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The impact of product attributes and emerging technologies on firms' 

international configuration  

 

 

Abstract 

 
International business (IB) literature has largely focused on trade-offs between cost 

minimisation, knowledge seeking, managing transaction costs, and maintaining control in 

explaining the international configuration of firms’ activities. By incorporating insights from 

operations management (OM) we propose a framework that explicitly takes into account 

product characteristics in understanding the international configuration options available to 

firms. Specifically, we show how the fundamental architecture of the product and the required 

physical and knowledge flows within its associated value network determine configuration 

options. We then utilise this framework to predict how emerging technologies will reshape the 

international configuration options available to firms. 
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Introduction 
 

International business (IB) scholars typically define a firm’s international 

configuration as the way it chooses to fine-slice, locate and govern its value chain activities 

(e.g. Rugman et al., 2011; Casson and Wadeson, 2012;  Mudambi and Venzin, 2010). These 

configuration choices have been explained in terms of a variety of factors including on trade-

offs between cost arbitrage (Helpman, 1984; Markusen, 1984), knowledge seeking (Doz , 

Santos and Williamson, 2001; Tallman and Fladmoe-Lindquist, 2002; Mudambi, 2008; Ayse, 

2011), the costs of moving knowledge over distance (Buckley and Hashai, 2005), internal 

organisational considerations (Bartlett and Goshal, 1989; Alcacer & Delgado, 2015), path 

dependency and strategic inertia (Collis, 1991), diminishing returns from the dispersion of 

activities (Narula, 2014; Fratocchi, et.al., 2014) and power and micro-politics (Bouquet and 

Birkinshaw, 2008). Few of these studies, however, explicitly take into account constraints on 

the choices of international configuration of activities available to firms that potentially arise 

from the physical characteristics of their products and their implications for the flows of 

materials, components and knowledge that underpin the value-creation process. Even 

exceptions that do acknowledge the relevance of technical and engineering considerations, 

such as research into how the modularisation of products might influence the architecture of 

multinationals, still tend to emphasise strategic considerations as the key driver of modularity 

and the architecture of multinational firms (McDermott, et. al., 2013). 

In the operations management (OM) literature, by contrast, product characteristics are 

cast as the primary drivers of the configuration of value-chain activities because of the way 

they influence how its constituent parts and value-adding activities can be decoupled and 

dispersed (Ulrich, 1995; Cooper et al., 1997; Baldwin and Clark, 2000). 

In this paper we bring together IB and OM perspectives to develop a framework to 

show how the physical and technological characteristics of a product and its associated value 
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chain might constrain the viable decoupling (and therefore dispersion) options available to the 

firm when deciding on the international configuration of its activities. By explicitly 

distinguishing these constraints from firm choices we seek to enhance existing IB 

explanations and provide a more general framework to understand the current dispersion of 

activities and tasks (Baldwin and Evenett, 2015) that haves hitherto been investigated in 

industry studies (e.g. MacDuffie, 2013; Alcacer and Delgado, 2015; and Gray, et. al., 

2015).We then show how this framework can be used to better predict the likely impact of 

advances in information and communications technologies (ICT) and new manufacturing 

technologies on firms’ international configurations..  

 

Horizontal and Vertical Decoupling of Product Value Networks 
 

We adopt Dunning and Lundan’s (2008) characterisation of the value chain which we 

extend to encompass the full “value network” (Stabell and Fjeldstad, 1998) comprising both a 

vertical value chain of activity stages, including possible outsourced supply (Lambert et al., 

1998), and a horizontal set of technologies, processes and components that may comprise 

each activity stage (Choi and Hong, 2002; Carbonara et al., 2002). This allows us to explore 

the fundamental physical and knowledge characteristics of the product that might determine 

whether a firm has the option to disperse any activity as part of that configuration. 

  Vertical decoupling is the opportunity to decouple and disperse any process stage of a 

product value network from the stage adjacent to it either upstream or downstream. 

Horizontal decoupling is the opportunity to decouple the components or technologies being 

worked on in parallel at any given stage (what Baldwin and Evenett, 2015, describe as the 

fragmentation of tasks). In order to focus on the options to disperse activities and tasks, we 

adopt the definition of spatial complexity suggested by Choi and Hong (2002), that calibrates 

the option to decouple and disperse any two value-creating activities along a spectrum going 
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from “necessarily co-located on the same site” to “possible to locate on different sites in the 

same country”, or to “locate in different sites at any distance from each other” (i.e., to 

disperse internationally). These options are summarised in Figure 1. They depend on both the 

physical product architecture and the knowledge attributes of its associated value network. 

 

<< Insert Figure 1 About Here >>  

 

Physical product architecture  

 Where the product architecture is integral the opportunities for horizontal decoupling 

will be reduced compared with modular product architectures where each “functional 

element” acts as a specialised module that operates independently (Ulrich, 1995; Baldwin and 

Clark, 2000). The scope for vertical decoupling, instead, depends on the architecture of the 

processes needed to develop, design, manufacture and deliver the product. Where this is 

dominated by continuous processing, there are fewer opportunities for decoupling and 

dispersing the vertical stages of the value network compared with products where processing 

involves many potentially separate transformation steps (Srai, 2013).  

The value density (the ratio of the value over the weight) associated with the product 

architecture will also influence the scope for decoupling. Low value density products, tend to 

have high transport cost relative to their value, compelling firms to operate a vertically 

integrated supply chain close to a foreign market (Voordijk, 1999). The impact of these costs 

can be expected to vary between the horizontal and vertical dimensions of the network 

depending on the value density of both intermediates and finished products.  

Knowledge attributes 

Configuration options will also be influenced by the nature of the knowledge flows across the 

value network because this impacts the extent to which distance acts as a barrier to 
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horizontally or vertically decoupling.  IB scholars have investigated these barriers in the 

context of studying how networks of subsidiaries interact (Birkinshaw, 2002; Kogut and 

Zander 1993, 1995) pinpointing the key role of knowledge tacitness (e.g. Kogut and Zander, 

1993) and embeddedness (Birkinshaw et al., 2002) between distant locations. Product 

characteristics that necessitate significant flows of tacit and/or embedded knowledge between 

activities or tasks will militate against decoupling and dispersion (Birkinshaw, 2002; Narula 

and Santangelo, 2012). 

 Depending on the impact of a product’s characteristics on the scope for horizontal and 

vertical decoupling, Figure 1 sets out the different configuration options available to the firm. 

Specificallya firm supplying it will choose among the different configuration options shown 

in Figure 1. Specifically: 

Local co-location will be the only viable configuration option available to firms 

which supply products where some combination of the following characteristics predominate: 

integral (rather than modular) architecture, relatively low value density, continuous/or limited 

processing technologies, and a value network that depends on highly tacit and embedded 

knowledge in both horizontal and vertical dimensions. 

Firms supplying products with a combination of integral architecture and dependence 

on flows of highly tacit and embedded knowledge in the horizontal dimension of the value 

network (such as R&D that requires the fusion of multiple technologies), will need to co-

locate the tasks required for each stage in the chain. But they will have the option of choosing 

a decoupled value chain configuration if the chain can divided into discrete vertical stages 

that can be located in favourable geographies and brought together economically (because of 

higher value density) and coordinated using flows of codified knowledge. 

Firms supplying products that face high barriers to the coordination of dispersed 

vertical stages because of low value density and/or the need for flows of tacit and embedded 
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knowledge between vertical transformation stages will be constrained to replicating the 

complete vertical chain in each location in which they operate. But if the product architecture 

and knowledge network allows some of the technology development, design activities or 

component production required for each stage to be decoupled and dispersed, they will have 

the option of multi-domestic replication.  In this case, each stage of this chain may be “thin” 

(with few horizontal activities) in some locations and “thick” in others (high horizontal 

fragmentation but low vertical fragmentation). For example, all locations may need some 

local R&D and design for adaptation to market conditions, but the bulk of basic R&D and 

design might be undertaken centrally.
1
  

Finally, firms which supply products characterised by a combination of modular 

product architecture, discrete/batch processing, relatively high value density that reducesd the 

costs of dispersion relative to the value of components and products and only limited flows of 

tacit and embedded knowledge will have the option of choosing a globalised network 

configuration. Here where activities are decoupled and widely dispersed i.e. (high horizontal 

and vertical fragmentation). 

  

Empirical Analysis 
 

 We now adopt this framework to describe fragmentation of different industries. 

Specifically, we first asked product/industry experts to assess the scope for decoupling and 

dispersing different activities and tasks; second, we estimated the relationships between these 

perceptual options and measures of the product characteristics mentioned in the previous 

section.   
                                                      

 

1
 This category captures the case where the firm has the option to choose what the IB 

literature, coming from a strategy perspective, has frequently referred to as the “multi-

domestic firm” (Prahalad and Doz, 1987; Bartlett and Ghoshal, 1989). 
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Questionnaire development and sample selection  

In order to collect the data on the configuration options independent from the choices 

made by particular firms we focused the subsequent interviews on product designers, 

engineers, industry experts and researchers rather than company employees
2
. Respondents 

were randomly chosen from different engineering institutes and design centres in Europe, 

USA and emerging countries (China, Brazil, Mexico and Egypt). Over one hundred and sixty 

respondents were contacted over twelve months (follow- up emails were sent to all 

respondents to ensure that the data remained accurate and valid). Of a total of 106 responses, 

96 were useable. These covered sixty-seven product (United Nations Central Product 

Classification) categories across eighteen industries, listed in Supplementary data A.  

Product attribute measures  

We collected survey responses for 17 indicators of product architecture and knowledge 

characteristics detailed in Table 1 along with their sources and measurement scales, and notes 

on the reliability of the scale. We then applied factor analysis to these data resulting in five 

factors corresponding to our explanatory indicators of product attributes: knowledge tacitness, 

knowledge embeddedness, value density, modularity and tier structure (Table 1). Application 

of Harman’s one-factor test for possibility of common method variance bias confirmed the 

presence of these five distinct factors with an eigenvalue greater than 1.0 (See Supplementary 

data C). 

                                                      

 

2
 We refined and validated the questionnaire through three rounds of exploratory 

interviews with 15 product designers/engineers over a period of two months. 
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Measures of the scope decoupling 

 Our questions on the scope for horizontal and vertical decoupling and dispersion 

delivered perceptual measures of the scope for geographically separating different activities 

and tasks (Choi and Hong, 2002) as described in supplementary data B. Thus the indicator of 

the scope for horizontal decoupling and dispersion within the R&D activity, for example, 

measures the maximum geographic distance between different technology development 

centres that is viable. An indicator of the scope for vertical decoupling and dispersion 

between production and distribution was the viable geographic distance between these stages. 

Scores for each stage of activity chain and task were averaged to calculate a single measure of 

the scope for horizontal and vertical decoupling respectively that was used in an OLS 

regression against the factors measuring the attributes of each product. 

  

Results for decoupling and configuration 
 

Our regression results are reported in Table 2
3
. As expected, high product modularity was 

positive and significantly related to increased scope for horizontal decoupling, while 

knowledge tacitness and knowledge embeddedness both significantly reduced it. Value 

density also appeared to significantly reduce the scope for horizontal decoupling, possibly 

because the fragmentation of tasks associated with high value density products imposes other 

transaction costs which we do not measure directly. 

The scope for vertical decoupling increased along thea spectrum of continuous to 

discrete (batch) transformation processes (positive and significant coefficient on tier 

                                                      

 

3
 The reason for the relatively low adjusted R

2
, especially in the equation for vertical decoupling, is 

worth noting. An examination of the residuals revealed that some of our sample products exhibited 

outlier values for certain indicators, especially value density. But we decided not to exclude these 

products in order to avoid losing valuable observations on the other indicators that were within the 

normal range.   
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structure). The nature of the knowledge flows required between stages of the chain showed up 

as an important factor in determining scope for vertical decoupling. The knowledge 

embeddedness had a negative and strongly significant impact; knowledge tacitness also had a 

negative coefficient (although not statistically significant). Modularity showed a positive 

(although insignificant impact).  Value density was also insignificant (although separate 

analysis of the data separating upstream and downstream stages suggests it constrains 

decoupling of physical stages of the value chain, such as manufacturing, while having no 

effect on decoupling of R&D and design stages). 

Taken together, these results are consistent with our proposition that firms supplying 

products with integral product architecture, and that depend on horizontal flows of highly tacit 

and embedded knowledge flowing in the horizontal dimension of the value network will need 

to co-locate the tasks underpinning each stage of the vertical chain. But also that, where this 

vertical chain can be divided into discrete stages (complex tier structure) and coordinated by 

codifiable knowledge, these firms will have the option of choosing a decoupled value chain 

configuration where activity stages can be dispersed. Products requiring continuous 

processing along the vertical chain, but with knowledge flows that do not significantly 

constrain the ability to disperse some of the technology development, design work or 

component manufacture, will have the option of multi-domestic replication. In this case the 

vertical chain may be thin in some locations (for example where R&D and design activities 

are limited to local adaptation) and thick at other locations, where the full range of horizontal 

activities at each stage is undertaken (as observed by Bartlett and Ghoshal, 1989). 

Firms supplying products with some combination of integral product architecture and 

a value network that depends on flows of highly tacit and embedded knowledge, will be 

constrained to adopting a locally co-located configuration regardless of their preferences 

concerning ownership, governance, outsourcing or internationalisation of activities. The only 
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firms enjoying the option to disperse their activities in a globalised network will be those 

supplying products with modular architecture, where activities and tasks, can be divided into 

multiple tiers, and where only limited necessary flows of tacit and embedded knowledge are 

required.   

 

Mapping firms’ configuration options by product 
 

Figure 2 maps the perceptual values for the dispersion options available to firms depending 

on their product, thus illustrating the viable configurations across product types and industries
 

4
.  

 

<< Insert Figure 2 About Here >> 

 

Specifically, firms producing biological products (e.g., biopharmaceuticals and gene 

therapy) are constrained to local co-location where embedded knowledge flowing throughout 

the value network requires design and manufacturing processes (e.g. cell culture production, 

isolation and purification of protein) to be tightly integrated and regulated. This is consistent 

with the findings of recent studies of pharmaceutical industry that colocation of R&D and 

manufacturing continues to lead to superior outcomes (Gray. et. al., 2015). It also accords 

with the observation that particular vaccines remain ultimately developed and produced in one 

largely autonomous facility in a centralised location (e.g. GlaxoSmithKline’s  biopharma 

                                                      

 

4
 To test for potential for misperceptions among our respondents, we compared this with a similar mapping using 

the OLS estimates for our representative product types that share a value network (i.e. the positioning implied by 

the product attributes using the regression coefficients as weights). The perceptual values and OLS estimates 

imply decoupling options in the same quadrant for all but two of the product groups mapped (and even here the 

majority of survey respondents gave values that would have led to consistent positioning using the two 

methods).  
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products are manufactured and developed in Belgium, and some AstraZeneca influenza 

vaccine products are developed and mostly manufactured in the USA).  

Firms supplying products with relatively modular architectures where vertical 

activities can be decoupled into multiple tiers, but that require horizontal tasks associated with 

technologies, and components comprising each stage to be integrated will be maximally 

constrained to a decoupled value chain. Thus Rolls Royce has an aero-engine manufacturing 

plant in Singapore, decoupled from R&D and design, but all of the technology, process and 

component streams required for each stage need to be co-located. 

For relatively short-tiered mature product sectors with low value density and integral 

architecture, such as milk, concrete and household paint, fragmentation will be maximally 

constrained to multi-domestic replication. Only products with modular architectures that be 

produced in series of discrete transformation steps where standardised interfaces allow 

knowledge to be codified and free-flowing between tasks and activities, such as smart phones 

and laptops, will have the option of choosing a globalised network configuration. 

 

The impact of emerging technologies on firms’ configuration options  

 
 By specifying the links between each dimension of the product architecture, its value 

network, and a firm’s configuration options, our framework provides a way to analyse the 

(often contrasting) impact of new technologies on the potential for fragmentation of tasks and 

activities 

 Specifically, ICTs that enable better decontextualisation, codification and 

communication of knowledge will reduce the opacity of relationships within the value 

network. Following Andersson et al. (2002; 2007) and Yamin and Sinkovics (2010) this 

should also open up new opportunities for decoupling and dispersion. Indeed, in our 
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framework, greater transparency of knowledge flows provide firms with additional options to 

move towards a decoupled or globalised network configuration .   

Emerging technologies, such as additive and continuous manufacturing, may also alter 

the process architecture and the nature of knowledge flows in the value network. Additive 

manufacturing (AM), which uses layer-by-layer manufacturing in order to build a 

component/product using a three dimensional computer-aided design (CAD) model. This 

requires the design information, and hence the interface to production, to be codified in software 

(Petrovic et al., 2011) giving firms the option to decouple their downstream manufacturing 

activities from their upstream design, (Hague et al., 2003). This opens the way for firms to 

move vertically in Figure 2. Greater use of CAD and numerical processing power can also 

allow firms to design products and systems with higher modularity than was possible in the 

past (Mustakerov and Borissova, 2013) opening up new options to choose multi-domestic 

replication or globalised network configurations.  

The replacement of batch processing by continuous manufacturing (CM also requires 

the codification of knowledge, thus opening up new options for firms to decouple and 

disperse these activities and hence move from local co-location to a decoupled value chain or 

even global dispersion (Hague et al., 2003). 

 On the other hand, AM and CM lead to fewer production stages and a more integral 

product architecture. This will require production activities and tasks to be closely coupled 

and integrated (Hague et al., 2003, Cooney and Konstantinov, 2014), transforming products 

formerly delivered through complex, multi-tier value chains to a relatively short-tiered, 

integrated chains. This may constrain firms to adopting multi-domestic replication and local 

co-location configurations (depending on the associated knowledge attributes). Decoupled 

product development may also become unnecessary, as in the case of pharmaceuticals, where 
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CM has smoothed the path from the laboratory to full production, allowing the elimination of 

tests in parallel with clinical trials (Plumb, 2005).  

Products designed to utilise these new transformation technologies also tend to be more 

integral compared with traditional, subtractive or batch manufacturing reducing the options 

for fragmentation and international dispersion. This shift has been observed in customised 

health products where researchers and scientists have integrated several stages of the value 

network to minimise cost and delivery time (Petrovic et al., 2011) and in the production of 

new lightweight, highly integrated systems such as air ducts used in aircraft (Lyons, 2012). 

 

Conclusion 
 

 In this paper we integrated the traditional IB determinants of firms’ international 

value-network configurations within a framework borrowed from  the OM literature, where 

the product architecture (value density, degree of modularity and tier structure) plays a key 

role in orienting firms’ decisions 

First, we highlight the need to go beyond “industry-level” generalisations (such as that 

based on “smile curve” of value). The constituent tasks and activities that make up a product 

and its associated value network need to be examined to understand variations in the viable 

international configurations open to firms and industries. 

Second, we suggest a typology of four viable configuration options, based on the 

constraints firms face when they consider international fragmentation. Our results confirm 

and extend previous single industry studies (e.g., MacDuffie, 2013 for the automotive 

industry; Alcacer and Delgado, 2015 for biopharmaceuticals; and Gray, et. al., 2015 for 

pharmaceuticals) demonstrating that in an increasing globalised world some activities and 

tasks may still need to remain collocated while others can be decoupled and dispersed (Pisano 

and Shih 2012). We also confirm and add to previous work on the role of technical and 
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engineering influences on international configuration (Sanchez and Mahoney (1996), 

Schilling (2000), Baldwin and Clark (2000), Brusoni and Prencipe (2001), McDermott, et. al., 

2013) and firms’ location choices  (e.g. Ketokivi and Ali-Yrkko, 2009; Alcacer and Delgado, 

2015). 

Third, our framework provides some hints about the impact of emerging technologies 

and ICT advances on the configuration options available to firms. While we have not been 

able to test these predictions directly, this certainly promises to be fruitful area for future 

research. 

Our findings may also help in guiding national strategies.  Products where R&D, 

design or sales and distribution benefit by close coupling and co-location with manufacturing 

will be good candidates for emerging economies, such as China, seeking to exploit their 

strengths manufacturing to upgrade their value added. Conversely, products where the R&D 

and design tasks need to be co-located because they rely on tacit and embedded knowledge, 

and where high value density and short tier structures favour new technologies such as 

additive and continuous manufacturing, will be good candidates for advanced economies 

wishing to expand high value manufacturing. In this respect, both developed and emerging 

countries’ policy makers may benefit from going beyond industry-level characteristics to 

consider product value network differences as they shape industry and investment promotion 

policies.  
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Figure 1: Options for product value chain decoupling  
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Figure 2: Product value chain decoupling  
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Table 1: Factor analysis to estimate indicators of product attributes 

Attribute  Measure Loading Alpha Source of Scale  

Tier Structure  

 

R&D tiers 

Design tiers 

Production Steps 

Bill of material levels 

0.84 

0.87  

0.83  

0.78 

0.92 Carbonara et al. (2002) 

and Srai (2013)  

 

 

Value density 

 

Finished product VD 

Tier 1 value density 

Tier 2 value density   

0.92  

0.94 

0.93 

0.97 Lovell et al. (2005) 

 

 

Knowledge 

Tacitness 

 

Design codifiability 

Production codifiability 

Production teachability   

Re/Design Complexity 

0.81 

0.77  

0.63  

0.65 

0.84 Zander and Kogut (1995) 

and 

Birkinshaw et al. (2002) 

 

Product 

Modularity   

 

Concept modularity 

Component/module interface  

Function-component allocation 

0.74  

0.77 

0.80 

0.69 Ulrich (1995); Baldwin  

and Clark (2000) 

 

 

Knowledge 

Embeddedness  

 

Technologies embeddedness ss  

Design embeddedness  

Production- distribution 

embeddedness 

0.70 

0.69  

0.79 

0.63 
Zander and Kogut (1995) 

and 

Birkinshaw et al. (2002) 
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Table 2: Predictors horizontal and vertical decoupling and dispersion  

 

Horizontal 

Decoupling 

Vertical  

Decoupling 

Architecture 

- Product Modularity 

 

0.284***   

(3.68) 

 

 

0.127 

(1.67) 

- Tier Structure 

 

0.045 

(0.57) 

0.180**   

(0.04) 

-  Value Density 

 

-2.06** 

(-2.59) 

0.034 

(0.44) 

Nature of Knowledge Flows 

- Knowledge Tacitness 

 

-0.156* 

(-1.98) 

 

-0.018 

(-0.23) 

- Knowledge Embeddedness 

 

-0.393*** 

(-5.00) 

-0.226*** 

(-2.91)   

Constant 

 

4.271*** 

(53.82) 

3.887***   

(49.59) 

N 67   67  

F 9.017 ***    3.125 **     

Adjusted R
2
 value  0.425 0.204 

* p<0.1, ** p<0.05, *** p<0.01 t statistic() 

 

 


