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Abstract 
 

Coronavirus Disease 2019 (COVID-19) has caused over 3.5 million deaths worldwide and 

affected more than 160 million people. At least twice as many have been infected but remained 

asymptomatic or minimally symptomatic. Though initially understood as a respiratory illness, 

COVID-19 includes central nervous system manifestations mediated by inflammation, 

cerebrovascular, anoxic and/or viral neurotoxicity mechanisms. Over one third of patients with 

COVID-19 develop neurologic problems during the acute phase of the illness, including loss of 

sense of smell or taste, seizures, and stroke. In a portion of affected persons, damage or 

functional changes to the brain result in chronic sequelae including and mounting evidence 

indicates that cognitive and neuropsychiatric complications may be independent from the 

severity of the original pulmonary illness. It behooves the scientific and medical community to 

attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic 

illness, both short and long term. This manuscript describes what is known so far in terms of 

links between COVID-

related dementia, with a focus on risk factors and possible molecular, inflammatory, and viral 

on Chronic Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2) harmonized 

methodology to address these questions in a worldwide network of researchers and institutions. 
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Introduction 

 

SARS-CoV2 and the Brain.  Coronavirus Disease 2019 (COVID-19) has caused over 3.5 

million deaths worldwide and affected more than 160 million people. At least twice as many 

have been infected but remained asymptomatic or minimally symptomatic. Though initially 

understood as a respiratory illness, COVID-19 includes central nervous system manifestations 

mediated by inflammation, cerebrovascular, anoxic and/or viral neurotoxicity mechanisms.1 

Over one third of patients with COVID-19 develop neurologic problems during the acute phase 

of the illness, including loss of sense of smell or taste, seizures, and stroke. In a portion of 

affected persons, damage or functional changes to the brain result in chronic sequelae.2,3,4 

including an estimated 34% incidence of neurological or psychiatric disorder 6 months post 

infection.5  Mounting evidence indicates that cognitive and neuropsychiatric complications may 

be independent from the severity of the original pulmonary and systemic illness. 6-16  

One possibility is that SARS-CoV2, the causal virus of COVID-19, actually invades the 

brain. Both SARS-CoV2 and SARS-CoV use human angiotensin-converting enzyme-2 

receptors (ACE-2)17 as the molecular mechanism for invading cells, and these receptors are 

richly expressed in the brain and olfactory bulb.18,19 It is reasonable then to consider whether 

SARS- factory 

cortical network,20-27 especially since this has been shown to be the case in non-human 

primates28 and rodents.26  Concerningly, neuroimaging in sub-acute COVID-19 patients provides 

moderately strong evidence of regional involvement of the olfactory bulb and its 1st- and 2nd- 

order projections.29-34 We note too that involvement of the olfactory cortical network in early 

correlate of mild cognitive impairment in AD and other forms of dementia.35-37  

Other possible (or additive) pathological mechanisms underlying chronic neurological 

consequences of SARS-CoV2 infection include cytokine-mediated inflammation, antibody-

mediated autoimmunity, and cerebrovascular pathology. These play known roles in acute 

neuro-COVID and may act as predisposing factors or ongoing insults for chronic or progressive 
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neurological impairment.   

Given these concerning findings, it behooves the scientific and medical community to 

attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic 

illness, both short and long term. The following review describes what is known so far in terms 

of links between COVID- Disease and 

related dementia, with a focus on risk factors and possible molecular, inflammatory, and viral 

pathways.  We conclude with a description of the 

Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2), which seeks to address these 

and other questions through an international consortium. 

 

Evidence of Lingering Cognitive Impairment after SARS-CoV2 Infection. Significant 

evidence supports a connection between cognitive impairment and coronavirus infection. After 

the coronavirus pandemics of 2002 and 2012, 20% of recovered individuals reported memory 

impairment.89 An early report during the ongoing pandemic found that one third of individuals 

with COVID-19 had dys-executive syndrome at the time of hospital discharge.89 Not only can 

impaired cognitive abilities lead to poor occupational and functional outcomes, but they can 

precipitate or exacerbate existing mental health concerns, which in turn can further contribute to 

cognitive dysfunction.90,91 In a recent meta-analysis and systematic review, the most common 

post-COVID-19 neurological symptoms were: headache, nausea, vomiting, muscular pain, 

anosmia, and ageusia.12 The same study reported that SARS-CoV2 infection may result in 

cognitive impairment even after mild or asymptomatic infection.12-15 Concerningly, asymptomatic 

COVID-19 subjects had lowered scores in visuoperception, naming, and fluency regardless of 

age, though older (over 60 years old) asymptomatic subjects fared the worst16 and young, 

healthy individuals recovered in as short as 4 months following infection.92 In a sample of 

COVID-19 patients discharged from critical care to rehabilitation, 80% had working memory, 

set-shifting, attention, and processing speed deficits,93 and in two separate samples of patients 

discharged home, clinically significant cognitive impairment persisted in 60-70% of patients 3-4 

months after discharge, with verbal learning, psychomotor speed, and executive function most 
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affected.11,13 Finally, in two independent studies of patients assessed six months after hospital 

admission for mild to moderate COVID-19, olfactory dysfunction and cognitive impairment were 

linearly predicted by older age but not disease severity.94,95 Thus, not only is a connection 

between COVID-19 and lingering cognitive impairment likely, it may affect significantly more 

people than the already staggering numbers now known to have been infected with the virus. 

 

SARS- . The idea that infectious agents may 

contribute to the risk of AD was recently reaffirmed.38-43 A meta-analysis of over 100,000 

participants found several viruses associated with a higher risk of AD,44 and bacteria have also 

been implicated.40,44 Immunity to Herpes Simplex Virus 1 (HSV-1), the best studied example, 

correlates with greater cognitive impairment45 and increased neuropathological biomarkers of 

AD in humans.46,47 In mice models, HSV-1 infection increases the expression of amyloid 

precursor protein,48 triggers the accumulation of amyloid-  and hyperphosphorylated tau,47,49,50 

and impairs adult hippocampal neurogenesis.45,49-52  

Of note, susceptibility to COVID-19 is driven in part by risk factors that overlap with 

those of AD and related dementias (ADRD), including older age53,54 and ApoE4 status.55-57 In 

regards to the latter, in vitro experiments show that human neurons derived from iPSCs are 

more susceptible to SARS-CoV2 infection and neurodegenerative changes if they carry 

ApoE4/4 genotypes.58 Given that ethnic minorities in both the USA and UK,59,60 as well as in 

individuals globally who have blood type A,60,61 are at higher risk of COVID-19 complications 

and death, it appears that ancestry interacts (whether directly or through health disparities) with 

environmental factors to contribute to SARS-CoV2 related disease susceptibility, and therefore 

potentially also COVID-19-related ADRD risk. In short, after the acute pandemic recedes, its 

sequelae are likely to impact dementia research for years to come.1   

 

The C . The total number of people living with 

dementia worldwide approaches 50 million and is projected to surpass 130 million by 2050,68 

the majority of whom have AD. Despite massive investments, no effective treatments are 
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available.69-72 Slow progress in understanding and treating AD may be due in large part to 

disease heterogeneity and the multiplicity of causal contributions.68,73 However, dementia 

syndromes continue to be refined with contributions from neuropathology, longitudinal clinical 

assessments, advanced neuroimaging, and molecular markers,68,72,74 and the emergent picture 

suggests overlapping phenotypes linked to multiple biological substrates.75-76 Studies of 

causation reveal contributions from genetic variations, lifestyle choices, and environmental risk 

factors, including infections, plus the interactions of these factors.68,73,77,78  

Identification of causal genetic variation was expected to guide development of disease-

modifying treatments for dementia, yet at the time of this submission, the majority of heritability 

remains unexplained despite large lists of disease-associated genetic variants.68  Risk 

prediction improves when large numbers of genetic variants are combined into polygenic risk 

scores (PRS), but these successes are largely limited to populations of European ancestry.79-81 

When applied across ancestry groups, or even across different segments of the same ancestry, 

PRS performance appears to deteriorate.82 Under-represented minorities in genetic studies of 

ADRD therefore represent a severe knowledge gap that increasingly may result in greater 

health disparities as precision medicine becomes the prevalent paradigm.83 

It is our firm belief that untangling the complexity of ADRD will require novel, data-driven 

strategies that take advantage of complex datasets (neuropsychological, environmental, 

neuroimaging, genomic, blood-based biomarkers),84-86 deep learning and explanatory artificial 

intelligence,87 and the inclusion of ancestral populations88 in order to uncover naturally-occurring 

data structures or architectures.  Such an approach is discovery-based and agnostic, allowing 

diagnostic heterogeneity and overlap to assist in the uncovering of specific biological 

mechanisms.  A promising environmental factor that could be used in such an effort is SARS-

CoV2 (SARS-CoV2) exposure,18,20,28 ,64-67  

 

Epidemiological Factors Predictive of Cognitive Impairment. Though physical inactivity, 

smoking, and obesity (but not heavy alcohol consumption) are related to increased rates of 

hospital admission,96 specific risks for transient or persistent cognitive impairment following 
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SARS-CoV2 infection have not yet been identified. Diabetes mellitus increases the risk for 

dementia and other severe outcomes after SARS-CoV2 infection.91  Diabetes is highly prevalent 

in certain demographics, such as Black American/African Americans and Latino/Hispanic 

Americans, and these groups also appear to be at higher risk for the neurological complications 

of COVID-19.97 Disparities in COVID-19 hospitalizations and mortality according to ethnicity 

remain even after correcting for neighborhood, household crowding, smoking, body size, 

diabetes, and mental illness.98 

Age also appears to be a factor, as COVID-19 patients who are 65 years of age or older 

have more severe systemic disease and higher rates of neurologic complications. It is already 

well known that COVID-19 morbidity and mortality is very high in the elderly population, with 6 to 

930 times higher likelihood of death compared to younger cohorts. The highest risks are among 

diabetes, heart disease, and underlying respiratory illness.53 Elderly patients with preexisting 

neurologic diseases are both more susceptible to severe COVID-19 infection and show higher 

rates of mortality than their neurologically healthy counterparts.53,54 Most intriguingly, in a very 

large study of the UKBiobank, the ApoE e4e4 genotype was associated with COVID-19 test 

positivity at genome-wide significance in individuals of European ancestry, and the e4e4 

genotype was also associated with a 4-fold increase in mortality after testing positive for 

COVID-19.33 This finding, which was replicated in an independent community sample in Spain.57  

 

Clinical Factors Predictive of Cognitive Impairment. Variations in host immune responses to 

SARS-CoV2 infection may partially explain age and sex differences in disease severity,99,100 and 

possibly also the frequency and severity of chronic sequelae.1 Levels of inflammatory markers, 

such as C-reactive protein,101 ferritin,102 and d-dimer103 were associated with elevated risk of 

poor outcomes of COVID-19 in a dose-dependent manner, and a marker of heart failure was 

associated with increased mortality in COVID-19 pneumonia.104 Delirium in hospitalized COVID-

19 patients also correlates with elevated inflammatory markers.10 However, in community cases, 

COVID-induced impairments in short-term memory, attention, and concentration did not 
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correlate with hospitalization, treatment, viremia, or acute inflammation.92 Likewise, in patients 

discharged from critical care to rehabilitation, persistent executive dysfunction was not 

associated with mechanical ventilation or preexisting cardiovascular or metabolic disease.13 On 

the other hand, in a small sample of community cases with mild symptoms, hyposmia was 

correlated with cognitive impairment.105  And although younger patients (less than 60) may 

frequently complain of cognitive dysfunction, objective changes in performance are mild or 

absent and the best predictors include psychiatric complaints and physical symptoms 

(headache, diarrhea), with the only common risk factor being olfactory dysfunction.6,14,105,106  

Taken together, these findings hint at a role for inflammation in disease severity generally, but 

not necessarily for cognitive sequelae, and reinforce concerns about olfactory involvement in 

relation to cognitive impairment. 

 

Overlapping Risk Factors Between COVID-19-induced Cognitive Impairment and 

Both ADRD and COVID-19 are 

age-dependent disorders, becoming much more frequent and severe with advancing age.40 

Morbidity and mortality of COVID-19 are also elevated in AD, and individuals suffering AD are 

more likely to develop COVID-19 and to die as a consequence of the illness.40 Other risk factors 

potentially linking SARS-CoV2 infection with progressive cognitive decline and ADRD include: 

molecular pathway abnormalities, clinical profiles, and partially overlapping neuroimaging 

signatures. The Angiotensin-Converting Enzyme 2 (ACE2) receptor acts as the ligand for the 

spike protein of SARS-CoV2 mediating cell entry.107 ACE2 expression declines with age, 

resulting in a pro-inflammatory state that may explain the increased severity and comorbid 

diabetic and hypertensive complications observed in older adults.1 SARS-CoV2 specifically 

infects endothelial cells expressing ACE2, potentially leading to the observed deterioration of 

vascular architecture.1 This could lead to brain hypoperfusion and accelerate cognitive decline 

in the elderly.1,64,91 As a result of ACE2 downregulation, SARS-CoV2 infection in older adults 

induces aggressive secretion of pro-inflammatory cytokines.1 Indeed, COVID-19 results in high 

levels of proinflammatory cytokines, acute respiratory distress, and hypoxia, each of which may 
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contribute to cognitive decline in healthy and in already predisposed individuals.1,91,108,109 Pro-

inflammatory cytokines increase oxidative stress, resulting in downregulation of excitatory amino 

acid transporters and elevated glutamate levels, which may in turn cause excitotoxicity. This 

pathway is already postulated to play a role in several neurodegenerative diseases, including 

ADRD. The olfactory bulb has one of the highest levels of ACE2 expression in the brain, and 

direct viral entry into neurons may create an additional cytotoxic insult.109 Even a transient 

presence of the virus in the olfactory bulb may precipitate an underlying proteinopathy 

associated with age-related neurodegenerative disorders.1,110,111,112,113 The neuroinvasive 

potential of SARS-CoV2 may result in senescence of several different CNS cell types, including 

oligodendrocytes, astrocytes, and neural stem cells that can differentiate into neurons that 

integrate into the granule layer.1,114 Viral aggravation of underlying AD neuropathology has the 

potential to hasten the onset of, or further deteriorate, motor and cognitive deficits.20,91,114  

In silico network-based relationships have been reported as pathways and processes 

that are implicated in ADRD, and they have been confirmed in transcription studies.115 In 

addition, abnormal expression of AD biomarkers was found in the cerebrospinal fluid and blood 

of patients with COVID-19.115 As already mentioned, ApoE4, a strong genetic risk factor for 

ADRD, has been associated with increased risk for severe COVID-19. Notably, the 

neurotropism and neurotoxicity of SARS-CoV2 in human-induced pluripotent stem cell derived 

neuron-astrocyte co-cultures and brain organoids was found to be much higher in ApoE4/4 

neurons and astrocytes.116 Systems biology approaches have predicted the interaction between 

prohibitins, a class of mitochondrial proteins, and SARS-CoV-2.117 The same prohibitins have 

been shown to mediate altered mitochondrial bioenergetics in olfactory bulb neurons donated 

from AD patients,118 possibly representing a common underlying molecular mechanism. A 

broader picture of overlapping mechanisms in the olfactory bulb includes equivocal disruption of 

MAPK cascades, which has been detected specifically in the olfactory bulb in AD118 and is a 

hallmark of SARS-CoV-2 infection.119 Furthermore, cases of persistent anosmia and parosmia 

may in fact reveal pre-existing neurogenesis defects, unmasked by SARS-CoV-2 infection and 

providing the niche for the onset of neurodegenerative disease.21 Along with neuropathological 
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evidence of SARS-CoV-2's intraneuronal entry, its neuroinvasive potential may be defined by 

immune fitness on the cellular level. 

Neuroimaging studies also provide possible links between COVID-19 and brain 

changes. A defined profile of brain PET hypometabolism in long COVID patients with 

biologically confirmed SARS-CoV2 and persistent memory impairment was shown more than 3 

weeks after the initial infection symptoms. Alterations involved the olfactory gyrus and 

connected limbic/paralimbic regions, extending to the brainstem and cerebellum, and were 

associated with symptoms.120 In older adults (average age 66), a significant reduction of 

frontoparietal and temporal glucose metabolism was related to cognitive impairment.8 These 

reductions persisted with some improvement six months after COVID-19 diagnosis.121 

The reviewed literature does not, however, prove a link between SARS-CoV2 infection 

and ADRD. Most specifically, no available evidence supports the notion that cognitive 

impairment following SARS-CoV2 infection is a form of dementia (ADRD or otherwise), because 

no data regarding the progression of neuropathological disease are available. Even though 

COVID-19 has significant, attendant lethality in the acute phase, death is not as a result of an 

extended, progressive neuropathological disease. Therefore, until and unless a clear 

progressive pattern of disease is demonstrated in at least some individuals as a direct sequelae 

of infection with SARS-CoV2, this will remain an open question. The longitudinal methodologies 

espoused by the consortium are intended to provide data to answer it as clearly as possible 

controlling for possible confounders.  

 

-

CoV-2 infection (CNS SC2). Collectively, the reviewedThe information reviewed here  results 

provides important clues and evidence to support oura hypothesis that cognitive impairment 

after SARS-CoV2 infection in older adults may be progressive in nature and associated with 

epidemiological risk factors (including genetic ancestry), biomarkers, and neurosignatures that 

are overlapping with, or identical to, those of ADRD. To test this hypothesis, our group has 

embarked on a large-scale, international collaboration to explore the association of SARS-CoV2 

infection with neurological, psychiatric, and cognitive outcomes in an ethnically and 
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geographically diverse population. The underlying hypothesis is that the COVID-19 pandemic 

will increase rates of cognitive decline and dementia in older adults worldwide, presenting a very 

unwelcome but unique opportunity to understand interactions between the genomic risk of 

ADRD and relevant environmental factors, including viral exposure to SARS-CoV2.18,20,63-67 The 

primary objective of this large-scale study is to clarify the pathogenesis of ADRD and to 

advance our understanding of the impact of a neurotropic virus on the long-term risk of cognitive 

decline and other central nervous system sequelae. The proposed research extends prior work 

to include under-represented racial and ethnic groups, creating a rich cohort for future studies of 

the pathophysiology, determinants, long term consequences, and trends in cognitive aging, 

ADRD, and vascular disease.  Our specific hypothesis is that SARS-CoV2 triggers ADRD-like 

pathology following the extended olfactory cortical network (EOCN) in older individuals with 

specific genetic susceptibility. Of specific interest is the consequence that cognitive complaints 

in younger adult individuals may be of a different nature than those observed in older adults and 

obey different molecular mechanisms, clinical course, and outcomes. The proposed methods 

will allow us to address this and other questions. 

 

 

Methods 

 

Enrollment Countries. Member countries include (see Figure 1, Map of Consortium Members): 

Argentina, Australia, Austria, Bolivia, Brazil, Canada, Chile, China, Colombia, Cuba, Denmark, 

Dominican Republic, UK (England, Wales and Scotland), Ethiopia, Finland, France, Germany, 

Greece, Haiti, Honduras, Iceland, India, Israel, Kenya, Mexico, Netherlands, Nigeria, Peru, 

Philippines, Qatar, South Africa, Spain, Sweden, Tanzania, Thailand, and Uganda. Given the 

variety of countries involved, cohorts will include all major genetic backgrounds found in low, 

lower-middle, upper-middle and high-income countries. Data collection is already ongoing in 

several of the member countries. 
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Enrollment Criteria. We will recruit participants of age 50 years and above, with the lower cut-off 

being somewhat higher in some locations. About half of COVID-10 hospitalized patients are >55 

years, making them a good population for investigating interactions between viral infections and 

the risk of cognitive decline and dementia.1,18 Both males and females will be recruited.  

 

Recruitment and sampling procedures. The principal objective of the CNS-SC2 protocol is to 

provide sufficient flexibility of recruitment and data collection to maximize sampling 

opportunities, while at the same time harmonizing procedures and methods enough to allow for 

meta-analytic approaches and other forms of appropriate data collation. Thus, participant 

recruitment processes are permitted vary somewhat depending on the site and study sample. 

Screening questionnaires will be used to determine eligibility and recruit participants via either 

telephonic and video interviews or during clinic and hospital visits. When possible, one 

informant (family member or close friend) will be enrolled per participant. We plan to use several 

complementary recruitment frameworks: 

 

1. Hospital-based Samples: We will derive these from sampling frames constructed using current 

lists of hospital admissions for COVID-19 in academic centers. Participating academic groups 

with immediate access to hospital admissions data for patients who tested positive for COVID-

19 allow recruitment of persons at relatively high risk of neurological complications, given that 

severity of infection warranted hospitalization. That is, while the relationship between acute 

severity and neurological complications does not hold as well for individuals with less severe 

disease, it is well established for cases that required hospitalization.(CITES) Following 

discharge, these patients will be contacted and offered enrollment in a cohort with a minimal 

longitudinal follow-up of between 12 and 24 months of the initial assessment. 

Representativeness of the sample will be determined by comparing characteristics of the full list 

of hospital admissions against those who enroll.   Wherever possible, individuals discharged 

from the hospital but negative for COVID -19 infection (and matched for age range) will be 

recruited to represent the background risk of cognitive decline and neuropsychiatric pathology. 
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2. Population Registry Samples: Wherever they are available, we will establish new cohorts by 

sampling from existing national, regional, or local (e.g. city) population registries that include 

SARS-CoV2 testing data (regardless of hospitalization or the result of the testing) as part of the 

pandemic response. Such samples will include a wide range of outcomes, including respiratory 

or general symptoms severe enough to warrant hospitalization (with and without intensive care 

admission), mild symptoms (managed in ambulatory settings), asymptomatic positive 

individuals, and those who tested negative. From these lists, we will randomly invite participants 

stratified by testing status and regardless of symptom severity. This approach will make it 

possible to estimate population-level effect sizes, including error estimates that take account of, 

and are corrected for, each sampling fraction and the numbers successfully obtained, leading to 

greater external validity. To trim the samples, scores from semi-structured interviews may be 

used to determine the clinical severity of the COVID-19 and to populate the stratified sample 

from the cohort.  

3. Preexisting Population-based Cohort Samples of Aging individuals: Wherever there are 

surviving participants of ongoing, longitudinal, community-based cohort studies already 

collecting biosamples, cognitive, behavioral, and neuroimaging data in populations that fit our 

age criteria, we will attempt to include them in CNS-SC2.  COVID-19 status will be determined 

using both standardized Case Report Forms (CRFs) developed by the NeuroCOVID Forum of 

the World Health Organization and via antibody titer for SARS-CoV2 exposure. Participants in 

these cohorts already have pre-existing extensive baseline phenotyping, and in many cases 

have been extensively genotyped as well, allowing direct assessment of predictors of the short- 

and long-term effects of exposure to COVID-19 infection and complications from SARS-2.  

Because follow-up data collection in surviving participants of such historic samples are less 

likely to be representative of the original populations they were sampled from, analyses will 

check for lost to follow-up (nonparticipation) bias.  However, as with comparisons with pre-

COVID-19 samples (below) that are unlikely to have adopted the same measurement methods 

used in this protocol, synthetic data analysis methods will be required to combine findings newly 

enrolled samples (e.g. recruitment frameworks 1 and 2 above).  
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4. Population-based Pre and Post COVID-19 Multiple, Cross-sectionally Representative 

(Probabilistic) Samples: Where available, these may also be included in order to compare pre 

and post COVID-19 individuals. Such designs provide extensive pre COVID-19 population data 

for comparison with a new sample to be collected post COVID-19 in the same individuals.  

Whereas participant data in the pre COVID-19 samples can be presumed to be COVID -19 

negative, it will be necessary in the post COVID -19 samples to determine their case status by 

questionnaire or COVID-19 test results. Such a design will be able to disaggregate the effect of 

viral infection from the social, economic, and psychological effects of living through the 

pandemic period.  

 

Identification of SARS-2 Exposure.  COVID-19 positivity will be categorized as definite, 

probable, and possible based on testing, documentation, and symptomatology (see Table 1). A 

positive PCR occurring within 3 months of enrollment will be exclusionary, as it could indicate 

current infection. Since the pandemic is still ongoing, seroconversion of participants in the 

uninfected comparison group is a potentially serious concern. Seroconversion could occur after 

the documented initial negative PCR but before the initial assessment or after the initial 

assessment but prior to the 24-month follow-up visit. The primary method for confirming 

seronegativity was initially planned as circulating antibodies against SARS-CoV2, but the 

introduction of successful vaccination programs all but excludes this tool to document lack of 

infection. We must therefore rely on clinical history documentation and monitoring of the registry 

for repeated PCR tests documenting active infection at a later time. Even with careful monitoring 

of both, we may fail to identify asymptomatic infections in some individuals. However, this 

limitation may improve the robustness of any findings of cognitive decline in the targeted 

population (i.e., participants with documented positive infection), since undetected 

asymptomatic infections would have the effect of increasing cognitive decline in the comparison 

group, reducing any potential group differences.  

Stratification of COVID-19 Symptom Severity. For symptom severity, baseline evaluations of all 

enrollees will include detailed case report forms for COVID-19 developed by the World Health 
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-19 Work Group (several Consortium investigators are members of 

this group).  These forms will be used to stratify COVID-19 severity according to a four-level 

scale: Care level 0: no treatment required; Care level 1: ambulatory treatment; Care level 2: 

hospital admission without or with oxygen supplementation; and Care level 3: intensive care unit 

admission with or without mechanical ventilation.  

 

Data Collection Time Points. The initial plan calls for a minimum of two data points separated by 

12 to 24 months. A schematic description of the planned data collection is provided in Figure 2. 

 

Core Outcome Measures. Since the first cases of human infection by SARS-CoV2 are just 

approaching two years ago, it is impossible to predict the range of neuropsychiatric sequelae 

that may ensue from it. On the other hand, as reviewed above, acute and post-acute 

manifestations of COVID-19 disease commonly include cognitive impairment and, less 

frequently, overt psychiatric symptoms including mood abnormalities and psychosis. Therefore, 

we have chosen assessment instruments that allow an exhaustive assessment of neurological 

and psychiatric symptoms. Given the multinational nature of the consortium, we have also 

chosen instruments that are available and validated in as many languages as possible or, as is 

the case for cognitive assessment tests, are as unbiased as possible when used in individuals 

with varying mother tongues, literacy levels, or and cultural contexts. The following specific tools 

were selected (see Table 2): 

1. Phenomenological description: In order to be able to capture novel patient descriptions and 

clinical signs, our assessment approach is flexible and semi-structured. Specifically, the World 

Health Organization semi-structured interview Schedules for Clinical Assessment in 

Neuropsychiatry (WHO SCAN) will be used to ascertain psychopathology and neurological 

symptoms.122 Version 3 of WHO SCAN contains detailed semiquantitative (dimensional) 

recent events, executive function, language, etc), and psychiatry (anxiety, mood, hallucinations, 

delusions) phenomenology, as well as the inte
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WHO SCAN also provides automatized algorithms for all of the clinical diagnosis contained in 

Section F of the International Classification of Diseases revisions 10 (ICD-10) and 11 (ICD-11). 

When possible, and as provided for in WHO SCAN, informants will be interviewed for their 

Pre COVID-19 data on historical clinical phenomena and the previous life course, both which 

are important in modelling future outcomes, are also assessed in SCAN and the SCAN 2.1 

Clinical History Schedule, which takes account of externally provided data.  

With the exception of personality disorders, the WHO-SCAN covers all forms of 

neuropsychiatric outcomes, including somatic complaints, anxiety, mood disorders, obsessional 

phenomena, neurodevelopmental phenomena (autism, ADHD), psychosis, drug, alcohol, 

gambling and eating problems and an assessment of cognitive decline. Outputs include pre-

specified symptoms (e.g. delusion; panic; elation), dimensional symptom scores, and the 

determination of published diagnostic criteria.  Experienced psychopathologists can be trained 

by means of a three-day online course that includes role play and interview rating sessions to 

ensure concordance and reliability. WHO-SCAN is coordinated by a WHO advisory group that 

can advise on training, translation, and research protocol specifications with the support of 

centers throughout the world. 

2. Neurological examination: The neurological evaluation at each site is conducted and supervised 

by trained clinicians who are blind to neuropsychological test and PCR results and to SARS-

CoV2 testing status and history. The evaluation includes semiquantitative assessments of visual 

and auditory perception, muscle strength and tone, eye and facial movements, coordination, 

gait and balance, and muscular fatique (after two minutes of walking). With participant consent, 

neurological exams will be videotaped. Diagnoses of parkinsonism and focality due to 

completed stroke will be noted, as will incidental diagnoses of non-cognitive neurological 

disorders (e.g., seizure neuropathy, headache). Finally, the WHO SCAN interview permits the 

collection all of the information needed to score the Clinical Dementia Rating Scale.123 

3. Cognitive assessment battery. A customized neurocognitive assessment was developed to 

meet three criteria: (1) adapted to multiple cultural settings and languages, and therefore 
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minimally biased by formal education and native tongue; (2) robust to low levels of formal 

education or literacy, (3) reasonably brief. Details are provided in Table 2. The neuropsychiatric 

manifestations of SARS-CoV-2 infection have been characterized in the acute phase of the 

disease, but less is known about long term sequelae. Given this uncertainty, it is reasonable to 

include tests that probe multiple cognitive domains.  Since both cortical and subcortical circuits 

may be affected, a broad cognitive assessment is warranted. Pictorial versions of most tests are 

proposed to minimize biases imposed by language of origin and literacy levels. The two tests 

that may need to be completed in a face-to-face format, as they require automatic 

understanding of natural language, are the ACE III (a short but comprehensive cognitive 

battery), and the shortened Boston Naming Test. All the other tests can be computerized easily. 

To our knowledge, there is currently no Visual Paired Associates Test that clearly mirrors the 

verbal version. Orbito-frontal functions will be assessed using the Iowa Gambling Task and the 

Reversal Learning Task. The classic test for psycho-motor speed is the Digit Symbol 

Substitution Task. The battery is completed by test for neglect, high order visual perception, and 

social cognition. We expect some degree of variation across sites on the specific tests used as 

a consequence of, among other things, the availability of local norms and validation, but every 

site will collect data on the same cognitive domains using analogous tests when the exact 

versions are not available. For meta-analytic assessments, we will use normalized z- scores of 

the performance for each domain.  

4. Emotional reactivity assessment: The Perth Emotional Reactivity Scale (PERS), a self-report 

measure of trait levels of emotional reactivity, assesses the typical ease of activation, intensity, 

and duration of individual positive and negative emotional responses,124  Concurrent validity has 

been demonstrated via congruent correlations with other emotion measures.159 

5. Supplemental measures. To facilitate data sharing with ongoing studies, wherever feasible sites 

(NACC UDS)124-127 where feasible.  The National Alzheimer's Coordinating Center (NACC) 

established the Uniform Data Set (UDS) for longitudinal data by means of a standardized 

clinical evaluation.124-127 NACC is responsible for developing and maintaining a database of 
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participant information collected from all of the Alzheimer's Disease Centers (ADCs) funded by 

the National Institute on Aging (NIA). UDS defines an expanded, standardized clinical data set 

to provide ADC researchers a standard set of assessment procedures, collected longitudinally, 

to better characterize ADC participants with mild Alzheimer disease and mild cognitive 

impairment in comparison with nondemented controls. The UDS has data collection forms for 

initial and follow-up visits based on NACC definitions, a relational database, and a data 

submission system enhanced to provide efficient and secure access data submission and 

retrieval systems (https://www.alz.washington.edu).127 The NACC UDS is validated for 

le in English, Spanish, and Chinese 

(Mandarin). Psychosocial measures, including quality of life, stressful life events, and poverty 

and financial hardship will also be collected where possible. Admittedly, this information is 

partially duplicative with other components of the proposed assessment. Local decisions over 

use will be driven by the availability of locally validated and culturally adapted assessment tools, 

as well as participant burden. 

6. Neuroimaging.  

a. 1.5 and 3 Tesla Scanners. To promote consistency in data analysis, we will follow standardized 

Disease Neuroimaging Initiative Study 3 (ADNI3). By so doing, we will optimize direct 

comparisons of various analysis methods, particularly given large variations among older MRI 

systems and the state of the art systems available at high-end academic centers. ADNI3 

provides a two-tiered approach to accommodate the range of variability in scanners, including 

ADNI-3 Basic and ADNI-3 Advanced. The latter include structural T1-weighted, 3D FLAIR, T2* 

GRE, ASL, and high resolution images of the hippocampus. The Advanced Diffusion MRI and 

Resting State fMRI scans take advantage of simultaneous multi-slice acceleration for echo-

planar images (EPI). For longitudinal consistency, Advanced sequences can be down-sampled 

postscan to match the Basic sequences. The standard ADNI3 sequence acquisitions are listed 

in Table 2. We will collect region-specific volumetric and cortical surface measures; white matter 

hyperintensities as a proxy for vascular disease; vascular lesion burden (including infarcts and 
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microbleeds); tract-specific fractional anisotropy and mean diffusivity; BOLD-derived voxel-

based physiological (VBP) indices of neurovascular coupling; and, if positron emission 

tomography is available, region-specific glucose uptake as markers of tissue metabolism and 

synaptic integrity. 

b. 7 Tesla Ultrahigh Field Scanners: The higher contrast and spatial resolution of 7T MRI provides 

submillimeter measurements, allowing study of small cortical and subcortical structures of the 

brain and providing superior detail to 3T. Enhanced anatomical detail at 7T allows higher 

sensitivity in measuring sub-structural volume loss, including hippocampal subfields128 and the 

earlier detection of neurodegeneration implicated in ADRD. The UK 7T Network (which includes 

members of the CNS SARS-Cov2 consortium) have previously tested and proved the 

reproducibility of 7T scanners (Siemens and Phillips) across various sites.129,130,131 The 

harmonized sequences, listed in Table 3, are designed to study volumetric assessment of: 

cortex, hippocampal subfields, and thalamus; quantitative cerebral white matter changes and 

inflammation; iron content from blood breakdown (cerebral microbleeds, microthrombi); markers 

of endothelial injury; and volume and injury to the sub-structures of the brain stem, including 

Locus Coeruleus.  Comparative control groups with identical 7T MRI images include age, 

gender, and ethnicity matched participants who are both healthy or have an illness of similar 

severity (ICU admission, hospitalization without ICU, or no hospitalization). The study of 7T 

ndent 7T MRI 

(clinicaltrials.org Identifier: NCT04992975). We will analyze the acquired data through data 

sharing agreements based on the local expertise of each site within the 7T MRI COVID 

Consortium. 

7. Biomarkers.  Collection methods for whole bloods, plasma, serum, anucleated blood cells, 

mouth swab for epigenomics, and cerebrospinal fluid are detailed in Supplementary Tables 1-2. 

Blood spot is recommended for all sites, and blood or salivary swab is recommended for DNA 

(GWAS). Participating sites will collect, store, use, share, and dispose of human biospecimens 

in accordance with the informed consent signed by the subject, or under a waiver of informed 
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consent granted by an independent ethical review body at each institution. When specimens are 

collected from humans for the study purposes, the collection and storage process should aim to 

adhere, as closely as possible, to harmonized study protocols and procedures appropriate for 

the type of biospecimen being collected and its intended uses. We will establish biorepositories 

within global regions where biospecimens will be collected. Raw data will be analyzed locally, 

such that only metadata will be shared across the consortium. Specific agreements between 

each repository and collection site will be (or have already been) established. All biorepositories, 

whether large or represented by individual freezers in laboratories, will follow best practices 

using effective facility environments that include ambient temperature controls, good air 

circulation, lighting, and security. Systems will be in place to allow for local and remote 

temperature monitoring of freezers, refrigerators, and other temperature controlled 

environments. Biorepositories will have emergency preparedness plans that cover equipment 

failures and power interruption that include back-up storage capacity and back-up power 

supplies such as generators. 

(https://oir.nih.gov/sites/default/files/uploads/sourcebook/documents/ethical_conduct/guidelines-

biospecimen.pdf). Special attention will be paid to the appropriate packaging and shipping of 

human biospecimens between the collection site and the biorepository. This includes 

conforming to all applicable regulations and standards, including, but not limited to, those of the 

U.S. Department of Transportation (DOT) (DOT PHMSA PHH50-0079, 2006) and the 

International Air Transport Association (IATA) (IATA Dangerous Goods Regulations, 2019; IATA 

Infectious Substances Shipping Guidelines, 2019). All personnel involved in shipping biological 

materials should be trained properly for both air and ground shipments. A full list of the 

proposed biomarkers is included in Table 2. 

8. Genotyping. Specific approaches will vary across sites, but at a minimum, each dataset will 

contain genome-wide genotypes from cohort individuals to address the role of ancestry and 

genetic variation on susceptibility to neuropsychiatric sequelae. When available, sites will obtain 

whole genome sequencing data. Our consortium is in a unique position to address the 

interaction between genetics (including ancestral DNA) and viral strain variation on CNS 
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sequelae of SARS-CoV2. If available, genotyping will be carried out using Illumina GSA (or 

equivalent chip) and imputation to best available panel for persons of specified ancestry. 

 

Data Analysis. Longitudinal data analysis approaches, including time-to-event models and 

generalized linear models, will be used, depending on the outcome of our interests and data 

distribution. The cohort design will enable analyses employing survival and related regression 

and general linear models (depending on data distributions), using the full data set. There will 

also be ample scope for nested case control design approaches to analyze within selected 

subsets of the cohort data. These could be led by individual investigators, for example, in small 

sub-studies for which limited numbers of patients have undergone particular laboratory tests. 

When estimating the size of effects at the population level, and in particular for probabilistic 

cohorts, error estimates will take account of and be corrected for each sampling fraction, leading 

to greater generalizability and external validity. Where individual level data sharing is not 

possible, we will use meta-analytic approaches to compare findings across countries. 

 

Stay-in-Touch Strategy. To maintain contact with participants after the initial assessment, we 

will use a cell phone-based technology developed by Prof. Sriram Iyengar, termed Txt2Info, 

which provides precision bidirectional mass communications during pandemics. Txt2Info 

combines judicious use of text-messaging and an easy-to-use REDCAP survey instrument in a 

simple, lightweight manner. English and Spanish are currently supported, but other languages 

can be easily and quickly added. Txt2info is designed to be rapidly customized and deployed for 

any scenario that requires real-time dissemination of information and community-sourced data 

collection. 

 

Determining Pre-exposure Cognitive Status. A key consideration in the recruitment of new 

cohorts is the assessment of pre-exposure cognitive status, because pre-exposure decline 

(even in the absence of a clinical diagnosis of cognitive impairment or dementia) will result in 

exclusion from analyses. Since we will be collecting new cohorts, we will not have pre-exposure 
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assessments and will have to rely on indirect strategies to establish premorbid level of function. 

First, we will gather information about the pre-baseline functional ability of the participant 

through the SCAN interview. Second, where available we will interview a caregiver/informant 

using the CDR scale or the corresponding section of WHO SCAN. Finally, we will develop 

cognitive estimates of premorbid abilities.132-136 These combination methods are necessary 

because measures typically used in the US (e.g., the National Adult Reading Test or the 

Weschler vocabulary subtest) are very limited in high illiteracy contexts such as Argentina. Most 

cognitive tests have robust norms established in our study population. In making diagnoses, we 

will incorporate clinical judgment of cognitive decline, particularly with respect to pre-morbid and 

baseline levels of cognition. Local norms that include age and education will also be routinely 

taken into account, both in making consensus diagnoses and in formal statistical analysis. 

 

Mortality Endpoints. Efforts will be made to ascertain death certificates, contact significant 

others or to search the National Death Index (https://www.cdc.gov/nchs/ndi/index.htm) to track 

participants who are lost to follow-up. In Argentina we will track deaths in the registry of the 

provincial Emergency Operations Committee (http://coe.jujuy.gob.ar/noticias/). Other locations 

will track as available. 

 

Consortium Agreement and Data Sharing Procedures. The Consortium is led by a steering 

committee. Multiple subcommittees address specific areas of focus, including clinical definitions, 

epidemiological designs, clinical evaluation, cognitive assessments, biomarkers, and 

neuroimaging. Subcommittees meet ad hoc based on specific needs. The entire Consortium 

meets every fortnight via remote conferencing. Funding opportunities and publication proposals 

are discussed in the open meeting, including invitations to collaborate, and interested parties 

can continue to meet at their discretion. All protocols, publication drafts, and minutes from 

subcommittee meetings are made available to all members through a digital board. Each local 

site will be led by 1-2 principal investigators (neurologists, psychiatrists, or epidemiologists) and 
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a team of trained clinical research associates. A data sharing agreement regulates (and allows 

collation of) deidentified results using meta-analytic approaches. 

 

Discussion  

 

 The research described here aims to provide harmonized methodologies to better 

understand whether and how the SARS-CoV2 pandemic contributes to the risk (and 

mechanism(s)) of ADRD through a population-based, quasi experimental model. Through this 

network of study teams, we propose to characterize the neurobehavioral and neuropsychiatric 

phenomenology associated with SARS-CoV2 in harmonized, multinational, longitudinal cohorts 

of post SARS-CoV2 infection patients. Recruitment is ongoing in several cohorts. We plan to 

obtain core initial data within 18 months of recovery from hospital discharge or documented 

infection by PCR. Longitudinal follow up will be conducted at a minimum 24 months after the 

initial evaluation. A mHealth keeping-in-touch process is planned to minimize attrition rates. 

High rates of mutation in SARS-CoV2 (https://www.gisaid.org/phylodynamics/global/nextstrain/) 

strongly suggest that viral infectivity, including neurotropism, may not be uniform across 

countries impacted. However, regardless of the molecular mechanism(s) involved in chronic or 

progressive injury to the central nervous system, we assume that the fundamental biology 

driving disease development is largely the same across all human ancestries, even though 

redundant or parallel processes may result in diverse pathways leading to the same clinical 

phenotypes. Conversely, identical genetic variants may be associated with different phenotypes 

conditioned by the genomic context or ancestry, as well as by environmental influences. 

Therefore, variability, both in the effect of genomic variations and in the sources of risk for 

specific phenotypes, is expected to be inherently affected by contexts.137-139  All members of the 

Consortium have agreed to share data for meta-analytic and replication efforts in the future. 

Ongoing data collection efforts using CNS-SC2 methodology in Argentina, Greece, Denmark, 

Sweden, Perú, Cuba, India and China will provide multiple opportunities to attempt replication or 

expansion of the findings. 
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 Detecting Novel Symptoms. A critical caveat of this proposal is that the cognitive 

impairment triggered by SARS-CoV2 infection may resemble ADRD while differing from it in 

subtle but important ways. We therefore have chosen clinical assessment, imaging, and 

biomarker tools that will allow us to detect and describe even subtle differences. The semi 

structured interview WHO-SCAN makes use of a conversational interviewing approach, helping 

patients to describe in their own words their feelings, thoughts, and perceptions. The WHO-

SCAN examiner is trained to determine which of these verbal and subjective descriptions 

represents abnormal psychopathological phenomena (pre-defined in a glossary of symptom 

definitions officially endorsed by WHO),122 a technique that lends itself also to describing 

previously unrecognized phenomena or symptoms not catalogued as part of typical syndromes. 

Such novel emerging phenomena are often observed when the WHO-SCAN is translated into 

indigenous culture first languages that not only do not share all of Western conventional or 

universal experiences, but that also place importance on psychological experiences that are 

uncommon outside of that culture.140  While there are useful structured (e.g. CIDI, CIS-R) and 

semi-structured (e.g. SCID, DIGS) interviews and short checklists (e.g. GAD-7, PHQ-9, EPDS) 

in widespread use in neuro-psychiatry, including clinical trial and epidemiological research, 

these more structured approaches are only capable of identifying established and recognized 

symptoms, syndromes, and pre-defined disorder categories. This is problematic because novel 

symptoms may prove crucial to tracking and predicting short and longer term CNS effects of 

novel viruses, including COVID-19 outcomes. Novel symptom discoveries could also lead to the 

development of new, more appropriate, brief structured assessments for wide spread taking to 

scale.  

 Minimizing Cultural Bias. Cultural variables can also exert a powerful effect on test 

performance through construct, method, and item biases,141 but their impact is often 

underestimated. Indeed, the influence of culture on cognition poses great challenges to 

cognitive assessments in culturally diverse samples, not the least of which includes the difficulty 

of responding to the wide range of cultural contexts, conditions, and circumstances under which 

testing may occur around the world.141 Thus, while a common neuropsychological assessment 
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is an essential component of the longitudinal assessments planned by the Consortium, we 

recognized that harmonization of testing procedures across cultures, educational attainment 

levels, languages and sociocultural environments is a very difficult task. Standard cognitive 

processes are biologically identical for all humans, but individual, social, and environmental 

differences may significantly change the way in which cognitive processes are engaged, 

resulting in different patterns of abilities across cultures.142,143 For instance, studies in Aboriginal 

peoples show unique approaches to spatial relationships144 and numerical and memory 

tasks.145-148 To detect cognitive impairment and cognitive decline therefore requires a basic 

understanding of which skills are needed for normal function in a specific cultural context.149 

Culture-informed adaptations are made to the content and administration of instruments to 

reflect the experiences of the population being assessed and to retain within-population 

variance.150  

 The basic idea behind cross-cultural measurement is that the same aspect of cognitive 

abilities is assessed similarly in different cultural groups using tests selected, optimized, and 

normed for each individual group. In this case, absolute scores would not be directly 

comparable across groups, but deviance from norms would be comparable regardless of 

differences that may be present in a variety of important background characteristics that vary 

across and within cultures. To address these issues, a panel of experts from across the CNS-

SC2 Consortium (including key personnel from each continent and with expertise in Aboriginal 

cognitive assessments) worked on harmonization of culturally appropriate conceptual tasks 

(e.g., content, sensitivity, and face value of the tools) to minimize three key sources of bias: 

fairness, instrument, and administration. Fairness, understood as equitable treatment 

throughout the testing process, refers to the manner in which the tool is administered. 

Instrument bias refers to all the properties associated with an instrument that are not the target 

of study but nonetheless can result in group differences in test scores. For instance, if a 

computer is used to measure reaction times in individuals who have never used a device and 

others who have lifetime usage, differential familiarity with computers is expected to influence 

the obtained results regardless of the construct being investigated. Administration bias refers to 
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group differences in test scores due to aspects of the interaction and communication between 

the examiner and examinee. Factors such as inappropriate testing conditions, unequal 

opportunity to familiarize oneself with the test format, unavailability of practice materials and 

unequal exposure to those materials, unequal performance feedback, and lack of standardized 

test administration can all lead to administration bias.  We have created a Standard Operating 

Procedure manual to ensure equitable treatment throughout the Consortium. 

Focus on Olfactory Impairment. Lastly, our semi-quantitative neurological examination 

is primarily focused on olfactory, motor, and cognitive function. Other aspects of the clinical 

examination (i.e. visual and auditory perception, muscle strength and tone, eye and facial 

movements, coordination, gait and balance, and muscular fatigue during six minutes of walking) 

are included to achieve broad characterization of concomitant complications. There are multiple 

sound reasons to pay particular attention to olfactory deficits in this context. First, increased 

amyloid- h amnestic mild 

cognitive impairment (aMCI),151,152 and both factors may be predictive of ADRD.151,152 Olfactory 

impairment is also correlated with tau pathology and neuroinflammation in patients with 

ADRD153 and predictive of dementia diagnosis in several pathologies.36-37 As mentioned in the 

introduction, SARS-CoV2 invades the olfactory bulb and this is the likely explanation for the 

prevalent anosmia in infected patients.20-22,24-27 This mechanism has been well established in 

experimental animals26 and is well supported by imaging studies of sub-acute COVID-19 

patients.29-34 Fruit and flower odor categories have a graded structure that is a universal 

property retained across categories,154 such that they can be stably tested. Second, the 

amygdala is one of the primary connections of the olfactory bulb,155 has among the highest 

levels of ACE2 expression in the brain,156 is a preferential target of COVID-19 in the post-

mortem tissue of patients157 and is affected in imaging studies of long-COVID patients.158 Likely 

as a consequence of this involvement, changes in emotional reactivity have been reported as a 

prominent behavioral change after SARS-CoV2 infection. 
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Table 1

Definite case definition variants
Positive infection test (PCR or rapid test)
Positive infection test with a later positive antibody test
Positive infection test with at least 2 core symptoms *
Positive infection test with at least 1 core symptom ^ and 2 supportive symptoms **
Positive infection test, core symptoms and hospitalization as an index of severity

Probable case definition variants
Antibody test positive on two occasions (without vaccination)
Positive antibody test (without vaccination) with at least 2 core symptoms * or 1 core + 2 supportive symptoms
Negative infection test with at least 2 core symptoms * or 1 core + 2 supportive symptoms and typical chest CT

Possible case definitions (e.g. drawn from survey questionnaires or interview findings)
Single core symptoms
Self-reported without laboratory testing confirmation
Positive antobody test on just one occasin (without vaccination)

* Core symptoms: fever, chils, cough, sore throat, anosmia, dyspnea, hypoxia, muscle pain, fatighe, altered mental status or delirium
** Supportive symptoms: diarrhea, headache, skin rash
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Table 1

Positive antibody test (without vaccination) with at least 2 core symptoms * or 1 core + 2 supportive symptoms
Negative infection test with at least 2 core symptoms * or 1 core + 2 supportive symptoms and typical chest CT

* Core symptoms: fever, chils, cough, sore throat, anosmia, dyspnea, hypoxia, muscle pain, fatighe, altered mental status or delirium
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Table 2

Domain

Orientation & language*

Psychomotor speed

Social Cognition
Neuropsychiatriy and Behavioral Neurology World Health Organization Schedules for Clinical Assessment in Neuropsychiatry (WHO SCAN)
Clinical evaluation of neurodegenerative disorders
Emotional reactivity assessment
Clinical Cognitive Diagnosis
Psychosocial measures
Semiquantitative Clinical Variables

Structural MRI

Diffusion Tensor Imaging
BOLD fMRI

18F-DG PET (Only at UTHSA site)

AD-specific biomarkers
Neurodegeneration and neuronal activity/injury
Inflammatory biomarkers

Tract-Specific Fractional Anisotropy (FA) and Mean Diffusivity (MA)
Data from functional connectivity (FC) analyses
BOLD-derived voxel-based physiological (VBP) indices of neurovascular coupling

Region-specific glucose uptake as markers of tissue metabolism and synaptic integrity

Blood-based biomarkers

Table 2. Overview of Proposed Measures

Clinical, Cognitive and Psychosocial Assessments
Cognitive domains

Memory

Executive function

Attention & Visuo-Spatial abilities

The Perth Emotional Reactivity Scale (PERS)
Mild Cognitive Impairment (amnestic or non-amnestic MCI), and dementia
Quality of life measures; stressful life events; poverty and financial hardship
Anosmia/Hyposmia smell recognition test; 2-min walk test of fatigability

Neuroimaging
Region specific volumetric, cortical surface
White matter hyperintensities as a proxy for vascular disease
Vascular lesion burden: Infarcts, microbleeds

A 42, A 40, P-tau181, P-tau217

NfL, GFAP, sTREM-2
Bio-Plex Pro Human Cytokine panel

Genetics
DNA collection for GWAS or Whole Genome Sequencing

Page 1



Table 2

ACE III and Shortened Boston naming test
Episodic: Visual Paired Associates
Working: Corsi Block Test
Semantic: Cactus & Camel Test
Inhibition (& psycho-motor speed): Color (or Size) Stroop
Planning - Problem solving: Tower of Hanoi

Symbol substitution test
Search Neglect: Bell cancellation
Perception Apperceptive Agnosia: Poppelreuter-Ghent's overlapping figures test
Theory of Mind: Frith-Happé animations

World Health Organization Schedules for Clinical Assessment in Neuropsychiatry (WHO SCAN)

Tract-Specific Fractional Anisotropy (FA) and Mean Diffusivity (MA)
Data from functional connectivity (FC) analyses
BOLD-derived voxel-based physiological (VBP) indices of neurovascular coupling

Region-specific glucose uptake as markers of tissue metabolism and synaptic integrity

Measures

The Perth Emotional Reactivity Scale (PERS)81

Mild Cognitive Impairment (amnestic or non-amnestic MCI), and dementia
Quality of life measures; stressful life events; poverty and financial hardship
Anosmia/Hyposmia smell recognition test; 2-min walk test of fatigability

Region specific volumetric, cortical surface
White matter hyperintensities as a proxy for vascular disease
Vascular lesion burden: Infarcts, microbleeds
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Table 3

Sequence Acquisition Parameters
Set up / localizer GRE
3DT1 MP2RAGE 348 slices (0.55 iso); TR~6000; TE~22.54; TI1/2~800/2500; AF=2
3D SWI 208 slices (0.375x0.375x0.75); TR~24; TE1/2~8.16/18.35; AF=2
T2 TSE 36 slices (0.375x0.375x1.5); TR~10060; TE~61; AF = 2
T2 FLAIR 80 slices (0.75x0.75x1.5); TR~14000; TE~99; TI~2900; AF = 2
3D T2 Space 256 slices (0.6 iso); TR~3400; TE~367; AF = 3
MT & non MT 60slices (0.4 iso); TR=548; TE=4.08; AF = 8
TOF (4 slabs) 192 slices (0.375 iso); TR~14; TE~4.5; AF = 3

Table 3. Sequences for 7 Tesla High Field MRI
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Table 3

Measures Assessed Time (min)
positioning; shimming 5.5
morphometry; registration; hippocampus segmentation 12.5
small vessel analysis; T2* mapping; QSM 9
hippocampus segmentation 4
white matter hyperintensities 11
morphometry; hippocampus segmentation; perivascular spaces 9.5
locus coeruleus intensity; contrast' MT 8
angiography; arteriolar analysis 6.5
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