only a basic understanding

of statistics. Furthermore, considering how simple their underlying relationship assumptions,

these methods have been surprisingly successful. In association studies, many hundreds of

causal variants have been identified using these “one-predictor-at-a-time” approaches, some of

the most high-profile finds coming from The Wellcome Trust Case Control Consor-

tium (2007, 2010). For these reasons, methods of this type typically form the starting point

for any analysis.

Single is my implementation of a method in this category, offering both a frequentist and

Bayesian analysis. For the latter, given a prior probability of association for each predictor, it

calculates a posterior probability of association. For the frequentist version, Single performs

a maximum likelihood test and returns a p-value. I explain this method in more detail in

Chapter 4, in particular showing the similarity between posterior probabilities and p-values

when a uniform prior is used.

1.4.3 One Group, Maximum Group Size Greater Than One

f(X) = f1(XG11 , . . . , XG1s1
)

When s1 = 2, there are
(
N
2

)
choices for the pair of interacting predictors and it will gen-

erally remain feasible to test all possibilities. In the case of very high-dimensional problems,

which might have upwards of 500,000 predictors, an implementation of such a search may take

many hundreds of computing hours (cf. Marchini et al., 2005), although this can be offset

with parallelisation.

When the predictors are categorical, the underlying relationship will assume the form

f1(Xig, Xig′) = θ1d, where d indicates to which image the vector (Xig, Xig′) relates. The num-

ber of unique values of d determines the degrees of freedom, and therefore the flexibility, of

the model. Again, this is readily represented as a linear model, by constructing the matrix

J1 whose columns indicate to which image each sample is mapped. When the predictors
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are quantitative, there is no obvious choice for the functional form. One possibility might

be f1(Xg, Xg′) = f11(Xg) + f12(Xg′) + f13(Xg, Xg′), where f11 and f12 represent the additive

contributions of Xg and Xg′ , while f13 tries to capture the “interaction term”.

Pairs is my implementation of a method in this category. Designed for categorical pre-

dictors, it simply extends Single to additionally consider alternative models of the form

f1(Xig, Xig′) = θ1d, with full degrees of freedom. For each possible alternative model, it returns

a p-value and posterior probability by comparing this to the null model f(X) = constant. It

is easy to imagine extending this method further, to exhaustively try all three or four-way

interactions, but for all except the smallest problems, such a method would typically take far

too long.

Classification and Regression Trees (CART ; Breiman et al., 1984) is another method in

this category, one which can be applied to both categorical and quantitative predictors. CART

explores the space of decision trees, each of which defines a partitioning of the samples. Within

a decision tree, each internal node divides a set of samples into two groups based on the value

at a specified predictor. For example, the samples with Xig ≤ 1 might be directed into one

group, those with Xig > 1 into the other. Each decision tree is scored based on its ability to

explain the observed response values; a tree will score highly if its partitioning groups sam-

ples with similar response values. Once again, each model can also be written in the form

f(X) = J1θ1. In this case, the dth column of J1 indicates which samples are assigned to the

dth group of the partition.

CART implements a forwards regression search. At each step, it decides whether to add a

predictor into the current model, which equates to adding a node to the current decision tree.

As each additional predictor will generally improve the model fit, it is common to introduce a

penalty term to control the model’s growth. An alternative is to let the search continue until

no further improvement is possible, which might well result in a tree that assigns each sample

to its own group and therefore has perfect fit. At this point, the tree can be “pruned” to the

desired size by removing predictors, in a process known as “backwards regression”.

A noticeable difference between CART and Pairs is that the former does not insist on the

full interaction model for associated predictors. For example, suppose for binary predictors

CART decides to split the samples first based on whether Xg = 1, then splits the samples for

which Xg = 1 by their value at Xg′ . This model will produce three groupings so have three

degrees of freedom, even though four unique vector values of (Xg, Xg′) might be present.

Random Forests (Breiman, 2004) offers a stochastic interpretation of CART. Out of the n

samples, let n0 represent the “training set”, while the remainder form the “test set”. At each
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iteration, a decision tree is constructed using n0 samples picked with replacement from the

training set (“a bootstrap sample”). Each node of this decision tree is determined by choosing

N0 << N predictors at random from all those available, and selecting the one which provides

the best improvement in fit. Nodes are added until no further improvement is possible. Having

grown a number of trees in this way, each can be scored according to its prediction accuracy for

the samples in the test set. Finally, an importance weighting is calculated for each predictor

by averaging the scores of all trees in which it appears. RF offers a practical implementation

of CART for very large numbers of samples. The choice of N0 serves as the penalty term, and

can be interpreted as the prior belief in the correct number of associations. RF does not draw

conclusions based on a single best fitting model, but instead calculates a weighted average

over a number of models. The idea of model averaging, (discussed by Hoeting et al., 1999;

Wassserman, 2000, among others) is one which, as I will show later on, seems generally a

better strategy.

1.4.4 More Than One Group, Maximum Group Size One

f(X) = f1(XG11) + f2(XG21) + · · ·+ fK(XGK1
)

This underlying relationship allows more than one predictor to be causal, but insists that the

causal predictors contribute independently and additively. When we introduce more than one

function, it may be necessary to safeguard against unidentifiability. For example, if we have

two functions, each of the form fk(Xig) = θk0 + θk1Xig, it is possible to alter θ10 and θ20 with-

out changing f1 + f2. The easiest solution to this problem is to merge each θk0 into a global

intercept θ0. In this case, the degrees of freedom of the model reduces from 2K to 1 + K.

Similarly, if using functions of the form fk(Xig) = θkd, we can introduce a global intercept

term θ0, which acts as a base value, and assign θk1 = 0, for k = 1, 2, . . . , K. Again, the total

degrees of freedom will be reduced by K − 1.

For categorical predictors, each fk, and therefore
∑

k fk, can be represented by a linear

model. An all-inclusive approach is to let K = N and write the underlying relationship as

f(X) = JΘ, where J = [1 J1 J2 · · ·JN ] and Θ = [θ0,θ1,θ2, . . . ,θN ]. In this model, θg

represents the coefficients specific to predictor g. In most cases, the degrees of freedom of this

function will far exceed n. Therefore, it becomes necessary to encourage most θg to have either

zero (or negligible) magnitude, indicating that predictor g does not (significantly) contribute.

In the frequentist set-up, there are many flavours of penalty term which will have the

desired effect. Perhaps the simplest of these is “variable subset selection”, which enforces a

penalty based only on the number of non-zero regression coefficients. An example penalty

term is the Akaike Information Criterion (Akaike, 1974) which simply increases the residual
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sum of squares by an amount proportional to the number of non-zero coefficients. Variable

subset selection generally uses a stepwise search of the model space. Each model dictates

which regression coefficients are non-zero, conditional on which the best fit can be calculated

using the least squares estimates.

“Ridge regression” is a description given to methods which penalise based on the sum of

the squares of regression coefficients (e.g. Zhang and Xu, 2005; Park and Hastie, 2008).

By contrast, the LASSO method penalises according to the sum of their absolute values (Tib-

shirani, 1996). Generally, the penalty term is prefaced by a scale factor λ, so that as λ→ 0

the solution approaches the least squares estimates. Ridge regression and the LASSO can

be compared by considering their effect on the best fit as λ is increased from zero. For ridge

regression, the least squares estimates of the regression coefficients are reduced in a continuous

fashion, only reaching zero when λ = ∞. For the LASSO, the estimates reach zero at differ-

ent points, depending on the predictors’ relative contributions to f(X). This highlights the

differences between each method’s sparsity assumption. The former supposes that there are

a few strong associations, while most predictors contribute only slightly; the latter supposes

most predictors contribute in no way at all.

Many frequentist methods have Bayesian analogies. For example, variable subset selection

equates to placing a point mass on elements of Θ (e.g. Kuo and Mallick, 1998), ridge re-

gression corresponds to a normal prior (e.g Zhang et al., 2005; Wang et al., 2005), while the

LASSO relates to a double-exponential distribution (e.g. Yi and Xu, 2008; Hoggart et al.,

2008).

The use of mixture priors allows more complicated methods to be devised. Shotgun

Stochastic Search (SSS ; Hans et al., 2007) is one of these. Given a prior probability of

association p ∈ (0, 1), it assigns the regression coefficient corresponding to the gth predictor

the spike and slab prior distribution

P(θg) = (1− p)δ{0} + pN(0, σ2),

where δ{0} represents a point mass function at 0 which “integrates” to 1, and N(0, σ2) denotes

a normal distribution with mean 0 and variance σ2. SSS searches the model space in a stepwise

fashion, at each step deciding whether to add in, swap out or remove a contributing predictor.

The method calculates the posterior scores for all models within the “neighbourhood” of the

current state; those models reachable by a single move of the type add, swap or remove. Based

upon these scores, SSS constructs a proposal distribution from which it picks which model to

move to next.
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SSS keeps track of the top scoring models it explores, from which it estimates posterior

probabilities of association for each predictor. The accuracy of these estimates depends on the

extent that the model search succeeds in identifying the best models. In essence, SSS tries to

approximate the complete space of models by its list of top scoring models, so the greater the

proportion of posterior weight contained within this list, the more accurate the approximation

will be. As Hans et al. discuss, rather than at each step automatically accepting the proposed

move, they could instead adopt a conventional MCMC strategy and calculate an acceptance

probability. The method could then calculate posterior estimates in the normal fashion, based

on how often each predictor is included in the Markov Chain. The authors conclude, however,

that their search is preferable.

For quantitative predictors, this category of underlying relationship takes the form of the

generalized additive model (Hastie and Tibshirani, 1990), with a Bayesian version discussed

in Ravikumar (2009). As with functional data analysis, these methods are suited for very

small numbers of predictors and when prediction, rather than variable selection, is the main

focus.

1.4.5 More Than One Group, Maximum Group Size Greater Than

One

f(X) = f1(XG11 , . . . , XG1s1
) + f2(XG21 , . . . , XG2s2

) + · · ·+ fK(XGK1
, . . . , XGKsK

)

Allowing both interactions and multiple groups of predictors to contribute to the underlying

relationship has the potential of most accurately describing the true model. However, both

decisions increase the size of the model space and so the difficulty of identifying this true

model. Relatively speaking, a limited number of methods fall into this category.

Logic Regression (Logic) is one such method, suitable when the predictors are binary. Logic

creates new predictors, each of which are logical functions of the original ones. For example,

one new predictor might be XC
1 ∨ (X2 ∧X3), where ∨ and ∧ represent the Boolean functions

“OR” and “AND”, and XC
1 is the complement of X1. This predictor takes value one if either

X1 is zero or both X2 and X3 are one. Logic then fits a linear model with these new predic-

tors. Each predictor is allowed to feature in more than one group, which allows the search of

a broader range of interactions. For example, while each of f1(X1, X2) = θ10 + θ11X1∧X2 and

f2(X1, X2) = θ20 + θ21X
C
1 ∧XC

2 have 2 degrees of freedom, a linear combination of f1 and f2

remains a function of X1 and X2, but has degrees of freedom 3.

Logic operates in two flavours: it either explores the model space in a frequentist man-

ner, seeking the best scoring set of new predictors (Ruczinski et al., 2003); or it adopts a
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Bayesian search, using MCMC to produce estimates of posterior probabilities of association

(Kooperberg and Ruczinski, 2005). If the predictors are tertiary, the method suggests

recoding each as two variables, whereby 0, 1 and 2 are transformed to (0, 0), (1, 0) and (1, 1),

respectively. In genetic terms, the two new predictors represent the dominant and recessive

components of the original variant. To apply Logic to quantitative predictors, it would be

necessary to recode each predictor as one or more binary variables, for example, thresholding

values in a manner similar to CART.

Multivariate Adaptive Regression Splines (Friedman, 1991) is a second method in this

category, primarily designed for continuous predictors. MARS also places restrictions on the

types of functions permitted, considering only products of hinge functions:

fk = Θk

∏
j

h(Ggj, iGgj
),

where either h(g, i) = max(0, Xg − Xig) or h(g, i) = max(0, Xig − Xg). Each h(g, i) is only

non-negative on one side of its corresponding knot Xig. Therefore, the product of functions

of this type will be non-negative over an ever-decreasing proportion of the input space. As

a result, MARS is able to model changes over very fine scales, allowing it to pick out local

variation. Denison and Holmes (2003) consider a Bayesian version of this method.

Sparse Partitioning, the method to which I devote the remainder of this thesis, falls into

this category, but unlike Logic and MARS it attempts to apply no restrictions to the functions.

1.4.6 Other Methods

So far, I have focused on regression methods which can be applied when the response is con-

tinuous. Partly, this is because a continuous response should provide more information than a

binary one, a property which becomes increasingly important when considering interactions.

Furthermore, any regression method suitable for continuous values can be either adapted for,

or applied directly to, a binary response, whereas the converse is not true. Here, I mention

methods for analysing binary response data, as well as one further method suitable for a con-

tinuous response. Most of these methods loosely fall into the category “one group, maximum

group size greater than one”.

Sparse combinatorial inference (Mukherjee et al., 2009) considers the contingency table

formed by a single group of interacting predictors (K = 1; s1 = 1, 2, 3, . . .). For example, for

two binary predictors, the table will have four cells, counting the number of occurrences of

(0, 0), (0, 1), (1, 0) and (1, 1). To each cell, the method assigns a parameter, which represents

the probability of samples corresponding to that cell having response value 1. On this basis,
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each contingency table is scored in a Bayesian fashion, according to how well it fits the data.

The method seeks to deduce the most plausible grouping using MCMC.

The approach of multifactor dimensionality reduction (Hahn et al., 2002) is very similar,

but set within a frequentist framework. First, the method splits the samples into a training

and test set. For a given contingency table, it assigns each cell value either 1 (“high risk”) or

0 (“low risk”) according to the numbers of cases (Yi = 1) and controls (Yi = 0) in the training

set to which this cell corresponds. The table is then scored by using these assignments for the

test dataset, counting how many of the response values it correctly predicts. Rather than ex-

plore the model space in a stepwise fashion, multifactor dimensionality reduction exhaustively

scores each possible contingency table, returning the best one found. As a table’s prediction

accuracy will depend on the choice of training and test sets, to obtain a reliable score it is

necessary to repeat this procedure for a number of divides. The exhaustive nature of the

search places a limit on the sizes of models and dataset the method can consider.

Verzilli et al. (2006) construct a Bayesian graphical model, one which considers the joint

likelihood of the response and the predictors. Designed for association study data, the method

searches for the best division of predictors into cliques, where each clique indicates dependency

between the variants it contains. Each graph defines three types of predictor. Those “directly”

associated with the phenotype lie in a clique containing the response. Those “indirectly” as-

sociated can be linked to the response via one or more other cliques. However, the majority of

predictors occur in cliques completely disjoint from the response, indicating they are in no way

associated. The graphical structure enables the method to account for LD, so hopefully allow-

ing it to more accurately detect associations when strong correlations exist between predictors.

Mailund et al. (2006) also take a graph-based approach, devising a method which in-

corporates coalescent theory. For each locus, first they create the phylogenetic tree which

explains that predictor and as many neighbours as possible. This tree will divide the samples

according to the end branch on which each lies, so can be scored by comparing this partition-

ing with the response. By regressing on trees, rather than individual predictors, the method is

able to consider LD and possible interactions over the (local) area on which the tree is defined.

BAMSE (Bayesian Association for Multiple SNP Effects; Albrechtsen et al., 2007) is

predominantly designed for a continuous response. The method considers multiple groups of

associated predictors, each of which defines a “risk set” of samples and is assigned a mean phe-

notypic value. For example, one risk set might contain all samples with X1 > 1 and X2 < 2,

while a second might include all samples with X3 > 0. Although BAMSE allows multiple

groups of associations, under my terminology it falls into the category “one group, maximum

group size greater than one”; when a sample satisfies the conditions for two or more risk sets,
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it is assigned only to the one with the highest phenotypic mean. Therefore, just like CART,

each model dictates a partitioning of the samples, and can be described by a single design

matrix J1, with corresponding parameter vector θ1. The space of possible configurations of

risk sets is explored using MCMC.

Two final methods are Combinatorial Partitioning (Nelson et al., 2001) and BEAM

(Zhang and Liu, 2007), which I discuss during the description of Sparse Partitioning.
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Chapter 2

Sparse Partitioning

This chapter outlines the core of Sparse Partitioning’s methodology, saving superfluous details

for later. Sparse Partitioning is suitable only for problems with tertiary predictors, those that

can be represented by values from 0, 1 or 2. These predictors are treated as categorical, so

their order and the choice of labelling is irrelevant.

2.1 Motivation

In the previous chapter, I expressed the underlying relationship as the sum of functions of

groups of predictors:

f(X) = f1(XG11 , . . . , XG1s1
) + f2(XG21 , . . . , XG2s1

) + · · ·+ fK(XGK1
, . . . , XGKsK

),

with predictors free to feature in more than one group. Let’s suppose we are given the groups

of predictors and wish to explore possible sets of functions f = {f1, f2, . . . , fK}. How many

different forms are there for each fk, bearing in mind we are considering categorical predic-

tors? Let’s examine the simplest case, a function of two binary predictors fk(Xg, Xg′). In

total, there are up to four distinct values (nodes) for (Xg, Xg′), namely, (0, 0), (0, 1), (1, 0) and

(1, 1). Each suitable function provides a mapping of each node to a real value: fk : {0, 1}2 7→ R.

The function need not permit different nodes to map to different values. Instead, it

may insist, say, that fk(0, 0) = fk(0, 1). The degrees of freedom of the function is equal

to the number of free parameters. This will equal 4 if all nodes are allowed to map to

different values, less than 4 if there are restrictions. Figure 2.1 displays the different func-

tional forms possible for degrees of freedom 2, 3 and 4 (the case when the degrees of free-

dom equals 1 is ignored, as then the function would be trivial). In total, there are 14

possible forms, however, two of the forms with degrees of freedom 2 are disallowed: when

f(0, 0) = f(0, 1) 6= f(1, 0) = f(1, 1), the second predictor is redundant; similarly, this is the
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Figure 2.1: Possible functional forms acting on a pair of binary predictors. Each grid demonstrates
a possible form for f(X1, X2). Within each grid, the colours indicate which nodes are mapped to the
same value, so the total number of colours in a grid represents the degrees of freedom. Two grids
represent redundant forms, the case when either X1 or X2 has no influence on the function. In
addition, the standard “multiplicative” and “threshold” interaction models are highlighted.

case for the first predictor if f(0, 0) = f(1, 0) 6= f(0, 1) = f(1, 1).

Nonetheless, there remains a total of 12 possible functional forms. Some of these have ob-

vious interpretations in genetics. For example, when f(0, 0) = f(0, 1) = f(1, 0) 6= f(1, 1), this

represents a multiplicative interaction, so that the effect of two variants is noticed only when

both are mutant. By contrast, f(0, 0) 6= f(0, 1) = f(1, 0) = f(1, 1) represents a threshold

interaction, so only one variant need be mutated for its effect to become apparent.

As the diagram demonstrates, there are two steps in choosing a function of categorical pre-

dictors: deciding its degrees of freedom, then deciding its form. Ideally, a regression method

would try to determine the correct degrees of freedom. If the method tries to fit a function

with too few degrees of freedom, the fit will be inaccurate, as there will be nodes incorrectly

assigned to equal values. If the method tries to fit a function with too many degrees of free-

dom, the method risks overfitting; if two nodes are assigned to different values, when in fact

their underlying values are the same, the method will be fitting the noise present in the data.

Additionally, most methods employ a trade-off between the fit of the model and a penalty
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based on the complexity of the function. Therefore, fitting a function with excessive degrees

of freedom will lead to unnecessary penalisation.

So, even for simple underlying relationships containing groups of two binary predictors, it

is easy to appreciate how much harder testing nonlinear models is compared to testing linear

models. For a linear method, when only one predictor is allowed in each group, the form of

each function is automatic; fk assigns each of the two nodes to different values. This remains

the case regardless of the number of groups. By contrast, a nonlinear method featuring one

group of two predictors has 12 different functions to consider. If instead there are two groups

of size two, there will be 144 possibilities, and so on. As the number of nodes in each group

grows, either by increasing the number of categories of predictors or the number of predictors

involved, the difference between the complexities of the linear and nonlinear methods grows

further.

Without doubt, it is necessary to limit the number of possible functional forms. Logic Re-

gression’s approach is to consider only Boolean functions, therefore insisting fk has 2 degrees

of freedom. If a group of predictors has d nodes, this reduces the number of possible functions

to at most 2d−1 − 11. The inherent assumption of Logic is either that we are certain that

the true functions are Boolean or that, if this is a simplifying assumption, the computational

advantages of this assumption outweigh the loss of accuracy.

Sparse Partitioning takes the opposite approach to Logic, insisting the degrees of freedom

equals the number of nodes. In this case, as with linear functions, there is only one possible

form for each function and therefore only one functional form per model. Undoubtedly, this

approach will lead to overfitting, as it lacks the capacity to reduce the degrees of freedom. I

believe that, as the number of nodes remains manageable for tertiary predictors, the damage

of this overfitting will be compensated for by the increased accuracy provided. In essence, I

feel that the dangers of overfitting are less than the dangers of underfitting.

Comparison with Combinatorial Partitioning

My approach starts out similar to that of Combinatorial Partitioning (Nelson et al., 2001),

which also looks at the many different forms a function can take. But whereas I settled upon

a single form for each function, Nelson et al. opt for an exhaustive search, examining all

possible functional forms for all possible degrees of freedom. Their paper demonstrates the

limitations necessary to make such a search feasible. They restrict to a single group (K = 1)

1Consider a Boolean mapping of d nodes. Each node can be mapped to either 1 or 0, so there are 2d possible
configurations. Half of these are redundant (toggling the image of each node will not affect the function), while
one case is trivial. There might be additional redundancies within these 2d−1− 1 possibilities, as there will be
cases when the values of one or more predictors are of no consequence.
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of at most pairwise interactions (s1 = 2). For tertiary predictors, there are 21,147-1 possible

functional forms, ranging from 2 to 9 degrees of freedom. Therefore, the total run time takes

approximately 20,000 times as long as Pairs. While such an approach is plausible for small

predictor sets (they demonstrate for N = 18), it is certainly not suitable for high-dimensional

problems, nor if we wish to explore higher values of K and/or sk.

2.2 Partitioning Notation

The fundamental premise of Sparse Partitioning is that the search for associated predictors

corresponds to a search for high scoring partitions. Consider how the underlying relationship

groups predictors:

f(X) = f1(XG11 , . . . , XG1s1
) + f2(XG21 , . . . , XG2s2

) + · · ·+ fK(XGK1
, . . . , XGKsK

)

= f1(XG1) + f2(XG2) + · · ·+ fK(XGK
).

The sets G1,G2, . . . ,GK index groups of associated predictors. For the moment, suppose

they are disjoint, so each predictor appears in at most one set. If we let G0 represent the

“null group” — the group of predictors in no way associated with the response — then

G = {G0,G1,G2, . . . ,GK} defines a partitioning of {1,2,. . . ,N}. Neither the labelling of

groups, nor the ordering of predictors within groups, is important.

It is conceivable that some predictors might feature in more than one group of associations.

To allow this, I expand the predictor set to contain C copies of each predictor and increase the

total number of predictors, N , accordingly. I explain the reason I opt for this approach, rather

than simply relaxing the condition of disjointness, when discussing the prior probabilities as-

signed to different partitions. In general, I describe Sparse Partitioning ’s method supposing

C = 1, then explain the changes brought about when C is increased.

A partition can also be described by the vector I = (I1, I2, . . . , IN), where Ig indi-

cates to which group predictor g belongs. Although this notation is very inefficient when

only a small proportion of predictors are associated, it proves useful later on and empha-

sises that the labelling within groups is irrelevant. As there is a one-to-one relationship

between partitions G and indicator sets I, I will use these two terms interchangeably. Fi-

nally, let the set SI ⊆ {1, 2, . . . , N} index the predictors partition I declares associated:

g /∈ G0 ⇔ Ig 6= 0⇔ g ∈ SI .

Here, I give an example of a partitioning and the underlying relationship to which it refers:

f(X) = f1(X1, X2) + f2(X5) ⇔ I = (

G1︷︸︸︷
1 1

G0︷︸︸︷
0 0

G2︷︸︸︷
2 ) ⇒ SI = {1, 2, 5}.
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This simple example contains five predictors, of which three contribute towards the true un-

derlying relationship: f(X) = f1(X1, X2) + f2(X5). For this underlying relationship, there

are two non-empty non-null groups: one labelled G1, containing the predictors X1 and X2;

the other labelled G2, containing X5. The remaining predictors, X3 and X4, form the null

group. This partitioning corresponds to the indicator vector I = (1, 1, 0, 0, 2). When wishing

to represent a partition graphically, I will list the non-null groups. Therefore, I would write

this partition as {1, 2} {5}.

Introducing the partitioning concept allows us to deconstruct each underlying relationship

into a partition G and a corresponding set of functions f = {f1, f2, . . . , fK}. A regression

method which explores the space of underlying relationships would consider models of the

form {G,f}. In my opinion, the information contained within G is far more important than

that provided by f . If we were able to determine the true partition, it would be relatively

straightforward to interrogate f in a follow-up experiment. As such an experiment would be

matter-of-course in validating any results, this would provide no extra work.

Therefore, I made the decision that my method would only be concerned with exploring

the space of partitions and would treat f as a nuisance parameter. This approach greatly

reduces the complexity of the model search.

Secondly, my feeling is that “model averaging” methods, those which draw conclusions

from a number of plausible models, perform better than “mode seeking” methods, which

make inferences from a single best scoring model. Especially when the number of predictors

far exceeds the number of samples, it seems unrealistic to hope to correctly deduce the exact

true underlying relationship. If one partition scores much higher that all others, then both a

mode seeking and a model averaging approach have the potential to identify this partition.

If, however, there are a number of high scoring partitions, a method which returns only the

best will not appreciate models which perform almost as well. Additionally, a model averaging

approach will allow for the overlap between different models; when assessing the evidence that

a predictor is associated, it will consider the different ways this predictor might be associated.

As a Bayesian method, Sparse Partitioning concentrates on evaluating the posterior distri-

bution of the parameters. Ideally, it would be possible to calculate this distribution explicitly,

as then we could extract the answers to any questions we pleased. As this is wholly infeasible

for any reasonably sized problem, Sparse Partitioning focuses on two more specific questions:

firstly, “Which predictors contribute to the underlying relationship?” and secondly, “Which

predictors interact?” In terms of the partitioning notation, these questions correspond to ask-

ing which predictors are not in the null group and which predictors are in the same non-null

group. The former will often tie in nicely with our prior information, which will likely consider
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the probabilities that different predictors are associated.

2.3 Bayesian Framework

All Bayesian methods consist of three stages: having identified the unknown parameters, they

must design a prior distribution, formulate a likelihood, then attempt to calculate the poste-

rior. For the moment, let’s suppose the unknown parameters are simply G and f , while X

and Y represent the data. Later on, we will encounter other unknown parameters and the

form of the data will change, however, I will deal with these considerations when they arise.

Before launching into Sparse Partitioning ’s methodology, it is first necessary to deal with

a slight technicality. Suppose we have a “designed experiment”, one in which we can dictate

the observed values of the predictors. The likelihood of the data will be

P(X,Y |G,f) = P(Y |X,G,f)× P(X|G,f)

= P(Y |X,G,f).

The last term has vanished because the observed values of X are selected in advance, so their

likelihood is 1.

In many cases, we are not at liberty to decide the observed predictor values. For example,

in an association study we typically pick samples based on their phenotype, then type these

samples to identify their variants. There are occasions when we might select samples in the

reverse manner. If we are testing the effect of a particular variant, we might desire equal

numbers of samples with and without the mutation, so first perform a low-cost screening to

find two such groups. We might be able to perform such a selection for two, possibly three

variants, but certainly not for a reasonable number.

For this reason, a fully Bayesian method should also consider the likelihood of the predictor

values. Let’s express this as P(X|ε), where ε is a parameter vector separate from G and f .

Fortunately, as explained in Gelman et al. (2004), it is reasonable to ignore ε’s presence. The

posterior distribution can be written as

P(G,f , ε|X,Y ) ∝ P(X,Y |G,f , ε)× P(G,f , ε)

= P(Y |X,G,f , ε)× P(X|G,f , ε)× P(G,f , ε)

= P(Y |X,G,f)× P(X|ε)× P(G,f , ε).

The last line follows because the likelihood of Y , as governed by the regression equation, does

not involve ε, while the likelihood of X does not depend on G nor f . It seems reasonable
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to suppose the prior for ε is independent of all other unknown parameters: P(G,f , ε) =

P(G,f)×P(ε). Therefore, the posterior distribution can be broken into two parts, which have

in common only the observed values for X and Y :

P(G,f , ε|X,Y ) ∝ P(Y |X,G,f)× P(G,f) . P(X|ε)× P(ε).

If we are only interested in the marginal posterior distribution P(G,f |X,Y ), we can integrate

with respect to ε and obtain

P(G,f |X,Y ) ∝ P(Y |X,G,f)× P(G,f),

demonstrating why it is justifiable to ignore ε.

2.4 Prior Distribution

The joint prior P(G,f) can be written as P(G)× P(f |G), so I consider the two distributions

separately. The dependency of f on G exists because the partition determines the structure

and degrees of freedom of each function. However, this dependency proves very slight and, as

I will show later, can be removed without consequence.

The prior distribution should be flexible, to allow the user to incorporate their own beliefs.

Very often, these beliefs will focus on how likely it is that each predictor is associated. Let pg

represent the user’s prior probability that predictor g is associated and let p = {p1, p2, . . . , pN}.
As discussed in the introduction, these probabilities will typically reflect a belief in sparsity,

which supposes that the expected number of causal predictors is small. Here, I explain further

why an assumption of this nature is necessary.

The number of samples required to detect an underlying relationship is linked to its com-

plexity. Suppose that f(X) is limited to a single function (K = 1). To correctly identify a

function with D degrees of freedom, there must be at least D distinct vector values observed

for the associated predictors. In terms of Figure 2.1, this corresponds to there being at least

one sample within each group of cells of a different colour. The resolution of the method will

then depend on how many samples correspond to each node. As the number of predictors con-

tributing towards the underlying relationship increases, so will the number of distinct samples

required. Therefore, for high-dimensional problems, the sparsity assumption becomes crucial.

I have come across many methods that consider the maximum number of associations it

is realistic to detect in order to determine an upper bound for the a priori expected number

of associations. For example, Zhang et al. (2005) argue that there should be at most
√
n
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associations (which in their model corresponds to 2
√
n degrees of freedom), Zhang and Liu

(2007) discuss values no higher than log3(N/2), while Mukherjee et al. (2009) reason that

there should be on average 15 samples corresponding to each degree of freedom. If the user is

uncomfortable with choosing pg according to the limitations of the method, the prior mean can

be reinterpreted as a belief concerning the number of “strong associations”, and the method

can be viewed instead as a search for strong associations.

2.4.1 Partition Prior, P(G)

The construction of P(G), the prior for the partition, is based on the vector of marginal

prior probabilities of association, p. Bearing in mind that each partition G corresponds to an

indicator vector I, we wish to construct P(I) so that it has the required marginal probabilities

of association:

P(Ig 6= 0) =
∑

I:Ig 6=0

P(I) = pg.

For a given partition I, let the equivalence class [I] contain all partitions that declare the

same predictors associated: I ′ ∈ [I] ⇔ SI′ = SI . I define the “probability of an equivalence

class” P([I]) as the sum of the probabilities of partitions within it:

P([I]) :=
∑

I′∈[I]

P(I ′).

We can achieve the desired probabilities of association by insisting

P([I]) =
∏
j∈SI

pj
∏
j /∈SI

(1− pj),

as then the marginal probability that predictor g is associated will be

P(Ig 6= 0) =
∑

I:Ig 6=0

P(I) =
∑

[I]:g∈SI

P([I]) =
∑

[I]:g∈SI

∏
j∈SI

pj
∏
j /∈SI

(1− pj)


= pg

∑
[I]:g∈SI

 ∏
g 6=j∈SI

pj
∏

g 6=j /∈SI

(1− pj)

.
If all possible equivalence classes are achievable — by which I mean that given any subset

of {1, 2, . . . , N}, the underlying relationship permits at least one partition I whose set of

associations SI matches this subset — then

∑
[I]:g∈SI

 ∏
g 6=j∈SI

pj
∏

g 6=j /∈SI

(1− pj)

 =
∏
j 6=g

(pj + (1− pj)) = 1.
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Therefore, P(Ig 6= 0) = pg, as desired. Later on, I discuss the approximation used when some

equivalence classes are not achievable.

Weighting of Partitions within Equivalence Classes

Having determined P([I]), it remains to decide how to divide this probability across the par-

titions within the equivalence class. If we insist that we are able to precompute P(I)/P([I]),

then this value must be independent of the elements contained within SI . Were the weight-

ing to depend on SI , then it would be necessary to examine every partition and equivalence

class individually. This task would be of similar order of magnitude to the task of exhaus-

tively evaluating the posterior distribution, which is not possible for reasonably sized datasets.

If we do not require that P(I)/P([I]) be precomputed, we could calculate its value on-the-

fly. However, I feel that doing so would greatly increase the computation time. I can think of

no efficient means of storing weightings for each equivalence class, so for classes visited mul-

tiple times, these values would have to be calculated repeatedly. In any event, this becomes

a moot point, as I decided to assign equal weighting to members of [I]. Shortly, I discuss the

rationale for this decision, but before that, I explain its implementation.

To weight members equally, it is necessary to calculate the size of each equivalence class.

The size of [I] depends only on the number of predictors declared associated by each of its

members. Let s denote the number of associations: |SI | = s. The size of [I] equals the

number of distinct partitions of s elements. Unrestricted, this equals B(s), the sth Bell

number. However, Sparse Partitioning limits K and S, the maximum number of groups

and the maximum number of elements within each group, so it is necessary to calculate the

“truncated Bell numbers” B(s,K, S). These can be worked out in a recursive fashion, similar

to how one might calculate the original Bell numbers. Let aj denote the number of groups of

size j, for j = 1, 2, . . . , S. Then

B(s,K, S | a1, a2, . . . , aS−1, aS) = B(s,K, S | a1 − 1, a2, . . . , aS−1, aS)+

B(s,K, S | a1 + 1, a2 − 1, . . . , aS−1, aS) (a1 + 1) + · · ·+

B(s,K, S | a1, a2, . . . , aS−1 + 1, aS − 1) (aS−1 + 1),

with boundary condition

B(0, K, S | a1, a2, . . . , aS−1, aS) =

{
1, if 0 = a1 = a2 = . . . = aS,

0, otherwise.

To calculate all possible B(s,K, S | a1, a2, . . . , aS−1, aS) requires of the order KS ×KS recur-

sions. This computation time is insignificant for reasonable K and S. The only caveat is that
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many programming languages have a maximum integer limit, so before each recursion, it is

necessary to check whether this might be exceeded and round off values when necessary.

As I decided to weight partitions within an equivalence class equally, it is only necessary

to calculate the partial sums

B(s,K, S) =
∑

0≤a1,a2,...,aS≤K

B(s,K, S | a1, a2, . . . , aS−1, aS),

allowing us to set P(I)/P([I]) = B(s,K, S)−1. Written in full, the partition prior is

P(G) = P(I) = B(|SI |, K, S)−1
∏
g∈SI

pg
∏
g/∈SI

(1− pg).

Later on, for convenience, I will use B(G) to denote B(|SI |, K, S).

What other weightings could I have used? Whatever the choice, it would remain necessary

to calculate all possible values of B(s,K, S | a1, a2, . . . , aS−1, aS), so a wealth of information

would be available at no extra cost. From these values, it would be possible to reflect in the

prior not only the probability that each predictor is declared associated, but also the belief in

the number of groups of associations or the number of interactions. For example, for models

declaring three associations, we could specify the prior probabilities that the true partition

contains one, two or three non-null groups or, correspondingly, that the model features three,

one or no interactions.

Given my choice to weight equally all partitions in the same equivalence class, the plots

in the left column of Figure 2.2 show the effect this has on the the prior distribution for the

number of groups of associations. Similarly, the right column shows how this decision affects

the prior distribution for the number of interactions. For all plots, K and S are kept at their

default values of 4, N is set to 10,000 and each predictor is assigned the same prior proba-

bility of association. In the top plots, each line corresponds to a different prior probability

of association, with the expected number of associations ranging from 1 to 9. As the prior

probability increases, so does the weighting assigned to higher numbers of groups/interactions.

When I experimented with different choices of weighting, it was easiest to manipulate the

spread of probabilities given the number of predictors associated. The bottom plots look

more closely at the case when pg = 5/N . Each line corresponds to a particular number of

associations, so once again it is clear that as this value increases, more emphasis is placed

on higher numbers of groups/interactions. The dark green line corresponds to the case when

three predictors are declared associated and shows how the uniform weighting places most
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Varying the Prior Probabilities of Association
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Figure 2.2: The effect of a uniform prior weighting across equivalence classes. The left hand plots
show how the decision to weight all partitions in an equivalence class equally determines the prior
weight for the number of groups of associations. The right hand plots show how this decision effects
a prior on the total number of interactions. In all cases, the maximum number of groups, K, and
number of elements in each group, S, are set to 4, the total number of predictors, N , equals 10,000
and all predictors are assigned the same prior probability of association. In the top row, the different
lines show the effect of varying the prior probability of association assigned to each predictor. As
this probability is increased, the lines peak later as a larger share of the prior weighting is assigned to
higher numbers of groups/interactions. The bottom row focuses on the case when pg = 5/10000, each
line corresponding to a different number of associations. For example, when there is one association
(the orange line), there can only be one group and no interactions; whereas when there are more than
7 interactions (the pink line), there must be at least two groups and no fewer than four interactions.

33



of the probability on there being two groups. If we considered this spread inappropriate, it

would just be a matter of selecting new probabilities for there being one, two or three groups,

effectively moving each point on the line up or down as desired.

It is interesting to note that a uniform weighting places a high prior probability (1−B(G)−1

on the existence of at least one interaction, even though relatively few interactions have so far

been found and verified. However, in my opinion, the lack of known interactions must to some

extent be due to how hard they are to identify, coupled with how rarely they are searched for.

It is for this reason that I am satisfied that a uniform weighting is a reasonable choice.

Prespecification of K and S

To enable precalculation of B(s,K, S), and also to allow allocation of sufficient memory,

Sparse Partitioning requires that the maximum number of groups, K, and maximum num-

ber of predictors in each group, S, are set in advance. If we wanted to consider all possible

models, K and S should be set no smaller than N , to ensure the two most extreme underly-

ing relationships are possible: either N groups of size one or one group of size N . However,

in practice, such values would lead to unrealistic amounts of unnecessary computation and

memory demands. The prior probability assigned to partition I decreases rapidly as the size

of SI increases. Therefore, partitions declaring many associations are incredibly unlikely to

contribute to the posterior estimates and can safely be overlooked. As a result, I suggest K

and S are set as small as possible without having a noticeable effect on the method’s calcu-

lation of the posterior. In general, I have found that K = 4 and S = 4 are adequate, in that

these values very rarely appear to hinder the search of the model space. Of course, should the

user wish, they can restrict K and S further, if they wanted to exclude certain models entirely.

The calculation of P(Ig 6= 0) assumed that K × S ≥ N , as then the maximum number of

predictors associated is greater than the size of the predictor set, so all possible equivalence

classes are achievable. When this condition does not hold, the error involved can be calculated

for the case that all prior probabilities of association are equal (pg = p, for g = 1, 2, . . . , N):

P(Ig 6= 0) = p

KS−1∑
s=0

(
N − 1

s

)
ps(1− p)N−1−s

/ KS∑
s=0

(
N

s

)
ps(1− p)N−s

= p P(s ≤ KS − 1|s ∼ B(p,N − 1)) / P(s ≤ KS|s ∼ B(p,N)),

where B(a, b) denotes a binomial distribution with a trials and probability of success b. Using

a normal approximation for each binomially distributed variable, we obtain

P(Ig 6= 0) = p Φ

(
KS − 1

2
− (N − 1)p√

p(1− p)(N − 1)

)/
Φ

(
KS + 1

2
−Np√

p(1− p)N

)
,
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where Φ is the cumulative density function for a standard normal. For small p, the value of

P(Ig 6= 0) is affected most by the prior mean, Np. I suggested setting K = 4 and S = 4;

entering these values into the equation above, we find that the actual prior probability of

association used by Sparse Partitioning lies within 1% of the desired value p even when the

prior mean is as high as 9.

Multiple Copies of Predictors

There are situations when we might wish to consider predictors featuring in multiple non-null

groups. For example, in an association study, we might consider that a genetic variant affects

a phenotype via more than one pathway. In order to allow such situations, but without dis-

rupting the disjointness of groupings, I consider multiple copies of each predictor, the number

of copies being determined by the parameter C. For example, if C = 3, the original predictor

set is expanded to contain 3 copies of each predictor and so its size is increased to 3×N .

To compensate for this change, the prior probability of association for each copy of predictor

g is set to 1− C
√

1− pg. As the prior probabilities for each copy are independent, this ensures

the correct marginal probability:

P(at least one copy of Xg associated) = 1− P(zero copies of Xg associated)

= 1−
(

C
√

1− pg
)C
,

which equals pg as desired. Notice that this set-up effects a binomial distribution for the

number of associated copies of each predictor. It is difficult to surmise whether a different

breakdown would be more appropriate. However, if the user is adamant that an alternative

choice is more suitable, they can set C = 1 and manually add copies of each predictor, speci-

fying the individual probabilities they desire.

Allowing multiple copies of each predictor creates an element of duplication within the

space of partitions. For example, a partition in which two copies of predictor g feature in

the same non-null group effects the same form for the underlying relationship as the partition

with one of these copies removed. The prior weighting for this underlying relationship will be

increased by a factor of 1 + O(pg), but for small values of pg this will be negligible. As with K

and S, it is necessary to specify C in advance. I will explain that its value has minimal effect

on computation time, but show in the simulation studies that larger values can be beneficial.

Therefore, I recommend a generous setting, such as C = 3.

An alternative, and more obvious, solution would be to relax the condition of disjointness

and consider groupings instead of partitions. However, after a few tries, I found this approach
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produced too many complications, particularly when trying to devise a suitable prior. Sup-

pose we considered each non-null group an independent sampling from {1, 2, . . . , N} and set

to 1 − K
√

1− pg the prior probability that predictor g appeared in each. If duplicate models

were not accounted for, there would be, for example, K2 groupings which declared associated

only predictors 1 and 2. Of these, K would feature an interaction, while K(K − 1) would be

additive. It is undesirable that the relative prior weightings of these two possibilities depended

on the number of non-null groups allowed, especially as this upper bound exists mainly for

computational reasons, not due to prior belief. I believe it would be very difficult to assign

prior weightings which offset the bias of K.

It was suggested to me by Terry Speed that “lattice graph” theory might provide a means

for relaxing disjointness, while maintaining uniqueness, and allow construction of a suitable

prior for groupings. Even so, I felt that approaches of this nature would introduce insurmount-

able challenges in the sampling steps used for posterior estimation.

Forced Inclusion

One of Sparse Partitioning ’s strengths is its ability to accept individual prior probabilities of

association for each predictor, rather than requiring them all to be the same. In particular,

the user can insist a predictor is associated by setting the corresponding probability to 1.

Generally, this approach indicates that the user is certain a predictor is associated, however,

they might simply wish to investigate the consequences if this were the case.

Special care should be taken when C is greater than 1. If pg is set to 1, the prior probability

of association for each copy of predictor g will be 1 − C
√

1− 1 = 1, indicating that all copies

contribute to the response. This might not be what the user has in mind, as they might only

be sure the first copy is associated. One solution is to manually append additional copies of

each predictor to the matrix X and apply Sparse Partitioning with C = 1. The user would

then be able to individually specify prior probabilities for each copy of each predictor, avoiding

the danger of multiple copies of a single predictor being forcibly included. To avoid this hassle,

Sparse Partitioning allows the user to enter a list of predictors to be always included in the

current model. For these predictors, the corresponding elements of p = {p1, p2, . . . , pN} then

specify the probabilities that additional copies are associated.

Fixed or Variable pg

In Sparse Partitioning, the values of pg are fixed for the duration of the method and, as a

result, the partition prior remains constant. An alternative approach, adopted by Zhang

et al. (2005) and Mukherjee et al. (2009), among others, is to introduce a hierarchical prior

set-up where p is allowed to vary and provided with its own prior distribution. In this case,
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a posterior estimate that predictor g is associated could be obtained directly by calculating

the posterior mean of pg, rather than by evaluating P(Ig 6= 0). However, this set-up would

only become worthwhile if we possessed additional prior information about pg; for example,

if we had an idea of the overall spread of values for pg or a sense of how these values varied

relative to each other. In my opinion, it is unrealistic to think we have knowledge about the

distribution of p above a belief in its mean, so I decided against this approach. Later on,

however, I revisit this discussion, explaining the effect that such a change might have on the

method.

2.4.2 Function Prior, P(f |G)

As Sparse Partitioning treats the predictors as categorical, each function will take the form

fk(XGk
) = θkd, where d denotes which image corresponds to the node XGk

. If the nodes are la-

belled from 1 to dk, this function can be fully described by the vector θk = {θk1, θk2, . . . , θkdk
}.

When discussing the motivation for Sparse Partitioning, I explained my decision that each

function should be as general as possible and therefore fk have degrees of freedom equal to

dk, the number of nodes observed.

This decision already turns out to have a useful property. If we were to consider variable

functional forms for each partition, we would have to decide the prior weightings for forms on

an ad-hoc basis. For example, the number of functional forms involving two binary predictors

will depend on whether 3 or 4 nodes have been observed. As Sparse Partitioning uses the most

general function in each case, this is not an issue. For a method that intends to sample from

the posterior distribution via MCMC sampling, a reduction in work load is always desirable,

as this will increase the number of iterations possible.

When there are two or more groups, it is prudent to consider the issue of identifiability

(although this is more of a concern for frequentist methods than Bayesian ones). Identifiability

can be achieved by introducing a global intersect term θ0 and then insisting for each non-empty

non-null group a sample ik is chosen and state XikGk
mapped to zero. This corresponds to

setting θkd = 0 for one value of d. The choice of which node is mapped to zero has an effect

on the posterior calculation, so later on I mention how I attempt to minimise the variation

caused by this choice.

Writing f(X) as a linear model.

For each group, label the distinct vector values of XGk
from 1 up to dk. The node assigned

the label dk will correspond to the base value, but otherwise the labelling is irrelevant. For
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group k, let the matrix Jk (size n× dk) indicate to which node each sample corresponds:

(Jk)id =

{
1, if XiGk

matches the dth node,

0, o/w.

Define the matrix J = [1 J−1 J−2 · · ·J−K ], where 1 is a vector of ones and J−k represents

the matrix Jk with the last column removed (which corresponds to setting θkdk
to zero).

The underlying relationship can be written as the linear model f(X) = JΘ, where Θ =

{θ0,θ
−
1 ,θ

−
2 , . . . ,θ

−
K}, where θ−k is the vector θk with the last element removed. The degrees

of freedom of this model is D = 1 +
∑

(dk − 1), equal to the number of columns of J and

the length of θ. Notice that the vector of regression coefficients completely defines the set of

functions f = {f1, . . . , fK}. Therefore, a prior for the functions P(f |G) can be specified in

terms of a prior for the coefficients P(Θ|G).

Coefficient Prior P(Θ|G)

P(Θ|G) is a joint distribution defined across the global intercept θ0 and the coefficients θkd

for k = 1, 2, . . . , K and d = 1, 2, . . . , dk. Because the labelling of nodes within groups is arbi-

trary, the (marginal) prior distributions for θkd must be the same for all d, while the arbitrary

labelling of groups suggests identical priors for each θk are appropriate.

Requiring the priors for elements within θk to be identical might be viewed as an unfor-

tunate consequence of the set-up. For example, in an association study we might wish to

consider separately the contribution of marginal and interactive effects. To begin with, this

would probably require a reformulation of each function. Returning to the case of a function

of two binary predictors, suppose we were to define fk(0, 0) = 0, fk(1, 0) = θk1, fk(0, 1) = θk2

and fk(1, 1) = θk1 + θk2 + θk3. Here, θk3 would indicate the deviation from an additive model.

We might choose to assign a smaller variance to θk3, if we felt its magnitude was likely to be

less. Similarly, for the case of a single tertiary predictor, we might prefer values of fk(1) to be

close to the midpoint of fk(0) and fk(2).

This is certainly an idea to think more about. Ideally, the user would have the choice

to assign different variances for different types of effects. For the case of two binary or a

single tertiary predictor, a possible reformulation is straightforward, but for more complex

interactions, it does not appear so easy. Additionally, the current implementation benefits

speed-wise from each sample corresponding to at most one node in each group, as this means

that each row of J−k has at most one non-zero element. This advantage would likely have to

be sacrificed. In any case, the version designed for quantitative predictors (Chapter 6) has an

explicit preference for additivity built in, so is available to the user if they prefer.
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The prior for θkd should reflect a preference for smaller effect sizes. This should offer protec-

tion against the presence of outliers, a danger to which a method such as Sparse Partitioning

would otherwise be particularly vulnerable. Suppose the dth node of XGk
is observed only

once and corresponds to an extreme response value yi. Setting θkd = yi will likely result in a

significant improvement in the model fit, providing “evidence” that the predictors in group k

are associated. However, it is often more likely that an extreme value is a result of measure-

ment error than a strong effect size. A prior which favours smaller regression coefficients will

guard against this occurrence.

I decided to assign independent, identical, normal priors with mean zero to each coefficient.

As well as having desirable characteristics, the normal distribution proves convenient later on

when calculating marginal likelihoods. When the response is continuous, each prior has vari-

ance σ2/r, where σ2 corresponds to the variance of the residuals and is formally introduced

when I explain the likelihood. When the response is binary, I set the variances to 1/r. In

both cases, the choice of r controls the extent coefficients are penalised on account of their

size; larger values of r decrease the prior variance and therefore place greater emphasis on

smaller-valued coefficients. Conversely, the user can decrease r, resulting in a less informative

prior distribution.

The default value of r is 10, which for an association study, loosely speaking, supposes the

contribution of each genetic effect is one order of magnitude lower than the residual noise.

When analysing gene expression data, where the magnitudes of effects are likely to be higher,

I suggest a smaller value for r, such as 1 or 2. To choose a more precise value of r, the

user could consider the confidence interval implied by different settings. For example, when a

continuous valued response has been standardised to have variance 1, setting r to 10 implies

a 95% prior belief that effect sizes lie between approximately -0.6 and +0.6. Similar logic

could be applied when the response is binary, considering a plausible range for odds ratios and

selecting r accordingly. As with all Bayesian methods, if there is doubt when setting a prior

parameter, it is prudent to repeat the analysis for a range of values and see the extent that

the choice affects the results.

It is conceivable that the user might believe, for example, that there is one group of asso-

ciations corresponding to strong effect sizes, while the other associations are more moderate.

This could be reflected by introducing individual scaling terms rk specific to each group. At

present, my implementation of the MCMC sampling benefits speed-wise from the priors for

each θk being identical. Therefore, the value of such a change would depend on how strongly

it was considered necessary.
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2.5 Likelihood

When calculating the likelihood, Sparse Partitioning makes assumptions standard to gener-

alized linear models, both with regards to the choice of link function and the distribution of

the response values given the regression equation. In total, I consider three separate cases, as

outlined in the following table:

Case Response Link Function

1 Continuous Identity: l(a) = a.

2 Binary Logit: l(a) = log(a/(1− a)).

3 Binary Probit: l(a) = Φ−1(a).

(Φ is the cumulative density function for a standard normal distribution.)

Ideally, we wish to calculate the marginal likelihood P(Y |X,G) as this will, in conjunction

with P(G), allow us to sample partitions from their posterior distribution. When the response

is binary, this calculation is non-trivial, which is why two alternatives are offered.

2.5.1 Case 1: Continuous Response, Identity Link Function

When the response is continuous, the link function is the identity, so the regression equation

becomes E(Y ) = f(X). The departures from the expected values, Yi − Jiθ, are assumed to

be independent draws from a normal distribution with mean zero and variance σ2, leading to

the following (raw) likelihood:

P(Y |f(X), σ2) = (2πσ2)−
n
2 exp

{
− 1

2σ2 (Y − f(X))T (Y − f(X))
}
,

or equivalently

P(Y |X,G,Θ, σ2) = (2πσ2)−
n
2 exp

{
− 1

2σ2 (Y − JΘ)T (Y − JΘ)
}
.

σ2 corresponds to the model noise, and therefore the variance which is not explained by the

true underlying relationship. In genetic terms, this is proportional to one minus the (broad-

sense) heritability, the percentage of observed variation contributable to genetic effects. In

fact, as Sparse Partitioning standardises the response variance before analysis, the two are

equal.

σ2 is an unknown, so Sparse Partitioning assigns it a prior. As σ2 represents the fraction

of variance not explained, its prior distribution should be left-bounded at zero and heavily

concentrated on the interval [0,1]. Copying the choice of SSS, which itself follows the reasoning

of Dobra et al. (2004), I opted for P(σ2) = σ−2. This density, a decreasing function, reflects a
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preference for smaller values. It does not matter that this prior is improper, as I will explain

later. One might favour a prior which peaks within the unit interval, if they have strong

feelings concerning the proportion of variance explained. In this case, an inverse gamma prior

could be used with nominal effect on any calculations.

Marginal Likelihood, P(Y |X,G)

As Sparse Partitioning is only concerned with the posterior distribution of partitions, σ2,

like Θ, is considered a nuisance parameter and it is convenient to remove both at the earliest

instance. When the response is continuous, the marginal likelihood can be calculated explicitly:

P(Y |X,G) =

∫
Θ,σ2

P(Y |X,G,Θ, σ2)× P(Θ|G)× P(σ2) dΘ dσ2

=

∫
Θ,σ2

(2πσ2)−
n
2 exp

{
− 1

2σ2 (Y − JΘ)T (Y − JΘ)
}

× (2πσ2/r)−
D
2 exp

{
− r

2σ2 ΘTΘ
}
× σ−2 dΘ dσ2.

Letting B = JTJ + rID, where ID is an identity matrix of size D, and A = B−1JTY , we

obtain

P(Y |X,G) = r
D
2 (2π)−

n
2 ×

∫
Θ

(2πσ2)−
D
2 exp

{
− 1

2σ2 (Θ−A)B(Θ−A)
}

dΘ

×
∫
σ2

(σ2)−( n
2

+1) exp
{
− 1

2σ2 (Y TY −ATBA)
}

dσ2

= r
D
2 (2π)−

n
2 × |B|−

1
2 × Γ(n

2
) (Y TY −ATBA)−

n
2 ,

where Γ(·) denotes the gamma function, and arises as the normalising constant of the gamma

distribution. JTJ will be a non-negative, symmetric matrix which can typically be inverted.

The addition of rID ensures this is the case, although care must be taken for very small values

of r as numerical inversion techniques may become unstable. Notice that the current prior

choice for σ2 has only a small impact on the marginal likelihood, only contributing 1 to the

final power term. For standard sample sizes, this contribution is overwhelmed by n
2
, suggesting

the results of the method should be fairly robust to moderate changes to this prior.

In general, caution should be taken when using improper priors in Bayesian calculations.

Suppose we wish to calculate a Bayes factor for Models 1 and 2, distinguished by the prior

distributions P1 and P2, the second of which is improper. Although it might be possible to

calculate P(Data|Model 1), the integral of P(Data|Parameters,Model 1) × P1, and the same

for Model 2, once we allow P2 to be unnormalised, we might just as reasonably have used 2×P2

instead. But doing this would double the evidence for the data under Model 2, unjustifiably

adding support to the second model. However, for the case of P(σ2), an improper prior is
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permissible; σ2 is used in all models, so its unnormalised value affects all posterior scores

equally.

2.5.2 Case 2: Binary Response, Logit Link Function

When the response is binary, E(Yi) equals P(Yi = 1) and the regression equation becomes

l(P(Yi = 1)) = f(Xi.). Therefore, the link function is required to convert a probability to

a real value: l(a) : [0, 1] → R. Sparse Partitioning is implemented for two choices of link

function: a logit or a probit function.

Firstly, I consider the case of a logit link function, which takes the form l(a) = log( a
1−a).

The raw likelihood follows immediately by assuming that each response has been sampled

independently, according to its probability of equalling 1:

P(Y |f(X)) =
∏
i

[l−1(f(Xi))]
Yi [1− l−1(f(Xi))]

(1−Yi),

or equivalently

P(Y |X,G,Θ) =
∏
i

[l−1(JiΘ)]Yi [1− l−1(JiΘ)](1−Yi).

Marginal Likelihood, P(Y |X,G)

When a logit link function is used, Sparse Partitioning estimates the marginal likelihood

P(Y |X,G) through use of a Laplace approximation (de Bruijn, 1958). First the method

calculates the posterior mode of Θ given G, then it applies an approximation centred on

this value. Let W (Θ) = P(Y |X,G,Θ) × P(Θ|G), so that the marginal likelihood equals

the integral of W (Θ) with respect to Θ. Additionally, let w(Θ) = log(W (Θ)). By applying

Taylor’s theorem about a value Θ′, we obtain

w(Θ) ≈ w(Θ′) + (Θ−Θ′)T
dw(Θ′)

dΘ
+

1

2
(Θ−Θ′)T

d2w(Θ′)

dΘ2
(Θ−Θ′).

If Θ′ = Θ̂, where Θ̂ is the argument of the maximum of w(Θ), then

W (Θ) ≈ W (Θ̂) exp

{
−1

2
(Θ− Θ̂)T

(
−d2w(Θ̂)

dΘ2

)
(Θ− Θ̂)

}
.
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Therefore

P(Y |X,G) =

∫
Θ

W (Θ) dΘ

≈ W (Θ̂)(2π)
D
2

∣∣∣∣∣−d2w(Θ̂)

dΘ2

∣∣∣∣∣
− 1

2

= P(Y |X,G, Θ̂)× P(Θ̂|G)(2π)
D
2

∣∣∣∣∣−d2w(Θ̂)

dΘ2

∣∣∣∣∣
− 1

2

.

This approximation requires the calculation of Θ̂, the posterior mode of Θ for a particular

partition. Being the root of w′(Θ) = d
dΘ
w(Θ), it can be estimated using the Newton-Raphson

method, whose history is traced in Ypma (1995). This method prescribes an iterative proce-

dure, based on repeated approximations of w′(Θ) about Θ̂.

0 = w′(Θ̂) ≈ w′(Θ) + (Θ̂−Θ)Tw′′(Θ) ⇒ Θt+1 = Θt − (w′′(Θt))−1w′(Θ),

where Θ1,Θ2, . . . ,Θt,Θt+1, . . . are a series of realisations of Θ. In our case, the required

derivatives can be calculated explicitly:

w(Θ) =
∑
i

Yi log pi + (1− Yi) log(1− pi)−
r

2
ΘTΘ− D

2
log(2π/r),

where pi = (1− exp(−JiΘ))−1. Making use of

d

dΘj

pi =
exp(−JiΘ)

(1 + exp(−JiΘ))2
Jij = pi(1− pi)Jij,

we obtain

d

dΘj

w(Θ) =
∑
i

Yi(1− pi)Jij − (1− Yi)piJij − rΘj

=
∑
i

(Yi − pi)Jij − rΘj

and
d2

dΘjdΘk

w(Θ) =
∑
i

−pi(1− pi)JijJik − r1(j = k),

where 1(·) represents an indicator function taking value 1 or 0 according to whether its argu-

ment is true or false. These derivatives allow calculation of the Newton-Raphson iterations.

The user specifies a tolerance value, which determines whether Θt+1 is “considered equal” to

Θt, in which case the iterations stop. There is no guarantee that the Newton-Raphson itera-

tions converge, but so far I have always found this to be the case. However, should convergence
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become an issue, an alternative algorithm could be implemented, line-search or otherwise (this

approach is discussed in the supplement of Marchini et al., 2007).

2.5.3 Case 3: Binary Response, Probit Link Function

Instead of a logit function, Sparse Partitioning is set up to permit use of a probit link. This

takes the form l(a) = Φ−1(a), where Φ is the cumulative density function of a standard normal

distribution.

The raw likelihood takes the same form as for Case 2, determined by supposing each

response is sampled at random, according to its probability of equalling 1:

P(Y |X,G,Θ) =
∏
i

[l−1(JiΘ)]Yi [1− l−1(JiΘ)](1−Yi).

When a probit link function is used, the Laplace approximation is no longer tractable so

can not be employed to calculate the marginal likelihood P(Y |X,G). Therefore, Sparse Par-

titioning takes a different approach, introducing latent variables based on the set-up proposed

by Albert and Chib (1993). This creates a new set of variables Z = {Z1, Z2, . . . , Zn}, where

each component acts as an intermediary between a sample’s underlying relationship value and

its response. Each Zi is distributed according to a truncated normal distribution with mean

JiΘ, variance 1 and domain determined by the value of the corresponding response:

P(Zi|X,G,Θ) ∝ N(JiΘ, 1) with

{
Zi > 0, if Yi = 1,

Zi ≤ 0, if Yi = 0,

where N(a, b) represents a normal distribution with mean a and variance b. It is easy to see

that this leads to the required link function, as it results in P(Yi = 1) = Φ(JiΘ):

P(Yi = 1|X,G,Θ) =

∫
Zi

P(Yi = 1|Zi,X,G,Θ)× P(Zi|X,G,Θ) dZi

=

∫
Zi

P(Yi = 1|Zi)× P(Zi|X,G,Θ) dZi

=

∫
Zi

1(Zi > 0)× P(Zi|X,G,Θ) dZi

=

∫
Zi>0

P(Zi|X,G,Θ) dZi

= P(Zi > 0|Zi ∼ N(JiΘ, 1))

= P(Z ′i > −JiΘ|Z ′i ∼ N(0, 1))

= Φ(JiΘ).
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Marginal Likelihood, P(Z|X,G)

Albert and Chib’s decision to introduce latent variables was motivated by a desire to sample

from Θ. Typically, their formulation results in a known form for, and thus easy sampling from,

the conditional posterior distribution of elements of Θ. Although Sparse Partitioning is not

interested in sampling from Θ, a consequence of introducing Z is that it becomes possible

to calculate the marginal likelihood P(Z|X,G) explicitly. This calculation follows the same

steps used to find P(Y |X,G,Θ) in Case 1, except that now σ2 is fixed at 1:

P(Z|X,G) =

∫
Θ

P(Z|X,G,Θ)× P(Θ|G) dΘ

=

∫
Θ

(2π)−
n
2 exp

{
−1

2
(Z − JΘ)T (Z − JΘ)

}
× (2π/r)−

D
2 exp

{
−1

2
ΘTΘ

}
= r

D
2 (2π)−

n
2 × |B|−

1
2 × exp

{
−1

2
(ZTZ −ATBA)

}
.

Calculation of P(Z|X,G) proves useful later on. When using a probit link function, in-

stead of seeking P(G|X,Y ) directly, Sparse Partitioning samples from P(G,Z|X,Y ), from

which the former can be obtained. This relies upon a combination of Gibbs’ and Metropolis-

Hastings theory, alternately drawing from P(G|X,Y ,Z) and P(Z|X,Y ,G), both of which

require calculation of P(Z|X,G).

An alternative approach is possible, one which continues with the latent variable represen-

tation, but instead tries to estimate the marginal likelihood P(Y |X,G) directly.

P(Y |X,G) =

∫
Z

P(Y |Z,X,G)× P(Z|X,G) dZ

=

∫
Z

P(Y |Z)× P(Z|X,G) dZ

=

∫
Z∈Z†

r
D
2 (2π)−

n
2 × |B|−

1
2 × exp

{
− 1

2σ2 (ZTZ −ATBA)
}

dZ

∝
∫

Z∈Z†
exp

{
− 1

2σ2 (ZT (In − JB−1JT )Z)
}

dZ,

where Z† is the n-dimensional domain over which P(Y |Z) = 1:

Z ∈ Z† ⇔

{
Zi > 0, if Yi = 1,

Zi ≤ 0, if Yi = 0.

Within the integrand, Z takes the form of a multivariate normal distribution N(0,C−1), where

C = In − JB−1JT. Let E denote the Cholesky decomposition of C, such that C = ETE,

then the distribution of EZ will also be normal: EZ ∼ N(0, In). Crucially, each EZ is

independent, so the marginal likelihood can be written as a product of integrals across the
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new region EZ†. Analytic methods exist for calculating this integral (Curnow and Dun-

nett, 1962). However, my feeling was that the benefits of being able to calculate P(Y |X,G)

directly would be overshadowed by the computational demands and approximate nature of

this approach.

For all three link functions, the user can choose to replace the marginal likelihood with

the maximum likelihood estimate (this choice is automatic when r is set to zero, as then the

priors on effect sizes become improper). This change gives the method a more frequentist feel

and slightly faster run time. However, I almost always consider this approach inferior to the

fully Bayesian version and advise against its use.

Discussion: Independence of Partition and Function Priors

Earlier on, I mentioned that the function prior depends loosely on the partitions. The rea-

son for this is that each partition defines the structure of the linear model representation

f(X) = JΘ and therefore the number of regression coefficients. In a similar manner, the

function also depends on X as, given a partition, its degrees of freedom is determined by the

number of nodes observed for each group.

The latter dependency is easy to remove. For example, consider a partition containing a

non-null group of size two. Sparse Partitioning caters for tertiary predictors, so will allow for

up to 9 possible nodes; but if the predictors are binary, at most four of these will be present.

Suppose additional coefficients, corresponding to the unobserved nodes, are added to the re-

gression model and assigned identical priors. This will remove the dependency of the function

on the observed value of X. However, these additional coefficients will not interfere with

the raw likelihood and can be integrated out immediately, so leaving the marginal likelihood

unaffected.

A similar trick could be used to remove the dependency of the function prior on the current

partition. In theory, we could specify a linear model containing a set of regression coefficients

relating to every possible partition. All coefficients, except those related to the current parti-

tion, could be integrated out immediately with no effect on the marginal likelihood.

This logic comes in useful later on, when considering how to sample from the posterior

distribution. Because the length of Θ is determined by the partition, one might assert that

“Reversible Jump” MCMC is required to account for the changes in dimension. However, this

is not the case if we consider that the dimension stays constant and only the number of active

coefficients varies. Sparse Partitioning takes advantage of the way Bayesian methods enforce

Occam’s Razor (Murray and Ghahramani, 2005; Ghahramani, 2010), a principle which
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insists that for two equally well fitting models, the more simple one should be preferred. In

the case of Sparse Partitioning, simplicity depends, in part, on the number of active regression

coefficients. Therefore, the additional coefficients, which do not contribute to the underlying

relationship, should not contribute to the complexity penalty, as evidenced by them integrating

to unity.

Discussion: Choices of Link Function

Recall that the regression equation takes the form l(E(Y )) = f(X). The raw likelihood is

calculated by comparing how well each observed response value Yi agrees with its predicted

value l−1(f(Xi)). The link function determines how errors in specifying f(Xi) are carried

through to the likelihood. In the continuous response case, symmetry seems desirable, so that

underestimation of l−1(f(Xi)) is penalised equally to overestimation, and the same for f(Xi).

The former is automatically true on account of the choice of likelihood function; the normal

assumption considers only the magnitude of the residuals. To ensure the latter, the symmetry

must be maintained by the link function. To obtain such a function, its curve-representation

should possess symmetry about all points. This implies it is linear and therefore, without loss

of generality, the identity.

For a binary response, the choice of link function seems less intuitive. As l−1(f(Xi)) cor-

responds to a probability, its value must map to the interval [0,1]. Penalising misspecification

symmetrically seems no longer sensible, as when, say, the true value of E(Yi) is 0.8, the pre-

dicted value can be four times too small as it can be too large. If forced to choose between

the logit and probit functions, the latter seems more readily justified. It supposes that a

sample’s response is governed by an underlying normal distribution, but in effect all we are

able to observe is whether the value is positive (Y = 1) or negative (Y = 0). By contrast,

results using the logit link function are more easily interpreted. The regression coefficients Θ

correspond to the log odds, or equivalently exp(Θ) indicates how much a unit change in each

of the predictors affects the odds ratio.

Reassuringly, I feel that in nonlinear regression, the risk of choosing a poor link function

is reduced. When predictors are forced to contribute linearly to the underlying relationship,

the link function determines how much a unit change of each predictor affects the expected

value of the response, so an incorrect link function will have a direct knock-on effect. This

is not the case for nonlinear underlying relationships. Their flexibility to allow predictors to

contribute in a nonlinear manner means that when the link function is inaccurate, to some

extent this error can be compensated for.

As Figure 2.5.3 demonstrates, the shapes of the (inverse) logit and probit functions are
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Figure 2.3: Comparison of the logit and probit link functions. The two plots provide a comparison
of the (inverse) logit and probit functions, two link functions suitable for converting a real value to
a probability. The left plot overlays the functions. That the two lines are almost indistinguishable,
demonstrates how closely the functions agree, especially for mid-range values of a. The right graph
matches the images of each, plotting l−1(a) for the logit and probit functions across the range of a.
This time, the line barely deviates from the diagonal, once more showing the similarity of the two
link functions.

very similar. For these plots, I rescaled the logit function to better highlight the concordance;

the two curves plotted are in fact l−1(a) = Φ(a) and l−1(a) = (1 + exp(−1.72a))−1. This scal-

ing should not detract from the comparison, as it is equivalent to scaling Θ, which in Sparse

Partitioning can be achieved by altering Θ’s prior variance.

Therefore, supposing that both the logit and probit functions provide a reasonable choice,

it remains to decide which is preferable. Generally, it is better to integrate across nuisance

parameters, as this averages over their uncertainty and reduces the complexity of the model

space. As the calculation of the posterior estimates will be based on MCMC sampling, which

attempts to obtain a fair sampling across all parameters, the fewer parameters we have, the

better. This logic would suggest a logit function should be chosen, as then Sparse Partitioning

calculates P(Y |X,G) directly. However, the issue here is that the Laplace approximation still

introduces inaccuracies. Furthermore, its calculation is time consuming due to the Newton-

Raphson iterations. Therefore, I continue to describe the method for both a logit and probit

function, then return to this debate when testing each implementation.

Discussion: Identifiability of Functions

To ensure identifiability, a global intercept θ0 was introduced, and one node from each group

was picked as the base value and mapped to zero. The calculations of P(Y |X,G) or P(Z|X,G)

will vary depending on which nodes are chosen to act as the base values for each function. In

order to reduce these inconsistencies, Sparse Partitioning chooses these base nodes according

to a defined rule, which when possible picks the zero vector of XGk
. Additionally, continuous
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response values are first transformed to have mean 0 and variance 1, which reduces the vari-

ability resulting from different choices of nodes.

An alternative way to ensure identifiability is to retain the global intercept, but insist that

each group of regression coefficients sums to zero:
∑dk

d=1 θkd = 0, for k = 1, 2, . . . , K. This

condition might appear preferable, as it affects the fit of all coefficients rather than just one.

Superficially, it would require very little extra work; before discarding the final column of Jk,

its value would first be subtracted from each remaining column. However, Sparse Partitioning

is able to utilise the fact that J−k has no more than one non-zero element in each row. While

the resulting speed-up is minimal with tertiary predictors, when applied to non-tertiary values,

it proves considerable.

For the most part, Sparse Partitioning does not actually require identifiability; the method

is not interested in obtaining the posterior distribution of Θ and all calculations described will

be possible even if the final column of Jk is retained. The only exception to this rule is when

r is set to zero, in which case the prior on the regression coefficients becomes improper and

Sparse Partitioning is forced to replace the marginal likelihood with the maximum likelihood

value. As it stands, this option is redundant. If chosen, the functions will no longer be

penalised according to complexity, so the method will opt for the most complicated ones pos-

sible. However, it becomes (slightly) relevant when considering the extension to quantitative

predictors (Chapter 6).

Comparison with BEAM

The partitioning concept of Sparse Partitioning has aspects in common with BEAM (Zhang

and Liu, 2007). The latter looks to group the predictors into three classes: those not associ-

ated, those which contribute additively and those which contribute jointly. Zhang and Liu

obtain a score for each partition by considering P(X|Y ,G), the likelihood of the predictors

given the response values and the groupings. Their premise is that in most instances, a pre-

dictor’s underlying state frequencies will be the same across all samples; but for the associated

predictors, there will be two sets of frequencies, one corresponding to cases (Yi = 1) and one to

controls (Yi = 0). BEAM ’s model can be considered nested within that of Sparse Partitioning,

and could be implemented by forcing all of the groups except one to be singleton. With this

set-up, a model’s degrees of freedom will necessarily grow exponentially with the number of

predictors involved in interactions. This increase will be faster than for Sparse Partitioning

(which employs a combination of linear and exponential growth) and will likely restrict further

the number of associations that could feasibly be considered.

In a sense, BEAM ’s approach operates in the correct direction. Although we expect an
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individual’s phenotype to be influenced by its genetic variants, in most cases the samples will

have been chosen according to outcome, so a retrospective likelihood is more appropriate.

Prentice and Pyke (1979) demonstrate the equivalence of the two approaches (for a simple

model) within a frequentist framework, while Seaman and Richardson (2004) draw sim-

ilar conclusions in a Bayesian set-up. This is fortunate, as there are many advantages to a

prospective model. One of these is the ease with which confounding and missing values can

be included, which I discuss in Chapter 3.

In Bayesian methods, it is typically a great advantage to be able to calculate the marginal

likelihood explicitly, as resorting to numerical solutions will have a detrimental effect on ac-

curacy and lead to an increased run time. A sufficient condition for explicit calculation of

the marginal likelihood, is that the raw likelihood equation P(Y |X,G,Θ, . . .) can be broken

down as the product of likelihoods for groups of response values, each of which involves only a

single coefficient of Θ (and no coefficient is involved for more than one group). If this condition

holds, and assuming conjugate priors are used, the marginal likelihood can be obtained explic-

itly by integrating across each coefficient individually. In Sparse Partitioning, this condition

is not true, as most response values will be affected by one coefficient from each group. More

generally, for a prospective model, this condition can not hold once more than one group of as-

sociated predictors are permitted (K > 1), nor as soon as confounding variables are introduced

(as these variables will affect all samples). To a large extent, this explains why so few meth-

ods allow multiple groups or consider confounding, and is perhaps why the method BAMSE

(Albrechtsen et al., 2007), discussed in the introduction, forces samples to belong to only

one risk set. (Notice that this condition is not a necessary one, as in Sparse Partitioning con-

jugacy exists when the response is continuous, owing to properties of the normal distribution.)

In BEAM, this condition holds (although, because a retrospective model is used, the con-

dition applies instead to P(X|Y ,G,Θ)). Fast computation of the marginal likelihood proves

a huge advantage, and allows the method to consider problems involving over 100,000 pre-

dictors. Therefore, if the restriction to the underlying relationship is not a concern, nor are

confounding variables an issue, when presented with case-control data, this method is appeal-

ing.

Intuitively, continuous response variables should be more informative than binary ones, and

be more conducive for the search for interactions. However, there appears to be no obvious

way to adapt BEAM for a continuous response. The retrospective approach causes difficulties.

For the predictors declared associated, it would be necessary to devise a distribution of state

frequencies given a continuous value. For tertiary predictors, such a distribution should have

2 degrees of freedom, which can not be obtained from a one dimensional response. When

considering SNP values, one could assume the underlying state frequencies for associated pre-
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dictors obey the ratio p2 : 2p(1−p) : (1−p)2 (Hardy, 1908; Weinberg, 1908) and hence use

a logit or probit link function to connect pi to Yi. But, considering that for associated SNPs

the distribution of their alleles will depend on the phenotype, such an assumption is perhaps

unlikely to be realistic.

Since the original submission of this thesis, a version of BEAM suitable for continuous

response values has been proposed (Zhang et al., 2011). However, to do so, the authors have

abandoned the retrospective approach. Secondly, they have removed the option for predictors

to contribute additively, instead considering only the most general model where all associated

predictors interact with each other. They allocate a mean value to each vector node, to which

they assign a normal prior. Being a draft version, there is no mention yet of implementation,

however, the proposed method appears very similar to running Sparse Partitioning with K

set to 1, save for the option to include confounding variables.

2.6 Posterior Distribution

For Case 1 (continuous response, identity link function) and Case 2 (binary response, logit

link function), we wish to find P(G|X,Y ). For Case 3 (binary response, probit link function),

we wish to find P(G,Z|X,Y ). For all cases, explicit calculation of the posterior would require

an exhaustive search across partitions, which would not be possible. To give an idea of the

magnitude of this task, consider that the number of unique sets of associations, and therefore

the number of equivalence classes, equals 2N, and thus grows exponentially with the number

of predictors. Even were each equivalence class to have only one member, it would still not

be feasible to visit all partitions unless N was very small.

Therefore, Sparse Partitioning always resorts to MCMC sampling, creating a Markov chain

starting at the null partition G0 which declares no predictors associated. The following table

outlines, for each case, the stages involved in one iteration of this sampling:

Case Target Posterior Sampling Stages

1 P(G|X,Y ) 1 - Sample I | 2 - Sample Gk,j

2 P(G|X,Y ) 1 - Sample I | 2 - Sample Gk,j

3 P(G,Z|X,Y ) 1 - Sample I | 2 - Sample Gk,j | 3 - Sample Z

MCMC sampling requires frequent calculation of a model’s (relative) posterior weighting.

Therefore, it proves convenient to compute a posterior “score” for each partition, proportional

51



to its conditional posterior. Notice that in Case 3, this value will not depend on Y :

P(G|X,Y ,Z) = P(G|X,Z)× P(Y |Z,X,G)/P(Y |Z,X)

= P(G|X,Z)× P(Y |Z)/P(Y |Z)

= P(G|X,Z).

Therefore, we can define

Score(G) :=

{
P(Y |X,G)× P(G), for Cases 1 and 2,

P(Z|X,G)× P(G), for Case 3.

This score is not only involved when considering a change to the current partition. For every

single move, it plays a part in determining either the proposal distribution or the acceptance

probability of the proposal. P(G) is calculated in advance and stored in a look-up table, so

the time taken to score a partition, and therefore the overall algorithm run time, is dictated

by how long it takes to compute the marginal likelihood.

2.6.1 Stage One: Sampling each Component of I

I explain this stage supposing we are interested in Cases 1 or 2. For Case 3 the only difference

is that Y is replaced by Z in all steps.

Sparse Partitioning begins each iteration by sampling new values for each element of

I = (I1, I2, . . . , IN), the vector indicating the group membership of each predictor. For each

Ig, the method uses a proposal distribution which matches the element’s conditional poste-

rior distribution: Q(Ig|I−g) = P(Ig|I−g,X,Y ). By choosing this proposal distribution, the

acceptance rate will always be 1, so the sampled value can be accepted immediately (Gibbs’

Sampling). To guard against the introduction of order-based biases, the sequence in which

each Ig is sampled is randomised for each iteration.

The proposal distribution for selecting a new value I∗g can be calculated explicitly by scoring

all partitions that differ from the current partition only in their value of Ig:

Q(I∗g ) =
P(I∗g |I−g,X,Y )∑
I′g

P(I ′g|I−g,X,Y )
=

P(I∗g , I−g|X,Y )∑
I′g

P(I ′g, I−g|X,Y )

=
Score(I∗g , I−g)∑
I′g

Score(I ′g, I−g)
.

The order that these partitions are searched mimics the way the truncated Bell numbers are

calculated. First, predictor g is removed from the current partition. Then, it is added, in turn,
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to the null group, each non-empty non-null group (if space) and then as a singleton non-null

group (if space).

This system ensures that invalid partitions, those with zero prior weight, are not consid-

ered. For example, when all predictors are in the null group, any non-zero value for Ig will

result in the same partitioning. The prior distribution reflects this fact by assigning prior

weight only to the case Ig = 1.

When C > 1, each copy is treated as a new predictor, so the number of samplings required

in this stage increases by a factor of C. To combat this increase, the order that each Ig is

sampled is no longer completely random. Instead, elements of I which correspond to copies of

the same predictor are sampled consecutively. I took this decision for computational reasons.

If the current partition does not declare associated any copy of a particular predictor, then

Q(I∗g ) will be the same for all copies. As long as each copy remains not associated, there is no

need to recalculate this distribution. As a result, for sparse problems, increasing C will have

minimal effect on the time this sampling stage takes.

2.6.2 Stage Two: Sampling a Component of G

Once more, the description of this stage differs only slightly between Cases 1 or 2 and Case 3.

For the latter, simply replace Y with Z in all instances.

Sparse Partitioning next picks at random a predictor from SI , the set of predictors cur-

rently associated. Suppose this predictor corresponds to element j of group k. The method

resamples Gkj from its conditional posterior distribution: Q(Gkj) = P(Gkj|G−kj,X,Y ), where

G−kj denotes the current partition G with component Gkj removed. Again, this distribution

is calculated exhaustively, by first removing the component, then testing all possibilities in its

place:

Q(G∗kj) =
P(G∗kj|G−kj,X,Y )∑
G′kj

P(G′kj|G−kj,X,Y )
=

P(G∗kj,G−kj|X,Y )∑
G′kj

P(G′kj,G−kj|X,Y )

=
Score(G∗kj,G−kj)∑
G′kj

Score(G′kj,G−kj)
.

When C > 1, the conditional posterior probability is the same for each available copy of

a predictor. Therefore, as with the first sampling stage, it is only necessary to calculate the

score for one copy and increasing C has minimal effect on computation time.
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2.6.3 Stage Three: Sampling each Component of Z

As a reminder, this stage is only used for Case 3.

When sampling new elements of Z, we are unable to use Gibbs’ sampling. If Θ remained

in the model, we could sample directly from the conditional posterior of Zi, which follows

immediately from its definition. As this is not the case, we would have to consider the

conditional posterior distribution once Θ has been integrated out.

P(Z|X,Y ,G) ∝ P(Y |Z,X,G)× P(Z|X,G)

= P(Y |Z)× P(Z|X,G)

∝ exp
{
− 1

2σ2 (ZT (In + JB−1JT )Z)
}
.

To appreciate the last line, observe that the domain of Z is defined as all values such that

P(Y |Z) = 1, while the expression for P(Z|X,G) follows from previous calculations. Although

this tells us that the joint conditional posterior distribution of Z is truncated normal, I can

not see an efficient means to sample from its components; neither are they independent, nor

can we integrate with respect to Z−i.

Therefore, Sparse Partitioning resorts to proposing a new value of Zi from a folded standard

normal distribution, with its sign determined by Yi:

Q(Z∗i ) = 2φ(Z∗i ), where

{
Zi > 0, if Yi = 1,

Zi ≤ 0, if Yi = 0,

where φ represents the density function of a standard normal distribution. A proposed value

Z∗i is accepted with probability min(1, α), where

α =
P(G, Z∗i , Z−i|X,Y )

P(G, Zi, Z−i|X,Y )
× φ(Zi)

φ(Z∗i )
.

With gentle rearrangement, we obtain

α =
P(Z∗i , Z−i|X,G)× P(G)

P(Zi, Z−i|X,G)× P(G)
× φ(Zi)

φ(Z∗i )
,

the denominator of the first fraction being the score of the current partition, while the numer-

ator is the score when Zi is replaced by Z∗i .
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2.6.4 Obtaining Posterior Estimates

The user specifies the number of iterations performed by Sparse Partitioning. For diagnos-

tic reasons, which I discuss later, the first quarter of the Markov Chain or 1000 iterations,

whichever is shorter, is treated as a burn-in period and discarded. The remaining iterations

are divided equally into two sections. Final posterior estimates are calculated from both sec-

tions combined, however, estimates from each section individually can be compared in order

to assess convergence.

To obtain each set of estimates, a tally is kept of how often each predictor is declared

associated. Additionally, the method keeps track of pairs of predictors which appear together.

To avoid unnecessary memory allocation, Sparse Partitioning only creates a tally for a pair of

predictors on the occasion that they first appear in the same non-null group. At the end of the

sampling iterations, the posterior estimate of the probability that a predictor is associated, or

that a pair of predictors interact, is simply the frequency with which that event occurred.

Typically, I run Sparse Partitioning for a few hundred iterations; a few thousand for larger

problems. This number may appear small compared to other MCMC based methods, which

often run for tens or hundreds of thousands of iterations. However, it is necessary to bear

in mind that Sparse Partitioning performs of the order N samplings within each iteration. I

believe stating the number of iterations in this way is more representative, as the resolution

of each posterior estimate will depend on how often the corresponding predictor is sampled,

not the total number of samplings.

2.6.5 Discussion: Choice of Sampling Stages

Metropolis-Hastings theory greatly simplifies the task of designing an MCMC protocol. It al-

lowed me to construct a proposal distribution however I pleased, then provided instructions for

calculating an acceptance probability. As long as the resulting Markov Chain is irreducible,

which in this case means that either every G or {G,Z} pair is obtainable, its stationary

distribution will match that of the posterior. Therefore, the goal became to pick proposal

distributions which made the sampling as efficient as possible. In the pursuit of improved per-

formance, I felt that were three ways that my method evolved from a more standard approach.

Perhaps most importantly, I allow the current partition to be altered in two different ways

— either by changing an element of I or by changing an element of G — even though both ways

on their own are in theory sufficient; any partition can be reached through Sampling Stage

One changes while, if Sparse Partitioning also considered resampling empty group elements,

the same would be true of Sampling Stage Two. However, suppose we wished to replace an

associated predictor with one that is not associated. To achieve this switch requires changes to
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two values of I, and so would take at least two steps if only using the first sampling method.

This severely reduces the chance of such a move happening, especially if the move must pass

through a low scoring model. The second sampling method corrects this problem, as the move

can be achieved by changing just one element of G. Similarly, if only Sampling Stage Two

type moves were permitted, for a predictor to switch between non-empty groups, at least two

steps would be required.

Secondly, I tried to sample variables in an ordered manner so that, as far as possible,

all variables were considered an equal number of times. Often MCMC based methods, for

example, the MCMC version of Logic Regression (Kooperberg and Ruczinski, 2005), pick

which variable to sample with replacement. The danger in high-dimensional problems is that

such a system will result in some variables being repeatedly overlooked; very many iterations

would be required to be confident that each variable has been sampled at least a few times.

This explains the importance of describing each partition not just as a set of groups, G, but

also in terms of the indicator vector I. While a far less concise definition, the length of I

remains fixed, allowing sampling in a sequential fashion.

Based on this reasoning, it might then seem strange that I decided to sample only one com-

ponent of G per iteration. In my implementation, partitions are stored in tree-like structures,

each of which contains a group of associated predictors. Whenever a predictor is removed,

the trees are reorganised to fill in the resulting gap. Because of this shuffling, it would be

difficult to sample components of G in an ordered fashion. If I viewed this as a significant

limitation, I’m sure a workable solution could be reached; however, as the number of choices

for Gkj is necessarily no greater than K × S, there is far less risk that a component of G is

repeatedly overlooked. Secondly, I feel that the current set-up offers a reasonable balance;

Sampling Stage One carries out the heavy-duty work, typically responsible for major changes

in the model fit; by contrast, Sampling Stage Two performs fine-tuning, seeing whether the

model can be tweaked by swapping in an unused predictor.

Finally, I prefer informative proposal distributions over uninformative ones, for which

reason I chose Gibbs’ sampling over Metropolis-Hastings where possible. This ties in with my

preference for ordered sampling. Suppose Sparse Partitioning instead used an uninformative

proposal distribution for Gkj, picking a new value purely at random from those possible. Each

sampling would need to score only one additional partition, so this approach could perform

approximately N repetitions in the time it takes to sample once from the conditional posterior

of Gkj. Even so, when N is large, there is likely to be a large imbalance between the number

of times each predictor is considered. Gibbs’ sampling avoids this situation, as each predictor

is considered for proposal once per iteration.
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2.6.6 Discussion: Fixed or Variable pg

At this point, I return to the discussion of whether or not to treat pg as a variable. This has

been frequently suggested to me as a possible change, as it gives the appearance of greater

flexibility. Furthermore, pg has a direct interpretation; it is the probability that predictor g is

associated. Therefore, it would seem sensible to base posterior estimates that predictor g is

associated on its posterior distribution P(pg|X,Y ), rather than the current indirect method

of counting how often the predictor features in the current partition.

Intuitively, allowing pg to vary has always appeared unnecessary to me. Consider that

we will be introducing N extra variables, the same number used to define a partition, so

essentially doubling the parameter space. There would have to be a great benefit to justify

increasing the complexity to such an extent. Secondly, introducing a variable pg would not

appear to add much extra depth. Each pg would be implicitly linked to each Ig. A hierarchical

set-up of this nature makes sense when each pg relates to a number of other variables — a

set-up I utilise when considering multivariate responses — but not when there is a one-to-one

relationship. Consider the conditional posterior distribution of p = {p1, p2, . . . , pN}:

P(p|X,Y ,G) ∝ P(Y |X,G,p)× P(p|X,G)

∝ P(Y |X,G)× P(G|p)× P(p).

Therefore

P(pg|p−g,X,Y ,G) ∝ p1(Ig 6=0)
g (1− pg)1(Ig=0) × P(pg),

demonstrating that pg’s one-to-one relationship with Ig carries through to its posterior.

Being conjugate, the most obvious prior choice for pg is the beta distribution β(ag, bg), with

suitable shape parameters ag and bg. The expected value of this distribution is ag/(ag + bg)

so, for example, if ag = 1, then bg = (1 − p̄g)/p̄g, where p̄g is the prior mean. Suppose

Sparse Partitioning took this approach and instead sought the posterior mean of pg. The

first thing to notice is the conditional posterior distribution of pg is either β(ag + 1, bg) or

β(ag, bg + 1), depending on whether or not predictor g is declared associated by the current

partition. Therefore, pg’s posterior mean necessarily lies within the interval[
ag

ag + bg + 1
,

ag + 1

ag + bg + 1

]
.

When ag = 1, these bounds are 1/(bg + 2) and 2/(bg + 2). While the form of the posterior

distribution is not usually a valid criterion upon which to base a prior, we can see that posterior

estimates based on pg would be far less pleasing than those based on Ig, as the latter are only

bounded by 0 and 1. Furthermore, it turns out that the Monte Carlo estimate of the posterior
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mean of pg will be a simple function of the marginal posterior probability estimate obtained

by Sparse Partitioning when p is fixed.

P(Y |X)× P(p|X,Y ) = P(p|X)× P(Y |X,p)

= P(p)

∫
G

P(Y |X,G,p)× P(G|X,p) dG

= P(p)

∫
G

P(Y |X,G)× P(G|p) dG.

We are interested in E(pg|X,Y ) =
∫

p
pg ×P(p|X,Y ) dp. Therefore, if we first multiply each

side by pg, then integrate with respect to p, we obtain

P(Y |X)× E(pg|X,Y )

=

∫
p

pg P(p)

∫
G

P(Y |X,G)× P(G|p) dG dp

=

∫
G

P(Y |X,G)

B(G)

∫
p

pg
∏
j

p
(aj−1)
j (1− pj)(bj−1)

B(aj, bj)
p

1(Ij 6=0)
j (1− pj)1(Ij=0) dp dG

=

∫
G

P(Y |X,G)

B(G)

∫
p

pg
∏
j

p
(aj−1+1(Ij 6=0))
j (1− pj)(bj−1+1(Ij=0))

B(aj, bj)
dp dG,

where B(a, b) represents the Beta function, the normalising constant of the beta distribution.

By observing that

∫
pj

p
(aj−1+1(Ij 6=0))
j (1− pj)(bj−1+1(Ij=0))

B(aj, bj)
=

B(aj + 1(Ij 6= 0), bj + 1(Ij = 0))

B(aj, bj)

=
a

1(Ij 6=0)
j b

1(Ij=0)
j

aj + bj
,

and similarly∫
pg

pg
p

(ag−1+1(Ig 6=0))
g (1− pg)(bg−1+1(Ig=0))

B(ag, bg)
=
ag(ag + 1)1(Ig 6=0)b

1(Ig=0)
g

(ag + bg)(ag + bg + 1)
,

we obtain

E(pg|X,Y ) =

∫
G

P(Y |X,G)

P(Y |X)B(G)
× ag(ag + 1)1(Ig 6=0)b

1(Ig=0)
g

(ag + bg)(ag + bg + 1)

∏
j 6=g

a
1(Ij 6=0)
j b

1(Ij=0)
j

aj + bj
dG

=

∫
G

P(Y |X,G)

P(Y |X)B(G)
× ag
ag + bg + 1

(
ag + 1

ag

)1(Ig 6=0)∏
j

a
1(Ij 6=0)
j b

1(Ij=0)
j

aj + bj
dG.

Consider what happens when Sparse Partitioning is run with p constant. Each pg is fixed to
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its prior mean value ag/(ag + bg), so

P(G) =
∏
j

(
p

1(Ij 6=0)
j (1− pj)1(Ij=0)

)
/B(G)

=
∏
j

(
a

1(Ij 6=0)
j b

1(Ij=0)
j

aj + bj

)
/B(G).

Therefore, the posterior mean of pg can be written as

E(pg|X,Y ) =

∫
G

P(Y |X,G)

P(Y |X)B(G)
× ag
ag + bg + 1

(
ag + 1

ag

)1(Ig 6=0)

× P(G)

B(G)

=

∫
G

P(G|X,Y )× ag
ag + bg + 1

(
ag + 1

ag

)1(Ig 6=0)

=

∫
G:Ig=0

P(G|X,Y )× ag
ag + bg + 1

+

∫
G:Ig 6=0

P(G|X,Y )× ag + 1

ag + bg + 1
.

By counting the number of times predictor g appears in the current partition, Sparse Parti-

tioning ’s posterior estimate of P(Ig 6= 0) represents a Monte Carlo estimate of∫
G:Ig 6=0

P(G|X,Y ) dG.

Denoting this value by P , the Monte Carlo estimate of E(pg|X,Y ) will be

(1− P )
ag

ag + bg + 1
+ P

ag + 1

ag + bg + 1
,

which, as seems sensible, divides the domain of the posterior mean according to the fraction P .

Therefore, if it was considered appropriate to use a beta distribution prior for each pg,

instead of sampling its value at each step, the most efficient strategy to estimate the posterior

mean of pg would be to obey the method of Sparse Partitioning, then simply adjust the

method’s final results. Alternatively, the results of Sparse Partitioning could be viewed as the

limiting case when ag(1− p̄g)/p̄g = bg → 0, whereby the prior distribution tends towards two

point masses at 0 and 1, with weights 1− p̄g and p̄g, respectively.

2.7 Simulation Study

In the next chapter, I continue the description of Sparse Partitioning by explaining how the

method is designed to cope with issues that arise when analysing non-idealised dataset. How-

ever, at this point, I have provided sufficient details to create a working version of the method,

so take the opportunity to demonstrate Sparse Partitioning ’s potential using a simple set of
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simulated datasets.

In total, I have performed ten simulation studies, with the aim of thoroughly testing Sparse

Partitioning across a full range of scenarios. The complete results from all studies are pro-

vided in Chapter 4. For Study One, I considered datasets containing 100 samples, each typed

for 1000 binary predictors. I examined three different underlying relationships, each involving

three causal predictors. This study used perfect data; for example, there were no missing

values, all causal predictors were observed and the predictors were uncorrelated. It formed

the template for all subsequent studies, each of which then tested the effects of deviations

from this idealised set-up. While Study One is far from realistic, during the development

of Sparse Partitioning, I frequently used testing of this type as a sounding board to gauge

whether progress was in the desired direction.

I picked the three underlying relationships in order to examine three contrasting models:

one additive, one with a multiplicative interaction and one with a general interaction. These

models are outlined in the following table:

Model Underlying Relationship

I Y = X1 + 1.5X2 − 2X3

II Y = 1.5X1 ×X2 +X3

III Y = f(X1, X2) +X3,

where f(0, 0) = 0, f(1, 0) = 1, f(0, 1) = 2, f(1, 1) = −1

Figure 2.4 compares the performance of Sparse Partitioning to seven of the existing meth-

ods outlined in the introduction: Single and Pairs (my implementations of basic one and

two-predictors-at-a-time analyses); as well as CART (Classification and Regression Trees),

RF (Random Forests), SSS (Shotgun Stochastic Search), Logic (Logic Regression) and MARS

(Multivariate Adaptive Regression Splines). I have found that the performance of different

methods will be greatly influenced by the “causal predictor frequency” which, for a binary

predictor, is the (sample-specific) percentage of time it takes the value 1. When the predic-

tors are SNPs, this term corresponds to each SNP’s minor allele frequency. Therefore, as

well as varying the underlying relationship, I also considered five different causal predictor

frequencies: 0.05, 0.1, 0.2, 0.4 and ‘?’. The latter case corresponds to drawing each predictor’s

frequency from U(0.05, 0.95), a uniform distribution on the interval [0.05, 0.95].

For each of the 15 scenarios, 100 datasets were created and each method was asked to

declare its top three associations. I discuss why I took this decision more fully later on. In

brief, I considered it a fairer comparison as it avoided the need to pick a declaration threshold
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Figure 2.4: Partial results of Simulation Study One. Each plot considers a different underlying
relationship, which here are Models I, II and III (described in the main text). Within each plot,
the lines report, for different causal predictor frequencies, the average number of causal predictors
correctly detected by each method. The final frequency (‘?’) indicates that each causal predictor’s
frequency was drawn uniformly at random from the interval [0.05, 0.95].

or to plot the false discovery rate. Each line in Figure 2.4 plots the average number of causal

predictors correctly declared by a particular method.

Sparse Partitioning, represented by the black line, is the best performing method under

Model III. This is almost inevitable, as the general interaction contained in the simulated

underlying relationship violates the assumptions of all other methods. However, it is reas-

suring that this success does not appear to come at the expense of performance under more

simple models, as we see that Sparse Partitioning has also performed well in the other two

scenarios. For Model I, the additive relationship, the method’s line tracks very closely that of

SSS, even though the latter method’s underlying assumptions consider only additive models.

Likewise, for the multiplicative relationship of Model II, Sparse Partitioning has matched the

performance of Logic, whose underlying assumptions are tailored for relationships of this type.

These plots provided strong encouragement, and it was due to results of this nature that

I formed, then cemented the view that it is better to risk overfitting the true model by being

too general, than underfitting it by being too restrictive.
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Chapter 3

Additional Features

The previous chapter describes core details of Sparse Partitioning’s methodology, providing

sufficient information with which to implement a working version. In this chapter, I explain

additional features intended to cope with non-idealised datasets. I also consider issues of

convergence and straightforward extensions of the method.

3.1 Basic Preprocessing of Data

Having read in the data files, Sparse Partitioning performs some basic preprocessing steps

designed to remove redundancies and standardise values. Firstly, the method searches for

predictors where either all values are missing or all observed values are the same. In either

case, these predictors are unable to offer evidence for an association, so are removed from the

dataset and assigned posterior estimates of zero. If desired, the user can increase the level of

filtering and, for example, require that each predictor has no more than 25% missing values

and no fewer than 5 occurrences of the least commonly observed state. In a similar manner,

Sparse Partitioning also checks that the response is not trivial, nor has too many missing

values. When the response is continuous, its observed values are standardised to have mean 0

and variance 1.

By default, Sparse Partitioning scans the predictor set for obvious duplications, compar-

ing each predictor with its 100 neighbours on either side. The similarity of two vectors is

measured by calculating r2, the square of their correlation. If missing values are encountered

when comparing two predictors, the samples these correspond to are ignored for the purpose

of calculating their similarity. If any pair of predictors is found to be identical (r2 = 1), only

the predictor with fewest missing values is retained and assigned the higher of the two prior

probabilities of association. At the end of the analysis, each predictor removed through this

pruning is assigned the same posterior estimates as its retained duplicate (i.e. given the same

marginal posterior probability of association, the same posterior probability of interaction,
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and so on).

If Sparse Partitioning is applied to a dataset containing two identical predictors, this would

lead to unnecessary computation and potentially have an undesirable effect on the MCMC

sampling. The desire for parsimony will generally prevent more that one of the duplicates

featuring in the current model, so any evidence that these predictors are associated will be

divided between the two sets of posterior estimates. Sparse Partitioning allows the user to

vary the number of neighbours considered and reduce the r2 threshold, in which case highly

correlated predictors will also be considered duplicates. This comes in useful later on when

analysing association study datasets exhibiting strong levels of LD.

After preprocessing the data, Sparse Partitioning calls the method Single, which performs

one-predictor-at-a-time tests within both a frequentist and Bayesian framework, outputting

p-values and posterior probabilities for each non-trivial predictor. (Single is explained in more

detail in Chapter 4.)

3.2 Missing Data

When some predictor or response values are missing, one solution is to exclude from analysis all

samples with incomplete data. However, in high-dimensional regression problems, even a tiny

fraction of missing data can result in an undesirably high number of samples being removed. A

second approach is to use imputation techniques before analysis to provide Sparse Partitioning

with a complete dataset. For times when imputation is undesirable or inappropriate, Sparse

Partitioning accepts missing values and incorporates their uncertainty into the analysis.

3.2.1 Missing Predictors

I explain only for the case of an identity or logit link function (Cases 1 and 2). For a probit

link function (Case 3), the formulae are identical except for the addition of Z.

Let’s first augment the set of predictor values as X = {O,U}, where the observed and

unobserved values are represented by O and U , respectively. Although O and U are not

matrices, but rather structured lists, I will refer to their elements as if they were. Therefore,

Xig is represented by exactly one of Oig or Uig, depending on whether or not sample i records

a value for predictor g. The posterior distribution now includes U as a variable:

P(G,U |O,Y ) ∝ P(Y |O,U ,G)× P(G,U |O)

= P(Y |O,U ,G)× P(U |O)× P(G).
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Sparse Partitioning employs a very simple prior for U . Firstly, the method assumes inde-

pendence between both predictors and samples: P(U |O) =
∏

g

∏
i P(Uig|O). Then, the prior

for each unobserved value is set to equal the frequency of observed values for that predictor:

P(Uig = u|O) = P(Uig = u|Og) ∝
∑

i 1(Oig = u), for u = 0, 1, 2. The filtering of predictors

performed before analysis ensures we will not have the situation where all values are missing,

nor where all observed values are the same.

As we are primarily interested in the posterior distribution of partitions, we would ideally

like to integrate across U , but it can be readily appreciated that this will not normally be pos-

sible. When considering P(Y |O,G) =
∫

U
P(Y |O,U ,G)×P(U |O) dU , we need only concern

ourselves with the set U †, those missing values corresponding to predictors which are declared

associated by the current partition G; all others have no impact on the likelihood and can be

integrated out immediately. However, even with this shortcut, there will be between 2|U
†| and

3|U
†| states to consider.

Therefore, Sparse Partitioning resamples each unobserved predictor value once per itera-

tion. This is carried out using Gibbs’ sampling, at each step proposing Uig from its conditional

posterior distribution: Q(Uig) = P(Uig|U−ig,Y ,O,G), where U−ig represents U with element

Uig removed. This distribution takes the form

Q(Uig) ∝ P(Y |O, Uig, U−ig,G)× P(Uig|O).

When predictor g is not declared associated by the current partition, the marginal likelihood

P(Y |O, Uig, U−ig,G) will not depend on Uig, so a new value U∗ig can be sampled directly from its

prior. When predictor g is declared associated, it is necessary to calculate P(Y |O, Uig, U−ig,G)

for Uig = 0, 1, 2, which is readily obtained by scoring the current partition using the three pos-

sible values of Uig.

All other sampling stages remain the same, except that, whenever it is necessary to score

a partition, X now represents both the observed predictor values and the current values of

the unobserved predictors.

By adding in the sampling of U , each MCMC iteration produces a draw from the joint

posterior P(G,U |O,Y ). However, U is considered a nuisance parameter, so only the partition

component is recorded. It would be straightforward for Sparse Partitioning to use the U

component to estimate the posterior distribution of each Uig, however, I would be hesitant to

make claims concerning its accuracy; the space of U is typically far larger than that of G,

while for the majority of Uig, those which do not contribute to the response, the data will offer

no insight into their distribution.
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Discussion: Incorporating Imputation Software

If the predictors are correlated, Sparse Partitioning ’s default strategy for sampling missing

values has obvious shortcomings. The prior is almost completely uninformative, in particular

making no use of the information which can be gleaned from each predictor’s neighbours.

For the case of association study data, software packages exist for estimating missing geno-

types based on the observed patterns of linkage disequilibrium (e.g. Clark, 1990; Stephens

et al., 2001; Howie et al., 2009). These algorithms incorporate aspects of coalescent theory

to provide much more accurate estimates of P(U |O), with some able to incorporate reference

genomes as well.

Armed with the results of imputation, the user has two options for each unobserved pre-

dictor: either they can accept the algorithm’s best estimate and replace the missing value with

this state; or, if the software outputs confidence intervals or posterior probabilities, they can

use these as the basis for a prior distribution and override Sparse Partitioning ’s default choice.

Although it would seem sensible to always opt for the latter, the user should bear in mind

that Sparse Partitioning will run faster and converge more assuredly when fewer values are

missing. Therefore, when the confidence is high, they might prefer to err towards accepting

the imputed values.

3.2.2 Missing Responses

Similar to how we handled missing predictors, let’s augment the response values as Y =

(YO, YU)T . Typically, the sets O and U correspond to observed and unobserved values, but this

need not be the case. The distribution of the response values has been established by the regres-

sion equation, which provides P(Yi|X,G,Θ, σ2) or P(Yi|X,G,Θ). Suppose YU represents the

unobserved response values and consider the enlarged posterior distribution P(YU ,G|X, YO)

which treats each of these as a variable. Because each Yi is considered an independent draw,

we obtain

P(G, YU |X, YO) = P(G, YU |XO, XU , YO) ∝ P(YU , YO|XO, XU ,G)× P(G)

= P(YU |XU ,G)× P(YO|XO,G)× P(G),

where XO and XU denote the predictor values corresponding to the observed and unobserved

response values. If YU is considered a nuisance parameter, the most efficient strategy is to

integrate across its value. This leaves us with P(G|XO, YO) ∝ P(YO|XO,G)× P(G), the same

form as before. Notice that the predictors corresponding to the missing response values are

of no importance. Adopting this strategy is equivalent to analysing the data, having first dis-

carded samples whose response values have not been observed. Sparse Partitioning facilitates

this process by allowing the user to input all samples, then performing this exclusion on their
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behalf.

There are occasions, however, when we wish to infer YU , so Sparse Partitioning offers

the option of predicting response values. Prediction need not be limited to estimating miss-

ing response values; for example, the “prediction” of observed values proves useful during

cross-validation, described later on. When predicting YU , we seek the posterior predictive

distribution, which takes the form P(YU |X, YO). Typically, a method will consider prediction

post-analysis, by applying the results of one run to a second set of predictor values. This relies

on the method returning an exact estimate of the underlying relationship, in which case it is

straightforward to apply the regression model to the new predictors. This is not possible with

Sparse Partitioning for two reasons: Θ is considered a nuisance parameter, so integrated out

where possible; and the method estimates the distribution of G, rather than finding a single

best fitting value.

Sparse Partitioning uses two techniques for prediction, both of which rely on Monte Carlo

integration: the first resamples the value of YU , while the second calculates its posterior pre-

dictive mean. For reasons I will explain later, the second strategy is preferable, but not always

possible. Therefore, the approach taken by Sparse Partitioning depends on the situation and

is most easily described by a table:

Case Response - Link Situation Action (Once Per Iteration)

1 Continuous - Identity
All XU Observed

Some XU Missing

Calculate E(YU |X, YO,G)

Resample YU and Missing XU

2 Binary - Logit Any Resample YU and Missing XU

3 Binary - Probit
All XU Observed

Some XU Missing

Calculate E(ZU |X, YO,G)

Resample YU and Missing XU

Resampling of YU

When this strategy is chosen, each element of YU is resampled once per iteration. If any

elements of XU are unobserved, they will be resampled at the same time as any other missing

predictors. Suppose we wish to resample Yi ∈ YU . When the response is continuous, the

conditional posterior distribution of Yi is proportional to the marginal likelihood:

P(Yi|Y−i,X,G) ∝ P(Yi, Y−i|X,G)

∝ (Y TY −ATBA)−
n
2

= (Y (In − JB−1JT )Y )−
n
2 ,

which is not of recognisable form. Therefore, Sparse Partitioning proposes from a standard

normal distribution Q(Yi) = φ(Yi) and accepts the new value Y ∗i with probability min(1, α),
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where

α =
P(Y ∗i , Y−i|X,G)

P(Yi, Y−i|X,G)
× φ(Yi)

φ(Y ∗i )
.

The first fraction is equal to the ratio of the partition scores calculated using the proposed

and current value of Yi. Here, it is useful that the response values are standardised before

analysis, as it ensures the proposal distribution has appropriate shape and scale.

When the response is binary and a logit link function is used, the conditional posterior

distribution for a missing value can be found explicitly by calculating the probability it takes

0 or 1. This is essentially what Sparse Partitioning does, always proposing to toggle the

response, Q(Y ∗i |Yi) = δ{1−Yi}, then accepting with probability min(1, α), where

α =
P(Y ∗i , Y−i|X,G)

P(Yi, Y−i|X,G)
× Q(Yi|Y ∗i )

Q(Y ∗i |Yi)
.

The second fraction has value one, as both proposals are the only moves permitted. Therefore,

α equals the ratio of the partition scores calculated using the proposed and current values of Yi.

Now, consider the case of a binary response and probit link function. Bearing in mind

that Yi determines the sign of Zi, if we sampled their values independently, neither the values

of Y nor the signs of Z would change. Therefore, when Zi corresponds to a response which

is missing, Sparse Partitioning amends its sampling to appreciate that its sign is no longer

fixed. Instead of proposing a new value from a folded standard normal, a standard normal is

used: Q(Zi) = φ(Zi). The probability of accepting the proposed value Z∗i remains equal to

min(1, α), where

α =
P(G, Z∗i , Z−i|X,Y )

P(G, Zi, Z−i|X,Y )
× φ(Zi)

φ(Z∗i )
=

P(Z∗i , Z−i|X,G)× P(G)

P(Zi, Z−i|X,G)× P(G)
× φ(Zi)

φ(Z∗i )
,

and once again, the first fraction equals the ratio of the partition scores calculated using the

proposed and current values of Zi.

Calculation of Posterior Predictive Mean

This strategy does not allow for missing elements of XU , so it is suitable only when all pre-

dictors corresponding to YU have been observed. It also requires that the link function is the

identity or probit function (Cases 1 or 3), for reasons that will become clear shortly. First, I

explain for the identity, then mention the slight change when instead a probit link function is

used.

To obtain the full posterior predictive distribution, it would be necessary to integrate the

raw likelihood of YU across G, Θ and σ2, according to these parameters’ posterior distribu-
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tion. As summation over partitions is not possible, Sparse Partitioning ’s solution is to pick a

statistic, in this case the posterior predictive mean, and estimate its value using Monte Carlo

integration. To do this, first consider P(Y |X,G, σ2) = P(YO, YU |X,G, σ2), the marginal

likelihood given the current variance. Using earlier calculations, we can obtain

P(Y |X,G, σ2) = r
D
2 |B|−

1
2 (2πσ2)−

n
2 × exp

{
− 1

2σ2 (Y T (In − JB−1JT )Y )
}
,

which has the form of a multivariate normal distribution with (inverse) variance matrix σ−2Σ,

where Σ = In − JB−1JT. The symmetric matrix Σ can be partitioned as

Σ =

∣∣∣∣∣ ΣUU ΣUO

ΣOU ΣOO

∣∣∣∣∣ ,
where ΣOU = (ΣUO)T . Here, ΣUU and ΣOO correspond to the variances of YU and YO, respec-

tively, while ΣUO corresponds to their covariance. This tells us that P(YU |X, YO,G, σ2), the

conditional posterior predictive distribution given the current variance, is also multivariate

normal, with mean vector −(ΣUU)−1ΣUOYO and (inverse) variance matrix σ−2ΣUU . Notice

that this mean vector does not depend on σ2, so will also equal the mean of P(YU |X, YO,G)

and there is no need to integrate with respect to σ2. Therefore, at each iteration, Sparse Par-

titioning calculates and records E(YU |X, YO,G), and these values are, at the end, averaged

over to obtain an estimate of the posterior predictive mean of YU .

When a probit link function is used, the conditional posterior predictive distribution

P(ZU |X, YO, ZO,G) = P(ZU |X, ZO,G) is equal to its continuous response counterpart with

YU and YO replaced by ZO and ZU , and σ2 set to 1. The removal of σ2 means we can obtain

this distribution explicitly, so are not limited to considering only its mean. Nonetheless, I per-

sist with calculating its expected value for each iteration, which later leads to an estimate of

E(ZU |X, YO). Rather than return predicted values for ZU , each component is converted into a

probability that the corresponding response value equals 1, using the transformation a→ Φ(a).

To adopt this strategy with a logit link function would require calculation of P(Y |X,G),

which can only be done when values for all variables are provided. In theory, it would be possi-

ble to calculate the conditional posterior predictive distribution P(YU |X, YO,G), by evaluating

the marginal likelihood for each of the 2|U | possible values of YU . Whether this was possible in

practice would depend on the number of response values unobserved, so for consistency Sparse

Partitioning opts against this strategy.

As well as allowing for missing elements of XU , the first strategy has the advantage of

providing a sampling from the posterior predictive distribution of YU , so the user is free to
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examine any property they please. For example, they might wish to check the predicted

variance is in line with that observed. Such assessment is not easily possible for the second

strategy, at least for the case of a continuous response, as only estimates of statistics of the

posterior predictive distribution, rather than samplings from, are obtained. However, in all

other respects, I consider the second strategy preferable. As I discussed, there is no reason

to involve the auxiliary variables XU and YU when estimating P(G|XO, YO), but doing so

will likely impede convergence. I also prefer the way the second strategy considers the joint

distribution of missing response values, rather than considering each marginal distribution in

turn. Furthermore, the prediction accuracy of the first strategy depends on the convergence

of draws from P(G, YU |XU , XO, YO), while in the second it depends only on the convergence

of draws from P(G|XO, YO). For all these reasons, when calculation of E(YU |X, YO,G) is

possible, the second strategy takes priority.

3.3 Confounding

When I talk about confounding variables, I refer to any factors which affect the underlying

relationship, but in whose involvement we are not directly interested. For example, we might

wish to analyse a dataset where a sample’s gender plays a major role in determining its re-

sponse value. If we are interested in studying the effect of sex, we could treat it just like any

other predictor, in which case we could ask to what extent it is involved, whether it interacts

with other predictors and so on. If we are not interested in these questions, but merely con-

sider sex a nuisance variable, then it would be classed as confounding.

Quite often, confounding arises from variables which are difficult to observe. In association

studies, one such example is relatedness. It will be very unlikely the experiment obtains exact

pedigree information for all samples. I later analyse data obtained from the plant Arabidopsis

thaliana. Here, more than in humans, relatedness is a major concern as accessions are often

picked from heavily inbred lines. Suppose, in an experiment, two samples are so closely re-

lated that their values are almost identical. This will produce a “pseudo-duplicate”. If one

of these samples provides evidence for a particular association, then the second sample will

likely magnify this evidence, whether or not this support is warranted. As these two samples

are highly related, they will likely have developed in similar environments relative to the rest

of the sample. We might consider this a more plausible reason for their similar responses, as

opposed to a genetic explanation. Therefore, if we have pedigree information for the samples,

it is prudent to incorporate this in the analysis. Even when this information is not available,

methods exist for its estimation (discussed in Astle and Balding, 2009).

Let the columns of the matrices Ψ and Ω represent confounding variables. These variables
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are divided according to the way Sparse Partitioning allows them to affect the underlying

relationship; variables contained in Ψ are allowed to interact with the standard predictors X,

those in Ω are assumed to contribute independently and additively. The regression equation

becomes l(E(Y )) = f(X,Ψ)+Ωω, where ω contains the regression coefficients corresponding

to variables in Ω.

As Sparse Partitioning is only designed to consider interactions between tertiary predic-

tors, the method requires that all variables of Ψ are coded as such. Consequently, the method

is unable to consider interactions with quantitative confounding variables. I discuss the im-

pact of this limitation after explaining how Sparse Partitioning tries to correct for confounding.

Sparse Partitioning automatically accounts for the effect of variables in Ω, assigning ω

a normal prior distribution with mean 0 and variance σ2/r′ or 1/r′, depending on whether

the response is continuous or binary. Consider the effect on the marginal likelihood when the

response is continuous (Case 1):

P(Y |X,G) =

∫
Θ,σ2

∫
ω

P(Y |X,G,Θ, σ2,ω)× P(ω) dω × P(Θ, σ2) dΘ dσ2

=

∫
Θ,σ2

∫
ω

(2πσ2)−
n
2 exp

{
− 1

2σ2 (Y − JΘ−Ωω)T (Y − JΘ−Ωω)
}

× (2πσ2/r′)−
D′
2 exp

{
− r′

2σ2ω
Tω
}

dω × P(Θ, σ2) dΘ dσ2,

where D′ denotes the number of variables in Ω. Using similar steps to when we earlier

integrated over Θ, we obtain

P(Y |X,G) =

∫
Θ,σ2

r′
D′
2 |B′|−

1
2 (2πσ2)−

n
2 × exp

{
− 1

2σ2 (Y − JΘ)TC(Y − JΘ)
}

× P(Θ, σ2) dΘ dσ2,

where C = In−ΩB′−1ΩT, with B′ = ΩTΩ+r′ID′ . When the response is binary and a probit

link function is used (Case 3), Y is replaced by Z and σ2 fixed at 1, but otherwise the effect

on the marginal likelihood is identical. With this small adjustment, Sparse Partitioning is

able to continue as before.

We see that the introduction of Ω is equivalent to ignoring its presence, but altering the

likelihood assumption to suppose that Y is now drawn from a multivariate normal distribution

with mean JΘ and variance matrix σ2C−1. Viewed the other way round, when confounding

factors introduce correlations between response values, as clearly is the case with relatedness,

the response values can equally be thought of as independent draws, but with a certain quan-

tity added to their underlying relationship values.
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Allowing for Ω slows down computation, as the introduction of C (size n×n) complicates

existing calculations. However, the value of C remains constant throughout analysis and so,

for example, CY only changes when missing response values are resampled. Tricks of this

nature are able to offset the increase in computation time to some extent. Nonetheless, ac-

knowledging Ω’s presence in every calculation will have a noticeable effect; for example, when

the sample size is a few hundred, this will typically result in iterations taking about twice as

long.

Fortunately, it is generally acceptable to adjust for the effect of Ω before analysis, by

replacing the response values with the residuals Y − Ωω̂, where ω̂ is a suitable estimate of

ω. There are two justifications for this. Consider the linear model Y = JΘ + Ωω when all

variables are orthogonal. If < · , · > denotes the inner product of two vectors, we can calculate

least squares estimates for each coefficient by “dotting” both sides with the corresponding

variable:

Θ̂j =
< Y , Jj >

< Jj, Jj >
and ω̂j′ =

< Y ,Ωj′ >

< Ωj′ ,Ωj′ >
.

Therefore, for least squares regression, the overall model fit can be calculated in a stepwise

fashion, at each step regressing the current residuals on the next predictor. A similar argument

can be used in the Bayesian setting to justify first regressing Y on ω, then replacing Y with

Y − Ωω̂, where ω̂ is the posterior mean from this first regression. In fact, we only require

that each column of Ω is perpendicular to each column of J , the case when their observed

values are uncorrelated. Over reasonable sample sizes, we might expect this to be so.

Should this reasoning not seem sound, a second explanation might be more readily ac-

cepted. By automatically considering the contribution to the model of variables in Ω, this, in

effect, assigns a prior probability of 1 that they are associated. This is in stark contrast, in

sparse problems at least, to the standard predictors which are assigned very small probabili-

ties. This relative weighting is reasonable when the confounding variables are “major factors”,

as then we would consider it far more likely that they influence the response than any single

standard predictor. If X and Ω are considered together in the regression model, their corre-

sponding regression coefficients will be competing over any variation both are able to explain.

However, our prior belief heavily favours Ω winning this battle convincingly, justifying why

we might account for its effect beforehand.

When the response is binary and a logit link function is used (Case 2), the marginal
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likelihood becomes

P(Y |X,G) =

∫
Θ,ω

P(Y |X,G,Θ,ω)× P(Θ)× P(ω) dΘ dω

=

∫
Θ,ω

∏
i

[l−1(JΘ + Ωω)]Yi [1− l−1(JΘ + Ωω)](1−Yi) × P(Θ,ω) dΘ dω

=

∫
Θ+

∏
i

[l−1(J+Θ+)]Yi [1− l−1(J+Θ+)](1−Yi) × P(Θ+) dΘ+,P(G, YU |X, YO)

where J+ = [J Ω] and Θ+ = (Θ, ω). A Laplace approximation can be used to integrate across

this extended linear model. We would prefer to be able to integrate out ω beforehand, as this

integral is common to all models. However, this is not possible using a Laplace approximation,

as it an analytic technique which requires numerical values for Θ.

This obstacle can have a dramatic effect on computation time. If we wish to include

confounding factors based on sample relatedness, this typically produces an additional n co-

variates in the model, one for each sample. In general, this will greatly increase the degrees

of freedom of the linear model, making the Newton-Raphson method much slower. Therefore,

when Ω is included in a problem with a binary response, I highly recommend using a probit

link function or allowing the method to regress out the effect of Ω in advance of analysis,

which can be justified by an argument similar to that discussed for the continuous case.

The second set of confounding variables, those contained in Ψ, are easy to include, as

Sparse Partitioning simply treats them as additional columns of X. The method will return

posterior estimates for these variables, as it does for all standard predictors. These variables

require a prior probability of association. As we generally consider confounding variables more

likely to influence the response, these probabilities should typically be set higher than for the

standard predictors. If we are certain of their involvement, they can be added to the list of

predictors Sparse Partitioning must include.

If confounding variables are supplied, these are incorporated during the one-predictor-at-

a-time tests performed by Single by altering its null and alternative hypotheses to include a

contribution from Ω and Ψ.

Discussion: Assumption that X and Ω do not interact

Sparse Partitioning is only set up to consider interactions between tertiary variables. In partic-

ular, this prevents it from exploring interactions involving quantitative confounding variables.

Consider the case of population confounding, which refers to trends and correlations which

appear across populations as a result of migration and geographic differences.
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Consider an idealised scenario, where each individual is sampled from one of two distinct

populations. In this simple case, only a single, two-state vector would be required to indicate

each sample’s population status and this could readily be included as an additional predictor

in the model. In general the stratification will be far more complex. There will often be a

number of loosely defined populations, with varying levels of overlap (“admixture”) between

each pair. To describe such a complex situation requires a few vectors where, say, each vector

indicates the fraction of a sample originating from a particular population. Even when very

detailed migration histories are available, it will not normally be possible to reconstruct these

population vectors with much accuracy.

Fortunately, methods have been developed to estimate these population vectors from the

sample dataset. For a single, idealised population, Hardy-Weinberg equilibrium dictates that

a SNP’s allele frequencies will remain constant throughout generations. In particular, when

a SNP is biallelic, the frequencies of homozygous wildtype, heterozygous and homozygous

mutant states should obey the ratio p2 : 2p(1 − p) : (1 − p)2. When populations are merged,

unless a SNP’s allele frequencies happen to be the same across all populations, this equilibrium

will be destroyed. This principle is exploited by the method STRUCTURE (Pritchard et al.,

2000) which, loosely speaking, attempts to partition the sample so that within each group

Hardy-Weinberg equilibrium is restored.

The extent to which a SNP obeys Hardy-Weinberg equilibrium will, in practice, depend

on many factors. These include the validity of the theory’s assumptions, which in partic-

ular suppose randomly mating individuals and the absence of selective forces. As a result,

some SNPs will be more informative of population differences and these will contribute most to

STRUCTURE’s estimates of the population vectors. The method EIGENSTRAT (Patterson et al.,

2006) takes an alternative approach, one based instead on principal component analysis. Here,

the idea of detecting informative variants is more explicit, as the algorithm directly sets out

to find data axes across which the differences between individuals’ genetic data are highlighted.

Therefore, when considering how much Sparse Partitioning suffers for not being able to

consider interactions with population covariates, it perhaps helps to bear in mind the bio-

logical interpretation of these interactions. Essentially, each population variable is a statistic

corresponding to the group of genetic variants which best distinguish that population. It is

much easier to conceive reasons why single variants might interact, than explain why groups of

scattered variants might. Even so, Sparse Partitioning ’s inability to consider interactions with

quantitative confounding variables clearly affects its generality to some level, so this should

be acknowledged.
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3.4 Multicollinearity

This section considers the case when strong correlations exist between predictors. This is per-

haps most relevant when analysing data from fine-scale association studies, where high levels

of linkage disequilibrium are regularly observed. To demonstrate the effect that correlations

can have on a regression method, I use as an example a 200 kbp region of Human Chromosome

1 centred on the MTHFR gene, the focus of one of the real datasets examined in the next chapter.

At the top of Figure 3.1 is an LD plot obtained from the latest data release of the HapMap

Project (version 3, release 2; The International HapMap Consortium, 2007). This pro-

vides values of correlation squared (r2) between pairs of SNPs, with darker squares indicating

values closer to 1. Conserved sequences — regions which, relatively speaking, are affected less

by recombination events within the population — will generally show up as distinct neighbour-

hoods of highly correlated SNP. The (faint) triangles represent HapMap’s attempt to identify

these “haploblocks”. Note that, for the purpose of the diagram, the SNPs have been evenly

spaced.

The middle plot shows p-values obtained when the method Single regresses expression lev-

els of the MTHFR gene against SNP values. Although the dataset I used for this analysis comes

from an earlier release, one containing fewer individuals and SNPs, there is still a marked

similarity between the top two plots. There is a high concentration of strong associations

within the haploblock immediately downstream of the gene, whose actual endpoints I have

marked with a bold horizontal line. The natural assumption is that at most one SNP in the

region (either observed or unobserved) is truly causal, so any evidence for other associations

is likely spurious and a result of strong correlations with the causal SNP.

This example highlights one of the major drawbacks of one-predictor-at-a-time methods

when applied to association studies. Even if their underlying relationship assumption is true

and there actually is only one causal SNP, by performing independent tests they are unable

to consider the effect of LD. They will find it hard to distinguish between a true association

and a highly correlated false positive, and it will be left to the experimenter to make this

call. To be able to appreciate the correlations present, a method must consider more than one

predictor at once.

The bottom plot of Figure 3.1 presents results from a primitive attempt at multiple re-

gression. It shows the regression coefficients which minimise the penalised least squares

(Y −XΘ)T (Y −XΘ) + ΘTΘ, a strategy matching that of ridge regression. Coefficients

further from the y-axis suggest stronger evidence for association. Despite the crudeness of

this method, the results clearly appear more worthwhile. The peaks no longer simply mirror
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Figure 3.1: Effects of linkage disequilibrium in association studies. Each plot refers to a 200 kbp
region of Human Chromosome 1, centred on the MTHFR gene. The top plot provides pairwise corre-
lation values between SNPs, obtained from 205 individuals from the HapMap project. The shade of
each diamond indicates the extent of linkage disequilibrium observed between a pair of SNPs; darker
shades reflect higher correlation. The middle plot presents p-values from the method Single, regress-
ing the gene’s expression on a selection of the HapMap SNPs. The most extreme p-values lie within,
or very close to, a region of high LD identified by HapMap (marked by a horizontal line). The bot-
tom plot displays regression coefficients from a primitive version of ridge regression. This method is
able to consider the joint contribution of predictors, and so appreciates that many SNPs are highly
correlated. The result is a notable change in the location of the strongest hits, identified as the SNPs
with regression coefficients furthest from zero.
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the patterns of correlations. Among the group of correlated predictors competing to explain

the variance, one has prevailed and been accounted for, leaving the remainder to fight over

the residual. Sparse Partitioning operates in a similar fashion; by analysing all predictors at

once, it is able to consider the combined way predictors contribute. With an underlying model

more detailed than ridge regression, it should be able to do this more accurately.

Ridge regression is an example of a shrinkage method, as the penalty term is a continuous

function of the regression coefficients. For these methods, inclusion and exclusion of predictors

is judged on a continuous scale, corresponding to how much coefficients are pushed away from

or towards zero. By contrast, variable subset selection methods operate in a discrete manner,

insisting each predictor is either in or out of the model. These methods are generally affected

more by correlated predictors. For example, suppose in an association study a causal SNP has

not been observed, but displays very high LD with two observed markers. Of the two markers,

the one with the highest sample correlation with the causal SNP will probably be declared

associated. However, if these two sample correlations are very close, repeating the experiment

with a slightly different set of samples might change which marker is declared associated.

For this reason, variable subset selection methods can display high variability across exper-

iments. In this situation, the advantage of a shrinkage method is that the uncertainty should

be reflected in the two predictors’ coefficient values, making the experimenter aware of how

close the sample came to producing a different result. Sparse Partitioning operates in the

style of a subset selection manner. Its penalty term has a discrete component and at each step

it decides whether each predictor is associated or not. This suggests it might share the same

drawbacks. However, while this is true on a per iteration basis, its posterior estimates are

based on averages. Therefore, provided the MCMC sampling achieves its goal of convergence,

uncertainty should be reflected in the estimates.

3.4.1 Removing High Correlations

There are two main reasons for filtering predictors with identical observed values. The first

is a computational consideration. Leaving duplicate predictors in the dataset will result in

many unnecessary calculations and slow down convergence. The second reason concerns in-

terpretability. If duplicate predictors correspond to an association, the posterior evidence for

this will be divided among the copies. It will be quite possible that Sparse Partitioning has

detected the signal from the association, but this is not visible because the posterior evidence

has been spread out across a number of predictors.

Similar reasoning applies when there is a group of very highly correlated predictors, as

this will lead to sets of partitions with almost identical fit to the data. Therefore, when mul-
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ticollinearity is present, I strongly recommend utilising Sparse Partitioning ’s option to first

filter the predictor set. The choice of r2 threshold provides a trade-off between precision and

speed. Lowering the value will reduce the resolution of results and can only weaken the signal

present in the data. However, the method will converge faster and more assuredly, and there

will be less chance that the true signal is diluted across multiple predictors. I generally opt

for r2 = 0.8, which has been shown able to account for reasonable variation (W de Bakker

et al., 2005). Corresponding to this threshold, is a setting which dictates the size of neigh-

bourhood the method should search for duplicates. This exists for convenience, as ideally

all pairs of predictors should be examined. However, this will be very time consuming and,

particularly for the case of association studies where LD decays with distance (Pritchard

and Przeworski, 2001), a largely unnecessary process.

As well as improving performance, I personally feel that filtering provides an element of

standardisation. For an experimenter, it must be easy to overlook possible biases introduced

by the choice of predictors. Returning to the HapMap example, suppose we were particularly

interested in searching for an association in the immediate vicinity of the MTHFR gene. This

might lead us to consider additional SNPs in this region. Suppose then, a uniform prior

probability of association was assigned, judging each SNP equally likely to be causal. By

typing additional variants near to the gene, we would have implicitly increased the prior

probability that an association lies in this region, which is dangerous if we then use the results

to support a hunch that the causality was close by. Filtering the SNPs based on correlation

should reduce this concern, as the density of those remaining will more closely match the

profile of variation present.

3.5 Diagnosis of Results

As with any MCMC based method, Sparse Partitioning ’s performance depends on the ac-

curacy with which its Markov chain converges. The most straightforward and perhaps best

means of diagnosis is to perform the analysis multiple times and compare each set of results.

If the sets are in close concordance, this suggests reasonable convergence has been achieved.

Of course, this check is by no means fail-safe. The method might each time end up in a local

maximum, which is not necessarily a fair reflection of the posterior distribution as a whole.

To guard against this, it is common to perform these runs from different starting states. Un-

fortunately, for the the case of Sparse Partitioning, such an approach is of little value and

can only be misleading. Because of the sparsity involved, the majority of partitions will be

considered very poor fits to the data. Therefore, in almost all cases, the method’s first moves

will be to revert back to the null model.
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To judge whether a individual run has achieved stability, it is customary to examine trace

plots. To this end, Sparse Partitioning keeps track of the posterior score and size of each par-

tition visited. Raw plots of these sequences should highlight any obvious lack of convergence.

3.5.1 Cross-Validation

Cross-validation can be used both to compare the performance of different models and de-

termine suitable parameter choices. To perform cross-validation, a method is first applied

to a “training” set of samples, which it uses to predict response values for a “test” dataset.

The method is then scored according to how well each predicted value Ŷi compares with its

actual value Yi. If the response is continuous, a scoring system often used is mean squared

residual error,
∑

i(Ŷi−Yi)2/n. If the response is binary, either a likelihood based measure can

be devised or, if the predicted values are binary, the method can be scored according to the

number of misclassifications,
∑

i 1(Ŷi 6= Yi).

The prediction score will depend on the choice of training and test samples so, unless a

divide is obvious, it is common to repeat this process for a number of splits and average. If

the training and test datasets are not chosen in a systematic manner, the final average will

depend on how they were picked. Leave-one-out cross-validation (LOOCV) addresses this

concern by considering only test datasets contain a single sample, then averaging over all n

possible combinations.

I touched upon the way Sparse Partitioning handles cross-validation when explaining how

the method copes with missing response values. Suppose YU corresponds to the response

values in a test dataset. If the user sets each of these to missing, then Sparse Partitioning

will estimate their values based on the posterior predictive distribution P(YU |X, YO). Cross-

validation can become a lengthy process, as the analysis of each training set will usually take

almost as long as analysing the entire dataset. Therefore, by default, Sparse Partitioning per-

forms “pseudo” LOOCV. How this differs to (true) LOOCV will become clear when I explain

the calculations involved.

To perform LOOCV, the main algorithm remains unchanged. Sparse Partitioning con-

tinues to search for the posterior distribution of partitions using the entire dataset X and

Y . Additionally, at each iteration, the method calculates for each sample E(Yi|X, Y−i,G),

the expected value of the response given the current partition and the other response values.

For a continuous response, this value is equal to E(YU |X, YO,G) when U = {i} and O is its

complement. Letting Σ again denote the inverse variance matrix of P(YU , YO|X,G, σ2), this

value equals −(ΣUU)−1ΣUOYO = −
∑

j 6=i ΣijYj/Σii. At the end of the iterations, the set of

values relating to sample i are averaged to provide a Monte Carlo estimate of the mean of the
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posterior predictive distribution P(Yi|X, Y−i).

With a probit link function, near identical calculations return the value E(Zi|X, Z−i,G)

and in turn an estimate for E(Zi|X, Z−i). This value is converted into a probability that the

corresponding response equals 1, which in turn can be dichotomised to determine classification

error.

When a logit link function is used, P(Yi = 1|X, Y−i,G) is calculated manually:

P(Yi = 1|X, Y−1,G) =

(
1 +

P(Yi = 0|X, Y−i,G)

P(Yi = 1|X, Y−i,G)

)−1

=

(
1 +

P(Yi = 0, Y−i|X,G)

P(Yi = 1, Y−i|X,G)

)−1

,

where the fraction is the ratio of the partition scores calculated with Yi set to 0 and 1. Again,

the posterior mean can be dichotomised to indicate the method’s best guess for each response.

3.5.2 Permutation Tests

Permutation tests can be used to assign significance to Sparse Partitioning ’s posterior proba-

bilities. If the user reruns the analysis having first permuted the response values, the resulting

posterior estimates will be obtained under a null hypothesis of no true association. By re-

peating this process, a p-value can be obtained for the largest marginal posterior probabilities,

assessing the likelihood of obtaining values at least as large by chance alone. In particular, it is

possible to obtain significance thresholds for the first, second and third strongest associations,

and so on. As always, the resolution and accuracy of these p-values will be limited by the

number of permutations. Although each permutation involves repeating the entire analysis,

the time this takes will often be considerably shorter; when there are no true associations, the

size of the current partition should remain small, greatly reducing the number and complexity

of partitions which must be considered at each step of the sampling.

Gauging the significance of interaction probabilities is less straightforward. By permuting

the response values, it is possible to obtain thresholds for each of the top pairwise probabil-

ities. Unfortunately, these will often prove misleading. We are probably more interested in

the conditional probability that these predictors interact, given their marginal probabilities of

association. Consider a situation where Sparse Partitioning has found strong evidence that

predictors 1 and 2 contribute and returns a probability of 0.45 that they interact. The impor-

tance of this finding depends on the states visited by the Markov chain. If, during the chain,

SI consistently equalled {1, 2}, then the prior probability these two predictors interact, given

that they are the only two associations, is 0.5, so this becomes a weak result. By contrast,

if SI regularly contained a third predictor, the prior probability of their interaction would be

0.4, so this becomes a strong result.
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In theory, we might consider conditional permutation (Anderson and Ter Braak, 2003;

Werft and Benner, 2010), which attempts to generate datasets that preserve marginal ef-

fects while destroying true interactions. This would have to be carried out on a per-iteration

basis, as this is the only time Sparse Partitioning provides an exact model for the underlying

relationship. However, I don’t believe this approach would be particularly informative, at

least not compared to the extra processing it involves. Fortunately, I do not consider this

issue a major concern. I view Sparse Partitioning as a method primarily aimed at detecting

associations, whose performance is improved by taking nonlinearity into account. Therefore,

the declaration of possible interactions is of secondary importance. Saying this, when de-

scribing the deterministic version of Sparse Partitioning in Chapter 5, I explain a strategy for

obtaining alternative interaction probabilities by calculating Bayes factors conditional on the

set of associations. I believe these Bayes factors examine interactions more closely.

I return to the issue of diagnosis in the next chapter, when applying Sparse Partitioning

to real datasets.

3.6 Immediate Extensions

While I have described Sparse Partitioning for the case of a continuous or a binary response,

the method is not limited to these two situations. The main three sampling stages involve X

and Y only when scoring partitions. Each score is a composite of the partition prior, which

is invariant of the regression model and precalculated, and the marginal likelihood, which

depends on the choice of link function and the response assumptions. Therefore, to adapt the

method for different response types, it is necessary only to calculate an alternative marginal

likelihood.

As Sparse Partitioning ’s regression model is similar in form to the generalized linear model,

this proves useful when considering possible extensions. For example, when the response

records count data, the natural assumption is a logarithmic link function and a Poisson likeli-

hood assumption. If the new functions provide either a closed form for the marginal likelihood

or a numerical approximation, this expression can be substituted in immediately. When such

a form is not available, the marginal likelihood can instead be replaced with any measure of

a partition’s fit, as is the case when r is set to zero and the maximum likelihood is used in its

place. However, as I discussed, I consider this reduced Bayesian alternative sub-optimal and

advise against its use when possible.

One of my immediate objectives is to integrate Sparse Partitioning into the programming
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language R (R Development Core Team, 2008), which would hopefully increase both the

method’s exposure and usability. It might be desirable to increase the level of user interaction,

for example, to allow personalised measures of fit to be integrated within the code. While R

is well-suited for this task, Sparse Partitioning ’s computational requirements demand a high-

level programming language, so I would probably have to investigate other formats. In the

meantime, it is prudent that I develop the method for as many data types as possible.

3.6.1 Multiple Responses

Here, I consider the case when each sample is recorded for a number of responses. Such a

set-up is becoming increasing common in genetics. Consider a fine-scale association study.

Generally, the majority of the study’s expense will be incurred obtaining the samples and typ-

ing the variants; relatively speaking, the cost of measuring samples for additional responses

will be very slight. Therefore, it is efficient if a number of phenotypes can be investigated

for a common set of predictors, a strategy adopted by Atwell et al. (2010). Studies of this

type might become increasing popular once next-generation sequencing becomes commonplace

— when “complete” typing is routine, there will be less need to choose an individual set of

predictors for each response.

For this subsection only, I suppose each sample has been recorded for M response values.

Let the vector Ym = (Y1m, Y2m, . . . , Ynm)T contain the values for the mth response. The re-

sponse values are now contained in a matrix: Y = [Y1 Y2 . . .YM ] (size n×M). The aim is to

investigate the partitions G1,G2, . . . ,GM , or, equivalently, the indicator vectors I1, I2, . . . , IM ,

which correspond to the underlying relationships for each response.

The combined posterior distribution becomes P(G1,G2, . . . ,GM |X,Y ). However, the sim-

plest approach is to regress each response on the predictors separately, at each stage considering

only P(Gm|X,Ym). This is Sparse Partitioning ’s default strategy, and will give the same re-

sults as constructing M separate experiments and running the method once for each.

If the sets of response values can be considered related, a natural question to ask is whether

certain predictors influence more than one response. For example, we might imagine that a

single biological pathway is able to affect the expression levels for a group of connected genes.

This belief can be investigated post-hoc by analysing each response independently and looking

for similarities between the M sets of posterior estimates. Alternatively, Sparse Partitioning

provides the option to analyse the responses simultaneously, incorporating this idea as prior

information.

In this multiple response set-up, I initially considered the collection of vectors p1,p2, . . . ,pM ,
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where pm = (p1m, p2m, . . . , pNm) denotes the probabilities of association for the mth response.

Analysing each response separately has the effect of supposing each pgm is independent. If we

believe it more likely that some responses are influenced by sets of common predictors, this

implies that pg1, pg2, . . . , pgM are in some way connected. This suggests a hierarchical prior of

the form

P(p1,p2, . . . ,pM) =
∏
g

(
P(ζg)

∏
m

P(pgm|ζg)
)
,

where the variables ζg represent (vectors of) hyperparameters and are supplied with their

own priors. The idea is that while pg1, pg2, . . . , pgM , the probabilities that different responses

are influenced by predictor g, are free to vary, their prior distributions are linked by ζg, so

providing the desired connection.

Similar to the univariate case, I argue that allowing pgm complete flexibility is unnecessary,

as it adds no extra value to the set-up. As before, I will shortly decide to fix these proba-

bilities to their prior mean, which will have the effect of removing the second product term.

For consistency, I will rename the variable ζg to pg, though this will have a slightly different

meaning compared to the univariate case.

Given the prior probabilities of association, the priors for each partition will be indepen-

dent:

P(G1,G2, . . . ,GM |p1,p2, . . . ,pM) =
∏
m

P(Gm|pm)

=
∏
m

B(Gm)−1

( ∏
g∈SIm

pgm
∏
g/∈SIm

(1− pgm)

)
.

Suppose complete flexibility was allowed. The conditional posterior distribution of pgm would,

like before, be determined solely by whether or not predictor g was declared associated for the

mth response:

P(p1,p2, . . . ,pM |X,Y ,G1,G2, . . . ,GM)

∝ P(G1,G2, . . . ,GM |p1,p2, . . . ,pM)× P(p1,p2, . . . ,pM),

and thus

P(pgm|p1, . . . ,pm−1,p
−g
m ,pm+1, . . . ,pM ,X,Y ,G1,G2, . . . ,GM)

∝ p1(Igm 6=0)
gm (1− pgm)1(Igm=0) × P(pgm|ζg),

where p−gm represents pm with element g removed and Igm, the gth element of Im, indicates

to which group of Gm predictor g belongs.
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We could again consider what would happen if each pgm was assigned a beta distribution

prior, with shape parameters provided by the hyperparameter ζg. The posterior distribution

of interest would become P(G1,G2, . . . ,GM , p11, . . . , pgm, . . . , pNM |X,Y ). We would find that,

just as in the univariate case, it would be possible to integrate across the probabilities, and

so the Monte Carlo estimate of the posterior mean of pgm would be a simple function of the

Monte Carlo estimate of P(Igm 6= 0), obtained by fixing each pgm to its prior mean and sam-

pling from P(G1,G2, . . . ,GM |X,Y ). Note that, as the prior distribution of pgm is a function

of ζg, this implies that pgm is constant across responses, but will remain free to vary across

predictors.

My conclusion contradicts the findings of Carvalho et al. (2008), the article which

prompted me to consider hierarchical priors in the first place. However, I believe this discrep-

ancy owes to the slight difference between my set-up and theirs. Essentially, their method,

which is designed with far more responses in mind, has each associated predictor contributing

to all responses. For this reason, a two-stage hierarchical prior is required, to reflect that the

magnitude of this predictor’s contribution varies greatly across responses. My method allows

for a predictor to contribute only to a subset of responses, so this second level is not required.

In effect, it is contained within the prior for the partitions.

As the set of probabilities corresponding to a particular predictor are now equal, I decided

to set pg1 = pg2 = . . . = pgM = pg. Compared to the univariate set-up, pg takes on a slightly

different meaning. It now represents a baseline probability that the gth predictor in some

way influences the set of responses. Should, for example, its value increase during the MCMC

sampling, this means that, for the next iteration, the prior probability that predictor g is

associated with each response will be higher.

It remains to decide a prior for each pg. I decided to opt for a beta distribution: P(pg) =

β(ag, bg). By setting ag = 1, the value of bg will be determined by the user’s belief in each

predictor’s prior probability of having an impact. With the prior specified, the posterior

distribution takes the form

P(G1,G2, . . . ,GM ,p1, p2, . . . , pN |X,Y )

= P(Y |X,G1,G2, . . . ,GM)×
∏
m

P(Gm|p1, p2, . . . , pN)×
∏
g

P(pg).

At this point, I assume the sets of response values are independent, a decision I return to

shortly. The overall marginal likelihood P(Y |X,G1,G2, . . . ,GM) becomes the product of each

individual response’s likelihood P(Ym|X,Gm), making implementation straightforward. The
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main sampling stages can be carried out concurrently, across multiple processors if desired.

The method needs only to regroup once per iteration in order to resample pg and, if necessary,

missing predictor values. With each pg assigned a beta prior, its conditional posterior distribu-

tion will also be beta, with shape parameters 1+
∑

m 1(Igm 6= 0) and bg+M−
∑

m 1(Igm 6= 0),

where
∑

m 1(Igm 6= 0) counts the number of responses in which predictor g is currently de-

clared associated.

For sparse problems, bg is large and it is easy to understand the effect of this set-up. When

a predictor is declared associated by one partition, the probability it is associated with a dif-

ferent one effectively doubles; if declared associated by two partitions, its probability trebles,

and so on.

Simultaneously analysing responses is certainly the correct approach when one or more

predictor values are missing. Were the responses considered separately, this would not ap-

preciate that missing data should be consistent across experiments. For example, the first

response might consistently sample state 0 for a particular unobserved predictor, while the

second response might tend towards state 1. By simultaneously considering all responses,

Sparse Partitioning resamples predictor values based on their combined conditional posterior

distributions, taking into account all sets of responses.

So far, the restriction that pg1, pg2, . . . , pgM are equal has not proved an issue, as I have

not yet been in a situation where I would prefer this otherwise. However, it is conceivable

that a user might consider, say, a predictor more likely to contribute to one response than

to another, or for one response to have more associations than the rest. To accommodate

such beliefs, I could let pg1, pg2, . . . , pgM equal (fixed) functions of pg, determined according to

the user’s belief in their relative individual values. Depending on the form of these functions,

a revised proposal distribution for pg might be required, but otherwise the remainder of the

method would operate the same.

Correlated Responses

A current issue I face is what to do when the responses are highly correlated. Consider a

situation where two sets of response values are very similar. Any partitions scoring highly

for one will likely score highly for the other, boosting the posterior estimates of the predic-

tors involved. However, as for the case of sample relatedness, this support is likely to be

unfounded. It is more probable that the two response values are measuring very similar traits

or alternative ways to measure the same trait.

At the moment, I wonder whether data reduction methods could be used to deal with this
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problem (Fodor, 2002). For example, Ian Saunders suggested I applied principal component

analysis to produce M linear combinations of the original response values. Each pair of these

“new” responses will be orthogonal, allowing independence to be restored. Early testing indi-

cates this approach might run into difficulties when nonlinearity is involved. If each response’s

underlying relationship is linear, then the signal might be carried over into principal compo-

nents. However, if the relationship is nonlinear, any linear combination of responses seems

likely to disrupt it.

Therefore, I feel the correct strategy might require explicit consideration of the correla-

tions of responses. For the continuous case, it would be straightforward to set up a joint

distribution from which each (Yi1, Yi2, . . . , YiM) represents a sample, an inverse Wishart prior

on the covariance matrix being an obvious choice. However, I foresee the calculations involved

becoming unmanageable for even a few responses.

Perhaps a better strategy is to apply partitioning to the responses as well as the pre-

dictors. Zhang et al. (2010) implement an approach similar to that I have in mind. They

group the responses into common modules which have similar patterns of values. In a simi-

lar vein, Stephens (2010) has been working on a method which divides the responses into

not associated, directly associated and indirectly associated. The last category reflects that

a predictor-response pair might appear associated, but this is a consequence of the response

being highly correlated with another.

3.6.2 Parallelisation

Speed is of crucial importance in MCMC methods. The faster each iteration, the greater

the number that can be performed, so the more reliable the results. In Sparse Partitioning,

computation of the marginal likelihood accounts for over 95% of all processing time, so I have

put much thought into trying to optimise this process. As mentioned, it proves convenient

that each group’s design matrix Jk is sparse with only a single 1 in each row, as this speeds

up calculation of the matrix B. However, the overwhelming bottle-neck in the algorithm is

the solving of BA = JTY , made worse when confounding cofactors are introduced. For most

changes proposed to the current partition, only a single non-null group is affected, so this sug-

gests a trick similar to inversion by partitioning (Press et al., 2007) might be incorporated

to speed up the operation.

It is convenient that Sampling Stage Two can immediately be parallelised. This stage

requires exhaustive calculation of the neighbourhood of all partitions obtainable by a change

to one component of G. This search can simply be assigned across processors. Typical of

most MCMC algorithms, Sampling Stage One is not easily adapted for parallelisation, as the
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Figure 3.2: Parallel processing of MCMC samplings.
During the resampling of I, the master processor simul-
taneously instructs each slave to resample group mem-
bership for a different predictor. The main text explains
when each slave’s resampling will be valid. The expected
number of valid samplings after looping once through
the slaves depends on p, the likelihood that a changed
value of Ig is reported. The solid coloured lines represent
the theoretical speed-ups; the dashed coloured lines some
speed-ups observed in practice. For comparison, the black
dashed line represents a perfect linear speed-up.

sampling of step t+ 1 relies on knowing the outcome of step t.

However, for high-dimensional problems, I devised a system which takes advantage of the

likely sparse nature of the problem (Speed, 2008). Suppose we have H slave processors

available and assume the order in which predictors are examined has not been shuffled. The

master processor instructs the (h+1)th slave to sample Ig+h+1 using the current values of

Ig+1, Ig+2, . . . , Ig+h. The sampled value of Ig+h+1 will be valid only if the first h slaves make

no changes to the current model. If one of these slaves makes a change, it will be necessary

to backtrack and ignore all samplings after the point at which this occurred.

Fortunately, when the number of associations is small compared to N , there is a high

probability that each step will make no change to the current partition. In particular, if

most predictors remain not associated, this parallelisation is very efficient. Suppose the aver-

age probability that a step changes the current partition is p. By considering a (truncated)

geometric distribution with probability of success p, it is straightforward to calculate a theo-

retical bound on the improvement possible. In Figure 3.2, each solid coloured line represents

the maximum speed-up factor achievable for a particular value of p. By comparison, the dot-

ted coloured lines represent speed-ups I achieved in practice using an eight-core processor. We

can see that even for moderate values of p, corresponding to probabilities of association of

between 1 in 10 and 1 in 100 (high by sparse standards), the increase remains close to linear.

A similar implementation, called “Speculative MCMC”, has been proposed by Byrd et al.

(2008, 2010).
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Chapter 4

Testing and Applications

This chapter is divided in two. The first section uses simulated datasets to compare the perfor-

mance of Sparse Partitioning with existing methods. This kind of testing, where the underlying

relationship can be specified in advance, proved invaluable during development of the method-

ology. The second section applies the method to three association study datasets.

4.1 Simulation Studies

In Chapter 2, I presented brief results from Study One. This study acted as the template

for the simulation studies. In total, I performed nine further studies, each of which altered a

certain aspect of the set-up:

Study One 100 samples, 1000 binary uncorrelated predictors, continuous response.

Study Two Causal predictors unobserved.

Study Three 10% of predictor values missing.

Study Four Non-normal noise.

Study Five Tertiary predictors, 2 causal loci.

Study Six Binary response, 3 or 4 causal loci.

Study Seven Correlated predictors, 4 causal loci.

Study Eight Examine effect of prior choice.

Study Nine Examine effect of number of iterations.

Study Ten Non-disjoint underlying relationship, 3 or 4 causal loci.

To offer the fairest assessment of Sparse Partitioning ’s performance, I tried to test it in

as many scenarios and against as wide a range of existing methods as possible. However, I

omitted some methods from comparison. Some are for reasons of duplication. As I discussed

in the introduction, there are a wide range of methods in the multiple regression category

(K > 1; S = 1). While, fundamentally, these propose the same underlying relationship,
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frequentist approaches vary in their choices of penalty functions, while Bayesian approaches

differ in their priors. I picked Shotgun Stochastic Search (SSS ) to represent this category of

methods. Being Bayesian, it seems more relevant and, unlike the others methods I mentioned,

its finalised code is readily available. Furthermore, Sparse Partitioning has many similarities

to SSS when the maximum group size is set to 1, which made for interesting comparison.

Generally, a regression method dealing with a continuous response can be used to analyse

a binary response, either directly or through introduction of a suitable link function. The

converse is not true. I consider Sparse Partitioning best-suited for experiments involving a

continuous response. Almost always, a continuous response value will provide more informa-

tion than a binary one. Nonlinear regression methods rely far more on information in the

data than linear methods. This is a consequence of their relative complexity; the degrees of

freedom of an interaction model has the potential to grow exponentially with the number of

predictors involved. For these reasons, I excluded from comparison the methods set up to only

handle binary response values.

In order to compare methods, I asked each to declare a fixed number of associations, then

counted how many of the causal predictors it correctly found. For example, for studies in

which there were three causal predictors, I required each method to return the three predic-

tors for which it found most evidence of an association, then scored according to how many of

these three were simulated to be causal. From these figures, I computed an “average detection

accuracy” for each scenario by averaging the score over 100 datasets.

It would have perhaps been more obvious to compare methods according to detection

power. In this case, I could have placed no limit on how many associations a method could

declare, then simply scored each by the number of causal predictors it discovered. However,

I foresaw a number of difficulties with such an approach. In particular, it would have been

necessary to decide a threshold for each method, beyond which predictors were declared as-

sociated. This had the potential of producing misleading power estimates; for example, if I

had set a method’s threshold too conservatively, it would have been at a disadvantage. As an

alternative, I could have used cross-validation to determine thresholds, but this would have

had to been done on a per-dataset basis, so would have been incredibly time consuming.

4.1.1 Generating Datasets

Each study considered a range of scenarios, each of which examined a different combination of

underlying relationship and “causal predictor frequency”. When a causal predictor is binary,

this frequency denotes how often it takes value 1 in the general population. If the predictors

are thought of as SNPs, this value corresponds to the minor allele frequency.
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Using Study One as an example, I explain the basic methodology I used to produce one

dataset for a particular scenario. This study considered three different underlying relation-

ships, the first of which was f(X) = f(X1, X2, X3) = X1 + 1.5X2 − 2X3. To generate other

datasets, I changed f(X) accordingly. Let F denote the set of unique possible values of

f(X1, X2, X3), which for binary predictors contains the images of members of {0, 1}3.

I generated datasets in a retrospective manner, first simulating a sample’s response, then its

predictor values. The first step was to sample F at random from F , from which I obtained y,

a response value realisation, through addition of normally distributed noise: y = F +N(0, σ2).

This process ensured the response values were sampled evenly across their full range, rather

than according to their prevalence. From this response, I generated x1, x2, x3, values for the

three causal predictors, according to

P(x1, x2, x3|y) ∝ P(x1, x2, x3)× P(y|x1, x2, x3)

∝ mx1
1 m

x2
2 m

x3
3 × exp

{
− 1

2σ2 (y − f(x1, x2, x3))2
}
,

where m1, m2 and m3 are the causal predictor frequencies relating to X1, X2 and X3. I con-

sidered five possible values for mg: 0.05, 0.1, 0.2, 0.4 or “random”. For the first four values,

m1, m2 and m3 were set equal; for the fifth, each mj was sampled uniformly at random from

the interval [0.05, 0.95]. For each model, I chose σ2 so the proportion of observed variation

explained by the true underlying relationship ranged from about 0.1 to 0.5.

For each of the 997 remaining predictors, I sampled its values independently from a

Bernoulli distribution, such that P(Xig = 1) = ηg, where ηg was drawn uniformly at ran-

dom from the interval [0.05, 0.95]. The last step was to reorder the predictor set, just in case

a method benefited by the causal predictors being located at the start.

For an association study, the proportion of variance explained corresponds to the heritabil-

ity, so my range of values might seem unrealistically high. To some extent, such a choice was

necessary. I found 100 samples and 1000 predictors to be a suitable size for testing “large p,

small n” datasets in a reasonable time. Consider from a frequentist point of view, the amount

of variation which much be explainable to achieve significance for different degrees of freedom.

To obtain a p-value less than 10−3 for a sample of size 100, a model with degrees of freedom

1, 2, 3 or 4 must explain at least 10, 13, 15 or 17% of the variation, respectively (I explain

how I arrive at these figures very shortly). For a significance threshold of 10−4 these values

rise to 14, 17, 19 and 21%. This demonstrates the heritability required when the sample

size is moderate. By comparison, were 1000 samples available, a 5 degrees of freedom model

could achieve genome wide significance (p-value < 10−6) by explaining less than 3.5% of the
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variation. Reassuringly, I have come across countless datasets where variants explain upwards

of 20% of variation, even across hundreds of samples. I provide some examples of these a bit

later on.

4.1.2 Details and Settings for Methods

Most methods require the user to make some parameter choices, so as far as possible I tried to

select these consistently. When using third-party software, any parameters I do not mention

specifically were left at their default values. I ran four of the existing methods using their

implementation in the programming language R (R Development Core Team, 2008).

Single

I designed Single to represent the most basic, yet popular, approach for analysing datasets.

It is a one-predictor-at-a-time method, testing each individually for evidence of an associa-

tion with the response. For predictor g, it considers the null model f(Xg) = θ0 compared

to the alternative model f(Xg) = θXg . It makes the standard assumption that the residuals

are normally distributed, with mean 0 and unknown variance σ2, allowing it to calculate the

maximum likelihood estimates under each hypothesis.

Single’s test statistic is the ratio of these likelihoods. For the case of a continuous response,

this test statistic can conveniently be expressed as n log(TSS0/TSS1), where TSS0 and TSS1

are the residual sums of squares under each model, calculated using the least squares estimates.

To obtain a p-value for each predictor, this test statistic is compared to a χ2 distribution with

degrees of freedom 1 (binary predictors) or 2 (tertiary predictors). Notice that 1−TSS1/TSS0

represents the proportion of variation explained by the alternative model, which is how I ar-

rived at the earlier estimates for required heritability.

Single also offers a Bayesian version, invoking the same prior choices for regression coef-

ficients and σ2 as Sparse Partitioning. Let G0 denote the null partition which declares no

predictors associated and Gg denote the partition corresponding to SI = {g}. The marginal

likelihoods under these null and alternative models will equal P(Y |X,G0) and P(Y |X,Gg),

which when the response is continuous will both take the form

r
D
2 (2π)−

n
2 |B|−

1
2 × Γ(n

2
)(Y TY − Y TJB−1JTY )−

n
2 ,

with B, J and D specific to each model. If we were to standardise the columns of J so that

JTJ = ID, we would find that B = JTJ + rID = (1 + r) × ID. Additionally, the posterior

mode of Θ could be shown to equal (1 + r)−1JTY , a value obtained by scaling the least

square estimate towards zero by a factor (1 + r). This similarity continues when we consider
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the logarithm of the Bayes factor comparing the two hypotheses:

BF =
D′ −D

2
log

(
r

1 + r

)
× n

2
log

(
Y TY − Y TJJTY /(1 + r)

Y TY − Y TJ ′J ′TY /(1 + r)

)
,

where J and J ′ are the design matrices corresponding to the null and alternative hypotheses.

Bearing in mind that the residual sum of squares in the frequentist version takes the form

Y TY − Y TJJTY , this highlights how similar the frequentist and Bayesian approaches are.

For fixed r, the Bayes factor values for binary (D′ = 2) or tertiary (D′ = 3) predictors will

be ordered the same as the frequentist test statistics, and therefore the p-values. When J is

no longer standardised, this equivalence can be retained by shrewd prior choice, one which

assigns higher prior variance to coefficients corresponding to less variable predictors (Wake-

field, 2009). In the case of association studies, this assumes that rarer variants are likely to

have larger effect sizes.

Furthermore, posterior odds are calculated by multiplying the Bayes factor by the prior

odds pg/(1 − pg), which in turn provides the posterior probability of association. Therefore,

when each predictor is considered equally likely to be associated, the frequentist and Bayesian

versions will essentially give the same results. As this is the case in the simulation studies, I

only present results from the former. The main advantage of the Bayesian version comes when

certain predictors are judged more or less likely to be associated. The method will then be

able to incorporate this knowledge, potentially changing the ordering of posterior probabilities

as a result.

When confounding variables are supplied through Ω, these are added into both the null and

alternative hypotheses, which then take the forms f(Xg) = θ0 + Ωω and f(Xg) = θXg + Ωω,

respectively. For the frequentist version, the maximum likelihood test also calculates an esti-

mate of ω for each hypothesis; while for the Bayesian version, the marginal likelihoods for the

null and alternative partitions are calculated with Ω included.

At the moment, both forms of Single use independent tests. A Bayesian version has the

capacity to compare more than two models at once, calculating a posterior probability for

each. Assuming at most one predictor is associated, there are 1 + N possible models, so we

could prescribe (relative) prior probabilities for each and assess which is most likely in light of

the data. However, perhaps this would not be appropriate. Our use of one-predictor-at-a-time

methods is mainly for convenience, not necessarily because we believe only one predictor is

causal.
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Pairs

Pairs extends Single to test all possible pairwise associations. The methodology is the same,

except now the alternative hypothesis takes the form f(Xg, Xg′) = θXgXg′
. For binary pre-

dictors, this model will have 3 or 4 degrees of freedom. Again, the test statistic is a ratio

of residual sums of squares, comparing how much the model fit improves by adding in two

predictors. In a similar fashion, a p-value can be estimated by comparing this statistic to a

χ2 distribution with either 2 or 3 degrees of freedom.

Classification and Regression Trees

CART was run using its implementation for R, which is contained within the package tree.

The function tree returned a model with an unrestricted number of associations, which I then

reduced to the required size using prune.

Random Forests

RF was also run using its R implementation, contained in the package randomForest. The

function randomForest returned importance weightings for each predictor, on which an order-

ing could be based.

Shotgun Stochastic Search

SSS was run using software developed by Hans et al. and hosted on the website of the Ohio

State University’s Department of Statistics. The prior belief in the number of associations,

priormeanp, was set to 5, while the number of iterations, iters, was set to 100. The param-

eter nbest determines the number of top scoring models collected, conditional on which the

posterior estimates are made. I set this to 1000. Generally, I observed that the top posterior

probabilities dropped off very sharply, so I had no concerns regarding this value’s specification.

Logic Regression

Logic was run using the R package LogicReg. The function logreg, with parameters select = 2

and nleaves = s, returned a logic tree of size s. The package offers the ability to run using

an MCMC based method by setting select = 7. However, the size of the simulated datasets

proved too large for R to handle, so I was unable to use this option. Relatively early on in my

research, I coded my own MCMC version of Logic, correcting what I perceived to be errors

in its set-up. At the time, I concluded such a version still had a number of short-comings,

leading me to supercede that attempt with Sparse Partitioning.
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Multivariate Adaptive Regression Splines

MARS was run using the R package mda. The function mars, with parameter choices nk =

2s+ 1 and degree = 3, returned the best model with at most s predictors and allowing for at

most three-way interactions.

Sparse Partitioning

Sparse Partitioning was run for 200 iterations, which typically took less than one minute. K,

S and C were left at their default values (4, 4 and 3), while pg was set to 5/N . r was set to

1, which matched the default value of the corresponding parameter in SSS.

Graphical Representation of Results

With only two exceptions, all figures take the form of that presented in Chapter 2. Each has

three columns, which correspond to the three underlying relationships being tested. Within

each plot, the x-axis marks the causal predictor frequencies; the fifth of which (‘?’) indi-

cates that each causal predictor’s frequency was drawn uniformly at random from the interval

[0.05, 0.95]. The y-axis reports the average number of causal predictors detected, except for

Study Ten where the average proportion is used instead. Finally, each coloured line corre-

sponds to a different method, generally one of the eight listed at the start of this chapter, and

reports that method’s detection scores for each different scenario.

4.1.3 Study One: Additional Results

As a reminder, the underlying relationships used here, and in many of the studies, were

Model Underlying Relationship

I Y = X1 + 1.5X2 − 2X3

II Y = 1.5X1 ×X2 +X3

III Y = f(X1, X2) +X3,

where f(0, 0) = 0, f(1, 0) = 1, f(0, 1) = 2, f(1, 1) = −1

The top plot of Figure 4.1 is identical to that in Chapter 2, except it is just possible to

make out the addition of a dotted black line. This corresponds to running Sparse Partition-

ing allowing only one copy of each predictor (C = 1). That the choice of C has very little

effect on the results corresponds to a very pleasing discovery. Initially, I was hesitant to allow

predictors to feature in multiple groups. Although I appreciated that such a situation might

arise, I feared that allowing multiple copies would have a detrimental effect on most analyses

when such an allowance was unnecessary. Once again, this finding backs up my view that
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Figure 4.1: Full results of Study One. The top row provides the average detection score for each
method. These three plots are identical to those in an earlier chapter, except for the addition of a
black dashed line, which presents the results of Sparse Partitioning when C, the maximum number
of copies of each predictor, was set to 1. In the middle row, vertical bars provide the proportion
of times each method correctly found 3, 2, 1 and 0 causal predictors (more details in main text).
Similar to those in the top row, the three plots in the bottom row compare the performance of two
new methods: SP Additive is Sparse Partitioning restricted only to additive models (S = 1); while
SP Interaction is Sparse Partitioning restricted only to interactive models (K = 1). Additionally,
the dashed lines mark the top pairwise interaction probabilities found by Sparse Partitioning, when
run with its standard settings (K = 4, S = 4, C = 3).
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increased generality does not necessarily come at the expense of performance. If anything,

the case when C = 3 seems to perform better. This can perhaps be explained by considering

its impact on the MCMC search. When a predictor is not associated, it has no effect. But

when the predictor is associated, it adds more flexibility into the MCMC sampling, providing

a wider choice of moves that can be considered.

CART has performed poorly here, which is symptomatic of its performance in general. It

is hard to diagnose why this is, as there does not appear to one type of dataset for which it

performs especially badly. CART is designed for continuous predictor values, where thresh-

olding has more relevance. This leads me to believe its method is optimised for this set-up

and therefore suffers when used for categorical values.

The middle plot presents the same information in a different format. Each vertical bar

refers to a particular method, for a specific underlying relationship and causal predictor fre-

quency. It is composed of four segments which, from bottom to top, have lengths equal to

the proportion of time the method correctly declared exactly 3, 2, 1 and 0 causal predictors.

For example, we see that the frequency that all three causal predictors were detected (the

black bars) generally increased as the causal predictor frequency rose. The heights of the bars

mirror the average detection score, showing how Sparse Partitioning is best equipped as the

model becomes more complex.

The bottom plot shows the effect of changing some of Sparse Partitioning ’s input param-

eters. When S = 1 (SP Additive), the maximum group size is limited to one, so the method

considers only additive models. When K = 1 (SP Interaction), only one tree is permitted,

forcing the full interaction model to be fitted at each step. As expected, the performance of SP

Additive was nearly identical to that of SSS, and their lines almost exactly coincide for Model

III. Also to be expected, the performance of Sparse Partitioning was damaged when K is set

to 1, as then the method necessarily overfitted the true model. However, it should be noted

that SP Interaction was the second best performing method for Model III. This supports my

belief that using an underlying relationship too general is less of a penalty than using one too

restrictive.

Additionally, the dashed lines in the bottom plot mark the average of the highest posterior

probability of interaction for the standard version of Sparse Partitioning. This provides an

insight into Sparse Partitioning ’s mechanics. For Model I, this line is very flat and close to

zero, as desired when the true underlying relationship contains no interactions. For Model

II, the line mirrors the detection accuracy; the point at which Sparse Partitioning began to

detect the interaction is the point that it began to successfully detect all three predictors. The

same effect is seen for Model III, except now the signal from the interaction was stronger, so
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Figure 4.2: Results of Study Two. The three causal predictors were unobserved, but each in high
correlation (measured in terms of r2) with an observed predictor. For the top plots r2 = 0.9, for the
bottom plots r2 = 0.8.

it was detected sooner.

I have not been able to understand why the majority of methods experienced a sharp drop

in performance in Model III at the highest causal predictor frequency (0.4). It was suggested

that this might be due to my retrospective choice of sampling. To test this theory, I tried

creating comparable datasets prospectively, but the trend still appeared to persist (results not

shown).

4.1.4 Study Two: Causal Predictors Unobserved

Due to high correlations between genetic variants, an association study is often able to infer

the location of causal predictors even if they have not been typed directly. For this reason it

is permissible, and usually more efficient, to type just a subset of variants. In this study, I

considered the case when the causal predictors were not observed, but instead highly corre-

lated with observed predictors.

To begin with, I generated data in the same manner as the previous study, obtaining for

each sample a realisation for Y , then for X1, X2 and X3. However, rather than using the

values for X1, X2 and X3 directly, I considered the introduction of three new predictors, X ′1,
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Figure 4.3: Results of Study Three. 10% of predictor values were set to missing.

X ′2 and X ′3, each of which tagged one of the causal variants. To generate, for example, values

for X ′1, I started with those generated for X1, then randomly toggled values until the squared

correlation between X ′1 and X1 dropped below the desired level (either r2 equal to 0.9 or 0.8).

The results for the two levels of correlation are shown in Figure 4.2. The shapes of the

plots closely match those of Study One, albeit, as expected, with lower average detection

accuracy. Although the gap closes slightly, it is pleasing that Sparse Partitioning continued

to outperform Pairs. When there are just two causal predictors, Pairs could be considered

the gold standard method, as it performs an exhaustive search of all two-predictor models.

Reducing the correlation between Xg and X ′g, just like increasing σ2, has the effect of increasing

the noise component of the model. Once the noise increases to the extent that one causal

predictor becomes “unfindable”, Pairs would be expected to perform at least as well as any

other method.

4.1.5 Study Three: 10% of Predictor Values Missing

In this study, I tested how Sparse Partitioning would perform when confronted with incom-

plete data. Having generated datasets according to Study One, I then removed 10% of the

predictor values at random. I omitted CART, RF, Logic and MARS from this study, as their

implementations are unable to accept missing values. The results, shown in Figure 4.3, closely

mirror the corresponding plots for Study One, indicating that the four remaining methods are

fairly robust to moderate levels of missingness.

4.1.6 Study Four: Non-normal Noise

For a continuous response, Sparse Partitioning calculates a likelihood under the assumption of

normally distributed residuals. Therefore, I tested the impact when this assumption had been

violated. In this study, I simulated datasets using first exponential, then uniform noise. The
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Figure 4.4: Results of Study Four. For the top three plots, datasets were generated such that
the residuals were distributed with exponential noise; for the bottom three plots the residuals were
distributed uniformly.

process used to generate each dataset was identical to that for Study One, except I changed

P(y|x1, x2, x3), the distribution of the residual values y−f(x1, x2, x3). For the two alternatives,

I chose the distribution parameters (the rate of the exponential or width of the uniform) to

produce heritabilities similar to those in Study One.

Figure 4.4 displays the results. The introduction of exponential noise, shown in the top

row of plots, does not have a marked effect on the results; the plots still closely resemble those

of Study One. This is not the case with uniform noise, where each model, and in fact each

method, has responded differently to its introduction. Nonetheless, with the exception of the

low frequency end of Model II datasets, Sparse Partitioning has maintained its lead, and has

actually dramatically improved under Model III. These results must, to a large extent, owe to

the nonlinear nature and flexibility of Sparse Partitioning. Because there are no restrictions on

the shape of the underlying relationship, it is able to adapt f(X) to better fit the assumption

of normally distributed noise.

4.1.7 Study Five: Tertiary Predictors

For each sample, I created two causal tertiary predictors by first generating two pairs of binary

values according to the method used in Study One, then summing these pairs. If each tertiary
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Figure 4.5: Results of Study Five. Each predictor was tertiary, 2 of which were causal.

predictor is viewed as an allele count across a homologous pair of loci, then, except for option

‘?’, the causal predictor frequency will represent the minor allele frequency. Furthermore,

because of the process used to generate predictors, the underlying state frequencies will be

in Hardy-Weinberg equilibrium. (When the causal predictor frequency is ‘?’, the minor allele

frequency will be the average of the two randomly drawn frequencies, and Hardy-Weinberg

equilibrium is unlikely to hold.)

I constructed the following three underlying relationships:

Model Underlying Relationship

IV Y = IX1>0 + IX2>1

V Y = f1(X1) + f2(X2) with each fk(0), fk(1) and fk(2) chosen at random

VI Y = f1(X1) + f2(X2) with each fk additive (fk(0) + fk(2) = 2fk(1))

The three models considered were all additive between the two causal predictors. Model VI

was also additive within the causal predictors, while Models IV and V were not. The results for

each model are shown in Figure 4.5. Once again, Sparse Partitioning performed well, however,

for random causal predictor frequencies it was overtaken by Pairs. The latter method is

perhaps well-suited to this model, as it focuses on underlying relationships containing one pair

of causal predictors. Considering that Sparse Partitioning allows for up to 16 causal predictors,

it is very promising that it is only slightly outperformed. The shape of the plot for Model IV is

peculiar, the only one which favours detection at lower causal predictor frequencies. This is a

consequence of the very biased sampling of response values. There are only three distinct values

for f(X1, X2), so an equal chance of each response being centred on each. When the causal

predictor frequencies are small, the response Y = 1 is very likely to relate to the configuration

(X1, X2) = (1, 0), while Y = 2 will probably correspond to (X1, X2) = (1, 2), which allows

easy distinction of the causal predictors. As the frequency increases, this distinction fades.

101



4.1.8 Study Six: Binary Response

A binary response generally contains less information than its continuous counterpart. There-

fore, to maintain reasonable power for non-trivial models, I reduced the number of predictors

and increased the number of samples. I mirrored the study of Mukherjee et al. (2009),

both in the choice of underlying relationships and by generating datasets with 100 predictors

and 200 samples. The only difference is that I also conditioned on individual causal predictor

frequencies, while their study, in effect, set the frequency to ‘?’ throughout. For each under-

lying relationship, Mukherjee et al. used a Boolean function to determine P(Yi = 1); if the

function evaluated true, Yi was sampled using P(Yi = 1) = 0.9; if false, using P(Yi = 1) = 0.1.

This corresponds to setting f(X) to 2.2 or -2.2 when using a logit link function.

Model Underlying Relationship

VII E(Y ) = 0.1 + 0.8×X1 ∧ (X2 = X3)

VIII E(Y ) = 0.1 + 0.8× (X1 ∧XC
2 )⊕X3

IX E(Y ) = 0.1 + 0.8× (X1 ∧X2)⊕ (X3 ∧XC
4 )

(∧ = AND and ⊕ = EXCLUSIVE OR.)

The results for each model are shown in Figure 4.10. I have kept the third graph on the

same y-axis, as no method declared on average more than 3 causal predictors correctly. Sparse

Partitioning and MARS were the best performing methods in this study, sharing the top two

places across the three models. For MARS, its success in Model VIII is somewhat peculiar,

as the method treats binary response values as if they were continuous. Perhaps this demon-

strates that there is merit in analysing a binary response as if it was quantitative. Considering

this approach will generally be faster, it can often serve as a useful first pass.

Sparse Partitioning ’s results were obtained through use of a logit link function. The reason

that I implemented the probit link option, was the hope that it might speed up performance at

limited expense. The black dashed lines in each plot indicate the results of Sparse Partitioning

when this option was taken. The amount of speed-up offered by the probit choice will depend

heavily on the nature of the partitions being scored. Certainly it is at least three times as fast,

but even with relatively simple models, for example, partitions of size 3 or 4, the speed-up

can be over ten-fold. When testing this version, I therefore afforded the method a few more

iterations, selecting 600 as opposed to 200. This still represented a considerable reduction

in processing time. As the plots show, the version with a probit link function performed

favourably compared to the logit alternative, and therefore is my method of choice when the

response is binary. Unfortunately, as I will point out in the next chapter, Sparse Partitioning

is unable to use a probit link function exclusively, as there are occasions when this simply isn’t

possible.
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Figure 4.6: Results of Study Six. Binary response values and 2, 3 or 4 causal predictors. In addition
to the standard 8 methods, the black dashed line indicates the performance of Sparse Partitioning
using a probit link function.

4.1.9 Study Seven: Correlated Predictors

To generate datasets displaying realistic patterns of linkage disequilibrium, I used the program

ms (Hudson, 2002), which is provided on its author’s website, hosted by the University of

Chicago. The command ms 1000 1 -s 20 -r 10 20 -F 100 will simulate 1000 individuals

typed wildtype or mutant for 20 SNPs. I concatenated the results of 100 such runs, with every

second SNP removed, to obtain a dataset of 1000 individuals typed for 1000 SNPs. To give

an indication of the extent of LD this generated, if I were to filter the dataset so that no pair

of predictors remained with a squared correlation greater than 0.8, approximately half the

predictors would be removed. Again, three different underlying relationships were examined,

similar in nature to those in Study One, except this time there were four causal predictors.

Model Underlying Relationship

X Y = aX1 + bX2 + cX3 + dX4

XI Y = f1(X1, X2) + f2(X3, X4)

where f1 maps to {0, a, a, b} and f2 maps to {0, 0, 0, c}

XII Y = f1(X1, X2) + f2(X3, X4)

where f1 maps to {0, a, b, c} and f2 maps to {0, d, e, f}

The coefficients a, b, c, d, e and f were sampled at random from a standard normal dis-

tribution. Unlike the other studies, in this one I used a prospective method of sampling, first

picking from the dataset four predictors, then from these generating a response. By simulating

in this direction, the variance of the response values will be much more limited, heavily fo-

cused on the underlying relationship value corresponding to the most likely state of the causal

predictors. To counteract this, having generated response values for 1000 individuals, I pick

100 displaying a broad spectrum of values. On very rare occasions, the response values lacked
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Figure 4.7: Results of Study Seven. To mimic the patterns of linkage disequilibrium observed in
fine-scale association studies, the predictors were generated so that strong pairwise correlations were
present within each block of ten successive predictors. As the datasets were generated prospectively,
it was not possible to dictate the causal predictor frequencies. For this study only, two alternative
scoring methods were used, EXACT and BLOCK, details of which are provided in the main text.

variation to such an extent that this was not possible. For these cases, I discarded the four

predictors and reselected new ones. Because of the prospective sampling, it was not possible

to fix the causal predictor frequencies.

In this study, I experimented with two scoring systems. The first, EXACT, identical to

that used in the other studies, made no allowance for correlations. This could be considered

overly harsh. Suppose a method identified as associated a predictor near to, and so in high

correlation with, a causal predictor. Strictly speaking, this would be a false positive and score

zero, even though its detection would still be a helpful indicator of the region likely to contain

the true association. Therefore, the second system, BLOCK, scored each block of ten predic-

tors. For the method Single, which considers one predictor at a time, so makes no allowance

for LD, blocks were scored according to their best scoring predictor. For Pairs, RF, SSS and

Sparse Partitioning, blocks were scored by summing over their ten predictors. CART, Logic

and MARS only return precise models, rather than weightings for each predictor, so could

not be scored with this system.

Figure 4.7 provides the results for this study. As is almost necessarily the case, the detection

accuracy improved using the second scoring system, and overall Single and RF benefited most

from the change. In most cases, however, the ranking of the five methods scored under both

systems was preserved. Once more, Sparse Partitioning performed admirably, coming top for

five scenarios, beaten only by Pairs in the sixth.

104



Causal Predictor Frequency

A
ve

ra
ge

 D
et

ec
tio

n 
#

0.
0

1.
0

2.
0

3.
0

MODEL I

0.05 0.1 0.2 0.4 ?

Causal Predictor Frequency

MODEL II

0.05 0.1 0.2 0.4 ?

Causal Predictor Frequency

MODEL III

0.05 0.1 0.2 0.4 ?

pg = 0.0005 pg = 0.001 pg = 0.002 pg = 0.005 (Status Quo)
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4.1.10 Study Eight: Effect of Prior Choice

The most important input setting for Sparse Partitioning is pg, the prior probability of as-

sociation for each predictor. The other parameters, such as maximum number and size of

groups, or the variance of the coefficient priors, can almost always be left at their default

values. In this study, I investigated the effect of different values for pg, as opposed to keeping

it at 5/N = 0.005, the status quo for other studies. Datasets were generated using the same

three underlying relationships of Study One.

Figure 4.8 presents the results for four choices: pg = 0.0005, 0.001, 0.002 and 0.005. For

the first two models, the difference in performance was slight, but as expected the latter two

choices, which are closest to the true case, have performed best. The difference was more

noticeable for higher causal predictor frequencies under Model III. The results suggest it is

advisable to verge on the cautious side when setting pg, which agrees with the general message

that less restrictive is better.

4.1.11 Study Nine: Examine Effect of Number of Iterations

Naturally, the more iterations Sparse Partitioning can be afforded, the better its performance.

In general, I ran the method for 200 iterations, as this allowed datasets to be analysed in un-

der a minute. To compare this number to other methods, which often sample for upwards of

100,000 iterations, it is worth remembering that Sparse Partitioning performs approximately

2N samplings per iteration. In this study, I generated datasets using the same approach and

models of Study One. To each dataset, I applied Sparse Partitioning four times, varying the

number of iteration from 100 to 800. Figure 4.9 presents the results. As with many of the

studies, the differences in performance showed up more as the models became more compli-

cated. This study suggests that, while 200 iterations (the blue line) seems fairly sufficient,
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Figure 4.9: Results of Study Nine. Each line corresponds to running Sparse Partitioning for a
particular number of iterations.

slightly better performance might have been obtained by using more.

Incidentally, for both Studies Nine and Ten, I generated datasets from scratch, rather than

reusing those generated in Study One. Therefore, the concordance between runs of Sparse

Partitioning across these three studies suggests that 100 datasets was sufficient to provide a

reasonable measure of detection score.

4.1.12 Study Ten: Non-Disjoint Underlying Relationship

It is conceivable that a predictor might feature more than once in the underlying relationship.

This could, for example, correspond to a genetic variant involved in two or more pathways.

This study considered three models where this was the case.

Model Underlying Relationship

XIII Y = X1 ×X2 +X2 ×X3

XIV Y = f1(X1, X2) +X2 ∧X3 + 2X4 where f1 maps to {0, 1, 2,−1}

XV Y = f1(X1, X2) + 2X2 ⊕X3 where f1 maps to {0, 1, 2,−1}

Although Sparse Partitioning has generally performed best in this study, simulation under

Model XIII reveals a possible shortcoming of the sparsity assumption. Suppose the underlying

response value is increased by a multiplicative interaction between a pair of low frequency

predictors. The two most likely predictor states will be (0, 0) (generally corresponding to low

response samples) and (1, 1) (for high response samples). By contrast, the states (0, 1) and

(1, 0) will be very unlikely, as they effect the same underlying response value as (0, 0), but

have a much lower chance of occurring due to the low predictor frequencies. When confronted

with such data, the method Single, which considers predictors independently, will have a
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Figure 4.10: Results of Study Ten. In each underlying relationship, one predictor contributed
twice, so that the true partitioning was no longer disjoint. In this study, Sparse Partitioning was
outperformed under Model XIII for low causal predictor frequencies. The main text suggests reasons
why this might have occurred.

large advantage, as both predictors should have strong marginal effects. Conversely, Sparse

Partitioning would be expected to perform badly, as the improvement in fit of deducing the

true multiplicative interaction is unlikely to be large enough to offset the penalty of including

an extra predictor. The hope is, however, that the prior belief in the rarity of such a situation

is correct. Furthermore, as Single is built into the implementation of Sparse Partitioning, in

this scenario the causal predictors would still be discovered.

4.2 Real Datasets

In this section, I consider three previously analysed association studies. I am indebted to

the individuals who made each available. The first dataset is taken from the “2010 Project”

(http://walnut.usc.edu/2010), a large-scale study of the plant Arabidopsis thaliana, which

I obtained from Keyan Zhao and Bjarni Vilhjálmsson of Magnus Nordborg’s Lab. The second

dataset is part of the International HapMap Project (http://hapmap.ncbi.nlm.nih.gov),

given to me by Antigone Dimas while she was part of Emmanouil Dermitzakis’ Group. The

third dataset looks at mice and was provided by Jon Krohn in association with William Valdar

and Jonathan Flint.

In all cases, the datasets have previously been analysed by their respective groups, so I was

keen to see what additional insights Sparse Partitioning might offer. Except where stated, I

ran Sparse Partitioning with r = 1 and other parameters at their default values, the most

important of which being K = 4, S = 4, C = 3 and pg = 5/N .

107

http://walnut.usc.edu/2010
http://hapmap.ncbi.nlm.nih.gov


4.2.1 2010 Project: Pilot Data

The project’s pilot dataset examines 95 accessions of Arabidopsis thaliana, each measured for

ten phenotypic traits. As a straightforward demonstration of my method, I focus mainly on

the tenth phenotype, expression levels of the FRIGIDA gene.

As explained in Nordborg et al. (2005), this study examined “pairs of individuals from

25 local ‘populations’ (typically sampled within a few hundred meters of each other, often

much closer)” together with “a worldwide survey of commonly used stock centre accessions”.

Geography plays an important role in this experiment, with samples selected from countries

across Europe, as well as North America and Asia.

Arabidopsis exist largely as collections of naturally occurring inbred accessions, so it proves

sufficient to genotype only one sample per accession. By contrast, it is prudent to phenotype

many members in order to reduce environmental and experimental noise. The manner in

which accessions were sampled resulted in very high levels of relatedness between accessions

from neighbouring fields. Combined with this, geographical effects can be striking, because

accessions will tend to be influenced by and adapted to their surroundings. For example, those

found in bleak climates such as Northern Scandinavia showed marked differences in time until

flowering to those from more sunny locations.

The Nordborg group published two closely related papers focused on this dataset. The first

(Aranzana et al., 2005) demonstrated that, even in spite of the presence of major confounding

factors, it was possible to identify four known pathways simply using näıve one-predictor-at-

a-time tests. The second paper (Zhao et al., 2007) applied a more sophisticated method, one

which took confounding into account, similar to the way I shortly describe. Although both

papers primarily searched for association with haplotype, which typically represent 500-600 bp

fragments of DNA, I was provided with, and used instead, the 5,419 raw SNP genotypes.

Estimation of Relatedness and Population Structure

For a pair of individuals, the “coefficient of inbreeding” (Wright, 1922) equals the proba-

bility that, on an autosomal (non-sex) chromosome, a locus of one individual is “identical by

descent” with that of another. For example, consider identical twins. If we examine a partic-

ular locus for each, there is a 25% chance both come from the mother and a 25% chance both

come from the father. Their coefficient of inbreeding would therefore be 1/2. By similar logic,

this coefficient can be deduced for parent-child pairs (1/4), full siblings (1/4), half siblings

(1/8), and so on. These values correspond to the “kinship” matrix K (size n× n), where Kii′

is the coefficient of inbreeding between individuals i and i′. The “coefficient of relatedness”

is defined as twice the coefficient of inbreeding, and so is a measure of closeness between 0 and 1.
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The standard way to estimate relatedness is to consider observed “identity by state” (As-

tle and Balding, 2009). This occurs when two alleles are the same, whether or not their her-

itage can be traced back to a (recent) common ancestor. I based my method on that suggested

by Zhao et al. (2007), for each pair of accessions calculating Kii′ =
∑

g 1(Xig = Xi′g)/N , a

measure between 0 and 1 of how similar two individuals’ genotypes. I then standardised these

values with the transformation

Kii′ → 0.5× (Kii′ − K̄)/(1− K̄),

where K̄ is the mean value recorded across all distinct pairs i 6= i′. Here, a negative value

implies a pair is less related than by chance, so I reset these to zero. These transformed values

became the estimates of kinship.

Population stratification is typically represented by the “population structure” matrix Q.

Were this known with certainty, it would have n rows and a number of columns equal to one

less than the number of (founder) populations present. In this case, Qij would indicate the

proportion of the ith sample’s genome which originated from the jth population. In practice,

the number of populations is not normally known, so estimation of Q includes determining a

suitable number of columns.

I opted for a principal component based approach. First, I obtained the covariance matrix

of SNPs (size N ×N), by centreing columns of X, then calculating XTX/n. Each element of

this matrix reflects the similarity between a pair of predictors. I then used eigenvalue decom-

position to obtain the top eigenvectors ej (length N). Each of these should hopefully indicate

the collection of SNPs which best distinguish geographic differences between accessions. Fi-

nally, I found the projection of the predictors onto these vectors, producing new vectors Xej

(length n), which became the columns of Q. As I describe shortly, I decided how many vectors

to use by studying quantile-quantile plots.

This approach is very similar to, and was inspired by, the EIGENSTRAT algorithm of Pat-

terson et al. (2006). The key difference is that they find the eigenvectors of XXT and

immediately employ these as columns of Q. There are at least two reasons for preferring their

choice. Typically, the dimension of XXT is far less (size n × n) than that of XTX (size

N × N) so the decomposition is much faster. Secondly, by investigating the distribution of

the top eigenvalues, a connected paper by Price et al. (2006) provides a theoretical basis

for deciding the correct number of eigenvectors (columns of Q) to use. I chose my approach

because I felt better able to understand the logic behind decomposing XTX. The resulting

eigenvectors provide the most variable projections of the data. If we are to suppose the effects
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of “genetic” confounding, among which population structure is included, greatly overshadow

any true signal present, then these effects should be picked up by the top projections. In any

case, the choice of decomposition turns out to be of little importance. The two sets of eigen-

vectors are intimately linked by the singular value decomposition of X (Golub and Reinsch,

1970) and, as a result, produce very similar estimates for Q.

The major rival to EIGENSTRAT is STRUCTURE (Pritchard et al., 2000), which I discussed

earlier. The latter is certainly more sophisticated, incorporating elements of advanced coa-

lescent theory. However, I considered principal component analysis more applicable for large

datasets, easier to include in the implementation and I liked the fact that it is not limited to

detecting population structure; it could, in principle, account for other types of genetic noise.

Reassuringly, Engelhardt and Stephens (2010) have recently demonstrated the similarity

between the two main approaches, suggesting the final choice is of little significance.

Correcting for Relatedness and Population Structure

The favoured approach of the Nordborg Lab is to use a mixed model (Yu et al., 2006), which

takes the form

Y = f(X) +Qd+ u,

where u is a random variable with distribution N(0, 2σ2
gK). This reflects the fact that for

two individuals that are very close, we expect similar contributions due to relatedness. The

variable σ2
g allows flexibility in the component of variation attributable to this effect. Typi-

cally, this model is applied one-SNP-at-a-time by setting f(X) = f(Xg), therefore producing

estimates of d, u and σ2
g for each predictor (e.g. Kang et al., 2010).

A similar set-up is readily adopted by Sparse Partitioning. Consider the Cholesky decom-

position K = EET . If the random variable u′ is distributed N(0, In), then the transformation

u = Eu′ will have distribution N(0,EInE
T ) = N(0,K). Therefore, to incorporate a mixed-

model in the analysis, I simply include Q and E within the confounding matrix: Ω = [Q E].

A possible downside is that Sparse Partitioning insists that the confounding variance equals

a constant factor of the residual variance. Therefore, σ2
g is fixed to σ2/r′. However, my feeling

is that the model has sufficient flexibility elsewhere to overcome this limitation.

Figure 4.11 demonstrates some of the steps involved in estimating K and Q for the 95

Arabidopsis samples. The first plot represents an initial estimate of the pairwise relatedness

2K; darker colours indicate values closer to 1. It is just possible to make out red dots off the

diagonal, indicating distinct pairs of accessions with almost identical SNP values. In total, I

discovered 5 such groups (11 samples in total), leading me to remove 6 accessions.
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Figure 4.11: The first plot records the relatedness between pairs of accessions. Necessarily symmet-
rical, because Kii′ = Ki′i, it is possible to make out a few isolated dots off the diagonal, indicating
distinct samples which are very highly related. The middle two plots demonstrate the severity of pop-
ulation structural effects. Each plot shape and colour identifies a particular location of origin. The
Swedish accessions (light blue triangles) have markedly different measurements for the phenotype
which counted days until flowering, while the first two principal component axes, derived only from
genotype data, well separate these samples from the rest. The final plot demonstrates the strategy I
used when correcting for these two types of confounding. The red line shows the p-values obtained by
the method Single when regressing the raw phenotypic values on the SNP data. This is heavily biased
towards small values, as indicated by its position above the diagonal. By considering the spread of
p-values obtained after correcting for relatedness (green), population (dark blue) and both together
(light blue), it was possible to gauge which were needed and, in the case of population structure,
estimate the number of “population axes” required.
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The second plot reports measurements of the first phenotype, days until flowering. The

shapes and colours of points distinguish the 24 different countries of origin. The measurements

were truncated, so a time of 200 days indicated the accession was yet to flower when the ex-

periment ended, and had most likely died. It is noticeable that Swedish samples (light blue

triangles) account for all of the truncated measurements, supporting the notion that geogra-

phy affects certain traits. The third plot shows how well the geography could be inferred from

the principal components. With no knowledge of the data other than the SNP values, it was

easily possible to cluster the main locations of accessions. Additionally, two samples recorded

extreme values, comfortably off the plotted scale, so I removed these from subsequent analysis.

The fourth plot demonstrates my method for determining how many principal axes to

include in Q and a suitable value for r′. The red line plots the p-values obtained by applying

Single to all 10 phenotypes (54,190 tests in total). This shows the extent to which confounding

affected the study. Under an assumption that the majority of associations were spurious, we

would expect corrected p-values to be uniformly distributed on (0,1) and so produce a line

coincident with the diagonal. However, in this case, 16% of predictor-response pairs were

significant at a nominal 5% level. The green, dark blue and light blue lines show the effects of

supplying Single with only K, only Q or both K and Q. I picked the number of population

axes (5) and confounding variance (r′ = 2) by experimenting with values until I was satisfied

with the fit. Supposing sensitivity is more valued than specificity, it is probably best to err

on the conservative side; generally, we would prefer to remove too little confounding than risk

removing too much true signal.

Results

Having discarded 6 samples on account of excessive relatedness and 2 due to extreme principal

component values, I began analysis with a reduced list of 87 accessions. The tenth pheno-

type recorded expression levels for the frigida gene, a continuous non-negative measurement.

Therefore, I first applied a logarithmic transformation so that the values more closely resem-

bled draws from a normal distribution. I set Sparse Partitioning to filter predictors using an

r2 threshold of 0.8. This reduced the total number of SNPs to 3,289. In total 50,428 (10.7%)

predictor values were missing, but for this run I chose not to impute.

The top two plots of Figure 4.12 compare the p-values obtained from Single to the poste-

rior probabilities of association of Sparse Partitioning. My method identified just one strong

association, coinciding with the third strongest hit of Single and suggesting that, in this case,

the simple underlying relationship of the one-predictor-at-a-time method might be appropri-

ate. For both methods, the strong associations lay very close to the FRIGIDA region, marked
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Figure 4.12: Analysis of expression levels of FRIGIDA for Arabidopsis thaliana. The top plot shows
p-values obtained by Single. The middle plot shows posterior probabilities of association from Sparse
Partitioning; the results of two runs are plotted, but the separation (circles vs triangles) is barely
visible. The bottom row provides trace plots for the partition score and size. The vertical dashed lines
mark the two sections of iterations used to produce estimates, while the red lines indicate the running
means.

by a solid vertical line, providing further evidence that the results were accurate.

A possible concern with Sparse Partitioning is that its generality might lead to overfit-

ting on occasions when simpler models are more appropriate. Here, with Sparse Partitioning

declaring only one strong association, this does not appear to be the case. The bottom two

plots track the posterior score and size of the current partition at each stage of the Markov

chain, with red lines indicating running means for the two halves of the kept iterations. It is

interesting to note that, although Sparse Partitioning clearly returned just one association,

the average partition size was approximately 2.5, so while overfitting occurred locally, it did

not affect the final results.

I repeated the analysis using imputed data provided by the algorithm fastPHASE (Scheet

and Stephens, 2006), allowing me to compare the prediction accuracy of each method via

LOOCV. The linear model containing only the top hit from Single explained 44% of the

variance, agreeing closely with Sparse Partitioning ’s estimates of 38% or 42% explained when

using the raw or imputed data. Once again, even though overfitting appeared to occur at a

per-state level, the method seemed able to produce meaningful estimates.
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4.2.2 HapMap Data

The HapMap dataset consisted of 109 individuals, each typed for 1,186,075 SNPs and mea-

sured for expression levels of 2,682 genes. Dr. Antigone Dimas had previously mined the

data for interactions using her own novel method (described in Dimas, 2009). Dr. Dimas

was interested in searching for cis interactions, which she classed as interactions within 1 Mbp

of the gene probe start site. First, she used the locations of known recombination hotspots

to segment the genome into recombination intervals. For each gene, she then applied one-

predictor-at-a-time testing for all SNPs within 1 Mbp, recording the top scoring SNP within

each recombination interval. Typically, this provided her with a list of about 30 SNPs per

gene, for which she then tested all pairwise interactions.

Dr. Dimas provided me with a list of the genes showing most evidence for an interac-

tion. Taking the top four of these, I was interested in seeing how Sparse Partitioning ’s results

would compare. Figure 4.13 presents the results for MTHFR, the third of these genes, located

approximately 11.8 Mbp along Chromosome 1. For each of the 763 SNPs in the 2 Mbp re-

gion, the top plot displays the p-value obtained by Single, while the middle plot reports the

posterior probability of association from Sparse Partitioning (circles correspond to run one

results, triangles to run two). The solid vertical line marks the location of the gene, while the

two dashed vertical lines mark the locations of the SNPs declared interacting by Dr. Dimas.

The dashed horizontal lines in the top two figures provide estimates of the 5, 25 and 50% sig-

nificance thresholds for the top association of each method, calculated using permutation tests.

The top hits of Sparse Partitioning were SNPs rs2286139, rs2643888 and rs2279703 (“SNPs

1, 2 and 3”), with posterior probabilities of association 0.57, 0.96 and 0.96, respectively. The

first two correspond to the SNPs for which Dr. Dimas found evidence of an interaction. It is

no coincidence that SNPs 2 and 3 received equal probabilities. Their values matched for 106

of the 109 individuals, so SNP 3 was removed in Sparse Partitioning ’s preprocessing step and

subsequently assigned the same posterior estimates as SNP 2. The second and third SNPs

ranked highly in both sets of results, comfortably exceeding the 5% permutation threshold

each time. More interesting was the first SNP. In Single it was assigned a p-value just shy of

0.01, making it the 74th highest ranked association, so perhaps unlikely to be followed up on

the strength of its marginal association alone.

Sparse Partitioning returned a posterior probability of interaction of 0.42 between SNPs

1 and 2/3 (indicated in the plots by the horizontal arrows). The question is whether this

offers evidence for an interaction. At first glance, it might appear not to. This probability is

less than 0.5, a threshold commonly applied to Bayesian methods as it indicates balance of

probabilities. Furthermore, the plot of marginal posterior probabilities might suggest the best
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Figure 4.13: Analysis of expression levels of MTHFR using HapMap data. The top plot shows results
from Single, the middle plot shows results from two runs of Sparse Partitioning (circles correspond
to run one, triangles to run two). The bottom row plots the score and size of the current partition
for each iteration of the MCMC sampling.

fitting partition declared SNPs 1 and 2 associated. If this was true, then Sparse Partitioning

will have assigned a prior probability of 0.5 to their interaction, so a posterior probability of

0.42 would appear to provide slight evidence against them interacting.

On the other hand, this argument is to some extent discredited by noticing that the average

partition size was just over three. Furthermore, the first SNP’s marginal probability was 0.57,

so this was automatically an upper bound for the interaction probability. Supposing the true

partition does contain only SNPs 1 and 2, it is straightforward to work out the (conditional)

posterior probabilities for the two possible partitions, a feature offered by the deterministic

version of the method (Chapter 5). These probabilities turn out to equal 0.57, for the partition

with an interaction, and 0.43, for the partition without.

This discussion highlights the difficulty of assigning significance to an interaction, a prob-

lem I touched upon earlier. As interactions are likely to be relatively rare, perhaps simply

flagging possible ones is sufficient, so that then they can be investigated further. For example,

Figure 4.14 looks closer at models suggested by Sparse Partitioning. The top row corresponds

to three of the partitions that would have been examined: the partition with just SNP 1

associated, the partition with just SNP 2 associated and the partition where these two pre-

dictors interact (with degrees of freedom 3, 3 and 7, respectively). Notice how some of the

cell counts are small. In particular, the second SNP takes value ‘2’ only once. Therefore, in

the bottom row, I consider models obtained by merging states ‘1’ and ‘2’ for each SNP, which
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Figure 4.14: Boxplots from the HapMap data. Each boxplot shows how gene expression values vary
according to predictor states for a particular partitioning. The top row corresponds to three partitions
suggested by Sparse Partitioning, the numbers under each cell denote the cell counts. The bottom row
presents essentially the same information, except cells have been merged to avoid small counts, so
producing simplified models. For each plot, the p-value indicates the strength of evidence for the model
obtained via a maximum likelihood test, by comparison with a null hypothesis of no associations.

might provide a better insight into the underlying system. The final boxplot suggests the

true model might involve a threshold interaction, whereby a mutation in either SNP 1 or 2/3

triggers increased expression. I assign p-values to each model based on frequentist maximum

likelihood tests; in all cases partitions are compared to the null model. The p-value for the

threshold interaction model (2 degrees of freedom) is less than 10−14, suggesting at the very

least it should be considered further.

4.2.3 Mouse Data

Jon Krohn generously provided me with CD4 counts for 1,274 “heterogeneous stock” mice

(Solberg et al., 2006), with genotypic values for 770 SNPs along the length of Chromosome

5. Krohn had previously analysed this data using Bagphenotype, software designed by Dr.

William Valdar (www.unc.edu/~wvaldar/bagphenotype.html). He chose this chromosome

as his analysis had suggested a possible interaction with sex at one of the loci. The response

values were continuous, while the predictors were tertiary. Only a tiny proportion of genotypes

(0.1%) were missing, so I saw no need to impute values and instead left them as unobserved.

In addition, I was provided with the gender of each mouse, which I coded as a binary variable

and included in the set of predictors.
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Figure 4.15: Analysis of CD4 count in mice. The top row reports p-values obtained from Single,
the middle row shows posterior probabilities from two runs of Sparse Partitioning (horizontal arrows
indicate pairwise probabilities of interactions), the bottom row provides trace plots for the score and
size of partitions encountered at each step of the MCMC sampling.

As the chromosomal region was a subsection of a genome wide study, I decided a prior

probability of association of 10−4 was appropriate for each SNP. There is strong prior knowl-

edge that CD4 counts are linked to gender (e.g. Maini et al., 1996), so I decided upon a

prior probability of 0.5. As Figure 4.15 demonstrates, the top hits from Single, SNPs CEL-

5 106584673 and rs13478460 (“SNPs 2 and 3”), which due to linkage disequilibrium are almost

identical, persisted in Sparse Partitioning. In addition, my method declared associated SNP

rs13478156 (“SNP 1”). As indicated by the horizontal arrows, Sparse Partitioning found evi-

dence of interactions between gender and SNPs 1 and 2/3. To test the effect of prior choice, I

repeated the analysis with prior probabilities {10−4,0.1}, {10−3,0.5} and {10−3,0.1} for each

SNP and gender, and obtained very similar results on each occasion (results not shown).

In this example, the ability to consider multiple copies of predictors came in very useful.

If predictors could only contribute once, Sparse Partitioning would have been unable to si-

multaneously consider the three pairwise interactions involving SNPs 1, 2/3 and gender. The

boxplots in Figure 4.16 provide an insight into the way predictors appear to interact. Again, all

p-values are obtained from performing marginal likelihood tests against the null model. While

SNP 2 demonstrates clear marginal effects (p-value of 10−7.5), the individual contributions of

SNP 1 and gender are only moderate (10−1.5 and 10−2.3). The strongest pairwise interaction

is between SNP 2 and gender (10−10.5), although this represents only a modest improvement

on the p-values of two marginal models. The corresponding boxplot (top right) suggests the

SNP’s effect is threshold in females and additive in males. By contrast, combining SNP 1 and
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Figure 4.16: Boxplots from the mouse data. Each boxplot shows how CD4 count varies according
to predictor state for different models. The left three plots consider marginal models, the right two
plots consider interactions. Pink boxes correspond to female mice, while blue boxes correspond to
males. The figures beneath cells indicate cell counts, while p-values for each model are obtained from
maximum likelihood tests by comparing with the null model of no associations.

gender has a more marked effect (bottom right), resulting in a p-value whose order is 6 higher

than the sum of the orders of the p-values for the two marginal models. Furthermore, there

seems to be a defined difference between the effect of SNP 1 in females and males, with the

trend switching directions between the two sexes.
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Chapter 5

Deterministic Sparse Partitioning

The main drawback of Sparse Partitioning is its scalability. While the MCMC sampling is

asymptotically valid for any size of dataset, the number of iterations required for reasonable

convergence will depend on the nature of the experiment. In this chapter, I describe a deter-

ministic version of the method, so called because it removes the stochastic component and will

return identical results each run. Although the changes have an impact on performance, they

vastly increase the method’s usability, as I demonstrate by applying this version to two whole

genome datasets.

5.1 Motivation

Sparse Partitioning relies on its MCMC sampling obtaining reasonable convergence. The sizes

of n and N affect this process in a fairly predictable manner; many of the calculations scale

linearly in n, while the number of partitions searched during each iteration is linear in N . How-

ever, the most computationally demanding element of the algorithm is solving BA = JTY .

The time this takes depends on D, the degrees of freedom of the model being tested, which in

turn is linked to the complexity of the true underlying relationship. This makes it impossible

to put an exact figure on the size of dataset Sparse Partitioning is realistically able to handle.

When the underlying relationship is simple, for example, containing just one causal variable,

Sparse Partitioning could easily analyse many tens of thousands of predictors. By contrast,

were six or more variables to contribute towards f(X), the method might struggle to analyse

a few hundred predictors in the same time. Nonetheless, I can confidently state that in its

current form, Sparse Partitioning is suitable for thousands of predictors, rather than hundreds

of thousands. This automatically precludes its use on, for example, fine-scale whole genome

datasets, where the number of predictors can comfortably exceed 500,000.

In addition to size constraints, Sparse Partitioning ’s usability will suffer from a wider

malaise surrounding Bayesian methods. Consider a biologist, whose first taste of statistics
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will likely involve maximum likelihoods, p-values and confidence intervals. When confronted

with a school of thought whose fundamental statement is that parameters, which only ever

exist as fixed states, should be modelled as if they were random variables, it is understandable

that they might more readily accept a frequentist alternative. This problem is only exagger-

ated when nonlinearity is involved, as then the Bayesian method is faced with the challenge

of describing distributions over an increasingly complex model space.

These considerations led me to design a deterministic version, one which returns a definite

model and where the algorithm is not dependent on a random seed. Essentially, the choice I

made was to replace the MCMC exploration by a “hill-climbing” search, one which stops as

soon as a higher scoring partition can not be found. Although accuracy is reduced, the result is

a version which provides more readily interpretable results and is able to reduce computation

time from a number of hours to a matter of minutes.

5.1.1 Dangers of a Deterministic Search

My first attempt at a deterministic version made only a slight change to the steps of Sampling

Stages One and Two. In Stage One, when considering changing the group to which predictor g

belongs, having explored all possible values for Ig, I proposed, and automatically moved to, the

one producing the highest scoring partition. Similarly, for Stage Two, I explored all possible

values for Gkj, then picked the one resulting in the greatest improvement. Immediately, this

approach led to inconsistencies. For example, both the choice of random seed and relabelling

the predictors would change the order in which components of I are sampled and potentially

affect the direction of the chain. Therefore, an early fix was to merge the N steps of Stage

One with all possible Stage Two moves, and thus consider the entire neighbourhood reached

by any single change to an element of I or any component of G1,G2, . . . ,GK .

Testing suggested that this approach was unsuccessful. In its original form, Sparse Parti-

tioning benefits from drawing inferences across a number of partitions. The states visited by

the Markov chain will be among those with highest posterior mass, so in effect the method

averages over the most probable models. By contrast, the deterministic version is a mode seek-

ing approach, which concentrates only on detecting the single highest scoring state. When the

posterior weight is highly concentrated on a single partition, both strategies have the potential

to fare equally well; when the posterior weight is more diffuse, a model averaging approach

will better describe the posterior distribution. A particular concern arises when there are two

or more well-matched partitions within a high scoring equivalence class. If our primary goal is

to detect which predictors are associated, it will become counter-productive when two closely

matched partitions compete over a single equivalence class’ posterior weight.
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Furthermore, a hill-climbing search through partitions can be very restrictive. Suppose the

true partition is {1}{2, 3}, so involves an interaction of predictors 2 and 3 alongside an additive

contribution from predictor 1. For this partition to be considered, the current state, which is

forced to follow a path of increasing score, must get within one move of this model. Yet two

partitions can be very similar and yet more than one move apart. In this example, even if

the algorithm reaches the partition {1, 2}, this is still (at least) two moves away from {1}{2, 3}.

Based on these realisations, I decided to concentrate on exploring the space of equivalence

classes [I], rather than the space of partitions G, and adapted the search algorithm accordingly.

5.2 Deterministic Sparse Partitioning

I explain the methodology in terms of a Markov chain, but bear in mind that its stationary

distribution no longer matches the posterior. Additionally, this version is only suitable for an

identity or logit link function (Cases 1 or 2), for reasons which will become clear.

Sparse Partitioning concentrates on exploring the space of partitions. By contrast, the

deterministic version, which I refer to as Deterministic SP, explores the space of equivalence

classes. As a reminder, the equivalence class [I] consists of all partitions corresponding to a

particular set of associations SI . All other aspects of the set-up, in particular the underlying

relationship and choice of priors, remain the same. When it comes to moving through the

model space, the algorithm is required to calculate a score for each equivalence class examined,

which is proportional to its posterior probability. This score becomes

Score([I]) :=
∑
G∈[I]

Score(G) =
∑
G∈[I]

P(Y |X,G)× P(G).

Current Neighbourhood [I]†

In each iteration of the model search, Deterministic SP examines the neighbourhood [I]† con-

taining all the states obtainable by a single change to the current model. The three possible

change types involve removing a predictor from SI , adding a predictor to SI , or swapping

a predictor in SI with one not currently associated. The size of this neighbourhood will be

s+(N−s)+s(N−s), where s is the current number of predictors associated: s = |SI |. To cal-

culate the score of each equivalence class requires the scoring of B(s− 1, K, S), B(s+ 1, K, S)

or B(s,K, S) partitions, depending on the move type.

Having scored each model in the neighbourhood, the algorithm moves to the one with

highest posterior weighting, provided its score exceeds that of the current equivalence class.

The search is necessarily aperiodic and, being conducted over a finite space, a (local) mode
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will always be reached. For particularly large or complicated datasets, there is a chance the

number of iterations will becomes excessive, so a limit on the number of moves is imposed

(which is adjustable by the user).

This search requires a single score for each equivalence class. For this reason, it is not

possible to use a probit link function combined with latent variables (Case 3), as the method

is unable to integrate over all values of Z. This should not prove too much of a set-back. The

choice to analyse a binary response using a probit link function was introduced in order to

speed up the MCMC sampling process; but with the deterministic version, speed is no longer

an issue.

Once again, the introduction of multiple copies of predictors has negligible effect on the

computation time. While the size of the neighbourhood increases with C, there is no need

to consider adding, removing or swapping more than one copy of each predictor, as each will

result in the same model score.

5.2.1 Outputs

Deterministic SP stops when it is no longer able to improve the current model. It then bases

all inferences on the final equivalence class, ˆ[I]. The method’s primary outputs are ŜI , the set

of predictors declared associated by ˆ[I], and the highest scoring partitions within this class. In

the MCMC version, Sparse Partitioning does not differentiate between different order interac-

tions. For example, a non-null group of size three can only be inferred by the combination of

pairwise interactions reported. In contrast, by returning the highest scoring members of ˆ[I],

Deterministic SP will give a fuller insight into the true configuration.

To assign a level of significance to results, Deterministic SP calculates two sets of Bayes

factors: the first examines marginal associations, the second examines possible interactions.

Firstly, for each predictor, the method performs a significance test, using ˆ[I] as either the null

or alternative hypothesis. If predictor g has been declared associated in the final model, the

test compares the evidence for leaving out this predictor; if predictor g has not been declared

associated, the test compares the evidence for including this predictor:

BFg =

{
P(X,Y |ŜI)/P(X,Y |Ŝ−gI ), for g ∈ ŜI ,

P(X,Y |Ŝ+g
I )/P(X,Y |ŜI), for g /∈ ŜI ,

where Ŝ−gI and Ŝ+g
I are the sets of associations with predictor g removed or added. Posterior

odds can be obtained by multiplying each Bayes factor by pg/(1− pg), which provide an esti-

mate of the posterior probabilities of association for each predictor. Note that a probability
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of 0.5, equivalent to a posterior odds ratio of 1, serves as the threshold for determining asso-

ciation; the predictors which receive a probability estimate greater than 0.5 are those which

will have been declared associated, and vice versa.

Secondly, for each pair of predictors in SI , Deterministic SP calculates a Bayes factor

considering the extent of evidence for or against their interaction. I mentioned this idea

briefly when discussing ways to gauge the strength of interactions in Chapter 3. Let ˆ[I]gg′ ⊂ ˆ[I]

denote the subset of partitions in which predictors g and g′ interact: I ∈ ˆ[I]gg′ ⇒ Ig = Ig′ .

Let ˆ[I]
C

gg′ = ˆ[I] \ ˆ[I]gg′ denote its complement: I ∈ ˆ[I]
C

gg′ ⇒ Ig 6= Ig′ .

BFgg′ =
P(X,Y | ˆ[I]gg′)

P(X,Y | ˆ[I]
C

gg′)

=
P( ˆ[I]gg′|X,Y )

P( ˆ[I]
C

gg′|X,Y )

/ P( ˆ[I]gg′)

P( ˆ[I]
C

gg′)

=

∑
G∈ ˆ[I]gg′

Score(G)∑
G∈ ˆ[I]

C

gg′
Score(G)

/ | ˆ[I]gg′ |

| ˆ[I]
C

gg′ |
.

The second fraction adjusts for the imbalance between the numbers of partitions with and

without the interaction. I believe, in this case, the Bayes factor is more informative than the

posterior odds as it offsets my choice of prior. When explaining the partition prior, I discussed

that more tailored weightings might be more appropriate, but would be difficult to specify due

to the individual nature of each equivalence class. If that was the case, the user can at this

stage utilise prior probabilities for individual pairwise interactions. For example, should they

believe that, given a pair of associated predictors, there is only a 25% chance they interact,

they can multiply the Bayes factor by these updated prior odds (1/3) and obtained a revised

posterior probability for their interaction. It should be remembered that any revised posterior

probabilities are conditional on the final equivalence class, as had the new prior odds been

incorporated into the method before it began, a different final model might have been obtained.

Last of all, the method returns a measure of model fit. When the response is continuous,

Deterministic SP calculates a posterior estimate of variance explained by averaging over all the

partitions within the final equivalence class. For the binary response case, the corresponding

estimate is deviance, (twice the logarithm of) the ratio of the likelihoods under the final and

null models.
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5.2.2 Additional Features

Most of Sparse Partitioning ’s features carry over to Deterministic SP. Confounding is dealt

with in an identical fashion, by the inclusion of cofactor matrices Ψ and Ω. As before, the

variables in Ψ are able to interact with X, but must also be tertiary; while those in Ω can not

interact with X, but can take any values. It remains prudent to scan for duplicate predictors,

so that these can be assigned matching posterior estimates. Otherwise, multicollinearity is

not an issue. The method is interested in finding the highest scoring equivalence class, so it

does not matter if high correlations lead to groups of similarly scoring models. As run time

is not an issue, it is in fact better to retain these correlations, as filtering will risk discarding

true signal.

Missing Data

The deterministic version must return identical results for each run. Therefore, it is not possi-

ble to resample missing data values, as doing so would introduce variation. As before, missing

response values are of no importance when the aim is purely to detect association, although

I mention their prediction shortly. When some predictor values are unobserved, ideally these

should be imputed before analysis. If this is not possible, Deterministic SP is forced to take

a alternative approach.

To score each equivalence class, it is necessary to obtain a marginal likelihood for each

partition, even if some predictors are unobserved. We might consider replacing the marginal

likelihood with P(Y †|X,G), where Yi ∈ Y † only if all XiSI
have been observed. However, this

decision would create a bias towards models with more missing values; a model which results

in all samples being ignored would fit the data perfectly.

Instead, for each group, Sparse Partitioning creates a new node corresponding to samples

containing missing values for any of the predictors in that group. For example, for the case

of two binary predictors, the vector (Xg, Xg′) will now have up to five nodes, the fifth one

occurring when either (or both) of Xg and Xg′ are missing. Therefore, the total degrees of

freedom of the linear model will be increased by up to K, and Θ will be expanded accordingly.

Each regression coefficient corresponding to a “missing node” is assigned the same prior as

the standard coefficients, so that the marginal likelihood P(Y |X,G) can be calculated in an

almost identical fashion.

This approach has the potential to introduce bias if missing values do not occur inde-

pendently of the response. For example, were it the case that samples with higher response

values were more likely to have missing values for a particular predictor, then the missing node

might drive evidence for an association, regardless of whether this was warranted. If this was

124



considered a real danger, it might be necessary to impose a stricter penalty on missing values,

which could be implemented by altering the prior for the corresponding regression coefficients.

Prediction of response values is straightforward. Suppose analysis of XO and YO returns

the equivalence class ˆ[I]. As all results are based on this final model, the method needs only

calculate the expected response value for all partitions in this class, then weight according to

their posterior scores:

E(YU |X, YO, ˆ[I]) =
∑

G

E(YU |X, YO, ˆ[I],G)× P(G|X, YO, ˆ[I])

=
∑
G∈ ˆ[I]

E(YU |X, YO,G)× Score(G|XO, YO)∑
G′∈ ˆ[I] Score(G′|XO, YO)

.

When the response is continuous, it is possible to calculate E(YU |X, YO,G) for a set of

response values, as shown in earlier calculations. When the response is binary, whether this is

possible will depend on the circumstances. Therefore, for the sake of consistency, Determin-

istic SP predicts one value at a time using E(Yi|X, YO,G) for i ∈ U . When some members

of XU are missing, these calculations can be performed by introducing missing nodes as just

discussed.

If these predicted values are being used for cross-validation, the analysis should, in theory,

be run once for each training set of samples, potentially returning a different ˆ[I] each time.

Alternatively, the method approximates LOOCV by calculating E(Yi|Xi, X−i, Y−i, ˆ[I]) using

the same ˆ[I] for each, obtained by first analysing the data for all samples.

Forced Inclusion

I consider a major advantage of Sparse Partitioning its ability to assign individual prior prob-

abilities of association, allowing knowledge from previous experiments to be incorporated. In

particular, it is possible to set a predictor’s probability of inclusion to 1, indicating that it

is certain to contribute. This predictor will necessarily find its way into the current model

because all partitions which do not declare it associated will have a prior probability of zero.

Equivalently, Sparse Partitioning can be supplied with a list of certain associations which like-

wise are included in every partition / equivalence class considered. This strategy is preferable

when multiple copies of each predictor are allowed, as it does not insist a prior probability of

1 for all subsequent copies.

Forced inclusion allows the user to appreciate the presence of known associations which, if

not accounted for, might otherwise obscure the detection of novel ones. An alternative strategy

is to “regress out” the contribution of known associations in advance, but this assumes their
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joint contribution is independent to that of the remaining predictors. Therefore, I believe

Deterministic SP handles this situation more elegantly. In particular, the user might choose

to assign negligible prior probabilities for all unknown associations. In this case, no novel

associations will appear in the final equivalence class, but the posterior probabilities will show

the relative evidence for each being included. Furthermore, the list of top partitions will report

the most likely configuration of the known associations, having exhaustively considered all the

ways they might contribute.

Manipulative Search

Suppose a run of Deterministic SP concludes that there are two associated predictors, but the

user would like a list of the four predictors most likely to be associated. One solution would

be to scan the list of posterior probabilities for the two next highest. This will pick predictors

according to their marginal probabilities, conditional on the final model, which may not be

appropriate. For example, if there is a group of highly correlated predictors with posterior

probabilities just shy of 1/2, this approach will pick two predictors from this group, although

it is highly unlikely that both are associated. We would prefer to pick just one, then reassess

the situation with this predictor included.

Therefore, after completing the standard search, Deterministic SP offers the option to

forcibly set the number of associations found, similar to how frequentist methods might offer

a “prune” feature. The first run of the algorithm will stop when all models in the current

neighbourhood score lower than the current one. Consider the effect of increasing all prior

probabilities in a uniform fashion. Relatively speaking, the scores of those models which re-

move a predictor will decrease, the scores of those which add a predictor will increase, while

those which swap in a predictor will remain unchanged. Therefore, by gradually increasing

the prior probabilities, the highest scoring model out of those which add a predictor will even-

tually outscore the current model.

The amount by which each probability must be increased can be calculated explicitly by

dividing the current model score by that of the highest scoring model with a predictor added.

Suppose this threshold equals c. To force the addition of a predictor, it is necessary to replace

each pg with p∗g, such that
p∗g

1− p∗g
= c

pg
1− pg

.

At this point, the algorithm can be restarted from the current state. Immediately, it will

add in an extra predictor, then continue using the revised prior probabilities. This tactic

can be repeated until the required number of associations are declared. If, instead, it is

necessary to remove a predictor, the opposite strategy can be used, each time reducing the
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prior probabilities.

5.3 Simulated Data

In this section, I show how Deterministic SP performed in a selection of the simulation studies

considered in Chapter 4. As the simulated datasets were relatively small (generally, n = 100

and N = 1000), the run time of Deterministic SP was essentially instantaneous, comparable

to that of the most basic method, Single. In most cases, I compared the method to Sparse

Partitioning, Pairs, MARS and “best other”. For each scenario, best other represents the

highest score achieved by any of the five remaining methods (Single, CART, RF, SSS and

Logic). The general conclusion is that, while at times Deterministic SP suffers compared to

the original version of Sparse Partitioning, it still managed to match or better the (combined)

performance of many available methods.

Figure 5.1 presents results from the first three simulation studies. The plots in the top

row, corresponding to Study One (continuous response, idealised data), are very representa-

tive of all others. In general, Sparse Partitioning and Deterministic SP were evenly matched,

occupying the top two spots across scenarios. However, on a few occasions, the performance

of the deterministic version dropped and, despite remaining above best other, the method

was been beaten into second place by Pairs. The dashed lines in the top plots, indicating

the highest pairwise interaction probabilities (conditional on the final model), provide insight

into Deterministic SP ’s results. Its drop in performance under Model III occurred when the

method became unable to accurately detect the pairwise interaction.

The figure’s second and third rows refer to Study Two (causal predictors unobserved,

r2 = 0.9 or r2 = 0.8). As before, average detection was reduced when the causal predictors

were not observed directly, however, the ordering of methods remained unchanged. The fourth

row corresponds to Study Three (10% of predictors missing) and suggests that Deterministic

SP ’s ad-hoc method for obtaining a marginal likelihood in the presence of missing data is

effective.

The top two rows of Figure 6.3 relate to Study Four (exponential noise, then uniform

noise). Once more, it appears that the nonlinearity of Deterministic SP ’s underlying relation-

ship model makes the method robust when the assumption of normally distributed residuals

is violated. The third row refers to Study Five (tertiary predictors), while the bottom row

corresponds to Study Six (binary response). A similar pattern is evident; Deterministic SP ’s

performance has been affected by the restrictive nature of its search, but its consideration of

more general underlying relationships still gives it an edge over most existing methods.
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Figure 5.1: Results of Simulation Studies One to Three. The top row corresponds to Study One
(continuous response, idealised data), the middle two rows correspond to Study Two (causal predic-
tors unobserved, r2 = 0.9 or r2 = 0.8), the bottom row corresponds to Study Three (10% missing
predictors).
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Figure 5.2: Results of Simulation Studies Four to Six. The top two rows correspond to Study Four
(first residual noise was generated from an exponential distribution, then from a uniform distribution),
the third row corresponds to Study Five (tertiary predictors, 2 of which were causal), the bottom row
corresponds to Study Six (binary response, 3 or 4 causal predictors).
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Like many of its rivals, Deterministic SP experienced a dip in performance under Model

III for the highest causal predictor frequency (0.4). This suggests that the dip in form is a

consequence of using a deterministic search algorithm. When the model space is searched

stochastically, the algorithm will have the chance to consider a number of paths leading to

the true underlying relationship. Therefore, if the first approach is unsuccessful, a later one

might have more luck. For a deterministic search, the algorithm will generally have only one

chance to reach the true model, so how favourable this single approach is, will determine how

successful the method.

The algorithm of Pairs was less, but not completely, immune to this dip in performance,

leading it to outperform Deterministic SP for a few scenarios. This is disappointing. However,

I take consolation from Pairs ’ limitations. Firstly, although it too can be applied to the very

largest datasets, extensions to allow, say, three or four way interactions would rapidly become

infeasible. Secondly, the underlying relationship is unable to take into account multicollinear-

ity. Just like Single, if a group of predictors are strongly correlated with a causality, the top

list of pairwise associations will reflect this.

Thirdly, it is very easy to construct situations where Pairs will produce misleading results.

For example, suppose one predictor has a very strong effect on the underlying relationship; all

pairwise models containing this predictor will perform very well, whether or not the second

predictor is associated. Fourthly, the method gives little indication whether the top scor-

ing pairs of predictors are contributing additively or via an interaction. Pairs could readily

be amended to perform tests of “true interaction”, by using the additive model as the null

hypothesis. The maximum likelihood test would then compare

f(Xg, Xg′) = θXg + θXg′
with f(Xg, Xg′) = θXgXg′

,

so the greater the difference between the fit of these two models, the stronger the evidence for

an interaction. However, while this change would tackle the last two problems, it would be

more difficult to overcome the first two.

5.4 Real Data

In this section, I apply Deterministic SP to two whole genome datasets. I look once again at

Arabidopsis thaliana, this time using data from the latest release of “Project 2010”. I then

apply the method to data from the METABRIC study, a large-scale collaborative examination

of breast cancer.
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5.4.1 2010 Project: Release 3.04

In Chapter 4, I examined the 2010 Project’s pilot dataset. I now consider data from its most

recent release, the subject of a paper by Atwell et al. (2010). The expression level of the

FLC gene is known to be affected by polymorphisms in the FRIGIDA region (Johanson et al.,

2000; Shindo et al., 2005). Atwell et al. performed a one-SNP-at-a-time association study

using FLC expression as the response. Their analysis produced results similar to Single, shown

in the top plot of Figure 5.3. While some SNPs within the FRIGIDA region (which is marked

by a red vertical line) achieved genome wide significance, two stronger groups of associations

were detected approximately 200 kbp and 1 Mbp to the right. Prior knowledge would suggest

these downstream associations are spurious. When Atwell et al. repeated the analysis, but

this time including in the regression model two alleles of the FRIGIDA gene known to affect

FLC, the downstream associations vanished, increasing suspicion that they were false positives.

In order to draw conclusions, for the remainder of this section I assume this suspicion to be true.

I was interested to see how Deterministic SP would cope with a dataset of this size and

also how it would fare with the problem Atwell et al. observed. To begin this analysis, it

was necessary to reconsider the topic of confounding. In May 2010, I was able to visit Vienna

and talk over aspects of the paper with members of the Nordborg Lab in person. A striking

difference between our approaches was that they had chosen not to correct for population

structure. While I viewed any effects attributable to population differences as environmental

noise, and so treated these as confounding, they considered that the correlations with geogra-

phy might have a genetic basis. For example, I had assumed that the Scandinavian accessions

had longer flowering times as a result of their cold climate relative to the other accessions.

However, it could be that these plants required a different flowering time to survive in these

conditions, leading them to adapt genetically to their surroundings. Further doubt was cast

over my initial theory when it was pointed out that, for the purpose of the experiment, most

plants had been cultured in a climate-controlled laboratory in the basement! Thereafter, I

decided it best to correct only for relatedness. Although not shown, my results for the pilot

study remain unchanged, as the signal stayed sufficiently strong, regardless of what correction

was applied.

In total, 174 samples were recorded for FLC expression levels and each typed for 216,130

SNPs. Of these, I removed 8 accessions on account of extremely high relatedness. For the

remainder, I estimated the kinship matrix K using the technique I discussed for the pilot

dataset. I then calculated the Cholesky decomposition of K and supplied the columns of this

to my method as confounding variables. For each SNP, I set pg = 5/216130, indicating a prior

belief of 5 associations. With Arabidopsis, for which the sense in the Nordborg Lab was that

many tens of predictors might affect a given trait, this should certainly be interpreted as a
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Figure 5.3: Analysis of FLC expression. The top plot shows the p-values obtained by Single, the
bottom plot shows the posterior probabilities calculated by Deterministic SP. The vertical red line
indicates the location of the FLC gene.

prior on the number of strong associations.

The bottom plot of figure 5.3 shows the findings of Deterministic SP. The method de-

clared two associations (those with posterior probabilities greater than 0.5). It is clear that

the sparsity in the prior carried over into the results, as most posterior probabilities were very

close to zero. Figure 5.4 examines the start of Chromosome 4 in closer detail. The problem

encountered by Atwell et al., is shown more clearly in the top plot. The nearest peak to the

FRIGIDA gene was approximately 100 kb upstream. However, the highest p-value in this group

was eclipsed by a second and third set, located between 200 kb and 1 Mbp to the right. Single

also suggested evidence for a fourth set of associations, almost 2 Mbp downstream. The results

of Deterministic SP appear promising. While it also found strong evidence of an association

from the second set, in terms of posterior probabilities, this was followed very closely by one

from the first set, that nearest to FRIGIDA.

This analysis suggested that not only is the method computationally feasible for datasets

of this size, which incidentally took only a few minutes to process, but also that it can produce

meaningful results. However, it also alerted me to a possible practical issue when presenting

results from Sparse Partitioning. In association studies, although linkage disequilibrium can

be a nuisance when trying to pinpoint the most likely causal variant, it can also be quite

reassuring. When neighbouring predictors are very highly correlated, we expect the results of

one-predictor-at-a-time analyses to show broad peaks surrounding any strong association (c.f.

the top plot of Figure 5.4). If these patterns are present, this adds an element of replication

to the finding. By contrast, if these analyses return only isolated hits, the experimenter might

become sceptical, and consider these “finds” were an artifact of genotyping error. It would be
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Figure 5.4: Analysis of FLC expression. These are the same plots as in the previous figure, except
zoomed in on the start of Chromosome 4. The top plot shows the results of Single, while the bottom
plot reports those of Deterministic SP. The red line indicates the location of the FRIGIDA gene.

wrong for a user of Sparse Partitioning to draw the same conclusions, as the peaks will more

likely than not be isolated. However, it seems prudent to always present the results of my

method alongside those of Single. For example, although the user might be suspicious of the

sparse peaks in the bottom plot of Figure 5.4, by referring to the top plot, they will see that

these fall within areas which show consistent, marginal association.

5.4.2 METABRIC

I’ve been fortunate to be involved with METABRIC (Molecular Taxonomy of Breast Cancer

International Consortium). This is a collaborative project between the UK and Canada tasked

with improving our understanding of breast cancer. In total, over 2,500 individuals have been

examined, providing a wealth of data. To give an idea of scale, for the 997 individuals which

form “Dataset I”, I had access to 906,600 SNP probes, 1,876,300 “Copy Number” probes and

measurements of expression levels for 48,803 genes.

Copy Number

Copy number change is a phenomenon which has recently received increased attention (The

Wellcome Trust Case Control Consortium, 2010). Consider a reasonably long sec-

tion of human DNA located on an autosomal (non-sex) chromosome. If this section is unique

then, modulo minor mutations (e.g. SNPs), we expect it to appear twice across the genome,

once in each copy of the homologous pair to which it belongs. However, this will not necessarily

be the case. In some genomes, either one or two sequence copies will have been deleted, while

in others, one or more copies will have been added. It is easy to appreciate why copy number

variation, a phenomenon disrupting sizeable regions of the genome, might be important.
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In METABRIC, these copy number changes are divided into two categories: copy number

variants (CNVs), which are “germline” events common to all cells in the body; and copy num-

ber aberrations (CNAs), which are “somatic”, specific only to tumours. Generally speaking,

CNVs are more focal, affecting perhaps a few hundred base pairs, compared to CNAs, which

might involve up to a few million.

Preprocessing

Before it was possible for me to analyse the data, I carried out a number of preprocessing steps.

The top left grid in Figure 5.5 represents the raw data. Each row relates to an individual,

while each column refers to a SNP or copy number probe. Although copy number is integer

valued, it is measured on a continuous scale. Black dots indicate probes judged to differ suffi-

ciently from the reference sequence. A segmentation algorithm is applied to determine which

probes relate to regions of copy number change. This takes advantage of prior knowledge of

the average length of change regions in order to merge values for neighbouring probes. Finally,

to determine whether a region corresponds to a CNV or CNA, cancerous cells are compared

to healthy ones; the changes which appear in both are likely to be germline, those specific to

tumours are likely to be somatic.

My analysis began with the top right grid. Copy number segments had been merged and

variants had been typed. It was possible that two or more predictor types coincided at a

particular location. Although all data supplied to me was complete, any time a CNV or CNA

overlapped with a SNP, I set the latter to missing. This was to recognise the uncertainty

involved in calling a SNP in an area disrupted by a copy number change. My first step was

to reconstruct the complete probe matrices by separating out predictor types. For the SNPs,

their value was already tertiary; 0, 1 and 2 corresponding to homozygous wildtype, heterozy-

gous and homozygous mutant, respectively. For the copy number values, I used 0, 1, and 2 to

represent a deleted, neutral or amplified state, relative to the reference genome. At this point,

I performed basic filtering, searching first for trivial predictors, then for identical neighbours.

This produced the “raw” predictor sets for CNVs, CNAs and SNPs (sizes 11,538, 193,872

and 874,649). Next, I thinned each set using an r2 threshold of 0.8, which left me with the

“processed” predictor sets (sizes 6,328, 11,735 and 523,943).

A study the size of METABRIC offers the potential to ask very detailed questions about

breast cancer. However, at the moment, the primary aim is to get a better understanding

of the general landscape of the disease. In particular, the study is interested in interrogating

the relative contributions of CNVs, CNAs and SNPs, and how they might interact. A pri-

mary means for assessing each predictor’s regulatory effect is to consider their effect on gene
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Figure 5.5: Processing of predictors. The top left matrix visualises the output from the sequencing
arrays. Each row corresponds to an individual’s genome, while each black dot indicates a locus whose
state differs from the reference sequence. The job of the segmentation algorithm (magic wand) was
to classify all mutations as CNVs, CNAs or SNPs (red, blue or green dots). At this point, I entered
the analysis. It was possible for mutations to be classed as more than one type, indicated by two
overlapping coloured dots. However, whenever a copy number change overlapped with a SNP, I set
the latter’s value to missing, to recognise the difficulty in determining genotypes in this situation. To
begin filtering the predictors, I first separated by type, creating individual predictor matrices for CNVs,
CNAs and SNPs. Using the CNVs as an example (bottom left), the basic processing step involved
searching for trivial predictors, then identical neighbours, and resulted in the “raw” predictor set of
size 11,538. Next, I pruned using an r2 threshold of 0.8, leaving me with the “processed” predictor
set, containing 6,328 CNVs. I repeated this process for CNAs and SNPs.
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expression. Translation is the process whereby protein is synthesised according to a gene’s

DNA sequence. An intermediary of this process is “messenger RNA” (mRNA). Measuring the

quantity of mRNA produced by a specific gene provides a reasonable indicator of this gene’s

activity. METABRIC recorded measurements for 48,803 gene probes in total. After basic

quality control, for example, removing probes with low confidence scores and those matching

more than one genomic location, I was provided with a total of 28,609 sets of measurements.

The samples were obtained from three different sites: Cambridge, Nottingham and Vancou-

ver. To investigate the effect of site as a confounder on expression values, I applied principal

component analysis to the full set of responses. Borrowing notation from the multiple response

case (presented in Chapter 3), each column of Y , which is now a matrix (size 997× 28, 609),

corresponds to a particular gene probe. Principal component analysis of Y Y T calculates the

linear combinations of responses across which individuals show most variation. If, for exam-

ple, all individuals measured in Cambridge had on average higher expression values, we would

expect this to be evident in the top principal component axes. The left plot of Figure 5.6

demonstrates the noticeable impact site had on expression values, with the second principal

axis being a particularly good indicator of clinical centre. Similarly, a factor which has a

well-known impact on gene expression values is “ER status”, a measure of an individual’s

levels of estrogen. The right plot presents the same principal component values, but this time

individuals are coloured according to whether they are ER positive or ER negative. It is ev-

ident how well the first principal axis distinguishes these two groups. These observations led

me to regress out the contribution of site and ER status in advance of analysis. Essentially,

I created a 3 by 2 contingency table and, for each response, subtracted the mean expression

value for each cell from each of the corresponding individuals.

Basic Analysis

My first analysis, applying Single to each predictor-response pair, was incredibly näıve, but

provided a good feel for the nature and size of the data. For each expression, I recorded the

smallest p-value for each set of predictors. These tests immediately highlighted the extent of,

and threat posed by, outliers. Considering many of the predictors had either one or two rare

states, the presence of extreme expression values heavily exaggerated p-values. Stranger

et al. (2007) discovered a similar problem in the dataset they studied, and chose to combat

the issue via permutation testing. However, I decided on our scale this would be impractical

if decent resolution was desired in a reasonable time. I considered attempting to remove or

moderate extreme response values, but such an approach seemed too subjective. Therefore,

I decided to replace all expressions with their ranked values, so that each response became a

permutation of {1, 2, ..., 997}.
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Figure 5.6: Influence of confounders. In each plot, the x and y axes correspond to the first and sec-
ond principal components through the response values. In the left plot, samples are coloured according
to site of origin (AD = Addenbrookes Hospital, Cambridge; NT = Nottingham; VC = Vancouver).
In the right plot, samples are coloured according to ER status. The impact of both site and ER status
is clearly visible through these axes.

To account for the multiple testing involved in comparing all predictor-response pairs, I

applied a Šidák-type correction (Šidák, 1967) to the minimum p-values. I based this correc-

tion on Ne, an estimate of the effective number of tests performed (specific to each predictor

type), correcting each p-value with the transformation: p→ 1− (1− p)Ne ≈ Nep, for small p.

Similar to the technique I used when analysing Arabidopsis data (Figure 4.11), I determined

suitable values of Ne by studying quantile-quantile plots. Using CNVs as an example, I be-

gan with the set of 28,609 minimum p-values, each one obtained by regressing a particular

expression on each of the 11,538 raw CNV predictors in turn. I then plotted, for different

possible values of Ne, the set of transformed p-values, choosing the value of Ne which resulted

in a line closest to the diagonal. In the event, this suggested the effective numbers of tests

were approximately 3,200, 9,200 and 701,000, for CNVs, CNAs and SNPs, respectively. Re-

assuringly these values were fairly similar to those obtained by filtering using an r2 value of 0.8.

The left diagram of Figure 5.7 provides an overview of Single’s results. In total 11,162

of the genes tested (39.0%) were found to be associated with either a CNV, CNA or SNP

at a 0.0001 significance threshold. This Venn diagram divides these genes according to the

types of predictors declared associated. For example, the top left circle corresponds to CNVs.

This indicates that 80 genes in total were found associated with CNVs, of which 36 also

had associations with CNAs, 13 with SNPs and 28 with both. The most dominant values

relate to CNAs, demonstrating the dramatic impact these variants have on gene expression

within tumour cells. The tests showed that CNAs were involved in 97.0% of genes found to

be associated with at least one predictor type, compared to 0.72% and 14.2% for CNVs and
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ANALYSIS BY SINGLE ANALYSIS BY DETERMINISTIC SP

CNV CNA

SNP 28609

314
2.8%

9538
85.5%

1230
11%

3
0%

13
0.1%

36
0.3%

28
0.3%

CNVs CNAs

SNPs 28609

1378
11.1%

8643
69.7%

2299
18.5%

16
0.1%

7
0.1%

40
0.3%

21
0.2%

Figure 5.7: Comparison of the results of Single and Deterministic SP. The left Venn diagram relates
to predictor-gene pairs found associated by Single, the right relates to Sparse Partitioning. The values
report the number of times an association was found between a gene and one or more CNVs, CNAs
and/or SNPs. Each section in the Venn diagram corresponds to a particular combination. For
example, the top left circle of the left diagram indicates that 80 gene expressions were found to have
an association with a CNV. Of these, 36, 13 and 28 also had an association with a CNA, with a SNP
or with both a CNA and SNP.

SNPs, respectively. This domination is perhaps to be expected, considering that CNAs were

defined as variants unique to cancerous cells.

Analysis by Deterministic SP

It is potentially of great interest to identify interactions between predictors, as doing so might

suggest common pathways. In particular, if a provable interaction between a germline and

somatic variant was found, this would suggest an individual’s inherited background influences

subsequent alterations during cancer. For this reason, there is a demand for tools able to

consider large numbers of predictors whilst investigating interactions (Gilad et al., 2008).

My strategy was to apply Deterministic SP for each gene, regressing its values simultane-

ously on CNVs, CNAs and SNPs, using the sets of processed predictors. I might have used

the sets of raw predictors instead, however, filtering reduced a considerable amount of work.

It also helped in specification of prior probabilities of association. The pruning of predictors

according to r2, to some extent, standardised the predictor variation, which could be con-

sidered appropriate when assigning pg based on an expected average number of associations.

For example, if for CNAs I had expected 5 associations and set pg = 5/193872, this could be

viewed as overly strict, when the effective number of CNA predictors was closer to 11,735.
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There were 542,006 processed predictors in total. However, being a preliminary analysis, I

decided to make this number more manageable still. Therefore, for each expression, I consid-

ered only those SNPs on the same chromosome as the relevant gene, while including all CNVs

and CNAs. This left me with between approximately 30,000 and 60,000 predictors for each

experiment. Hopefully, this did not take too much away from the analysis, as the majority of

associations found so far have been within cis (Stranger et al., 2007).

I applied Deterministic SP to each experiment twice. I set the prior probabilities of as-

sociation to 1
3
/6328, 1

3
/11735 and 1

3
/523843 for CNV, CNA and SNP predictors. This was

designed so that there would be on average 1
3

+ 1
3

+ 1
3

= 1 association per gene. However,

because I only used a subset of SNPs for each expression, the actual expected number of asso-

ciations would be slightly lower. I felt it was better to keep these values, rather than increase

the prior probabilities for SNPs, for the reason that I had retained the cis predictors, those

most likely to be associated.

For both runs, I allowed up to 8 causal predictors. Post-analysis checking suggested this

was a reasonable limit, as on only two occasions was it reached. I restricted the first run to the

linear underlying relationship, S = 1, setting the maximum number of groups K to 8. For the

second run, I allowed for two-way interactions, setting S = 2 and K = 4. In total, each run

took approximately 1,500 hours, which across a multi-core cluster meant it was, by-and-large,

achieved overnight. There was a considerable difference between the run times for different

expressions. Those with 0, 1 or 2 associations would be completed in less than a minute, but

those with 5 or more took up to a few hours.

Similar to the analysis by Single, it was possible to divide the genes according to with which

types of predictors they were found associated. The right diagram of Figure 5.7 displays the

corresponding Venn diagram for the linear version. In total, the linear run of Deterministic

SP found 12,404 genes (43.4%) to have one or more associations, which was reasonably similar

to the figure of 11,162 (39.0%) produced by Single. This is to be expected, as the first step of

Deterministic SP looks for marginal associations. However, it is interesting to note how the

composition of associations changed. CNAs continued to dominate the expression landscape,

as they did in the one-predictor-at-a-time analysis, being involved for 88.7% of genes with at

least one association. For SNPs this figure was 29.9% (up from 14.2%), while for CNVS it

remained roughly the same at 0.68% (compared to 0.72%). These figures suggest that allowing

for multiple types of predictors in the model assisted the detection of SNPs, by first accounting

for the strong effect of CNAs. Although less striking, this effect was noticed for CNVs as well.

The following table compares the linear and nonlinear runs of Deterministic SP by how

many associations were found for each gene:
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Number of Predictors Declared Associated

Settings 0 1 2 3 4 5 6 7 8

S = 1;K = 8 16205 5669 4123 1836 600 136 31 7 2

S = 2;K = 4 16205 5749 3991 1871 599 159 27 8 0

The total numbers of genes found to have an association by each run were necessarily equal

as, regardless of the values for S and K, the first step of the algorithm is to see whether a sin-

gle predictor crosses the posterior probability threshold. The main difference between the two

runs is that the nonlinear version declared two predictors associated on 132 fewer occasions.

However, it was fairly even whether the corresponding 132 genes ended up with only one or

more than two associations, and, as a result, the total numbers of associations found by each

run were almost equal (22,754 compared to 22,753).

To gauge evidence for interactions, I merged the posterior probabilities for interactions

across all experiments for the nonlinear run. For the genes for which two associations were

found, Deterministic SP will have returned 1 pairwise interaction probability; for those with

three associations, it will have returned 3; for those with four associations, it will have returned

6, and so on. In total, this produced 15,361 (non-distinct) pairwise probabilities.

Of these probabilities, some were very high; 217 pairs exceeded 1− 10−5, while 3 exceeded

1−10−10. From these values, can we automatically conclude that there is strong evidence that

expression levels are influenced by interactions between predictors? As I discussed earlier,

there is an inherent difficulty in trying to assign significance to interaction probabilities. The

most robust assessment would be permutation testing, but there is no obvious way to perform

this, even if computational limitations were not an issue. On a positive note, it helps that

there is a degree of independence between the posterior marginal probability estimates and the

posterior interaction probability estimates. Each set of pairwise probabilities was calculated

conditional on the final equivalence class. It compared those partitions which featured the

interaction to those without, and so did not explicitly depend on the final equivalence class’

score. This meant that a high scoring equivalence class would not necessarily return strong

pairwise interaction probabilities, and vice versa, suggesting the interaction probabilities can

be assessed on their own merits.

Fortunately, in this case, we are able to interrogate the values further. We strongly expect

interactions within the genome to act locally. However, at the moment, it is not possible to

accommodate such a belief within Sparse Partitioning directly. Therefore, if Deterministic SP

found strong support for such a pattern, this would offer evidence for the interaction prob-

abilities being valid. Again, there are caveats. Firstly, I only considered SNPs on the same
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LOCATIONS OF TOP PAIRWISE INTERACTIONS
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Figure 5.8: Pairwise interactions, collated across all genes. The top plot shows the location of
the top 217 pairwise interactions (posterior probabilities greater than 1 − 10−5). Both axes indicate
genomic position. The bottom plot displays the mean number of “local” pairwise interactions, when
considering different subsets of the 15,361 interactions reported by Deterministic SP. The black line
defines local as on the same chromosome, while the red line defines it as on the same chromosome
and within 10 Mbp. To calculate these values, I considered the partial means as pairs of predictors
were added from highest to lowest ranking. The local interactions are clearly over-represented within
the highest scoring pairs, apparent by the initial elevation of the running mean above its base (far
right) value.
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chromosome, so any interaction between a pair of these would necessarily be relatively local.

Secondly, it might be the case that Deterministic SP was biased towards interactive models

in general. Suppose Deterministic SP automatically tried to place predictors in as few groups

as possible, which is understandable considering these models will always fit better than their

linear counterparts. As many of the strong associations will be in cis, this would lead to the

method returning high probabilities for cis interactions, but without basis.

To get around these issues, instead of focusing on absolute interaction probabilities, we can

instead consider the spread of all 15,361 values. The top plot in Figure 5.8 shows the pairwise

locations of the 217 pairs of predictors with posterior interaction probabilities greater than

1 − 10−5. It is possible to make out a bias towards points lying on the diagonal. The second

plot is more compelling. The black line plots the running mean of the number of pairs lying

on the same chromosome, calculated as pairs of predictors are added in decreasing order of

posterior interaction probability. For example, when the strongest 50 (100) pairs are consid-

ered, 54% (43%) lie on the same chromosome. This is compared to an overall average of 9.6%.

The red line plots the same statistic, but this time local is defined as within 10 Mbp. Of the

top 50 (100) pairs, 24% (18%) lie within this definition of cis, compared to an overall average

of 3.5%. These results strongly support the credibility of the posterior interaction probability

estimates, and thus lend support for the existence of interactions.

Finally, I highlight one example, that corresponding to the highest pairwise interaction

probability reported. This occurred for the gene VAV3. Figure 5.9 marks the p-values from

Single for both the whole genome (top) and a 3 Mbp window surrounding the gene probe

(bottom). The y-axis has been spliced at the top, to accommodate the very extreme val-

ues detected. In total, Deterministic SP declared three associations (black dots), all located

within this window, which I have labelled SNP 1, SNP 2 and CNA 1. The strongest associ-

ation, SNP 1, was positioned very close to the gene probe and received a very high p-value

(10−164). Interestingly, this was not the smallest p-value reported, as one SNP’s was 69 orders

of magnitude stronger. The second SNP also resided near the gene probe. Note that part of

the filtering of genes was to remove those which had any predictors located completely within

their sequence probe. The third predictor, a CNA, received a relatively weak p-value (10−1.3).

Therefore, this CNA could only have been declared associated by considering a joint model,

one able to examine groups of predictors simultaneously.

Figure 5.10 looks at models involving subsets of these three predictors. The plots in the

top row consider the three marginal models for SNP 1, SNP 2 and CNV 1. The bottom left

plot considers the pairwise interaction of SNPs 1 and 2, which the bottom right plot examines

in more detail. In each boxplot, the final column corresponds to the partition’s missing node.

Reassuringly, in all boxplots, there is no obvious skew of expression values for the missing
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Figure 5.9: Results for VAV3. The top plot reports genome wide p-values from the analysis of VAV3
by Single. The green points correspond to SNPs, the red to CNVs and the blue to CNAs. Note
that, because VAV3 resides on Chromosome 1, only SNPs on this chromosome were considered. The
bottom plot presents the same information, except zoomed in on a 3 MBp window surrounding the
gene probe (marked by a vertical dashed line). In both plots, the black dots indicate the three predictors
Deterministic SP declared significant, labelled SNP 1, SNP 2 and CNA 1.
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Figure 5.10: Boxplots for VAV3. The four boxplots compare the expression levels of VAV3 for different
predictor states. The top row displays the marginal effects of SNP 1, SNP 2 and CNA 1, the three
predictors declared associated by Deterministic SP. The bottom left boxplot considers the interaction
of SNPs 1 and 2. In each boxplot, the final predictor state (‘NA’) corresponds to those individuals
assigned to the missing node. The bottom right diagram plots each individual’s expression value. The
x-axis indicates the value of SNP 1, while the colour of each point indicates the value of SNP 2. It
is clear that, although SNP 1 serves as a good predictor of expression value, it is far from perfect, as
there remain a number of homozygous mutant (State ‘aa’) individuals with high expression values.
But when we refine these individuals according to which are also homozygous mutant at SNP 2
(State ‘bb’), most of the high values are filtered out, suggesting a multiplicative interaction. Note
that, as all models shown involve at most two predictors, they only represent approximations of the
partitions contained within the final equivalence class, as in that class all three predictors were declared
associated at once.

node, which if present would suggest experimental bias. The strong marginal effects of SNPs

1 and 2 are clearly visible. Note that SNP 2 is recorded homozygous wildtype only twice, so

I subsequently merge this state with heterozygous for the interaction boxplot.

The pairwise plots clearly indicate a possible interaction and suggest an interpretation.

When both SNPs on their own are homozygous mutant, this has a devastating effect on

expression levels. However, for SNP 1 the boxplot picks up a number of “outliers” within

the homozygous mutant class, suggesting the marginal model is not ideal. These all but

vanish when SNP 2 is taken into account, as clearly evident in the bottom right plot. As the

remaining three classes “flatten out”, this suggests a multiplicative interaction, triggered only

when individuals are homozygous mutant for both SNPs.
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Chapter 6

Bayesian Projection Pursuit

Sparse Partitioning requires that all predictors are tertiary. One way to apply the method to

quantitative predictors is by first coercing the dataset into the required format. However, such

a strategy is unlikely to be the most efficient as it will not make full use of the information

provided by data. In this chapter, I discuss how incorporating aspects from the technique

projection pursuit leads to a method able to handle quantitative predictors directly.

6.1 Motivation

When considering the interaction of groups of predictors, Sparse Partitioning explores func-

tions with full degrees of freedom, one for each observed node. This prompts the requirement

that all predictors are binary or tertiary, to ensure the number of nodes, and therefore degrees

of freedom, remains manageable. When the predictors are quantitative, there are likely to

be far more than three distinct values for each predictor. As a result, the number of nodes

observed for each group will grow very rapidly, bounded only by the total number of sam-

ples. Therefore, any full interaction model is likely to substantially overfit the data, leading

to meaningless results.

Furthermore, for each function, Sparse Partitioning assigns independent priors to its re-

gression coefficients. This is suitable for categorical predictors, as it reflects that these imply

no ordering nor measure, describing only whether two samples’ predictor values are the same

or different. Quantitative predictors, by contrast, offer far more information. If a quantitative

predictor’s values are discrete, they will dictate an ordering to the samples. If they are con-

tinuous, they will additionally provide a relative measure. In both cases, it is reasonable to

expect that when two samples’ values at a causal predictor are closer together, their responses

will be more similar. This assumption should be reflected in the prior for the functions.
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6.2 The Projection Pursuit Model

Once again, we must consider how best to represent and explore interactions. Consider the

interaction of two predictors, in which case fk(Xg, Xg′) is a bivariate function with a two-

dimensional domain. When we examined categorical predictors, the locations of the nodes

were irrelevant. This meant that the two-dimensional nature of the function was redundant

and allowed us to view the function simply as a mapping of independent points. Now that the

predictors are quantitative, the node locations become informative and should be taken into

account. Furthermore, while only a finite number of distinct predictor values are observed,

these typically represent a small proportion of those possible. Therefore, it makes more sense

to consider a properly multivariate function, one defined over a wider domain than just the

observed nodes.

In order to explore properly multivariate functions, it is necessary to first devise a suitable

parametrisation, ideally one which retains the generality we desire. The technique projection

pursuit (Friedman and Tukey, 1974) suggests a possible solution. The following description

comes from Elements of Statistical Learning (Hastie et al., 2001) (ESL), with the notation

adapted to match mine:

The projection pursuit regression equation has the form

f(X) =
K∑
k

fk(Xξk).

This is an additive model, but in the derived features Xξk rather than the pre-

dictors themselves. The functions fk are unspecified and are estimated along with

the directions ξk = (ξk1, ξk2, . . . , ξkN) using some flexible smoothing method. The

function fk(Xξk) is called a “ridge function” in RN. It varies only in the direction

defined by the vector ξk. The scalar variable Xξk is the projection of X onto the

vector ξk, and we seek ξk so that the model fits well, hence the name “projection

pursuit”.

By considering sums of functions, each acting on a projection, projection pursuit is able to

explore a broad range of underlying relationships. In fact, with sufficiently large K, it is pos-

sible to approximate, arbitrarily well, any continuous function as the sum of ridge functions.

Notice how the model deconstructs the underlying relationship. Potentially, this relationship

is a nonlinear, multivariate function of the predictors; using the projection pursuit model, it is

expressed as the sum of nonlinear, univariate functions (the ridge functions) acting on linear,

multivariate functions (the projections).
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ESL suggests an iterative algorithm for evaluating the projection-function pairs within

a frequentist framework. Suppose we have picked an objective function and decided what

functions are permissible. The algorithm begins by evaluating f1 and ξ1 recursively. Given

the direction ξ1, and thus a projection Xξ1, we wish to calculate f1 which optimises the

objective function. With judicious choice of objective function, this will be explicit. Similarly,

given a function f1, we wish to find the optimal ξ1. Assuming the function is differentiable,

Taylor’s theorem will provide an approximation of f1(Xξ1), linear in ξ1, using which the

direction can be updated. These two steps are iterated until satisfactory convergence. Having

determined values for ξ1 and f1, a new projection can be added in and this process repeated.

Popularity of Projection Pursuit

Projection pursuit is not alone in its desire to find informative directions through the data.

Perhaps the most popular proponent of this is principal component analysis, although this

method seeks to explain variance within the predictors rather than variance within the re-

sponses. Nor is projection pursuit unique in its use of smoothed functions (Wahba, 1978).

In this respect, it has much in common with functional data analysis, a collection of methods

designed to fit curves through data points (Ramsay and Silverman, 2006). Here, the mea-

surements are typically realisations at specific time intervals, so the aim is to find functions

which explain the chronological development of an outcome. For these, smoothing functions

prove very convenient, as their penalty functions reward desirable properties.

Despite its relative old age, projection pursuit remains a little used technique. This might

be due to its model’s lack of interpretability. Although it returns an explicit form for f(X),

from the tangle of overlapping projections and functions it will be difficult to obtain much

insight into the underlying relationship. Saying this, projection pursuit can claim to have

inspired a number of related methods. For example, neural network methods often consider

nonlinear functions of projections, although typically insisting the functions take on a far sim-

pler form (Hastie et al., 2001).

To implement the algorithm described in ESL requires harmonious selection of an objective

function and a class of functions. For reasons which become clear, natural cubic splines prove

a convenient choice of functional class.

Natural Cubic Splines

The function fk(t) is termed a piecewise polynomial if it is constructed as a series of poly-

nomials, each defined on contiguous intervals. The values of t dividing these intervals are

termed knots. If each polynomial section is limited to order at most three and constructed so

that fk(t) is continuous, with continuous first and second derivatives, the function becomes
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a “cubic spline”. Often such functions, while well-defined on the interior intervals, become

erratic outside of the two extreme knots. To counter this, it is common to insist they are

linear on these regions, in which case they become “natural cubic splines”. Supposing there

are dk knots, it is straightforward to calculate the degrees of freedom of a natural cubic spline.

4(dk − 1) parameters are required to describe the dk − 1 internal cubic polynomials and 4 pa-

rameters to describe the two linear sections. The continuity conditions place three constraints

at each knot, and so the total degrees of freedom equals 4(dk − 1) + 4− 3dk = dk.

An important principle of Sparse Partitioning is that the functions maintain generality.

When we considered categorical predictors, this insisted that every node could be mapped

to any real value. In the same way, when the predictors are quantitative, we desire that for

every knot (distinct projection value Xiξk), there is no restriction on the range of values to

which it can be mapped. As I will show shortly, if the functions are natural cubic splines, this

condition can be fulfilled.

In choosing an objective function, it is desirable to incorporate a measure of smoothness.

Given two functions which fit the data equally well, we will prefer the one which is “more

smooth”. A commonly used smoothness penalty is based on the integral of the second deriva-

tive:

Pen(fk, λ) = λ

∫
(f ′′k (t))2 dt,

where λ ∈ [0,∞) is termed the smoothing parameter. Although my version of Projection

Pursuit will be applicable to binary responses, it is easiest to explain the underlying concepts

for a continuous response. Therefore, consider using the penalised residual sum of squares

PSS(fk, λ,Y ) =
∑
i

(Yi − fk(Xiξk))
2 + Pen(fk, λ).

This leads to the reason for choosing natural cubic splines. Suppose that, for a given λ and

realisation of Xξk, we wish to minimise PSS(fk, λ,Y ) across all functions fk with continuous

first and second derivatives. As will be demonstrated shortly, it turns out that this is achieved

by a natural cubic spline, with knots defined at each unique value of Xξk (Reinsch, 1967).

The following explanation, copied from Pollock (1999), but with notation altered to

match mine, explains the construction of a natural cubic spline. This description refers to the

kth function, but for convenience I omit this subscript when referring to spline coefficients. For

categorical predictors, we were interested in the mapping of distinct values of XiGk
(nodes).

In a similar fashion, we are now interested in the mapping of distinct values of Xiξk (knots),

except this time, being scalar values, there have a natural ordering. Suppose the set of

projected values {X1ξk, X2ξk, . . . , Xnξk} has dk knots (when the predictors are continuous,
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often the number of knots dk will equal the number of samples n). Let t1, t2, . . . , tdk
represent

the ordered set of knots. For t ∈ [t1, tdk
], the natural cubic spline fk can be written as

fk(t) = θd + γd(t− td) + βd(t− td)2 + αd(t− td)3,

where td ≤ t ≤ td+1. The three continuity conditions produce the following constraints, for

d = 1, 2, . . . , dk − 1:

θd + γdhd + βdh
2
d + αdh

3
d = θd+1,

γd + 2βdhd + 3αdh
2
d = γd+1,

2βd + 6αdhd = 2βb+1,

where hd = td+1 − td. Adding in the condition of linearity outside of the boundary knots,

which implies β1 = βdk
= αdk

= 0, the system of equations for the kth function can be written

as Rkβk = Qkθk:



r1 h2 0 · · · 0 0

h2 r2 h3 · · · 0 0

0 h3 r3 · · · 0 0
...

...
...

...
...

0 0 0 · · · rdk−3 hdk−2

0 0 0 · · · hdk−2 rdk−2





β2

β3

β4

...

βdk−2

βdk−1


=



q1 s1 q2 0 · · · 0 0 0

0 q2 s2 q3 · · · 0 0 0

0 0 q3 s3 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · sdk−3 qdk−2 0

0 0 0 0 · · · qdk−2 sdk−2 qdk−1





θ1

θ2

θ3

θ4

...

θdk−2

θdk−1

θdk


,

where rd = 2(hd + hd+1), qd = 1/hd and sd = −(qd + qd+1).

As with categorical predictors, the components in θk represent the realisations of fk at the

knots values. Given these, all other coefficients can be calculated. This demonstrates the gen-

erality of a natural cubic spline; given any distinct {t1, t2, . . . , tdk
} and images {θ1, θ2, . . . , θdk

},
a natural cubic spline can be constructed to pass through the coordinates {td, θd}. With this

being the case, given a direction ξk, and hence the projectionXξk, each spline can be uniquely

described by θk, the values it assigns each knot, so there is no need to specify the other coef-

ficients.

Continuing through the calculations of Pollock, the penalty term for the kth function

can also be expressed in matrix notation:

Pen(fk, λ) =
2

3
λβTkRkβk =

2

3
λθTkQ

T
kR

−1
k Qkθk.

For function k, let Jk once again be a binary matrix (size n × dk), where each row contains

a single 1 indicating the knot to which sample i corresponds: (Jk)id = 1 ⇔ Xiξk = td. The
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penalised residual sum of squares across all functions becomes

PSS(f , λ,Y ) =
∑
i

(Yi −
∑

k fk(Xiξk))
2 +

∑
k

Pen(fk, λ)

= (Y −
∑

k Jkθk)
T (Y −

∑
k Jkθk) + 2

3
λ
∑

k θ
T
kQ

T
kR

−1
k Qkθk.

If we wish to minimise this equation with respect to the kth function, we need only consider

the marginal penalised residual sum of squares

PSS(fk, λ, Ŷ ) = (Ŷ − Jkθk)T (Ŷ − Jkθk) +
2

3
λθTkQ

T
kR

−1
k Qkθk,

where Ŷ represents the residuals, found by removing from Y the contributions of the remaining

functions: Ŷ = Y −
∑

k′ 6=k Jk′θk′ . To obtain the value of θk which minimises this equation,

we can differentiate and set to zero, obtaining

JTk (Ŷ − Jkθk) =
2

3
λQT

kR
−1
k Qkθk.

This can be solved to find θk, and any other spline coefficients we desire. Notice that the

penalty term depends only on the knot locations. Therefore, if Y is rescaled, the coefficients

of θk in the minimising spline will scale accordingly. However, if the knot values are rescaled,

the coefficients of θ in the minimising spline will change in an unpredictable fashion.

6.2.1 Bayesian Adaptation of Projection Pursuit Algorithm

Frequentist projection pursuit is not suitable for large numbers of predictors, so my original

aim was to develop a sparse Bayesian version, one in which the contributions of most predic-

tors to a projection are expected to be negligible. Inspired by the algorithm of ESL, I began

with a hybrid version in which the functions were updated in a frequentist fashion and the

directions sampled in a Bayesian manner. Unfortunately my implementation of this version

performed poorly, but it did produce some useful conclusions.

I decided the decision of ESL to update direction-function pairs individually was necessi-

tated by a lack of identifiability. If a constant is added to each component of θk, and subtracted

from θk′ , neither the smoothness of fk nor fk′ will be affected, nor the overall fit. For this rea-

son, it is not possible to fit simultaneously more than one function. To restore identifiability,

we can introduce a global intercept and set the last component of θk to zero for each function.

Consider the effect this has on the matrix notation Rkβk = Qkθk. The left hand side remains

unchanged. On the right hand side, the last column of Qk becomes redundant. Therefore,

let Q−k denote the matrix Qk with the last column removed. In the same fashion, remove

the last column from Jk to obtain J−k and the last element of θk to obtain θ−k . To minimise
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PSS(f , λ,Y ) across all functions simultaneously, let Vk = 2
3
Q−Tk R−1

k Q
−
k and construct the

matrix V and vector Θ, where

V =



0 0 0 . . . 0

0 V1 0 · · · 0

0 0 V2 · · · 0

0
...

...
...

0 0 0 · · · VK


and Θ =



θ0

θ−1

θ−2
...

θ−K


Then, with J = [ 1J−1 J

−
2 · · · J−K ], the penalised residual sum of squares can be written as

PSS(f , λ,Y ) = (Y − JΘ)T (Y − JΘ) + λΘTVΘ,

which is minimised when JT (Y −JΘ) = VΘ. Now, given the directions ξ1, ξ2, . . . , ξK , which

dictate the projections and hence the knots, the best f1, f2, . . . , fK can be computed explic-

itly. To me, updating multiple functions simultaneously seems far more pleasing than doing

so individually, especially as we envisage projections having to “work together” to explain

variance. Although the per-step computational demands would increase, I feel this would be

more than compensated for by the increased efficiency of the algorithm.

Although I introduced this change in my implementation, there remained problems. The

spike and slab priors I used for the direction coefficients had the effect of discretising the

model space according to whether a predictor contributed to a particular projection or not.

Suppose we consider whether to introduce predictor g to projection k by accepting a non-zero

value of ξkg. When the prior probabilities of association are small, the penalty attached to

such a move is very harsh. To have a reasonable chance of acceptance, the improvement in

fit must be dramatic. However, to calculate the improvement in fit, the algorithm uses the

current function fk with the new direction ξk. As fk was determined with predictor g not in-

volved, it is unlikely to be particularly suitable, leading to a very small probability of inclusion.

The harm of this discretisation might be less severe if instead a shrinkage prior was used.

Nonetheless, I decided it was necessary to update directions and functions jointly. Therefore,

when proposing ξkg, the algorithm calculated a revised set of functions f fitted to the new

value. However, even with this change, I was unsatisfied with the method’s performance. I be-

lieve an inherent problem was the notion of sampling from the joint model space of directions

and functions, even though the primary aim was to make inferences only about the former.

While taking this approach is valid in theory, having to worry about convergence of each fk,

as well as of each ξk, must greatly reduce efficiency.

The last reason for abandoning this version was that I intended to use projection pursuit
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for the detection of interactions between genetic variants, most of which take only two or three

values. I realised that a spline based approach was unnecessarily complicated in this situation.

This prompted me to discard the idea in favour of Sparse Partitioning, and it was only much

later that I revisited the technique.

6.3 Bayesian Projection Pursuit

As the Sparse Partitioning methodology developed, I realised the similarities between that

and a sparse version of projection pursuit. Primarily, the search for groups of associated

predictors mimics the search for directions with only a few non-zero elements. In fact, my im-

plementation of Sparse Partitioning already utilises projections; for each group of associated

predictors, I first evaluate
∑

j 3XGkj, which maps each of the 3sk possible nodes to a distinct

scalar value. When determining to which node each sample corresponds, it suffices to compare

these projected values. This suggested that, instead of trying to design a Bayesian adaptation

of the original projection pursuit algorithm, I might be able to incorporate its features directly

into Sparse Partitioning. Although I view the resulting implementation more as an extension

of Sparse Partitioning than a stand-alone method, to avoid confusion I refer to it as Bayesian

Projection Pursuit.

The set-up for Bayesian Projection Pursuit is identical in almost all respects to Sparse

Partitioning. The underlying relationship remains

f(X) = f1(XG1) + f2(XG2) + · · ·+ fK(XGK
).

Now, the argument of the kth function is the projection of a sample’s predictor values onto

ξk = (ξk1, ξk2, . . . , ξkN), the kth direction: fk(XGk
) = fk(Xξk). The group k determines which

elements of the kth direction are nonzero: g ∈ Gk ⇔ ξkg 6= 0. Each G continues to define

a partitioning of the predictors, meaning that, as it stands, each predictor is only able to

contribute to a single projection and thus be involved in a single function. To overcome this

restriction, I retain the cheat of allowing multiple copies of predictors.

Let Ξ = {ξ1, ξ2, . . . , ξK} represent the directions. In Bayesian Projection Pursuit, the

exact model is represented by a triplet {G,f ,Ξ}. However, as before, f is a nuisance param-

eter, so we will be interested in the model space of pairs {G,Ξ}. Neither are we interested

in the directions, but it does not prove possible to marginalise over their values. Notice that

there is a large element of redundancy in this model representation; the partition determines

the zero elements of the directions, while the directions determine the partitions entirely. It

proves convenient to retain the partitions, but instead consider the parametrisation {G,Υ},
where Υ = (Υ1,Υ2, . . . ,ΥN). The vector Υ is analogous to the use of I to represent a par-
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tition. If predictor g is associated, then Υg provides the corresponding direction coefficient:

g /∈ G0 ⇒ ξIgg = Υg. This use of Υ is valid because each (copy of a) predictor can feature in

no more than one projection.

6.3.1 Priors

The prior distribution takes the form P(G,f ,Υ) = P(G)×P(Υ|G)×P(f |G,Υ). The partition

prior remains the same, so it is necessary to decide a prior for Υ and a revised prior for f .

Direction Prior P(Υ|G)

Firstly, we must decide a suitable domain for each direction coefficient. Suppose a group con-

tains predictor g and we consider introducing predictor g′. The projection corresponding to

this group, determined by Υg and Υg′ , will map the nodes (Xg, Xg′) to the real line. We would

like there to be as much flexibility as possible in how the projection orders and locates the

nodes. Therefore, it is appropriate that each direction coefficient’s domain is R. Saying this,

a uniform prior across the real numbers would not be suitable. To be a meaningful projection,

the coefficients must be of similar magnitude, otherwise the predictor corresponding to the

largest coefficient would dominate the projection, and therefore the spline.

As it will not prove possible to integrate over coefficients, nor sample directly from their

conditional posterior distributions, there is no pressure to choose a conjugate prior. Beginning

with the case when predictor g is associated, I decided to assign Υg an independent normal

distribution. The shape of this distribution is irrelevant, as shifting projection values will not

affect the penalty term and nor the spline. Likewise, any misspecification in its scale can be

compensated for by choice of λ (although similar to r, one might argue λ should be specific

to each group). Therefore, I set each prior’s mean to 0 and variance to 1:

P(Υg|g /∈ G0) = φ(Υg).

When predictor g is not associated, it seems logical to force Υg to equal zero, which would

induce a spike and slab marginal prior:

P(Υg) =
∑

G

P(Υg|G)P(G) = (1− pg)δ{0} + pgφ(Υg).

However, when predictor g is not associated, the value of Υg becomes irrelevant. It will neither

feature in any likelihood calculations nor be involved in any posterior estimates. Therefore,

for reasons of convenience, which become clear later on, I assign a standard normal prior to

each Υg, irrespective of the status of the gth predictor: P(Υg) = φ(Υg).
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Function Prior P(f |G,Υ)

As each spline is identifiable by its mapping of the observed knot values, a prior on the

functions, P(f |G,Υ), is equivalent to a prior on the coefficients, P(Θ|G,Υ). As there is often

an equivalence between penalty terms and prior distributions, I use the integral of the second

derivative as a starting point for devising a prior. Earlier, I expressed this integral as

Pen(f , λ) =
2

3
λ
∑
k

θTkQ
−T
k R−1

k Q
−
k θk = λΘTVΘ.

This is reminiscent of (the negative logarithm of) a normal distribution with mean 0 and

variance V −1. Though for this to be the case, V must be invertible, so in particular each Vk

must have rank dk − 1. However, Vk’s rank is bounded by that of Q−k, which itself has rank

bounded by its smallest dimension, dk − 2.

A first thought was to use the improper prior exp(−ΘTVΘ), but this would be inap-

propriate as such a prior is not constant across all models. Therefore, I decided to increase

the rank of V using a matrix transformation. I considered two possible transformations:

V → rID + V and V → r1′D + V , where 1′D is the block diagonal matrix with diagonal

components 1,1d1×d1 ,1d2×d2 , . . . ,1dK×dK
. Each transformation can be better understood by

its effect on the penalty term corresponding to each function. The first adds to Pen(fk, λ) a

penalty based on the sum of squares
∑

d θ
2
kd, while the second adds a penalty based on the

square of the sum (
∑

d θkd)
2.

In support of the first transformation, it seems reasonable for each function to have a

penalty attached to the magnitude of its regression coefficients, although to some extent this

is already provided for by Vk. However, if either transformation is chosen purely out of

necessity, I feel that a penalty based on
∑

d θkd would be the least disruptive. Lacking a clear-

cut reason to pick one over the other, I opted for the first, primarily because of the elegance

it afforded the model. The prior for the functions becomes

P(f |G,Υ) = P(Θ|G,Υ) = (2πσ2)−
D
2 |rID + λV |

1
2 exp

{
− 1

2σ2 ΘT (rID + λV )Θ
}
.

Notice that this places an independent normal prior N(0, σ2/r) on the intercept term. This

prior can be viewed as a generalisation of that for categorical predictors; when λ = 0 the prior

of Sparse Partitioning is recovered (demonstrated for the case when S = 1 by Biller and

Fahrmeir, 1997). If elegance seems a poor argument on which to base a prior choice, then in

any case the relative contributions of the two penalties can be altered by adjustment of r and

λ. Saying that, very small r/λ should be avoided, as this might result in numerical errors as

the inversion of rID+λV becomes less stable. If r is set to zero, the method will run, but once
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again using the semi-frequentist version which replaces marginal likelihoods with maximum

likelihoods.

At the moment, λ remains constant throughout the analysis, assigned a default value of

1. The user is able to specify a value in advance, according to how much smoothing they

desire (a small smoothing parameter indicates moderate smoothing, a big one indicates large

smoothing). It would, naturally, be preferable to assign λ a prior, which would make the

method more robust to misspecification. It has been suggested to me that this might be

possible. However, at the moment, I have been unable to envisage such an implementation, so

the next best approach is to run the method using different choices, and compare the results

for each.

6.3.2 Likelihood

With the addition of Υ, the raw likelihood equations take the form P(Y |X,G,Υ,Θ, σ2) or

P(Y |X,G,Υ,Θ), depending on whether the response is continuous or binary. As before, we

are more interested in the marginal likelihood.

Marginal Likelihood

In Case 1 (continuous response, identity link function) and Case 2 (binary response, logit

link function), we wish to calculate P(Y |X,G,Υ). In Case 3 (binary response, probit link

function), we are interested in P(Z|X,G,Υ). These marginal likelihoods are calculated in

a similar fashion to their equivalent forms in Sparse Partitioning. When the response is

continuous we obtain

P(Y |X,G,Υ) = |rID + λV |
1
2 (2π)−

n
2 × |B|−

1
2 × Γ(n

2
)(Y TY −ATBA)−

n
2 ,

where this time B = JTJ + rID + λV and A = B−1JTY .

When the response is binary and a logit link function is used, the marginal likelihood can

again be calculated using a Laplace approximation.

P(Y |X,G,Υ) ≈ P(Y |X,G,Υ, Θ̂)× P(Θ̂|G,Υ)(2π)
D
2

∣∣∣∣∣−d2w(Θ̂)

dΘ2

∣∣∣∣∣
− 1

2

,

where, like before, w(Θ) is the logarithm of P(Y |X,G,Υ,Θ) × P(Θ|G,Υ), the integrand

of the marginal likelihood, and Θ̂ is the value which maximises w(Θ). The first and second

derivative matrices of w(Θ), required for the equation above and to estimate the posterior

mode of Θ, can be calculated in the same manner as before, simply by replacing the (inverse)
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variance matrix rID by rID + λV . This time, we find that

w(Θ) =
∑
i

Yi log pi + (1− Yi) log(1− pi)−
1

2
ΘT (rID + λV )Θ

− D

2
log(2π) +

1

2
log(|rID + λV |),

so
d

dΘj

w(Θ) =
∑
i

(Yi − pi)Jij − rΘj − λVjΘ

and
d2

dΘjdΘk

w(Θ) =
∑
i

−pi(1− pi)JijJik − r1(j = k)− λVjk.

These equations can be substantially simplified because of the sparse nature of V . For ex-

ample, in the first derivative, suppose Θj = θkd a regression coefficient corresponding to the

kth group. The jth row of V will be nonzero only for elements relating to group k, so VjΘ

reduces to (Vk)dθ
−
k .

When the response is binary and a probit link function is used, the marginal likelihood is

the same as for the continuous response case with Y replaced by Z and variance σ2 set to 1:

P(Z|X,G,Υ) = |rID + λV |
1
2 (2π)−

n
2 × |B|−

1
2 × exp{−1

2
(ZTZ −ATBA)},

with A and B as just defined.

6.3.3 Posterior Distribution

Depending on the link function, the aim is to sample from P(G,Υ|X,Y ) or P(G,Υ,Z|X,Y ).

The presence of Υ in the posterior distribution is unfortunate, but unavoidable. It is a matter

of discussion how important its value and, therefore, how much it slows down convergence.

Despite replacing Ξ with Υ, there remains a strong dependency between the partitions and

Υ, which must be taken into consideration in the sampling stages. For example, it is pointless

to propose a non-zero value of Ig if Υg equals zero. To avoid having to propose from a joint

distribution, I do not insist that Υg equals zero when predictor g is not associated, which

earlier allowed me to make its prior independent of Ig.

In order to explore values of Υ, Bayesian Projection Pursuit retains Sampling Stages

One, Two and Three, and introduces Sampling Stage Four. As in Sparse Partitioning, it is

frequently necessary to score partitions, however, this time the score is conditional on the

156



current value of Υ:

Score(G|Υ) :=

{
P(Y |X,G,Υ)× P(G)× P(Υ), for Cases 1 and 2,

P(Z|X,G,Υ)× P(G)× P(Υ), for Case 3.

Like before, I describe Sampling Stages One, Two and Four for Cases 1 and 2. For Case

3, the instructions remain correct provided Y is replaced with Z, which is simply achieved by

using the corresponding scoring function.

Stage One: Sampling each Component of I

Ig determines to which group the gth predictor belongs, or, alternatively, to which, if any,

projection the predictor contributes. For each predictor in turn, a new value I∗g is sampled

from its conditional posterior distribution:

Q(I∗g ) = P(I∗g |I−g,X,Y ,Υ) =
Score(I∗g , I−g|Υ)∑
I′g

Score(I ′g, I−g|Υ)
.

Stage Two: Sampling a Component of G

A component from a non-null group of the partition is picked at random and a new value G∗kg
is sampled from its conditional posterior distribution:

Q(G∗kg) = P(G∗kg|G−kg,X,Y ,Υ) =
Score(G∗kg,G−kg|Υ)∑
G′kg

Score(G′kj,G−kg|Υ)
,

where, once again, G−kg is shorthand to represent the current partition with element Gkg

removed.

Stage Three: Sampling each Component of Z

This stage is only applicable for Case 3, when a probit link function is used with a binary

response. For each sample, a new value for the latent variable Z∗i is proposed from a folded

standard normal distribution, with sign determined by Yi, and accepted with probability

min(1, α), where

α =
P(Z∗i , Z−i|X,G,Υ)

P(Zi, Z−i|X,G,Υ)
× φ(Zi)

φ(Z∗i )
.

Again, this is convenient to calculate, as the first fraction is the ratio of the scores for the

current partition using the proposed and current values of Zi.
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Stage 4: Sampling each Component of Υ

For each predictor, a new value for Υg is proposed from its prior: Q(Υg) = φ(Υg). The

proposed value Υ∗g is accepted with probability min(1, α), where

α =
P(G,Υ∗g,Υ−g|X,Y )

P(G,Υg,Υ−g|X,Y )
× φ(Υg)

φ(Υ∗g)
.

With rearrangement, this becomes

α =
P(Y |X,G,Υ∗g,Υ−g)× P(G)× P(Υ∗g,Υ−g)

P(Y |X,G,Υg,Υ−g)× P(G)× P(Υg,Υ−g)
× φ(Υg)

φ(Υ∗g)
.

When predictor g is not associated, the marginal likelihood does not depend on Υg, so the

fractions cancel to 1 and the proposed value is accepted immediately. When predictor g is

associated, the first fraction is the ratio of scores of the current model calculated given the

proposed and current values of Υ.

For the first three sampling stages, the fix to allow multiple copies of predictors (C > 1)

is the same as in the original version of Sparse Partitioning and has minimal effect on the

processing time compared to C = 1. For Stage 4, most samplings will continue to be draws

from a standard normal distribution, so the time remains negligible compared to the other

more computationally intensive proposal steps.

Preprocessing and Additional Features

In addition to standardising continuous response values, Bayesian Projection Pursuit also

standardises the predictor values. This serves two useful purposes. Firstly, it equalises their

variances, making the constant choices of λ and r more appropriate. Secondly, it is beneficial

when applied to tertiary predictors. This increases the flexibility of the model, as it removes

the state 0, which would otherwise not (directly) contribute to any projections.

Bayesian Projection Pursuit offers the range of extra features available in Sparse Parti-

tioning. As the direction coefficients are constant outside of Sampling Stage Four, the steps

for sampling missing states, predicting response values and adjusting for confounding are

performed in an identical fashion.

Discussion: Importance of Υ

For the sampling stages, it proved very convenient to relax the condition that Υg is set to 0

whenever predictor g is not associated. It removes the need to jointly sample a new direction

coefficients and a partition. As the joint conditional posterior distribution of, say, Υg and Ig
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would not be tractable (else the directions could be marginalised over), Sampling Stages One

and Two would have to resort to Metropolis-Hastings sampling and, I believe, be less efficient.

In most situations, relaxing this condition is of no consequence. When the algorithm con-

siders declaring a predictor associated, it would already have a direction coefficient ready to

use. If this coefficient proves unsuitable, a new one will be available for the next iteration. In

effect, this is equivalent to proposing a new coefficient at the same time as proposing a pre-

dictor becomes associated. When the algorithm considers removing an associated predictor,

the value of its direction coefficient becomes irrelevant, so a joint proposal is not required.

The only danger situation occurs when considering whether to move an associated predictor

between non-null groups. The current direction coefficient will have been sampled conditional

on the predictor being in its current group, which might not necessarily be a good choice if

the predictor moves to a new group. Therefore, in this situation, it might be advisable for me

to consider proposing jointly a new direction coefficient along with the new group membership.

The penalty term Pen(f , λ) — which inspired the prior distribution for functions, which

in turn impacts each model’s score — is affected by the knot locations of each projection, and

therefore by the set of direction coefficients ΥSI
. Ideally, the score for a partition would be

an integral across all Υ. Although this would only be required for Υg, the projection values

corresponding to the associated predictors, this would still not be possible. Crucial to the

marginal likelihood, are the relative values of elements of Υ, which determine the spacing and

ordering of knots. Saying this, unfortunately the penalty term is not invariant to rescaling all

projection values. For example, consider the simple case, when Gk is a singleton group con-

taining just predictor g. The projected values Xξk = Xgξkg will always have the same relative

spacings, regardless of the choice of ξkg. However, if the direction coefficient is multiplied by

c, the penalty term will be divided by c3. Although this is as expected — more spaced-out

knots allow the function to “wiggle” more in the direction of the y-axis for the same penalty

— this property makes the direction values more important.

Nonetheless, I believe there is little harm in standardising the knots / projection values.

Although it will affect the prior over the functions, it will not take away their generality nor,

most importantly, alter the prior probabilities of association. Therefore, before calculating the

matrices Qk and Rk, I linearly transform the knots so that the first and last values are at 0

and n − 1. Notice that the signs of the knots still play a minor role, as they determines the

choice of each spline’s base knot, for which the regression coefficient is set to zero.

This mapping has additional advantages. When two knots are very close together, the

inversions, in particular that involved in calculating R−1
k Q

−
k , can become unstable. Stan-

dardising knots alleviates this concern to some extent. Furthermore, as I have described the
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algorithm, over 95% of the computation time is spent calculating the score. Of this, over 75%

is spent sorting the projection values into order to deduce the knots. Ironically, this process is

slower for tertiary predictors, as when there are only a few knots, the sort algorithm repeat-

edly swaps identical values back and forth. Standardising the knots suggested a speed-up. If

each projection is rounded down to the nearest integer, the task of finding the location of each

knot, and to which samples it corresponds, becomes much faster. It also provides a certain

elegance, as the code becomes the same as that for the original version of Sparse Partitioning.

If this approximation was a concern, we could increase the range of transformed projections

by a few factors, which would increase accuracy, but still maintain a speed-up.

Reducing Computation Time

Computation time is an issue with Bayesian Projection Pursuit. Even if the process of sorting

projection values into order was instantaneous, the algorithm would still take much longer than

an equivalent run of Sparse Partitioning. The run time would primarily depend on the degrees

of freedom of each model, as this determines the dimensions of Rk and B, two matrices which

must be inverted. In Sparse Partitioning, a single function will have maximum degrees of

freedom 3sk , so perhaps 9 or 27; in Bayesian Projection Pursuit, each spline will have degrees

of freedom equal to the number of distinct projections, bounded only by n. Therefore, not

only does it solve the sorting problem, the approximation of transforming each observed value

to the nearest integer can also greatly reduce the degrees of freedom. Later on, I present a toy

example. For this, allowing knot values to be approximated by integers speeds up run-time by

a factor of five, with no discernible effect on performance. In fact, I take this approximation

further. I transform the projected values onto even smaller intervals, while still forcing each

to an integer, and observe faster run times with no noticeable effect on accuracy.

I feel it is possible to justify this approximation. Primarily, a drop in accuracy arises

when the transformation maps distinct projection values to the same integer, so reducing the

number of knots and thus the (absolute) degrees of freedom of each function. However, of

more importance is the “effective degrees of freedom”. This can formally be defined as the

trace of the “hat” matrix. One of the final steps in calculating a best fit is to compute the

maximum likelihood estimate or posterior mode of the regression coefficients. For linear mod-

els, this will be a linear transformation of the response values, taking the form B−1JTY . To

calculate the fitted response values, we would premultiply this value by J , providing us with

Ŷ = (JB−1JT )Y . Again, this is a linear transformation of the response Y . The term within

the parentheses is called the hat matrix.

The impact of the penalty term / prior distribution is to reduce the effective degrees of

freedom from D. This process happens most rapidly for higher values. Therefore, even if the
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approximation cuts the number of knots quite dramatically, the net reduction of the effective

degrees of freedom is far less severe. Nonetheless, I intend to study more formal routes for

reducing the degrees of freedom. For example, B-splines are a commonly used option (Eilers

and Marx, 1996). These are formed from an unlimited set of basis functions. Unlike a natural

cubic spline, which requires a degree of freedom per knot, B-splines allow the user to choose

the degrees of freedom by deciding how many basis functions to use. For many problems, it

is generally considered unnecessary to have more than, say, 20 degrees of freedom (Hastie

et al., 2001).

Alternatively, I could consider removing the splines altogether. Although they proved

the most natural way to extend Sparse Partitioning for use with continuous predictors,

with Bayesian Projection Pursuit my work has drifted towards the areas of feature selec-

tion and machine learning, suggesting I might be able to incorporate techniques from these

fields. One solution might involve Gaussian processes (described with a genetic applica-

tion in Chu et al., 2005). Set up using my notation, the natural application would treat

fk(X1Gk
), fk(X2Gk

), . . . , fk(XnGk
) as realisations from a Gaussian process, distributed mul-

tivariate normally, with covariance matrix Vk. The predictors XGk
would influence this

Gaussian process through the covariance matrix. For example, one possible construction is

(Vk)ii′ =
∑

j κjXiGkj
Xi′Gkj

. Here, the coefficient κj denotes the relative importance of predic-

tor Gkj to this process, and would take the place of the corresponding direction coefficient in

ξ. Were Vk equal to the identity matrix, the process would have degrees of freedom n for each

function, allowing complete flexibility (just like the case λ = 0). Instead, the construction of

Vk reduces the effective degrees of freedom, similar to the introduction of splines. However,

compared to splines, Gaussian processes require less computation (V can be computed read-

ily, rather than first computing Qk and R, then inverting the latter), while they also remove

the need for an explicit smoothing parameter. Saying that, it would remain to see whether

this simplification comes at the expense of flexibility and, in particular, how well the implied

smoothing could be tailored to the user’s needs.

6.4 Simulated Data

In this section, I briefly test Bayesian Projection Pursuit in the same manner as in Chapter 5.

I compare the method to Sparse Partitioning, Deterministic SP, Pairs, MARS and best other,

which once again represents the best combined performance of the remaining five methods

(Single, CART, RF, SSS and Logic). For these studies, Bayesian Projection Pursuit generally

took about twice as long as Sparse Partitioning to run for the same number of iterations (200).

However, as the datasets were relatively small (typically n = 100, N = 1000), each run still

completed within a couple of minutes.
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Figures 6.1 and 6.2 provide the results for Studies One to Six, as labelled in their captions.

In every case except one, the performance of Bayesian Projection Pursuit tracked between

Sparse Partitioning and the other methods. When the difference between methods was small,

Bayesian Projection Pursuit ’s performance was almost indistinguishable; when large, it ex-

ploited the gap to offer some improvement over the other methods. The only curiosity concerns

Study Six, which considered binary response values. Once again, the dashed line indicates the

performance when a probit link function was used. For the equivalent plot in Chapter 4, the

probit option performed better, in part because it afforded the user more iterations. Here,

this is not the case, suggesting the extra layer of complexity, brought about by the addition

of Z, causes more trouble than it is worth.

Based on these simulation studies, I conclude that Bayesian Projection Pursuit shows

promise as a method. Although beaten by Sparse Partitioning, it has generally matched or

outperformed all other methods. This is despite the fact that it is designed with continuous

predictors in mind, the opposite end of the scale to the datasets tested here.

When λ is set to 0, the method runs identically to Sparse Partitioning. The directions

remain in the model and technically contribute to the posterior score, but will have no effect

on any of the first three sampling stages. In the simulation studies, I left λ at its default value

of 1. Therefore, that Bayesian Projection Pursuit slightly underperformed Sparse Partitioning

when applied to tertiary predictors, must stem from the introduction of splines. The effect

of these is to reduce the effective degrees of freedom. For Sparse Partitioning the effective

degrees of freedom is reduced from D only by the presence of priors for Θ and σ2. With

Bayesian Projection Pursuit, it is additionally affected by the explicit smoothness penalty.

However, that the method only performed slightly worse, once again backs up the idea that,

in a Bayesian set-up, excessive generality, which for these studies, Bayesian Projection Pursuit

very certainly possesses, does not necessarily come at the expense of performance.

Bayesian Projection Pursuit relies on the direction coefficients to lay the foundation for the

splines. As I mentioned, were one direction to become much smaller than the others, its effect

would be dwarfed in the model. The predictor will essentially become redundant, except to

penalise the model for its inclusion. Therefore, the method requires a sensible choice of direc-

tions. Certainly the ordering is also important, very much so for binary predictors. Consider

the multiplicative interaction contained in the underlying relationship of Model II. In Bayesian

Projection Pursuit, the most harmonious solution, that which permits the smoothest spline,

places the projection corresponding to (1,1) at one end of the knots. Otherwise, a correct

mapping would require the function curve to double back on itself.
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Figure 6.1: Results of Simulation Studies One to Three. The top row corresponds to Study One
(continuous response, idealised data), the middle two rows to Study Two (causal predictors unob-
served, r2 = 0.9 or r2 = 0.8), the bottom row corresponds to Study Three (10% missing predictors).
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Figure 6.2: Results of Simulation Studies Four to Six. The top two rows correspond to Study Four
(noise distributed exponentially, then uniformly), the third row to Study Five (tertiary predictors),
the bottom row to Study Six (binary response).
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Beyond this, I have not decided how important the actual direction values are. At the

moment, a deterministic implementation of Bayesian Projection Pursuit is not possible be-

cause the inclusion of direction terms prevents calculation of the required marginal likelihood

P(Y |X,G). However, the fact that there are clearly a lot of redundancies in the choice of

directions, due to symmetry and the manner in which they are standardised, suggests an ap-

proximate version might be possible. It might be reasonable to score each partition for a small

number of direction values which adequately approximate its effect over a range of functions.

This is certainly the case when a non-null group is singleton, as for this the direction value

becomes redundant. In a similar fashion, I sense a reasonable number of directions could well

model a bivariate function. This idea is certainly one I would like to think more about.

6.5 Real Data

In this section, I show the results of applying Bayesian Projection Pursuit to a toy dataset.

I am very grateful to Hastie et al., the authors of ESL, for making their datasets available

and explaining fully their methods. For my application, I consider the book’s second example

dataset, which concerns a study of prostate cancer (Stamey et al., 1989). Here, the response

(lpsa) measured the logarithm of prostate specific antigen, while the predictors recorded log

cancer volume (lcavol), log prostate weight (lweight), age (age), log of benign prostatic

hyperplasia amount (lbph), seminal vesicle invasion (svi), log of capsular penetration (lcp),

“Gleason score” (gleason) and percent of “Gleason scores 4 or 5” (pgg45). ESL’s aim was to

see how well the eight clinical factors could predict this value. I have taken a similar approach.

Although the number of predictors was small, this dataset provided a range of challenges. In

particular, while six of the measurements were continuous, svi was binary valued and gleason

was recorded in only 4 states. Therefore, for a method to be successful, it must be able to

accommodate the varying nature of each clinical factor.

ESL compared the predictive performance of six frequentist methods: least squares regres-

sion (LSR), best subset selection (BSS), ridge regression (RR), the Lasso, principle component

regression (PCR) and partial least squares regression (PLS). The first four methods, I have

explained already. PCR performs standard least squares regression on one or more of the top

principal component axes. These axes will be orthogonal, which could prove useful in the face

of correlated raw predictors, which the ones in this study turn out to be. PLS regression simi-

larly forms orthogonal linear combinations of predictors, but while PCR calculates these from

only the predictors themselves, PLS is guided also by the response values. The weightings

used to construct each combination are influenced by the strength of association between the

response and each predictor in turn.
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Figure 6.3: Variables for the prostate cancer dataset examined in ESL (Hastie et al., 2001). In
total, there were 97 individuals measured for eight predictors and one response. Each cell represents
a pairwise scatter-plot for two variables; the first eight rows / columns correspond to the predictor
values, the ninth to the response. In particular, notice the correlations present; for example, between
predictors 1 and 6. Furthermore, while most predictors were continuous valued, predictors 5 and 7
were discrete, taking either 2 or 4 values, respectively.
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Term LSR BSS RR Lasso PCR PLS

Intercept 2.480 2.495 2.467 2.477 2.513 2.452

lcavol 0.680 0.740 0.389 0.545 0.544 0.440

lweight 0.305 0.367 0.238 0.237 0.337 0.351

age -0.141 -0.029 -0.152 -0.017

lbph 0.210 0.159 0.098 0.213 0.248

svi 0.305 0.217 0.165 0.315 0.252

lcp -0.288 0.026 -0.053 0.078

gleason -0.021 0.042 0.230 0.003

pgg45 0.267 0.123 0.059 -0.053 0.080

Prediction Error 0.586 0.574 0.540 0.491 0.527 0.636

Figure 6.4: Final prediction models. The columns provide the 9 regression coefficients (the intercept
term plus a coefficient per clinical factor) for the six frequentist methods. The clinical factors and
method abbreviations are explained in the main text. Spaces indicate the corresponding variable did
not contribute in the method’s final model. The final row provides the prediction error for each
method; the Lasso has performed best, while partial least squares regression has performed worst.
Table reproduced from The Elements of Statistical Learning (Hastie et al., 2001).

In ESL, two stages of cross-validation were performed. To begin with, the 97 individuals

were divided into training and test sets of 67 and 30 samples, respectively. Ultimately, each

method was scored by recording mean squared prediction error for the test sample’s response

values. With the exception of LSR, each method requires an element of tuning. To do this,

ten-fold cross-validation was performed on the training set. This entailed dividing the training

samples into ten groups, taking turns to fit the data to nine of these groups, while assessing

performance on the tenth. For each of these steps, the method was applied for a range of

parameter choices and prediction score recorded. By averaging performance over the ten ap-

plications, it was possible to judge which parameter settings performed best. These settings

were then carried over to the final analysis on the test dataset, from which the final assessment

of model performance was obtained.

Figure 6.4 reproduces the details of the final prediction models for the six frequentist meth-

ods, as provided by ESL. All of these methods are linear, so their final models can be specified

by an intercept term and the regression coefficient for each predictor (blank cells in a column

indicate clinical factors which were not used in the corresponding method’s final prediction

model). The bottom row reports the mean squared prediction error for each method, the

statistic used for comparison. Out of these models, the Lasso has fared best, so became the

method to beat.
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The large black squares in Figure 6.5, whose positions are constant across plots, indicate

the performance of the six frequentist methods. The x-axis value corresponds to prediction

error for the training samples, the y-axis value to prediction error for the test samples. There-

fore, for Bayesian Projection Pursuit to outperform a particular method, its prediction error

must lie below the corresponding horizontal line.

The smaller points in each plot represent the results from multiple runs of Bayesian Pro-

jection Pursuit. The three most important parameter settings in my method are r, pg and λ,

so I considered the effect of varying each. The plots in the left column correspond to setting

r = 0.5, those in the right column correspond to setting r = 1. Each row relates to a different

prior mean number of associations, selected from 0.5, 1 and 1.5 (i.e. pg equal to 1/16, 2/16 or

3/16). Finally, for each combination of r and pg, I tested five different values for λ, ranging

from 0.1 to 1000 (low to high smoothing), as indicated by colour.

I also considered the impact of transforming the projected values to increasingly tight inter-

vals. In total, I performed four sets of runs: the first set was the least approximate, obtaining

the knots by first mapping the projected values to the interval [0,67), then rounding down to

the nearest integer; the remaining three sets increasingly squeezed the range of transformed

projection values, using (integers in) the intervals [0, 40), [0, 30) and [0, 20). This meant that,

for the fourth set of runs, each spline was reduced to at most only 20 knots (even though

quite likely 67 distinct values were present). The speed-up achieved by these approximations

was noticeable, with runs from the fourth set finishing roughly four times faster than those

from the first (which, by virtue of mapping to integers, was itself about five times quicker

than using no approximation at all). The different approximations had no discernible effect

on training or test error, so for the purpose of plotting, I have merged the results of runs from

all four sets. This was a pleasing finding, as it suggested my crude approach to reducing the

run time might have value.

For most choices of r, pg and λ, the corresponding group of points is reasonably well

clustered. This is particularly true for the cluster of light blue dots. These correspond to a

very high value for the smoothing parameter (λ = 1000), which essentially enforces the linear

model, and its prediction accuracy lies just above that of the lasso. By contrast, the very low

value (λ = 0.1) has the greatest dispersion, indicating that for this level of flexibility, conver-

gence was not sufficiently attained within the 3,000 iterations the method was run. Clustering

of groups was also affected by the selection of r; the smaller value (r = 0.5) resulted in more

defined clusters. Finally, the choice of prior probability seemed to have had limited effect.

The tightness of groups is indicative of the stability of the posterior probability estimates.

However, even for the settings for which convergence was most an issue, the conclusions drawn
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Figure 6.5: Analysis of prostate cancer dataset. Each graph point plots the training error (x-axis)
against test error (y-axis). In total, I considered 30 separate scenarios, running Bayesian Projection
Pursuit 20 times for each. The columns indicate choice of r; the left column denotes r = 0.5, the
right column denotes r = 1. Each row considers a different value for the prior mean, as marked in
the top right corner. Within each plot, I consider five different values for λ, ranging from 0.1 to
1000, designated by colour. For reference, the large black squares indicate the training and test error
for the six methods considered in ESL. The relative performance of Bayesian Projection Pursuit can
be assessed by counting under how many horizontal lines each point falls.
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from the data were generally the same. Using a posterior probability threshold of 0.5, Bayesian

Projection Pursuit typically declared predictors 1 and 5 associated (lcavol and svi). Oc-

casionally, the method also found evidence for predictor 2 (lweight). Bayesian Projection

Pursuit obtained sparser results than five of the rival methods: LSR, RR, PCR and PLS

automatically include all predictors in the final model, while the Lasso found evidence for five

associations (predictors 1,2,4,5 and 8). The results of Bayesian Projection Pursuit were, in

terms of sparsity, on a par with BSS, which declared only predictors 1 and 2 to be causal.

Presumably, the aim of this experiment was prognostic, asking how well lpsa could be

predicted from the clinical factors. Therefore, it is satisfying that Bayesian Projection Pursuit

has performed so well. Even though convergence was not perfect, consistently the method

outperformed LSR, BSS, RR, PCR and PLS. Whether it outperformed the Lasso, depended

on the choices of r and λ. The smoothing parameter is perhaps the hardest value to set.

Ideally, as I discussed, λ would be treated as a variable and assigned its own prior. But, for

the moment, this toy example would suggest that values close to 1 should give reasonable re-

sults, and provide an acceptable balance between overly cautious and overly zealous smoothing.

Instead of considering only each method’s test prediction error, it is interesting to compare

this with training prediction error. Averaged across a range of training and test set divides,

ideally, we would like a method’s point to lie on the diagonal line, indicating its training and

test errors were equal. For five of the frequentist methods, the training error is lower than

the test error, suggesting overfitting has occurred during parameter selection. Using this cri-

terion, the best parameter choices for Bayesian Projection Pursuit for this problem appear to

be r = 0.5 and p = 1.5, corresponding to the bottom left plot.

One set-back of Bayesian Projection Pursuit, if used for prediction, is obtaining a model

which can be transferred. As the six methods featured in ESL are linear, their final models can

readily be described by the regression coefficients. For Bayesian Projection Pursuit, as with

Sparse Partitioning, no single model is returned. Instead, a distribution of possible partitions

is found, this time each with its own set of direction coefficients. For the prostate cancer

dataset, it was possible for me to test prediction accuracy because I had the test samples

available, so could incorporate prediction of their response values at every iteration of the

MCMC sampling. The only way to create a portable prediction model, would be to store

the state of the Markov chain at each iteration, then reconstruct the run using a new set of

test samples. While this is a straightforward operation for me to carry out, it would be fairly

cumbersome for a clinician, who would much rather inspect the data visually with a simple

classification rule. Unfortunately, this issue will be a hindrance for any nonlinear Bayesian

regression method, and the only solution I can imagine is to create software as user friendly

as possible.
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Final Thoughts

Early on, I realised how easy it was to develop a successful regression method tailored to a par-

ticular scenario. For example, I could readily design a method searching only for multiplicative

interactions, then demonstrate its superiority when such an interaction existed. The obvious

drawback of such a method, is that its use will be heavily restricted, as it can only be ap-

plied to datasets which fall in line with its assumptions concerning the underlying relationship.

When designing Sparse Partitioning, I tried to take the opposite approach, and instead

create a method as general as possible. The natural assumption is that generality comes at

a cost; that a method will suffer reduced power as the model space becomes too large to

feasibly search. Yet time and time again, I have been surprised that this has not seemed

much of an issue. By contrast, I have observed that performance is greatly damaged when

a method’s assumptions are too restrictive for the dataset being analysed. I hope that with

Sparse Partitioning, I offer a robust alternative to existing tools; my method seems to fare

equally well under simple models, but comes into its own as the model becomes more complex.

Sparse Partitioning ’s drawback is the time it takes. Although I have applied the method to

thousands of predictors, studies with hundreds of thousands, the ultimate goal if to be appli-

cable to genome wide association studies, are still out of reach. With Deterministic SP, I have

tried to address this issue, producing a method which completes in a fraction of the time, with

what appears to be only a modest reduction in accuracy. Additionally, the deterministic ver-

sion offers many attractive features for people put off by the uncertainty attached to Bayesian

methods. Currently, there seem to be few, if any, methods able to consider multiple interac-

tion models on a large scale, which suggests that there might be a market for such an approach.

Finally, in Bayesian Projection Pursuit, I have tried to take the idea of generality to the

extreme, creating a method which can be applied to all types of predictors. So far, the early

results appear promising, although once again, computation time becomes a major issue.

Hopefully, I will be able to develop the algorithm so that it can be applied to very large

datasets. But even if this does not prove possible, as it stands, I believe the method still

represents a worthwhile addition to those currently available.
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Software and Publication

All versions of Sparse Partitioning have been implemented and are currently available at the

website of Simon Tavaré’s Group on the University of Cambridge webpages. The current link

is http://www.compbio.group.cam.ac.uk/. Alternatively, search for “Sparse Partitioning”.

A manuscript detailing the methodology for the standard version of Sparse Partitioning

has been accepted for publication by The Annals of Applied Statistics, to appear in 2011.
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