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Summary	
	
	

Proteins	 and	 RNAs	 are	 two	 of	 the	 most	 versatile	 macromolecules	 that	
carry	 out	 almost	 all	 functions	 within	 living	 organisms.	 In	 this	 thesis	 I	 have	
explored	evolutionary	and	regulatory	aspects	of	proteins	and	RNAs	by	studying	
their	structures,	modifications	and	interactions.	

In	 the	 first	 chapter	 of	 my	 thesis	 I	 investigate	 domain	 atrophy,	 a	 term	 I	
coined	 to	 describe	 large-scale	 deletions	 of	 core	 structural	 elements	 within	
protein	 domains.	 By	 looking	 into	 truncated	 domain	 boundaries	 across	 several	
domain	 families	 using	 Pfam,	 I	 was	 able	 to	 identify	 rare	 cases	 of	 domains	 that	
showed	 atrophy.	 Given	 that	 even	 point	 mutations	 can	 be	 deleterious,	 it	 is	
surprising	 that	 proteins	 can	 tolerate	 such	 large-scale	 deletions.	 Some	 of	 the	
structures	 of	 atrophied	 domains	 show	 novel	 protein-protein	 interaction	
interfaces	that	appear	to	compensate	and	stabilise	their	folds.		

Protein-protein	 interactions	 are	 largely	 influenced	 by	 the	 surface	 and	
charge	complementarity,	while	RNA-RNA	interactions	are	governed	by	base-pair	
complementarity;	 both	 interaction	 types	 are	 inherently	 different	 and	 these	
differences	 might	 be	 observed	 in	 their	 interaction	 networks.	 Based	 on	 this	
hypothesis	 I	have	explored	 the	protein-protein,	RNA-protein	and	 the	RNA-RNA	
interaction	 networks	 of	 yeast	 in	 the	 second	 chapter.	 By	 analysing	 the	 three	
networks	 I	 found	 no	 major	 differences	 in	 their	 network	 properties,	 which	
indicates	an	underlying	uniformity	in	their	interactomes	despite	their	individual	
differences.	

In	the	third	chapter	I	 focus	on	RNA-protein	 interactions	by	investigating	
post-translational	 modifications	 (PTMs)	 in	 RNA-binding	 proteins	 (RBPs).	 By	
comparing	occurrences	of	PTMs,	I	observe	that	RBPs	significantly	undergo	more	
PTMs	than	non-RBPs.	 I	also	 found	that	within	RBPs,	PTMs	are	more	 frequently	
targeted	at	regions	that	directly	interact	with	RNA	compared	to	regions	that	do	
not.	Moreover	disorderedness	and	amino	acid	composition	were	not	observed	to	
significantly	 influence	 the	 differential	 PTMs	 observed	 between	 RBPs	 and	 non-
RBPs.	 The	 results	 point	 to	 a	 direct	 regulatory	 role	 of	 PTMs	 in	 RNA-protein	
interactions	of	RBPs.		

In	 the	 last	 chapter,	 I	 explore	 regulatory	 RNA-RNA	 interactions.	 Using	
differential	 expression	 data	 of	 mRNAs	 and	 lncRNAs	 from	 mouse	 models	 of	
hereditary	 hemochromatosis,	 I	 investigated	 competing	 regulatory	 interactions	
between	mRNA,	lncRNA	and	miRNA.	A	mutual	interaction	network	was	created	
from	the	predicted	miRNA	 interaction	sites	on	mRNAs	and	 lncRNAs	 to	 identify	
regulatory	RNAs	in	the	disease.	I	also	observed	interesting	relations	between	the	
sense-antisense	 mRNA-lncRNA	 pairs	 that	 indicate	 mutual	 regulation	 of	
expression	levels	through	a	yet	unknown	mechanism.	
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Preface	

	

The	work	on	this	 thesis	began	four	years	ago,	 in	August	2013,	during	the	Ph.D.	

selection	interviews.	It	was	during	the	interview	my	supervisor	Dr.	Alex	Bateman	

and	 I	 discussed	 how	 we	 had	 both	 previously	 noticed	 structures	 of	 protein	

domains	that	had	undergone	degradation.	We	realised	that	there	could	be	many	

other	such	structurally	degraded	protein	domains	out	there,	which	may	have	not	

been	 discovered.	 Literature	 search	 confirmed	 our	 doubts	 that	 partial	 protein	

domains	 do	 not	 appear	 to	 have	 been	 systematically	 studied,	 except	 for	 a	 few	

sporadic	 reports	 in	 the	 literature.	We	 agreed	 that	 I	 would	 begin	 work	 on	my	

Ph.D.	by	systematically	looking	for	partial	protein	domains.	During	the	course	of	

this	work,	 in	2014,	Alex	met	Dr.	William	Pearson	and	Dr.	Deborah	Triant,	 from	

the	University	of	Virginia,	at	the	Intelligent	Systems	for	Molecular	Biology	(ISMB)	

conference	 in	Boston,	USA,	where	both	 groups	discovered	 that	 they	have	been	

working	 on	 a	 related	 topic.	 While	 Pearson	 and	 Triant	 focussed	 on	 the	

bioinformatics	 causes	 of	 partial	 domain	 artefacts,	 we	 focussed	 on	 identifying	

cases	of	 true	partial	domains.	Due	 to	 the	 similar	nature	of	work,	we	borrowed	

their	 nomenclature	 for	 describing	 different	 domain	 atrophy	 types.	 In	 the	 end	

both	groups,	using	different	perspectives,	came	to	a	similar	conclusion	on	partial	

domains	–	that	true	cases	of	partial	domains	are	extremely	rare	and	most	cases	

are	sequence	artefacts.	This	work	 is	presented	 in	Chapter	1.	Results	 from	both	

groups	 were	 published	 as	 back-to-back	 research	 articles	 in	 Genome	 Biology.	

Genome	 Biology	 also	 carried	 out	 a	 research	 highlight	 article	 commenting	 on	

partial	 protein	 domains	 by	 Lawrence	 Kelley	 and	 Michael	 Sternberg	 from	

Imperial	College	London.	The	studies	were	also	featured	in	news	outlets	such	as	

BioMed	Central’s	blog	network	and	EMBLetc.		

	

Following	the	publication	of	this	study	and	discussions	with	the	Thesis	Advisory	

Committee,	 Alex	 and	 I	 planned	 the	 next	 course	 of	 projects,	which	 focussed	 on	

studying	 interactions	 involving	 RNAs.	 Firstly,	 I	 would	 compare	 and	 analyse	

protein-protein,	protein-RNA	and	RNA-RNA	 interaction	networks,	 then	 I	would	



	 xiv	

focus	 on	 post-translational	 modifications	 and	 their	 influence	 on	 protein-RNA	

interactions	and	finally	investigate	RNA-RNA	interactions	by	studying	regulation	

of	 messenger	 RNA	 (mRNA)	 expression	 by	 non-coding	 RNAs	 (ncRNAs).	 During	

this	 period,	 in	 November	 2014,	 Dr.	 Martina	 Muckenthaler	 and	 Dr.	 Kamesh	

Rajendra	Babu,	from	the	University	Hospital	Heidelberg,	Germany,	contacted	us	

regarding	a	collaborative	project	on	non-coding	RNAs.	I	accepted	to	work	on	this	

topic	 as	 it	 fitted	 well	 into	 my	 research	 plans.	 Their	 experimental	 group	 at	

Heidelberg	 had	 characterised	 coding	 and	 non-coding	 transcripts	 that	 were	

differentially	 expressed	 in	 mouse	 models	 of	 hereditary	 hemochromatosis	 –	 a	

genetic	condition	that	causes	abnormality	in	iron	homeostasis.	I	explored	various	

computational	 methods	 to	 understand	 if	 non-coding	 transcripts	 such	 as	 long	

non-coding	 RNAs	 and	 microRNAs	 would	 form	 mutual	 regulatory	 interactions	

with	mRNAs	to	control	their	expression.	This	topic	was	new	and	challenging	to	

me	and	offered	a	good	understanding	and	appreciation	of	the	complexities	of	the	

regulatory	RNA-world.	I	passed	on	the	results	to	the	experimental	group,	which	

were	 then	 taken	 up	 by	 them	 for	 further	 experimental	 analyses.	 Chapter	 4	

documents	the	outcome	of	this	work.	

	

By	 March	 2016	 I	 had	 started	 to	 analyse	 the	 protein	 and	 RNA	 interaction	

networks	 in	 yeast	 and	 humans.	 This	 work	 was	 carried	 out	 using	 the	

macromolecular	interaction	data	curated	from	literature	by	Dr.	Sandra	Orchard	

from	the	IntAct	team	at	the	EBI,	UK	and	Dr.	Simona	Panni	from	the	University	of	

Calabria,	Italy.	In	this	study	I	have	compared	the	physical	network	properties	of	

three	 macromolecular	 interaction	 networks	 –	 protein-protein,	 protein-ncRNA	

and	 ncRNA-ncRNA.	 The	 yeast	 non-coding	 RNA-RNA	 interaction	 network	 from	

this	 study	 is	 the	 first	 such	 reported	 non-coding	 RNA	 interaction	 network.	 The	

result	 from	this	study	 is	presented	 in	Chapter	2.	The	results	were	accepted	 for	

publication	 by	 the	 RNA	 journal	 and	 the	 manuscript	 is	 currently	 in	 the	 pre-

publication	process.	

	

Lastly,	 I	 investigated	 post-translational	 modifications	 (PTMs)	 of	 RNA-binding	

proteins.	 The	 aim	 of	 this	 study	 was	 to	 understand	 how	 PTMs	 could	 influence	

interactions	 with	 the	 RNA.	 By	 using	 data	 from	 a	 recently	 published	 study	 in	
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August	2016,	on	RNA-binding	peptides,	I	was	able	to	map	PTM	sites	onto	RNA-

binding	 proteins,	 which	 then	 allowed	me	 to	 distinguish	 PTMs	 in	 RNA-binding	

regions	from	non	RNA-binding	regions.	The	outcome	of	this	work	is	presented	in	

Chapter	3.	I	plan	to	draft	the	results	form	this	study	and	submit	the	manuscript	

for	publication.	

	

A	small	project	that	I	undertook	at	the	beginning	of	my	PhD,	that	 is	not	part	of	

the	thesis,	was	in	collaboration	with	Dr.	David	Thomas	from	the	Department	of	

Medicine,	University	of	Cambridge,	UK.	In	this	project	I	analysed	homology	of	an	

uncharacterised	mouse	protein	C17ORF62	later	named	Eros.	This	result	as	part	

of	the	larger	study	was	published	in	The	Journal	of	Experimental	Medicine.	

	

I	 have	 also	 presented	 the	 results	 of	 my	 work	 in	 regional	 and	 international	

meetings.	 The	 domain	 atrophy	 study	 was	 presented	 at	 the	 2nd	 student	

symposium	 organised	 by	 International	 Society	 for	 Computational	 Biology’s	

Regional	Student	Group	(ISCB-RSG)	–	UK	chapter,	2015	in	Norwich.	Results	from	

the	lncRNA-mediated	regulation	of	hereditary	hemochromatosis	were	presented	

at	RNA	2016	The	21st	Annual	Meeting	of	the	RNA	Society,	in	Kyoto,	Japan.	
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Chapter	1	

	
	
Protein	domain	atrophy	–	identification	and	

characterisation	of	functional	partial	protein	

domains	

	
	
1.1	Introduction	

	

Protein	domains	are	key	to	the	diversity	of	structure	and	functions	observed	in	

proteins.	 Domains	 are	 composed	 of	 a	 defined	 set	 of	 secondary	 structural	

elements,	 which	 are	 spatially	 arranged	 to	 form	 distinct	 folded	 stable	 3-

dimensional	 structures.	 In	 their	 billions	 of	 years	 of	 evolution,	 domains	 have	

evolved	from	simple	folds	with	basic	functions	to	large	multifunctional	complex	

subunits.	 In	 the	 traditional	 sense,	 protein	 domains	 are	 viewed	 as	 indivisible	

structural	 and	 functional	 building	 blocks;	 however,	 a	 few	 recent	 studies	 have	

identified	 proteins	 that	 are	 composed	 of	 structurally	 partial	 or	 incomplete	

domains.	 Existence	 of	 such	 partial	 protein	 domains	 is	 interesting	 as	 they	 shed	

light	on	the	evolution,	 function	and	stability	of	 these	domains.	 In	 this	chapter	 I	

have	 carried	 out	 large-scale	 systematic	 analysis	 of	 protein	 domain	 families	 in	

Pfam	 in	 order	 to	 identify	 cases	 of	 partial	 structural	 domains.	 I	 quantify	 the	

magnitude	 of	 structural	 loss	 in	 protein	 domains	 and	 discuss	 the	 nature	 of	

deletions,	 their	 functions	 and	 the	 mechanisms	 that	 stabilise	 these	 domains.	

Finally,	 I	 discuss	 some	 of	 the	 bioinformatics	 artefacts	 that	 plague	 the	

identification	of	true	partial	domains.		

	



	 2	

Domains	 are	 spatially	 distinct	 structural	 units	 within	 a	 protein	 that	 are	

characterised	by	 conserved	 sequence,	 geometrical	 compactness	 and	 the	 ability	

to	 fold	 and	 function	 independently	 (Ponting	 and	 Russell,	 2002).	 One	 of	 the	

characteristic	 features	 of	 protein	 domains	 is	 their	 recurrence	 in	 different	

contexts,	 i.e.,	 the	 domain	 is	 observed	 in	 one	 or	 more	 different	 multidomain	

proteins	(Ponting	and	Russell,	2002;	Vogel	et	al.,	2004).	This	modularity	allows	

protein	 domains	 to	 be	 combined	 in	 many	 ways	 giving	 rise	 to	 proteins	 with	

diverse	structures	and	functions.		

	

Protein	domains	have	distinct	3-dimensional	folds	that	have	evolved	along	with	

their	 functions.	 The	 term	 protein	 fold	 commonly	 denotes	 the	 topology	 of	

secondary	 structural	 elements	 and	 their	 unique	 spatial	 arrangement	 within	 a	

domain.	 Evolutionarily	 related	 functionally	 similar	 domains	 often	 exhibit	 the	

same	 fold,	however	 it	 is	also	commonly	observed	 that	 the	 same	protein	 fold	 is	

shared	 between	 protein	 domains	 that	 are	 functionally	 diverse	 (Martin	 et	 al.,	

1998).	One	of	 the	best-known	examples	 of	 one-fold-many-functions	 is	 the	TIM	

barrel	fold,	which	is	commonly	observed	among	protein	domains	that	catalyse	a	

wide	 range	 of	 chemical	 reactions	 (Nagano	 et	 al.,	 2002).	 Given	 the	 intrinsic	

physical	 constraints	 of	 protein	 folding,	 it	 is	 assumed	 that	 there	 is	 a	 limited	

number	 of	 ways	 a	 domain	 can	 fold,	 which	 has	 led	 to	 an	 observation	 that	 the	

multitude	 of	 protein	 functions	 are	 carried	 out	 by	 only	 a	 few	 thousand	 unique	

protein	folds	(Chothia,	1992;	Finkelstein	et	al.,	1993).		

	

Identification	of	 a	 large	number	of	protein	domains	have	 led	 to	 the	 systematic	

classification	of	domains	into	families	and	superfamilies	either	based	on	their	3-

dimensional	 structures	 or	 folds	 (Andreeva	 et	 al.,	 2014;	 Sillitoe	 et	 al.,	 2015)	 or	

based	 on	 their	 amino	 acid	 sequences	 (Finn	 et	 al.,	 2016).	 The	 SCOP	 and	 CATH	

databases	 are	 two	 of	 the	 well-known	 structure-based	 classifiers	 of	 protein	

domains,	 which	 group	 domains	 based	 on	 their	 similarity	 in	 structure	 or	 folds	

with	or	without	detectable	sequence	similarity	(Andreeva	et	al.,	2014;	Sillitoe	et	

al.,	 2015).	 The	 Pfam	 database	 classifies	 protein	 domains	 based	 on	 sequence	

similarity;	domains	with	highly	similar	sequences	are	grouped	into	families	and	

clans	 and	 also	 have	 similar	 functions	 (Finn	 et	 al.,	 2016).	 Some	 of	 the	 other	
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databases	 that	 classify	 protein	 domains	 based	 on	 sequence	 and/or	 structure	

include	 FSSP	 (Holm	 and	 Sander,	 1998),	 CDD	 (Marchler-Bauer	 et	 al.,	 2015),	

SMART	(Letunic	et	al.,	2012),	ProDom	(Servant	et	al.,	2002)	and	PROSITE	(Sigrist	

et	al.,	2013)	among	others.	At	present	there	are	1,393	different	folds	defined	by	

SCOP	(v1.75,	2017)	and	1,375	unique	folds	(topologies)	defined	by	CATH	(v4.0.0,	

2017)	and	16,712	protein	domain	families	defined	by	Pfam	(31.0,	2017).	

	

A	large	fraction	of	proteins	among	prokaryotes	and	eukaryotes	are	composed	of	

two	or	more	domains;	about	two-thirds	of	prokaryotic	proteins	and	about	80%	

of	 eukaryotic	proteins	are	multidomain	 (Chothia	et	 al.,	 2003;	Teichmann	et	 al.,	

1998).	 It	 is	 often	 observed	 that	 multidomain	 proteins	 evolve	 through	 domain	

duplications	 followed	 by	 functional	 modification	 either	 through	 sequence	

divergence	or	by	 recombination	with	other	domains	 (Lynch	and	Conery,	2000;	

Vogel	et	al.,	2004).	Proteins	have	also	been	observed	 to	 lose	 single	or	multiple	

domains	during	their	course	of	evolution	through	mechanisms	such	as	insertion	

of	new	start	and	stop	codons,	gene	fusion	and	gene	fission	(Buljan	and	Bateman,	

2009;	Weiner	et	al.,	2006).		

	

Apart	from	the	domain	gain	or	domain	loss	events,	protein	domains,	at	a	smaller	

scale	 of	 modification,	 can	 gain	 or	 lose	 secondary	 structural	 elements	 through	

insertions	 or	 deletions	 (indels)	 of	 amino	 acid	 residues.	 Analyses	 of	 a	 large	

number	of	domain	superfamily	sequences	and	structures	have	shown	variability	

in	 domain	 lengths,	 which	 are	 attributed	 to	 indels	 in	 loops,	 coils	 or	 a	 few	

secondary	 structural	 elements	 that	 leave	 the	 domain	 core	 largely	 unaltered	

(Pascarella	and	Argos,	1992;	Sandhya	et	al.,	2008;	Sandhya	et	al.,	2009;	Taylor	et	

al.,	 2004).	Variations	 in	domain	 lengths	 caused	by	gain	of	 accessory	 secondary	

structural	 elements	 or	 ‘embellishments’	 are	well	 studied	 (Reeves	 et	 al.,	 2006).	

One	 of	 the	 examples	 of	 embellishments	 in	 protein	 domains	 is	 the	 HUP	

superfamily	 (CATH:	 3.40.50.620),	 wherein	 domains	 exhibit	 large	 structural	

variations	 around	 its	 domain	 core	 (Dessailly	 et	 al.,	 2010).	 Some	 of	 the	 other	

superfamily	 members	 that	 exhibit	 large-scale	 domain	 embellishments	 include	

galactose	 binding	 domain-like	 superfamily	 (CATH:	 2.60.120.260),	 cupredoxin	

superfamily	 (CATH:	 2.60.40.420),	 dihydrodipicolinate	 reductase	 domain	 2	
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superfamily	(CATH:	3.30.360.10),	ATP-dependent	amine/thiol	ligase	superfamily	

(CATH:	 3.30.0470.20)	 and	 the	 αβ-hydrolase	 superfamily	 (CATH:	 3.40.50.1820)	

(Reeves	 et	 al.,	 2006).	 These	 embellishments	 have	 been	 observed	 to	 influence	

interactions,	 affect	 substrate	 specificity,	 binding	 and	 stability	 and	 degradation	

(Dessailly	et	al.,	2010;	Reeves	et	al.,	2006).		

	

Similar	 to	 domain	 embellishments,	 protein	 domains	 could	 also	 undergo	 large-

scale	 loss	or	degradation	of	 secondary	 structural	 elements.	 I	 propose	 the	 term	

‘domain	 atrophy’	 for	 events	 that	 lead	 to	 a	 large-scale	 loss	 of	 core	 secondary	

structural	elements	 in	protein	domains.	Figure	1.1	schematically	 illustrates	 the	

theory	 of	 domain	 atrophy	 using	 an	 example	 of	 a	multi-domain	 protein.	 In	 the	

course	of	protein	evolution	one	or	more	domains	in	a	protein	undergo	truncation	

or	a	significant	loss	of	its	structural	elements	due	to	a	mutation	or	other	cellular	

events.	 The	 protein	with	 a	 truncated	 or	 atrophied	 domain	 that	 still	 retains	 its	

active	 sites	 or	 original	 function,	 such	 as	 enzymatic	 or	 structural,	 may	 be	

positively	selected	while	the	protein	with	a	non-functional	atrophied	domain	is	

lost.	Unlike	cases	wherein	only	a	 few	peripheral	secondary	structural	elements	

are	 lost,	 domain	 atrophy	 refers	 to	 large-scale	 deletions	 of	 ‘core’	 structural	

elements.		

	

Mutational	events	that	lead	to	such	large-scale	loss	of	domain	structure	are	often	

detrimental	to	protein	stability	and	function.	Proteins	are	only	marginally	stable	

such	that	a	mutation	of	a	single	amino	acid	residue	can	drastically	 influence	its	

folding.	 For	 example,	 single	missense	mutations	within	 the	 sucrose	 domain	 of	

sucrose-isomaltase	 leads	 to	defects	 in	protein	 folding	and	 transport	 (Alfalah	et	

al.,	 2009).	 It	 is	 also	 observed	 that	 the	 core	 mutation	 of	 a	 single	 amino	 acid	

residue	 determines	 the	 folding	 stability	 of	 the	 N-terminal	 domains	 of	 P-type	

copper	ATPases	CopAa	and	CopAb	(Banci	et	al.,	2003).	Large-scale	deletions	are	

also	 expected	 to	 significantly	 alter	 stability,	 however	 cases	 exist	wherein	 such	

deletions	 only	 marginally	 affect	 protein	 stability.	 For	 example,	 removal	 of	 a	

stretch	of	amino	acids	such	as	the	whole	β-strand	of	the	Ig-domain	of	the	human	

muscle	protein	titin	only	marginally	decreases	stability	by	2.8	kcal/mol	(Fowler	

et	al.,	2002).	Single	or	large-scale	deletions	or	mutations	of	amino	acid	residues	
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affect	 protein	 stability	 and	 function	 differentially	 based	 on	 their	 location.	

Mutations	 of	 amino	 acids	 that	 are	 part	 of	 peripheral	 secondary	 structures	 or	

loops,	 termini,	 or	 those	 present	 on	 the	 protein	 surface	 are	 more	 likely	 to	 be	

tolerated,	whereas	mutations	within	the	hydrophobic	core	that	disrupt	packing	

are	not	(Bowie	et	al.,	1990).		

	

Unlike	 domain	 elaborations,	 which	 is	 commonly	 seen	 in	 protein	 structures,	

structural	data	and	literature	on	domain	atrophy	is	very	scarce.	Only	three	cases	

of	 structural	 partial	 domains	 have	 been	 observed	 in	 the	 past,	 which	 include	

‘truncated	globin	family’	(Nardini	et	al.,	2007)	and	bacterial	luciferases	(Grishin,	

2001)	and	recently	in	a	domain	of	unknown	function	DUF2172	(Das	et	al.,	2014).	

One	 of	 the	main	 reasons	 that	 the	 atrophied	domains	 are	 less	 studied	 could	 be	

due	 to	 their	 rarity	 because	 of	 the	 reasons	 described	 above.	 However,	 natural	

occurrences	of	a	few	stable	protein	domains	with	large-scale	structural	deletions	

are	 intriguing	 and	 suggest	 that	 compensatory	 mechanisms	 that	 help	 stabilise	

these	atrophied	domains	must	exist.	

	

In	this	chapter,	using	sequence-based	profile	hidden	Markov	models	(HMMs)	of	

protein	domain	 families,	 I	 have	devised	 an	 algorithm	 to	 identify	 potential	 new	

cases	of	domain	atrophy.	 I	 introduce	a	new	metric	called	the	 ‘atrophy	score’	 to	

quantify	 the	magnitude	of	 structural	 loss.	Using	 the	algorithm	I	have	 identified	

several	 new	 cases	 of	 domain	 atrophy.	 For	 sequences	 where	 experimental	

structures	 were	 not	 available	 I	 have	 instead	 mapped	 sequences	 of	 atrophied	

domains	on	to	complete	homologous	structures,	as	reference,	to	infer	the	extent	

of	 atrophy.	 I	 have	 also	 identified	 cases	 that	 confound	 the	 discovery	 of	 true	

atrophied	domains.	Using	a	series	of	filters	and	through	manual	curation	I	avoid	

cases	 of	 computational	 artefacts	 and	 discuss	 their	 possible	 origins.	 Finally,	 I	

discuss	compensatory	mechanisms	that	stabilise	the	folds	of	atrophied	domains.	 	
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Figure	 1.1	 Schematic	 representation	 of	 domain	 atrophy	 event.	 A	 protein	
with	a	particular	architecture	 comprising	domains	A	and	B,	wherein	domain	B	
has	 the	 active	 site	 residues,	 undergoes	 mutation	 resulting	 in	 truncation	 of	
domain	B.	The	protein	 is	positively	selected	 if	 the	 truncated	domain	retains	 its	
functional	 state	 (enzymatic	 or	 structural),	 while	 the	 protein	with	 a	 non-viable	
truncated	 domain	 is	 lost.	 Complete	 Pfam	 domain	 boundaries	 are	 denoted	 by	
smooth	edges	and	incomplete	domain	boundaries	are	denoted	by	toothed	edges.	
Dotted	line	in	the	toy	example	shows	the	region	of	atrophy.	Figure	reused	from	
(Prakash	and	Bateman,	2015),	doi:	10.1186/s13059-015-0655-8.	
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1.2	Methods	

	

The	 following	 sections	 (1.2.1	 to	 1.2.7)	 are	 taken	 verbatim	 from	 (Prakash	 and	

Bateman,	2015).		

	

1.2.1	Data	

	

To	 identify	 potential	 cases	 of	 domain	 atrophy	 I	 use	 matches	 of	 the	 UniProt	

sequence	database	(release	2012_06)	against	the	profile	HMM	models	from	the	

Pfam	 database	 release	 27.0	 (Finn	 et	 al.,	 2014).	 This	 set	 of	 matches	 contains	

28,738,352	 Pfam-A	 protein	 domain	 instances	 across	 14,831	 families	 in	

18,523,877	protein	sequences.	

	

1.2.2	Nomenclature	

	

Domain	 atrophy	 events	 were	 classified	 into	 five	 types,	 based	 on	 the	 domain	

location	 (architecture)	 in	 the	protein	 and	 the	 region	of	 atrophy	 in	 the	domain.	

Figure	 1.2	 shows	 the	 schematic	 representations	 of	 the	 five	 types	 atrophied	

domains,	which	are	described	below.	

	

(1)	N-terminal	end-bounded	atrophy:	structural	loss	at	the	N-terminal	region	of	

the	N-terminal	domain.		

(2)	C-terminal	end-bounded	atrophy:	structural	 loss	at	the	C-terminal	region	of	

the	C-terminal	domain.		

(3)	Upstream	domain-bounded	atrophy:	structural	loss	at	the	N-terminal	region	

of	 an	 inner	domain,	 also	 including	 the	N-terminal	 region	of	 the	C-terminal	

domain.		

(4)	 Downstream	 domain-bounded	 atrophy:	 structural	 loss	 at	 the	 C-terminal	

region	 of	 an	 inner	 domain,	 also	 including	 the	 C-terminal	 region	 of	 the	 N-

terminal	domain.		

(5)	Within-domain	atrophy:	structural	loss	within	the	domain.	
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Figure	1.2	The	five	classes	of	domain	atrophy	events.	Complete	Pfam	domain	
boundaries	 are	 represented	 as	 smooth	 edges.	 Domain	 boundaries	 with	
incomplete	or	partial	matches	to	Pfam	HMM	models	are	represented	as	toothed-
edges.	Figure	reused	from	(Prakash	and	Bateman,	2015),	doi:	10.1186/s13059-
015-0655-8.	
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1.2.3	Atrophy	Score	

	

To	 determine	which	 domains	may	 be	 cases	 of	 atrophy	 I	 calculated	 a	measure	

called	the	Atrophy	Score	(AS)	at	both	the	N-terminal	(ASN)	and	C-terminal	(ASC)	

boundaries	 of	 each	 domain	 instance	 using	 their	 protein	 sequence	 and	 HMM	

coordinates.		

	

An	HMM	is	a	statistical	model	that	describes	observable	events	that	depend	on	

internal	factors,	through	a	visible	process	of	observable	symbols	and	an	invisible	

process	 of	 hidden	 states.	 These	models	 have	 been	 applied	 in	 a	 wide	 range	 of	

applications	 from	speech	 recognition	 to	passive	 sonar	detection.	 In	 the	 case	of	

biology,	 the	HMM	architecture	 that	 is	 used	 today	was	 introduced	by	 Sjölander	

and	Haussler	 (Krogh	et	al.,	1994)	and	became	known	as	profile	HMMs.	Protein	

profile	HMMs	can	be	used	to	infer	homology	and	predict	secondary	and	tertiary	

structures.	A	Pfam	profile	HMM	representing	a	particular	protein	family	is	built	

from	an	aligned	set	of	good	quality	homologous	protein	sequences.	This	profile	

HMM	comprises	 a	number	of	hidden	 states,	which	 correspond	 to	 columns	of	 a	

multiple	sequence	alignment.	As	the	HMM	progresses	from	one	state	to	another	

according	 to	 the	 state-transition	 probabilities,	 the	 state	 emits	 an	 amino	 acid	

residue	(or	symbol)	according	to	its	symbol-emission	probabilities	(Eddy,	2004).	

Once	the	end	state	is	reached	the	observable	sequence	of	amino	acid	residues	(or	

symbols)	is	generated.	As	well	as	acting	as	a	generative	model,	profile	HMMs	can	

be	 used	 to	 score	 sequences	 to	 see	 how	 well	 they	 fit	 the	 model.	 The	 general	

scoring	scheme	 is	 to	calculate	 the	probability	of	 the	sequence	given	 the	model,	

normalised	 by	 the	 probability	 of	 the	 sequence	 being	 generated	 by	 a	 null	 or	

random	model.	

	

Figure	 1.3	 shows	 a	 schematic	 representation	 of	 the	 parameters	 used	 in	

calculating	 domain	 atrophy	 score.	 The	 equations	 used	 to	 calculate	 the	 atrophy	

score	are	shown	below:	

	

ASN	=	(DN	–	dN)/L	 …………………	(Eqn. 1)	

ASC	=	(DC	–	dC)	/L	 …………………	(Eqn. 2) 
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Where,	 ASN	 is	 the	 atrophy	 score	 at	 the	 N-terminus	 of	 the	 domain,	 DN	 is	 the	

number	of	unmatched	HMM	match	states	at	the	N-terminus	of	the	domain,	dN	is	

the	 inter-domain	 distance	 or	 domain	 interval,	 i.e.,	 the	 number	 of	 amino	 acid	

residues	between	the	domain	and	its	adjacent	upstream	domain	or	the	sequence	

start	site	in	the	case	of	an	N-terminal	domain,	and	L	is	the	HMM	model	length	of	

the	domain	family.	Similarly	ASC,	DC	and	dC	correspond	to	atrophy	score	at	the	C-

terminus	of	the	domain,	the	number	of	unmatched	HMM	match	states	at	the	C-

terminus	 of	 the	 domain	 and	 the	 inter-domain	 distance	 to	 the	 start	 site	 of	 the	

downstream	domain	or,	in	the	case	of	a	C-terminal	domain,	its	sequence	end	site	

respectively.	 Instances	 of	 within-domain	 atrophy	 can	 be	 identified	 in	 cases	

where	 the	 profile	 HMM	matches	 to	 a	 single	 domain	 have	 been	 split	 into	 two	

profile	HMM	matches,	with	the	first	corresponding	to	the	N-terminal	part	of	the	

domain	 and	 the	 second	 corresponding	 to	 the	 C-	 terminal	 part	 of	 the	 domain.	

Instances	of	within-domain	atrophy	were	distinguished	from	tandem	repeats	by	

considering	the	HMM	match	states	of	each	domain.	The	start	HMM-match	state	

of	 the	 downstream	 domain	 is	 greater	 than	 the	 end	 HMM-match	 state	 of	 the	

upstream	domain	 in	cases	of	 split	domains.	The	computation	of	within-domain	

atrophy	score	(ASW)	is	similar	to	ASN.	

	

ASw	=	(Dw	–	dw)/L	…………………	(Eqn. 3)	

	

Where	DW	is	the	number	of	unmatched	HMM	match	states	within	the	domain,	dW	

is	the	domain	interval	within	the	domain	and	L	is	the	HMM	model	length	of	the	

domain	 family.	 Alignment	 co-ordinates	 of	 each	 domain	 are	 considered	 to	

calculate	the	inter-domain	interval.	An	intuitive	description	of	the	atrophy	score	

would	be	that	a	score	of	0.33	means	that	one-third	of	 the	 length	of	 the	domain	

has	been	lost	to	domain	atrophy.	
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Figure	1.3	Calculation	of	domain	atrophy	score.	Atrophy	score	is	the	ratio	of	
the	missing	region	(D-d)	of	the	domain	to	the	domain	HMM-model	length	(L).	(A)	
N-terminal	 end-bounded	 atrophy,	 (B)	 C-terminal	 end-bounded	 atrophy,	 (C)	
Upstream	domain-bounded	atrophy,	(D)	Downstream	domain-bounded	atrophy	
and	 (E)	 Within-domain	 atrophy.	 Figure	 reused	 from	 (Prakash	 and	 Bateman,	
2015),	doi:	10.1186/s13059-015-0655-8.	
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1.2.4	Filtering	

	

Initial	 results	 from	 applying	 the	 atrophy	 score	 to	 all	 UniProt	 proteins	 showed	

that	there	were	numerous	common	failure	modes	(Figure	1.4)	that	would	mask	

the	ability	 to	 find	genuine	domain	atrophy	events.	Therefore,	 I	applied	a	set	of	

filters	to	reduce	the	number	of	false	positive	matches	with	high	atrophy	scores.	

	

Of	a	total	of	23,193,494	sequences	in	the	database,	18,523,877	sequences	had	at	

least	 one	 Pfam-A	 domain	 instance	 and	 these	were	 used	 in	 the	 analysis.	 Initial	

filtering	 was	 applied	 to	 exclude	 domain	 models	 from	 sequences	 with	 protein	

existence	(PE)	levels	of	2	to	5.	These	are	enriched	in	gene	prediction	errors	and	

fragment	 proteins.	 This	 reduced	 the	 number	 of	 sequence	 considered	 from	

18,523,877	 to	 77,305.	 Proteins	 with	 a	 protein	 existence	 level	 of	 1	 have	 clear	

experimental	evidence	for	the	existence	of	the	protein	from	Edman	sequencing,	

mass	 spectrometry,	 X-ray,	 NMR	 or	 other	 experimental	 evidence.	 Although	 not	

strictly	a	measure	of	protein	sequence	quality	these	proteins	usually	have	highly	

accurate	protein	sequences.	We	also	removed	sequences	annotated	as	fragments	

in	UniProt,	which	further	reduced	the	set	of	sequences	considered	from	77,305	

to	75,435.	

	

Adjacent	domains	that	are	of	the	same	clan,	similar	to	figure	1.4B,	could	lead	to	

ambiguous	domain	boundary	assignments	at	 the	 interval	and	hence	such	cases	

were	filtered	out	to	avoid	detecting	false	atrophy	events.	The	resulting	final-set	

comprising	114,303	domain	instances	from	75,435	sequences	were	included	in	

the	 analysis.	 The	 algorithm	 pipeline	 was	 implemented	 in	 Perl	 to	 calculate	

atrophy	 scores	 across	 the	 set	 of	 domains.	 Domain	 instances	 with	 an	 atrophy	

score	of	0.15	or	more	were	further	investigated.	

	

1.2.5	Manual	inspection	

	

Domain	instances	that	were	obtained	after	applying	the	above	filters	were	then	

selected	for	manual	inspection.	Only	those	domains	that	had	an	atrophy	score	of	

0.15	or	above	were	 checked	manually	 for	 identification	of	 false	positives.	Each	
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potential	domain	atrophy	case	was	checked	for	evidence	of	any	of	the	following	

failure	modes	(see	Figure	1.4):	

	

(1)	Gene	prediction	errors:	I	checked	whether	the	missing	part	of	a	domain	was	

to	be	found	in	an	adjacent	gene	or	due	to	an	incomplete	gene	prediction.	

(2)	 Nested	 domains:	 I	 checked	 whether	 a	 high	 atrophy	 score	 was	 due	 to	 a	

domain	nesting	within	another.	These	were	considered	as	false	positives.		

(3)	Multi-domain	families:	Due	to	incorrect	Pfam	domain	definitions	some	Pfam	

domains	 actually	 correspond	 to	 multiple	 structural	 domains	 that	 can	 be	

found	independently.	I	checked	the	structure	of	each	Pfam	family	to	confirm	

whether	this	was	the	cause	of	a	high	atrophy	score.	

(4)	Small	domains:	Domains	of	length	less	than	30	amino	acid	residues	were	not	

considered	 since	 atrophy	 score	 of	 0.15	 and	 above	 of	 small	 domains	

correspond	to	loss	of	a	single	secondary	structural	element	or	a	part	thereof,	

which	is	not	considered	true	atrophy.	

(5)	 Circular	 permutations:	 While	 circular	 permuted	 domains	 are	 complete	

domains,	 the	 rearrangement	 of	 domain	 HMM	 start-site	 and	 HMM	 end-site	

with	respect	 to	 their	domain	HMM-model	would	result	 in	misidentification	

of	such	cases	as	domain	atrophies.	

(6)	 Short	 repeats:	 Domains	 composed	 of	 tandem	 structural	 motifs,	 such	 as	 β-

propeller,	 β-	or	α-helix,	 are	made	of	 short	 repeating	 sequence	motifs	were	

considered	 as	 false	 positives.	 Addition	 or	 removal	 of	 repeats	 is	 often	

tolerated	in	terms	of	protein	mutation.		

(7)	 Disordered	 domains:	 Inferring	 domain	 atrophy	 among	 intrinsically	

disordered	protein	domains	is	not	straightforward	mainly	owing	to	their		
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Figure	 1.4	 Failure	 modes	 of	 the	 pipeline.	 Some	 of	 the	 commonly	 observed	
domain	architectures	that	were	classified	as	 false-positives	or	 failure	modes	by	
the	 pipeline.	 (A)	 Incorrect	 gene	 prediction	 or	 partial	 sequence:	 sequence	
fragment	or	incorrect	gene	prediction	could	lead	to	events	that	look	like	domain	
atrophy,	 example:	 Aldo/keto	 reductase	 family	 (UniProt:	 P43546,	 Pfam:	
PF00248)	 (B)	 Tandem	 repeat:	 a	 tandem	 repeat	 is	 distinguished	 from	 single	
domain	instances	that	are	split/predicted	in	two	parts,	by	considering	its	HMM	
match	coordinates;	for	tandem	domain	instances	the	downstream	domain	start-
HMM-match	 state	 is	 less	 than	 the	 upstream	 domain	 end-HMM-match	 state,	
example:	 Peroxidase	 (UniProt:	 A0QXX7,	 Pfam:	 PF00141).	 (C)	 Nested	 domain:	
this	architecture	results	 in	an	atrophy	score	greater	 than	1	 for	domain	hosting	
nested	domain(s),	 example:	Peptidase_M20	 (UniProt:	A0Z6B3,	Pfam:	PF01546)	
(D)	Unmatched	domain	region:	missing	region	of	the	domain	containing	a	nested	
domain,	 example:	 Lon_C	 (UniProt:	 A4ILZ1,	 Pfam:	 PF05362).	 (E)	 Multi-domain	
family:	 a	 single-domain	 architecture	 comprising	 more	 than	 one	 domain.	 (F)	
Domain	overlap,	example:	4Fe-4S	single	cluster	domain	(UniProt:	A6L094,	Pfam:	
PF13353).	 Figure	 reused	 from	 (Prakash	 and	 Bateman,	 2015),	 doi:	
10.1186/s13059-015-0655-8.	 	
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lack	 of	 native	 ordered	 tertiary	 structure	 and	 such	 cases	were	 considered	 false	

positives.	 Apart	 from	 the	 above	 failure	 modes	 domain	 atrophy	 cases	 whose	

structures	were	 theoretically	modelled	or	had	no	other	 reference	structures	 in	

the	 family	 to	 compare	with	were	 also	 treated	 as	 failure	modes.	Other	 cases	 of	

complete	 structural	domains	but	 identified	as	domain	atrophy	were	 treated	as	

false	positives.	

	
From	a	total	of	1,362	domain	instances,	with	atrophy	scores	between	0.15	and	1,	

which	were	manually	checked,	1,287	domain	instances	were	classified	as	failure	

modes	 or	 false	 positives.	 The	positive	 predictive	 value	 (PPV)	 of	my	method	 to	

identify	domain	atrophy	is		(75/(75	+	1287))	=	0.055.	

	

1.2.6	Structure	visualisation	

	

Structures	 were	 visualised	 with	 Chimera	 (Pettersen	 et	 al.,	 2004).	 Where	

experimental	 structures	 of	 atrophied	 domains	were	 not	 available,	 the	 shortest	

full-length	 domain	 structure	 within	 the	 domain	 family	 was	 chosen	 as	 the	

reference.	 The	 extent	 of	 domain	 atrophy	 was	 then	 inferred	 by	 a	 pairwise	

sequence	 alignment	 guided	 mapping	 of	 unaligned	 sequence	 regions	 onto	 the	

reference	 structure.	 Instances	of	putative	domain	atrophy	where	no	 full-length	

reference	structure	was	available	for	the	family	were	not	considered	further.	

	

1.2.7	Phylogenetic	analysis	

	

Evolutionary	information	was	inferred	from	phylogenetic	trees	constructed	from	

multiple	sequence	alignment	of	domain	family	seed	sequences	and	homologous	

sequences	from	a	JackHMMER	search	(Finn	et	al.,	2011).	A	non-redundant	set	of	

sequences	of	90%	identity	or	less	was	aligned	with	MAFFT	(Katoh	and	Standley,	

2013).	Alignments	were	visualised	with	Belvu	(Sonnhammer	and	Hollich,	2005)	

and	phylogenetic	trees	constructed	using	the	neighbour-joining	method	present	

in	Belvu	using	default	parameters.	
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1.3	Results	

	

Amino	acid	sequences	from	UniProt	were	scanned	against	the	Pfam	profile	HMM	

models	 to	 identify	 potential	 cases	 of	 atrophied	 domains.	 I	 investigated	 the	

domains	that	showed	partial	matches	to	the	profile	HMM	models	and	calculated	

the	atrophy	scores.	Atrophy	score	quantifies	the	magnitude	of	structural	loss	and	

is	equivalent	to	the	fraction	of	the	Pfam	profile	HMM	model	that	is	missing	from	

the	domain.	A	negative	atrophy	score	indicates	that	domain	is	complete	or	there	

is	 no	 structural	 loss,	 while	 a	 positive	 atrophy	 score	 indicates	 an	 incomplete	

match	 to	 the	 profile	 HMM	 and	 structural	 loss.	 I	 note	 that	 a	 partial	 match	 of	

domain	 sequences	 to	 profile	 HMMs	 does	 not	 always	 denote	 domain	 atrophy;	

matches	 to	 the	 termini	 of	 profile	 HMM	 models	 could	 be	 missed	 due	 to	 low	

sensitivity	 of	 the	model	 to	 the	 terminal	 sequences,	 hence	 for	 cases	 wherein	 a	

domain	 sequence	 does	 not	 completely	 match	 the	 profile	 HMM,	 similarity	 can	

often	 be	 found	 to	 the	 full-length	 domain	 by	 extending	 the	 sequence	 through	

simple	sequence	similarity	comparison.	In	order	to	avoid	detecting	such	partial	

profile	 HMM	 matches	 of	 full-length	 domains	 as	 domain	 atrophy,	 I	 have	 used	

domain	boundaries	of	adjacent	domains	or	 the	sequence	 terminus	 to	constrain	

partial	profile	HMM	matches.	Full-length	sequences	of	domains	that	are	partially	

matched	 to	 profile	 HMMs	 cannot	 be	 extended	 over	 to	 the	 adjacent	 non-

homologous	domains	or	 sequence	 terminus,	which	suggest	 that	 they	 represent	

potential	 cases	 of	 domain	 atrophy.	 Therefore	 I	 have	 only	 focussed	 on	 partial	

domains	that	are	end-bounded	in	this	study.	

	

I	 investigated	 instances	 of	 domains	 with	 an	 atrophy	 score	 ≥	 0.15,	 wherein	 at	

least	15%	of	the	domain	is	lost.	Instances	of	domains	with	atrophy	scores	below	

0.15	were	 neglected	 since	 they	might	 represent	 cases	 of	 peripheral	 structural	

loss,	which	are	not	 true	 cases	of	 atrophy.	 Since	 the	atrophy	 score	 is	 calculated	

considering	the	domain	boundaries	of	adjacent	domains,	I	observed	that,	due	to	

the	negative	 inter-domain	distance,	 the	atrophy	scores	of	nested	domains	have	

the	chance	of	reaching	values	of	1	or	higher,	which	is	an	artefact	of	the	scoring	

system.	Therefore,	I	have	excluded	nested	domains	from	further	analyses.		
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I	manually	examined	domains	with	an	atrophy	score	between	0.15	and	1.	Among	

these	I	identified	1,287	instances	of	false	positives	(or	failure	modes)	that	were	

incorrectly	assigned	as	atrophied	domains	due	to	various	reasons	such	as	gene	

prediction	errors,	circular-permutated	domains,	profile	HMM	models	comprising	

more	than	one	domains	and	others	(refer	to	section	1.2.5).	Table	1.1	lists	all	the	

failure	modes	or	false	positives.	

	

I	classify	partial	domains	into	5	different	types,	based	on	the	site	of	atrophy	and	

its	 end-boundary,	 as	 following:	 (1)	 N-terminal	 end-bounded	 atrophy;	 (2)	 C-

terminal	 end-bounded	 atrophy;	 (3)	 Upstream	 domain-bounded	 atrophy;	 (4)	

Downstream	 domain-bounded	 atrophy;	 and	 (5)	 Within-domain	 atrophy.	 A	

detailed	description	of	the	five	types	of	atrophy	is	discussed	in	section	1.2.2.	

	
8	 true	 domain	 atrophy	 events	 with	 evidence	 from	 known	 3-dimensional	

structures	and	a	 further	67	putative	domain	atrophy	events	using	homologous	

structures	 were	 confirmed.	 Among	 the	 8	 instances	 of	 true	 domain	 atrophy,	 6	

cases	are	representatives	of	N-terminal	end-bounded	atrophy	(2	examples	from	

the	bacterial	 luciferase	domain	and	4	examples	 from	the	AMP-binding	domain)	

and	2	cases	are	representatives	of	downstream	domain-bounded	atrophy.	Some	

of	 the	examples	of	 true	and	putative	domain	atrophy	are	discussed	below.	For	

the	complete	list	of	atrophied	domains,	including	67	putative	cases,	refer	to	the	

appendix	(Table	A1).	
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Types	of	failure	modes	or	false	positives	 Number	of	instances	

Gene	prediction	error	 9	

Containing	nested	domain	 268	

Multi-domain	family	 316	

Small	domain	 173	

Circular	permutation	 54	

Short	repeat	 112	

Disordered	domain	 85	

Theoretical	model	 9	

No	other	reference	structure	available	 27	

Complete	structural	domain	 234	

Total	 1,287	

		

Table	1.1	False	positives	and	failure	modes	of	the	domain	atrophy	pipeline.	
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1.3.1	N-terminal	end-bounded	atrophy	

	

Type	example:	Bacterial	luciferase	domain	(Pfam:	PF00296)	

	

The	bacterial	 luciferase	domain	of	 the	non-fluorescent	 flavoprotein	(NFP)	 from	

Photobacterium	 leiognathi	 luxF	 (UniProt:	 P09142)	 shows	 an	 atrophy	 score	 of	

0.31,	indicating	a	loss	of	nearly	one-third	of	the	domain’s	structure.	The	second	

example	 within	 the	 same	 domain	 family	 includes	 NFP	 from	 Photobacterium	

phosphoreum	luxF	(UniProt:	P12745)	with	a	similar	atrophy	score	of	0.31.	

	

Figure	 1.5A	 shows	 a	 schematic	 representation	 of	 the	 partial	 match	 of	 P.	

leiognathi	luxF	to	the	profile	HMM	model	of	the	bacterial	luciferase	family	(Pfam:	

PF00296).	 The	288	 amino	 acid	 residue	 long	 luxF	 sequence	 is	 partially	 aligned	

with	 the	 profile	 HMM	 model	 beginning	 from	 HMM	 alignment	 start	 site	 co-

ordinate	170.	The	HMM	match	state	co-ordinate	170	corresponds	to	the	amino	

acid	 residue	 72	 in	 the	 sequence,	 which	 indicates	 that	 there	 is	 no	 alignment	

between	 the	 N-terminal	 71	 amino	 acid	 residues	 and	 the	 first	 169	 unmatched	

states	of	the	profile	HMM	model.	Due	to	low	sequence	similarity	the	N-terminal	

71	 amino	 acid	 residues	 are	 not	matched	 by	 the	 profile	HMM	model,	 but	 these	

residues	 are	 still	 part	 of	 the	 domain	 structure.	 It	 is	 clearly	 evident	 that	 these	

unmatched	 N-terminal	 71	 amino	 acid	 residues	 are	 far	 fewer	 compared	 to	 the	

number	of	unmatched	HMM	states;	there	are	no	amino	acid	residues	that	can	be	

extended	beyond	the	N-terminal	sequence	start	site,	which	can	completely	cover	

or	align	with	the	remaining	unmatched	HMM	states,	 therefore	 indicating	a	true	

loss	of	sequences	at	the	N-terminal	at	the	P.	leiognathi	luxF	domain	compared	to	

a	full-length	canonical	bacterial	luciferase	domain.	Therefore	using	these	values	

within	equation	1	(refer	to	section	1.2.3)	gives	an	N-terminal	atrophy	score	ASN	=	

(169	 –	 71)/307	 =	 0.31.	 The	 C-terminal	 end	 sequence	 of	 the	 domain	 can	 be	

extended	 by	 sequence	 similarity	 to	 completely	 cover	 the	 HMM-profile	 and	

exhibits	no	atrophy.		
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The	 bacterial	 luciferase	 domain,	 homolog	 of	 the	 bacterial	 luciferase	 subunits	

(Moore	 and	 James,	 1995),	 is	 present	 mostly	 among	 members	 of	

gammaproteobacteria.	 The	 NFP	 acts	 as	 a	 ‘molecular	 sponge’	 to	 sequester	

myristylated	 flavine	mononucleotide,	 the	 side-product	 of	 the	 bio-luminescence	

pathway	(Moore	and	James,	1995).	The	structure	of	NFPs	from	Photobacterium	

leiognathi	(PDB:	1NFP)	and	Photobacterium	phosphoreum	(PDB:	1FVP)	resemble	

a	partial	TIM-barrel-like	fold	missing	a	β-strand	and	three	α-helices (Kita	et	al.,	
1996;	Moore	and	James,	1995)	(Figure	1.5B).	To	compare	the	extent	of	structural	

loss	I	compared	the	atrophied	domain	with	the	full-length	reference	structure	of	

bacterial	 luciferase	 domain	 from	 Bacillus	 cereus	 (PDB:	 2B81),	 which	 has	 a	

complete	(β/α)8	TIM-barrel	fold	with	characteristic	β-barrel	structure	consisting	

of	 eight	 alternating	 β-strands	 and	 α-helices	 (Figure	 1.5C).	 Although	 from	 the	

HMM-model	the	atrophy	was	initially	identified	at	the	N-terminus	of	the	domain,	

structural	superpositions	show	that	structural	elements,	β1,	α1	and	β2,	at	the	N-

termini	 of	 1NFP	and	1FVP	are	 intact,	 however	 the	 atrophied	domains	have	no	

secondary	 structural	 elements	 that	 are	 equivalent	 to	 α2,	 β3,	 α3	 and	 α4,	 of	 the	

reference	domain	2B81	(residues	61-125,	132-192),	indicating	that	the	atrophy	

is	 within	 the	 domain	 rather	 than	 at	 the	 N-terminus.	 Sequence	 alignment	with	

luxB,	a	homologue	of	luxF,	also	shows	atrophy	within	the	domain	(Figure	1.6A).	

	

It	is	well	known	that	domain	cores	are	highly	hydrophobic	and	their	exposure	to	

solvent	 leads	 to	unfolding	or	destability	 (Miller	 et	 al.,	 1987;	Rose	 et	 al.,	 1985).	

The	hydrophobic	β-barrel	core	of	the	TIM-barrel	fold	is	shielded	from	the	solvent	

by	the	peripheral	α–helices.	It	is	therefore	interesting	to	know	how	the	atrophied	

bacterial	luciferase	domains	with	a	solvent-exposed	hydrophobic	cleft	are	stable	

by	 tolerating	 such	 large	 deletion.	 The	 crystal	 structures	 of	 atrophied	 domains	

(PDB:	 1FVP)	 shows	 that	 the	 atrophied	 domain	 buries	 its	 solvent	 exposed	

hydrophobic	 core	by	 forming	homo-dimeric	 interactions	 (Figure	1.5D)	 (Kita	 et	

al.,	 1996;	 Moore	 et	 al.,	 1993).	 The	 two	 solvent-exposed	 clefts	 face	 each	 other	

forming	 a	 new	 dimer	 interface	 that	 shields	 the	 exposed	 core	 from	 the	 solvent	

and	 thereby	 forming	 stabilising	 interactions.	 Interestingly	 a	 similar	 homo-

dimeric	 interaction	 is	observed	 in	 the	complete	 full-length	domain	2B81	at	 the	

same	side	of	the	molecule	that	exhibit	atrophy	(Figure	1.5E).	
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Figure	1.5	N-terminal	end-bounded	atrophy	of	bacterial	luciferase	domain.	
(A)	 Schematic	 representation	 of	 Pfam	 bacterial	 luciferase	 domain	 (Pfam:	
PF00296)	 from	P.	 leiognathi	 luxF	 sequence	 (UniProt:	P09142).	Numbers	at	 the	
top	indicate	co-ordinates	of	profile	HMM	and	numbers	at	the	bottom	denote	co-
ordinates	 of	 amino	 acid	 sequence	 aligned	with	 the	 profile	 HMM.	Dotted	 green	
lines	indicate	the	missing	unmatched	region	of	the	profile	HMM	(B)	Monomer	of	
the	 atrophied	 bacterial	 luciferase	 domain	 of	 P.	 phosphoreum	 non-fluorescent	
flavoprotein	 (PDB:	1FVP,	 light	green)	bound	 to	 ligand	FMA	(6-(3-tetradecanoic	
acid)	 flavine	 mononucleotide),	 orange.	 Arrow	 shows	 the	 solvent	 exposed	
atrophied	region.	(C)	Monomer	of	the	B.	cereus	reference	structure	(PDB:	2B81,	
light	 blue).	 (D)	 Homo-dimer	 complex	 of	 1FVP.	 The	 exposed	 hydrophobic	 core	
due	to	domain	atrophy	is	stabilised	by	the	new	dimer	interface.	(E)	Homo-dimer	
complex	of	2B81	showing	dimerisation	on	the	same	side	of	the	molecule.	
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A	

	
B	
	
Figure	1.6	Pairwise	sequence	alignments	and	phylogenetic	analysis	of	 the	
bacterial	 luciferase	 domains.	 (A)	 The	 luciferase	 B	 subunit	 protein	 luxB	
(UniProt:	 A9QNL3)	 is	 a	 homologue	 of	 luxF.	 Compared	 to	 the	 homologue,	 luxF	
shows	 deletions	 of	 amino	 acid	 residues	 within	 the	 domain.	 (B)	 The	 bacterial	
luciferase,	non-fluorescent	 flavoprotein	 (LuxF)	and	 the	alkanal	monooxygenase	
beta	 (LuxB)	 share	 a	 common	 ancestor.	 The	 ancestral	 fold	 of	 luciferase	 is	 a	
complete	TIM-barrel	 fold	observed	in	LuxB	and	LuxA	proteins.	Figure	B	reused	
from	(Prakash	and	Bateman,	2015),	doi:	10.1186/s13059-015-0655-8.	 	
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The	 core	 fold	 of	 a	 domain,	 during	 the	 course	 of	 evolution,	 can	 embellish	

secondary	 structural	 elements	 –	 termed	 domain	 elaborations,	 which	 is	 the	

opposite	 mechanism	 of	 domain	 atrophy.	 Therefore,	 to	 distinguish	 domain	

atrophy	from	domain	elaboration,	it	is	important	to	determine	the	phylogenetic	

relationships	between	the	two	variations	of	domain	folds.	To	determine	whether	

the	ancestral	fold	of	bacterial	luciferase	domains	is	a	complete	TIM-barrel	fold,	I	

analysed	 the	 phylogenetic	 relation	 between	 three	 clades	 of	 the	 bacterial	

luciferase	family-	luxA,	luxB	and	luxF.	The	luciferase	protein	is	a	hetero-dimeric	

complex	of	 luxA	and	 luxB	polypeptide	chains	(Close	et	al.,	2012)	and	they	both	

exhibit	complete	(β/α)8	TIM-barrel	 fold	(Fisher	et	al.,	1996).	 I	observe	that	 the	

luxF	 protein	 clade	 is	 completely	 enclosed	 by	 luxB	 (Figure	 1.6B)	 and	 that	 the	

ancestral	 fold	must	be	 the	complete	TIM-barrel	 fold	observed	 in	 luxA	and	 luxB	

proteins.		

	

Type	example:	AMP-binding	domain	(Pfam:	PF00501)	

	

This	 is	 the	 second	example	of	 a	 true	domain	atrophy	event	observed	at	 the	N-

terminal	 end	 of	 the	 domain.	 The	phenylacetate-coenzymeA	 ligase,	 Paak1,	 from	

Burkholderia	 cenocepacia	 (UniProt:	 B4E7B5)	 is	 a	 432	 amino	 acid	 residue	 long	

protein	composed	of	two	domains	–	the	N-terminal	AMP-binding	domain	(Pfam:	

PF00501)	 and	 the	 AMP-binding	 C-terminal	 domain	 (AMP-binding_C2,	 Pfam:	

PF14535).	 Sequence	 scan	against	 the	Pfam	HMM	model	 for	 this	domain	 family	

shows	that	the	N-terminal	adenosine	monophosphate	(AMP)	binding	domain	has	

atrophy	at	the	N-terminus.	The	AMP-binding	C-terminal	domain	does	not	show	

any	atrophy.		

	

Figure	 1.7A	 shows	 a	 schematic	 representation	 of	 the	 partial	 match	 of	 the	 N-

terminal	AMP-binding	domain.	The	HMM	model	of	the	N-terminal	AMP-binding	

domain	has	a	length	of	417,	of	which	co-ordinates	152	through	to	417	align	with	

the	domain	sequence	covering	amino	acid	residues	72	to	334.	It	should	be	noted	

here	 that	 the	 N-terminal	 region	 from	 amino	 acid	 5	 to	 71	 is	 probabilistically	

matched	to	the	profile	HMM	(region	coloured	in	light	green,	Figure	1.7A),	which	

indicates	that	the	N-terminal	domain	boundary	within	this	region	is	not	accurate.	 	
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Therefore	to	strictly	demarcate	the	domain	boundaries	while	computing	atrophy	

scores	I	have	used	the	alignment	co-ordinates	of	protein	sequences,	rather	than	

their	envelope	co-ordinates,	which	results	in	an	atrophy	score	of	0.19.	

	

Phenylacetate-coenzymeA	 ligases	 are	 adenylate-forming	 enzymes	 involved	 in	

the	 metabolism	 of	 phenylacetate	 (Martinez-Blanco	 et	 al.,	 1990).	 The	 enzyme	

links	 the	 phosphoryl	 moiety	 of	 AMP	 to	 the	 carboxyl	 group	 of	 the	 substrate,	

activating	 it	 before	 transferring	 to	 the	 acceptor	 CoA	 (Martinez-Blanco	 et	 al.,	

1990).	The	 full	 length	N-terminal	AMP-binding	domain	of	4-chlorobenzoyl	CoA	

ligase	 from	Alcaligenes	sp.	 (PDB:	3CW9)	was	used	as	 the	reference	structure	 to	

identify	 structural	 loss	 within	 the	 N-terminal	 AMP-binding	 domain	 of	 B.	

cenocepacia.	The	reference	N-terminal	AMP-binding	domain	is	an	α/β	structure	

comprising	 three	 distinct	 β-sheet	 with	 a	 cleft	 containing	 the	 binding	 pocket	

(Reger	 et	 al.,	 2008)	 (Figure	 1.7C).	 Structural	 comparison	 of	 B.	 cenocepacia	 N-

terminal	AMP-binding	domain	 (PDB:	2Y27)	with	 the	 reference	structure	3CW9	

indicates	 that	 the	 atrophied	 N-terminal	 AMP-binding	 domain	 lacks	 region	

comprising	residues	1	to	150	of	the	reference	structure	that	forms	the	first	sub-

domain	(Figure	1.7B,	D).	It	can	be	seen	that	the	first	sub-domain	of	the	reference	

structure	has	minimal	 interactions	with	 the	 substrates	 during	 adenylation	 and	

thioester	 formation	 process	 (Reger	 et	 al.,	 2008),	 therefore	 the	 absence	 of	 this	

region	 in	the	atrophied	N-terminal	AMP-binding	domain	may	not	have	affected	

its	 catalytic	 function.	 The	 crystal	 structure	 of	 the	B.	 cenocepacia	 Paak1,	 2Y27,	

shows	 the	 atrophied	 N-terminal	 AMP-binding	 domain	 in	 homo-dimeric	

interactions	 (Figure	 1.7E)	 (Law	 and	 Boulanger,	 2011).	 Interestingly	 this	

interaction	 involving	 the	 second	 sub-domain	 region	 (residues	 151	 to	 322)	

results	 in	 the	 formation	 of	 an	 intramolecular	 β-sheet	 at	 the	 interface	 that	

appears	 to	 mimic	 the	 structural	 arrangement	 of	 the	 deleted	 first	 sub-domain	

observed	in	full-length	reference	structure	(Law	and	Boulanger,	2011),	shown	by	

region	circled	in	red	in	Figure	1.7E.		

	

Again,	 similar	 to	 the	 atrophied	 bacterial	 luciferase	 domain	 discussed	 above,	

homo-dimeric	 interactions	 are	 observed	 to	 bury	 the	 solvent	 exposed	 core	

residues	and	compensating	for	the	deleted	structural	region.	In	addition	to	the		
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Figure	 1.7	 N-terminal	 end-bounded	 atrophy	 of	 AMP-binding	 domain.	 (A)	
Schematic	 representation	 of	 N-terminal	 AMP-binding	 domain	 (Pfam:	 PF00501,	
green)	 and	 the	 AMP-binding	 C-terminal	 domain	 (AMP-binding_C2,	 Pfam:	
PF14535,	 red)	 of	 B.	 cenocepacia	 phenylacetate-coenzymeA	 ligase	 (UniProt:	
B4E7B5).	 Sequence	 region	 probabilistically	 matched	 to	 the	 profile	 HMM	 is	
shown	in	light	green.	Dashed	lines	indicate	the	missing	unmatched	region	of	the	
profile	 HMM	 (B)	 Monomer	 of	 the	 atrophied	 N-terminal	 AMP-binding	 domain	
(PDB:	 2Y27);	 arrow	 indicates	 region	 of	 structural	 loss	 at	 the	 N-terminus.	 (C)	
Reference	 structure	 of	 full	 length	 N-terminal	 AMP-binding	 domain	 of	 4-
chlorobenzoyl	 CoA	 ligase	 from	 Alcaligenes	 sp.	 (PDB:	 3CW9).	 (D)	 Structural	
superposition	of	2Y27	(green)	and	3CW9	(blue),	the	atrophied	first	sub-domain	
is	shown	in	orange.	(E)	Homo-dimer	of	atrophied	domain	(PDB:	2Y27)	showing	
structural	arrangement	(red	circle)	that	mimics	the	deleted	first	sub-domain	of	
the	reference	structure.	 	
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atrophy	 observed	 in	 B.	 cenocepacia	 phenylacetate-coenzymeA	 ligase,	 similar	

cases	 of	 atrophied	 N-terminal	 AMP-binding	 domains	 were	 observed	 in	

Bacteroides	 thetaiotaomicron	 phenylacetate-coenzymeA	 ligase	 (UniProt:	

Q8AAN6,	 PDB:	 3QOV)	 and	 Enterobacter	 agglomerans	 phenazine	 antibiotic	

biosynthesis	protein	(UniProt:	Q8GPH0,	PDB:	3HGU),	each	with	an	atrophy	score	

of	0.16.	

	 	

1.3.2	C-terminal	end-bounded	atrophy	

	

Type	example:	Ral-GTPase-activating	protein	domain	(Pfam:	PF02145)	

	

The	 Ral-GTPase-activating	 protein	 (RapGAP)	 domain	 of	 rat	 Ral-GTPase-

activating	 subunit	 α-1	 isoform-1	 (UniProt:	 O55007)	 was	 predicted	 to	 exhibit	

atrophy	at	the	C-terminal	end	of	the	domain	at	the	sequence	end.		

	

The	isoform-1	is	747	amino	acid	residues	long	with	a	single	RapGAP	domain	at	

its	 C-terminus	 and	 no	 detectable	 Pfam	 domains	 at	 its	 N-terminal	 region.	 The	

sequence	 only	 aligns	 to	 the	 first	 75	 match	 states	 of	 the	 domain	 profile	 HMM	

model,	 which	 corresponds	 to	 sequence	 region	 650	 to	 722.	 The	 remaining	

sequence	of	25	amino	acid	residues	at	the	C-terminal,	that	are	not	aligned	with	

the	profile	HMM,	is	not	long	enough	to	be	extended	further	to	completely	match	

the	missing	 113	 profile	HMM	match	 states	 (Figure	 1.8A).	 Calculation	 of	 the	 C-

terminal	atrophy	using	equation	2	(refer	to	section	1.2.3)	results	 in	an	atrophy	

score	of	ASC	=	(113	–	25)/188	=	0.46,	indicating	structural	loss	of	nearly	half	the	

domain.	

	
The	 GTPase-activating	 proteins	 (GAPs)	 terminate	 G-protein	 signalling	 by	

inducing	hydrolysis	of	bound	GTP	to	GDP	(Bos	et	al.,	2007).	The	full-length	Rap1-

GAP	catalytic	domain	of	the	human	Rap1-GAP	protein	(PDB:	3BRW)	was	used	as	

the	reference	structure.	There	are	no	experimental	 structures	solved	of	 the	rat	

RapGAP	domain,	 therefore,	 instead	 of	 structural	 superposition	 I	 used	 pairwise	

sequence	 alignment	 and	 mapped	 the	 sequence	 deletion	 on	 to	 the	 domain’s	

homologous	structure	to	infer	atrophy	of	the	rat	RapGAP	domain.	Pairwise		 	
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Figure	 1.8	 C-terminal	 end-bounded	 atrophy	 of	 rat	 RapGAP	 domain.	 (A)	
Schematic	 representation	 of	 RapGAP	 domain	 or	 rat	 Ral-GTPase-activating	
subunit	 α-1	 isoform-1	 (UniProt:	 O55007).	 Dashed	 lines	 indicate	 Pfam	 profile	
HMM	model	that	is	not	aligned	to	the	sequence.	(B)	Pairwise	sequence	alignment	
of	 the	 rat	 RapGAP	 and	 human	 RapGAP	 domains.	 The	 human	 RapGAP	 domain	
sequence	 highlighted	 in	 green	 corresponds	 to	 that	 region	 in	 the	 rat	 RapGAP	
domain	that	is	matched	by	the	profile	HMM	and	the	region	highlighted	in	orange	
corresponds	to	that	region	in	the	rat	RapGAP	domain	that	is	absent	or	atrophied.	
(C)	Sequence	mapping	from	pairwise	alignment	on	to	the	homologous	reference	
structure	 in	human	(PDB:	3BRW)	shows	the	region	of	rat	RapGAP	domain	that	
remains	 (green)	 and	 the	 region	 of	 RapGAP	 domain	 that	 is	 atrophied	 (orange).	
The	dimerisation	domain	at	the	N-terminal	is	shown	in	gray	and	the	interacting	
protein	 Rap1B	 is	 shown	 in	 blue.	 Amino	 acid	 residues	 involved	 in	 interactions	
with	Rap1B	are	shown	as	gray	sticks.	 	
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alignment	of	the	rat	RapGAP	and	the	human	Rap1GAP	domain	sequences	clearly	

indicates	a	large	deletion	at	the	C-terminal	end	of	the	rat	RapGAP	domain,	while	

showing	 30%	 sequence	 identity	 in	 the	 aligned	 region	 (Figure	 1.8B).	 Sequence	

mapping	 of	 the	 rat	 RapGAP	 domain	 onto	 the	 human	 Rap1-GAP	 protein	 (PDB:	

3BRW)	 indicates	 structural	 loss	 in	 the	 catalytic	 domain	 (residues	 301-414)	

(Figure	 1.8C,	 orange).	 The	 catalytic	 domain	 is	 an	 α/β	 structure	 with	 mixed	

parallel/antiparallel	arrangement	of	β-strands	and	a	conserved	C-terminal	alpha	

helix	 and	 interacts	with	 the	 Rap1B	 protein	 (Scrima	 et	 al.,	 2008).	 The	 catalytic	

centre	 comprising	 Asn290	 is	 close	 to	 the	 nucleotide-binding	 region	 and	 the	

protein	 interface	 (Daumke	 et	 al.,	 2004;	 Scrima	 et	 al.,	 2008).	 The	 observed	

atrophy	 does	 not	 affect	 the	 catalytic	 centre	 or	 residues	 involved	 in	 Rap1B	

interaction,	therefore	suggesting	that	the	atrophied	domain	may	be	functional.	

	

Interestingly	 this	 domain	 atrophy	 is	 not	 observed	 in	 the	 other	 isoforms	 of	 rat	

RapGAP	protein.	Isoform-2	(906	amino	acids)	and	isoform-3	(2,035	amino	acids)	

have	complete	 full-length	RapGAP	domains	suggesting	 that	exon	 loss	mediated	

by	alternative	splicing	could	be	a	probable	mechanism	 in	mediating	atrophy	at	

the	C-terminal	end	of	RapGAP	domain	in	isoform-1.			

	

1.3.3	Upstream	domain-bounded	atrophy	

	

125	 cases	 were	 initially	 identified	 where	 atrophy	 was	 predicted	 in	 domain	

regions	 that	 were	 bounded	 by	 an	 upstream	 non-homologous	 domain.	 After	

manual	 inspection	 none	 of	 the	 identified	 examples	 were	 determined	 as	 true	

cases	of	domain	atrophy,	but	were	failure	modes	of	the	pipeline.		

	

1.3.4	Downstream	domain-bounded	atrophy	

	

Type	 example:	 2-hydroxyacid	 dehydrogenase,	 NAD	 binding	 domain	 (2-

Hacid_	dh_C)	(Pfam:	PF02826)	

	

The	 2-hydroxyacid	 dehydrogenase	 NAD-binding	 (2-Hacid_dh_C)	 domain	 in	

Staphylococcus	 aureus	 PurK	 (UniProt:	 A6QFS4)	 was	 identified	 with	 atrophy	 at	
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the	C-terminus	of	 the	domain.	The	domain	 is	 found	to	have	nearly	a	quarter	of	

the	 canonical	 structure	missing	 indicated	 by	 the	 atrophy	 score	 of	 0.23	 (Figure	

1.9A).	 The	 C-terminal	 end	 of	 the	 2-Hacid_dh_C	 domain	 is	 bounded	 by	 the	

downstream	 ATP-grasp	 domain.	 Similar	 atrophy	 is	 also	 observed	 in	 the	 2-

Hacid_dh_C	domain	of	Bacillus	anthracis	 (UniProt:	C3PBM5,	PDB:	3Q2O).	These	

two	 cases	 represent	 true	 downstream	domain-bounded	 atrophy	 events,	which	

are	validated	by	experimental	structures.	

	
2-Hacid_dh_C	 domains	 are	 found	 in	 dehydrogenases	 and	 oxidoreductases	 in	

prokaryotes	and	eukaryotes.	The	bacterial	PurK	and	PurE	proteins	are	involved	

in	 a	 two-step	 conversion	 of	 5-aminoimidazole	 ribonucleotide	 to	 4-carboxy-5-

aminoimidazole	ribonucleotide	(Brugarolas	et	al.,	2011).	The	crystal	structure	of	

S.	aureus	2-Hacid_dh_C	domain	(PDB:	3ORQ)	adopts	a	partial	Rossmann	fold	and	

exhibits	secondary	structural	embellishments	including	an	additional	alpha	helix	

(α2)	and	β-strand	(β3)	(Figure	1.9B)	(Brugarolas	et	al.,	2011).	The	canonical	full-

length	 2-Hacid_dh_C	 reference	 structure	 for	 comparison	 was	 chosen	 from	

Lactobacillus	 jensenii	 D-lactate	 dehydrogenase	 (PDB:	 4PRL),	 which	 adopts	 a	

Rossmann	fold	with	six	parallel	β-strands	bound	to	NAD	(Figure	1.9C)	(Kim	et	al.,	

2014).	

	

Superposition	of	 structures	of	 the	atrophied	domain	 (3ORQ)	and	 the	 reference	

domain	(4PRL)	indicates	a	partial	loss	of	secondary	structural	elements	at	the	C-

terminus	of	3ORQ.	The	β-strands	β2-β1-β4	of	the	atrophied	domain	align	with	the	

strands	 β2-β1-β3	 of	 the	 reference	 domain,	 respectively,	 but	 there	 are	 no	

equivalent	 residues	 in	 the	 atrophied	 domain	 to	 match	 strands	 β4-β5-β6	 of	 the	

reference	 domain	 (residues	 225-298).	 Interestingly	 the	 atrophy	 at	 the	 C-

terminus	of	the	domain	does	not	affect	the	ligand-binding	site	at	the	N-terminus.	

The	atrophied	domain	retains	the	‘reverse’	Rossmann	fold	motif	(GXXGXG)	in	the	

loop	connecting	β1	and	α1	of	 the	atrophied	domain.	 I	observe	 that	 the	binding-

motif	 and	 interaction	 sites	within	 the	 atrophied	 and	 the	 reference	 domain	 are	

conserved	and	present	at	structurally	equivalent	locations	(3ORQ;	residues:	16-

21,	38-41	and	4PRL;	residues:	153-158,	175-178).	The	presence	of	the	conserved	

binding	motif	suggests	that	the	atrophied	domain	might	bind	to	the	adenine		 	
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Figure	1.9	Downstream	domain-bounded	atrophy	of	2-Hacid_dh_C	domain.	
(A)	 Schematic	 representation	 of	 domain	 architecture	 in	 Staphylococcus	 aureus	
PurK	 (UniProt:	 A6QFS4).	 Atrophy	 at	 the	 C-terminal	 region	 of	 2-Hacid_dh_C	
domain	 (green)	 is	 indicated	 by	 dashed	 lines.	 (B)	 Crystal	 structure	 of	 the	
atrophied	S.	aureus	2-Hacid_dh_C	domain	 (PDB:	3ORQ).	Arrow	 indicates	 region	
of	 structural	 loss	 at	 the	C-terminus.	 (C)	The	 complete	 reference	 structure	of	L.	
jensenii	 2-Hacid_dh_C	 domain	 (PDB:	 4PRL).	 The	 conserved	 NAD	 (yellow	 stick)	
binding	 ‘reverse’	 Rossmann	 motifs	 in	 atrophied	 and	 reference	 domains	 are	
highlighted	in	dark	pink	and	light	pink	respectively.	(D)	Superposition	shows	the	
structural	elements	of	4PRL,	highlighted	in	orange,	that	are	atrophied	in	3ORQ.	 	
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moiety,	 however,	 other	 important	 residues	 at	 the	 C-terminus	 of	 the	 reference	

domain	such	as	Asp259	and	the	catalytically	important	His295	located	near	the	

nicotinamide	moiety	are	absent	(Kim	et	al.,	2014;	Tishkov	et	al.,	1996).		

	

Type	example:	RNase_E_G	domain	(Pfam:	PF10150)	

	

The	 RNase_E_G	 domain	 is	 an	 example	 of	 a	 putative	 downstream	 domain-

bounded	 atrophy,	 for	 which	 structural	 loss	 was	 inferred	 through	 sequence	

mapping	 onto	 a	 homologous	 structure.	 The	 RNase	 E	 domain	 of	 Pyrococcus	

furiosus	RNA-binding	protein	AU-1	was	identified	with	atrophy	at	the	C-terminus	

indicated	by	an	atrophy	score	of	0.19.	

	

The	P.	furiosus	RNA-binding	protein	AU-1	(UniProt:	Q8U4Q7)	is	469	amino	acid	

residues	 long	 and	 consists	 of	 the	 RNase_E_G	 domain	 (Pfam:	 PF10150;	 Figure	

1.10A,	 green)	 and	 the	 domain	 of	 unknown	 function	 DUF402	 (Pfam:	 PF04167;	

Figure	 1.10A,	 red)	 at	 the	 C-terminus.	 The	 RNA-binding	 protein	 is	 a	 large	

oligomeric	 complex	 that	 binds	 specifically	 to	 AU-rich	 RNA	 sequences	 and	

involved	in	RNA	metabolic	processes	(Kanai	et	al.,	2003).		

	

The	 N-terminal	 region	 of	 the	 profile	 HMM	matches	 the	 P.	 furiosus	 RNase_E_G	

domain	from	amino	acid	residues	150	to	264.	The	sequence	region	between	the	

domains	 (residues	 265	 to	 369)	 is	 poorly	 matched	 by	 the	 RNase_E_G	 profile	

HMM;	but	although	poorly	matched	this	region	can	still	be	part	of	the	RNase_E_G	

domain	 suggesting	 that	 the	 maximum	 size	 the	 RNase_E_G	 domain	 within	 this	

sequence	could	have	is	from	residues	150	to	369.	Therefore	I	have	extended	the	

RNase_E_G	 domain	 boundary	 till	 the	 amino	 acid	 residue	 369	 to	 include	

sequences	that	were	missed	by	the	profile	HMM.	Pairwise	sequence	alignment	of	

the	 extended	 P.	 furiosus	 RNase_E_G	 domain	 (amino	 acid	 residues	 150	 to	 369)	

with	 the	 E.	 coli	 RNase_E_G	 reference	 domain	 (UniProt:	 P21513;	 PDB:	 2C0B,	

amino	acid	 residues	121	 to	391)	 shows	sequence	 loss	at	 the	C-terminal	end	of	

the	 P.	 furiosus	 RNase_E_G	 domain	 (Figure	 1.10B)	 indicating	 that	 despite	

extending	 the	 domain	 boundary	 the	 RNase_E_G	 domain	 is	 atrophied	 at	 the	 C-

terminal	end.	
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	C																				 							
Figure	 1.10	Downstream	domain-bounded	 atrophy	 of	 RNase_E_G	 domain.	
(A)	Schematic	representation	of	RNase_E_G	domain	from	P.	furiosus	RNA-binding	
protein	AU-1	 (UniProt:	Q8U4Q7)	with	RNase_E_G	domain	 (green)	 and	DUF402	
(red).	Dotted	lines	denote	the	missing	region	from	the	C-terminal	of	the	domain.	
(B)	Pairwise	sequence	alignment	showing	sequence	within	the	E.	coli	reference	
domain	 that	 is	 deleted	 (orange)	 in	 the	 P.	 furiosus	 RNase_E_G	 domain.	 (C)	
Sequence	mapping	on	 to	 the	structure	of	E.	coli	RNase_E_G	(PDB:	2C0B)	shows	
structural	elements	that	are	lost	in	P.	furiosus	RNase_E_G	domain,	highlighted	in	
orange.	Single	strand	RNA	is	shown	in	blue,	and	active	site	residues	are	show	as	
gray	sticks.	 	
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The	 E.	 coli	 RNase_E_G	 domain	 (PDB:	 2C0B)	 is	 a	 large	 multi-domain	 structure	

consisting	of	S1,	5’	sensing	region,	RNase	H	and	DNase	I	subdomains	(Callaghan	

et	al.,	2005).	The	DNase	I	subdomain	is	the	catalytic	centre	of	the	complex	and	is	

made	of	two	α-helices	and	six	antiparallel	β-strands	in	the	order	β1-2-3-4-6-5.	The	

active	site	 residues	Asp303	and	Asp346,	present	on	β3	and	β4	 respectively,	 co-

ordinate	 a	 Magnesium	 ion,	 which	 cleaves	 the	 scissile	 phosphate	 on	 the	 RNA	

backbone	through	nucleophilic	attack	(Callaghan	et	al.,	2005).	Sequence	mapping	

shows	 the	 region	 of	 atrophy	 in	 the	 C-terminus	 of	 the	 DNase	 I	 subdomain	

(residues	339	to	393)	(Figure	1.10C,	orange),	with	which	the	atrophied	domain	

shares	 21%	 sequence	 identity.	 The	 atrophied	 domain	 region	 as	 seen	 from	

sequence	mapping	 shows	 loss	 of	 one	 of	 the	 active	 site	 residue	Asp346.	 The	P.	

furiosus	RNA-binding	protein	AU-1	is	a	homo-oligomer	trimeric	complex	(Kanai	

et	 al.,	 2003).	 Since	 the	 experimental	 structure	 of	 the	 atrophied	 domain	 is	 not	

available,	 I	 hypothesize	 that	 the	 interactions	 with	 the	 C-terminal	 domain,	

DUF402	might	stabilise	the	atrophied	domain	within	the	trimeric	complex.	

	

1.3.5	Within-domain	atrophy	

	

Type	example:	Glycosyl	hydrolase	family	10	(Pfam:	PF00331)	

	

The	 glycosyl	 hydrolase	 family	10	 (Glyco_hydro_10)	domain	 from	 the	 endo-1,4-

beta-xylanase	 (UniProt:	 P07529)	 of	 Cryptococcus	 albidus	 was	 identified	 with	

atrophy	within	the	domain	interior.	

	

The	endo-1,4-beta-xylanase	protein	 is	332	amino	acid	 residues	 long	made	of	 a	

single	 glyco_hydro_10	 domain.	 Xylanase	 are	 found	 in	 bacteria,	 fungi	 and	 other	

microbes	(Beg	et	al.,	2001;	Polizeli	et	al.,	2005),	which	degrade	hemicellulose	by	

breaking	down	beta-1,4-xylan	into	xylose.	The	C.	albidus	endo-1,4-beta-xylanase	

is	an	inducible	extracellular	enzyme	with	xylobiose	as	its	natural	inducer	(Biely	

et	 al.,	 1980).	 Sequence	 scan	 of	 C.	 albidus	 endo-1,4-beta-xylanase	 against	 the	

profile	 HMM	 of	 the	 glyco_hydro_10	 domain	 family	 matches	 the	 full-length	

sequence	 except	 at	 the	 amino	 acid	 residues	 115	 and	 116,	 wherein	 the	 match	

state	 co-ordinates	 85	 to	 162	 of	 the	 profile	 HMM	 are	 not	 found,	 indicating	
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deletion	of	sequences	from	within	the	domain	(Figure	1.11A).	Using	equation	3,	

the	domain	atrophy	score	of	C.	albidus	glyco_hydro_10	was	calculated	to	be	ASw	=	

(77	-	0)/320	=	0.24.	

	

For	comparison	I	used	the	complete	glyco_hydro_10	domain	from	endo-1,4-beta-

xylanase	of	Thermotoga	petrophila	 	(PDB:	3NJ3)	as	the	reference	domain,	which	

has	a	TIM-barrel	fold	(Santos	et	al.,	2010).	Pairwise	sequence	alignment	clearly	

indicates	 deletion	 of	 a	 large	 stretch	 of	 residues	 within	 the	 C.	 albidus	

glyco_hydro_10	domain	(Figure	1.11B).	Using	sequence	mapping	I	observe	that	

the	deleted	sequence	corresponds	to	β-strand	β4	and	two	core	alpha	helices,	α3	

and	α4	(residues	110-176)	of	the	reference	domain	(Figure	1.11C,	orange).	It	can	

be	seen	that	one	of	the	active	site	residues	Glu150,	present	on	β4,	which	interacts	

with	 xylobiose,	 is	 lost	 due	 to	 the	 atrophy	 in	C.	albidus	 glyco_hydro_10	domain.	

Interestingly	the	C.	albidus	endo-1,4-beta-xylanase	was	reported	to	be	inefficient	

in	degrading	xylobiose	and	hydrolyses	xylotriose	at	very	slow	rates	compared	to	

the	longer	substrates	such	as	xylotetraose	(Biely	et	al.,	1981;	Biely	et	al.,	1980).	I	

suggest	that	the	inefficiency	of	the	enzyme	is	due	to	the	loss	of	one	of	its	active	

site	 residues	 Glu150.	 Since	 the	 atrophy	 within	 the	 domain	 exposes	 its	

hydrophobic	 β-barrel	 to	 the	 solvent,	 I	 predict	 that	 similar	 to	 the	 atrophied	

bacterial	 luciferase	 domain,	 the	 C.	 albidus	 glyco_hydro_10	 domain	 also	 highly	

likely	 undergoes	 oligomerisation,	 presumably	 by	 forming	 homo-dimeric	

interactions	to	stabilise	its	atrophied	structure.	
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		C																					 	
	
Figure	 1.11	 Within-domain	 atrophy	 of	 glyco_hydro_10	 domain.	 (A)	
Schematic	 representation	 of	 glyco_hydro_10	 domain	 from	 C.	 albidus	 endo-1,4-
beta-xylanase	(UniProt:	P07529).	(B)	Pairwise	sequence	alignment	shows	amino	
acids	 in	T.	petrophila	 (highlighted	 in	 orange)	 that	 are	 deleted	 in	C.	albidus.	 (C)	
Sequence	 mapping	 onto	 T.	 petrophila	 glyco_hydro_10	 reference	 domain	 (PDB:	
3NJ3)	 shows	 region	 of	 atrophy	 (orange)	 within	 the	 C.	 albidus	 glyco_hydro_10	
domain.	Active	site	residues	are	shown	in	gray	and	xylobiose	in	pink.	 	
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1.4	Conclusion	

	

Protein	evolution	 is	marked	by	gradual	changes	that	affect	both	their	sequence	

and	 structural	 composition.	 On	 a	 minor	 scale	 mutations	 of	 single	 amino	 acid	

residues	are	frequently	observed	and	on	larger	scales	evolutionary	events	such	

as	 domain	 duplication,	 deletion,	 recombination	 and	 exon	 shuffling	 are	 less	

frequently	observed	but	they	significantly	influence	the	structure	and/or	modify	

the	 functions	 of	 proteins.	 Many	 studies	 have	 explored	 these	 well-known	

mechanisms	in	trying	to	understand	the	evolution	of	protein	domains.	However,	

one	 such	 domain	 evolutionary	mechanism	 that	 has	 so	 far	 not	 been	 subject	 of	

systematic	analysis	is	domain	atrophy.	In	this	study	I	have	investigated	this	less-

known	 evolutionary	 event,	 in	 which	 domains	 undergo	 significant	 loss	 of	 core	

structural	elements	leading	to	a	partial	structure	or	incomplete	fold,	yet	may	still	

be	functional.		

	

By	analysing	the	variations	of	domain	boundaries	across	14,831	Pfam	domains,	I	

find	that	the	occurrence	of	domain	atrophy	is	extremely	rare.	Only	0.005%	of	the	

total	 domain	 instances	 analysed	 showed	 significant	 loss	 of	 core	 structures.	

Deletion	 of	 structural	 elements,	 as	 observed	 in	 atrophied	 domains,	 would	

contribute	 to	 significant	 changes	 in	 the	 energetics	 of	 the	 fold	 leading	 to	 fold	

instability	 and	 it	 is	 one	 of	 the	 main	 reasons	 for	 such	 rare	 occurrences	 of	

atrophied	domains.	It	is	known	that	amino	acid	residues	within	the	hydrophobic	

core	 are	 largely	 conserved	 so	much	 so	 that	mutation	 of	 even	 a	 single	 residue	

could	 lead	 to	 unfolding	 (Lee	 et	 al.,	 2010).	 But	 on	 the	 other	 hand	 domain	

elaborations	 do	 not	 influence	 the	 domain	 core	 in	 a	 similar	 way,	 since	 most	

elaborations	occur	on	the	surface	where	they	are	easily	tolerated	(Sandhya	et	al.,	

2009)	and	therefore	elaborations	occur	more	frequently	than	domain	atrophy.	If	

deletion	or	mutation	of	a	single	amino	acid	residue	could	lead	to	unfolding	then	

it	is	highly	likely	that	atrophied	domains	employ	mechanisms	that	help	stabilise	

their	fold	and	functions.	

	

One	of	the	mechanism	that	 is	commonly	observed	among	atrophied	domains	is	

the	 formation	 of	 homo-dimeric	 complexes.	 The	 atrophied	 regions	 within	 the	
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homo-dimeric	complex	interact	with	each	other,	which	prevent	the	exposure	of	

their	 hydrophobic	 cores	 to	 the	 solvent.	 For	 example,	 the	 atrophied	 bacterial	

luciferase	domain	 (Figure	1.5D)	 forms	homo-dimeric	 complexes,	wherein	 their	

mutual	 interaction	 shields	 their	 exposed	 β-barrels	 from	 the	 solvent.	 The	

juxtaposition	of	the	atrophied	regions	also	prevents	these	exposed	surfaces,	with	

‘sticky’	 residues,	 in	 forming	 run-away	 homopolymeric	 interactions	 that	 could	

lead	 to	 protein	 aggregations.	 For	 example	 the	 atrophied	 AMP-binding	 domain	

(Figure	 1.7E)	 forms	 a	 homo-dimeric	 complex	 wherein	 the	 two	 domains	 are	

oriented	in	head-to-tail	fashion	(PDB:	2Y27)	(Law	and	Boulanger,	2011)	(Figure	

1.12).	This	 symmetric	 orientation	 causes	 the	head	of	 one	monomer	 to	 interact	

with	 the	 atrophied	 tail	 of	 the	 other,	 thus	 mutually	 burying	 their	 exposed	

surfaces.	 As	 shown	 in	 Figure	 1.12E,F	 any	 non-symmetrical	 homo-dimeric	

interactions	 for	 burying	 the	 exposed	 atrophied	 surface	 would	 lead	 to	 a	

homopolymeric	interactions	causing	aggregation.		

	

An	 important	 issue	 is	 to	 understand	 the	 events	 that	 cause	 domain	 atrophy.	

Mutations	causing	a	premature	stop	codon	could	lead	to	atrophy	of	the	domain	

at	 the	C-terminus	and	similarly	mutational	 events	 leading	 to	 creation	of	 a	new	

downstream	start	codon	could	 lead	to	domain	atrophy	at	the	N-terminus.	Exon	

loss	 or	 deletions	 are	 other	 mechanisms	 that	 could	 cause	 domain	 atrophy.	

Alternative	splicing	is	one	of	the	mechanisms	that	allows	exploration	of	domain	

sequence	while	 still	 retaining	 functions	 (Birzele	et	al.,	2008).	Analysis	of	 splice	

variants	 from	 the	 ENCODE	 dataset	 have	 shown	 a	 large	 number	 of	 splice	 sites	

within	 functional	 domains	 (Tress	 et	 al.,	 2007).	 Alternative	 splicing	 in	 human	

proteins	was	previously	shown	to	result	in	fewer	partial	domains	than	expected	

and	 these	 partial	 domains	 were	 reported	 to	 affect	 a	 significant	 number	 of	

functional	 sites	 (Kriventseva	 et	 al.,	 2003).	 Table	 1.2	 summaries	 the	 number	 of	

domain	 atrophy	 cases	 observed	 within	 various	 categories	 in	 this	 study.	 It	 is	

unclear	whether	the	distribution	of	domain	atrophy	events	in	these	categories	is	

the	reflection	of	true	proportions	or	due	to	the	methodology	of	the	study.	

	

The	 protein	 degradation	machinery	 targets	 unfolded	 or	misfolded	 proteins	 by	

recognising	their	solvent	exposed	hydrophobic	residues.	It	is	unclear	how	partial		 	
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Figure	1.12	Homo-dimeric	 interactions	of	 atrophied	domains.	 Illustrations	
show	 the	 various	 modes	 of	 possible	 homo-dimeric	 interactions	 involving	
atrophied	interfaces.	(A)	The	homo-dimeric	interactions	of	atrophied	N-terminal	
AMP-binding	domains	of	B.	cenocepacia	(PDB:	2Y27).	The	monomers	are	shown	
in	black	and	gray	and	their	atrophied	regions	at	the	interface	are	coloured	green	
and	 brown	 respectively.	 (B)	 A	 schematic	 representation	 of	 the	 homo-dimeric	
interactions	 seen	 in	 (A).	 (B,	 C,	 D)	 show	 symmetric	 homo-dimeric	 interactions	
wherein	the	atrophied	regions	undergo	 ‘closure’,	such	that	 the	solvent	exposed	
hydrophobic	 regions	 with	 ‘sticky’	 ends	 are	 stabilised	 by	 their	 mutual	
interactions.	 The	 surfaces	with	 solid	 and	 hatched	 lines	 show	 the	 anterior	 and	
posterior	 faces	or	vice	versa.	 (E,	F)	show	asymmetric	 interactions,	wherein	 the	
interactions	 at	 the	 atrophied	 regions	 do	 not	 result	 in	 closure	 thereby	 forming	
homopolymeric	interactions	that	could	lead	to	aggregations.	
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N-terminal	

end-
bounded	
atrophy	

C-terminal	
end-

bounded	
atrophy	

Upstream	
domain-
bounded	
atrophy	

Downstream	
domain-
bounded	
atrophy	

Within-
domain	
atrophy	

	
Type	 499	

(100%)	
468	

(100%)	
125	

(100%)	
331					

(100%)	
213				

(100%)	

Structure	
available	

True	domain	
atrophy	

6				
(1.20%)	

0				
(0.00%)	

0				
(0.00%)	

2								
(0.60%)	

0							
(0.00%)	

False	positive	 161	
(32.26%)	

119	
(25.42%)	

27	
(21.60%)	

104			
(31.41%)	

45					
(21.13%)	

Homologous	
structure	
available	

Putative	
domain	
atrophy	

34	
(6.81%)	

26	
(5.55%)	

0				
(0.00%)	

3								
(0.90%)	

4							
(1.88%)	

False	positive	
216	

(43.28%)	
218	

(46.58%)	
91	

(72.80%)	
207				

(62.53%)	
99				

(46.48%)	

No	structure	
available	 Unknown	

82	
(16.43%)	

105	
(22.43%)	

7				
(5.60%)	

15						
(4.53%)	

65			
(30.52%)	

	

Table	 1.2	 Summary	 of	 various	 types	 of	 domain	 atrophy.	 Classification	 of	
domains	 identified	by	the	pipeline	 into	various	classes	after	manual	 inspection.	
Only	 domain	 atrophy	 instances	with	 atrophy	 scores	 between	 0.15	 and	 1	were	
manually	inspected.	
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domains	 evade	 degradation.	 Chaperones	 such	 as	 BiP	 maintain	 unfolded	 or	

misfolded	proteins	in	a	folding-competent	state	and	evade	degradation	until	then	

(Schroder	 and	 Kaufman,	 2005).	 I	 speculate	 that	 atrophied	 domains	 evade	

recognition	 by	 the	 degradation	 machinery	 by	 burying	 their	 hydrophobic	 core	

through	 interactions	 with	 other	 subunits	 or	 proteins	 or	 are	 protected	 by	

chaperones	until	stably	folded	upon	complex	formation.		

	

During	the	course	of	this	work	Dr.	William	Pearson	and	Dr.	Deborah	Triant	at	the	

University	of	Virginia	carried	out	an	 independent	study,	which	 investigated	the	

causes	of	partial	domains	 (Triant	and	Pearson,	2015).	While	our	 study	 focuses	

on	 identifying	 true	 cases	 of	 domain	 atrophy,	 (Triant	 and	 Pearson,	 2015)	 have	

focussed	 on	 addressing	 the	 computational	 origins	 of	 partial	 domains.	 The	

authors	 had	 found	 that	 5%	 to	 10%	 of	 protein	 domains	 in	 Pfam	 have	 only	 a	

fraction	of	the	sequences	present	in	them	and	nearly	4%	of	domains	have	more	

than	half	of	 their	domain	sequences	missing.	The	authors	 investigated	290,148	

Pfam	domains	from	270,776	protein	sequences	in	which	they	identified	30,961	

partial	domains.	These	partial	domains	were	grouped	into	3	types	based	on	their	

sequence	context,	such	as	i)	split	domains	–	non-contiguous	matches	of	the	HMM	

model	 to	 a	 sequence	 resulting	 in	 a	 domain	 being	 ‘split’	 into	 several	 parts,	 ii)	

bounded	 partials	 –	 domains	 that	 are	 bound/delimited	 by	 the	 end	 of	 protein	

sequence	 or	 non-homologous	 domains	 and	 iii)	 unbounded	 partials	 –	 partial	

domains	that	are	not	bound/delimited	by	sequence	termini	or	non-homologous	

domains	and	 for	which	a	complete	domain	 instance	can	be	 found	by	extending	

the	 alignment	 (Triant	 and	 Pearson,	 2015).	 Due	 to	 the	 similar	 nature	 of	 the	

problem	 that	was	 being	 investigated,	 both	 research	 groups	 agreed	 upon	 using	

the	same	nomenclature	to	classify	atrophied	domains.	I	therefore	have	used	their	

nomenclature	such	as	end-bounded	and	terminal-bounded	atrophy	in	this	study.	

Further	investigation	into	the	true	nature	of	these	partial	domains,	by	examining	

sequence	 alignments	 and	 Pfam	 HMM	 models,	 indicated	 that	 these	 partial	

domains	were	annotation	or	computational	artefacts	caused	by	either	alignment	

errors,	 incorrect	 genome	 assemblies	 or	 incorrect	 Pfam	 domain	 boundaries	

(Triant	and	Pearson,	2015),	similar	to	the	failure	modes	listed	in	table	1.1.	After	

computational	 filtering	 and	 manual	 verification	 the	 authors	 identified	 18	
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putative	partial	domains,	which	were	not	artefacts.	These	domains	were	built	by	

Pfam	using	 two	smaller	domains,	which	could	sometimes	be	 found	 in	different	

sequence	contexts.		

	

New	cases	of	domain	atrophy	have	been	brought	to	light	after	the	publication	of	

(Prakash	 and	 Bateman,	 2015)	 further	 corroborating	 the	 theory	 of	 domain	

atrophy.	A	recent	study	by	Dr.	Jennifer	Potts,	at	the	University	of	York,	and	group	

has	determined	the	structure	of	a	membrane	protein	SasG,	from	Staphylococcus	

aureus	 (Gruszka	 et	 al.,	 2015).	 The	 SasG	 protein	 promotes	 host	 adherence	 and	

biofilm	formation	by	forming	extended	fibrils.	SasG	consists	of	tandem	repeats	of	

two	 structurally	 related	 domains	 –	 E	 and	 G5,	 which	 form	 single	 layer	 triple-

stranded	β-sheets.	It	was	observed	that	the	smaller	E	domain	exhibits	atrophy	at	

the	N-terminus	(Gruszka	et	al.,	2015)	(Figure	1.13).	The	N-terminal	β-sheet	of	E	

domain	is	much	shorter	than	that	of	the	G5	domain	due	to	the	truncation	of	three	

β-strands.	Interestingly	the	E	domain	is	disordered	in	isolation	but	folds	to	form	

elongated	G5-E-G5	structure.	

	

In	 conclusion,	 I	 have	 identified	 a	 few	 cases	 of	 domains	 that	 exhibit	 partial	

structures	 of	 canonical	 folds.	 Traditionally	 domains	 have	 been	 viewed	 as	

indivisible,	 basic,	 building	 blocks	 of	 proteins,	 but	 domain	 atrophy	 sheds	 new	

light	 into	 the	 evolution	 of	 partial	 protein	 domains.	 The	 cases	 of	 atrophied	

domains	 identified	 in	 this	 study	 represent	 a	 significant	 increase	 in	 the	 known	

number	of	cases	so	far.		 	
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Figure	1.13	 SasG	 system	 in	Staphylococcus	aureus.	The	E	domain	 is	shorter	
than	the	G5	domain	and	the	N-terminal	β-sheet	of	E	domain	appears	truncated	
indicating	 atrophy.	 Figure	 adapted	 from	 (Gruszka	 et	 al.,	 2015).	
DOI:10.1038/ncomms8271	 	
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Chapter	2	

	
	
Comparative	analysis	of	the	yeast	non-coding	

RNA	interaction	network	

	
	
2.1	Introduction	

	
Macromolecular	 interactions	 are	 key	 to	 various	 cellular	 functions.	 Biological	

macromolecules,	such	as	proteins	and	nucleic	acids,	have	complex	roles	achieved	

in	large	part	through	association	with	their	interacting	partners.	Macromolecular	

interactions	 have	 been	well	 studied,	 from	 investigating	 interactions	 between	 a	

pair	of	molecules	in	exquisite	detail	to	large-scale	high-throughput	interactomes.	

Representing	 interactomes	 as	 physical	 interaction	 networks	 makes	 them	

amenable	 to	 compute	 various	 network	 properties,	which	 provide	 insights	 into	

their	 nature	 of	 interactions	 and	 regulation.	 In	 this	 chapter	 I	 have	 analysed	 the	

physical	properties	of	three	large-scale	biological	networks	–	the	protein-protein	

interaction	 network,	 the	 RNA-protein	 interaction	 network	 and	 the	 RNA-RNA	

interaction	 network,	 using	 manually	 curated	 high	 quality	 interactions	 from	

yeast.	 I	 have	 compared	 the	 three	 networks	 in	 order	 to	 investigate	 if	 their	

physical	 network	 properties	 reflect	 the	 differences	 observed	 in	 the	 nature	 of	

physical	interaction	between	these	macromolecules.	

	

Most	 biological	 macromolecules	 do	 not	 function	 in	 isolation	 within	 a	 cell;	

instead,	 they	 interact	 with	 their	 environment,	 which	 could	 include	 small	

chemical	 moieties,	 lipids,	 proteins	 or	 nucleotides.	 Their	 interactions	 enable	

molecular	 synthesis,	 signalling,	 transport,	 assembly	 and	 degradation	 of	 by-

products.	 Based	 on	 the	 nature	 and	 complexity	 of	 function,	 a	 cellular	 process	
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could	 involve	 interactions	between	binary	pairs	or	a	 large	number	of	partners.	

The	 interactions	 could	 either	 involve	 molecules	 of	 the	 same	 kind	 -	 such	 as	

protein-protein	 or	 RNA-RNA,	 or	 molecules	 of	 different	 kinds	 -	 such	 as	 RNA-

protein,	protein-cofactor	or	RNA-protein-cofactor.	Given	 that	 the	 cell	 is	packed	

with	molecules	of	all	kinds	and	sizes,	it	is	challenging	for	the	macromolecules	to	

establish	 specific	 interactions	 from	 the	 non-specific	 background	 molecules	 to	

form	biologically	meaningful	outcomes.		

	

Macromolecules	 have	 different	 strategies	 for	 establishing	 interactions	 in	 vivo.	

Protein	interactions	are	mainly	guided	by	properties	such	as	size,	shape,	charge,	

flexibility	 (Jones	 and	 Thornton,	 1996),	 and	 also	 include	 cellular	 location	 and	

concentration	 among	 others.	 Proteins	 can	 either	 self-assemble	 to	 form	

homomeric	 interactions	 with	 copies	 of	 themselves	 or	 form	 heteromeric	

assemblies	 with	 distinct	 protein	 subunits	 (Marsh	 and	 Teichmann,	 2015).	

Compared	 to	 heteromeric	 complexes,	 the	 homomeric	 interactions	 significantly	

bury	 large	 solvent	 accessible	 surface	 areas,	 show	 less	 planarity	 of	 interaction	

interfaces	 and	 have	 high	 preference	 for	 hydrophobic	 residues	 at	 the	 interface	

(Jones	and	Thornton,	1996).	In	some	proteins,	interaction	interfaces	are	formed	

through	 cooperative	 folding	 driven	 disorder-to-order	 transition	 upon	 binding	

(Shammas	et	al.,	2016).	Interactions	among	RNA	are	mainly	guided	by	sequence	

and	 the	 hydrogen	 bond	 donor-acceptor	 composition	 of	 the	 bases.	 Inter-

nucleotide	 interactions	 include	base-pairing,	base-stacking	and	base-phosphate	

backbone	 interactions	 and	 among	 larger	 nucleotide	 structures,	 such	 as	 rRNA,	

long-range	interactions	assist	in	helix	packing	(Sweeney	et	al.,	2015).	The	loops,	

bulges	and	non	Watson-Crick	base	pairs	in	RNA	also	play	a	role	in	determining	

identity	and	discriminating	between	specific	and	non-specific	interactions	(Giege	

et	al.,	1998;	Sumner-Smith	et	al.,	1991).		

	

While	 proteins	 interact	 with	 each	 other	 through	 shape,	 hydrophobic	 and	

electrostatic	 complementarity	 (Keskin	 et	 al.,	 2008),	 the	 nucleic	 acids	 DNA	 and	

RNA	 largely	 interact	 through	 base	 pair	 complementarity.	 One	 can	 imagine	

interactions	between	proteins	as	analog	and	interactions	between	nucleotides	as	

digital;	 recognition	 and	 interaction	 between	proteins	 is	 largely	 independent	 of	
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their	primary	sequence	but	instead	is	tertiary	structure	and	surface	electrostatic	

charge	 dependent,	 whereas	 DNA	 or	 RNA	 interactions	 are	 largely	 sequence	

dependent.	 In	addition	to	base	pairing	RNA	also	 takes	part	 in	 tertiary	contacts,	

which	 are	 facilitated	 by	 long-range	 interactions.	 The	 long-range	 RNA-RNA	

interactions	facilitate	contacts	between	distant	regions	of	the	nucleotide	through	

hydrogen	 bonding	 between	 the	 ribose	 sugars,	 nucleotide	 bases	 and	 the	

phosphodiester	 backbone	 (Ulyanov	 and	 James,	 2010).	 These	 long-range	

interactions	 are	 abundantly	 observed	 in	 ribosomes	 (Nissen	 et	 al.,	 2001),	

ribozymes	 (Zheng	 et	 al.,	 2017)	 and	 riboswitches	 (Schroeder	 et	 al.,	 2011)	 and	

play	 an	 important	 role	 in	 stabilizing	 contacts	 between	 RNA-helices,	 promote	

compact	helical	packing	and	stability	of	tertiary	and	quaternary	structures	(Xin	

et	al.,	2008).		

	

Unlike	 a	 strict	 requirement	 of	 structural	 complementarity	 among	 proteins	 to	

interact	 with	 each	 other,	 base	 pairing	 between	 RNA	 largely	 tolerates	

mismatches.	 The	 strength	 of	 intermolecular	 RNA-RNA	 interactions	 can	 also	 be	

easily	manipulated	by	 shortening	or	extending	 complementarity.	The	ability	 to	

tolerate	mismatches,	the	diversity	of	nucleotide	sequences	and	the	variations	in	

interaction	 lengths	 may	 allow	 a	 large	 number	 of	 intermolecular	 RNA-RNA	

interactions	compared	to	that	allowed	in	proteins	(Figure	2.1).	The	interactions	

between	 RNA	 and	 proteins,	 on	 the	 other	 hand,	 is	 achieved	 through	 a	

combination	of	features	that	are	observed	among	protein-protein	and	RNA-RNA	

interactions,	 which	 involves	 recognising	 combination	 of	 bases,	 nucleotide	

backbone	 features,	 complementary	 surface	 geometry	 and	 surface	 electrostatic	

potential	(Auweter	et	al.,	2006;	Ellis	et	al.,	2007;	 Jones	et	al.,	2001).	Most	RNA-

binding	 proteins	 have	 RNA-recognition	 and	 binding	modules	 or	 motifs,	 which	

establish	 interactions	 with	 the	 RNA	 (Lunde	 et	 al.,	 2007).	 Some	 of	 the	 other	

nucleic	acid-binding	proteins	such	as	the	PUF	and	TALE	proteins	are	composed	

of	 tandem	 repeated	 units,	 which	 bind	 nucleotide	 bases	 in	 a	 highly	 sequence	

specific	modular	way	(Filipovska	and	Rackham,	2012).	

	

It	is	easy	to	make	or	break	interactions	between	proteins	through	manipulating	

interaction	 affinity	 by	 mutating	 key	 amino	 acid	 residues	 or	 “hotspots“	 at	 the	
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interface	 (Bogan	 and	 Thorn,	 1998;	 Jubb	 et	 al.,	 2016).	 For	 example,	 in	 the	

interaction	between	immunity	protein	(Im)-DNase,	each	mutation	of	conserved	

hotspot	 residues	 Y54	 and	 Y55	 in	 the	 Im	 protein	 to	 alanine	 reduces	 binding	

affinity	with	DNase	by	~5	kcal	mol-1	(Meenan	et	al.,	2010;	Wallis	et	al.,	1998)	and	

in	 the	 interaction	 between	 Streptococcal	 protein	 G	 and	 human	 Fc	 fragment	 of	

IgG,	 the	 deletion	 of	 hotspot	 residue	 E27	 on	 the	 B1	 domain	 of	 protein	 G	

completely	 abolishes	 interaction	 with	 the	 IgG	 (Sloan	 and	 Hellinga,	 1999).	

However	it	 is	observed	that	interactions	between	RNA	are	robust	to	such	point	

mutations	due	to	their	plasticity	in	incorporating	perturbations	(Kladwang	et	al.,	

2011;	Rodrigo	and	Fares,	2012).	It	is	likely	that	single	nucleotide	base	changes	or	

mismatches	 are	 tolerated	within	 RNA-RNA	 complexes	 base-paired	 over	 longer	

sequence	lengths.	Therefore	unlike	proteins	the	interactions	between	RNA-RNA	

are	relatively	difficult	to	break.	

	

Associations	 between	 macromolecules	 are	 studied	 using	 various	 techniques,	

based	on	the	level	of	interaction	detail	sought	and	the	scope	of	their	interaction	

within	 the	 cell.	 For	 example,	 on	 a	 finer	 scale,	 the	 associations	 between	

macromolecules	 can	 be	 studied	 using	 X-ray	 crystallography,	 NMR	 or	 electron	

microscopy	 techniques.	 These	 techniques	 provide	 a	 very	 detailed	 view	 of	 the	

interacting	 partners	 and	 the	 interactions	 between	 them,	 however	 they	 do	 not	

indicate	 where	 these	 macromolecular	 associations	 are	 placed	 within	 the	

pathway.	 On	 the	 other	 hand	 associations	 between	 macromolecules	 can	 be	

studied	 on	 a	 larger	 scale	 using	 data	 from	 high-throughput	 experimental	

approaches	such	as	yeast	two-hybrid	screens	and	mapping	the	interactions	onto	

graphical	 interaction	 networks,	 which	 provides	 a	 broad	 systems-wide	 view	 of	

these	 associations	 and	 their	 relation	 with	 other	 macromolecules	 within	 the	

context	of	pathways	(Alm	and	Arkin,	2003),	but	at	the	expense	of	detailed	inter-

atomic	interactions.		

	

Several	 high-throughput	 techniques	 identify	 interactions	 between	 proteins	

and/or	RNA	in	vivo.	Techniques	such	as	co-immunoprecipitation,	phage	display	

and	tandem	affinity	purification	methods	identify	interactions	between	proteins	

on	 a	 large	 scale	 (Goodfellow	and	Bailey,	 2014;	Goodyear	 and	Silverman,	2008;	
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van	 der	 Geer,	 2014).	 UV	 crosslinking	 based	 techniques	 such	 as	 CLASH,	 CRAC,	

iCLIP	 and	 PAR-CLIP	 identify	 interactions	 between	 RNA-protein	 and	 RNA-RNA	

(Bohnsack	et	al.,	2012;	Danan	et	al.,	2016;	Helwak	and	Tollervey,	2014;	Huppertz	

et	al.,	2014).	The	interactions	identified	through	such	experiments	are	deposited	

or	are	manually	curated	from	published	literature	into	public	databases	such	as	

STRING,	 IntAct,	 RAID,	 RAIN,	 etc.	 (Junge	 et	 al.,	 2017;	 Orchard	 et	 al.,	 2014;	

Szklarczyk	 et	 al.,	 2015;	 Zhang	 et	 al.,	 2014).	 These	 high	 quality	 curated	

interactions	are	reliable	sources	to	build	macromolecular	interaction	networks.		

	

Interaction	networks	are	created	by	depicting	macromolecules	as	nodes	and	the	

interactions	 between	 them	 as	 edges	 connecting	 these	 nodes.	 Various	 kinds	 of	

interaction	 networks	 have	 been	 studied	 such	 as	 protein-protein	 interaction	

networks	(Schwikowski	et	al.,	2000),	transcriptional	regulatory	networks	(DNA-

protein)	(Lee	et	al.,	2002),	signal	transduction	networks	(Papin	et	al.,	2005)	and	

metabolic	 networks	 (Forster	 et	 al.,	 2003).	 Protein-protein	 interaction	 (PPI)	

networks	have	been	 studied	 in	detail	 in	 various	organisms,	 either	 as	 complete	

proteomes	or	as	specific	modules	(proteins	that	belong	to	a	certain	pathway	or	

complex).	RNA-protein	interaction	(RPI)	networks	have	been	described	in	detail	

for	 few	organisms	 (Stoiber	 et	 al.,	 2015)	and	very	 little	 information	 is	 available	

regarding	network	analysis	 of	RNA-RNA	 interactions.	One	of	 the	 reasons	RNA-

RNA	 interaction	 (RRI)	 networks	 are	 less	 studied	 could	 be	 due	 to	 the	 limited	

availability	of	experimentally	validated	large-scale	RNA-RNA	interaction	data.		

	

Unlike	 proteins,	 interactions	 among	 ncRNA	 lack	 systematic	 manual	 curation,	

which	makes	it	difficult	to	build	high	quality	RNA	interaction	networks.	The	lack	

of	a	unique,	unambiguous	identifier	for	each	ncRNA	molecule	presented	a	major	

challenge	 to	 consistently	 identify	 and	 annotate	 interactions	 among	 various	

ncRNAs.	RNAcentral	(http://rnacentral.org/)	now	provides	universal	identifiers	

that	can	uniquely	identify	each	ncRNA	and	integrate	annotation	from	numerous	

ncRNA	databases	(The	RNAcentral	Consortium,	2017).	With	the	availability	of	a	

single	 identifier,	 the	 IntAct	 database	 has	 recently	 began	 to	 annotate	 ncRNA	

interactions	by	manually	curating	interactions	from	published	literature.		
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Due	to	the	inherently	distinct	ways	in	which	proteins	and	nucleotides	interact,	I	

postulate	that	the	physical	network	properties	of	PPI,	RPI	and	RRI	networks	to	

be	different	from	each	other.	To	test	the	hypothesis	I	have	built	protein-protein,	

ncRNA-protein	and	ncRNA-ncRNA	interaction	networks	of	yeast	from	manually	

curated	interactions	by	Dr.	Simona	Panni	and	Dr.	Sandra	Orchard,	and	compared	

their	 network	 topological	 properties.	 To	 the	 best	 of	my	 knowledge,	 this	 study	

also	presents	the	first	described	analysis	of	ncRNA	interaction	network	in	yeast.		

	
The	 work	 described	 here	 is	 in	 collaboration	 with	 Dr.	 Simona	 Panni	 and	 Dr.	

Sandra	Orchard	 from	the	 IntAct	 consortium.	Dr.	Panni	and	Dr.	Orchard	carried	

out	the	literature	curation	and	populating	the	IntAct	database.	I	have	carried	out	

the	analysis	of	the	interaction	networks.	The	main	focus	of	the	study	presented	

in	 this	 chapter	 is	 to	 investigate	 similarities	 or	 dissimilarities	 between	 PPI	 and	

RRI	networks	using	yeast	as	the	model	dataset,	since	the	data	curated	for	the	RRI	

in	 yeast	 is	 of	 good	 quality	 than	 compared	 to	 other	 organisms.	 The	 human	

interaction	networks	are	only	used	for	comparative	purposes.	
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Figure	 2.1	 Schematic	 representations	 of	 protein-protein	 interactions	 and	
RNA-RNA	 interactions.	 (A)	 Proteins	 interact	 through	 shape,	 hydrophobic	 and	
electrostatic	complementarity,	while	(B)	RNA	mainly	interacts	through	base	pair	
complementarity.	 Proteins	 and	 RNA	 are	 coloured	 by	 their	 subunits.	 (A)	 PDB:	
1TFK,	E.	 coli	 C-terminal	 domain	 of	 Colicin-D	 toxin	 (green)	 complexed	with	 its	
inhibitor	Colicin-D	immunity	protein	(pink).	(B)	PDB:	2JLT,	RNA	kissing	complex	
of	HIV-1	trans-activating	responsive	(TAR)	RNA	stem	(green)	with	a	high-affinity	
RNA	aptamer	(pink).	
	 	

Structure	&	surface	
electrostatic	charge	
complementarity	

Base	pair	
complementarity	
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2.2	Methods	

	

2.2.1	Data	collection	and	curation	

	

The	data	collection	and	manual	curation	work	described	here	was	carried	out	by	

Dr.	Simona	Panni	and	Dr.	Sandra	Orchard	of	the	IntAct	consortium	at	EMBL-EBI.	

Saccharomyces	cerevisiae	was	 selected	 for	 curating	ncRNA	 interactions,	 since	 it	

contains	 a	 limited	number	 of	 ncRNAs,	most	 of	which	 are	well	 characterised	 in	

literature	 and	 annotated	 in	 databases.	 RNAcentral	 identifiers	were	 assigned	 to	

each	 ncRNA	 by	 searching	 the	 database	with	 Saccharomyces	 Genome	Database	

(SGD)	 identifiers.	 For	 tRNAs	 the	 database	 was	 searched	 with	 GTRNAdb	

identifier.	 RNA	 sequence	 search	 was	 used	 for	 a	 few	 tRNA	 precursors.	 The	

precursors	and	mature	RNAs	were	considered	different	interactors.	

	

Non-coding	 RNAs	 were	 manually	 curated	 from	 literature	 following	 curation	

standards	established	by	 the	 IMEx	Consortium.	ncRNA	databases	such	as	Rfam	

(Nawrocki	et	al.,	2015),	SGD	(Cherry	et	al.,	2012),	LncRNAdb	(Quek	et	al.,	2015)	

and	 yeast	 snoRNA	 databases	 (Piekna-Przybylska	 et	 al.,	 2007)	were	 queried	 in	

addition	 to	 published	 literature	 to	 draw	 up	 a	 complete	 list	 of	 S.	 cerevisiae	

ncRNAs.	 Relevant	 articles	 were	 queried	 from	 PubMed	 abstracts	 containing	 at	

least	one	ncRNA	name	and	"yeast"	or	"S.	cerevisiae"	terms.	Other	keywords	that	

were	 queried	 in	 PubMed	 include	 "CLIP",	 "CLIP-seq",	 "CLASH",	 "rna	 rna	

interaction"	 "rna	 protein	 interaction".	 The	 resulting	 several	 hundred	 articles	

from	PubMed	was	manually	filtered	down	to	a	total	of	120	articles,	which	were	

then	manually	 curated.	RNA-RNA	and	RNA-protein	 interactions	were	manually	

curated	using	the	IntAct	editor,	according	to	the	IMEx	standards.	

	 	

2.2.2	Network	analysis	

	

The	 yeast	 protein-protein	 interactions	 were	 downloaded	 from	 IntAct	

(http://www.ebi.ac.uk/intact/search)	 (November	 2016)	 using	 the	 query	

‘ptypeA:protein	AND	ptypeB:protein’.	Similarly	interactions	between	ncRNA	and	

protein	were	 queried	with	 using	 term	 ‘((ptypeA:RNA	AND	ptypeB:protein)	OR	
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(ptypeA:protein	AND	ptypeB:RNA))’.	Interactions	between	ncRNAs	was	searched	

using	 the	 term	 ‘ptypeA:RNA	 AND	 ptypeB:RNA’.	 The	 searches	 were	 limited	 to	

yeast	(taxonomy	ID:	559292)	by	using	the	term	“Saccharomyces	cerevisiae”	in	the	

advanced	search	option	‘Organism’.		

	

The	physical	network	properties	of	 interaction	networks	were	computed	using	

igraph	 package	 (http://igraph.org)	 in	 R.	 Only	 a	 single	 edge	 was	 kept	 for	

instances	 of	 duplicate	 edges	 and	 self-interaction	 edges	 (loops)	 were	 removed	

before	computing	network	properties.	To	compare	network	properties	between	

the	RRI	network	and	the	PPI	network,	the	PPI	network	was	down-sampled	such	

that	the	down-sampled	network	consisted	of	the	same	number	of	edges	as	in	RRI	

network	 and	 mean	 values	 from	 one	 hundred	 down-sampled	 networks	 were	

considered.	A	 random	network	was	generated,	 to	 compare	network	properties	

with	biological	networks,	using	the	Erdös-Renyi	model	with	the	same	number	of	

nodes	and	edges	as	in	PPI	network	(nodes:	6,091,	edges:	77,620).	

	

The	 human	 interaction	 data	 was	 used	 for	 comparison.	 Protein-protein	

interactions	 in	 human	 were	 downloaded	 from	 IntAct	 using	 the	 query	

‘ptypeA:protein	 AND	 ptypeB:protein’.	 Similarly	 interactions	 between	 RNA	 and	

protein	were	 queried	with	 using	 term	 ‘((ptypeA:RNA	AND	ptypeB:protein)	OR	

(ptypeA:protein	 AND	 ptypeB:RNA))’.	 The	 searches	 were	 limited	 to	 human	

(taxonomy	ID:	9606)	by	using	 the	 term	“Homo	sapiens”	 in	 the	advanced	search	

option	‘Organism’.	Interactions	between	RNAs	were	downloaded	from	RAID	v2.0	

database	 (http://www.rna-society.org/raid/)	 (Yi	 et	 al.,	 2017).	 The	 random	

interaction	 network	 comprises	 same	 number	 of	 nodes	 and	 edges	 as	 in	 PPI	

network	 (nodes:	 17,522,	 edges:	 110,917).	 Networks	 were	 visualised	 in	

Cytoscape	(Shannon	et	al.,	2003).	

	

The	descriptions	of	physical	network	properties	described	below	(sections	2.2.3	

to	2.2.7)	are	taken	verbatim	from	the	manuscript	(Panni	et	al.,	2017).	

	

2.2.3	Degree	distribution	
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The	degree	of	a	node	n	is	the	number	of	edges	linked	to	it.	The	number	of	nodes	

ordered	by	their	increasing	degree	gives	the	degree	distribution	of	a	network.	

	

2.2.4	Clustering	coefficient	(Transitivity)	

	

The	clustering	coefficient	of	a	node	is	n	defined	as	C(n)	=	2e/(k(k-1)),	where	e	is	

the	 number	 of	 edges	 between	 neighbours	 of	 node	 n	 and	 k	 is	 the	 number	 of	

neighbours	of	n.	The	value	of	clustering	coefficient	 lies	between	values	0	and	1	

and	is	highest	if	all	the	neighbours	of	the	node	directly	interact	with	each	other	

(i.e.,	 edges	 form	 triangles)	 and	 0	when	 none	 of	 the	 neighbours	 are	 connected	

with	each	other.	

	

2.2.5	Betweenness	centrality	

	

Betweenness	centrality	of	a	node	n	is	defined	as	B(n)	=	Σa≠n≠b	(σab(n)/σab),	where	

σab	is	the	shortest	number	of	paths	between	nodes	a,	b	and	σab(n)	is	the	shortest	
number	of	paths	between	nodes	a,	b	through	node	n.	Betweenness	centrality	is	

divided	by	the	normalising	factor	(N-1)(N-2)/2,	where	N	is	the	total	number	of	

nodes	in	the	connected	network.	

	

2.2.6	Closeness	centrality	

	

Closeness	centrality	of	a	node	n	is	defined	as	the	reciprocal	of	average	shortest	

path	length,	K(n)	=	1/average	(L(n,a)),	where	L(n,a)	is	the	shortest	path	between	

two	 nodes	 n	 and	 a.	 The	 closeness	 centrality	 measure	 was	 computed	 on	 sub-

graphs	with	the	highest	number	of	interconnected	nodes.	

	

2.2.7	Neighbourhood	connectivity	

	

Neighbourhood	connectivity	of	 a	node	n	 is	defined	as	 the	average	 connectivity	

(degree)	of	all	its	neighbour	nodes.	
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2.3	Results	

	

The	undirected	and	unweighted	interaction	networks	of	proteins	and	RNAs	from	

yeast	 and	 human	 were	 built	 after	 removing	 duplicate	 edges	 and	 loops.	 The	

complete	 yeast	 proteome	 PPI	 network	 comprises	 77,620	 interactions	 (edges)	

among	 6,091	 proteins	 (nodes),	 the	 RPI	 network	 was	 inferred	 from	 596	

interactions	between	105	ncRNAs	and	153	proteins,	and	the	RRI	network	from	

195	 interactions	 among	 102	 ncRNAs.	 The	 human	 PPI	 network	 consists	 of	

110,917	 interactions	 between	 17,522	 proteins,	 the	 RPI	 network	 has	 111	

interactions	between	34	ncRNAs	and	89	proteins	and	the	RRI	network	comprises	

2,412	 interactions	between	2,011	ncRNAs.	Figure	2.2	 shows	 the	yeast	PPI,	RPI	

and	RRI	networks.	

	

Representation	 of	 macromolecular	 interaction	 systems	 as	 networks	 enables	

analyses	 of	 their	 topological	 properties,	 such	 as	 connectivity	 between	 nodes,	

shortest	 paths	 between	 nodes,	 centrality	 of	 nodes,	 properties	 of	 edges,	 global	

network	 properties	 among	 others	 (Ma'ayan,	 2011).	 I	 have	 compared	 the	

topological	properties	within	biological	networks	as	well	as	with	the	properties	

of	 random	generated	networks	 to	 investigate	 the	principles	of	macromolecular	

interactions	on	a	global	scale.	
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Figure	 2.2	 Network	 representations	 of	 undirected	 S.	 cerevisiae	
macromolecular	 interactions.	 (A)	 Protein-protein	 interaction	 network	 (B)	
RNA-protein	interaction	network;	nodes	representing	proteins	are	coloured	blue	
and	 RNA	 in	 green	 and	 (C)	 RNA-RNA	 interaction	 (RRI)	 network;	 nodes	
representing	 ribosomal	 RNAs	 are	 coloured	 pink,	 tRNAs	 are	 coloured	 yellow,	
snRNAs	 are	 coloured	 green	 and	 the	 nodes	 snr8	 and	 snr81	 with	 high	
betweenness	 but	 low	 centrality	 (HBLC)	 scores	 are	 coloured	 orange.	 The	
spliceosomal	module	comprising	spliceosomal	RNAs	is	circled	in	red.		 	
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2.3.1	Degree	distribution	

	

Degree	 distribution	 of	 a	 network	 describes	 the	 connectivity	 of	 nodes	within	 a	

network.	 Degree	 distribution	 measures	 the	 probability	 of	 nodes	 within	 a	

network	 to	 interact	 with	 k	 other	 nodes.	 The	 degree	 of	 a	 node	 refers	 to	 the	

number	of	interactions	with	other	nodes,	which	in	biological	sense	refers	to	the	

number	 of	 interaction	 partners	 of	 a	 molecule.	 As	 seen	 from	 figure	 2.3A	 the	

degree	 distribution	 of	 PPI	 network	 follows	 the	 power	 law,	 wherein	 a	 large	

number	of	nodes	interact	with	few	partners	(low	degree)	and	a	small	number	of	

nodes,	called	hubs,	interact	with	a	large	number	of	partners	(large	degree).	The	

power-law	distribution	denotes	 that	 the	probability	of	an	event	P	 is	an	 inverse	

power	of	 its	value	k,	 i.e.,	P(k)	~	k-γ,	where	γ	 is	a	constant	(Arita,	2005).	 In	most	

real-world	networks,	including	biological	networks,	the	power	law	exponent	(γ)	

ranges	 between	 2	 <	 γ	 <	 3	 (Barabasi	 and	 Oltvai,	 2004;	 Chung	 and	 Lu,	 2002).	

Networks	with	a	power-law	degree	distribution	exhibit	scale-free	character	i.e.,	

the	 topology	 of	 the	 network	 structure	 does	 not	 vary	 with	 the	 scale	 of	 the	

network,	 independent	 of	 whether	 the	 network	 is	 viewed	 locally	 or	 globally	

(Arita,	 2005).	 Biological	 networks	 such	 as	 PPI	 network,	 metabolic	 networks,	

have	been	shown	to	exhibit	scale-freeness	(Barabasi	and	Oltvai,	2004;	Nacher	et	

al.,	2009;	Rajarathinam	and	Lin,	2006).	The	power-law	degree	distribution	and	

the	 scale-freeness	 of	 biological	 networks	 are	 alluded	 to	 the	 property	 of	

‘preferential	attachment’	of	nodes,	wherein	during	network	growth	a	new	node	

preferentially	 associates	 with	 a	 well	 connected	 node	 (hub)	 rather	 than	

associating	 with	 a	 node	 that	 has	 fewer	 links	 (Barabasi	 and	 Oltvai,	 2004).	 For	

example	 in	 the	 E.	 coli	 metabolic	 network,	 novel	 enzymes,	 which	 are	 evolved	

through	 gene	 duplication,	 maintain	 some	 compounds	 involved	 in	 the	 original	

reaction	 catalysed	 by	 the	 ancestral	 enzyme	 suggesting	 that	 the	 newly	 formed	

node	links	with	the	already	connected	metabolite	(Light	et	al.,	2005).			

	

Hub	proteins	are	critical	for	the	functioning	of	a	network	and	their	removal	can	

result	in	failure	of	the	system	(Jeong	et	al.,	2001).	The	yeast	PPI	network	has	an	

average	12.74	interactions	per	node	(median	=	11).	The	PPI	network	consists	of	

651	hubs	that	interact	with	more	than	50	proteins.	The	major	hubs	include	heat	
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shock	 proteins	 SSB1	 (UniProt:	 P11484),	 SSA1	 (UniProt:	 P10591)	 and	 SSA2	

(UniProt:	 P10592)	 with	 3493,	 2751	 and	 2444	 interactions	 respectively.	 In	

comparison	both	the	yeast	RPI	and	RRI	networks	are	sparsely	connected	with	an	

average	 2.13	 (median	 =	 2)	 and	 1.90	 (median	 =	 2)	 interactions	 per	 node	

respectively.	The	GAR1	protein,	a	subunit	of	H/ACA	ribonucleoprotein	complex,	

(UniProt:	 P28007)	 and	 the	 small	 nucleolar	 RNA	 U3a	 (snru3a)	 (IntAct:	 EBI-

10821792,	RNAcentral:	URS0000444F9B)	form	the	major	protein	and	RNA	hubs	

in	the	RPI	network	with	32	and	51	edges	respectively	(Figure	2.2B).	On	the	other	

hand,	the	18S	and	25S	ribosomal	RNAs	(rRNAs)	dominate	the	yeast	RRI	network	

(Figure	2.2C).		

	

Since	 the	 scale	 of	 PPI	 and	 RRI	 networks	 is	 not	 similar,	 comparing	 network	

properties	between	them	could	potentially	introduce	sampling	bias.	To	eliminate	

this	bias	and	to	compare	network	properties	between	equally	sized	networks	I	

randomly	 down-sampled	 the	 PPI	 network	 to	 build	 a	 down-sampled	 network	

consisting	 195	 edges	 (equivalent	 to	 number	 of	 edges	 in	 RRI	 network).	 100	

rounds	 of	 this	 random	 down-sampling	 were	 performed	 and	 the	 network	

properties	for	each	of	these	100	down-sampled	networks	were	analysed.	Figure	

2.4	shows	the	distributions	of	power	law	exponent	(γ)	for	some	of	the	network	

properties.	 The	mean	 value	 of	 γ	 for	 degree	 distribution	 of	 down-sampled	 PPI	

networks	 is	3.50,	which	 is	relatively	higher	than	the	degree	distribution	power	

law	 exponent	γ	 of	 RRI	 (2.64),	 suggesting	 that	 the	 degree	 distribution	 could	 be	

under	estimated	in	the	RRI	networks.	Table	2.1	lists	the	mean	values	of	power-

law	exponents	for	distributions	of	various	network	properties.	
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A 	

	

B 	
Figure	 2.3	 Degree	 distributions	 of	 (A)	 yeast	 and	 (B)	 human	 interaction	
networks.	 PPI:	 Protein-protein	 interaction	 network,	 RPI:	 RNA-protein	
interaction	network,	RRI:	RNA-RNA	interaction	network.	
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Figure	 2.4	 Distributions	 of	 power	 law	 exponent	 (γ)	 for	 clustering	
coefficient,	 degree	 distribution	 and	 neighbourhood	 connectivity	 of	 100	
random	 down-sampled	 yeast	 PPI	 networks.	 The	 distribution	 of	 average	
shortest	 paths	 is	 also	 shown.	 The	 red	 line	 intercept	 on	 the	 x-axis	 denotes	 the	
mean	value	of	the	distributions.		
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Comparison	 of	 yeast	 networks	 with	 human	 networks	 show	 similar	 trends	 of	

degree	distributions	(Figure	2.3B).	The	human	PPI	network	consists	of	837	hubs	

that	 interact	 with	 more	 than	 50	 proteins.	 Some	 of	 the	 largest	 hub	 nodes	 are	

transcription	 factor	 AP-1	 or	 JUN	 (UniProt:	 P05412),	 Myc	 proto-oncogene	

(UniProt:	P01106)	and	growth	factor	receptor-bound	protein	2	GRB2	(UniProt:	

P62993),	 which	 interact	 with	 1369,	 777	 and	 742	 proteins	 respectively.	 The	

human	PPI	network	is	also	very	dense	with	an	average	6.33	interacting	partners	

per	 protein.	 In	 the	 RPI	 network	 the	 let-7a	 miRNA	 precursor	 (IntAct:	 EBI-

2462028)	 is	 the	 largest	hub	with	57	protein	 interactions,	while	 the	 telomerase	

reverse	transcriptase	TERT	(UniProt:	O14746)	is	the	largest	protein	interacting	

with	 8	 ncRNAs.	 The	main	 hub	 nodes	 of	 human	RRI	 network	 include	miR-155,	

miR-21	and	miR-145	with	51,	49	and	47	interactions	respectively.	

	

2.3.2	Clustering	coefficient	(Transitivity)	

	

Clustering	 coefficient,	 or	 transitivity,	 measures	 the	 likelihood	 of	 nodes	 in	 a	

network	to	form	clusters	or	sub-networks	(modules).	Nodes	tend	to	have	a	high	

likelihood	of	clustering	 if	 their	neighbours	are	directly	connected	to	each	other	

(Watts	and	Strogatz,	1998).	In	comparison	to	random	networks	most	real	world	

networks,	 including	 PPI	 networks,	 display	 a	 high	 level	 of	 clustering,	 which	

signifies	 grouping	 of	 functionally	 related	 nodes	 into	 modules	 (Barabasi	 and	

Oltvai,	2004).	Modules	are	composed	of	a	small	fraction	of	cell	components,	each	

with	discrete	 functions	 that	 form	 interactions	 to	 carry	out	 a	biological	 process	

(Hartwell	et	al.,	1999).	This	modular	organisation	observed	in	cell	biology	could	

be	 due	 to	 separation	 through	 spatial	 localisation	 or	 chemical	 specificity	

(Hartwell	et	al.,	1999).	For	example	the	DNA	replication	or	the	ribosome	module	

are	 spatially	 localised	 and	 comprises	 components	 with	 distinct	 but	 related	

functions	that	are	 involved	 in	synthesizing	a	biopolymer.	Such	kind	of	modular	

architecture	is	absent	from	random	networks.	Apart	from	modularity,	biological	

networks	 also	 exhibit	 hierarchical	 organisation	 (Ravasz,	 2009).	 The	 modules	

within	the	network	are	not	 isolated	but	 instead	connect	to	 form	larger	but	 less	

cohesive	 groups,	 which	 in	 turn	 connect	 to	 other	 modules,	 in	 a	 hierarchical	

fashion,	to	form	even	larger	and	less	connected	clusters	(Ravasz,	2009).	Modules	
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that	 share	 metabolites	 within	 metabolic	 networks	 show	 nested	 hierarchical	

topology	(Ravasz,	2009).	Self-organisation	or	nesting	of	modules	into	each	other	

is	 observed	 among	 networks	 with	 high	 clustering	 coefficient	 (Galeota	 et	 al.,	

2015).	 The	 clustering	 coefficient	 of	 a	 node	 lies	 between	 values	 0	 and	 1	 and	 is	

highest	 if	 all	 the	 neighbours	 of	 the	 node	 directly	 interact	with	 each	 other	 (i.e.,	

edges	 form	 triangles)	 and	 0	when	 none	 of	 the	 neighbours	 are	 connected	with	

each	 other.	 For	 many	 real-world	 networks	 the	 clustering	 coefficient	 value	

typically	ranges	from	0.1	to	0.5	(Girvan	and	Newman,	2002).		

	

In	 the	 yeast	 PPI	 network	 the	 average	 clustering	 coefficient	 of	 nodes	 decrease	

with	 the	 increase	 in	 node	 degree	 and	 follows	 a	 power-law	 scaling	 behaviour	

(Figure	2.5A).	Higher	clustering	coefficient	of	nodes	that	have	fewer	interacting	

partners	 (low	 degree)	 indicates	 that	 interactions	 within	 smaller	 modules	 are	

dense	with	all	interacting	partners	communicating	with	each	other.	For	example	

the	oligo(A)/oligo(T)-binding	protein	DAT1	(UniProt:	P13483)	has	a	clustering	

coefficient	of	0.93.	It	 interacts	with	six	different	chaperones	including	prefoldin	

subunit	1	(PFD1)	(UniProt:	P46988)	and	heat	shock	proteins	SSA1,	SSA2,	SSB1,	

SSB2	 and	 SSE1.	 The	 interacting	 partners	 of	 DAT1	 represent	 a	 functional	 unit,	

which	 are	 related	 by	 similar	 molecular	 functions	 and	 biological	 process.	 As	 a	

result	this	highly	connected	small	sub-network	has	a	high	clustering	coefficient.	

On	the	other	hand	a	large	hub	with	its	many	interacting	partners	has	a	very	low	

clustering	 coefficient,	 since	 all	 interacting	 partners	 do	 not	 show	 mutual	

interactions	 between	 each	 other.	 For	 example,	 a	 large	 hub	 such	 as	 the	 ATP-

dependent	 molecular	 chaperone	 HSP82	 (HSP90)	 (UniProt:	 P02829)	 interacts	

with	 1,152	 proteins,	 which	 is	 18.9%	 of	 the	 yeast	 proteome,	 but	 only	 has	

clustering	coefficient	of	0.01.	The	chaperone	HSP82	is	abundantly	synthesized	in	

eukaryotic	cells	and	is	essential	for	protein	homeostasis	and	promotes	structural	

maintenance	of	target	proteins	(Borkovich	et	al.,	1989;	Zhao	and	Houry,	2007).	

However	 proteins	 that	 interact	with	HSP82	 perform	 diverse	 functions	 such	 as	

transcription	 regulation,	 lipid	 metabolism,	 signal	 transduction	 among	 others	

(Rizzolo	 et	 al.,	 2014)	 and	proteins	 from	 these	different	 functional	 units	do	not	

necessarily	interact	with	each	other.		
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Similar	to	the	PPI	network	the	yeast	RRI	network	shows	a	decrease	in	clustering	

coefficient	 values	 with	 increasing	 node	 degree	 and	 the	 distribution	 follows	

power-law	 (Figure	 2.5A).	 The	 yeast	 small	 nucleolar	 RNA	 snR47	 (IntAct:	 EBI-

10921939)	 interacts	 with	 6	 nodes	 and	 has	 a	 clustering	 coefficient	 of	 0.66.	 It	

interacts	 with	 the	 ribosomal	 RNA	 subunits	 18S,	 25S,	 35S	 rRNA	 and	 snRNAs	

snR40,	 snR41	 and	 snR44.	 SnRNA47,	 snR40,	 snR41	 and	 snR44	 guide	 2’-O-

methylation	of	large	and	small	rRNA	subunits	(Cherry	et	al.,	2012).	The	common	

targets	of	these	snoRNAs	are	ribosomal	subunits	and	they	also	interact	with	each	

other	 forming	 a	 small	 sub-network	 with	 mutual	 interactions,	 which	 indicates	

that	discrete	functional	small	sub-units	have	high	scores	of	clustering	coefficient.	

The	large	hub	nodes	the	rRNA	subunits	18S,	25S	and	35S	rRNA	each	have	45,	62	

and	 39	 edges	 (degree)	 and	 clustering	 coefficient	 of	 0.05,	 0.01	 and	 0.02	

respectively.	As	observed	in	PPI	networks,	 these	 large	rRNA	hubs	 interact	with	

other	RNAs	that	have	diverse	functions,	for	example	snoRNAs	and	tRNAs	(Figure	

2.2C),	 which	 do	 not	 share	 mutual	 interactions	 with	 each	 other	 and	 therefore	

have	 low	 potential	 for	 clustering.	 Comparison	 of	 clustering	 coefficient	

distributions	 between	 RRI	 and	 the	 down-sampled	 PPI	 network	 show	 similar	

values	of	(γ)	(Table	2.1)	

	

The	 clustering	 coefficient	 property	 of	 the	 RPI	 network	 shows	 a	 completely	

different	 behaviour.	 The	 RPI	 network	 forms	 a	 bipartite	 network;	 the	 nodes	

belong	 to	 two	 disjoint	 sets	 -	 proteins	 and	 RNAs	 -	with	 no	 edges	 between	 two	

nodes	 of	 the	 same	 set	 (i.e.,	 no	 triangles)	 and	 therefore	 have	 zero	 clustering	

coefficient.	 Random	 networks,	 as	 expected,	 show	 poor	 clustering	 coefficient	

indicating	the	absence	of	modular	sub-networks.		

	

The	 human	PPI,	 RPI	 and	RRI	 networks	 have	 similar	 distributions	 of	 clustering	

coefficient	when	compared	to	the	yeast	PPI,	RPI	and	RRI	networks	respectively	

(Figure	2.5B).	
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Figure	2.5	Distributions	of	 average	 clustering	 coefficients	 of	 nodes	 in	 (A)	
yeast	and	(B)	human	interaction	networks.	
	



	 71	

2.3.3	Betweenness	centrality	

	

Betweenness	centrality	 is	one	of	 the	node	centrality	measures,	 the	other	being	

closeness	 centrality,	 that	 evaluates	 the	 crucial	 role	 of	 a	 node	 as	 a	mediator	 of	

interactions	within	the	network.	A	node	is	considered	to	have	high	betweenness	

in	 the	 network	 if	 it	 lies	 on	 the	 shortest	 paths	 between	 all	 the	 other	 nodes	

(Pavlopoulos	 et	 al.,	 2011).	 The	 betweenness	 centrality	 value	 of	 a	 node	 ranges	

from	0	to	1.	Nodes	with	high	betweenness	centrality	value	have	a	large	influence	

on	 the	 directed	 networks	 such	 as	 signal	 transduction	 networks	 or	 metabolic	

pathways;	 since	 the	 shortest	 paths	 between	 all	 the	 other	 nodes	 pass	 through	

them,	 they	act	as	bottlenecks	 through	which	 transfer	of	 signals	between	nodes	

can	be	regulated	(Yu	et	al.,	2007).	Betweenness	centrality	is	also	an	indicator	of	

how	 crucial	 the	 nodes	 are	 for	 the	 functioning	 of	 a	 network.	 Studies	 in	 the	

eukaryotic	protein	interaction	networks	in	yeast,	worm	and	fly	have	shown	that	

proteins	 with	 high	 betweenness	 centrality	 values	 are	 essential	 for	 organism	

survival	and	their	rate	of	evolution	is	much	slower	compared	to	other	proteins	

(Hahn	and	Kern,	2005).		

	

In	the	yeast	PPI	network,	nodes	with	high	degree	also	exhibit	high	betweenness	

(Figure	2.6A).	The	heat	shock	protein	SSA1	(UniProt:	P10591)	is	a	hub	in	the	PPI	

network	 with	 2751	 edges	 and	 a	 betweenness	 centrality	 value	 of	 0.15.	 The	

enzyme	chorismate	mutase	ARO7	(UniProt:	P32178)	has	a	degree	of	6,	but	with	

a	very	small	betweeness	centrality	value	of	4.72e-08.	Similarly	hubs	 in	 the	RRI	

network	exhibit	high	betweenness.	The	ribosomal	RNAs	rRNA	25S,	18S	and	35S	

have	 betweenness	 centrality	 values	 of	 0.55,	 0.30	 and	 0.22	 respectively.	 Hubs	

cover	 a	 large	 number	 of	 paths	 that	 connect	 nodes	 within	 a	 network	 and	

therefore	 tend	 to	 show	 high	 betweenness,	 but	 on	 the	 other	 hand	 nodes	 that	

interact	 with	 fewer	 number	 of	 proteins	 do	 not	 have	 many	 edges	 or	 shortest	

paths	passing	 through	 them,	 they	show	 low	betweenness	centrality	values	and	

therefore	are	not	central	within	the	network.	

	
Interestingly	 the	 yeast	 PPI	 and	 RRI	 networks	 contain	 nodes	 that	 have	 low	

connectivity	(degree)	but	relatively	high	betweenness	centralities.	These	include	
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proteins	such	as	meiotic	nuclear	division	protein	1	(UniProt:	P53102)	(degree:	2,	

betweenness	 centrality:	 0.32e-03),	 mitochondrial	 inner	 membrane	 protease	

subunit	1	 (UniProt:	P28627)	 (degree:	2,	betweenness	centrality:	0.32e-03)	and	

mitochondrial	 rhomboid	 protein	 1	 (UniProt:	 P53259)	 (degree:	 2,	 betweenness	

centrality:	 0.32e-03)	 in	 the	 PPI	 network	 and	 snoRNAs	 SNR8	 (IntAct:	 EBI-

10921271)	 (degree:	 3,	 betweenness	 centrality:	 0.04)	 and	 SNR81	 (IntAct:	 EBI-

10918031)	 (degree:	 2,	 betweenness	 centrality:	 0.03)	 in	 the	RRI	 network.	 Such	

nodes	with	‘high	betweenness	but	low	connectivity’	(HBLC)	were	identified	in	a	

previous	study	of	the	yeast	proteome	(Joy	et	al.,	2005).	It	was	shown	that	nodes	

in	 PPI	 network	 with	 HBLC	 tend	 to	 be	 important	 connectors	 that	 link	 various	

modules	 (or	 clusters)	within	 the	 network	 and	 are	 essential	 proteins	 of	 recent	

evolutionary	origin	(Joy	et	al.,	2005).	For	example	in	the	RRI	network	snoRNAs	

SNR8	 and	 SNR81	 connect	 the	 main	 ribosomal	 module	 with	 the	 spliceosomal	

module	forming	bridging	interactions	(Figure	2.2C).	

	

It	has	been	proposed	that	HBLC	nodes	in	PPI	networks	evolve	by	the	addition	of	

nodes	 with	 edges	 and	 random	 rewiring	 of	 these	 edges,	 as	 a	 result	 of	 gene	

duplication	and	point	mutations	(Joy	et	al.,	2005).	Although	node	addition	(gene	

duplications)	 and	 random	 rewiring	 (mutations)	 may	 answer	 the	 presence	 of	

HBLC	nodes	in	PPI	networks,	the	same	evolutionary	model	cannot	be	extended	

to	RPI	and	RRI	networks.	Protein-coding	genes	and	non-coding	genes	evolve	by	

different	 mechanisms	 and	 under	 different	 evolutionary	 constraints;	 while	

duplication	and	divergence	is	suggested	as	the	major	mechanism	for	expanding	

protein-coding	 gene	 repertoire	 (Dujon,	 2010;	 Guan	 et	 al.,	 2007),	 mechanisms	

such	as	retroposition	(Schmitz	et	al.,	2008;	Weber,	2006),	intragenic	duplications	

(Shao	et	al.,	2009)	and	de	novo	emergence	(Meunier	et	al.,	2013)	are	suggested	

to	 drive	 the	 expansion	 of	 short	 ncRNA	 genes.	 Moreover	 mutation	 rates	 of	

protein-coding	 genes	 and	 non-coding	 RNAs,	 which	 can	 potentially	 rewire	

interactions	in	the	network,	are	different	thereby	affecting	edge	dynamics	of	the	

networks.		

The	 human	 interaction	 networks	 show	 similar	 distributions	 of	 betweenness	

centrality	 values,	 wherein	 nodes	 with	 high	 degree	 have	 high	 betweenness	

centrality	scores	(Figure	2.6B).	
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Figure	2.6	Distributions	of	betweenness	centrality	values	of	nodes	in	(A)	
yeast	and	(B)	human	interaction	networks.	
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2.3.4	Closeness	centrality	

	

Closeness	 centrality	 is	 another	measure	 to	 infer	 node	 centrality	 in	 a	 network.	

Closeness	 measures	 the	 average	 number	 of	 nodes	 connecting	 a	 node	 with	 all	

other	nodes	(Hahn	and	Kern,	2005).	It	is	computed	by	calculating	the	inverse	of	

the	sum	of	 the	shortest	distances	between	a	node	and	every	other	node	 in	 the	

network	(Koschutzki	and	Schreiber,	2008).	A	node	with	high	value	of	closeness	

centrality	indicates	that	it	is	near	to	all	other	nodes	in	a	network,	which	suggest	

that	 these	 important	 nodes	 can	 communicate	 quickly	with	 other	 nodes	within	

the	 network	 (Pavlopoulos	 et	 al.,	 2011).	 For	 example,	 in	 the	 host-pathogen	 PPI	

networks,	 nodes	 that	 exhibit	 high	 betweenness	 and	 closeness	 centrality	

measures	are	considered	potential	drug	targets	since	they	represent	key	nodes	

that	 are	 crucial	 for	network	navigability;	 targeted	attack	of	 these	nodes	makes	

the	system	vulnerable	(Mulder	et	al.,	2014).	

	

Since	 closeness	 centrality	 measures	 the	 shortest	 distance	 between	 nodes,	

disjointed	networks	cannot	be	considered	for	computation,	as	there	are	no	links	

between	 them.	 In	PPI	 and	RPI	networks,	 the	 closeness	 centrality	measure	was	

only	computed	on	sub-graphs	with	the	largest	number	of	interconnected	nodes.	

The	normalised	values	of	closeness	centrality	ranges	between	0	and	1,	wherein	

nodes	have	a	score	0	if	the	node	is	isolated	and	a	score	of	1	if	the	node	is	directly	

connected	to	all	other	nodes.	Compared	to	random	interaction	networks,	 in	the	

yeast	 interaction	 networks	 I	 observe	 that	 the	 closeness	 centrality	 measure	 is	

significantly	higher	among	nodes	 that	have	many	 interactions	 (Figure	2.7A).	 In	

the	 PPI	 network,	 the	 hubs	 have	 the	 highest	 closeness	 centrality	 values;	 for	

example	the	ribosome	associated	molecular	chaperone	SSB1	(UniProt:	P11484)	

has	the	closeness	centrality	score	of	0.68,	while	the	mitochondrial	protein	SOM1	

(UniProt:	Q05676)	has	only	one	interactions	and	the	lowest	closeness	centrality	

score	of	0.20	in	the	network.	

	

The	 yeast	 RPI	 and	RRI	 networks	 too	 follow	 similar	 distributions,	 however	 the	

closeness	centrality	values	for	hub	nodes	in	the	RRI	network	is	much	higher	than	

that	of	RPI	network.	In	the	RPI	network,	snoRNA	snru3a	(IntAct:	EBI-10821792) 	
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A	 	

B	 	

	

Figure	2.7	Distributions	of	closeness	centrality	values	of	nodes	in	(A)	yeast	
and	(B)	human	interaction	networks.	
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has	 the	 closeness	 centrality	 score	 of	 0.36	 in	 the	 network	 followed	 by	 the	 pre-

mRNA	 splicing	 factor	 RNA	 helicase	 PRP43	 (UniProt:	 P53131)	 with	 a	 score	 of	

0.36.	 These	nodes	 represent	 the	ncRNA	and	protein	 hubs	 respectively	 and	 are	

directly	connected	to	most	of	the	nodes	with	many	edges	passing	through	them	

and	 therefore	 have	 high	 closeness	 centrality	 scores.	 In	 the	 RRI	 network	 the	

highest	closeness	centrality	scores	belong	to	ribosomal	RNA	hubs,	rRNA	25S,	18S	

and	35S	with	a	score	of	0.67,	0.60	and	0.52	respectively.	On	the	other	hand	the	

less	 connected	 nodes,	 snoRNAs	 of	 the	 spliceosomal	 module,	 snr6_u6	 (IntAct:	

EBI-10824938),	 snr14_u4	 (IntAct:	 EBI-10054797)	 and	 snr19_u1	 (IntAct:	 EBI-

10054789)	have	a	closeness	centrality	score	of	0.24	each.	

	

By	 comparison	 the	 distributions	 of	 closeness	 centrality	 values	with	 respect	 to	

the	 node	 degrees	 among	 human	 interaction	 networks	 are	 similar	 to	 the	 yeast	

interaction	networks	(Figure	2.7B).	

	

2.3.5	Neighbourhood	connectivity	

	 	

The	 number	 of	 neighbours	 (or	 degree)	 of	 a	 node	 is	 its	 connectivity	 and	 the	

neighbourhood	 connectivity	 is	 a	 measure	 of	 the	 average	 connectivity	 of	 all	

neighbours	of	a	node	(Maslov	and	Sneppen,	2002).	Neighbourhood	connectivity	

describes	the	likelihood	of	nodes	with	different	degrees	to	connect	to	each	other	

(Maslov	 and	 Sneppen,	 2002).	 Figure	 2.8A	 shows	 the	 distributions	 of	

neighbourhood	connectivity	scores	in	yeast	interaction	networks.	I	observe	that	

the	 neighbourhood	 connectivity	 shows	 a	 decreasing	 trend	with	 an	 increase	 in	

node	connectivity	in	PPI,	RPI	and	RRI	networks	and	the	distribution	of	the	scores	

follow	 power-law.	 Hub	 nodes	 have	 low	 scores	 of	 neighbourhood	 connectivity	

compared	 to	 the	 nodes	 with	 fewer	 connections.	 This	 assymetric	 nature	 of	

connectivity	 has	 been	 observed	 in	 protein-interaction	 networks	 (Maslov	 and	

Sneppen,	 2002).	 To	 further	 understand	 the	 nature	 of	 neighbourhood	

connectivity	I	computed	the	assortativity	coefficient	of	these	networks.	

	

Assortativity	 coefficient	denotes	 the	preference	 for	 a	network’s	nodes	 to	other	

similar	nodes.	The	value	of	coefficient	ranges	between	-1	and	+1;	the	coefficient	
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value	closer	to	+1	suggests	that	the	network	is	assortative,	i.e.,	the	nodes	within	

the	network	tend	to	connect	to	other	nodes	with	similar	degree	values;	while	the	

coefficient	 value	 closer	 to	 -1	 suggests	 that	 the	 network	 is	 dissortative	 and	 the	

high	 degree	 nodes	 connect	 to	 low	 degree	 nodes	 (Sharma	 et	 al.,	 2013).	 The	

assortativity	 coefficients	 of	 PPI,	 RPI	 and	 RRI	 networks	 are	 -0.14,	 -0.31,	 -0.60	

respectively,	which	indicates	that	the	highly	connected	nodes	of	PPI,	RPI	and	RRI	

networks,	 on	 average,	 tend	 to	 associate	 with	 sparsely	 connected	 nodes	 (low	

degree	 nodes)	 and	 therefore	 the	 networks	 are	 dissortative.	 By	 linking	 highly	

connected	nodes	with	sparsely	connected	nodes	in	the	dissortative	network,	the	

likelihood	of	 cross	 talk	 between	different	 functional	modules	within	 the	 cell	 is	

decreased	(Maslov	and	Sneppen,	2002).		

	

The	assortativity	coefficient	of	the	random	network	is	0.002	which,	compared	to	

the	 biological	 networks,	 suggests	 that	 there	 is	 no	 preferential	 attachment	 of	

nodes.	 The	 human	 interaction	 networks	 display	 similar	 distributions	 of	

clustering	coefficient	values	(Figure	2.8B).	
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A	 	

B	 	

Figure	2.8	Distributions	of	neighbourhood	connectivity	values	of	nodes	in	
(A)	yeast	and	(B)	human	interaction	networks.	
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Network	
property	

PPI	network	
	

(nodes:	6,091,	
edges:	77620)	

Random	
network	

(nodes:	6,091,	
edges:	77,620)	

RPI	network	
	

(nodes:	258,	
edges:	596)	

RRI	network	
	

(nodes:	102,	
edges:	195)	

Down-sampled	
PPI	network*	

	
(edges:	195)	

Degree	
distribution	
exponent	(𝜸)	

2.69	 9.45	 2.73	 2.64	 3.50	

Clustering	
coefficient	
exponent	(𝜸)	

2.42	 20.9	 NA	 1.68	 2.82	

Neighbourhood	
connectivity	
exponent	(𝜸)	

3.43	 180.60	 5.95	 2.72	 5.61	

Assortativity	
coefficient	(r)	 -0.14	 0.002	 -0.31	 -0.60	 -0.14	

Average	
shortest	path	 2.58	 2.96	 4.27	 2.44	 1.61	

	

Table	2.1	Mean	values	of	distributions	of	various	network	properties	
in	yeast	 interaction	networks.	*	denotes	mean	value	of	distribution	from	100	
down-sampled	networks.	
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2.4	Conclusion	

	 	

Representation	of	biological	processes	or	systems	in	terms	of	networks	offers	a	

broad	 perspective	 of	 the	 cellular	 mechanism	 involved	 and	 it	 also	 allows	

investigation	 and	 identification	 of	 key	 links	 or	 interactions	 between	molecules	

that	are	crucial	for	the	system	to	function.	In	this	chapter,	using	expert	curated	

data	 of	 protein	 and	 RNA	 interactions	 from	 yeast,	 I	 have	 computed	 interaction	

networks	of	proteins	and	RNA	and	analysed	 their	physical	network	properties.	

The	study	was	conceived	with	the	hypothesis	that	the	fundamental	differences	in	

the	way	proteins	and	RNA	interact	with	one	another	and	with	themselves	would	

be	 reflected	 in	 their	 interaction	 networks	 and	 network	 properties,	 and	 the	

underlying	 similarities	 or	 differences	 in	macromolecular	 interactions	 at	 large-

scale	could	be	inferred	by	comparing	their	network	properties	with	each	other.	

	

By	 comparing	 PPI,	 RPI	 and	 RRI	 networks,	 I	 observe	 that	 their	 network	

properties	 exhibit	 similarity,	 despite	 the	 differences	 in	 how	 these	

macromolecules	 interact	with	each	other.	As	 in	all	 real-world	networks,	a	very	

few	number	of	nodes	called	hubs	interact	with	a	 large	number	of	nodes.	 In	PPI	

networks,	these	hub	nodes	represent	molecular	chaperones	that	are	essential	for	

mediating	proper	 folding	and	 functioning	of	a	 large	number	of	proteins.	 In	RRI	

network	 the	 ribosomal	 RNA	 subunits	 function	 as	 hubs	 that	 interact	 with	

snoRNAs	 and	 tRNAs.	 Hubs	 are	 central	 to	 the	 functioning	 of	 the	 network;	

biological	 networks	 are	 robust	 against	 the	 deletion	 of	 a	 peripheral	 node,	

however	 since	 hubs	 interact	 with	 a	 large	 number	 of	 nodes,	 there	 is	 a	 high	

probability	of	 them	engaging	 in	 interactions	 that	are	crucial	 for	 the	organism’s	

survival	and	therefore	deletion	of	a	hub	in	the	network	could	lead	to	lethality	(He	

and	Zhang,	2006;	Jeong	et	al.,	2001).		

	

Similarly	other	aspects	of	nodes	within	the	network	such	as	the	tendency	to	form	

clusters,	to	have	high	centralities	that	help	in	communicating	quickly	with	other	

nodes	and	high	connectivity	with	neighbourhood	nodes	are	similar	between	PPI	

and	 RRI	 networks.	 The	 only	 major	 difference	 observed	 among	 network	

properties	 is	 the	absence	of	 clustering	 in	 the	RPI	network,	which	 is	due	 to	 the	
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nature	of	RPI	network.	There	are	no	 links	between	RNA	and	protein,	 thus	 this	

leads	to	a	bipartite	graph	for	which	the	clustering	coefficient	is	zero.	Comparison	

of	 network	 properties	 of	 yeast	with	 the	 human	 interaction	 data	 looks	 similar.	

There	 is	 poor	 correlation	 of	 biological	 networks	 with	 the	 random	 generated	

networks,	indicating	the	absence	of	an	organisational	hierarchy	among	them.	

	

Results	 from	 large-scale	 high-throughput	 studies	 represent	 a	 highly	 valuable	

resource	 to	study	 interaction	networks;	however	 there	are	certain	caveats	 that	

have	 to	 be	 taken	 into	 consideration	 when	 analysing	 and	 interpreting	 the	

resultant	 networks.	 I	 highlight	 a	 few	 of	 these	 limitations	 here.	 Firstly,	 a	 large	

number	of	experimental	methods	identify	interacting	partners	between	proteins	

and/or	 RNA,	 but	 they	 suffer	 from	 technical	 limitations	 wherein	 only	 certain	

interaction	types	or	interactions	between	certain	molecules	are	identified	(Droit	

et	al.,	2005;	Wheeler	et	al.,	2017).	For	example,	 the	yeast	 two-hybrid	system,	a	

widely	 used	 powerful	 method	 for	 identifying	 protein-protein	 interactions,	

cannot	detect	interactions	between	three	or	more	proteins	or	those	interactions	

that	depend	on	post-translational	modifications	 (Ito	et	 al.,	 2002)	and	 the	high-

throughput	RNA	immunoprecipitation	(RIP)	methods,	such	as	RIP-chip	and	RIP-

seq,	may	suffer	from	not	detecting	low	affinity	bound	proteins	to	RNA	(Wheeler	

et	 al.,	 2017).	 Second,	 it	 has	 been	 observed	 that	 cellular	 abundances	 and	 the	

number	of	interacting	partners	of	a	protein	are	correlated	(Ivanic	et	al.,	2009).	In	

PPI	 networks,	 determined	 using	 interactions	 identified	 by	 affinity	 purification	

methods,	 proteins	 that	 represent	 hubs	 have	 high	 cellular	 abundances,	 but	 this	

correlation	is	absent	in	networks	derived	from	interactions	identified	using	the	

yeast	two-hybrid	system	(Ivanic	et	al.,	2009).	Due	to	their	high	abundances	and	

importance	 in	 diseases,	 some	 proteins	 and	 their	 interactions	 are	 more	 often	

identified	 by	 some	 techniques	 or	 frequently	 studied	 than	 others	 and	 could	 be	

represented	as	hubs	 in	 interaction	networks.	Another	 limitation	 to	be	noted	 is	

the	 inability	 of	 certain	 methods	 to	 distinguish	 specific	 from	 non-specific	

interactions	 resulting	 in	 high	 false-positive	 rates	 (Droit	 et	 al.,	 2005).	 These	

limitations	 suggest	 that	 networks	 derived	 from	 interactions	 identified	 by	

different	 experimental	 methods	 can	 have	 different	 properties.	 The	 choice	 of	

method	therefore	can	potentially	bias	the	observations.		
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By	 integrating	 high-confidence	 interactions	 that	 are	 identified	 using	 various	

techniques	 it	 is	 possible	 to	 overcome	 these	 experimental	 biases.	 In	 addition,	

pooling	 interactions	 from	 all	 techniques	 increases	 the	 number	 of	 interactions	

and	 our	 statistical	 power	 to	 make	 accurate	 inferences.	 I	 have	 used	 the	

interaction	data	from	Saccharomyces	cerevisiae	to	study	the	interaction	network	

properties,	 since	 it	 represents	 one	 of	 the	 well-curated	 datasets.	 One	 of	 the	

important	 aspects	 of	 studying	 interaction	 networks	 is	 the	 availability	 of	 good	

quality	 data.	 The	 IntAct	 database	 (Orchard	 et	 al.,	 2014)	 contains	 high-quality	

manually	 curated	 interaction	 data	 obtained	 from	 both	 small-scale	 and	 high-

throughput	experimental	studies.	The	IntAct	database	uses	identifiers	of	ncRNA	

from	RNAcentral	(The	RNAcentral	Consortium,	2017)	to	unambiguously	identify	

ncRNAs	and	link	interaction	data	to	a	specific	ncRNA.		

	

In	 this	 study	 I	 have	 shown	 that	 the	 analysis	 of	 various	 network	 properties	 in	

yeast	and	human	PPI,	RPI	and	RRI	networks	indicate	that,	despite	the	differences	

in	how	proteins	and	RNA	interact	with	each	other	or	with	themselves,	on	a	large	

scale	 they	 exhibit	 similarity	 in	 their	 network	 characteristics.	 Comparison	 of	

interaction	network	properties	derived	from	individual	experimental	methods	is	

beyond	the	scope	of	this	chapter.		However	in	the	future	it	would	be	interesting	

to	 analyse	 protein	 and	 RNA	 interaction	 networks	 derived	 from	 such	

experimental	methods.		
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Chapter	3		
	
	
	

Post-translational	modifications	of	RNA-

binding	proteins	
	
	

3.1	Introduction	

	 	

RNA	 is	 a	 versatile	macromolecule	 of	 diverse	 functions,	 which	 can	 be	 found	 in	

various	 functional	contexts	such	as	genetic,	 structural,	 regulatory	and	catalytic.	

To	 perform	 such	 diverse	 functions	 RNA	 interacts	 with	 a	 wide	 array	 of	

macromolecules,	 which	 include	 small	 molecules,	 nucleic	 acids	 and	 most	

importantly	proteins.	At	the	heart	of	RNA-protein	interactions	are	RNA-binding	

proteins	 (RBPs),	 which	 regulate	 function	 through	 dynamic	 associations	 or	

disassociations	 with	 RNA	 based	 on	 various	 environmental	 cues.	 RNA-protein	

interactions	 are	 often	 specific	 and	 involve	 amino	 acid	 residues	 or	 nucleic	 acid	

bases	 that	 are	 essential	 for	 recognition	 and/or	 catalysis.	 Changes	 in	

macromolecular	 interactions	 can	 occur	 when	 one	 or	 more	 of	 these	 crucial	

residues	 undergo	 change	 through	 mutation	 or	 covalent	 modifications	 such	 as	

post-transcriptional	 or	 post-translational	 modifications.	 Although	 there	 is	 an	

abundance	 of	 experimentally	 validated	 post-translational	 modification	 data	 in	

public	 databases	 compared	 to	post-transcriptional	modification	data,	 there	 are	

no	systematic	large-scale	studies	that	focus	on	the	influence	of	post-translational	

modifications	 on	 RNA-protein	 interactions.	 In	 this	 chapter,	 I	 present	 a	

comparative	 analysis	 of	 the	 post-translational	 modifications	 in	 RNA-binding	

proteins.	First,	I	compare	occurrences	of	various	post-translational	modifications	

between	 RNA-binding,	 non	 RNA-binding	 and	 DNA-binding	 proteins.	 Next,	 I	

compare	 the	 occurrences	 of	 various	 post-translational	 modifications	 in	 RNA-

binding	 regions	 compared	 to	 non	 RNA-binding	 sites	 within	 RNA-binding	

proteins.	I	also	investigate	the	relation	between	post-translational	modification,	
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amino	 acid	 abundance,	 protein	 abundance	 and	 structural	 disorderedness.	

Finally,	I	 investigate	interactions	between	RNA	and	protein	by	comparing	RNA-

binding	peptides	 from	experimental	data	with	experimental	structures	of	RNA-

protein	complexes.		

	

RNA	serves	as	an	 important	molecule	at	 the	core	of	many	cellular	 functions;	 it	

serves	 as	 genetic	 material	 in	 single	 and	 double-stranded	 RNA	 viruses,	 as	 a	

template	to	transcribe	the	genetic	code	in	the	form	of	messenger	RNA	(mRNA),	

as	 an	adaptor	or	 structural	 component	during	protein	 synthesis	 in	 the	 form	of	

transfer	 RNAs	 (tRNA)	 and	 ribosomal	 RNAs	 (rRNA)	 and	 as	 a	 gene	 regulatory	

elements	 in	 the	 form	 of	 small	 and	 long	 non-coding	 RNAs,	 among	 many	 other	

functions.	Each	of	these	events	is	associated	with	RNA	interacting	transiently	or	

stably	 with	 RNA-binding	 proteins	 (RBPs)	 to	 form	 ribonucleoprotein	 (RNP)	

complexes.	 RBPs	 contain	 various	 structural	 motifs	 such	 as	 RNA	 recognition	

motifs	(RRM),	K-homology	(KH)	domain,	double	stranded	RNA-binding	domain	

and	RNA-binding	zinc-finger	 (ZnF)	domains,	 through	which	 they	recognise	and	

bind	RNA	(Lunde	et	al.,	2007).	RBPs	form	a	diverse	range	that	can	bind	different	

class,	type	and	sequences	of	RNA.	Certain	RBPs,	on	the	one	hand,	are	monomeric,	

form	small	 complexes	and	are	highly	specific	 in	binding	specific	 class	of	RNAs;	

for	 example,	 the	 argonaute	 proteins	 bind	 to	 small	 non-coding	 RNAs	 such	 as	

microRNAs	 (miRNAs),	 short	 interfering	 RNAs	 (siRNAs)	 and	 PIWI-associated	

RNAs	(piRNAs)	and	form	RNA	Induced	Silencing	Complex	(RISC)	regulating	gene	

expression	 (Meister,	2013).	The	pre-mRNP	and	mRNP	complexes,	on	 the	other	

hand,	are	large	multimegadalton	complexes	that	bind	pre-mRNA	and	mRNA,	and	

comprise	 five	 small	 nuclear	 RNAs	 (snRNAs)	 -	 U1,	 U2,	 U4,	 U5	 and	 U6,	 and	

numerous	 proteins,	 which	 are	 involved	 in	 mRNA	 splicing,	 polyadenylation,	

stabilisation,	 localisation	 and	 translation	 (Muller-McNicoll	 and	 Neugebauer,	

2013;	 Will	 and	 Luhrmann,	 2011).	 Some	 RBPs	 such	 as	 the	 CUG	 triplet	 RNA	

binding	 protein	 1	 (CUGBP1)	 and	 muscleblind-like	 protein	 1	 (MBNL1)	 bind	 to	

sequence	 specific	 tri	 and	 tetra-nucleotide	 mRNA	 repeats	 respectively	 and	 are	

sequestered,	 which	 leads	 to	 myotonic	 dystrophy	 (Ranum	 and	 Day,	 2004;	

Timchenko	et	al.,	1996),	while	others	are	generic	RNA-binding	proteins	with	no	

sequence	specificity	that	form	RNPs.	Other	class	of	RBPs	specifically	bind	single	
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and	 double-stranded	 RNAs	 using	 single	 or	 double	 stranded-RNA-binding	

motifs/domains	 (Antson,	 2000;	 Tian	 et	 al.,	 2004).	 Interestingly,	 recent	 studies	

have	 discovered	 numerous	 moonlighting	 non-canonical	 RNA-binding	 proteins,	

which	 involve	 metabolic	 enzymes	 such	 as	 aconitase	 1	 (ACO1)	 and	

glyceraldehyde-3-phosphate	dehydrogenase	(GAPDH)	(Castello	et	al.,	2015).	

	

The	 development	 of	 large-scale	 quantitative	 methods	 using	

immunoprecipitation,	 mass	 spectrometry	 and	 deep-sequencing	 has	 facilitated	

genome-wide	identification	of	RBPs	and	their	RNA	targets	(Konig	et	al.,	2012).	A	

large	number	of	RNA-binding	proteins	have	been	identified	using	methods	such	

as	 RNA	 immunoprecipitation	 (RIP),	 cross-linking	 immunoprecipitation	 (CLIP)	

followed	by	 sequencing	 (CLIP-seq)	 (Darnell,	 2010;	Ule	 et	 al.,	 2005;	Yang	 et	 al.,	

2015),	photoactivable	 ribonucleoside-enhanced	CLIP	 (PAR-CLIP)	 (Hafner	 et	 al.,	

2010)	 and	 individual	 nucleotide-resolution	 CLIP	 (iCLIP)	 (Yao	 et	 al.,	 2014).	

Recent	 studies	 with	 advancements	 of	 the	 above-mentioned	 methods	 have	

provided	a	comprehensive	atlas	of	RNA-binding	proteins	in	humans	(Baltz	et	al.,	

2012)	(Castello	et	al.,	2012).	Various	studies	have	estimated	~500	RBPs	in	mice	

and	 humans	 (Cook	 et	 al.,	 2011;	 McKee	 et	 al.,	 2005),	 ~700	 RBPs	 in	 humans	

including	 RNA-binding	 domains	 (RBDs)	 involved	 in	 other	 aspects	 of	 RNA	

metabolism	(Anantharaman	et	al.,	2002),	~1,900	human	RBPs	obtained	through	

automated	 functional	 annotations	 (Ashburner	 et	 al.,	 2000)	 and	 1,542	 human	

RBPs	 using	 Pfam	 RBDs	 in	 RNA-related	 proteins	 (Gerstberger	 et	 al.,	 2014).	

Availability	of	good	quality	data	of	RNA-binding	proteins	 is	better	 for	 studying	

various	 aspects	 of	 RNA-protein	 interaction.	 The	 RNA-binding	 domains	 map	

(RBDmap)	 method	 (Castello	 et	 al.,	 2016),	 an	 improvement	 over	 the	 RNA	

interactome	capture	technique	(Castello	et	al.,	2013),	comprehensively	identifies	

proteins	 cross-linked	 to	 RNA	 at	 the	 peptide	 level	 with	 high-resolution	 (for	 a	

detailed	 description	 of	 experimental	 method	 see	 method	 section	 3.2.1).	 The	

availability	 of	 RNA-bound	 peptide	 data	 was	 one	 of	 the	 main	 factors	 that	

influenced	using	this	dataset	for	the	study.	

	

Although	numerous	RBPs	have	been	identified	it	 is	still	unclear	how	specificity,	

or	 non-specificity,	 is	 achieved	 by	 RBPs	 (Jankowsky	 and	 Harris,	 2015)	 or	 how	
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interactions	between	RNA	and	proteins	are	regulated.	It	 is	suggested	that	post-

translational	 modifications	 of	 RBPs	 influence	 their	 associations,	 enzymatic	

activities	 and	 localisations	 with	 their	 RNA	 targets	 (Turner	 et	 al.,	 2014).	 Post-

translational	 modifications	 (PTMs)	 alter	 the	 surface	 electrostatic	 potential	 of	

binding	 sites	 and	dynamically	 regulate	 interaction	with	 other	 proteins,	 nucleic	

acids	or	small	ligands.	PTMs	are	usually	enzyme	mediated	covalent	modifications	

of	proteins	through	addition	or	removal	of	either	small	functional	groups	such	as	

a	phosphate,	acetate,	methyl	or	carbohydrate	moieties,	or	small	proteins	such	as	

ubiquitin	or	 small	ubiquitin-like	modifier	 (SUMO).	Phosphorylation	 is	 the	most	

abundant	and	well-studied	PTM,	which	is	involved	in	regulating	a	large	number	

of	 cellular	 processes.	 Phosphorylation	 usually	 occurs	 at	 serine,	 threonine,	

tyrosine	 and	 histidine	 residues,	 whereby	 addition	 or	 removal	 of	 phosphate	

(PO4)3-	 by	protein	 kinases	 or	 phosphatases	 respectively.	 For	 example,	 a	 recent	

study	 of	 ELAV/Hu	 RNA-binding	 proteins	 indicates	 direct	 phosphorylation	 of	

residues	 at	 RNA-binding	 surface	 results	 in	 abolishing	 or	 decreasing	 affinity	 to	

RNA	 (Brauer	 et	 al.,	 2014).	 Acetylation	 is	 the	 second	most	 commonly	 observed	

PTM	and	is	mostly	observed	in	metabolic	enzymes	and	proteins	involved	in	gene	

expression	 regulation	 (Verdin	 and	 Ott,	 2015).	 Acetyltransferases	 and	

deacetylases	 catalyse	 the	 addition	 or	 removal	 of	 acetyl	 group	 (CH3CO)	

respectively	either	onto	the	N-terminus	of	proteins	or	lysine	residues	(Drazic	et	

al.,	2016).	Acetylation	of	TDP-43,	an	RNA-binding	protein,	was	shown	to	impair	

RNA-binding	 and	 promote	 protein	 accumulation	 (Cohen	 et	 al.,	 2015).	 Protein	

methylation	 is	 well	 studied	 in	 histones	 and	 is	 targeted	 at	 lysine	 or	 arginine	

residues	by	amino	acid	residue	specific	methyltransferases,	which	can	add	one	

or	 two	methyl	 (CH3)	groups	onto	arginine	and	up	 to	 three	methyl	groups	onto	

lysine	 residues.	Both	acetylation	and	methylation	are	 important	PTMs	 that	 are	

implicated	in	gene	expression	regulation	by	regulating	chromatin	structure	and	

transcription	(Drazic	et	al.,	2016;	Lee	et	al.,	2005).	Acetylation	and	methylation	

of	various	RNA-binding	proteins	and	on	histones	is	shown	to	alter	specificity	and	

binding	with	RNA	or	DNA	(Blackwell	and	Ceman,	2012;	Cohen	et	al.,	2015;	Lee	et	

al.,	2005;	Rothbart	and	Strahl,	2014).	In	a	recent	study	ubiquitination	was	shown	

to	 influence	 RNA-binding	 and	 catalysis,	 wherein	 ubiquitination	 of	 Leishmania	

donovani	 cycling	 sequence	 binding	 protein	 (LdCSBP)	 resulted	 in	 the	 loss	 of	
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endoribonuclease	activity	 (Bhandari	 et	 al.,	 2011).	 SUMOylation	of	RNA-binding	

protein	 La,	was	 shown	 to	 facilitate	 small	 RNA	 oligonucleotide	 binding	 and	 de-

SUMOylation	 impaired	 RNA-binding	 activity	 in	 the	 cells	 (Kota	 et	 al.,	 2016).	

Although	 certain	 functionalities	 are	 linked	 to	 a	 specific	 PTM,	 most	 proteins	

undergo	more	than	one	type	of	PTM	under	different	cellular	conditions	(Pejaver	

et	 al.,	 2014),	 and	 implicated	 in	multiple	 signalling	 pathways	 (Zeidan	 and	Hart,	

2010).	It	was	recently	shown	that	cross	talk	exists	between	certain	pairs	of	PTMs	

–	such	as	phosphorylation	and	O-linked	glycosylation	(Butt	et	al.,	2012;	Wang	et	

al.,	2014;	Zeidan	and	Hart,	2010)	or	protein	degradation	 through	promotion	of	

ubiquitination	 by	 phosphorylation	 (Vodermaier,	 2004),	 which	 could	 result	 in	

diverse	and	fine-tuned	functional	outcomes.	Table	3.1	lists	some	of	the	common	

PTMs.	

	

Experimentally	 observed	 PTMs	 from	 a	 large	 number	 of	 proteins	 have	 been	

reported	in	numerous	papers.	Databases	such	as	PhosphoSitePlus	(Hornbeck	et	

al.,	2015)	and	UniProt	store	modification	sites	manually	curated	from	literature	

and	 identified	 by	 large-scale	 proteomics	 methods.	 Databases	 such	 as	 dbPTM	

(Huang	et	al.,	2016)	and	PHOSIDA	(Gnad	et	al.,	2011),	 in	addition	also	provide	

tools	 to	predict	modification	 sites	 in	protein	 sequences.	 For	 a	 large	number	of	

proteins,	their	PTM	sites	have	been	integrated	with	protein	functions;	PTMcode,	

a	 database	 of	 known	 and	 predicted	 functional	 associations	 between	 PTMs	 in	

proteins,	 annotates	 nearly	 17	 million	 functional	 associations	 with	 1.6	 million	

PTM	sites	 in	100,000	proteins	 (Minguez	et	al.,	2013).	 It	 is	 clear	 that	PTMs	and	

their	 functional	 associations	with	 respect	 to	 a	protein	or	 a	pathway	have	been	

well	 characterised,	 and	 a	 few	 studies	 have	 investigated	 the	 role	 of	 PTMs	 in	

protein-protein	 interactions	 within	 a	 system	 (Chavez	 et	 al.,	 2013;	 Duan	 and	

Walther,	 2015;	 Woodsmith	 et	 al.,	 2013).	 Compared	 to	 protein-protein	

interactions,	 studies	 on	 the	 influence	 of	 PTMs	 on	 RNA-protein	 interactions	

within	 a	network	are	 scarce.	A	 recent	 study	has	 shed	 some	 light	on	 regulating	

RNA-protein	 interaction	through	PTM	by	 identifying	regulatory	motifs	 in	the	3’	

untranslated	region	(UTR)	of	RNA	that	are	sensitive	to	PTM	of	a	specific	RBP	and	

interact	with	the	RBP	in	a	PTM-dependent	manner	(Brown	et	al.,	2015).		
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Amino	acid	 Modified	amino	acid	 Biological	
significance	 Reference	

Alanine	

	

N-acetyl-alanine	

	

Modulate	
protein-protein	
interactions,	
protein	stability	
&	translocation	

(Arnesen,	
2011)	

Arginine	

	

Nω-Nω-dimethyl-arginine	

	

Epigenetic	
regulation	of	
gene	expression.	

(Bedford	and	
Clarke,	2009)	

Asparagine	
	

	

N4-(β-N-acetyl-D-glucosaminyl)-
asparagine

	

Facilitate	and	
stabilise	protein	
folding.	

(O'Connor	and	
Imperiali,	
1996)	

Glycine	

	

N-acetyl-glycine	

	

Modulate	
protein-protein	
interactions,	
protein	stability	
&	translocation	

(Arnesen,	
2011)	

Histidine	
	

	

N-phospho-histidine	

	

Signal	
transduction.	

(Steeg	et	al.,	
2003)	

Lysine	

	

N6-acetyl-lysine	

	

Epigenetic	
regulation	of	
gene	expression.	

(Fukuda	et	al.,	
2006)	

	 N6-N6-dimethyl-lysine	
	

	

Epigenetic	
regulation	of	
gene	expression.	

(Martin	and	
Zhang,	2005)	
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Methionine	

	

N-acetyl-methionine	

	

Modulate	
protein-protein	
interactions,	
protein	stability	
&	translocation	

(Arnesen,	
2011)	

Serine	

	

O-phospho-serine	

	

Basic	cellular	
processes	such	
as	metabolism,	
growth,	division,	
immunity,	
differentiation,	
membrane	
transport,	etc.	

(Manning	et	
al.,	2002)	

Threonine	

	

O-phospho-threonine	

	

Basic	cellular	
processes	such	
as	metabolism,	
growth,	division,	
immunity,	
differentiation,	
membrane	
transport,	etc.	

(Manning	et	
al.,	2002)	

	 O-(N-acetyl-β-D-glucosaminyl)-L-
threonine

	

Immunity,	
protein-protein	
interactions	

(Szymanski	
and	Wren,	
2005)	

Tyrosine	

	

O4-phospho-tyrosine	

	

Basic	cellular	
processes	such	
as	metabolism,	
growth,	division,	
immunity,	
differentiation,	
membrane	
transport,	etc.	

(Manning	et	
al.,	2002)	

	
	
Table	 3.1	 Common	 post-translational	 modifications.	 Post-translational	
modifications	are	highlighted	in	blue	boxes.	Figures	are	adapted	from	ChEBI.	 	

	



	 96	

3.2	Methods	

	

3.2.1	RNA-binding	peptides	

	

RNA-binding	 peptides	 identified	 by	 (Castello	 et	 al.,	 2016)	 in	 human	HeLa	 cells	

were	used	in	this	study.	The	RNA-bound	peptides	are	termed	‘RBDpep’	(enriched	

at	 1%	 FDR)	 and	 ‘candidate	 RBDpep’	 (enriched	 at	 10%	 FDR)	 (Castello	 et	 al.,	

2016).	 The	 RNA-binding	 peptides	 of	 RBDpep	 and	 candidate	 RBDpep	 dataset	

comprise	peptides	that	are	cross-linked	to	RNA	after	U.V.	treatment	(X-link)	and	

~17	 amino	 acids	 long	 native	 peptides	 adjacent	 to	 crosslinking	 site	 (N-link).	

Together	the	X-link	and	N-link	peptides	constitute	RNA-binding	peptides	(Figure	

3.1).	 The	RBDpep	dataset	 consists	 of	 1,380	 overlapping	 regions	 of	 RNA-bound	

peptides	 from	 529	 RNA-binding	 proteins,	 and	 the	 candidate	 RBDpep	 dataset	

consists	 of	 2,079	 overlapping	 regions	 of	 RNA-bound	 peptides	 from	 865	

candidate	 RNA-binding	 proteins.	 The	 number	 of	 proteins	 that	 are	 in	 common	

between	 RBDpep	 data	 and	 the	 candidate	 RBDpep	 datasets	 is	 392	 (74.1%	 of	

RBDpep)	 –	 the	 reason	 for	 partial	 overlap	 was	 suggested	 in	 the	 experimental	

design,	 where	 the	 two	 datasets	 were	 generated	 with	 two	 different	 proteases	

(LysC	 or	 ArgC)	 and	 analysed	 independently	 (Alfredo	 Castello,	 personal	

communication,	 September	 9,	 2016).	 Therefore,	 instead	 of	 combining	 the	 two	

datasets,	 I	have	 independently	used	the	two	datasets	 for	downstream	analyses.	

Data	 in	 sheets	named	 “RBDpep”	and	 “CandidateRBDpep”	 in	 supplementary	 file	

“Table	S1”	of	(Castello	et	al.,	2016)	correspond	to	RBDpep	and	candidate	RBDpep	

dataset	respectively.	

	

The	overlapping	RNA-bound	peptide	segments	were	manually	filtered	to	remove	

duplicate	 entries	 and	 to	 identify	 peptide	 contigs.	 A	 total	 of	 784	 contigs	 of	

RBDpep	 and	 1,433	 contigs	 of	 candidate	 RBDpep	 were	 identified.	 The	 overall	

lengths	of	RNA-bound	peptides	(contigs)	for	each	protein	were	then	calculated.	

Accession	numbers	of	9	RNA-binding	proteins	in	RBDpep	and	candidate	RBDpep	

datasets	 were	 replaced	 or	 obsolete	 in	 UniProt	 (release	 2016_10),	 hence	 these	

proteins	were	not	included	in	downstream	analyses.		
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Figure	 3.1	 Schematic	 representation	 of	 RBDmap	 workflow.	 RNA	 is	 cross-
linked	to	proteins	using	UV	light.	After	cell	lysis,	proteins	cross-linked	to	poly(A)	
RNA	 are	 isolated	 using	 oligo(dT)	 magnetic	 beads.	 RBPs	 are	 proteolytically	
digested	using	either	ArgC	or	LysC,	which	releases	unbound	peptides.	The	RNA	
bound	peptides	are	eluted	and	treated	with	trypsin	and	RNase,	which	results	in	
the	 release	 of	 peptides	 that	 are	 directly	 cross-linked	 to	 RNA	 (X-link)	 and	 its	
neighbouring	peptides	(N-link),	which	together	are	named	“RBDpep”.	The	eluted	
peptides	are	fed	to	mass	spectrometer.	The	N-link	peptides	are	identified	using	
peptide	 search	algorithms	and	 the	X-linked	peptides	 are	 re-derived	 in-silico	 by	
extending	the	mass	spectrometer	identified	peptides	to	the	nearest	LysC	or	ArgC	
cleavage	 sites.	 Figure	 adapted	 from	 (Castello	 et	 al.,	 2016)	 DOI:	
10.1016/j.molcel.2016.06.029.		
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3.2.2	Non	RNA-binding	proteins	

	

Although	databases	 annotate	 proteins	 as	 ‘RNA-binding’	 based	 on	 experimental	

evidences,	 a	 complete	 exhaustive	 list	 of	 true	 ‘non	RNA-binding’	 proteins	 is	 not	

available.	 In	order	 to	create	a	 reference	set	of	non	RNA-binding	proteins	 (non-

RBPs)	 as	 a	 negative	 control,	 RNA-binding	 proteins	 from	RBDpep	 dataset	were	

removed	from	the	human	proteome	downloaded	from	UniProt.	A	total	of	17,305	

proteins	without	isoforms	were	used	as	non-RBPs.	Similarly	a	control	set	of	non-

RBPs	was	created	using	RNA-binding	proteins	from	the	candidate	RBDpep	data.	

Although	 this	 approach	would	 give	 a	 set	 of	 non-RBPs,	 it	 cannot	be	 guaranteed	

that	all	proteins	within	 this	set	would	not	have	RNA-binding	 functions,	a	 small	

fraction	of	proteins	in	the	non-RBP	datasets	may	be	involved	in	some	aspects	of	

RNA-binding.	However,	 if	an	upper	limit	of	1,900	human	RBPs,	as	suggested	by	

(Ashburner	et	al.,	2000),	were	considered,	it	would	suggest	that	there	would	be	

1,371	RBPs	(1,900	RBPs	–	529	RBPs)	present	within	the	non-RBP	dataset,	which	

is	only	7.92%	of	the	entire	non-RBP	set	and	may	not	significantly	 influence	the	

observations.	Therefore	given	the	current	 limitations	of	experimental	protocols	

in	completely	identifying	all	RNA-binding	proteins	this	approach	of	generating	a	

list	of	non-RBPs	was	assumed	reasonable.		

	

3.2.3	RNA-binding	proteins	

	

Apart	 from	 lists	 of	 RBPs	 in	 RBDpep	 and	 candidate	 RBDpep	 datasets,	 a	 third	

independent	 dataset	 comprising	 human	 RBPs	 from	 Swiss-Prot	 was	 used	 as	 a	

comparative	 set.	 659	 manually	 curated	 human	 RBPs	 were	 downloaded	 from	

UniProt	(release	2016_10)	using	the	terms	‘RNA-binding	[KW-0694]’	and	‘Homo	

sapiens	 [9606]’	 in	 the	 advanced	 ‘Keyword	 [KW]’	 and	 ‘Organism	 [OS]’	 search	

options	 respectively.	 A	 negative	 control	 list	 of	 17,189	 non-RBPs	 was	 created	

similarly	as	described	above.	

	

3.2.4	DNA-binding	proteins	
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A	fourth	dataset	 independent	of	RBPs	was	used	to	assess	the	nature	of	various	

post-translational	modifications	in	DNA-binding	proteins.	This	dataset	consisting	

of	 1,998	 Swiss-Prot	 manually	 curated	 DNA-binding	 proteins	 in	 human	 were	

downloaded	from	UniProt	(release	2016_10)	using	the	terms	‘DNA-binding	[KW-

0238]’	 and	 ‘Homo	 sapiens	 [9606]’	 in	 the	 advanced	 ‘Keyword	 [KW]’	 and	

‘Organism	[OS]’	search	options	respectively.	A	negative	control	list	of	15,900	non	

DNA-binding	proteins	was	created	similarly	as	described	above.	

	

3.2.5	Post-translational	modifications	

	 	

Post-translational	 modifications	 of	 human	 proteins	 were	 downloaded	 from	

PhosphoSitePlus	 (July	 3,	 2016)	 (Hornbeck	 et	 al.,	 2015).	 The	manually	 curated	

dataset	consists	of	299,538	protein	modification	sites	(amino	acid	sequence	co-

ordinates)	 of	 experimentally	 observed	post-translational	modifications	 such	 as	

acetylation,	 methylation,	 phosphorylation,	 SUMOylation,	 ubiquitination	 and	

glycosylation	 (O-GalNAc	 and	 O-GlcNAc)	 from	 20,488	 human	 proteins.	 Perl	

scripts	 were	 developed	 to	 map	 post-translational	 modification	 sites	 onto	

RBDpep,	 candidate	 RBDpep,	 RNA	 and	 DNA-binding	 protein	 datasets.	 The	

methylation	dataset	was	filtered	to	remove	duplicate	residue	entries	with	di-	and	

tri-methylation	marks.	Statistical	analyses	and	graphs	were	plotted	using	the	R-

package.			

	 	
3.2.6	Globular	and	disordered	regions	

	

Globular	 and	 disordered	 regions	 in	 RBPs	 were	 identified	 using	 IUPred	

(Dosztanyi	 et	 al.,	 2005).	Amino	 acid	 sequences	were	 analysed	with	 the	 IUPred	

standalone	package	with	a	disorder	cut-off	value	of	0.5.	Amino	acids	with	a	score	

above	0.5	were	considered	to	contribute	to	disorder.	

	

3.2.7	Structural	validation	

	

The	 RNA-bound	 peptides	 identified	 by	 (Castello	 et	 al.,	 2016)	 were	 validated	

using	 structural	 data	 of	 RNA-protein	 complexes	 from	 the	 Protein	 Data	 Bank	
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(August	16,	2016).	The	Protein	Data	Bank	 (PDB)	was	queried	 for	human	RBPs	

using	 the	 advanced	 search	 option.	 A	 total	 of	 312	 PDB	 entries	 of	 RNA-protein	

complexes	 were	 downloaded,	 which	 include	 462	 unique	 UniProt	 accessions.	

Other	 protein	 structures	 that	 are	 in	 complex	 with	 DNA-RNA	 hybrid,	 or	

comprised	only	of	C-alpha	trace	and	structures	solved	using	electron	microscopy	

were	neglected.	Out	of	the	462	proteins,	94	proteins	from	215	PDB	entries	were	

common	with	RBDpep	dataset	(Castello	et	al.,	2016).	This	set	was	further	filtered	

to	 remove	 those	 proteins	 that	 were	 not	 bound	 to	 RNA.	 Finally	 a	 set	 of	 66	

proteins	from	49	PDB	entries	was	obtained,	that	were	common	with	the	RBDpep	

dataset	 (Castello	 et	 al.,	 2016).	 The	 interatomic	 RNA-protein	 contacts	 were	

computed	 using	 the	 WHAT	 IF	 server	 (Vriend,	 1990),	 which	 calculates	 the	

distance	between	Van	der	Waals	surfaces	of	any	two	atoms	of	protein	and	RNA	

using	 the	 standard	Van	 der	Waals	 radii.	 A	 total	 of	 2,317	RNA-protein	 contacts	

were	 inferred.	 Residue–level	 mapping	 between	 UniProt	 and	 PDB	 entries	 was	

carried	out	using	SIFTS	(Velankar	et	al.,	2013).	

	

3.2.8	Protein	abundance	

	
The	 relative	protein	abundance	data	of	 the	human	proteome	 (whole	organism,	

integrated)	 was	 downloaded	 from	 the	 PaxDb	 protein	 abundance	 database,	

version	4.0.	(Wang	et	al.,	2015).	

	

3.3	Results	

	

3.3.1	Overview	of	RBDpep	and	candidate	RBDpep	datasets	

	

Castello	 et	 al.,	 2016,	 provides	 a	 comprehensive	 atlas	 of	 RNA-binding	 domains	

present	 within	 RNA-binding	 proteins	 in	 humans.	 In	 order	 to	 verify	 this	 set	 of	

RBPs,	 I	 compared	 this	 data	 with	 a	 list	 of	 known	 RBPs	 from	 Swiss-Prot.	 It	 is	

observed	that	the	RBDpep	dataset	and	Swiss-Prot	share	163	proteins	(24.73%	of	

RNA-binding	 proteins	 in	 Swiss-Prot)	 between	 them	 (Figure	 3.2A),	 while	 242	

proteins	from	the	candidate	RBDpep	data	are	common	with	RNA-binding		
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Figure	3.2	Features	of	RBDpep	and	candidate	RBDpep	datasets.	Number	of	
RNA-binding	 proteins	 that	 are	 in	 common	 between	 annotated	 RNA-binding	
proteins	 in	 Swiss-Prot	 and	 (A)	 RBPs	 in	 RBDpep	 dataset	 and	 (B)	 RBPs	 in	
candidate	RBDpep	dataset.	 (C)	Distribution	of	peptide	 lengths	 for	RNA-binding	
peptides	 in	RBDpep	dataset	 and	 candidate	RBDpep	dataset.	 The	 average	RNA-
binding	peptide	 lengths	 in	RBDpep	and	candidate	RBDpep	datasets	are	37	and	
38	 amino	 acids	 respectively.	 (D)	 Overall	 length	 of	 RNA-bound	 peptides	
represented	as	a	fraction	of	total	protein	length.	
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proteins	 from	 Swiss-Prot	 (36.72%	 of	 RNA-binding	 proteins	 in	 Swiss-Prot)	

(Figure	 3.2B).	 Some	 of	 the	 reasons	 that	 are	 suggested	 for	 not	 detecting	 other	

known	 RBPs	 by	 RBDmap	 are	 (i)	 non-binding	 to	 poly(A)	 RNAs,	 (ii)	 low	 cross-

linking	efficiency	(iii)	interactions	with	the	phospho-sugar	backbone,	but	not	the	

nucleotide	 bases	 or	 (iv)	 lack	 of	 cleavage	 sites	 for	 trypsin	within	 LysC	 or	 ArgC	

proteolytic	fragments	(Castello	et	al.,	2016).	RNA-binding	peptides	(RBDpep	and	

candidate	RBDpep)	identified	by	(Castello	et	al.,	2016)	have	an	average	length	of	

37	amino	acids	(RBDpep)	and	38	amino	acids	(candidate	RBDpep)	(Figure	3.2C).	

The	shortest	and	 longest	peptides	 in	 the	RBDpep	dataset	are	6	and	539	amino	

acids	respectively;	peptides	from	candidate	RBDpep	dataset	similarly	range	from	

6	to	706	amino	acids.	

	

The	RNA-binding	peptide	contigs	were	used	to	infer	the	coverage	of	proteins	in	

terms	of	their	RNA-binding.	The	overall	RNA-binding	peptide	lengths	of	RBDpep	

and	candidate	RBDpep	datasets	 indicate	 that	 for	nearly	77%	of	 the	proteins	 in	

the	 two	datasets,	 the	RNA-binding	 fraction	of	protein	 is	 less	 than	25%	(Figure	

3.2D),	however,	the	percentage	of	amino	acid	residues	directly	 interacting	with	

RNA	within	RNA-binding	peptides	 is	 presumed	 to	be	 lower.	The	percentage	of	

RNA-binding	 residues	was	observed	 to	be	between	30%	 in	 ribosomal	proteins	

and	9%	in	non-ribosomal	proteins	(Chen	et	al.,	2014).	

	

3.3.2	 Post-translational	 modifications	 in	 RNA-binding	 proteins	 and	 non	

RNA-binding	proteins	

	

Comparisons	of	RBPs	with	non-RBPs	have	 indicated	higher	protein	abundance,	

higher	 half-life	 (higher	 stability),	 lower	 levels	 of	 biological	 noise	 (tightly	

regulated	 gene	 expression)	 (Mittal	 et	 al.,	 2009)	 and	 significantly	 higher	 tissue	

expression	 levels	 (Kechavarzi	 and	 Janga,	 2014)	 in	 RBPs.	 To	 investigate	 the	

prevalence	of	PTMs,	I	compared	occurrences	of	PTMs	in	RBPs	and	non-RBPs.	It	is	

seen	that	RBPs	have	a	higher	frequency	of	sites	for	PTM	than	non-RBPs;	7.08%	

of	the	total	amino	acid	residues	in	RBPs	are	post-translationally	modified,	which	

is	 significantly	 higher	 compared	 to	 2.47%	 of	 residues	 that	 are	 post-

translationally	 modified	 in	 non-RBPs	 (Table	 3.2)	 (P-value	 <	 2.2	 x	 10-16,	 Chi-
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square	test.	N.	B.	This	is	the	lowest	possible	value	for	this	statistical	test	in	R.).	It	

is	also	 found	that	 the	PTM	occupancy	of	an	amino	acid	residue	(i.e.,	number	of	

modifications	per	modified	amino	acid)	in	RBPs	is	significantly	more	compared	

to	PTM	occupancy	of	amino	acid	residues	in	non-RBPs	(P-value	=	1.862	x	10-09,	

Chi-square	 test);	 a	 total	 of	 23,370	 PTMs	 were	 observed	 in	 21,468	 modified	

amino	acids	residues	in	RBPs	(occupancy	of	1.08	PTM	per	modified	amino	acid	

residue),	 in	comparison	 to	265,048	PTMs	observed	 in	258,227	modified	amino	

acid	 residues	 in	 non-RBPs	 (occupancy	 of	 1.02	 PTM	 per	 modified	 amino	 acid	

residue).	The	number	of	RBPs,	as	discussed	earlier,	can	vary	between	different	

experimental	methods	and	may	not	completely	agree	with	each	other.	Therefore,	

I	have	used	an	 independent	set	of	manually	curated	RBPs	from	Swiss-Prot	as	a	

gold-standard	positive	control	dataset	for	comparison.	Analysing	PTM	sites	using	

RBPs	 curated	 in	 Swiss-Prot	 further	 supports	 these	 observations;	 4.78%	amino	

acid	 residues	 are	 modified	 in	 RBPs	 and	 are	 frequently	 targeted	 compared	 to	

2.52%	post-translationally	modified	amino	acid	residues	in	non-RBPs.	

	

A	large	majority	of	RBPs	are	involved	in	at	least	one	of	these	cellular	processes:	

synthesis,	 folding,	 transport,	 assembly	 and	 clearance	 of	 RNA.	 RNA	 is	 seldom	

found	naked	in	vivo,	but	is	normally	bound	with	one	or	more	proteins	(Mitchell	

and	Parker,	2014).	Unlike	a	majority	of	non-RBPs,	whose	targets	do	not	involve	

being	acted	upon	by	a	large	number	of	proteins	at	the	same	time,	most	RBPs	act	

co-operatively	i.e.,	form	multimeric	complexes	with	their	substrates,	for	example	

the	 transcription	complex,	 spliceosome,	editosome	complex,	mRNA	 localization	

complex,	translation	complex	and	exosome	complex,	which	involve	more	than	20	

proteins	interacting	with	RNA	either	all	together	at	the	same	time	or	at	different	

stages	 in	 RNA’s	 life	 (Jurica	 and	 Moore,	 2003;	 Panigrahi	 et	 al.,	 2006).	 The	

components	 of	 these	 multimeric	 complexes	 (both	 proteins	 and	 their	 cognate	

RNA	targets)	have	to	be	available	in	the	correct	stoichiometry	and	in	their	active	

states	 to	 function.	 It	 has	been	 shown	 that	PTMs	 such	 as	 acetylation	preferably	

target	large	macromolecular	complexes	involved	in	processes	such	as	chromatin	

remodelling,	 cell	 cycle,	nuclear	 transport	and	splicing	 (Choudhary	et	al.,	2009).	

Therefore,	it	is	reasoned	here	that	PTMs	play	a	larger	role	in	maintaining	cellular	

availability	and	influencing	functions	of	RBPs	than	non-RBPs.		 	
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	 Number	of	
PTMs	

Number	of	
amino	acids	
with	PTM	

Total	number	
of	amino	acids	

PTM	
occupancy	
(PTM/modified	
amino	acid)	

Percentage	of	
amino	acid	
residues	
modified	

RNA-binding	
proteins	(RBPs)	

23,370	 21,468	 302,895	 1.08	 7.08%	

Non	RNA-
binding	proteins	
(non-RBPs)	

265,048	 258,227	 10,439,949	 1.02	 2.47%	

Swiss-Prot	RBPs	 19,459	 18,382	 383,963	 1.05	 4.78%	

Swiss-Prot		
non-RBPs	

269,340	 261,758	 10,363,333	 1.02	 2.52%	

Swiss-Prot	DNA-
binding	proteins	
(DBPs)	

41,841	 39,515	 1,178,225	 1.05	 3.35%	

Swiss-Prot	non	
DNA-binding	
proteins		
(non-DBPs)	

247,150	 240,515	 9,569,743	 1.02	 2.51%	

	

	

Table	 3.2	 Comparison	 of	 post-translational	 modifications	 across	 nucleic	
acid	binding	and	non-binding	proteins	in	different	datasets.		
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Recent	studies	have	shown	an	increasing	number	of	proteins	that	bind	both	RNA	

and	 DNA,	 which	 include	 p53,	 the	 heterogeneous	 ribonucleoproteins	 (hnRNPs)	

and	 transcription	 factors	 TFIIIA	 and	 FUS	 (Cassiday	 and	Maher,	 2002;	 Hudson	

and	Ortlund,	2014).	Due	to	the	dual	and	sometimes	overlapping	functionalities	of	

DNA-binding	 proteins	 (DBPs)	 and	 RBPs	 to	 bind	 targets	 competitively	 or	

cooperatively,	they	are	subject	to	tight	regulation.	In	order	to	understand	if	PTMs	

play	a	differential	role	in	regulating	DBPs	and	RBPs,	I	compared	the	occurrences	

of	PTM	sites	in	DBPs	and	non-DBPs	with	RBPs	and	non-RBPs	respectively	(Table	

3.2).	DBPs	have	significantly	more	PTM	sites	than	non-DBPs	(P-value	<	2.2	x	10-

16,	Chi-square	 test);	about	3.35%	of	amino	acid	residues	 in	DBPs	are	modified	

compared	to	2.51%	in	non-DBPs.	Modified	amino	acid	residues	are	significantly	

more	frequently	targeted	in	DBPs	than	non-DBPs	(P-value	=	6.737	x	10-05,	Chi-

square	test).	These	trends	are	similar	but	weaker	compared	to	those	observed	in	

RBPs.	

	

PTM	sites	were	further	analysed	by	the	type	of	PTM.	By	comparing	occurrences	

of	 various	 PTMs	 between	 nucleic	 acid	 binding	 proteins	 and	 non	 nucleic	 acid	

binding	 proteins,	 it	 is	 observed	 that	 almost	 all	 types	 of	 PTMs	 are	

overrepresented	 in	RBPs	and	DBPs	compared	to	 their	non	nucleic	acid	binding	

counterparts	 (Figure	 3.3).	 Among	 RBPs	 4.90%	 amino	 acid	 residues	 are	

phosphorylated	 which	 is	 significantly	 higher	 than	 1.93%	 amino	 acid	 residues	

phosphorylated	 in	non-RBPs	(P-value	<	2.2	x	10-16,	Chi-square	 test).	Table	3.3	

shows	 the	 counts	 and	 percentages	 of	 various	 PTMs	 in	 RBPs	 and	 non-RBPs.	

However	an	opposite	 trend	 is	observed	 in	both	RBPs	and	DBPs	undergoing	O-

linked	 N-acetylglucosamine	 (O-GlcNAc)	 glycosylation,	 where	 it	 is	 frequent	 in	

non-RBPs	 and	 non-DBPs.	 O-linked	 N-acetylgalactosamine	 (O-GalNAc)	 and	 O-

GlcNAc	 glycosylation	 are	 present	 in	 a	 small	 number	 of	 RBPs	 and	 are	 fewer	 in	

numbers	 relative	 to	 other	 modifications.	 Phosphorylation	 is	 by	 far	 the	

predominant	PTM	in	eukaryotic	proteins	among	other	PTM	types	and	dominates	

the	 PTM	 landscape	 because	 of	 its	 versatility	 and	 ready	 reversibility	 among	

various	 other	 properties	 (Hunter,	 2012),	 which	 is	 the	 reason	 for	 a	 prominent	

phosphorylation	 signal	 in	 Figure	 3.3.	 	 A	 similar	 PTM	 trend	 is	 also	 observed	 in	

candidate	RBPs	(see	appendix	Figure	A1).	
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	 RNA-binding	proteins		
(RBPs)	

Non	RNA-binding	proteins	
(non-RBPs)	 	

	 Number	
of	PTMs	

Total	
amino	
acids	

Percentage	
of	amino	
acids	

Number	
of	PTMs	

Total	
amino	
acids	

Percentage	
of	amino	
acids	

P-value	

Acetylation	 2,617	 259,074	 1.01%	 17,748	 4,872,560	 0.36%	 <	2.2	x	10-16	

O-GalNAc	 46	 4,798	 0.95%	 2,053	 385,642	 0.53%	 2.2	x	10-02	

O-GlcNAc	 53	 38,425	 0.13%	 358	 134,159	 0.26%	 5.8	x	10-04	

Methylation	 881	 140,022	 0.62%	 3,811	 1,908,462	 0.19%	 <	2.2	x	10-16	

Phosphorylation	 14,834	 302,895	 4.89%	 199,253	 10298431	 1.93%	 <	2.2	x	10-16	

SUMOylation	 626	 109,339	 0.57%	 6,107	 1,337,840	 0.45%	 3.0	x	10-04	

Ubiquitination	 4,313	 261,589	 1.64%	 35,718	 5,444,070	 0.65%	 <	2.2	x	10-16	

	

Table	3.3	Breakdown	of	various	PTMs	between	RBPs	and	non-RBPs.	Details	
of	PTMs	in	Swiss-Prot	RBP,	non-RBP,	DBP	and	non-DBP	datasets	are	not	shown	
here.	
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Some	control	experiments	were	performed	to	confirm	any	sampling	or	sequence	

bias	 in	the	different	datasets.	The	number	of	RBPs	and	non-RBPs	for	each	PTM	

type	 analysed	 is	 different;	 RBPs	 are	 fewer	 in	 number	 compared	 to	 non-RBPs	

(Figure	3.3)	and	this	may	have	introduced	a	bias	in	the	observed	percentage	of	

amino	acid	residues	that	are	modified	in	RBPs	and	non-RBPs.	To	investigate	any	

such	bias	introduced	by	sampling,	I	randomly	down-sampled	non-RBPs	to	match	

the	 number	 of	 RBPs	 in	 their	 respective	 PTM	 groups.	 This	 random-down	

sampling	was	 also	 performed	 on	 the	DBP	 dataset.	 For	 example,	 there	 are	 413	

RBPs	which	are	acetylated	in	comparison	to	acetylation	in	6,376	non-RBPs	and	

915	DBPs,	I	randomly	down-sampled	413	non-RBPs	and	DBPs	from	6,376	non-

RBPs	and	915	DBPs	and	 calculated	 the	percentage	of	 amino	acid	 residues	 that	

were	 acetylated	 in	 these	 two	 datasets.	 This	 random	 down	 sampling	 was	

performed	 fifty	 times	 and	 the	 mean	 value	 of	 the	 percentage	 of	 amino	 acid	

residues	 modified	 was	 calculated	 from	 the	 distribution.	 Figure	 3.4	 shows	 the	

distribution	of	percentage	of	amino	acid	residues	modified	in	various	PTMs	after	

down	sampling.	The	mean	values	of	percentages	calculated	were	similar	 to	 the	

percentages	 observed	 in	 the	 full	 data,	 which	 indicates	 that	 the	 observed	

difference	 is	not	due	 to	 the	differences	 in	 the	number	of	proteins	 in	RBP,	non-

RBP	or	DBP	datasets.	

	

Next,	 I	 investigated	 the	 relation	 between	 protein	 sequence	 length	 and	 PTM;	

longer	protein	sequences	have	more	PTM	sites	than	shorter	protein	sequences.	

The	 number	 of	 modified	 amino	 acid	 residues	 in	 RBPs	 and	 non-RBPs	 show	 a	

positive	correlation	with	the	protein	sequence	length	(Figure	3.5A).	Comparison	

of	 protein	 sequence	 lengths	 show	 that	 on	 average,	 RBPs,	 non-RBPs,	 DBPs	 and	

non-DBPs	have	similar	protein	sequence	 lengths	of	608.22,	603.79,	615.90	and	

601.87	 amino	 acids	 respectively	 (Figures	 3.5B),	 which	 suggests	 that	 the	

numerous	modification	sites	present	in	RBPs	compared	to	other	proteins	is	not	

due	to	differences	in	protein	sequence	lengths.	
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A	

	

B	

	
Figure	 3.4	 Distribution	 of	 percentage	 of	 amino	 acid	 residues	 with	 post-
translational	modifications	 in	 random	down-sampled	data.	Mean	values	of	
distributions	for	various	PTMs	in	(A)	non-RBPs	and	(B)	DBPs	are	similar	to	those	
observed	in	their	respective	PTM-types	for	complete	dataset	in	Figure	3.3.	Black	
lines	show	mean	values,	n	denotes	the	number	of	downsampled	proteins.	
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A	

	

B	
	

Figure	 3.5	 Relation	 between	 PTMs	 and	 protein	 sequence	 length.	 (A)	
Sequence	 lengths	 and	 the	 number	 of	 modified	 amino	 acids	 are	 positively	
correlated	 in	 RBPs	 and	 non-RBPs.	 (B)	 The	 distribution	 of	 sequence	 lengths	 of	
RBPs,	non-RBPs,	DBPs	and	non-DBPs	are	similar.	
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3.3.3	 Post-translational	 modifications	 in	 RNA-binding	 peptides	 and	 non	

RNA-binding	peptides	

	

In	the	previous	section	comparisons	of	PTMs	between	RBPs	and	non-RBPs	have	

shown	 that	 RBPs	 are	 modified	 more	 than	 non-RBPs.	 Next,	 I	 investigated	 the	

occurrences	 of	 PTM	 sites	 within	 RBPs,	 where	 I	 compare	 residues	 that	 are	

modified	 in	 regions	 of	 protein	 that	 interact	 with	 RNA,	 termed	 “RNA-binding	

peptides	 (RBDpeps)”	with	 residues	 that	 are	modified	 elsewhere	 in	 the	 protein	

that	 do	 not	 interact	 with	 RNA,	 termed	 “non-RNA	 binding	 peptides	 (non-

RBDpeps)”.	I	observed	that	more	residues	are	modified	in	RBDpeps	compared	to	

non-RBDpeps;	 9.81%	 of	 amino	 acid	 residues	 within	 RBDpeps	 are	 modified,	

which	is	significantly	higher	compared	to	6.70%	of	amino	acid	residues	that	are	

modified	within	non-RBDpeps	(P-value	<	2.2	x	10-16,	Chi-square	test)	(Table	3.4).	

However,	 the	 PTM	 occupancy	 of	 amino	 acid	 residues	 in	 RBDpeps	 is	 not	

significantly	 different	 from	 PTM	 occupancy	 of	 amino	 acid	 residues	 in	 non-

RBDpeps	(P-value	=	0.13,	Chi-square	test);	a	total	of	4,097	PTMs	were	observed	

in	3,648	modified	amino	acids	residues	in	RBDpeps	(occupancy	of	1.12	PTM	per	

modified	amino	acid	residue),	in	comparison	to	19,273	PTMs	observed	in	17,820	

modified	 amino	 acid	 residues	 in	 non-RBDpeps	 (occupancy	 of	 1.08	 PTM	 per	

modified	amino	acid	residue).		

	

Similar	 analysis	 on	 modified	 amino	 acid	 residues	 was	 investigated	 within	 the	

candidate	RBDpep	dataset	(candidate	RBPs)	by	comparing	modification	sites	in	

candidate	 RNA-binding	 peptides	 (candidate	 RBDpeps)	 and	 candidate	 non-RNA	

binding	 peptides	 (candidate	 non-RBDpeps).	 I	 observe	 a	 similar	 trend,	wherein	

amino	 acids	 in	 candidate	 RBDpeps	 are	 targeted	 more	 frequently	 than	 amino	

acids	 in	 candidate	non-RBDpeps	 (P-value	<	2.2	 x	 10-16,	 Chi-square	 test)	 (Table	

3.4).		
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	 Number	of	
PTMs	

Number	of	
amino	acids	
with	PTM	

Total	number	
of	amino	acids	

PTM	
occupancy	
(PTM/modified	
amino	acid)	

Percentage	of	
amino	acid	
residues	
modified	

RNA-binding	
peptides	
(RBDpeps)	

4,097	 3,648	 37,150	 1.12	 9.81%	

Non	RNA-
binding	peptides	
(non-RBDpeps)	

19,273	 17,820	 265,745	 1.08	 6.70%	

Candidate	RNA-
binding	peptides	
(candidate	
RBDpeps)	

5,967	 5,414	 58,536	 1.10	 9.24%	

Candidate	non	
RNA-binding	
peptides	
(candidate	non-
RBDpeps)	

31,118	 29,251	 540,579	 1.06	 5.41%	

	

Table	3.4	Comparison	of	post-translational	modifications	within	proteins.		
Occurrences	of	PTMs	within	RNA-binding	proteins	 (RBDpep	and	non-RBDpep)	
and	 candidate	 RNA-binding	 proteins	 (candidate	 RBDpep	 and	 candidate	 non-
RBDpep)	 are	 shown.	 Occurrences	 of	 PTMs	 in	 non	 RNA-binding	 proteins	 and	
candidate	 non	 RNA-binding	 proteins	 were	 not	 calculated	 because	 of	 the	 non-
availability	of	RNA-binding	peptide	data	in	these	proteins.	
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Proteins	 interact	with	RNA	through	 the	major	or	minor	grooves	where	surface	

electrostatic	interactions	play	a	major	role	in	recognition,	specificity	and	binding	

(De	Guzman	et	al.,	1998).	Modification	of	residues	at	the	recognition	or	binding	

interface	 is	 more	 effective	 in	 modulating	 protein-RNA	 interaction,	 since	 they	

directly	 influence	 the	 local	 surface	 electrostatic	 potential	 and	 interfere	 with	

hydrogen-bonding	contacts,	compared	to	modifications	of	residues	elsewhere	in	

the	protein	that	may	indirectly	influence	interaction	through	changes	in	protein	

conformation.	

	

Classifying	 modified	 amino	 acid	 residues	 in	 RNA-binding	 and	 non-binding	

peptides	 by	 their	 PTM	 type	 show	 a	 significant	 presence	 of	 acetylation,	

methylation,	phosphorylation	and	ubiquitination	 in	RBDpeps	(Table	3.5,	Figure	

3.6A),	 but	 no	 significant	 difference	 in	 the	 SUMOylation	 of	 RBDpeps	 and	 non-

RBDpeps.	 It	 is	 difficult	 to	 comment	 on	 the	 significance	 of	 glycosylation	 due	 to	

low	 statistical	 power.	 Acetylation,	 methylation,	 phosphorylation	 and	

ubiquitination	were	also	seen	to	be	enriched	in	candidate	RBDpeps	compared	to	

candidate	 non-RBDpeps	 (Figure	 3.6B),	 however	 SUMOylation	 is	 significant	 in	

candidate	RBDpep	 in	 this	dataset	 (P-value	=	4.81	 x	10-15,	 Chi-square	 test.	Data	

not	 shown.).	 Comparison	 of	 observed	 and	 expected	 frequencies	 between	

RBDpep	and	non-RBDpep	shows	that	PTMs	are	observed	in	RBDpep	more	than	

expected	by	chance.	

	

To	summarise	 findings	 from	sections	3.3.2	and	3.3.3,	evidences	 from	the	above	

analyses	 indicate	 that	 RNA-binding	 proteins	 are	 relatively	 more	 targeted	 for	

post-translational	 modifications	 than	 non	 RNA-binding	 proteins.	 And	 within	

RNA-binding	 proteins,	 regions	 that	 bind	 to	 RNA	 are	 enriched	 in	 post-

translational	modifications	compared	to	those	regions	that	do	not.	
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	 RNA-binding	peptides	
(RBDpeps)	

Non	RNA-binding	peptides	
(non-RBDpeps)	 	

	 Number	
of	PTMs	

Total	
amino	acids	

Percentage	
of	amino	
acids	

Number	
of	PTMs	

Total	
amino	acids	

Percentage	
of	amino	
acids	

P-value	

Acetylation	 475	 32,236	 1.47%	 2,142	 226,838	 0.94%	 1.2	x	10-08	

O-GalNAc	 2	 478	 0.41%	 44	 4,320	 1.01%	 0.5*	

O-GlcNAc	 12	 2,599	 0.46%	 41	 35,826	 0.11%	 0.4	x	10-01	

Methylation	 304	 21,411	 1.41%	 577	 118,611	 0.48%	 <	2.2	x	10-16	

Phosphorylation	 2,370	 33,353	 7.10%	 12,464	 269,542	 4.63%	 <	2.2	x	10-16	

SUMOylation	 113	 16,609	 0.68%	 513	 92,730	 0.55%	 0.2	

Ubiquitination	 821	 33,811	 2.42%	 3,492	 227,778	 1.53%	 1.2	x	10-14	

	
Table	3.5	Breakdown	of	various	PTMs	between	RBDpeps	and	non-RBDpeps	
within	 RNA-binding	 proteins.	 Details	 of	 PTMs	 in	 candidate	 RBDpep	 and	
candidate	 non-RBDpep	datasets	 are	 not	 shown	here.	 *	 indicates	 low	 statistical	
power	for	computing	p-value.	 	



	 115	

	

	

A	
	

	

B	
	

Figure	 3.6	 Comparisons	 of	 PTMs	 within	 proteins.	 PTMs	 are	 compared	
between	 (A)	RNA-binding	peptides	 (dark	 gray)	 and	non	RNA-binding	peptides	
(brown)	within	RBPs	and	 (B)	 candidate	RNA-binding	peptides	 (dark	gray)	and	
candidate	 non	 RNA-binding	 peptides	 (brown)	 within	 candidate	 RBPs.	
Comparison	 of	 PTMs	 between	 RNA-binding	 proteins	 (gray)	 and	 non	 RNA-
binding	 proteins	 (red)	 is	 included	 for	 reference.	 Gray	 and	 red	 bars	 denote	 the	
percentage	of	their	total	sequence	lengths.	Dark	gray	and	brown	bars	denote	the	
percentage	of	their	total	RBDpep	length	and	non-RBDpep	lengths	respectively.		
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3.3.4	Disorderedness	in	RNA-binding	proteins	

	

Most	eukaryotic	proteins	are	composed	of	both	globular	domains	and	disordered	

regions;	nearly	22%	of	the	human	proteome,	for	instance,	is	predicted	to	contain	

disordered	regions	with	a	length	of	50	amino	acid	residues	or	more	(Ward	et	al.,	

2004).	 Disordered	 regions	 play	 an	 important	 role	 in	 molecular	 recognition,	

molecular	 assembly,	 modulating	 specificity	 or	 affinity	 for	 ligand	 binding,	

activation	by	cleavage,	assisted	protein	folding	and	protein	modification	(Dunker	

et	 al.,	 2002).	 Interestingly	 PTMs	 have	 been	 shown	 to	 occur	 more	 in	 the	

disordered	 regions	 (Kurotani	 et	 al.,	 2014);	 and	 disordered	 regions	 have	 an	

intrinsic	 RNA-binding	 activity	 (Calabretta	 and	 Richard,	 2015).	 Therefore,	 in	

order	 to	understand	 if	 the	observed	enrichment	of	PTMs	 in	RBPs	 is	due	 to	 the	

presence	of	more	disordered	regions,	I	investigated	the	level	of	disorder	in	RBPs	

and	 non-RBPs	 and	 among	 RBDpeps	 and	 non-RBDpeps.	 Firstly,	 I	 observe	 that	

RBPs	are	significantly	more	disordered	(37.44%	of	total	amino	acid	residues	in	

RBPs)	when	compared	to	non-RBPs	(25.97%	of	total	amino	acid	residues	in	non-

RBPs)	(P-value	<	2.2	x	10-16,	Chi-square	test),	as	also	observed	by	(Varadi	et	al.,	

2015).	Next,	 I	 grouped	modified	 and	unmodified	 sites	based	on	 their	presence	

within	disordered	or	globular	 regions	of	RBPs	and	non-RBPs	 (Figure	3.7	A,	B).	

Comparison	of	 the	disordered	 regions	between	 the	 two	 sets	of	proteins	 shows	

that	 9.70%	 of	 amino	 acid	 residues	 within	 the	 disordered	 regions	 of	 RBPs	 are	

modified,	which	is	significant	compared	to	just	4.07%	of	amino	acid	residues	that	

are	modified	within	 the	disordered	 regions	of	non-RBPs	 (P-value	<	2.2	x	10-16,	

Chi-square	 test)	 (Figure	3.7	A,	B).	Similarly,	a	significant	 fraction	of	amino	acid	

residues	within	 the	globular	regions	of	RBPs	are	modified	(5.52%)	 than	amino	

acids	within	the	globular	regions	of	non-RBPs	(1.91%).	Thus	indicating	that	the	

observed	 effect	 of	 enriched	 PTMs	 in	 RBPs	 is	 not	 due	 to	 the	 presence	 of	more	

disordered	regions	in	them.	
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A	 	 	 	 	 	 B	
	

	 	
C		 	 	 	 	 	 D	
	
	
Figure	 3.7	 Comparison	 of	 globular	 and	 disorderedness	 in	 RNA-binding	
proteins.	 (A)	 Disordered	 regions	 in	 RBPs	 are	 significantly	 enriched	 in	 post-
translational	 modification	 sites	 than	 non-RBPs	 (B).	 (C)	 Disordered	 regions	
within	 RBDpeps	 are	 significantly	 enriched	 with	 modified	 amino	 acid	 residues	
than	non-RBDpeps	(D).	Percentages	shown	are	calculated	 from	the	 total	amino	
acid	residues	in	disordered	and	globular	regions.	
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Further	 inspection	 of	 disorder	 within	 RBDpeps	 and	 non-RBDpeps	 shows	 that	

RBDpeps	are	more	disordered	(40.27%	of	amino	acid	residues	within	RBDpeps),	

which	is	significantly	higher	than	non-RBDpeps	(37.04%	of	amino	acid	residues	

within	non-RBDpeps)	(P-value	=	3.30	x	10-11).	And	finally,	I	grouped	the	modified	

and	 non-modified	 amino	 acid	 residues	 based	 on	 their	 presence	 within	 the	

disordered	or	globular	regions	of	RBDpeps	and	non-RBDpeps	(Figure	3.7	C,	D).	

Among	 disordered	 regions	 I	 observe	 that	 11.92%	 of	 amino	 acid	 residues	 are	

modified	 in	 RBDpeps,	 compared	 to	 9.37%	 of	 amino	 acid	 residues	 that	 are	

modified	in	non-RBDpeps	(P-value	=	3.35	x	10-10)	(Figure	3.7	C,	D).		

	

Many	 disordered	 regions	 are	 known	 to	 bind	 RNA	 through	 short	 linear	 motifs	

(SLiMs)	or	low	complexity	sequences	(Calabretta	and	Richard,	2015).	PTMs	may	

also	 induce	 disordered-to-ordered	 transition	 enabling	 RNA-binding.	 The	

presence	of	a	higher	number	of	PTM	sites	 in	structurally	disordered	regions	of	

RBPs,	in	contrast	to	non-RBPs,	could	suggest	that	disordered	regions	might	play	

an	 important	 role	 in	 regulating	 RNA-binding	 as	 also	 shown	 by	 other	 studies	

(Calabretta	and	Richard,	2015).	

	

3.3.5	Functional	classification	of	RNA-binding	proteins	

	

To	understand	the	distribution	of	PTMs	across	diverse	RBP	functions,	RBPs	and	

non-RBPs	were	grouped	into	three	broad	functional	categories	–	 i)	 information	

storage	and	processing,	ii)	cellular	processes	and	signalling	and	iii)	metabolism,	

with	 an	 additional	 sub-classification	 as	 described	 in	 the	 EggNOG	 database	

(Huerta-Cepas	 et	 al.,	 2016).	 Functional	 classification	 of	 RBPs	 show	 that	 apart	

from	 their	 traditional	 functions	 such	 as	 transcription,	 translation,	 RNA	

processing,	recombination	and	repair,	 they	perform	diverse	functions	including	

signal	transduction,	energy	production,	carbohydrate	transport	and	metabolism	

among	others	(Figure	3.8).	 Interestingly,	RBPs	are	also	predominantly	 involved	

in	post-translational	modifications	of	other	proteins.	PTMs	 such	as	 acetylation,	

phosphorylation	 and	 ubiquitination	 are	 uniformly	 present	 among	 different	

functional	 classes,	 but	 methylation	 is	 observed	 mainly	 in	 RBPs	 whose	 main	

functions	involve	transcription,	RNA	processing,	transcription	and	maintaining		 	
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chromatin	 structure	 and	 dynamics.	 To	 investigate	 any	 sampling	 bias	 between	

RBPs	 and	 non-RBPs,	 I	 have	 randomly	 down-sampled	 non-RBPs	 from	 each	

respective	 functional	 class	 to	 match	 the	 number	 of	 RBPs.	 The	 percentage	 of	

modified	 amino	 acids	 and	 the	 distribution	 of	 PTMs	within	 the	 random	 down-

sampled	non-RBPs	indicate	that	the	distribution	is	not	due	to	any	sampling	bias	

(Figure	3.8).	

	
3.3.6	Amino	acid	abundance	

	

From	the	above	analyses	it	is	observed	that	phosphorylation,	ubiquitination	and	

acetylation	are	overrepresented	in	RBPs.	These	modifications	are	predominantly	

targeted	 at	 particular	 amino	 acids	 such	 as	 serine,	 threonine,	 tyrosine,	 arginine	

and	lysine	and	it	 is	therefore	possible	that	the	observed	enrichment	in	PTMs	is	

due	 to	 a	 bias	 in	 the	 sequence	 composition	 of	 RBPs	 towards	 these	 amino	 acid	

residues.	 I	 compared	amino	acid	abundances	 in	RBPs	and	non-RBPs	 to	 inspect	

enrichment	of	 these	amino	acids.	 I	observe	a	significant	enrichment	of	alanine,	

arginine,	 aspartate,	 glutamate,	 glycine	 and	 lysine	 amino	 acid	 residues	 in	RBPs,	

but	 depletion	 of	 cysteine,	 histidine,	 leucine,	 phenylalanine,	 serine,	 threonine,	

tryptophan	and	tyrosine.	Presence	of	amino	acids	such	as	asparagine,	glutamine,	

isoleucine,	methionine,	proline	and	valine	remain	unchanged	 in	RBPs	and	non-

RBPs	 (Figure	 3.9A).	 Charged	 amino	 acid	 residues	 such	 as	 arginine,	 lysine,	

aspartate	and	glutamate	are	preferred	at	the	protein	surface	where	the	surface	

electrostatic	 potential	 is	 conducive	 for	 electrostatic	 interactions	 with	 RNA.	 A	

large	majority	of	protein-RNA	interactions	involve	the	highly	negatively	charged	

RNA	sugar-phosphate	backbone	(Ellis	et	al.,	2007).	Charged	amino	acids	such	as	

lysine,	 arginine,	 aspartate	and	glutamate	 frequently	 interact	with	RNA	 through	

backbone	interactions,	 interactions	at	the	major	and	minor	grooves	or	stacking	

with	 nucleotide	 bases	 (Ananth	 et	 al.,	 2013;	 Morozova	 et	 al.,	 2006)	 and	 are	

observed	in	RBPs	more	than	expected	by	chance.	Aromatic	amino	acids	such	as	

phenylalanine,	 tyrosine	 and	 tryptophan	 form	 stacking	 interactions	 with	

nucleosides	 (Morozova	 et	 al.,	 2006),	 but	 are	 less	 common	 (Figure	 3.9A).	

Although	phosphorylation	is	the	most	prevalent	PTM	in	RBPs,	it	is		 	
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A	
	

	

B	
	
Figure	 3.9	 Amino	 acid	 abundance	 in	 RBPs	 and	 non-RBPs.	 (A)	Amino	acids	
occurrence	within	RBPs	as	a	percentage	of	their	total	sequence	lengths.	Glycine	
and	 charged	 amino	 acids	 such	 as	 lysine,	 arginine,	 glycine,	 glutamate	 are	
observed	 significantly	 more	 within	 RBPs	 than	 expected	 by	 chance,	 similarly	
cysteine	 and	 aromatic	 amino	 acids	 such	 as	 phenylalanine,	 tyrosine	 and	
tryptophan	are	 less	 frequent	 in	RBPs.	 (B)	The	 fraction	of	serine,	 threonine	and	
tyrosine	residues	phosphorylated	in	RBPs	is	significantly	more	compared	to	non-
RBPs	 and	 similarly	 they	 are	 targeted	 more	 in	 RBDpeps	 compared	 to	 non-
RBDpeps.	
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interesting	 to	 note	 that	 the	 fraction	 of	 residues	 that	 are	 mainly	 targeted	 for	

phosphorylation,	 such	 as	 serine,	 threonine	 and	 tyrosine,	 is	 less	 in	 RBPs	

compared	to	non-RBPs.	Comparison	of	phosphorylated	and	non-phosphorylated	

residues	shows	that	a	large	fraction	of	serine,	threonine	and	tyrosine	residues	in	

non-RBPs	are	not	modified	(Figure	3.9B);	36.20%	of	all	serine	residues	in	RBPs	

are	phosphorylated	compared	to	only	13.40%	in	non-RBPs,	similarly	22.81%	of	

threonine	 and	 35.38%	 of	 tyrosine	 residues	 in	 RBPs	 are	 phosphorylated	

compared	to	8.95%	and	12.49%	of	threonine	and	tyrosine	residues	respectively	

in	non-RBPs.	This	 fraction	of	phosphorylated	residues	 is	 significantly	higher	 in	

RBDpeps,	for	example	47.64%	of	serine	residues	within	RBDpeps	are	targets	for	

phosphorylation	and	similarly	 for	 threonine	and	tyrosine,	wherein	30.33%	and	

48.11%	residues	within	RBDpeps	respectively	are	modified.		

		

3.3.7	Protein	abundance	

	
PTMs	have	been	shown	to	influence	stability	and	cellular	abundances	of	proteins	

(Elia	et	al.,	2008;	Vazquez	et	al.,	2000).	The	PTM	levels	are	in	turn	influenced	by	

the	abundances	of	their	targeted	as	well	as	their	modifying	proteins	such	as	the	

‘writer’	and	‘eraser’	enzymes	(Beltrao	et	al.,	2013).	Since	protein	abundances	and	

PTMs	are	linked,	I	 investigated	whether	the	abundances	of	RBPs	and	non-RBPs	

play	a	role	 in	 the	observed	differences	 in	 their	PTM	levels.	 It	can	be	seen	 from	

Figure	 3.10A,	 that	 the	 PTM	 levels	 positively	 correlate	 with	 their	 protein	

abundances:	PTMs	occur	more	in	highly	abundant	proteins	compared	to	the	PTM	

levels	found	in	low	abundance	proteins	in	both	RBPs	and	non-RBPs.	Comparison	

of	their	relative	protein	abundances	also	show	that	RBPs	are	significantly	more	

abundant	in	the	cell	than	non-RBPs	(Figure	3.10A,	bottom	panel).	Human	RBPs	

are	 found	 to	 be	 nearly	 a	 hundred-fold	 more	 abundant	 (median	 abundance	 of	

RBPs	=	115.5	ppm)	than	non-RBPs	(median	abundance	of	non-RBPs	=	1.5	ppm).	

In	 agreement	 to	 the	 findings,	 an	 earlier	 study	 by	 (Gerstberger	 et	 al.,	 2014)	

observed	an	abundance	of	RBP	transcripts	compared	to	the	non-RBP	transcripts	

across	various	human	tissues.	Despite	having	different	cellular	abundances	both	

RBPs	 and	 non-RBPs	 show	 similar	 trends	 of	 PTM	 levels	 with	 respect	 to	 their	

abundances,	therefore,	in	order	to	check	the	influence	of	protein	abundances	on		
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A		 	 	

	

B			 	

Figure	 3.10	 Protein	 abundance	 and	 PTMs.	 (A)	 PTMs	 occur	 more	 in	 highly	
abundant	proteins	compared	to	low	abundance	proteins	in	both	RBPs	and	non-
RBPs.	 RBPs	 are	 also	 more	 abundant	 in	 the	 cell	 than	 non-RBPs.	 Protein	
abundance	is	measured	in	ppm	(parts	per	million).	(B)	Distributions	of	averaged	
percentage	of	amino	acid	residues	with	PTMs	among	all	and	abundance-matched	
proteins.	Vertical	lines	indicate	the	median	values.	
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PTM	 levels,	 I	 compared	PTM	 levels	 of	 RBPs	 and	non-RBPs	 that	 have	 the	 same	

cellular	abundances.	Figure	3.10B	shows	the	average	percentage	of	PTM	levels	of	

abundance-matched	proteins.	 It	 is	seen	that	RBPs	and	non-RBPs	with	the	same	

abundances	 have	 similar	 distributions	 of	 PTM	 levels.	 The	 median	 of	 the	

distribution	of	averaged	percentage	PTM	levels	in	RBPs	is	5.79,	which	is	similar	

to	the	median	of	the	distribution	of	averaged	percentage	PTM	levels	of	non-RBPs,	

which	is	4.33.	Since	the	abundance-matched	pairs	have	similar	PTM	levels,	 this	

therefore	indicates	that	much	of	the	difference	in	the	observed	PTM	levels	is	due	

to	 the	 differential	 protein	 abundances.	 The	 comparatively	 high	 levels	 of	 PTMs	

observed	in	RNA-binding	proteins	is	largely	due	to	the	high	abundances	of	RBPs	

within	the	cell.	The	shoulder	observed	in	the	distribution	of	RBPs	(Figure	3.10B)	

perhaps	indicates	a	sub-population	of	RBPs	with	higher	PTM	levels.	

	

3.3.8	Structural	validation	

	

RNA-binding	 peptides	 identified	 by	 (Castello	 et	 al.,	 2016)	 determine	 RNA-

binding	 sites	 at	 a	 peptide-wide	 resolution.	 In	 order	 to	 infer	 RNA-protein	

interactions	at	the	amino	acid	level	high-resolution	and	in	the	presence	of	PTMs,	

I	 compare	RNA-binding	 regions	 in	proteins	 identified	by	 (Castello	 et	 al.,	 2016)	

with	 their	 corresponding	 experimental	 structures.	 Using	 interactions	 from	 the	

available	structures	of	RNA-protein	complexes	in	PDB,	I	find	that	nearly	a	third	

(32.41%)	of	 the	amino	acids	 involved	 in	RNA-protein	 interactions	 in	structural	

complexes	are	also	identified	by	RBDpeps	(true-positives),	however	a	majority	of	

the	amino	acid	residues	that	interact	with	RNA	in	structural	complexes	(67.59%)	

were	 not	 part	 of	 RBDpep	 (false-negatives)	 (Figure	 3.11).	 Interactions	 that	 are	

not	 present	 in	 the	 structure	 but	 identified	 by	 (Castello	 et	 al.,	 2016)	 (false-

positives)	 were	 not	 computed	 because	 of	 unavailability	 of	 structural	 data	 for	

those	 regions.	 There	 are	 two	 reasons	 for	 the	 low	percentage	 of	 true-positives:	

first,	 shorter	RNA	molecules	 in	 the	 structure	may	not	 cover	 all	 the	 interaction	

sites	on	the	protein,	second,	 interatomic	 interactions	within	the	structure	were	

used	 to	 infer	 interacting	 amino	 acid	 residues,	 which	 will	 not	 include	 the	

neighbouring	 stretch	 of	 amino	 acids	 that	 are	 part	 of	 the	 peptide	 sequence	 in	

RBDpep	(Castello	et	al.,	2016).		 	



	 125	

	

	

	

	
	
Figure	 3.11	 Structural	 validation	 of	 RNA-binding	 peptides.	 (Castello	 et	 al.,	
2016)	 identifies	 32.41%	 amino	 acid	 residues	 that	 interact	 with	 RNA	 in	 RNA-
protein	 complexes	 (true-positives),	 but	does	not	 identify	67.59%	residues	 that	
show	interactions	in	RNA-protein	complexes	(false-negatives).	
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3.3.9	 Regulation	 of	 RNA-protein	 interactions	 mediated	 by	 post-

translational	modifications	

	
Results	from	the	previous	sections	have	clearly	shown	a	significant	presence	of	

PTMs	 in	RBPs,	and	 they	allude	 to	a	prominent	role	of	PTMs	 in	 the	 functions	of	

these	 RBPs.	 A	 large	 amount	 of	 literature	 evidence	 documents	 the	 influence	 of	

PTMs	 in	 regulating	 RNA-protein	 interactions	 and	 ultimately	 the	 functions	 of	

RBPs.	PTMs	affect	RNA-protein	interactions	in	diverse	ways;	one	of	the	common	

modes	 of	 regulation	 is	 through	 directly	 influencing	 interactions	 through	 their	

presence	 at	 the	 RNA-binding	 sites.	 The	 RNA-protein	 interactions	 are	 largely	

mediated	by	surface	electrostatics,	which	involve	hydrogen	bond	formation	and	

van	 der	 Waals	 interactions.	 Charged	 moieties	 such	 as	 phosphate	 and	 acetyl	

groups	 at	 the	 binding	 sites	 bring	 about	 local	 changes	 in	 the	 electrostatic	

potential,	 which	 can	 disrupt	 the	 hydrogen	 bond	 donor-acceptor	

complementarity.		

	

Phosphorylation	of	a	single	amino	acid	residue	within	the	RNA-binding	site	has	

been	 shown	 to	 affect	 affinity	 for	RNA.	 Phosphorylation	 of	 Ser46	 in	 the	 rubella	

virus	capsid	negatively	regulates	RNA-binding	by	decreasing	its	affinity	(Law	et	

al.,	 2003).	 This	 phosphorylation	mediated	decrease	 in	 affinity	 for	RNA	binding	

has	 been	 suggested	 to	 prevent	 nonspecific	 binding	 of	 cellular	 RNA	 and/or	

premature	 assembly	 of	 nuclear	 capsids,	 while	 dephosphorylation	 at	 the	 latter	

stages	 of	 virus	 assembly	 mediates	 increase	 affinity	 for	 RNA	 for	 efficient	

nucleocapsid	assembly	(Law	et	al.,	2003).	Insights	into	the	influence	of	PTMs	on	

interactions	 are	 provided	by	 studies	 employing	 targeted	modifications	 such	 as	

phosphomimetic	 substitutions,	 which	 use	 amino	 acid	 substitutions	 that	mimic	

phosphorylated	proteins.	A	phosphomimetic	replacement	of	Ser318	by	Asp318	

within	the	RNA	Recognition	Motif	3	(RRM3)	was	used	to	infer	the	mechanism	of	

RNA	 recognition	by	 the	Human	antigen	R	 (HuR)	protein	 (Scheiba	et	 al.,	 2014).	

The	mutated	residue	does	not	influence	the	protein	structure,	but	the	affinity	to	

bind	RNA	was	slightly	lower,	which	was	suggested	to	be	due	to	the	electrostatic	

repulsion	effect	between	Asp318	and	 the	RNA	backbone	 (Scheiba	et	al.,	2014).	

Interestingly	a	similar	phosphomimetic	substitution	of	Ser138	by	Asp138	in	the	
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RRM3	 of	 HuR	 protein	 clearly	 showed	 an	 enhanced	 affinity	 to	 type	 III	 AU-rich	

element	(ARE)	mRNAs	but	reduced	affinity	to	type	I	and	type	II	AREs	(Schulz	et	

al.,	 2013),	 suggesting	 influence	 by	 other	 factors.	 Changes	 in	 local	 surface	

electrostatics	by	PTMs	are	more	influential	for	those	interactions	that	are	highly	

specific	and	involve	conserved	interaction	sites.	An	example	of	such	disruption	in	

RNA-protein	interaction	is	observed	in	the	iron	regulatory	protein	1	(IRP1).	The	

phosphomimetic	substitution	of	an	evolutionarily	conserved	amino	acid	residue	

Ser711	by	Glu711	completely	abolishes	binding	of	IRP1	to	mRNA	iron-response	

elements	 (Fillebeen	 et	 al.,	 2005).	 This	 disruption	 in	RNA-protein	 interaction	 is	

attributed	 directly	 to	 changes	 in	 local	 surface	 electrostatics	 leading	 to	 loss	 of	

interaction	 as	 the	 substitution	 did	 not	 alter	 protein	 stability	 nor	 induce	

misfolding	 (Fillebeen	 et	 al.,	 2005).	 Interestingly,	 the	 phosphomimetic	

substitution	of	 Ser711	by	Glu711	also	had	a	detrimental	 effect	on	 the	 catalytic	

activity	 of	 IRP1,	 wherein	 its	 aconitase	 activity	 was	 severely	 impaired.	 The	

phosphomimetic	 mutant	 of	 IRP1	 displayed	 minimal	 capacity	 to	 generate	 the	

intermediate	cis-aconitate	from	citrate	and	was	only	partially	able	to	convert	cis-

aconitate	to	isocitrate	(Fillebeen	et	al.,	2005),	probably	because	of	its	proximity	

to	one	of	the	active	site	residues	Arg713	(Walden	et	al.,	2006)	(Figure	3.12A,B),	

indicating	 a	 broader	 influence	 of	 PTMs	 on	 protein	 functions.	 However,	 not	 all	

PTMs	 at	 the	 binding	 sites	 are	 detrimental	 to	 RNA-protein	 interactions.	

Acetylation	 of	 Sam68,	 a	member	 of	 the	 STAR	 family	 of	 KH	 domain	 containing	

RNA-binding	proteins,	is	shown	to	enhance	RNA-binding	(Babic	et	al.,	2004).	The	

acetylation	of	lysine	residues	within	the	RNA-binding	region	of	highly	conserved	

GSH	domain	by	acetyltransferase	CBP	positively	regulates	association	of	Sam68	

with	 the	 poly(U)	 RNA	 substrate	 and	 this	 enhanced	 association	 is	 suggested	 to	

play	a	role	in	tumor	cell	proliferation	(Babic	et	al.,	2004).	

	

Apart	 from	directly	 regulating	 interactions	 at	 the	RNA-binding	 sites,	 PTMs	 can	

also	 indirectly	 regulate	RNA-binding	 through	 changes	 in	protein	 conformation,	

or	 affect	 oligomerisation	 by	 switching	 affinity	 towards	 proteins.	 For	 example	

methylation	 of	 the	 nuclear	 poly(A)	 binding	 protein	 PABPN1,	 favours	 RNA-

binding	 but	 weakens	 affinity	 of	 PABPN1	 towards	 the	 nuclear	 import	 receptor	

protein	 transportin	 (Fronz	 et	 al.,	 2011).	 RNA	 and	 transportin	 compete	 for	
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binding	to	PABPN1	and	is	regulated	by	its	methylation.	However	on	the	contrary	

phosphorylation	 of	 the	 RNA-binding	 protein	 p54(nrb)	 does	 not	 affect	 its	

interaction	with	proteins	but	selectively	diminishes	its	binding	to	5’	splice	sites,	

ploy(A),	poly(U)	and	poly(C)	homoribopolymers	but	not	to	poly(G),	non	coding	

RNA	Neat1	and	PIR-1	RNA	(Bruelle	et	al.,	2011).	Similarly	acetylation	of	TDP-43,	

a	highly	conserved	RNA	and	DNA-binding	protein,	results	in	impairing	its	RNA-

binding	 but	 in	 turn	promotes	 protein	 accumulation	 that	 resemble	 pathological	

inclusions	in	amyotrophic	lateral	sclerosis	(Cohen	et	al.,	2015).		

	

A	 few	structural	studies	have	provided	 insights	 into	 the	competitive	regulation	

of	RNA	and	protein	binding	by	PTMs	by	bringing	about	changes	in	entropy.	The	

component	 of	 the	 yeast	 U5	 small	 nuclear	 ribonucleoprotein	 (snRNP)	 Aar2	

competes	 with	 protein,	 U5-specific	 helicase	 Brr2,	 and	 di-snRNA	 U4/U6	 for	

binding	 to	 U5-specific	 protein	 Prp8	 (Weber	 et	 al.,	 2013).	 Phosphomimetic	

mutation	 of	 Ser253	 to	 Glu253	 in	 Aar2	 results	 in	 a	 ten-fold	 reduced	 affinity	

towards	 Prp8	 compared	 to	 wild-type	 Aar2	 and	 is	 due	 to	 the	 enthalpic	

gain/entropic	loss	resulting	from	the	folding	and	immobilisation	of	unstructured	

region.	 This	 change	 in	 conformation	 in	 Aar2	 no	 longer	 results	 in	 competitive	

binding	to	Prp8	but	allows	both	Brr2	and	U4/U6	di-snRNA	to	cooperatively	bind	

to	 Prp8	 (Weber	 et	 al.,	 2013).	 Similarly	 entropy	 changes	 brought	 about	 by	 N-

acetylation	of	Lys50	in	the	Tat	peptide	decreases	binding	affinity	towards	HIV-1	

TAR	RNA	 (Kumar	and	Maiti,	 2013).	Acetylation	of	Lys50	 is	 essential	 for	Tat	 to	

associate	with	p300/CBP-associated	factor	(PCAF).	Mutation	of	Lys50	to	Arg50,	

which	prevents	acetylation	of	Tat,	results	in	disassociation	of	Tat	from	TAR	RNA	

but	promotes	its	association	with	PCAF	(Mujtaba	et	al.,	2002).		

	

Phosphorylation	of	 the	histone	 chaperone	B23/nucleophosmin,	which	binds	 to	

ribosomal	RNA	(rRNA)	chromatin	and	stimulates	rRNA	transcription,	too	results	

in	 its	 decreased	 RNA-binding	 (Okuwaki	 et	 al.,	 2002).	 Conserved	 threonine	

residues	within	 the	 intrinsically	disordered	 regions	of	B23	play	a	 role	 in	RNA-

binding	and	phosphomimetic	mutations	of	 these	residues	result	 in	significantly	

lower	 RNA-binding	 activity,	 but	 do	 not	 influence	 disorderedness	 indicating	 a	
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major	role	of	phosphorylation,	but	not	structure,	influenced	loss	of	RNA-binding	

(Hisaoka	et	al.,	2014;	Hisaoka	et	al.,	2010).	

	

A 	

B	 	

	
Figure	3.12	Comparison	of	effects	of	phosphorylation	on	 the	RNA-binding	
of	 IRP1.	 (A)	 Structure	 of	 rabbit	 IRP1	 wild-type	 protein	 in	 complex	 with	 frog	
ferritin	H	IRE-RNA	(pink)	(PDB:	3SNP).	The	cis-aconitase	active	site	residue	Arg	
713	and	the	conserved	Ser	711	are	shown	as	sticks	(yellow).	(B)	The	structure	is	
mutated	 in-silico	 to	 replace	 Ser	 711	 with	 a	 phosphomimetic	 residue	 Glu	 711,	
which	 may	 reduce	 affinity	 with	 the	 RNA-backbone	 due	 to	 the	 presence	 of	
negative	 electrostatic	 potential.	 In-silico	 mutation	 was	 carried	 out	 in	 UCSF	
Chimera	package	with	Dunbrack	rotamer	libraries	(Dunbrack,	2002).	
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3.4	Conclusion	

	

In	 this	 study	 I	 have	 shown	 that	RNA-binding	proteins	 are	 enriched	 in	 sites	 for	

post-translational	 modifications	 such	 as	 phosphorylation,	 acetylation,	

methylation	and	ubiquitination.	The	experimentally	known	RBPs	constitute	only	

about	 5%	 of	 the	 total	 human	 proteome	 (isoforms	 not	 included),	 nevertheless	

they	 show	 a	 significant	 enrichment	 in	 PTM	 sites	 over	 other	 non-RBPs,	 which	

suggest	 that	 RBPs	 are	 a	 highly	 regulated	 class	 of	 proteins.	 Given	 the	 dynamic	

nature	of	interaction	of	RNA	with	proteins	of	various	kinds	at	different	stages	of	

its	life	cycle	(Lunde	et	al.,	2007),	I	hypothesize	that	PTMs,	as	regulatory	switches,	

represent	a	fine-tuning	mechanism	that	can	dynamically	influence	association	or	

disassociation	of	proteins	with	RNA.		

	

PTM	 sites	 were	 found	 enriched	 in	 RNA-binding	 regions,	 as	 also	 observed	 by	

(Castello	et	al.,	2016).	The	presence	of	more	PTMs	sites	on	regions	that	interact	

with	RNA	could	provide	a	direct	means	to	regulate	RNA-protein	interactions	by	

changing	 the	 local	 surface	 electrostatics.	 It	 is	 well	 known	 that	 RBPs	 comprise	

disordered	 regions	 and	 are	 sites	 for	 PTMs.	 Comparison	 of	 PTM	 sites	 on	

disordered	and	globular	regions	of	RBPs	and	non-RBPs	indicates	that	despite	a	

significant	presence	of	disordered	regions	within	RBPs,	there	is	no	enrichment	of	

PTM	sites	 in	disordered	regions.	Amino	acid	composition	has	shown	that	RBPs	

are	 enriched	 with	 charged	 RNA-binding	 residues	 such	 as	 lysine,	 arginine,	

aspartate	 and	 glutamate,	 but	 are	 also	 depleted	 in	 other	 amino	 acids,	 most	

importantly,	 serine,	 threonine	 and	 tyrosine,	 which	 are	 the	 major	 targets	 for	

phosphorylation.	 Phosphorylation	 is	 significantly	 enriched	 in	 RBPs,	 but	 a	

relatively	 lower	 fraction	 of	 phosphorylation-targeted	 amino	 acids	 indicate	 that	

these	amino	acids	are	more	frequently	phosphorylated	than	those	in	non-RBPs.	

For	 example,	 I	 find	 that	 nearly	 a	 third	 of	 all	 the	 serine	 residues	 in	 RBPs	 are	

targets	 for	phosphorylation	and	 the	chances	of	 them	being	phosphorylated	are	

even	higher	if	these	residues	are	present	within	RNA-binding	sites.	About	half	of	

all	 the	 serine	 and	 tyrosine	 residues	 within	 RBDpeps	 are	 sites	 for	

phosphorylation.		
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Although	PTMs	are	enriched	in	RBPs,	the	above	analyses	have	indicated	that	this	

enrichment	 is	neither	due	 to	 the	presence	of	more	disordered	 regions	 in	RBPs	

nor	due	to	the	bias	in	amino	acid	composition	of	RBPs.	The	enrichment	of	PTMs	

in	 RBPs	 is	 associated	 with	 increased	 cellular	 abundance.	 Although	 there	 is	 a	

positive	 correlation	 between	PTM	 levels	 and	 abundances,	 correlation	 does	 not	

necessarily	 imply	causation;	 it	 is	not	clear	whether	PTMs	 lead	to	abundance	or	

vice	versa	or	both.		

	

RBPs	identified	by	the	RBDmap	technique	(Castello	et	al.,	2016)	overlap	nearly	a	

third	of	proteins	annotated	as	RNA-binding	in	Swiss-Prot	(release	2016_10).	This	

partial	overlap	between	the	two	datasets	can	be	attributed	to	the	experimental	

design.	 RBDmap	 will	 miss	 some	 of	 the	 proteins	 if	 they	 are	 i)	 bound	 to	 non-

polyadenylated	 RNAs,	 this	 includes	 proteins	 that	 bind	 to	 small	 RNAs	 and	

ribosomal	 RNAs	 ii)	 weakly	 bound	 or	 have	 low	 cross-linking	 efficiency,	 iii)	

interact	with	 sugar-phosphate	 backbone	 and	 not	 the	 nucleotides	 or	 iv)	 do	 not	

have	cleavage	sites	for	LysC	or	ArgC	peptidases	(Castello	et	al.,	2016).	Moreover,	

the	RBPs	 identified	by	(Castello	et	al.,	2016)	are	 from	a	single	experiment	-	UV	

crosslinking	followed	by	oligodT	capture	and	mass	spectroscopy,	while	the	RBPs	

curated	 in	Swiss-Prot	are	 identified	using	various	experimental	 techniques	and	

therefore	covers	a	wide	range	of	protein	types.	Despite	the	above	experimental	

limitations	72%	of	RBPs	identified	by	RBDmap	are	novel	and	are	not	annotated	

as	 such	 in	 Swiss-Prot.	 As	 mentioned	 earlier	 in	 the	 methods	 section	 3.2.2,	 the	

number	of	RBPs	not	detected	by	RBDmap	and	 therefore	assigned	as	non-RBPs	

represents	 a	 small	 fraction	 (7.92%)	of	 the	entire	human	non-RBP	set	 and	may	

not	 significantly	 influence	 observations.	 Protein	 abundances	 also	 play	 an	

important	 role	 in	 their	 identification,	 wherein	 abundant	 proteins	 are	 readily	

detected	 by	 techniques	 such	 as	mass	 spectrometry	 (Millioni	 et	 al.,	 2011).	 The	

authors	report	 that	 the	experimental	methods	of	RBDmap	are	not	selective	 for	

identifying	highly	abundant	RBPs	within	the	cell	(Castello	et	al.,	2016).	By	using	

an	 independent	 control	 datasets	 of	 RBPs	 from	 Swiss-Prot,	 any	 biases	 in	 RBP	

coverage	and	detection	influenced	by	protein	abundances	were	minimised.	
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PTMs	 in	 RBPs	 are	 indicative	 of	 its	 significance	 in	 regulation	 of	 RNA-protein	

interactions,	however	 it	 should	also	be	noted	 that	PTMs	do	not	 fully	 represent	

the	 regulatory	 mechanisms	 of	 RNA-protein	 interactions,	 post-transcriptional	

modifications	 of	 RNA	 substrates	 and	 other	 cellular	 factors	 that	 govern	 the	

relative	 concentration	 of	 RNA	 and	 protein	 concentrations	 in	 vivo	 could	 also	

influence	 RNA-protein	 interactions.	 Availability	 of	 large-scale	 post-

transcriptional	 data	 and	 high-resolution	 experimental	 structures	 of	 full-length	

RNA-protein	 complexes	 will	 be	 useful	 in	 fully	 understanding	 the	 regulatory	

interactions	between	RNA	and	proteins.	
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Chapter	4	

	
	
Long	non-coding	RNA	mediated	regulation	of	

gene	expression	in	hereditary	

hemochromatosis	

	
	
4.1	Introduction	

	 	

Non-coding	 transcripts	 form	 a	 major	 part	 of	 the	 human	 transcriptome	

comprising	 nearly	 48%	 (Pertea,	 2012)	 to	 68%	 (Iyer	 et	 al.,	 2015)	 of	

transcriptional	 output.	 Although	 by	 definition	 non-coding	RNAs	 do	 not	 encode	

proteins,	 growing	 evidences	 suggest	 their	 involvement	 in	 crucial	 biological	

functions;	 they	 serve	 as	 key	 regulatory	 molecules	 in	 gene	 expression	 at	

epigenetic,	 transcriptional	 and	 post-transcriptional	 levels,	 protein	 localisation	

and	serve	as	organisational	frameworks	for	subcellular	structures	(Santosh	et	al.,	

2015;	 Wilusz	 et	 al.,	 2009).	 Aberrant	 activity	 of	 non-coding	 RNAs	 have	 been	

linked	 to	 various	 conditions	 such	 as	 cancer	 and	 other	 metabolic	 diseases.	

Hereditary	 hemochromatosis	 is	 a	 genetic	 metabolic	 disorder	 that	 results	 in	

excessive	iron	concentrations	in	the	body.	The	aetiology	of	hemochromatosis	is	

well	known	but	the	regulatory	mechanism	of	non-coding	RNAs	is	only	beginning	

to	 be	 understood.	 In	 order	 to	 understand	 the	 role	 of	 non-coding	 RNAs	 in	

hemochromatosis	I	have	investigated	various	aspects	of	lncRNA	interaction	with	

coding	 and	 non-coding	 transcripts.	 Firstly,	 I	 study	 homology	 of	 lncRNA	

transcripts	between	mouse	and	human.	Next,	by	predicting	miRNA-binding	sites	

shared	 between	 mRNAs	 and	 lncRNAs,	 I	 study	 the	 competing	 regulatory	

interactions	between	them	mediated	by	miRNAs.	I	then	investigate	correlation	of	
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gene	expression	between	sense-antisense	pairs	of	mRNAs	and	 long	non-coding	

RNAs	and	their	association	with	genomic	regulatory	elements	to	understand	the	

cis-	and	trans-regulatory	influence	of	lncRNAs	on	gene	expression.	

	

The	genetic	message	encoded	in	the	genome	is	conveyed	through	intermediary	

messenger	 RNAs	 (mRNA),	 which	 are	 translated	 into	 functional	 proteins,	 a	

process	 termed	 gene	 expression.	 The	 expression	 of	 a	 gene	 is	 controlled	 by	

different	mechanisms	which	include	regulating	the	number	of	transcribed	copies	

of	 mRNA,	 the	 number	 of	 mRNAs	 available	 for	 translation	 into	 proteins,	

regulating	 the	 translational	machinery	 or	 by	 regulating	 the	proper	 folding	 and	

function	of	the	translated	protein	product	itself.		

	

A	significant	fraction	of	the	genome	encodes	non-protein-coding	genes	(Encode	

et	 al.,	 2007),	 which	 include	 ribosomal	 RNAs	 (rRNAs),	 transfer	 RNAs	 (tRNAs),	

long	non-coding	RNAs	(lncRNAs;	>	200	nucleotides)	and	short	non-coding	RNAs	

such	as	micro-RNAs	(miRNA;	~22	nucleotides),	small	interfering	RNAs	(siRNAs;	

20	 to	 25	 nucleotides),	 PIWI-associated	 RNAs	 (piRNAs;	 26	 to	 30	 nucleotides),	

among	 others.	 Short	 non-coding	 RNAs	 regulate	 gene	 expression	 by	 a	 process	

called	 RNA	 interference	 (RNAi),	 wherein	 miRNA,	 siRNA	 and	 piRNA	 target	

complementary	 sequences	on	 the	3’	 untranslated	 regions	 (UTR)	of	mRNA.	The	

argonaute	protein,	which	constitutes	the	RNA	induced	silencing	complex	(RISC)	

together	 with	 miRNA	 or	 siRNA,	 cleaves	 target	 mRNA	 upon	 complementary	

binding	 of	 miRNA	 seed	 sequences	 (nucleotides	 2	 to	 7	 from	 5’-end)	 to	 mRNA	

resulting	in	loss	of	gene	expression	(Wilson	and	Doudna,	2013).	

	

The	 modes	 of	 action	 of	 lncRNAs	 on	 regulating	 gene	 expression,	 however,	 are	

quite	different.	LncRNAs	have	been	shown	to	influence	gene	expression	at	both	

their	proximal	loci	(cis-acting)	as	well	as	at	distal	loci	on	a	different	chromosome	

(trans-acting).	 LncRNAs	 activate	 or	 repress	 gene	 expression	 through	 several	

mechanisms,	 which	 include	 affecting	 accessibility	 through	 chromatin	

modulation,	 binding	 to	 transcription	 factors,	 binding	 to	 protein-transport	

factors,	 forming	 lncRNA-DNA	 triplex	 structures	 or	 mimic	 DNA-binding	 sites	

(Geisler	 and	 Coller,	 2013).	 One	 of	 the	 best-studied	 examples	 of	 a	 cis-acting	
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lncRNAs	 is	 the	 ‘X	 inactive	 specific	 transcript	 (Xist)’	 (Ng	 et	 al.,	 2007).	 Xist	

regulates	dosage	compensation	in	female	cells	by	associating	with	one	of	the	X-

chromosome	from	which	it	was	transcribed	and	causes	its	inactivation	(Ng	et	al.,	

2007).	 Xist	 mediates	 this	 inactivation/transcriptional	 silencing	 by	 acting	 as	 a	

scaffold	 for	 multiple	 regulatory	 proteins.	 The	 A-repeat	 region	 of	 Xist	 directly	

binds	to	the	scaffold	attachment	factor	A	and	histone	deacetylase	1	(HDAC1)	and	

promotes	 deacetylation	 by	HDAC3	 and	 demethylation	 of	 histone	 3	 on	 lysine	 4	

(H3K4)	(Engreitz	et	al.,	2016).	Xist	also	indirectly	recruits	polycomb	repressive	

complexes	1	and	2	(PRC1	and	PRC2)	through	binding	of	heterogeneous	nuclear	

ribonucleoproteins	K	(hnRNPK)	and	SMRT/HDAC1-associated	repressor	protein	

(SHARP)	to	the	B-F	repeat	(Engreitz	et	al.,	2016;	McHugh	et	al.,	2015).	PRC1	and	

PRC2	 mediate	 trimethylation	 of	 histone	 H3	 on	 lysine	 27	 (H3K27me3),	 a	

repressive	 chromatin	 mark,	 across	 the	 inactive	 X	 chromosome.	 The	 histone	

methyltransferase	SETDB1,	one	of	the	other	proteins	recruited	by	Xist	deposits	

repressive	H3K9me2	and	H3K9me3	marks.	It	has	been	noted	that	lncRNAs	also	

take	 part	 in	 activating	 gene	 expression	 in	 cis.	 An	 example	 of	 such	 activating	

lncRNA	 is	 the	 ‘HOXA	 transcript	 at	 the	distal	 tip’	 (HOTTIP)	 (Wang	et	 al.,	 2011).	

HOTTIP	is	transcribed	from	the	5’	tip	of	the	HOXA	locus,	which	includes	a	cluster	

of	genes	expressed	during	embryonic	development	(Wang	et	al.,	2011).		HOTTIP	

binds	 WD	 repeat-containing	 protein	 5	 (WDR5)	 and	 recruits	 mixed-lineage	

leukaemia	 (MLL)	 proteins,	 which	 are	 SET-domain-containing	 lysine	

methyltransferases	 and	 deposit	 H3K4me3	 marks	 near	 the	 transcription	 start	

sites	 of	 multiple	 5’	 HOXA	 genes	 (Wang	 et	 al.,	 2011).	 Knockdown	 on	 WDR5	

inhibits	expression	of	5’	HOXA	genes	and	HOTTIP	RNA,	while	overexpression	of	

HOTTIP	is	implicated	in	lung,	pancreatic,	colorectal,	prostate	and	gastric	cancers	

(Lian	et	al.,	2016).	Some	of	the	other	cis-acting	lncRNAs	include	AIR	(Nagano	et	

al.,	2008)	and	ANRIL	(Yap	et	al.,	2010).	

	

A	 number	 of	 lncRNAs	 are	 shown	 to	 function	 in	 trans.	 One	 of	 the	 well-known	

examples	 includes	 the	 ‘HOX	 transcript	 antisense	 RNA’	 (HOTAIR)	 (Tsai	 et	 al.,	

2010).	The	antisense	HOTAIR	is	transcribed	from	the	HOXC	locus	between	genes	

HOXC11	 and	 HOXC12	 on	 human	 chromosome	 12	 and	 carries	 out	 silencing	 of	

genes	on	 the	HOXD	 locus	on	 chromosome	2	 (Rinn	et	 al.,	 2007).	The	5’	domain	
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and	the	3’	domains	of	HOTAIR	were	shown	to	bind	PRC2	and	LSD1	respectively	

(Rinn	 et	 al.,	 2007;	 Tsai	 et	 al.,	 2010).	 PRC2	 comprises	 H3K27	methylase	 EZH2,	

SUZ12	 and	 EED,	 while	 LSD1	 is	 a	 demethylase	 that	 mediates	 enzymatic	

demethylation	of	H3K4me2	(Tsai	et	al.,	2010).	Both	PRC2	and	LSD1	can	bind	to	

multiple	proteins	providing	it	with	DNA	target	specificity	(Tsai	et	al.,	2010).	The	

HOTAIR	 complex,	 by	 a	 yet	 unknown	 mechanism,	 guides	 PRC2	 and	 LSD1	 to	

various	 genomic	 locations	 resulting	 in	 their	 silencing	 via	 H3K27me3	 by	 PRC2	

and	H3K4	demethylation	by	LSD1	(Rinn	et	al.,	2007;	Tsai	et	al.,	2010).	It	is	shown	

that	 the	microRNA	miR-141	regulates	expression	of	HOTAIR	(Chiyomaru	et	al.,	

2014)	and	 that	HOTAIR	expression	 is	altered	 in	many	cancers	 including	breast	

(Gupta	et	al.,	2010),	gastric	 (Hajjari	et	al.,	2013)	and	pancreatic	cancer	 (Kim	et	

al.,	 2013).	 Interestingly	 recent	 studies	 have	 cast	 doubts	 on	 the	 function	 of	

HOTAIR	in	silencing	HOXD	cluster	(Schorderet	and	Duboule,	2011;	Selleri	et	al.,	

2016).	 Unlike	 in	 humans,	 HOTAIR	 was	 observed	 not	 to	 significantly	 influence	

HoxD	 cluster	 of	 genes	 in	 mouse	 (Schorderet	 and	 Duboule,	 2011).	 HOTAIR	 is	

poorly	 conserved	 in	 sequence	 between	 human	 and	 mouse.	 The	 complete	

deletion	 of	 HoxC	 cluster	 in	 mouse	 does	 not	 influence	 expression	 pattern	 or	

chromatin	marks	on	target	HoxD	genes	(Schorderet	and	Duboule,	2011),	but	on	

the	 contrary	 a	 4-kb	 deletion	 within	 the	 HoxC	 cluster	 in	 mouse	 was	 shown	 to	

derepress	expression	of	HoxD	gene	cluster	 leading	 to	severe	phenotypes	 (Li	et	

al.,	2013).	Further	recent	follow	up	studies	on	HoxC	cluster	deletion	in	mice	have	

reconfirmed	 previous	 observations	 that	 HOTAIR	 has	 no	 major	 role	 in	 trans-

regulation	 of	 gene	 expression	 of	 HoxD	 locus,	 but	 allude	 to	 a	 cis-regulation	 of	

expression	of	 neighbouring	HoxC11	and	HoxC12	genes	 (Amandio	 et	 al.,	 2016).	

The	differences	in	observations	between	the	two	studies	on	the	role	of	HOTAIR	

on	 gene	 expression	 regulation	 of	 HoxD	 locus	 is	 attributed	 to	 different	 genetic	

backgrounds	of	mice	used	(inbred	C57BL/6	versus	mixed	background	C57BL/6	

and	 CBA)	 and	 transcriptome	 profiling	 of	 cells	 from	 different	 tissues	 (tail	 tip	

fibroblasts	 versus	 forelimb,	 hindlimb,	 genital	 tubercle,	 and	 lumbosacral,	

sacrocaudal,	and	caudal	trunk)	and	at	different	developmental	stages	(newborn	

mice	 versus	 E12.5	 embryos)	 (Li	 et	 al.,	 2016a;	 Selleri	 et	 al.,	 2016).	 Additional	

studies	 on	 HOTAIR	 are	 proposed	 to	 clearly	 understand	 the	 role	 of	 HOTAIR	 in	

regulation	of	expression	of	HoxD	locus	(Li	et	al.,	2016a).		



	 145	

Recently	 a	 novel	mechanism	of	 gene	 expression	 regulation	 has	 been	 proposed	

involving	 both	 lncRNAs	 and	 miRNAs	 termed	 competing	 endogenous	 RNA	

(ceRNA)	(Salmena	et	al.,	2011).	Protein	non-coding	transcripts,	such	as	lncRNAs	

and	pseudogenes,	 that	share	common	miRNA	binding	sites	or	miRNA	response	

elements	 (MREs)	with	mRNAs,	 compete	with	mRNAs	 to	bind	 the	 same	pool	 of	

miRNAs	 (Salmena	 et	 al.,	 2011).	 This	 crosstalk	 between	 non-coding	 RNAs	 and	

mRNAs	is	proposed	to	regulate	their	respective	gene	expression	levels	(Salmena	

et	al.,	2011).	Based	on	their	relative	abundances	and	the	number	of	MREs,	non-

coding	 RNAs	 act	 as	 molecular	 sponges	 in	 sequestering	 miRNAs	 and	 thereby	

influence	protein	 expression	 levels	 (Figure	 4.1).	 This	mode	 of	 gene	 expression	

regulation	has	been	observed	in	a	few	cases:	the	tumour	suppressor	gene	PTEN	

and	 its	pseudogene	PTENP1	are	both	 targets	of	miRNAs	miR-19b	and	miR-20a	

(Poliseno	et	al.,	2010).	Overexpression	of	PTENP1	3’	un-translated	region	(UTR)	

transcripts	 derepresses	 expression	 of	 PTEN	 transcript	 and	 protein,	 indicating	

that	 PTENP1	 3’	 UTR	 functions	 as	 a	 decoy	 to	 bind	 miR-19b	 and	 miR-20a	 and	

promotes	PTEN	mRNA	expression	(Poliseno	et	al.,	2010).	Other	complex	process	

have	been	observed	where	competitive	associations	with	miRNAs	are	used	as	a	

means	to	auto-regulate	protein	activity.	The	lncRNA	HULC	acts	as	a	decoy	to	bind	

miR-372,	 which	 also	 targets	 the	 3’	 UTR	 of	 PRKACB.	 The	 transcription	 factor	

CREB,	 which	 is	 phosphorylated	 by	 PRKACB,	 auto	 regulates	 its	 activity	 by	

overexpressing	HULC	which	 in	 turn	 sustains	 PRKACB	 expression	 (Wang	 et	 al.,	

2010).		

	

In	this	chapter	I	 investigate	the	functions	and	regulatory	role	of	 lncRNAs,	using	

various	approaches,	which	includes	studying	the	ceRNA	hypothesis	on	regulating	

gene	 expression	 in	 hereditary	 hemochromatosis.	 This	work	 is	 in	 collaboration	

with	 Dr.	 Martina	 Muckenthaler	 and	 Dr.	 Kamesh	 Rajendra	 Babu	 from	 the	

University	 Hospital	 Heidelberg.	 Hereditary	 hemochromatosis	 (HH)	 is	 an	

autosomal	condition	that	causes	systemic	iron	overload	due	to	mutations	in	one	

or	 more	 iron	 response	 genes	 (Bomford,	 2002).	 Characteristics	 of	

hemochromatosis	 include	 increased	 absorption	 of	 iron,	 hyper	 ferremia	 and	

tissue	 iron	 overload.	 Other	 associated	 complications	 include	 liver	 cirrhosis,	

cancer,	 diabetes,	 heart	 failure	 and	 arthritis	 (Muckenthaler,	 2014).	 HH	 is	
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observed	in	people	of	northern	European	descent	with	an	estimated	prevalence	

of	 0.4%	 to	 9.2%	 in	 the	 population	 (Bomford,	 2002).	 To	 date	 five	 types	 of	

hemochromatosis	 have	 been	 described:	 Type	 1,	 which	 is	 the	 most	 prevalent	

subtype,	 is	 autosomal	 recessive	 caused	by	 the	mutation	C282Y	 in	 the	HH	gene	

Hfe	(Feder	et	al.,	1996);	Type	2	or	juvenile	hemochromatosis	is	a	rare	autosomal	

recessive	condition	caused	by	an	unidentified	locus	(Roetto	et	al.,	1999);	Type	3	

is	 a	 autosomal	 recessive	 condition	 caused	 by	 mutation	 in	 the	 transferrin	

receptor	2	protein	Tfr2	 (Camaschella	et	 al.,	 2000);	Type	4	hemochromatosis	 is	

autosomal	 dominant	 and	 is	 due	 to	mutation	 in	 the	 intestinal	 iron	 transporter	

ferroportin	Fpn	(Slc40a1)	(Njajou	et	al.,	2001)	and	Type	5,	which	is	an	autosomal	

dominant	condition	caused	by	mutation	in	the	H-subunit	of	iron	storage	protein	

ferritin	(Kato	et	al.,	2001).	

	

The	 hepatic	 proteins	 affected	 in	 type	 1,	 type	 3	 and	 type	 5	 hemochromatosis,	

namely	Hfe,	Tfr2	and	ferritin	respectively,	are	involved	in	upstream	iron	sensing,	

regulating	 iron	 uptake	 and	 storage	 (Pantopoulos,	 2008;	 Worthen	 and	 Enns,	

2014).	 In	 comparison,	 the	 protein	 affected	 in	 type	 4	 hemochromatosis	 is	 the	

downstream	major	 cellular	 iron	 exporter	 ferroportin	 (Njajou	 et	 al.,	 2001).	 The	

regulatory	mechanisms	by	which,	intestinal	iron	absorption	and	export	into	the	

bloodstream	by	ferroportin,	offer	unique	insights	into	homeostasis	of	iron	in	the	

body.	 Figure	 4.2	 illustrates	 the	 systemic	 iron	 metabolism	 pathway.	 The	 liver	

secretes	a	peptide	hormone	hepcidin	(Hamp)	in	response	to	high	systemic	iron	

levels	and	inflammation	(Nemeth	et	al.,	2004).	Hepcidin	binds	to	its	only	known	

receptor	 ferroportin,	 present	 on	 duodenal	 enterocytes	 and	 macrophages	

(Donovan	 et	 al.,	 2005).	 Upon	 hepcidin	 binding,	 ferroportin	 undergoes	

ubiquitination,	which	 causes	 it	 to	be	 internalised	and	degraded	 (Nemeth	et	 al.,	

2004;	Qiao	et	al.,	2012).	The	gain-of-function	mutation	C326S	makes	ferroportin	

resistant	 to	 hepcidin	 (Altamura	 et	 al.,	 2014)	which	prevents	 its	 internalisation	

and	degradation	(Fernandes	et	al.,	2009)	resulting	in	unchecked	iron	export	into	

the	bloodstream	causing	systemic	iron	overload.		

	

Two	mouse	models,	Slc40a1C326S/C326S	(Fpn-C326S),	which	has	iron	overload	and	

resembles	pathology	of	human	HH	type	4,	and	ferroportin	trap	Slc40a1trap	(Fpn-
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Trp),	which	resembles	iron	deficiency,	are	used	in	this	study	(see	methods	4.2.1	

for	description	of	mouse	models).	Small	non-coding	RNA	has	been	shown	to	play	

a	 regulatory	 role	 in	 iron	 homeostasis	 (Castoldi	 et	 al.,	 2011).	 The	 liver	 specific	

miRNA	 miR-122	 controls	 systemic	 iron	 homeostasis	 in	 mouse	 by	 targeting	 3’	

UTR	of	mRNAs	that	encode	activators	of	hepcidin	(Hamp)	transcription,	such	as	

hemochromatosis	 (Hfe),	 hemojuvelin	 (Hjv)	 and	 bone	 morphogenetic	 protein	

receptor	 type	 1	 A	 (Bmpr1a)	 (Castoldi	 et	 al.,	 2011).	 	 Other	miRNAs	 associated	

with	 iron	metabolism	 include	 miR-Let-7d,	 miR-196,	 miR-320	 and	miR-485-3p	

(Yujing	 Li,	 2013).	 Although	miRNA	mediated	 regulation	 of	 iron	 homeostasis	 is	

well	documented,	very	little	is	known	about	the	role	of	lncRNAs.	I	investigate	the	

potential	 regulatory	 role	 of	 lncRNAs	 in	 iron	homeostasis	 by	 exploring	possible	

interactions	 between	 lncRNAs,	 miRNAs	 and	 mRNAs	 and	 the	 correlation	 in	

expression	of	mRNA	and	lncRNA	pairs.	
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Figure	 4.1	 Schematic	 representation	 of	 competing	 endogenous	 RNA	
(ceRNA)	 hypothesis.	 	When	 long	 non-coding	RNA	 and	mRNA	 share	 the	 same	
miRNA	response	elements	(A)	downregulation	of	lncRNAs	causes	free	miRNAs	to	
target	 mRNA	 resulting	 in	 decreased	 protein	 expression,	 while	 (B)	
overexpression	of	lncRNAs	sequesters	(sponges)	away	miRNAs	which	results	in	
availability	 of	 mRNA	 translation.	 Figure	 adapted	 from	 (Xia	 et	 al.,	 2014)	 DOI:	
10.1038/srep06088.	
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Figure	4.2	Schematic	representation	of	systemic	iron	metabolism	pathway.	
The	 dietary	 iron	 is	 absorbed	 through	 the	 divalent	metal	 transporter	 1	 (Dmt1)	
present	 on	 the	 enterocytes	 and	 is	 exported	 and	 released	 into	 systemic	
circulation	 by	 ferroportin	 (Slc40a1).	 The	 peptide	 hormone	 hepcidin	 (Hamp)	
binds	 to	 ferroportin	 in	 response	 to	high	 systemic	 iron	 levels	and	 inflammation	
and	 regulates	 its	 activity.	 Figure	 adapted	 from	 (Pantopoulos	 et	 al.,	 2012)	DOI:	
10.1021/bi300752r		 	
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4.2	Methods	

	

4.2.1	Mouse	models	of	hereditary	hemochromatosis	

	

Two	 mouse	 models	 were	 used	 to	 study	 the	 effects	 of	 iron	 metabolism	 in	

hereditary	 hemochromatosis.	 The	 Slc40a1	 locus	 was	 targeted	 to	 introduce	 a	

C326S	 point	 mutation	 (Altamura	 et	 al.,	 2014).	 First	 the	 Slc40a1trap	 (Fpn-Trp)	

trapped	 allele	 was	 generated	 by	 introducing	 the	 β-Geo	 cassette	 into	 the	 sixth	

intron	 of	 Slc40a1	 locus	 alongside	 the	 C326S	 mutation	 in	 the	 seventh	 exon	

(Altamura	et	al.,	2014).	The	Slc40a1trap	mouse	line	was	obtained	by	injecting	the	

targeted	 embryonic	 stem	 cells	 into	 mouse	 blastocysts	 followed	 by	 germline	

transmission	 of	 the	 targeted	 allele	 (Altamura	 et	 al.,	 2014).	 The	Slc40a1trap	 line	

was	 crossed	 with	 CRE-deletor	 strain	 to	 remove	 β-Geo	 cassette	 resulting	 in	

Slc40a1wt/C326S	 mice.	 The	 Slc40a1C326S/C326S	 (Fpn-C326S)	 homozygous	 mutant	

mouse	line	was	then	obtained	by	intercrossing	heterozygous	Slc40a1wt/C326S	mice	

(Altamura	 et	 al.,	 2014).	 Slc40a1C326S/C326S	 mice	 mimic	 hereditary	

hemochromatosis	 and	 exhibit	 high	 transferrin	 saturation	 and	 increased	 serum	

ferritin	levels	(Altamura	et	al.,	2014).	The	above	experiments	were	performed	by	

Dr.	Martina	Muckenthaler	and	colleagues	at	 the	University	Hospital	Heidelberg	

and	EMBL,	Heidelberg.	

	

4.2.2	RNA	sequencing	and	differential	expression	analysis	

	

To	identify	differentially	expressed	transcripts,	total	RNA	isolates	were	obtained	

from	 liver	 of	Slc40a1C326S/C326S,	Slc40a1trap,	 and	wild-type	mice	 at	 the	 age	 of	 10	

weeks	(3	mice	per	group).	Ribosomal	RNAs	were	depleted	and	isolated	RNA	was	

subjected	 to	 strand-specific	 RNA	 sequencing	 using	 the	 HiSeq	 2500	 system	

(Illumina).	 Sequence	 reads	 were	 aligned	 to	 the	 mouse	 reference	 genome	

assembly	 GRCm38	 (Ensembl)	 using	 TopHat2.	 RNA	 transcripts	were	 annotated	

by	 aligning	 against	 Rfam	 (Nawrocki	 et	 al.,	 2015).	 RNA	 transcripts	 that	 do	 not	

contain	 ORFs	 (open	 reading	 frame)	 were	 predicted	 as	 non-coding	 RNAs.	

Differentially	 expressed	 transcripts	were	 analysed	 using	 DESeq2	 package	 in	 R	

and	Bioconductor.	Differentially	expressed	RNA	transcripts	were	selected	based	
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on	 False	 Discovery	 Rate	 (FDR)	 cut-off	 <	 0.1	 and	 P-value	 <	 0.05.	 The	 above	

experiments	were	performed	by	Dr.	Martina	Muckenthaler	and	colleagues	at	the	

University	Hospital	Heidelberg	and	EMBL,	Heidelberg.		

	

In	Fpn-C326S	mouse	model	193	mRNA	transcripts	show	expression	≥ 2	fold	and	

225	 mRNA	 transcripts	 are	 expressed	 ≤	 0.5	 fold	 compared	 to	 wild-type	 mice.	

Among	lncRNAs,	11	transcripts	are	expressed	≥	2	fold	and	19	transcripts	have	an	

expression	value	≤	0.5	fold.	In	order	to	include	more	transcripts	for	analysis,	the	

expression	fold	change	values	were	relaxed	to	≥	1.5	fold	and	<	1	fold.	22	lncRNA	

transcripts	expressed	≥ 1.5	fold	and	30	lncRNA	transcripts	are	expressed	<	1	fold	

compared	to	wild-type	mice	were	considered.	

	

In	Fpn-Trp	mouse	model	268	mRNA	transcripts	show	expression	greater	than	or	

equal	 to	 two	 fold	and	128	mRNA	transcripts	are	expressed	 lower	 than	0.5	 fold	

compared	 to	 wild-type	 mice	 respectively.	 Among	 lncRNAs,	 129	 lncRNA	

transcripts	are	expressed	greater	than	or	equal	to	two	fold	and	33	lncRNAs	are	

expressed	less	than	0.5	fold	compared	to	wild-type	mice	respectively.	

	

4.2.3	Homology	of	lncRNAs	

	

Non-coding	 homologues	 of	 differentially	 expressed	 mouse	 lncRNAs	 were	

searched	against	non-coding	RNA	human	RefSeq	database	(NR_)	using	nhmmer	

(Wheeler	and	Eddy,	2013)	at	default	parameters	 (gap	open	probability,	popen:	

0.03;	 gap	 extension	 probability,	 pextend:	 0.75;	 significant	 E-value	 threshold,	

incE:	 0.01).	 Syntenic	 relations	between	mouse	 lncRNAs	 and	human	 transcripts	

were	inferred	from	Ensembl	84	(Aken	et	al.,	2016)	by	comparing	protein-coding	

genes	 within	 the	 vicinity.	 The	 mouse	 lncRNA	 was	 considered	 syntenic	 if	 the	

lncRNA	 gene	 shared	 similar	 context	 with	 the	 human	 lncRNA	 including	

homologous	 protein-coding	 genes	 in	 the	 neighbourhood.	 Coding	 potential	 of	

differentially	 expressed	 lncRNAs	 were	 investigated	 using	 Coding	 Potential	

Assessment	 Tool	 (CPAT)	 (Wang	 et	 al.,	 2013)	 and	 Coding	 Potential	 Calculator	

(CPC)	(Kong	et	al.,	2007).	
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4.2.5	miRNA	target	site	prediction	

	

A	software	package	was	developed	in	object	oriented	Perl	to	predict	conserved	

miRNA-binding	 sites	 on	 lncRNAs	 and	 3’	 UTRs	 of	 mRNAs.	 Although	 numerous	

software	packages	are	available	for	predicting	miRNA	targets,	I	developed	local	

miRNA	 target	 prediction	 software	 to	 develop	 object	 oriented	 programming	

skills.	Perfect	reverse	complementary	of	miRNA	seed	sequence	(6mer	or	7-mer)	

on	lncRNA	or	the	3’	UTR	of	mRNAs	was	assumed	sufficient	to	call	those	sites	as	

miRNA	 recognition	 elements	 (MREs)	 or	 miRNA-binding	 sites.	 Evolutionary	

conservation	 of	 miRNA-binding	 sites	 between	 mouse	 and	 human	 transcripts	

were	 inferred	 using	 genomic	 alignments	 from	 UCSC	 MAF	 (multiple	 alignment	

format)	 files.	 The	 multiz60way	 genomic	 alignments	 of	 mammalian	 genomes	

were	 queried	 from	 UCSC	 Table	 Browser	 using	 genomic	 coordinates	 of	 mouse	

lncRNAs	 (GRCm38/mm10)	 and	 the	 alignments	 used	 as	 input.	 A	 list	 containing	

192	miRNAs	expressed	in	mouse	liver	was	obtained	from	Dr.	Anton	Enright’s	lab	

(EMBL-EBI,	 Hinxton).	 This	 list	was	 compared	with	 the	 list	 of	miRNAs	 that	 are	

expressed	 in	 the	adult	mouse	 liver	downloaded	from	the	microRNA	expression	

and	sequence	analysis	database	(mESAdb)	(Kaya	et	al.,	2011)	corresponding	to	

Beuvink	 et	 al.,	 dataset	 (Beuvink	 et	 al.,	 2007).	 After	 comparison	 67	 miRNA	

families	 were	 found	 to	 be	 common	 between	 both	 sets	 and	 were	 used	 in	 the	

analysis.	 miRNA	 seed	 sequences	 were	 downloaded	 from	 miRBase	 (Kozomara	

and	 Griffiths-Jones,	 2014).	 Experimentally	 validated	 miRNA-target	 sites	 in	

mouse	 3’	 UTR	 of	 mRNAs	 were	 downloaded	 from	 TarBase	 version	 7.0	

(Paraskevopoulou	et	al.,	2016).	

	

4.2.6	Competing	endogenous	RNA	network	

	

The	 competing	 endogenous	 RNA	 interaction	 network	 was	 modelled	 using	

common	miRNA	interactions	shared	between	lncRNAs	and	mRNAs.	Differentially	

expressed	 lncRNAs	 and	 mRNAs	 that	 are	 annotated	 to	 be	 involved	 in	 iron	

homeostasis	and	miRNAs	expressed	 in	mouse	 liver,	which	 target	both	 lncRNAs	

and	mRNAs,	 form	nodes	of	the	network.	 	The	predicted	miRNA-binding	sites	 in	

lncRNAs	and	experimentally	validated	miRNA-binding	sites	on	3’	UTR	of	mRNAs	
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form	 the	 edges.	 SwissProt	 reviewed	 protein-coding	 genes	 that	 are	 involved	 in	

iron	homeostasis	were	obtained	by	querying	UniProt	using	 the	 terms	 ‘iron	 ion	

homeostasis	 [55072]’	 and	 ‘Mus	 musculus	 (Mouse)	 [10090]’	 in	 the	 advanced	

‘Gene	 Ontology	 [GO]’	 and	 Organism	 [OS]’	 search	 options	 respectively.	 The	

competing	endogenous	RNA	network	is	represented	as	Sankey	diagram	and	was	

generated	in	R	using	the	rCharts	package.	

	

4.2.7	Sense-antisense	mRNA-lncRNA	pairs	

	 	

Differentially	 expressed	 long	 non-coding	RNAs	were	 grouped	 into	 two	 classes:	

antisense	 RNA	 and	 long	 intervening	 ncRNA	 (lincRNA).	 Antisense	 RNAs	 were	

defined	as	long	non-coding	RNAs	that	overlap	intronic	and/or	exonic	regions	of	a	

sense	mRNA	and	are	transcribed	in	the	opposite	direction	relative	to	the	sense	

mRNA.	The	antisense	non-coding	RNAs	were	further	classified	into	9	sub-groups	

based	 on	 the	 Ensembl	 84	 regulatory	 features	 they	 are	 associated	 with.	

Association	with	 a	 regulatory	 feature	was	 defined	 as	 the	 significant	 overlap	 of	

antisense	 RNA	 exon	 with	 a	 genomic	 regulatory	 feature.	 If	 the	 antisense	 RNA	

exons	overlapped	more	than	one	regulatory	feature,	the	longest	overlap	with	the	

regulatory	feature	was	considered.	These	sub-groups	are:	(1)	CTCF-binding	site	

associated,	 (2)	 Enhancer	 associated,	 (3)	 No	 regulatory	 feature,	 (4)	 Open	

chromatin	 associated,	 (5)	 Promoter	 associated	 (bi-directional),	 (6)	 Promoter	

associated	 (non	 bi-directional),	 (7)	 Promoter	 flanking	 region	 associated	 (bi-

directional),	(8)	Promoter	flanking	region	associated	(non	bi-directional)	and	(9)	

Transcription	factor	(TF)	binding	site	associated.		

	

The	terminologies	associated	with	promoter	and	promoter-flanking	regions	used	

in	this	study	are	described	as	follows-	Promoter	associated	(bi-directional):	the	

antisense	 ncRNA	 and	 sense	 mRNA	 share	 (overlap)	 the	 same	 promoter	 region	

and	their	5’	ends	orient	towards	each	other	(bi-directional	gene	pair).	Promoter	

associated	 (non	 bi-directional):	 the	 antisense	 ncRNA	 and	 sense	 mRNA	 have	

individual	 promoters.	 Promoter	 flanking	 region	 associated	 (bi-directional):	 the	

antisense	ncRNA	and	sense	mRNA	share	(overlap)	 the	same	promoter	 flanking	

region	 and	 their	 5’	 ends	 orient	 towards	 each	 other.	 Promoter	 flanking	 region	
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associated	(non	bi-directional):	the	antisense	ncRNA	has	its	individual	promoter-

flanking	region	and	does	not	overlap	with	sense	mRNA.	

	

4.2.8	LincRNA-adjacent	mRNA	pairs	

	

LincRNAs	 were	 defined	 as	 long	 non-coding	 RNAs	 that	 are	 present	 within	

intergenic	 regions	 and	 do	 not	 overlap	 a	 protein-coding	 gene.	 Upstream	 and	

downstream	protein-coding	genes	of	both	strands	from	transcription	start	site	of	

lincRNAs	 were	 identified	 and	 classified	 into	 4	 groups:	 (1)	 Upstream	 gene	 on	

antisense	strand,	 (2)	Upstream	gene	on	sense	strand,	 (3)	Downstream	gene	on	

antisense	strand	and	(4)	Downstream	gene	on	sense	strand.	

	
4.2.9	Gene	Ontology	

	 	

Protein	coding	genes	on	both	strands	present	 in	either	direction	within	500KB	

and	1MB	vicinity	of	differentially	expressed	lncRNAs	were	tested	for	enrichment	

of	 the	 following	 terms;	 in	 biological	 process:	 cellular	 iron	 ion	 homeostasis,	

cellular	response	to	iron	ion,	ferrous	iron	import	into	cell,	iron	ion	homeostasis,	

iron	ion	import,	iron-sulphur	cluster	assembly,	multicellular	organismal	iron	ion	

homeostasis,	negative	regulation	of	iron	ion	transmembrane	transport,	response	

to	 iron	ion;	and	in	molecular	 function:	 ferric	 iron	binding,	 ferrous	 iron	binding,	

iron	channel	inhibitor	activity,	iron	ion	binding,	iron-responsive	element	binding	

and	 iron-sulphur	cluster	binding.	The	enrichment	analysis	was	 limited	to	 these	

terms	to	reduce	background	signal	and	increase	the	sensitivity	of	statistical	tests.	
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4.3	Results	

	

4.3.1	Overview	of	Fpn-C326S	and	Fpn-Trp	datasets	

	

Martina	Muckenthaler,	Kamesh	R.	Babu	and	colleagues	at	the	University	Hospital	

Heidelberg	and	EMBL,	Heidelberg	have	experimentally	identified	protein	coding	

and	 non-coding	 transcripts	 expressed	 in	 the	 liver	 tissues	 of	mouse	 hereditary	

hemochromatosis	model	systems	Fpn-C326S	and	Fpn-Trp.	Gene	expression	fold	

changes,	 compared	 to	wild-type	mice,	were	 inferred	 for	4,125	mRNAs	and	255	

non-coding	RNAs	in	the	Fpn-C326S	mouse	model	and	for	7,562	mRNA	and	2,266	

non-coding	RNAs	in	the	Fpn-Trp	mouse	model.	This	data	from	their	study	is	used	

to	further	investigation.	Figure	4.3A,B	shows	the	distribution	of	fold	changes	of	

differentially	 expressed	 transcripts	 from	 the	 two	 data	 sets.	 The	 ncRNAs	 are	

marginally	overexpressed	 in	both	 the	data	sets	compared	to	 the	wild	 type	(the	

mean	expression	value	of	all	ncRNAs	from	Fpn-C326S	mouse	model	is	1.35	and	

the	mean	expression	value	of	all	ncRNAs	 from	Fpn-Trp	 is	1.26).	On	an	average	

the	ncRNAs	are	slightly	overexpressed	compared	 to	 their	protein	coding	genes	

(the	mean	expression	value	of	mRNAs	from	Fpn-C326S	mouse	model	is	1.12	and	

the	mean	expression	value	of	mRNAs	from	Fpn-Trp	is	1.07).	Only	lncRNAs	were	

selected	from	these	datasets	for	further	analysis.	Investigation	of	protein-coding	

potential	of	differentially	expressed	lncRNAs	from	the	two	datasets	shows	that	a	

majority	of	 the	transcripts	have	 low	protein	coding	potential	(Figure	4.3C,D).	A	

few	 lncRNAs	 were	 annotated	 with	 high	 protein	 coding	 potential	 but	 a	 closer	

inspection	 indicated	 that	 these	 transcripts	 as	 antisense	 or	 processed	

pseudogenes.	
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Figure	4.3	Overview	of	Fpn-C326S	and	Fpn-Trp	datasets.	The	distribution	of	
coding	 and	 non-coding	 transcripts	 in	 the	 two	 datasets	 (A)	 Fpn-C326S	 iron	
overload	 and	 (B)	 Fpn-Trp	 iron	 deficiency	 mouse	 models.	 The	 protein	 coding	
potential	of	non-coding	transcripts	(C,	D)	are	poor.	Transcripts	with	greater	than	
75%	CPAT	score	are	annotated	pseudogenes.	 	
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4.3.2	Homologues	of	lncRNAs	

	

Similarity	 between	 sequences	 is	 often	 associated	 with	 similarity	 in	 function	

(Joshi	 and	 Xu,	 2007).	 Identifying	 functionally	 annotated	 transcripts	 with	

significant	 sequence	 similarity	 to	 the	 differentially	 expressed	 mouse	 lncRNAs	

might	aid	in	inferring	their	putative	functions.	In	order	to	infer	function	through	

homology	 I	 have	 carried	 out	 sequence	 similarity	 searches	 to	 identify	 lncRNA	

homologues	in	humans.	Searches	for	lncRNA	homologues	in	the	previous	studies	

have	 suggested	 that,	 unlike	 protein-coding	 genes,	 lncRNAs	 do	 not	 share	

significant	sequence	similarities	between	other	species	 (Nam	and	Bartel,	2012;	

Ulitsky	et	al.,	2011).	To	find	sequence	homologues	of	the	differentially	expressed	

lncRNAs	 in	 Fpn-C326S	 iron	 overload	 mouse	 model,	 I	 first	 scanned	 these	

sequences	across	the	database	of	known	RNA	families	in	Rfam	(Nawrocki	et	al.,	

2015).	The	Rfam	database	comprises	a	collection	of	covariance	models,	multiple	

sequence	 alignments	 and	 consensus	 secondary	 structures	 of	 non-coding	 RNA	

families	(Griffiths-Jones	et	al.,	2003).	Two	lncRNA	sequences	showed	significant	

homology	to	RNA	families.	The	lncRNA	Trp53cor1	is	homologous	to	the	lincRNA-

p21	 families	 RF01889	 (E-value:	 4.5e-34),	 RF01890	 (E-value:	 2.9e-13)	 and	 the	

lncRNA	Rab26os	is	significantly	similar	to	the	Snord60	family	RF00271	(E-value:	

7.7e-20).	Rfam	(version	12.0;	September	2014)	contains	2,450	non-coding	RNA	

families	and	represent	the	largest	collection	of	non-coding	RNA	families,	but	they	

are	 by	 no	 means	 exhaustive.	 Therefore	 to	 obtain	 a	 better	 coverage	 these	

sequences	 were	 searched	 against	 the	 human	 reference	 non-coding	 RNA	

sequence	database	(NR_)	using	nhmmer	(Wheeler	and	Eddy,	2013).	The	nhmmer	

sequence	 search	 resulted	 in	 alignments	 of	 low	 query	 coverage	 against	 target	

sequences	(Figure	4.4),	indicating	poor	sequence	similarity	with	other	lncRNAs.	

Only	6	mouse	lncRNAs	showed	significant	sequence	similarities	(query	coverage	

greater	 than	50%	and	E-value	≤	10-25)	with	15	human	non-coding	RNAs.	Table	

4.1	 lists	 some	 of	 the	 lncRNA	 homologues	 that	 show	 significant	 sequence	

similarities	with	human	non-coding	transcripts.	A	complete	list	of	homologues	of	

lncRNA	 expressed	 in	 the	 Fpn-Trp	 iron	 deficient	 mouse	 model	 is	 listed	 in	 the	

appendix	(Table	A2).	
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Figure	4.4	Sequence	similarity	of	differentially	expressed	lncRNAs	in	Fpn-
C326S	iron	overload	mouse	model.	Most	mouse	lncRNAs	show	poor	sequence	
conservation	 with	 other	 non-coding	 transcripts.	 Sequence	 homologues	 with	
greater	 than	50%	sequence	 coverage	 are	 annotated	pseudogenes	 and	 lncRNAs	
that	belong	 to	 the	serine	protease	 inhibitor	and	aldo-keto	reductase	 family.	All	
targets	have	an	E-value	≤	10-5.	
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Evolutionary	sequence	conservation	is	widely	used	as	an	indicator	of	homology	

among	 protein-coding	 genes.	 Sequence	 similarity	 search	 works	 better	 in	

identifying	 homologues	 of	 protein-coding	 genes,	 which	 are	 under	 selective	

pressures	to	maintain	nucleotide	or	amino	acid	sequence	conservation,	but	it	is	

often	 less	 sensitive	 in	 identifying	 lncRNA	 homologues	 which	 have	 very	 little	

sequence	conservation.	In	addition	to	sequence	similarity	other	approaches	have	

been	 suggested,	 such	 as	 comparison	 of	 RNA	 secondary	 structure,	 function	 and	

analysis	 of	 expression	 from	 syntenic	 loci,	 to	 identify	 lncRNA	 homologues	

(Diederichs,	 2014).	 Secondary	 and	 tertiary	 structures	 are	 more	 robust	 to	

changes	 in	 sequence.	 Co-variations	 of	 paired	 nucleotides	 can	 still	 conserve	

secondary	structures	by	maintaining	base-pairing	properties	without	having	 to	

conserve	 sequence	 (Eddy	 and	 Durbin,	 1994),	 thereby	 allowing	 detection	 of	

homologues	 between	 lncRNAs	 with	 low	 sequence	 similarity.	 But	 while	

predicting	 RNA	 secondary	 structures	 is	 feasible	 for	 short	 RNA	 segments,	 the	

process	 becomes	 computationally	 expensive	with	 increase	 in	 sequence	 length.	

Multiple	 RNA	 sequence	 alignments	 are	 essential	 in	 predicting	 statistically	

significant	 evolutionary	 conserved	 RNA	 secondary	 structures	 for	 comparison	

(Rivas	et	al.,	2017),	but	the	lack	of	homology	of	 lncRNAs	in	these	datasets	does	

not	merit	the	use	of	secondary	structure	comparison	approach.	Syntenic	analysis	

offers	another	approach	to	identify	homologous	lncRNAs.	It	has	been	shown	that	

protein-coding	 genes	 adjacent	 to	 a	 lncRNA	 gene	 are	 likely	 to	 have	 orthologs	

adjacent	 to	 lncRNA,	 indicating	 that	 genomic	 positions	 of	 lncRNAs	 can	 be	

conserved	despite	low	sequence	homology	(Ulitsky	et	al.,	2011).	I	have	therefore	

compared	 the	 genomic	 loci	 of	 these	 lncRNAs	by	 comparing	 their	 neighbouring	

protein-coding	genes	as	references.	I	observe	that	a	few	lncRNAs	show	syntenic	

relation	 with	 the	 human	 non-coding	 RNAs	 based	 on	 the	 conserved	 genomic	

organisation	(Table	4.2).		

	

4.3.3	miRNA	target	site	prediction	and	conservation	

	

It	is	well	known	that	a	contiguous	and	perfect	base	pairing	between	miRNA	seed	

sequences	 (nucleotides	 2	 to	 8)	 and	 3’	 UTR	 of	 mRNAs	 promotes	 mRNA	

degradation	and/or	prevent	translation	(Filipowicz	et	al.,	2008).	Using	a	miRNA	
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target	 prediction	 pipeline	 I	 predicted	 miRNA-binding	 sites	 in	 mouse	 lncRNAs	

and	 3’	 UTRs	 of	 mRNAs	 and	 compared	 their	 conservation	 across	 human	

transcripts.	The	number	of	predicted	miRNA-binding	sites	 in	mouse	lncRNAs	is	

higher	compared	to	the	conserved	target	sites.	Similarly	the	number	of	predicted	

miRNA-binding	sites	in	3’	UTRs	of	mRNAs	is	higher	than	the	conserved	binding	

sites	 between	 mouse	 and	 human	 mRNAs	 (Figure	 4.5).	 LncRNA	 and	 mRNA	

sequences	 were	 shuffled	 and	 used	 as	 control	 sequences.	 Comparison	 of	

predicted	miRNA-binding	 sites	 between	 target	 sequences	 and	 control	 shuffled	

sequences	did	not	 show	any	 significant	difference,	 indicating	no	enrichment	of	

miRNA-binding	 sites.	 Further,	 four	 control	 experiments	 were	 carried	 out	

(Control	 1	 to	 4),	 which	 included	 (i)	 matching	 occurrences	 of	 identical	 miRNA	

seed	 sequence	 and	 (ii)	 reversed	 seed	 sequence,	 (iii)	 complement	 of	 seed	

sequence	and	(iv)	shuffled	seed	sequence	on	target	transcripts.	When	compared	

with	 shuffled	 transcript	 sequences,	 the	 mRNA	 and	 lncRNA	 transcripts	 do	 not	

show	a	significant	difference	in	the	number	of	control	miRNA	sites	(Figure	4.5),	

which	 indicates	 that	 the	 liver	 miRNAs	 do	 not	 preferentially	 target	 mRNA	 and	

lncRNA	transcripts	expressed	in	iron	overload	mice,	than	any	transcript	just	by	

chance.		
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Mouse	lncRNA	ID	 Mouse	lncRNA	
gene	

Human	ncRNA	
accession	

Human	
ncRNA	gene	

Query	
coverage	
(%age)	

			E-value	 Bit	
score	

ENSMUSG00000071414	 Gm6736	 NR_026743	 AKR1C6P	 97.161	 2.00E-44	 158	

ENSMUSG00000071414	 Gm6736	 NR_073125	 AKR1E2	 93.270	 1.50E-91	 313.6	

ENSMUSG00000071414	 Gm6736	 NR_073126	 AKR1E2	 90.431	 9.30E-87	 297.8	

ENSMUSG00000071414	 Gm6736	 NR_027916	 AKR1C8P	 63.407	 1.40E-25	 95.8	

ENSMUSG00000071414	 Gm6736	 NR_073127	 AKR1E2	 60.358	 1.30E-58	 204.9	

ENSMUSG00000076576	 Igkv6-32	 NR_027293	 BMS1P20	 75.504	 6.30E-10	 46.1	

ENSMUSG00000082087	 Gm12138	 NR_026743	 AKR1C6P	 97.161	 4.30E-44	 156.6	

ENSMUSG00000082087	 Gm12138	 NR_073125	 AKR1E2	 93.270	 8.30E-90	 307.5	

ENSMUSG00000082087	 Gm12138	 NR_073126	 AKR1E2	 90.431	 4.90E-85	 291.8	

ENSMUSG00000082087	 Gm12138	 NR_027916	 AKR1C8P	 63.617	 1.50E-26	 98.7	

ENSMUSG00000082087	 Gm12138	 NR_073127	 AKR1E2	 60.358	 5.30E-57	 199.2	

ENSMUSG00000083534	 H2-M6-ps	 NR_001434	 HLA-H	 97.389	 6.40E-115	 390.4	

ENSMUSG00000083534	 H2-M6-ps	 NR_027822	 HLA-L	 57.544	 5.80E-79	 271.6	

ENSMUSG00000085355	 3010003L21Rik	 NR_026806	 FLJ13224	 82.026	 1.10E-100	 343.2	

ENSMUSG00000090555	 Gm8893	 NR_073112	 SERPINB1	 89.372	 3.10E-10	 44	

ENSMUSG00000090555	 Gm8893	 NR_015340	 SERPINA13P	 83.736	 1.10E-39	 141.3	

ENSMUSG00000090555	 Gm8893	 NR_110563	 SERPINA2	 70.129	 1.40E-106	 362.5	

		
Table	 4.1	 Sequence	 homologues	 of	mouse	 lncRNAs	 in	 human	 identified	 using	
nhmmer.	
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Mouse	lncRNA	ID	 Mouse	lncRNA	gene	 Human	ncRNA	ID	 Human	ncRNA	gene	

ENSMUSG00000085355	 3010003L21Rik	 ENSG00000177340	 FLJ13224	

ENSMUSG00000053889	 Kirrel3os	 ENSG00000257271	 KIRREL3-AS1	

ENSMUSG00000052188	 Gm14964	 ENSG00000237363	 AP006288.1	

ENSMUSG00000085132	 Gm12265	 ENSG00000197815	 RP1-253P7.4	

ENSMUSG00000074918	 Inafm2	 ENSG00000259330	 INAFM2	

ENSMUSG00000087404	 Gm11752	 ENSG00000261978	 CTD-2529O21.2	

ENSMUSG00000085439	 Rapgef4os1	 ENSG00000228016	 RAPGEF4-AS1	

	

Table	 4.2	 Differentially	 expressed	 mouse	 lncRNAs	 and	 their	 syntenic	 human	
homologues.	
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A	

	

	

B	

	
Figure	4.5	Predicted	miRNA-binding	sites	in	mouse	(A)	differentially	expressed	
lncRNAs	 and	 (B)	 mRNAs	 associated	 with	 iron	 ion	 homeostasis.	 Target	
experiment	denotes	identifying	miRNA	seed	sequence-binding	sites	(6-mers)	on	
lncRNA	and	mRNA	transcripts	and	their	shuffled	sequences.	Control	experiments	
(Controls	 1	 to	 4)	 denote	 identifying	 occurrences	 of	 miRNA	 control	 seed	
sequences	on	transcripts	and	their	shuffled	sequences.	 	
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4.3.4	Competing	endogenous	RNA	network	

	

It	 is	 estimated	 that	 nearly	 74%	 to	 92%	of	 all	 protein-coding	 genes	 in	 the	 four	

model	 genomes-	worm,	 fruit	 fly,	mouse	 and	 human-	 are	 regulated	 by	miRNAs	

(Miranda	 et	 al.,	 2006).	 Both	 lncRNAs	 and	 protein-coding	 transcripts	 exhibit	

binding	sites	for	multiple	miRNAs	and	in	most	cases	can	be	bound	by	more	than	

one	miRNA	at	the	same	time	(Peter,	2010;	Wu	et	al.,	2010)	resulting	in	a	tightly	

controlled	mechanism	of	regulating	gene	expression.	 It	has	been	proposed	that	

lncRNAs	and	miRNAs	compete	for	miRNA-binding	and	regulate	gene	expression	

(Salmena	 et	 al.,	 2011).	 In	 order	 to	 understand	 the	 influence	 of	 shared	miRNA-

binding	 sites	 in	 lncRNAs	 and	 mRNAs	 on	 gene	 expression	 I	 have	 modelled	 a	

competing	 endogenous	 RNA	 (ceRNA)	 network,	 using	 predicted	 and	

experimentally	validated	miRNA-binding	sites	shared	between	lncRNAs	that	are	

differentially	expressed	in	mouse	iron	overload	models	and	mRNAs	involved	in	

iron	homeostasis.	

	

Figure	4.6	shows	a	total	of	630	interactions	that	are	predicted	between	miRNA-

mRNA	 and	 miRNA-lncRNA	 for	 7-mer	 miRNA	 seed	 sequences.	 The	 interaction	

matrix	 consists	 of	 67	 miRNAs	 expressed	 in	 mouse	 liver,	 57	 mRNAs	 and	 42	

differentially	expressed	 lncRNAs	 (genomic	alignments	of	10	 lncRNAs	could	not	

be	generated	 from	Ensembl	and	 therefore	were	not	used	 for	 the	analysis).	 For	

the	interaction	matrix	with	6-mer	miRNA	seed,	refer	to	the	appendix	(Figure	A2).	

The	 interaction	 matrix	 shows	 predicted	 miRNA	 interactions,	 but	 it	 is	 not	

straightforward	 to	 interpret	 the	 competing	 interactions	 between	 mRNA	 and	

lncRNA	using	 this	 layout.	Therefore	 I	have	depicted	the	competing	 interactions	

using	a	network	interaction	layout	comprising	nodes	and	edges	(Figure	4.7).	

	

57	mouse	protein-coding	genes	 that	have	been	previously	associated	with	 iron	

homeostasis,	 were	 selected	 to	model	 the	 ceRNA	 network	 in	 order	 to	 focus	 on	

genes	that	play	an	essential	role	 in	 iron	metabolism.	It	 is	possible	to	model	the	

ceRNA	 network	 using	 differentially	 expressed	 mRNAs,	 but	 the	 scale	 of	 the	

network,	 involving	 418	 mRNA	 nodes,	 would	 be	 too	 dense	 to	 navigate	 and	

identify	regulatory	mechanism	of	genes	that	are	relevant	to	iron	homeostasis.		 	
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Figure	 4.6	 All	 predicted	 miRNA	 binding	 sites	 (7-mer	 seed	 sequence)	 on	
mRNAs	 and	 lncRNAs.	 Boxes	 with	 blue	 borders	 are	 experimentally	 validated	
miRNA	targets	from	TarBase	v7.0.	
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For	example	a	ceRNA	network	developed	using	630	predicted	miRNA	targets	for	

a	 7-mer	 seed	 sequence	 length	 is	 shown	 in	 Figure	 4.7	 to	 illustrate	 the	 dense	

interactions	within	 the	 network.	 This	 network	 has	 407	 edges	 that	 connect	 60	

miRNAs	with	50	mRNAs.	Including	all	418	differentially	expressed	mRNAs	would	

not	only	make	this	network	very	dense	and	difficult	 to	visualise	but	also	dilute	

away	 regulatory	 interactions	 that	 could	 be	 important	 for	 hemochromatosis.	

Therefore,	I	have	used	an	approach	to	reduce	the	background	noise	by	filtering	

down	 interactions	 that	 include	 only	 experimentally	 validated	 interactions	

between	 miRNAs	 and	 iron	 homeostasis	 regulating	 mRNAs	 and	 predicted	

conserved	binding	sites	between	miRNAs	and	differentially	expressed	lncRNAs.	

Figure	4.8	shows	a	filtered-down	ceRNA	model	with	shared	miRNA	interactions	

between	 mRNA	 and	 lncRNAs;	 most	 miRNAs	 target	 more	 than	 one	 mRNA	 or	

lncRNA,	 and	 a	 single	 mRNA	 or	 lncRNA	 is	 targeted	 by	 more	 than	 one	 miRNA,	

forming	 a	 tightly	 regulated	 many-to-many	 interaction	 network.	 Only	 those	

miRNAs	that	target	both	mRNA	and	lncRNA	are	shown	here,	other	miRNAs	that	

only	 targeted	either	mRNA	or	 lncRNA	have	been	omitted	 in	 the	network,	 since	

they	do	not	form	a	part	of	the	ceRNA	hypothesis.	The	expression	of	mRNAs	in	the	

ceRNA	network	 is	 regulated	by	 the	relative	abundance	of	 lncRNAs	(Salmena	et	

al.,	 2011)	 and	 the	 strength	 of	 regulation	 depends	 on	 the	 number	 of	 miRNA	

binding	 sites	 on	 these	 targets.	 Some	 of	 the	 strongly	 targeted	 protein-coding	

genes	include	Abcb7,	Steap4,	Slc40a1	(Ferroportin-1)	and	Sfxn1.		

	

The	mitochondrial	ATP-binding	 cassette	 sub-family	B	member	7	 (Abcb7)	 is	 an	

exporter	 of	 mitochondrial	 Fe-S	 cluster	 proteins	 and	 is	 essential	 for	 the	

biogenesis	of	cytosolic	Fe-S	proteins	(Pondarre	et	al.,	2006).	Mutations	in	Abcb7	

have	 been	 linked	 to	 cause	 sideroblastic	 anaemia,	 which	 causes	 mitochondrial	

iron	deposition	(Bekri	et	al.,	2000)	and	most	 importantly	knockdown	of	Abcb7	

results	 in	mitochondrial	 iron	overload	and	cellular	 iron	deficiency	 (Cavadini	et	

al.,	 2007).	 Another	 important	 protein	 targeted	 is	 the	metalloreductase	 Steap4.	

The	 Steap	 family	 of	 metalloreductases	 stimulate	 cellular	 uptake	 of	 iron	 and	

copper	 by	 reducing	 iron	 from	 ferric	 (Fe3+)	 to	 ferrous	 (Fe2+)	 and	 copper	 from	

cupric	 (Cu2+)	 to	 cuprous	 (Cu1+)	 (Ohgami	 et	 al.,	 2006).	 One	 of	 the	 main	

pathological	symptoms	of	hemochromatosis	is	the	excessive	deposition	of	iron	in	 	



	 167	

	
Figure	4.7	The	ceRNA	network	for	iron	overload	mouse	model	Fpn-C326S.		
Protein-coding	 transcripts	 associated	 with	 iron	 homeostasis	 are	 on	 the	 left,	
miRNAs	expressed	in	mouse	liver	are	in	the	middle	and	differentially	expressed	
lncRNAs	are	on	the	right.	The	edges	represent	7-mer	seed	sequence	interactions	
with	mRNA	and	lncRNAs	and	the	edge	thickness	is	proportional	to	the	number	of	
miRNA-binding	 sites.	 Red	 lines	 are	 predicted	 interactions	 that	 have	 also	 been	
validated	 in	 mouse	 liver	 tissue	 as	 annotated	 by	 TarBase	 v7.0,	 gray	 lines	 are	
predicted	interactions.		

mRNA	 miRNA	 lncRNA	
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Figure	 4.8	 Filtered	 down	 ceRNA	 network.	 Edges	 in	 red	 are	 experimentally	
validated	 interactions	 from	TarBase	v7.0,	whereas	edges	 in	gray	are	predicted.	
Experimentally	validated	interactions	that	were	not	predicted	are	also	included.	
Transcripts	with	red	nodes	are	over	expressed,	green	are	under	expressed	and	
gray	 nodes	 are	 not	 differential	 expressed	 in	 Fpn-C326S	 iron	 overload	 mouse	
model.	 	

mRNA	 miRNA	 lncRNA	
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tissues	such	as	liver	and	heart	(Andrews,	1999).	The	reduction	of	iron	by	Steap2,	

Steap3,	 and	 Steap4	 and	 the	 stimulation	 of	 increased	 uptake	 of	 free	 non-

transferrin-bound	iron	are	thought	to	influence	hemochromatosis	(Ohgami	et	al.,	

2006).	 Slc40a1	 (ferroportin)	 is	 an	 important	 intestinal	 iron	 exporter	 and	

mutations	 in	 ferroportin	 leading	 to	 resistance	 for	 hepcidin	 is	 one	 of	 the	main	

causes	 of	 type	 4	 hemochromatosis	 (Njajou	 et	 al.,	 2001).	 Post-transcriptionally	

ferroportin	 is	regulated	by	iron	regulatory	proteins	(Muckenthaler	et	al.,	2008)	

and	post-translationally	by	hepcidin	(De	Domenico	et	al.,	2007).	Other	protein-

coding	 genes	 in	 the	 ceRNA	 network	 include	 those	 that	 code	 for	mitochondrial	

iron	 transporter	 Slc11a2,	 hereditary	 hemochromatosis	 proteins	 Hfe,	

homojuvelin	 Hfe2,	 translation	 initiation	 factor	 Eif2ak1	 and	 the	 iron	 sensor	

aconitate	hydratase	Aco1.	

	

Among	 the	 lncRNAs	 Gm15318,	 Gm15883,	 Kirrel3os,	 Srrm4os,	 Trp53cor1	 and	

H2-M6-pseudogene	 have	 more	 than	 one	 binding	 sites	 for	 the	 same	 miRNAs.	

Unlike	 protein-coding	 genes,	 little	 functional	 information	 is	 available	 for	 these	

lncRNAs	to	directly	implicate	their	role	in	regulating	gene	expression.	One	of	the	

aims	 of	 this	 project	 is	 to	 functionally	 annotate	 these	 differentially	 expressed	

lncRNAs	 by	 studying	 their	 regulatory	 interactions	 using	 the	 ceRNA	 network.	

LncRNA	Gm15318	(Ensembl:	ENSMUSG00000086010)	is	down	regulated	in	iron	

overload	condition	(fold	change	of	0.64)	compared	to	the	wild	type	mouse.	It	is	

antisense	 to	 and	 overlaps	 the	 second	 and	 third	 exons	 of	 protein	 coding	 gene	

trefoil	 factor	 1	 (Tff1)	 on	 chromosome	 17	 and	 is	 upstream	 of	 Tff2	 and	 Tff3.	

Gm15318	 shares	 synteny	with	 human	 chromosome	21,	 but	 does	 not	 have	 any	

homologues.	Tff1	expression	is	induced	in	the	gut	of	iron-deprived	rats	and	has	

been	 suggested	 to	 take	 part	 in	 increased	 iron	 absorption	 (Collins,	 2006).	 The	

opposite	 strand	 (antisense)	 of	Kin	of	 IRRE	 like	protein-3	 (Kirrel3-os,	 Ensembl:	

ENSMUSG00000053889)	lies	within	the	intronic	region	of	Kirrel3.	It	is	one	of	the	

strongly	 targeted	 lncRNAs	 and	 has	more	 than	 one	 conserved	 binding	 sites	 for	

many	miRNAs,	including	miR-122.	The	role	of	Kirrel3	in	iron	homeostasis	is	not	

known.	 The	 intergenic	 lncRNA	 tumor	 protein	 p53	 pathway	 corepressor	 1	

(Trp53cor1	or	 lincRNA-p21,	Ensembl:	ENSMUSG00000085912)	 (fold	change	of	

1.93)	 is	 a	 well-studied	 lncRNA	 in	 mouse	 liver,	 which	 takes	 part	 in	 regulating	
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expression	of	nearby	protein-coding	genes	(Recio	et	al.,	2013;	Yoon	et	al.,	2012).	

Trp53cor1	expression	 is	 induced	by	p53;	 it	 acts	 as	a	downstream	repressor	 in	

the	p53	transcriptional	response	and	plays	a	role	in	triggering	apoptosis	(Huarte	

et	al.,	2010).	Trp53cor1	associates	with	DNA-binding	protein	hnRNP-K	resulting	

in	 transcriptional	 repression	 at	 specific	 genomic	 loci	 (Huarte	 et	 al.,	 2010).	

Trp53cor1	 also	 represses	 translation	 of	 its	 target	 genes	 by	 associating	 with	

translational	repressor	RCK	(Yoon	et	al.,	2012).	 Inhibition	of	Trp53cor1	results	

in	affecting	the	expression	of	hundreds	of	genes	that	are	normally	repressed	by	

p53	in	mouse	embryonic	fibroblasts	(Huarte	et	al.,	2010).	

	

MiRNA	 families	 that	 target	 the	 largest	number	of	 transcripts	within	 the	ceRNA	

network	include	miR-27,	miR-145,	miR-122,	miR-214,	miR-29	and	miR-22.	MiR-

122	 targets	 hemochromatosis	 protein	 Hfe	 and	 Hfe2,	 miR-145	 and	 miR-22	

regulate	 expression	 of	 transferrin	 receptor	 1	 (TfR1)	 and	 miR-214	 targets	

lactoferrin	(Yujing	Li,	2013).	Considering	mutual	interaction	sites	in	Figure	4.8,	it	

can	be	seen	that	a	 few	miRNAs	target	more	mRNAs	than	non-coding	RNAs	and	

vice-versa.	 For	 example	miR-17	 family	 and	miR-122	 target	more	mRNAs	 than	

lncRNAs,	but	miR-214-3p	targets	more	lncRNAs	than	mRNAs.	MiR-17-5p	targets	

protein-coding	 genes	 heme	 oxygenase	 1	 (Hmox1),	 ceruloplasmin	 (Cp),	 Steap4	

and	 ferroportin	 (Slc40a1),	but	has	a	 competing	binding	site	only	on	one	of	 the	

down	 regulated	 lncRNAs	 Gm16587.	 Likewise,	 targets	 of	 miR-122-5p	 include	

eight	protein-coding	genes	and	two	upregulated	lncRNA	targets.	MiR-17-5p	has	

less	competition	from	lncRNAs	and	is	free	to	regulate	the	expression	of	its	target	

protein-coding	 genes,	 but	 the	 two	 over	 expressed	 lncRNAs,	 Kirrel3os	 and	

Srrm4os,	 could	sponge	away	miR-122-5p	 leading	 to	an	unregulated	expression	

of	 its	 targeted	 mRNA	 transcripts.	 The	 targets	 of	 miR-214-3p	 includes	 more	

lncRNA	 targets	 than	 mRNAs	 and	 most	 of	 these	 lncRNA	 targets	 are	 over	

expressed,	 which	 indicates	 that	 miR-214-3p	 has	 minimal	 impact	 on	 the	

regulation	 of	 expression	 of	 its	 targeted	 protein-coding	 transcripts	 including	

transmembrane	serine	protease	Tmprss6.	

	

It	 is	evident	 from	the	ceRNA	network	 that	 the	 regulation	of	gene	expression	 is	

not	straightforward;	the	regulation	of	mRNA	expression	depends	on	the	relative	
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concentration	 of	 all	 three	 classes	 of	 transcripts	 involved	 –	mRNA,	miRNA	 and	

lncRNA.	 Since	 the	 expression	 of	 mRNAs	 are	 redundantly	 regulated,	 sponging	

away	one	or	a	 family	of	miRNAs	by	one	or	a	 few	lncRNAs	could	still	result	 in	a	

regulatory	effect	by	other	miRNAs.		

	
4.3.5	Co-expression	of	sense-antisense	mRNA-lncRNA	pairs	

	

To	gain	further	insights	into	the	role	of	lncRNAs	in	regulating	gene	expression,	I	

investigate	the	relation	between	sense-antisense	mRNA-lncRNA	pairs	expressed	

in	 Fpn-Trp	 iron	 deficient	 mouse	 model.	 LncRNAs	 that	 are	 in	 the	 antisense	

orientation	 to	 the	 protein-coding	 genes	 could	 regulate	 gene	 expression	 by	

forming	complementary	base	pairs	with	mRNAs.	Antisense	lncRNAs,	also	called	

natural	 antisense	 transcripts,	 have	been	 shown	 to	 regulate	 their	 sense	mRNAs	

(Katayama	et	al.,	2005;	Pelechano	and	Steinmetz,	2013),	which	include	inhibition	

of	splicing	of	neuroblastoma	MYC,	ErbA	and	ZEB2	mRNAs	(Beltran	et	al.,	2008;	

Krystal	et	al.,	1990;	Munroe	and	Lazar,	1991),	forming	imperfect	complementary	

base	 pairs	 and	 inhibiting	 translation	 of	 TP53	 (Abdelmohsen	 et	 al.,	 2014),	

silencing	DHRS4	gene	cluster	both	in	cis	and	trans	by	physically	interacting	with	

epigenetic	modifiers	 (Li	 et	 al.,	 2012)	and	also	promoting	 translation	of	protein	

PHO1;2	(Jabnoune	et	al.,	2013).		

	

In	this	dataset	469	lncRNAs	were	found	to	overlap	protein-coding	loci	and	were	

defined	as	antisense	RNAs	and	considered	for	analysis.	Further,	I	grouped	these	

sense-antisense	 pairs	 based	 on	 the	 genomic	 regulatory	 features	 the	 antisense	

lncRNAs	 are	 associated	 with	 such	 as	 enhancer	 associated,	 bi-directional	

promoter	associated	or	transcription	factor	associated,	and	others	(see	method	

section	4.2.7,	Figure	4.9).	Among	the	ncRNA-mRNA	sense-antisense	pairs,	nearly	

three	 quarters	 of	 ncRNAs	 (359,	 76.54%)	 associate	 with	 (overlap)	 various	

genomic	regulatory	 features	such	as	promoters,	enhancers,	 transcription	 factor	

binding	sites,	CTCF	binding	sites,	etc.,	and	the	rest	(110,	23.45%)	do	not	overlap	

any	 regulatory	 regions.	 A	 majority	 of	 the	 antisense	 lncRNAs	 that	 overlap	

regulatory	 regions	 are	 associated	with	 bi-directional	 promoters	 (134,	 28.57%)	

followed	by	no	regulatory	feature	(110,	23.45%)	and	non	bi-directional		 	
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Figure	 4.9	 Schematic	 representations	 of	 sense-antisense	 mRNA-lncRNA	
pairs	associated	with	various	genomic	regulatory	features.	(A)	Bi-directional	
promoter	 associated,	 (B)	 Non-bidirectional	 promoter	 associated,	 (C)	
Bidirectional	 promoter	 flanking	 region	 associated,	 (D)	 Non-bidirectional	
promoter	 flanking	 region	 associated,	 (E)	 CTCF	 binding	 site	 associated,	 (F)	
Enhancer	 associated,	 (G)	 Transcription	 factor	 (TF)	 binding	 site	 associated	 and	
(H)	Open	chromatin	associated.	 	
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promoter	 flanking	 regions	 (92,	 19.61%).	 Among	 these	 469	 sense-antisense	

mRNA-lncRNA	 pairs,	 expression	 values	 of	 288	 mRNAs	 were	 experimentally	

captured	in	this	dataset	and	this	set	of	288	sense-antisense	mRNA-lncRNA	pairs	

were	 used	 for	 further	 analysis.	 Figure	 4.10	 shows	 the	 correlation	 in	 the	 gene	

expression	 values	 of	 these	 groups	 of	 sense-antisense	 pairs.	 The	 enhancer	

associated	 sense-antisense	 pairs	 show	 a	 strong	 positive	 correlation	 (Pearson	

correlation	 coefficient,	 r	 =	 0.76)	 and	 followed	 by	 non-regulatory	 feature	

associated	 pairs	 (r	 =	 0.48),	 bidirectional	 promoter	 associated	 pairs	 (r	 =	 0.37),	

non-bidirectional	 promoter	 flanking	 region	 associated	 pairs	 (r	 =	 0.38)	 and	

transcription	 factor	 associated	 pairs	 (r	 =	 0.31).	 Enhancer	 associated	 antisense	

RNAs	are	 transcribed	 from	canonical	RNA	genes	whose	exonic	 regions	overlap	

an	 enhancer	 element.	 These	 enhancer	 associated	 antisense	 RNAs	 are	 different	

from	the	recently	described	class	of	ncRNAs	termed	enhancer-derived	RNAs	or	

eRNAs	 (Li	 et	 al.,	 2016),	 which	 are	 transcripts	 transcribed	 from	 intergenic	 or	

intragenic	enhancers	and	are	largely	non-polyadenylated	(De	Santa	et	al.,	2010;	

Kim	et	al.,	2010;	Ren,	2010).	Enhancer	RNAs	are	pervasively	transcribed	and	are	

involved	in	regulating	expression	of	their	cognate	mRNAs	and	have	been	studied	

in	 detail	 (Li	 et	 al.,	 2016)	 but	 very	 little	 is	 known	 about	 enhancer	 associated	

antisense	 RNAs.	 Since	 both	 enhancer	 associated	 antisense	 RNAs	 and	 eRNAs	

comprise	enhancer	regulatory	sequences,	they	could	perform	similar	functional	

roles.	Several	mechanisms	have	been	put	forth	through	which	eRNAs	are	thought	

to	 regulate	 transcription	 of	 protein-coding	 genes	 in	 the	 vicinity	 –	 eRNAs	

positively	influence	enhancer-promoter	looping	and	gene	transcription,	they	act	

as	 scaffolds	 to	 bind	 transcription	 factors	 at	 enhancers,	 to	 bind	 and	 inhibit	

transcriptional	repressors	or	act	in	trans	by	translocation	to	distal	sites	(Li	et	al.,	

2016).	eRNAs	largely	promote	gene	activation	and	their	knock	down	have	been	

shown	 to	 result	 in	 downregulation	 of	 cognate	 coding	 genes	 (Li	 et	 al.,	 2016).	

Similar	 to	 eRNAs,	 enhancer-associated	 antisense	 RNAs	 have	 also	 indicated	 a	

positive	 co-regulated	 expression	 with	 their	 sense	 transcripts	 (Onodera	 et	 al.,	

2012).		

	

Among	288	sense-antisense	pairs,	I	discuss	a	few	mRNA-lncRNA	pairs	that	may	

play	a	regulatory	role	in	iron	homeostasis	(Table	4.3).	Mitoferrin-1	(Slc25a37)	is	
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an	 important	 mitochondrial	 iron	 importer	 expressed	 in	 foetal	 and	 adult	

hematopoietic	tissues	and	is	important	for	erythroid	iron	assimilation	and	heme	

biosynthesis	 (Shaw	 et	 al.,	 2006).	 Defects	 in	 mitoferrin-1	 impair	 iron	 import,	

synthesis	of	heme	and	Fe-S	cluster	or	storage	of	mitochondrial	ferritin	(Chen	and	

Paw,	 2012).	 The	 spliced	 antisense	 lncRNA	 Gm27222	 (Ensembl:	

ENSMUSG00000098248)	 does	 not	 overlap	 any	 genomic	 regulatory	 features.	 It	

lies	within	the	intronic	region	of	mitoferrin-1	and	does	not	form	an	RNA	duplex	

with	 the	 mature	 mitoferrin-1	 mRNA.	 Like	 other	 intronic	 antisense	 lncRNAs	

(Louro	 et	 al.,	 2009),	 I	 predict	 that	 Gm27222	 may	 possibly	 regulate	 gene	

expression	 through	 transcriptional	 interference	 by	 interacting	 with	 the	

promoter	region	of	mitoferrin-1	through	imperfect	base	pairing.		

	

Transcription	of	non-coding	antisense	transcripts	by	bi-directional	promoters	is	

relatively	 widespread	 (Seila	 et	 al.,	 2008;	 Wei	 et	 al.,	 2011).	 Transcription	 of	

antisense	ncRNA	pairs	were	thought	to	result	in	transcriptional	gene	silencing	by	

forming	 complementary	base	pairs	with	 sense	mRNA	or	DNA	or	by	 competing	

for	 the	 same	pool	 of	 general	 transcription	 factors	 (Villegas	 and	Zaphiropoulos,	

2015;	Wei	et	al.,	2011).	However	many	studies	have	shown	a	positive	regulatory	

influence	 of	 antisense	 lncRNA	 on	 mRNA	 expression	 (Beltran	 et	 al.,	 2008;	

Katayama	 et	 al.,	 2005),	 including	 those	 that	 are	 transcribed	 from	bidirectional	

promoters	(Uesaka	et	al.,	2014).	Promoter	derived	antisense	lncRNAs	have	been	

shown	to	act	in	cis	promoting	sense	mRNA	expression	through	sequence	specific	

DNA	 demethylation	 (Imamura	 et	 al.,	 2004;	 Tomikawa	 et	 al.,	 2011)	 or	 by	

chromatin	 remodelling	 through	 displacing	 positioned	 nucleosomes	 (Wei	 et	 al.,	

2011).		

	

The	sense-antisense	pair	 lncRNA	Gm17110	(Ensembl:	ENSMUSG00000090779)	

and	 the	 bone	 morphogenetic	 protein	 receptor	 type-1A	 (Bmpr1a)	 mRNA,	 are	

bidirectionally	 transcribed	 by	 a	 common	 promoter.	 Gm17110	 is	 antisense	 to	

Bmpr1a	 and	 completely	 overlaps	 its	 first	 exon.	 Bmpr1a	 plays	 a	 central	 role	 in	

signal	 transduction	 and	 expression	 of	 hepcidin;	 binding	 of	 Bmp	 to	 the	

serine/threonine	kinase	receptor	Bmpr1a	results	in	downstream	signalling	and	

expression	of	hepcidin	(Babitt	et	al.,	2007;	Mayeur	et	al.,	2014).	There	are	no		
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Antisense	
ncRNA	

ncRNA	
fold	

change	

Sense	
mRNA	 mRNA	description	

mRNA	
fold	

change	

Genomic	regulatory	
feature	 Reference	

Gm27222	 3.231	 Slc25a37	 Mitoferrin-1	 1.357	 No	regulatory	
feature	

(Chen	and	Paw,	
2012)	

Gm17110	 1.542	 Bmpr1a	
Bone	morphogenetic	
protein	receptor,	

type	1A	
0.81	 Promoter	associated	

(bi-directional)	
(Babitt	et	al.,	

2007)	

Hnf4aos	 1.503	 Hnf4a	 Hepatic	nuclear	
factor	4,	alpha	 0.8713	 Promoter	associated	

(bi-directional)	
(Matsuo	et	al.,	

2015)	

Igf1os	 1.795	 Igf1	 Insulin-like	growth	
factor	1	 0.726	 Promoter	associated	

(bi-directional)	
(Ackerman	and	
Gems,	2012)	

2310010J17
Rik	 0.782	 Picalm	

phosphatidylinositol	
binding	clathrin	
assembly	protein	

0.727	 Promoter	associated	
(bi-directional)	

(Scotland	et	al.,	
2012)	

	

Table	4.3	Gene	expression	correlations	between	sense-antisense	mRNA-lncRNA	
pairs	associated	with	iron	homeostasis	
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reported	 evidence	 of	 regulatory	 interactions	 between	 Gm17110	 and	 Bmpr1a.	

However,	 like	 other	 promoter-associated	 antisense	 lncRNAs	 (Imamura	 et	 al.,	

2004;	 Tomikawa	 et	 al.,	 2011),	 due	 to	 its	 positional	 overlap	with	 the	 promoter	

and	sequence	complementarity	with	the	coding	region,	 I	predict	 that	Gm17110	

regulates	 mRNA	 expression	 by	 either	 influencing	 transcription	 through	

interacting	with	the	promoter,	or	translation	by	forming	an	RNA-duplex	with	the	

mRNA.	Other	bidirectional	promoter	 associated	 sense-antisense	mRNA-lncRNA	

pairs	such	as	Hnf4a-Hnf4aos,	Igf1-Igf1os	and	Picalm-2310010J17Rik	might	also	

regulate	gene	expression	through	a	similar	mechanism.		

	

4.3.6	Correlation	of	expression	of	lincRNAs	and	adjacent	mRNAs	

	

The	 long	 intervening	 noncoding	 RNAs	 (lincRNAs)	 do	 not	 overlap	 any	 protein-

coding	loci.	These	transcripts	are	thought	to	act	on	either	protein-coding	genes	

that	are	found	in	proximity	to	the	lincRNA	or	on	distal	protein-coding	genes.	The	

functions	 of	 distal	 or	 trans	 acting	 lincRNAs	 is	 independent	 of	 the	 site	 of	

transcription	 and	 their	 targets	 could	 be	 present	 elsewhere	 in	 the	 cell,	 on	 the	

other	hand	the	functions	of	proximal	targeting	lincRNAs	or	cis	acting	lincRNAs,	is	

transcription	 site	 dependent	 and	 their	 direct	 targets	 are	 found	 in	 the	 vicinity	

(Ulitsky	and	Bartel,	2013).	Most	 lincRNAs	are	adjacent	to	and	are	 found	within	

10	Kb	of	protein-coding	genes	and	are	thought	to	play	a	role	in	regulating	gene	

expression	 of	 their	 nearby	 protein-coding	 genes	 (Ponjavic	 et	 al.,	 2009;	 Ulitsky	

and	 Bartel,	 2013).	 In	 order	 to	 investigate	 any	 such	 regulatory	 interactions	 of	

lincRNAs	 I	 have	 analysed	 the	 gene	 expression	 correlation	 between	 the	

differentially	 expressed	 lincRNAs	 in	 Fpn-Trp	 mouse	 model	 and	 their	

neighbouring	protein-coding	genes.	

	

Upstream	and	downstream	protein-coding	genes	 from	both	strands	of	 lincRNA	

transcription	 start	 sites	were	 studied.	 Among	 118	 lincRNAs,	 proximal	 protein-

coding	genes	were	identified	for	98	lincRNAs	and	with	a	gene	expression	value	in	

the	 dataset.	 The	 gene	 expression	 correlations	 of	 lincRNA-adjacent	mRNA	pairs	

are	 shown	 in	 Figure	 4.11.	 I	 observe	 a	 positive	 correlation	 in	 gene	 expression	

between	lincRNAs	and	the	proximal	protein-coding	genes	(Pearson	correlation		
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coefficient,	 r	 =	0.3)	 (Figure	4.11),	which	 is	 similar,	 but	weak	 in	 comparison,	 to	

that	 observed	 for	most	 groups	 of	 sense-antisense	mRNA-lncRNA	 pairs	 (Figure	

4.10).	 Investigation	 of	 the	 local	 protein-coding	 neighbourhood	 of	 lincRNAs	

identified	a	few	mRNAs	involved	in	maintaining	iron	homeostasis,	which	include	

hephaestin	 (Heph),	 ceruloplasmin	 (Cp)	 and	 Cebpb	 within	 0.2	 Mb	 vicinity	 of	

lincRNAs	 (Table	 4.4).	 Not	 much	 is	 known	 about	 the	 differentially	 expressed	

lincRNAs	 found	 nearby	 these	 protein-coding	 genes.	 Heph	 is	 found	 211	 Kb	

downstream	of	lincRNA	F630028O10Rik	(Ensembl:	ENSMUSG00000078122)	on	

the	 sense	 strand.	 Heph	 is	 a	 copper-dependant	 transmembrane	 ferroxidase,	

responsible	 for	 the	 uptake	 of	 dietary	 iron	 from	 the	 intestinal	 enterocytes	 and	

oxidises	 ferrous	 to	 ferric	 before	 releasing	 it	 into	 circulation	 (Vashchenko	 and	

Macgillivray,	 2012;	 Vulpe	 et	 al.,	 1999).	 Heph	 associates	 or	 interacts	 with	

ferroportin-1	 and	 function	 together	 in	 export	 of	 iron	 from	 the	 intestinal	 cells	

(Han	 and	 Kim,	 2007).	 Decreased	Heph	 activity	 and	 low	Heph	 expression	 level	

have	been	linked	to	systemic	iron	deficiency	in	mice	(Chen	et	al.,	2006).		

	

Ceruloplasmin	 (Cp),	 a	 ferroxidase,	 is	 present	 58	 Kb	 downstream	 of	 lincRNA	

4632415L05Rik	 (Ensembl:	 ENSMUSG00000048106).	 The	 plasma	 Cp	 is	

homologous	to	Heph	and	has	a	distinct	mechanism	to	Heph,	wherein	it	regulates	

iron	export	from	tissues	stores	(Jiang	et	al.,	2015)	and	intestinal	cells	(Cherukuri	

et	 al.,	 2005).	 Defects	 in	 Cp	 causes	 iron	 overload	 in	 the	 liver,	 brain	 and	 kidney	

(Jiang	 et	 al.,	 2016;	 Jiang	 et	 al.,	 2015;	 Kono	 et	 al.,	 2006).	 Interestingly	 the	 gene	

expression	levels	of	both	Heph	(fold	change:	0.77)	and	Cp	(fold	change:	0.64)	are	

down	regulated	in	the	Fpn-Trp	mouse	model	along	with	their	upstream	lincRNAs	

when	compared	to	wild-type	mice,	which	might	suggest	a	possible	role	of	these	

lincRNAs	in	regulatory	the	expression	of	Heph	and	Cp	in	iron	deficient	mice.		

	

The	 gene	 encoding	 transcription	 factor	 Cebpb	 is	 92	 Kb	 upstream	 of	 lincRNA	

9230111E07Rik	 (Ensembl:	 ENSMUSG00000087624).	 The	 Cebpb	 expression	 is	

down	regulated	(fold	change:	0.71),	however	 the	expression	of	 its	downstream	

lincRNA	 9230111E07Rik	 is	 over	 two-fold	 upregulated.	 Cebpb	 regulates	

transcription	of	the	peptide	hormone	hepcidin	(Hamp)	(Sow	et	al.,	2009),	which		 	
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LincRNA	 LincRNA	
fold	change	

Adjacent	
mRNA	

mRNA	fold	
change	

mRNA	
description	

Gene	
neighbourhood	 Reference	

F630028O10Rik	 0.519	 Heph	 0.770	 Hephaestin	 Sense	strand;	
Downstream	

(Vulpe	et	al.,	
1999)	

4632415L05Rik	 0.080	 Cp	 0.640	 Ceruloplasmin	 Sense	strand;	
Downstream	

(Patel	et	al.,	
2002)	

9230111E07Rik	 2.460	 Cebpb	 0.708	
CCAAT/enhanc
er-	binding	
protein	beta	

Sense	strand;	
Upstream	

(Sow	et	al.,	
2009)	

	

Table	 4.4	 Gene	 expression	 correlations	 between	 lincRNA	 and	 adjacent	mRNA	
pairs	associated	with	iron	homeostasis.	
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in	 turn	 regulates	 activity	 of	 ferroportin.	 Decreased	 expression	 of	 Cebpb	

contributes	to	low	levels	of	hepcidin	gene	expression	in	mouse	liver	(Shpyleva	et	

al.,	2011).	

	

4.3.7	Gene	ontology	enrichment	

	

Apart	from	the	protein-coding	genes	immediately	upstream	and	downstream	to	

lincRNAs,	I	also	investigated	protein-coding	neighbourhood	within	1	MB	of	both	

antisense	and	lincRNAs	and	carried	out	enrichment	analysis	for	functions	in	iron	

metabolism,	 to	 identify	 local	 gene	 clusters	 that	 regulate	 iron	 homeostasis.	

Among	1608	protein-coding	genes	 in	 the	neighbourhood	of	 lncRNAs	expressed	

in	iron	overload	model	Fpn-C326S,	29	protein-coding	genes	were	identified	that	

are	 involved	 in	 iron	 metabolism.	 The	 enrichment	 of	 neighbouring	 genes	 for	

functions	 directly	 associated	 in	 maintaining	 iron	 ion	 homeostasis	 identified	 4	

protein-coding	genes	within	0.5	Mb	and	6	protein-coding	genes	within	1	Mb	of	

ncRNAs.	 The	 enrichment	 of	 iron	 ion	 homeostasis	 related	 genes	 within	 the	

neighbourhood	of	lncRNAs	are	not	significant	(Chi-squared	test,	p-value:	0.947).	

Similar	 investigation	 of	 protein-coding	 neighbourhood	 of	 lncRNAs	 in	 iron	

deficient	mouse	model	Fpn-Trp,	did	not	show	significant	enrichment	of	iron	ion	

homeostasis	genes	near	 lncRNAs	compared	to	other	protein-coding	genes	(Chi-

squared	 test,	 p-value:	 0.553).	 Among	 6883	 protein	 coding	 genes,	 89	 iron	

metabolism	 related	 genes	 were	 found	 in	 the	 neighbourhood,	 out	 of	 which	 15	

genes	 were	 found	 with	 0.5	 Mb	 and	 25	 genes	 were	 found	 within	 1	 Mb,	 which	

directly	 associate	with	maintaining	 iron	 ion	 homeostasis.	 These	 genes	 include	

Hamp,	 Hamp2,	 Heph,	 Cp,	 Smad4,	 Tfr2,	 Tfrc	 and	 others.	 For	 a	 complete	 list	 of	

genes,	involved	in	iron	metabolism,	nearby	lncRNAs	expressed	in	Fpn-C326S	and	

Fpn-Trp	mice	models	see	appendix	(Tables	A3,	A4).		

	

4.4	Conclusion	

	

LncRNAs	 form	 a	 major	 fraction	 of	 the	 transcriptome;	 they	 are	 dynamically	

expressed,	 alternatively	 spliced,	 and	 associate	 with	 chromatin	 of	 actively	

transcribed	 genes	 (Geisler	 and	Coller,	 2013;	Mattick,	 2009).	 Although	 lncRNAs	
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are	ubiquitously	 found	and	differentially	expressed	 in	various	non-homeostatic	

conditions,	 very	 little	 is	 known	 about	 a	 large	 number	 of	 them	 regarding	 their	

evolution	 and	 functions.	 One	 view	 is	 that	 most	 annotated	 lncRNAs	 are	 non-

functional	and	are	mere	products	of	non-specific	transcription	and	do	not	offer	

any	 functional	 advantage	 (Struhl,	 2007),	 but	 growing	 evidences	 indicate	 that	

lncRNAs	are	bona	fide	transcripts	and	involved	in	important	biological	functions	

(Santosh	et	al.,	2015;	Wilusz	et	al.,	2009).		

	

In	 this	 chapter	 I	 have	 explored	 various	 methods	 to	 understand	 functions	 and	

regulation	 of	 lncRNAs	 expressed	 in	 two	 different	 mouse	 models	 of	 iron	

homeostasis	 related	 to	 hereditary	 hemochromatosis.	 Identification	 of	 lncRNA	

homologues	 through	 sequence	 conservation	 indicated	 little	 similarity	 with	

human	 lncRNA	 transcripts,	 but	 through	 syntenic	 analysis	 a	 few	homologues	of	

mouse	 lncRNA	were	 identified	 in	humans.	A	pipeline	was	developed	 to	predict	

conserved	miRNA	binding	 sites	 in	 lncRNA	and	mRNAs,	which	 showed	 that	 the	

target	 sites	 of	 miRNAs	 were	 less	 conserved	 among	 lncRNAs	 compared	 to	 the	

sites	 within	 3’UTRs	 of	 mRNAs.	 The	 predicted	 and	 experimentally	 validated	

miRNA	 binding	 sites	 were	 used	 to	 develop	 a	 competing	 endogenous	 RNA	

network,	 which	 identified	 shared	 interactions	 between	 mRNA,	 miRNA	 and	

lncRNAs.	A	few	of	these	interactions,	viz.	miR-193a-3p/Slc40a1	(Fpn)/Tmprss6,	

miR-19a-3p/Aco1/Steap4	 and	miR-122-5p/Sfxn1/Eif2ak1,	 among	 others	 were	

experimentally	 tested	 in	 the	 Fpn-C326S	 mouse	 model	 by	 our	 collaborators,	

however	they	did	not	observe	any	significant	regulation	in	their	gene	expression	

(unpublished	data),	suggesting	that	the	predicted	regulatory	interactions	within	

the	 ceRNA	 network	 may	 not	 fully	 represent	 physiological	 regulatory	

interactions.	 One	 of	 the	 challenges	 in	 interpreting	 the	 ceRNA	 network	 is	 the	

many-to-many	interaction	between	mRNAs,	miRNAs	and	lncRNAs,	which	makes	

the	regulation	redundant,	wherein	expression	of	an	mRNA	is	controlled	by	more	

than	one	miRNAs	and	 lncRNAs	and	 therefore	elimination	of	any	one	miRNA	or	

lncRNA	might	not	 fully	 impact	 the	 steady-state	expression	 levels	of	 the	mRNA.	

Another	factor	that	influences	ceRNA	regulation	is	the	abundance	of	low-affinity	

or	background	MREs	(6	nucleotide	binding	sites	and	non-canonical	sites).	It	has	

been	 shown	 that	 the	 higher	 numbers	 of	 background	 MREs	 significantly	
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contribute	 to	 competition	and	greatly	 reduce	 the	effect	 from	ceRNA	regulation	

(Denzler	et	al.,	2016).	

	

Further,	the	antisense	lncRNAs	and	lincRNAs	were	investigated	by	studying	their	

expression	correlation	with	the	mRNAs	that	are	in	sense	orientation	and	in	the	

nearby	vicinity	respectively.	Classification	of	lncRNAs	into	sense-antisense	pairs	

and	lincRNAs	has	given	some	interesting	insights	into	their	possible	mechanisms	

for	 regulating	 gene	 expression.	 A	 positive	 correlation	 in	 the	 expression	 of	

antisense	lncRNAs	and	mRNAs	was	observed,	which	was	strong	among	antisense	

lncRNAs	that	overlapped	an	enhancer	element	or	bidirectional	promoter	regions.	

Similar	 co-expression	 was	 also	 seen	 between	 lincRNAs	 and	 their	 immediate	

upstream	and	downstream	protein-coding	genes.	The	positive	co-expression	of	

lincRNAs	 and	 their	 neighbouring	mRNAs	 have	 been	 observed	 in	 other	 studies	

and	has	been	attributed	to	be	a	general	phenomenon	(Ponjavic	et	al.,	2009)	

	

Recent	study	of	lncRNAs	have	provided	insights	into	their	functions	with	respect	

to	 their	 genomic	 location	 and	 association	 with	 genomic	 regulatory	 features	

(Amaral	et	al.,	2016).	A	number	of	 lncRNA	promoters	 in	mouse	and	human	are	

found	conserved	in	their	genomic	position	relative	to	orthologous	protein	coding	

genes,	 these	 syntenic	 promoter-associated	 lncRNAs	 are	 termed	 positionally	

conserved	 RNAs	 (pcRNAs)	 (Amaral	 et	 al.,	 2016).	 A	 majority	 of	 pcRNAs	 are	

transcribed	 bi-directionally	 and	 are	 shown	 to	 be	 highly	 tissue	 specific.	 These	

pcRNAs	 are	 co-induced	 and	 due	 to	 the	 shared	 transcriptional	 regulatory	

elements	 show	 co-regulated	 gene	 expression	with	 their	 corresponding	 protein	

coding	 genes.	 A	 knockdown	 of	 either	 one	 member	 of	 the	 pair	 results	 in	 the	

down-regulation	 of	 the	 other	 forming	 a	 positive	 feedback-loop	 and	

interdependence	(Amaral	et	al.,	2016).	

	

Most	 pcRNAs	 are	 also	 enriched	 with	 CTCF	 binding	 regions	 close	 to	 their	

transcription	 start	 sites,	 which	 take	 part	 in	 genome	 looping	 contacts.	 These	

pcRNAs	are	preferentially	located	at	boundaries	of	such	genome	looping	contact	

points	 or	 loop	 anchoring	 points.	 The	 pcRNAs	whose	 promoters	 overlap	 a	 loop	

anchor	point	are	called	topological	anchor	point	RNAs	(tapRNAs)	and	share	high	
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local	sequence	similarity	 in	mouse	and	human	(Amaral	et	al.,	2016).	Enhancers	

are	often	 found	at	 the	other	end	of	 the	 loop	containing	tapRNAs	(Amaral	et	al.,	

2016).	It	is	suggested	that	tapRNAs	are	involved	in	formation	of	loop	structures	

and	by	bringing	the	contact	points	of	loop	together	the	enhancers	are	brought	in	

close	 proximity	 to	 the	 tapRNAs	 and	may	 result	 in	 gene	 expression	 regulation	

(Amaral	 et	 al.,	 2016).	 Comparison	 of	 lincRNAs	 and	 sense-antisense	 mRNA-

lncRNA	 pairs	 against	 Amaral	 et	 al.’s	 (Amaral	 et	 al.,	 2016)	 set	 of	 pcRNAs	 and	

tapRNAs,	identified	19	ncRNAs	as	pcRNAs	and	21	ncRNAs	identified	as	tapRNAs,	

suggesting	a	similar	functional	mechanism	of	these	lncRNAs.	

	

Finally,	 gene	 ontology	 enrichment	 identified	 a	 few	 iron	metabolism	 associated	

genes	present	in	close	neighbourhood	of	lncRNAs,	but	not	enriched	compared	to	

other	 protein-coding	 genes,	 which	 suggested	 that	 the	 iron	 ion	 homeostasis	

associated	 genes	 are	 not	 part	 of	 a	 regulatory	 cluster	 controlled	 by	 these	

differentially	expressed	lncRNAs.	Through	various	analyses	I	have	identified	37	

lncRNAs	 that	 seem	 to	 play	 a	 regulatory	 role	 in	 iron	 metabolism.	 Figure	 4.12	

summarises	these	differentially	expressed	lncRNAs	from	both	mouse	models	of	

iron	homeostasis.	Six	out	of	seven	lncRNAs	that	were	found	to	be	syntenic	with	

human	 transcripts	 take	 part	 in	 ceRNA	 interactions.	 Interestingly	 the	 set	 of	

lncRNAs	 that	 were	 predicted	 to	 share	 sequence	 similarity	 with	 human	

transcripts	 were	 not	 found	 to	 be	 syntenic.	 Among	 lincRNAs,	 Trp53cor1	 is	

involved	in	ceRNA	interactions	and	some	of	the	antisense	lncRNAs	that	overlap	

protein-coding	 genes	 associated	 with	 iron	 homeostasis	 were	 neither	 syntenic	

nor	observed	in	ceRNA	interactions.		

	

In	conclusion,	in	this	chapter	I	have	attempted	to	infer	homology,	functions	and	

regulatory	 mechanisms	 of	 lncRNAs	 expressed	 in	 two	 mouse	 models	 of	 iron	

homoeostasis	using	 an	array	of	different	methods	which	has	provided	a	broad	

understanding	 of	 their	 functional	 properties	 and	 the	 complexities	 in	 working	

with	 them.	 These	 lncRNAs	 provide	 a	 rich	 substrate	 for	 understanding	 the	

subtleties	of	regulation	of	iron	homeostasis	and	could	be	promising	targets	that	

can	be	further	investigated	experimentally.		
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Figure	4.12	Venn	diagram	showing	differentially	expressed	 lncRNAs	 from	
mouse	models	Fpn-C326S	and	Fpn-Trp	that	are	predicted	to	regulate	iron	
homeostasis.		 	
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Table		A1	
	

UniProt	ID	 PfamA	
accession	

Domain	
name	

Domain	atrophy	
type	 Type	 Atrophy	

score	

Domain	
interval	
(d)	

Unmatch
ed	HMM	
(D)	

HMM	
model	

length	(L)	

LUXF_PHOLE	 PF00296	 Bac_lucifera
se	

N-terminal	end-
bounded	atrophy	 True	 0.319	 71	 169	 307	

LUXF_PHOPO	 PF00296	 Bac_lucifera
se	

N-terminal	end-
bounded	atrophy	 True	 0.319	 71	 169	 307	

B4E7B5_BURCJ	 PF00501	 AMP-
binding	

N-terminal	end-
bounded	atrophy	 True	 0.192	 71	 151	 417	

B4EL89_BURCJ	 PF00501	 AMP-
binding	

N-terminal	end-
bounded	atrophy	 True	 0.182	 75	 151	 417	

Q8AAN6_BACTN	 PF00501	 AMP-
binding	

N-terminal	end-
bounded	atrophy	 True	 0.168	 82	 152	 417	

Q8GPH0_ENTAG	 PF00501	 AMP-
binding	

N-terminal	end-
bounded	atrophy	 True	 0.161	 95	 162	 417	

A6QFS4_STAAE	 PF02826	 2-
Hacid_dh_C	

Downstream	
domain-bounded	

atrophy	
True	 0.236	 39	 81	 178	

C3PBM5_BACAA	 PF02826	 2-
Hacid_dh_C	

Downstream	
domain-bounded	

atrophy	
True	 0.236	 40	 82	 178	

Q1HVC6_EBVA8	 PF00716	 Peptidase_S
21	

N-terminal	end-
bounded	atrophy	 Putative	 0.788	 9	 265	 325	

Q7M1H4_SOLPE	 PF03767	 Acid_phosp
hat_B	

N-terminal	end-
bounded	atrophy	 Putative	 0.748	 21	 193	 230	

RPOC2_SINAL	 PF04983	 RNA_pol_Rp
b1_3	

N-terminal	end-
bounded	atrophy	 Putative	 0.582	 12	 104	 158	

IRS1A_XENLA	 PF02174	 IRS	 N-terminal	end-
bounded	atrophy	 Putative	 0.49	 1	 50	 100	

Q8LFU8_ARATH	 PF00795	 CN_hydrola
se	

N-terminal	end-
bounded	atrophy	 Putative	 0.473	 0	 88	 186	

YR307_MIMIV	 PF00481	 PP2C	 N-terminal	end-
bounded	atrophy	 Putative	 0.412	 6	 111	 255	

MCF2_HUMAN	 PF13716	 CRAL_TRIO
_2	

N-terminal	end-
bounded	atrophy	 Putative	 0.409	 18	 79	 149	

Q99N72_MOUSE	 PF13716	 CRAL_TRIO
_2	

N-terminal	end-
bounded	atrophy	 Putative	 0.409	 18	 79	 149	

Q7M3I1_SHEEP	 PF00244	 14-3-3	 N-terminal	end-
bounded	atrophy	 Putative	 0.326	 33	 110	 236	

KADL_ENCCU	 PF00406	 ADK	 N-terminal	end-
bounded	atrophy	 Putative	 0.311	 0	 47	 151	

D5MNX5_ZOBGA	 PF00722	 Glyco_hydr
o_16	

N-terminal	end-
bounded	atrophy	 Putative	 0.297	 6	 61	 185	

YEZB_BACSU	 PF01740	 STAS	 N-terminal	end-
bounded	atrophy	 Putative	 0.291	 11	 45	 117	

MTM2_METJA	 PF01555	 N6_N4_Mta
se	

N-terminal	end-
bounded	atrophy	 Putative	 0.29	 53	 120	 231	

RBR1_MAIZE	 PF11934	 DUF3452	 N-terminal	end-
bounded	atrophy	 Putative	 0.281	 7	 46	 139	

PUR_ARATH	 PF04845	 PurA	 N-terminal	end-
bounded	atrophy	 Putative	 0.239	 29	 81	 218	

KCD11_HUMAN	 PF02214	 BTB_2	 N-terminal	end-
bounded	atrophy	 Putative	 0.213	 20	 40	 94	

KCD11_MOUSE	 PF02214	 BTB_2	 N-terminal	end-
bounded	atrophy	 Putative	 0.213	 18	 38	 94	

Q9S9E5_BRANA	 PF00234	 Tryp_alpha_
amyl	

N-terminal	end-
bounded	atrophy	 Putative	 0.211	 4	 23	 90	

Q9S9E6_BRANA	 PF00234	 Tryp_alpha_
amyl	

N-terminal	end-
bounded	atrophy	 Putative	 0.211	 4	 23	 90	
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Q9S9E7_BRANA	 PF00234	 Tryp_alpha_
amyl	

N-terminal	end-
bounded	atrophy	 Putative	 0.211	 4	 23	 90	

Q9S9F0_BRANA	 PF00234	 Tryp_alpha_
amyl	

N-terminal	end-
bounded	atrophy	 Putative	 0.211	 4	 23	 90	

PAAK_THET2	 PF00501	 AMP-
binding	

N-terminal	end-
bounded	atrophy	 Putative	 0.199	 68	 151	 417	

COX3_CORGL	 PF00510	 COX3	 N-terminal	end-
bounded	atrophy	 Putative	 0.198	 24	 75	 258	

PAAK_ECOLI	 PF00501	 AMP-
binding	

N-terminal	end-
bounded	atrophy	 Putative	 0.192	 71	 151	 417	

Q9S9E8_BRANA	 PF00234	 Tryp_alpha_
amyl	

N-terminal	end-
bounded	atrophy	 Putative	 0.189	 4	 21	 90	

Q9S9E9_BRANA	 PF00234	 Tryp_alpha_
amyl	

N-terminal	end-
bounded	atrophy	 Putative	 0.189	 4	 21	 90	

Y497_MYCPN	 PF02126	 PTE	 N-terminal	end-
bounded	atrophy	 Putative	 0.185	 4	 61	 308	

PAAK_AZOEV	 PF00501	 AMP-
binding	

N-terminal	end-
bounded	atrophy	 Putative	 0.182	 75	 151	 417	

CGD2L_LUPAN	 PF00234	 Tryp_alpha_
amyl	

N-terminal	end-
bounded	atrophy	 Putative	 0.178	 3	 19	 90	

A6L0Y5_BACV8	 PF00501	 AMP-
binding	

N-terminal	end-
bounded	atrophy	 Putative	 0.177	 80	 154	 417	

LUTR_BACSU	 PF00392	 GntR	 N-terminal	end-
bounded	atrophy	 Putative	 0.172	 0	 11	 64	

PAAK_PSEPU	 PF00501	 AMP-
binding	

N-terminal	end-
bounded	atrophy	 Putative	 0.17	 80	 151	 417	

Q7LZT8_9VIRU	 PF00729	 Viral_coat	 N-terminal	end-
bounded	atrophy	 Putative	 0.161	 45	 76	 192	

Q7M3I2_SHEEP	 PF00244	 14-3-3	 N-terminal	end-
bounded	atrophy	 Putative	 0.161	 12	 50	 236	

PDXL4_ARATH	 PF01680	 SOR_SNZ	 C-terminal	end-
bounded	atrophy	 Putative	 0.718	 1	 151	 209	

Q14DL6_HUMAN	 PF07686	 V-set	 C-terminal	end-
bounded	atrophy	 Putative	 0.596	 1	 69	 114	

YFF1_YEAST	 PF07691	 PA14	 C-terminal	end-
bounded	atrophy	 Putative	 0.568	 8	 91	 146	

RGPA1_RAT	 PF02145	 Rap_GAP	 C-terminal	end-
bounded	atrophy	 Putative	 0.468	 25	 113	 188	

ABCAB_HUMAN	 PF00005	 ABC_tran	 C-terminal	end-
bounded	atrophy	 Putative	 0.453	 19	 81	 137	

Q8AB22_BACTN	 PF00754	 F5_F8_type_
C	

C-terminal	end-
bounded	atrophy	 Putative	 0.38	 5	 54	 129	

ISAA_STAAU	 PF01464	 SLT	 C-terminal	end-
bounded	atrophy	 Putative	 0.355	 29	 72	 121	

ISAA_STAAM	 PF01464	 SLT	 C-terminal	end-
bounded	atrophy	 Putative	 0.355	 29	 72	 121	

ISAA_STAAN	 PF01464	 SLT	 C-terminal	end-
bounded	atrophy	 Putative	 0.355	 29	 72	 121	

ISAA_STAA8	 PF01464	 SLT	 C-terminal	end-
bounded	atrophy	 Putative	 0.355	 29	 72	 121	

ISAA_STAAC	 PF01464	 SLT	 C-terminal	end-
bounded	atrophy	 Putative	 0.355	 29	 72	 121	

ZCCHV_MOUSE	 PF00644	 PARP	 C-terminal	end-
bounded	atrophy	 Putative	 0.345	 37	 108	 206	

SON_HUMAN	 PF14709	 DND1_DSR
M	

C-terminal	end-
bounded	atrophy	 Putative	 0.287	 11	 34	 80	

SON_MOUSE	 PF14709	 DND1_DSR
M	

C-terminal	end-
bounded	atrophy	 Putative	 0.287	 10	 33	 80	

Q16K62_AEDAE	 PF00102	 Y_phosphat
ase	

C-terminal	end-
bounded	atrophy	 Putative	 0.217	 7	 58	 235	

ECT1_YEAST	 PF01467	 CTP_transf_
2	

C-terminal	end-
bounded	atrophy	 Putative	 0.21	 53	 86	 157	

TPT1L_HUMAN	 PF00838	 TCTP	 C-terminal	end-
bounded	atrophy	 Putative	 0.206	 2	 36	 165	
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Table	 A1.	 List	 of	 true	 and	putative	domain	atrophy	 cases	with	 atrophy	 scores	
between	0.15	and	1.	
	 	

NAAA_RAT	 PF02275	 CBAH	 C-terminal	end-
bounded	atrophy	 Putative	 0.196	 65	 127	 316	

IELK1_BAURF	 PF00197	 Kunitz_legu
me	

C-terminal	end-
bounded	atrophy	 Putative	 0.193	 6	 40	 176	

NAAA_HUMAN	 PF02275	 CBAH	 C-terminal	end-
bounded	atrophy	 Putative	 0.19	 67	 127	 316	

XYLJ_PSEPU	 PF01557	 FAA_hydrol
ase	

C-terminal	end-
bounded	atrophy	 Putative	 0.188	 6	 47	 218	

ID5A_PROJU	 PF00197	 Kunitz_legu
me	

C-terminal	end-
bounded	atrophy	 Putative	 0.182	 3	 35	 176	

VDHAP_CHICK	 PF01425	 Amidase	 C-terminal	end-
bounded	atrophy	 Putative	 0.181	 56	 136	 441	

ASAH1_CAEEL	 PF02275	 CBAH	 C-terminal	end-
bounded	atrophy	 Putative	 0.18	 70	 127	 316	

ID5A_ADEPA	 PF00197	 Kunitz_legu
me	

C-terminal	end-
bounded	atrophy	 Putative	 0.176	 4	 35	 176	

METL8_MOUSE	 PF08241	 Methyltrans
f_11	

C-terminal	end-
bounded	atrophy	 Putative	 0.158	 4	 19	 95	

PURK_STAAN	 PF02826	 2-
Hacid_dh_C	

Downstream	
domain-bounded	

atrophy	
Putative	 0.236	 39	 81	 178	

PURK_STAAM	 PF02826	 2-
Hacid_dh_C	

Downstream	
domain-bounded	

atrophy	
Putative	 0.236	 39	 81	 178	

AUBA_PYRFU	 PF10150	 RNase_E_G	
Downstream	

domain-bounded	
atrophy	

Putative	 0.199	 105	 159	 271	

TLP_ORYSJ	 PF00314	 Thaumatin	 Within-domain	
atrophy	 Putative	 0.286	 0	 61	 213	

XYNA_CRYAL	 PF00331	 Glyco_hydr
o_10	

Within-domain	
atrophy	 Putative	 0.241	 0	 77	 320	

CBR_DUNBA	 PF00504	 Chloroa_b-
bind	

Within-domain	
atrophy	 Putative	 0.167	 22	 48	 156	

Q7M3I2_SHEEP	 PF00244	 14-3-3	 Within-domain	
atrophy	 Putative	 0.153	 0	 36	 236	
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Table		A2	
	
Mouse	gene	ID	 Ensembl	Biotype	 Mouse	gene	

symbol	
Human	gene	
symbol	 Human	gene	ID	 Rfam	

Accession	

ENSMUSG00000029447	 processed	
transcript	 Cct6a	 CCT6A	 ENSG00000146731	 	

ENSMUSG00000053332	 processed	
transcript	 Gas5	 GAS5	 ENSG00000234741	 	

ENSMUSG00000056579	 processed	
transcript	 Tug1	 TUG1	 ENSG00000253352	 	

ENSMUSG00000060183	 polymorphic	
pseudogene	 Cxcl11	 CXCL11	 ENSG00000169248	 	

ENSMUSG00000064043	 processed	
transcript	 Trerf1	 TRERF1	 ENSG00000124496	 	

ENSMUSG00000064380	 snoRNA	 Gm26448	 SNORA73A	 ENSG00000274266	 RF00045	

ENSMUSG00000064422	 snRNA	 Gm22502	 RNU6-750P	 ENSG00000212248	 RF00026	

ENSMUSG00000064493	 snoRNA	 Snora28	 SNORA28	 ENSG00000272533	 RF00400	

ENSMUSG00000064595	 snoRNA	 Gm22300	 SNORA44	 ENSG00000252840	 RF00405	

ENSMUSG00000064602	 snoRNA	 Snora41	 SNORA41	 ENSG00000207406	 RF00403	

ENSMUSG00000064634	 snoRNA	 Gm22620	 SNORA1	 ENSG00000206834	 RF00408	

ENSMUSG00000064637	 snoRNA	 Snora20	 SNORA20	 ENSG00000207392	 RF00401	

ENSMUSG00000064721	 snoRNA	 Gm25855	 SNORD25	 ENSG00000275043	 RF00054	

ENSMUSG00000064796	 misc	RNA	 Terc	 Telomerase-
vert.1	 ENSG00000277925	 RF00024	

ENSMUSG00000064797	 snoRNA	 Gm24357	 SNORD6	 ENSG00000202314	 RF00342	

ENSMUSG00000064925	 snoRNA	 Snora62	 SNORA62	 ENSG00000272015	 RF00091	

ENSMUSG00000065037	 misc	RNA	 Rn7sk	 RN7SKP178	 ENSG00000201875	 RF00100	

ENSMUSG00000065281	 snoRNA	 Gm24452	 SNORD27	 ENSG00000252128	 RF00086	

ENSMUSG00000065634	 snoRNA	 Gm24252	 SNORA24	 ENSG00000275994	 RF00399	

ENSMUSG00000065663	 snoRNA	 Gm22579	 SNORA25	 ENSG00000252550	 RF00402	

ENSMUSG00000065734	 snoRNA	 Snord49a	 SNORD49A	 ENSG00000277370	 RF00277	

ENSMUSG00000074918	 antisense	 Inafm2	 INAFM2	 ENSG00000259330	 	
ENSMUSG00000076609	 IG	C	gene	 Igkc	 IGKC	 ENSG00000211592	 	
ENSMUSG00000077549	 snoRNA	 Snord71	 SNORD71	 ENSG00000223224	 RF00576	

ENSMUSG00000077677	 snRNA	 Gm24468	 RNU6-679P	 ENSG00000212305	 RF00026	

ENSMUSG00000084453	 snRNA	 Gm24596	 RNU6-98P	 ENSG00000206900	 RF00026	

ENSMUSG00000087819	 snoRNA	 Gm25117	 SNORA48	 ENSG00000212383	 RF00554	

ENSMUSG00000087881	 scaRNA	 Gm22442	 SCARNA21	 ENSG00000252835	 RF00602	

ENSMUSG00000087968	 scaRNA	 Gm25395	 SCARNA6	 ENSG00000252798	 RF00478	

ENSMUSG00000088176	 misc	RNA	 Gm23094	 7SK	 ENSG00000271394	 RF00100	

ENSMUSG00000088573	 misc	RNA	 Gm24530	 RN7SKP141	 ENSG00000251976	 RF00100	

ENSMUSG00000088929	 snoRNA	 Gm24299	 SNORD5	 ENSG00000239195	 RF01161	

ENSMUSG00000089011	 snoRNA	 Gm24879	 SNORA48	 ENSG00000212383	 RF00554	

ENSMUSG00000089015	 snRNA	 Gm24996	 RNU6-871P	 ENSG00000251931	 RF00026	

ENSMUSG00000089296	 snRNA	 Gm23205	 RNU6-387P	 ENSG00000223263	 RF00026	

ENSMUSG00000089607	 snRNA	 Gm22500	 RNU6-412P	 ENSG00000252243	 RF00026	

ENSMUSG00000089634	 Processed	
pseudogene	 Nat8b	 NAT8	 	 	
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ENSMUSG00000092341	 lincRNA	 Malat1	 MALAT1	 ENSG00000278217	 	
ENSMUSG00000092713	 snoRNA	 Gm22858	 SNORD53	

SNORD92	 ENSG00000265706	 RF00325	

ENSMUSG00000092837	 ribozyme	 Rpph1	 RPPH1	 ENSG00000277209	 	
ENSMUSG00000093183	 misc	RNA	 Gm25687	 RN7SL277P	 ENSG00000240490	 RF00017	

ENSMUSG00000094152	 lincRNA	 Slc6a16	 SLC6A16	 ENSG00000063127	 	
ENSMUSG00000097059	 lincRNA	 Fam120aos	 FAM120AOS	 ENSG00000188938	 	
ENSMUSG00000097571	 lincRNA	 Jpx	 JPX	 ENSG00000225470	 	
ENSMUSG00000097589	 processed	

transcript	 Dleu2	 DLEU2	 ENSG00000231607	 	
ENSMUSG00000098234	 lincRNA	 Snhg6	 SNHG6	 ENSG00000245910	 	
ENSMUSG00000100826	 processed	

transcript	 Snhg14	 SNHG14	 ENSG00000224078	 	
ENSMUSG00000101609	 antisense	 Kcnq1ot1	 KCNQ1OT1	 ENSG00000269821	 	
ENSMUSG00000103081	 Polymorphic	

pseudogene	 Pcdhgb8	 PCDHGB3	 	 	
ENSMUSG00000104213	 IG	C	gene	 Ighd	 IGHD	 	 	
ENSMUSG00000104960	 processed	

transcript	 Snhg8	 SNHG8	 ENSG00000269893	 	
ENSMUSG00000064451	 snoRNA	 Snora23	 SNORA23	 ENSG00000201998	 RF00319	

ENSMUSG00000064853	 snoRNA	 Gm23442	 SNORA38	 ENSG00000200816	 RF00428	

ENSMUSG00000064943	 snRNA	 Gm23240	 RNU1-125P	 ENSG00000252561	 RF00003	

ENSMUSG00000064994	 snoRNA	 Gm22422	 SNORA70	 ENSG00000206886	 RF00156	

ENSMUSG00000065145	 misc	RNA	 Vaultrc5	 VTRNA3-1P	 ENSG00000199422	 RF00006	

ENSMUSG00000065402	 miRNA	 Mir122	 MIR122	 ENSG00000207778	 	
ENSMUSG00000077563	 snoRNA	 Snora68	 SNORA68	 ENSG00000207166	 RF00263	

ENSMUSG00000084638	 snRNA	 Gm23889	 RNU6-777P	 ENSG00000201135	 RF00026	

ENSMUSG00000088273	 snoRNA	 Gm23123	 SNORA48	 ENSG00000212383	 RF00554	

ENSMUSG00000088428	 rRNA	 Gm22556	 RNA5SP111	 ENSG00000223318	 RF00001	

ENSMUSG00000088705	 snRNA	 Gm25549	 RNU6-694P	 ENSG00000200941	 RF00026	

ENSMUSG00000089542	 snoRNA	 Gm25835	 SNORD10	 ENSG00000238917	 RF01290	

ENSMUSG00000092274	 lincRNA	 Neat1	 NEAT1	 ENSG00000245532	 	
ENSMUSG00000093007	 miRNA	 Mir15a	 MIR15A	 ENSG00000275952	 	
ENSMUSG00000094405	 snRNA	 Gm23143	 RNU5E-1	 ENSG00000199347	 RF00020	

ENSMUSG00000094411	 snoRNA	 Snord16a	 SNORD16	 ENSG00000199673	 RF00138	

ENSMUSG00000096037	 rRNA	 n-R5s136	 RNA5S12	 ENSG00000199270	 RF00001	

	
Table	 A2.	 Homologues	 of	 lncRNAs	 differentially	 expressed	 in	 iron	 deficient	
mouse	model	FPN-Trp.	
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Figure	A2.	All	predicted	miRNA	binding	sites	(6-mer)	on	mRNAs	and		
lncRNAs.	Boxes	with	blue	borders	are	experimentally	validated	miRNA	targets.	

m
RN
A	

up
	re
gu
la
te
d	

	ln
cR
N
A	

do
w
n	
re
gu
la
te
d	

	ln
cR
N
A	



	 204	

Table		A3	
	

ncRNA	EnsEMBL	
gene	id	

mRNA	gene	
in	vicinity	

(within	1MB)	

Gene	Ontology	
ID	 Category	 Description	

ENSMUSG00000000031	 Th	 GO:0008199	 Molecular	
Function	 ferric	iron	binding	

ENSMUSG00000000031	 Th	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	

ENSMUSG00000000031	 Th	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000090357	 Hamp2	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000090357	 Hamp2	 GO:0097690	 Molecular	
Function	 iron	channel	inhibitor	activity	

ENSMUSG00000090357	 Hamp2	 GO:0034760	 Biological	
Process	

negative	regulation	of	iron	ion	transmembrane	
transport	

ENSMUSG00000090357	 Hamp	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000090357	 Hamp	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000090357	 Hamp	 GO:0097690	 Molecular	
Function	 iron	channel	inhibitor	activity	

ENSMUSG00000090357	 Hamp	 GO:0034760	 Biological	
Process	

negative	regulation	of	iron	ion	transmembrane	
transport	

ENSMUSG00000062132	 Hamp2	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000062132	 Hamp2	 GO:0097690	 Molecular	
Function	 iron	channel	inhibitor	activity	

ENSMUSG00000062132	 Hamp2	 GO:0034760	 Biological	
Process	

negative	regulation	of	iron	ion	transmembrane	
transport	

ENSMUSG00000062132	 Hamp	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000062132	 Hamp	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000062132	 Hamp	 GO:0097690	 Molecular	
Function	 iron	channel	inhibitor	activity	

ENSMUSG00000062132	 Hamp	 GO:0034760	 Biological	
Process	

negative	regulation	of	iron	ion	transmembrane	
transport	

ENSMUSG00000079011	 Hmox1	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000079011	 Hmox1	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000079011	 Hmox1	 GO:0034395	 Biological	
Process	

regulation	of	transcription	from	RNA	
polymerase	II	promoter	in	response	to	iron	

ENSMUSG00000086754	 Nfs1	 GO:0018283	 Biological	
Process	 iron	incorporation	into	metallo-sulfur	cluster	

ENSMUSG00000086754	 Nfs1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000089842	 Ogfod2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086166	 Rtel1	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000086166	 Rtel1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000085546	 Nfs1	 GO:0018283	 Biological	
Process	 iron	incorporation	into	metallo-sulfur	cluster	

ENSMUSG00000085546	 Nfs1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000093594	 Plod1	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	
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ENSMUSG00000093594	 Plod1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086868	 Cyp2b19	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086868	 Cyp2a12	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086868	 Cyp2f2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086868	 Egln2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000073144	 Tbxas1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000073144	 Kdm7a	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000093629	 Isca2	 GO:0051537	 Molecular	
Function	 2	iron,	2	sulfur	cluster	binding	

ENSMUSG00000093629	 Isca2	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000093629	 Isca2	 GO:0016226	 Biological	
Process	 iron-sulfur	cluster	assembly	

ENSMUSG00000093629	 Isca2	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	

ENSMUSG00000093629	 Isca2	 GO:0097428	 Biological	
Process	

protein	maturation	by	iron-sulfur	cluster	
transfer	

ENSMUSG00000093629	 Isca2	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000085295	 Cyp7a1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000089746	 Etfdh	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000089746	 Etfdh	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000086128	 Fech	 GO:0051537	 Molecular	
Function	 2	iron,	2	sulfur	cluster	binding	

ENSMUSG00000086128	 Fech	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000086128	 Fech	 GO:0030350	 Molecular	
Function	 iron-responsive	element	binding	

ENSMUSG00000086128	 Fech	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086128	 Fech	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000085444	 Bbox1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000078122	 Heph	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000078122	 Heph	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000078122	 Heph	 GO:0006826	 Biological	
Process	 iron	ion	transport	

ENSMUSG00000078122	 Heph	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	

ENSMUSG00000086130	 Plod1	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	

ENSMUSG00000086130	 Plod1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000079505	 Tnf	 GO:0045994	 Biological	
Process	

positive	regulation	of	translational	initiation	
by	iron	

ENSMUSG00000086605	 Ptgis	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000074876	 B2m	 GO:1903991	 Biological	
Process	

positive	regulation	of	ferrous	iron	import	into	
cell	
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ENSMUSG00000074876	 B2m	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000074876	 B2m	 GO:0071281	 Biological	
Process	 cellular	response	to	iron	ion	

ENSMUSG00000074876	 B2m	 GO:1904434	 Biological	
Process	 positive	regulation	of	ferrous	iron	binding	

ENSMUSG00000086914	 Cyp19a1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000089712	 Ogfod1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000089712	 Ciapin1	 GO:0051537	 Molecular	
Function	 2	iron,	2	sulfur	cluster	binding	

ENSMUSG00000089712	 Ciapin1	 GO:0016226	 Biological	
Process	 iron-sulfur	cluster	assembly	

ENSMUSG00000089712	 Ciapin1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000090220	 Ogfod2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000093565	 Nthl1	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000093565	 Nthl1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000093565	 Nubp2	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000093565	 Nubp2	 GO:0016226	 Biological	
Process	 iron-sulfur	cluster	assembly	

ENSMUSG00000093565	 Nubp2	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000085772	 Hba-x	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

	
Table	 A3.	 Protein-coding	 genes	 involved	 in	 iron	metabolism	 present	within	 1	
MB	vicinity	of	 lncRNAs	 that	are	expressed	 in	 iron	overload	mouse	model	FPN-
C326S.	
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Table		A4	
	

ncRNA	EnsEMBL	
gene	id	

mRNA	gene	
in	vicinity	

(within	1MB)	

Gene	Ontology	
ID	 Category	 Description	

ENSMUSG00000097904	 Pole	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000097904	 Pole	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000097904	 Hscb	 GO:0016226	 Biological	
Process	 iron-sulfur	cluster	assembly	

ENSMUSG00000087384	 Nubp1	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000087384	 Nubp1	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000087384	 Nubp1	 GO:0016226	 Biological	
Process	 iron-sulfur	cluster	assembly	

ENSMUSG00000087384	 Nubp1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000000031	 Th	 GO:0008199	 Molecular	
Function	 ferric	iron	binding	

ENSMUSG00000000031	 Th	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	

ENSMUSG00000000031	 Th	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000100738	 Epas1	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000097472	 Cyp4f18	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000104945	 Ltf	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000104945	 Ltf	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000078247	 Sod2	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000089842	 Ogfod2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000090220	 Ogfod2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086050	 Jmjd6	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000089755	 Ttc7	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000062132	 Hamp2	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000062132	 Hamp2	 GO:0097690	 Molecular	
Function	 iron	channel	inhibitor	activity	

ENSMUSG00000062132	 Hamp2	 GO:0034760	 Biological	
Process	

negative	regulation	of	iron	ion	transmembrane	
transport	

ENSMUSG00000062132	 Hamp	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000062132	 Hamp	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000062132	 Hamp	 GO:0097690	 Molecular	
Function	 iron	channel	inhibitor	activity	

ENSMUSG00000062132	 Hamp	 GO:0034760	 Biological	
Process	

negative	regulation	of	iron	ion	transmembrane	
transport	
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ENSMUSG00000085524	 Nfs1	 GO:0018283	 Biological	
Process	 iron	incorporation	into	metallo-sulfur	cluster	

ENSMUSG00000085524	 Nfs1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000105759	 Ogfod2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086769	 Nos3	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000100629	 Ogfod3	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000090778	 Fto	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	

ENSMUSG00000085514	 Brip1	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000085514	 Brip1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000097620	 Sdhb	 GO:0051537	 Molecular	
Function	 2	iron,	2	sulfur	cluster	binding	

ENSMUSG00000097620	 Sdhb	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000097620	 Sdhb	 GO:0051538	 Molecular	
Function	 3	iron,	4	sulfur	cluster	binding	

ENSMUSG00000097620	 Sdhb	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000075265	 Tfrc	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000075265	 Tfrc	 GO:0097286	 Biological	
Process	 iron	ion	import	

ENSMUSG00000075265	 Tfrc	 GO:0005381	 Molecular	
Function	 iron	ion	transmembrane	transporter	activity	

ENSMUSG00000075265	 Tfrc	 GO:0071281	 Biological	
Process	 cellular	response	to	iron	ion	

ENSMUSG00000085772	 Hba-x	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000097000	 Cyp4f18	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000101360	 Th	 GO:0008199	 Molecular	
Function	 ferric	iron	binding	

ENSMUSG00000101360	 Th	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	

ENSMUSG00000101360	 Th	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086868	 Cyp2b19	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086868	 Cyp2a12	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086868	 Cyp2f2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086868	 Egln2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000091908	 Cyp1a2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000091908	 Cyp1a1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000091908	 Cyp11a1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000090263	 Smad4	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000058934	 Pah	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000087014	 Rev3l	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	
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ENSMUSG00000087014	 Rev3l	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000086344	 Cmah	 GO:0051537	 Molecular	
Function	 2	iron,	2	sulfur	cluster	binding	

ENSMUSG00000086344	 Cmah	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000087492	 Tph1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000100121	 Tbxas1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000100121	 Kdm7a	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000103409	 Hyal2	 GO:0060586	 Biological	
Process	 multicellular	organismal	iron	ion	homeostasis	

ENSMUSG00000103409	 Mon1a	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000097246	 Ercc2	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000097246	 Ercc2	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000103164	 Hyal2	 GO:0060586	 Biological	
Process	 multicellular	organismal	iron	ion	homeostasis	

ENSMUSG00000103164	 Mon1a	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000086192	 Lcn2	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000086192	 Lcn2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000087484	 Eif2ak1	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000086199	 Brip1	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000086199	 Brip1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000091184	 P4ha1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000097231	 Ercc2	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000097231	 Ercc2	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000097275	 Nos3	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000025644	 P4htm	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000098146	 Hamp2	 GO:0097690	 Molecular	
Function	 iron	channel	inhibitor	activity	

ENSMUSG00000098146	 Hamp2	 GO:0034760	 Biological	
Process	

negative	regulation	of	iron	ion	transmembrane	
transport	

ENSMUSG00000098146	 Hamp	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000098146	 Hamp	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000098146	 Hamp	 GO:0097690	 Molecular	
Function	 iron	channel	inhibitor	activity	

ENSMUSG00000098146	 Hamp	 GO:0034760	 Biological	
Process	

negative	regulation	of	iron	ion	transmembrane	
transport	

ENSMUSG00000097665	 Fdx1l	 GO:0051537	 Molecular	
Function	 2	iron,	2	sulfur	cluster	binding	

ENSMUSG00000097665	 Fdx1l	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	
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ENSMUSG00000084870	 Dnajc24	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	

ENSMUSG00000085145	 Cisd3	 GO:0051537	 Molecular	
Function	 2	iron,	2	sulfur	cluster	binding	

ENSMUSG00000085145	 Cisd3	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000052403	 Ndor1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000085941	 Nos2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086893	 Cdkal1	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000086893	 Cdkal1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000086645	 Mfi2	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000086645	 Mfi2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086645	 Mfi2	 GO:0097286	 Biological	
Process	 iron	ion	import	

ENSMUSG00000085440	 Cyp4v3	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000097149	 Hamp2	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000097149	 Hamp2	 GO:0097690	 Molecular	
Function	 iron	channel	inhibitor	activity	

ENSMUSG00000097149	 Hamp2	 GO:0034760	 Biological	
Process	

negative	regulation	of	iron	ion	transmembrane	
transport	

ENSMUSG00000097149	 Hamp	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000097149	 Hamp	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000097149	 Hamp	 GO:0097690	 Molecular	
Function	 iron	channel	inhibitor	activity	

ENSMUSG00000097149	 Hamp	 GO:0034760	 Biological	
Process	

negative	regulation	of	iron	ion	transmembrane	
transport	

ENSMUSG00000094152	 Ftl1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000091192	 Rxra	 GO:0045994	 Biological	
Process	

positive	regulation	of	translational	initiation	
by	iron	

ENSMUSG00000097838	 Cmah	 GO:0051537	 Molecular	
Function	 2	iron,	2	sulfur	cluster	binding	

ENSMUSG00000097838	 Cmah	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000097838	 Gpld1	 GO:0071282	 Biological	
Process	 cellular	response	to	iron(II)	ion	

ENSMUSG00000101609	 Th	 GO:0008199	 Molecular	
Function	 ferric	iron	binding	

ENSMUSG00000101609	 Th	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	

ENSMUSG00000101609	 Th	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000085178	 Aloxe3	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000085178	 Alox12b	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000085178	 Alox8	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086826	 Cygb	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086826	 Jmjd6	 GO:0005506	 Molecular	
Function	 iron	ion	binding	
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ENSMUSG00000090873	 Tfr2	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000090873	 Tfr2	 GO:0097460	 Biological	
Process	 ferrous	iron	import	into	cell	

ENSMUSG00000090873	 Tfr2	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000090873	 Tfr2	 GO:0010039	 Biological	
Process	 response	to	iron	ion	

ENSMUSG00000090873	 Tfr2	 GO:0071281	 Biological	
Process	 cellular	response	to	iron	ion	

ENSMUSG00000090873	 Cyp3a13	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000104585	 Etfdh	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000104585	 Etfdh	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000086533	 Ercc2	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000086533	 Ercc2	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000107102	 Lias	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000107102	 Lias	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000087593	 Ercc2	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000087593	 Ercc2	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000087028	 Ndor1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000100287	 Cyp11b2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000087030	 Tet1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000087030	 Dna2	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000087030	 Dna2	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000100199	 Cyp2d10	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000100199	 Cyp2d9	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000100199	 Cyp2d26	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000097057	 Tmprss6	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000097057	 Tmprss6	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000097320	 Hamp2	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000097320	 Hamp2	 GO:0097690	 Molecular	
Function	 iron	channel	inhibitor	activity	

ENSMUSG00000097320	 Hamp2	 GO:0034760	 Biological	
Process	

negative	regulation	of	iron	ion	transmembrane	
transport	

ENSMUSG00000097320	 Hamp	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000097320	 Hamp	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000097320	 Hamp	 GO:0097690	 Molecular	
Function	 iron	channel	inhibitor	activity	

ENSMUSG00000097320	 Hamp	 GO:0034760	 Biological	
Process	

negative	regulation	of	iron	ion	transmembrane	
transport	
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ENSMUSG00000106237	 Tfr2	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000106237	 Tfr2	 GO:0097460	 Biological	
Process	 ferrous	iron	import	into	cell	

ENSMUSG00000106237	 Tfr2	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000106237	 Tfr2	 GO:0010039	 Biological	
Process	 response	to	iron	ion	

ENSMUSG00000106237	 Tfr2	 GO:0071281	 Biological	
Process	 cellular	response	to	iron	ion	

ENSMUSG00000106237	 Cyp3a13	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000099137	 P4ha3	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086128	 Fech	 GO:0051537	 Molecular	
Function	 2	iron,	2	sulfur	cluster	binding	

ENSMUSG00000086128	 Fech	 GO:0030350	 Molecular	
Function	 iron-responsive	element	binding	

ENSMUSG00000086128	 Fech	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000086128	 Fech	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000097380	 Fa2h	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000010492	 Rtel1	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000010492	 Rtel1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000084788	 Cmah	 GO:0051537	 Molecular	
Function	 2	iron,	2	sulfur	cluster	binding	

ENSMUSG00000084788	 Cmah	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000087223	 Hfe2	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000087223	 Hfe2	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000100975	 Glrx5	 GO:0051537	 Molecular	
Function	 2	iron,	2	sulfur	cluster	binding	

ENSMUSG00000100975	 Glrx5	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000075585	 Cyp2w1	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000101599	 Ndufs1	 GO:0051537	 Molecular	
Function	 2	iron,	2	sulfur	cluster	binding	

ENSMUSG00000101599	 Ndufs1	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000101599	 Ndufs1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000048106	 Cp	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000097162	 Picalm	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000097162	 Picalm	 GO:0097459	 Biological	
Process	 iron	ion	import	into	cell	

ENSMUSG00000099708	 2410016O06
Rik	 GO:0005506	 Molecular	

Function	 iron	ion	binding	

ENSMUSG00000097703	 2410016O06
Rik	 GO:0005506	 Molecular	

Function	 iron	ion	binding	

ENSMUSG00000093577	 Hfe2	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000093577	 Hfe2	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000075591	 Cyp3a13	 GO:0005506	 Molecular	
Function	 iron	ion	binding	
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ENSMUSG00000097285	 Fam132b	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000093565	 Nthl1	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000093565	 Nthl1	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000093565	 Nubp2	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000093565	 Nubp2	 GO:0016226	 Biological	
Process	 iron-sulfur	cluster	assembly	

ENSMUSG00000093565	 Nubp2	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000097059	 Phf2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000089889	 Eif2ak1	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000097613	 Aco2	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000097613	 Aco2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000097613	 Aco2	 GO:0051538	 Molecular	
Function	 3	iron,	4	sulfur	cluster	binding	

ENSMUSG00000097613	 Aco2	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000105130	 Cyp51	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000097312	 Alkbh8	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000097073	 Nt5e	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	

ENSMUSG00000097890	 Rev3l	 GO:0051539	 Molecular	
Function	 4	iron,	4	sulfur	cluster	binding	

ENSMUSG00000097890	 Rev3l	 GO:0051536	 Molecular	
Function	 iron-sulfur	cluster	binding	

ENSMUSG00000097375	 Phf2	 GO:0005506	 Molecular	
Function	 iron	ion	binding	

ENSMUSG00000078122	 Heph	 GO:0006879	 Biological	
Process	 cellular	iron	ion	homeostasis	

ENSMUSG00000078122	 Heph	 GO:0055072	 Biological	
Process	 iron	ion	homeostasis	

ENSMUSG00000078122	 Heph	 GO:0006826	 Biological	
Process	 iron	ion	transport	

ENSMUSG00000078122	 Heph	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	

ENSMUSG00000106069	 Tet2	 GO:0008198	 Molecular	
Function	 ferrous	iron	binding	

	
Table	 A4.	 Protein-coding	 genes	 involved	 in	 iron	metabolism	 present	within	 1	
MB	vicinity	of	lncRNAs	that	are	expressed	in	iron	deficiency	mouse	model	FPN-
Trp.	
	
	
	
	
	
	

	
	
	
	


