# Integration of plastids with their hosts: lessons learned from dinoflagellates

# Richard G. Dorrell<sup>1,2\*</sup> and Christopher J. Howe<sup>1</sup>

2 3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

<sup>1</sup>Department of Biochemistry, University of Cambridge <sup>2</sup>School of Biology, École Normale Superieure, Paris \*to whom correspondence should be addressed: dorrell@biologie.ens.fr

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Following their endosymbiotic acquisition, plastids become intimately connected with the biology of their host. For example, genes essential for plastid function may be relocated from the genomes of plastids to the host nucleus, and pathways may evolve within the host to support the plastid. In this review, we consider the different degrees of integration observed in dinoflagellates and their associated plastids, which have been acquired through multiple different endosymbiotic events. Most dinoflagellate species possess plastids which contain the pigment peridinin and show extreme reduction and integration with the host biology. In some species, these plastids have been replaced through serial endosymbiosis with plastids derived from a different phylogenetic derivation, of which some have become intimately connected with the biology of the host, while others have not. We discuss in particular the evolution of the fucoxanthin-containing dinoflagellates, which have adapted pathways retained from the ancestral peridinin plastid symbiosis for transcript processing in their current, serially acquired plastids. Finally, we consider why such a diversity of different degrees of integration between host and plastid is observed in different dinoflagellates, and how dinoflagellates may thus inform our broader understanding of plastid evolution and function.

dinotoms | poly(U) tail | transcript editing | chloroplast genomes | minicircle

### Integration in plastid evolution

Plastids evolve through the endosymbiotic integration of two organisms: a eukaryotic host, and a photosynthetic prokaryotic or eukaryotic symbiont. It is generally believed that the host initially consumes the symbiont through phagocytosis. Subsequently, over long evolutionary timescales, pathways evolve within the host to maintain the endosymbiont as a permanent, intracellular organelle (1). At least eight distinct plastid endosymbioses have been documented across the eukaryotes, giving rise to a diverse array of different photosynthetic lineages (reviewed in (2)). Understanding what processes underpin the integration of plastids with their hosts may provide valuable insights into the evolution and function of photosynthetic eukaryotes.

Plastids and their hosts share intricate biological connections. For example, plastids possess transporters that enable them to export photosynthetic and photorespiratory products to the host, and import inorganic nutrients and cofactors essential for plastid metabolism (3, 4). Plastid replication and division are likewise dependent on proteins encoded within the host nucleus (5). Finally, gene expression within the plastid depends on factors expressed within the host, alongside other factors encoded within the plastid genome (6). The host factors may support the plastid by, for example, regulating plastid gene expression and, at an evolutionary level, by correcting mutations in the plastid genome that might otherwise prove deleterious (6, 7).

Each of these examples of integration depends on proteins that are encoded within the nuclear genome, but are targeted to the plastid. Some of these proteins were originally of plastid origin, with the genes encoding them having been transferred to the nucleus of the host following endosymbiosis (8, 9). In other cases, genes endogenous to the host may be recruited to support the plastid, changing its biology. It is likely that most extant plastids are supported by a mosaic of pathways, some of symbiont and some of host origin. For example, approximately half of the plant plastid proteome consists of proteins of non-plastid origin, which may thus have been acquired from the host nucleus (10).

# Dinoflagellates in the context of plastid integration

Some of the most extreme examples of plastid evolution are found within the dinoflagellate algae. Dinoflagellates are members of the alveolate kingdom, and their nuclei are only distantly related to those of plants (2). Dinoflagellates play important roles in aquatic ecology. Some species (e.g. *Amphidinium, Pyrocystis*) are principally free-living primary producers, and mixotrophs, while others (e.g. *Symbiodinium*) are symbionts of marine invertebrates such as coral (11). Some free-living dinoflagellates (e.g. *Ceratium, Lingulodinium*) have important economic effects as causative agents of harmful algal blooms, which have major effects on global fisheries (11). The dinoflagellates are closely related to the coral symbiont "chromerid" algae *Chromera velia* and *Vitrella brassicaformis*, and to the apicomplexans, a lineage that includes the malaria parasite *Plasmodium* (fig. 1) (12, 13).

The cellular organization of dinoflagellates is highly unusual. For example, the dinoflagellate nuclear genome is extremely large, with many genes present in multiple copies (14). This genome is permanently condensed, and utilizes an unusual DNA packaging protein that is evolutionarily distinct from histones (15). The dinoflagellate mitochondrial genome is likewise highly abnormal, containing only three protein-coding genes (*cob*, *coxI*, and *coxIII*) which are present in multiple, fragmented copies (16, 17).

The majority of photosynthetic dinoflagellates possess plastids that contain the accessory carotenoid light harvesting pigment peridinin (18, 19). This plastid is surrounded by three membranes, is of red algal origin, and probably originated through a secondary endosymbiotic event (2, 20). The peridinin plastid branches as a sister-group to the plastids found in chromerid algae, and to the vestigial, non-photosynthetic plastids found in apicomplexans, suggesting a common endosymbiotic origin of all three plastid lineages (although chromerid and apicomplexan plastids are surrounded by four membranes, and do not appear to contain peridinin) (fig. 1) (12, 13, 21). The peridinin plastid is also very closely related to other plastid lineages acquired through the secondary endosymbiosis of red algae, for example those of di-

# **Reserved for Publication Footnotes**



Fig. 1. Evolution of dinoflagellates and their plastids. The upper panel of this figure shows an evolutionary tree of dinoflagellates and their closest relatives, adapted from (41). The evolutionary relationships in this tree are taken from (13, 48, 91); for simplicity, only a representative sample of dinoflagellate species are shown. The endosymbiotic acquisition and secondary loss of each individual plastid lineage, the loss of non-photosynthesis genes from the peridinin plastid lineage, and the origins of minicircles, poly(U) tail addition and transcript editing in peridinin and fucoxanthin plastids, are labeled on the diagram. It is not clear from current data whether the loss of nonphotosynthesis genes and evolution of minicircle gene organization occurred in the peridinin lineage before or after the divergence of basal dinoflagellates such as Perkinsus, Oxyrrhis and Hematodinium (which have since lost the capacity for photosynthesis entirely); accordingly, the earliest and latest evolutionary points at which these events can have occurred are shown on the tree, labeled with question marks. The lower panel of this figure tabulates key features of the different plastid lineages discussed in this manuscript.



Fig. 2. Application of ancestral plastid pathways to serially acquired dinoflagellate plastids. This diagram shows how pathways associated with the peridinin plastid may have come to function in serially acquired dinoflagellate plastid lineages. For clarity, only the first membrane around each plastid is shown. Early dinoflagellates possessed a peridinin plastid, which were maintained by pathways (such as poly(U) tail addition and editing) encoded within the nucleus (A). In some lineages, this plastid was replaced by others (such as the fucoxanthin plastid) through serial endosymbiosis (B). While the ancestral peridinin plastid was lost in these lineages, some of the nucleus-encoded genes associated with its function were retained (C), and following the serial endosymbiosis event applied to the replacement plastid, changing its biology (D).

atoms and haptophytes, although the current consensus is that the dinoflagellate, diatom and haptophyte plastids have each been acquired independently by the respective host lineage, rather than all descending from one, common endosymbiotic event (fig. 1) (2, 9, 11).

Dinoflagellates present an ideal model system in which to explore the integration of host and endosymbiont biology, for several reasons. The peridinin dinoflagellate plastid is highly reduced in terms of genome content, hence is particularly dependent on proteins encoded within the host nucleus (18, 22). The peridinin dinoflagellate plastid is supported by several highly unusual pathways that are encoded within the host nucleus, i.e. are likely to have been imposed on the plastid by the host lineage (23-25). Furthermore, some dinoflagellates possess plastids acquired through the serial endosymbiotic replacement of the ancestral peridinin lineage, and these replacement plastids show different degrees of integration with the host dinoflagellate environment (2). In this review, we discuss the integration of different dinoflagellate plastids with their hosts, with a particular focus on plastid genome organisation and gene expression pathways. From this, we demonstrate the insights that dinoflagellates may provide into plastid evolution across the eukaryotes.

# Unusual plastid genome organisation in dinoflagellates

The peridinin dinoflagellate plastid genome is very different in terms of gene content from the other plastid lineages. Typically, the plastid genomes of plants and algae contain in the region of 60 to 250 genes (Fig. S1) (22, 26). These genes encode components of the photosynthesis machinery (each photosystem complex, cytochrome  $b_6 f$  complex, ATP synthase, and ribulose *bis*-phosphate carboxylase), as well as proteins that do not directly function in photosynthesis, but perform other essential plastid functions (e.g. cofactor biosynthesis, protein import, and expression of the plastid genome) (22). It has been proposed that some of these genes are retained in the plastid to allow direct regulation of their expression in response plastid redox state (7, 27).

Studies from multiple dinoflagellate species have indicated that the peridinin plastid, in contrast to other plastids, retains

Footline Author

fewer than twenty genes (Fig. S1) (22, 28). These genes form a subset of those found in essentially all other photosynthetic plastids, encoding subunits of the two photosystems, the cytochrome b<sub>6</sub>f complex, the ATP synthase complex, rRNAs and a small number of tRNAs (18, 28). Thus, the peridinin dinoflagellate plastid has lost all of the ancestral genes that would have encoded proteins of non-photosynthetic function (18). There are a small number of genes that are not found in other plastid lineages and are specific to individual peridinin dinoflagellate species (29, 30). It has additionally been suggested that the plastids of the peridinin dinoflagellates Ceratium horridum and Pyrocystis lunula may contain a small number of genes acquired through lateral transfers from bacterial sources, although it cannot be excluded that these have been misidentified from bacterial contamination in the original sequence datasets (31). Many of the genes that have been lost uniquely from the peridinin plastid genome are known to have relocated to the nucleus, and have acquired targeting sequences allowing the import of the expression products into the plastid (28, 32). Thus, the peridinin plastid is particularly dependent on the expression of nuclear genes for its function.

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

The peridinin dinoflagellate plastid genome also has a highly unusual organisation. The plastid genomes of most plant and algal species form a single chromosome, which can be represented as topologically circular (26). There are some exceptions to these features; in some species, including the chromerid alga *Chromera velia*, the plastid genome may adopt linear or branched forms (26, 33). However, the plastid genome of the other chromerid species *Vitrella brassicaformis* has a more conventional circular structure (12). Thus, the plastid genomes of early ancestors of the peridinin plastid lineage were likely to be conventionally organised.

In contrast to more conventional plastid genomes, the peridinin dinoflagellate plastid genome is fragmented into multiple coding elements. Zhang et al. showed that a number of plastid genes were contained on plasmid-like 'minicircles' in the peridinin dinoflagellate Heterocapsa triquetra (34). Similar organisation has since been shown in other dinoflagellate species (18, 35). The minicircles contain one or a few genes and a 'core' sequence, which is similar in sequence, although not identical, among the minicircles containing different genes (18). Although the location of these minicircles in the cell was debated (18, 36), recent hybridisation studies have confirmed they are situated in the plastid (37). In peridinin dinoflagellates, the copy numbers of different minicircles vary during different phases of growth, and in log-phase cultures may reduce to fewer than ten copies per cell (38). The low copy numbers of individual minicircles in log phase cells might plausibly lead to minicircle loss, through unequal distribution during plastid division (38). This loss would be disdvantageous, unless there were already a copy of the minicircle gene in the nuclear genome, that could be expressed and rescue the plastid (8). Thus, the minicircular genome organisation of the peridinin plastid may have provided a selective advantage for gene transfer from plastid to nucleus, and greater integration of the plastid with its host (39).

# Unusual plastid biochemistry in peridinin dinoflagellates

In addition to the highly reduced nature of the plastid genome, there is evidence for intricate functional relationships between the peridinin plastid and the host dinoflagellate nucleus. Some of the proteins that function in the peridinin plastid are clearly of nuclear or external origin, and thus have been secondarily applied to the peridinin plastid by the host. For example, peridinin dinoflagellates lack a conventional form ID rubisco holoenzyme, consisting of eight large and eight small subunits (as found in other plastid genome), and instead use a form II rubisco, consisting of two large subunits, which is encoded in the nucleus (23, 40). The form II large subunit gene is also used by chromerid algae, and was acquired via lateral gene transfer from a purple sulphur bacterium into a common ancestor of the dinoflagellate and chromerid lineages (12, 40).

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

There are several unusual pathways associated with transcript processing in peridinin plastids. These pathways are likely to be dependent on nucleus-encoded proteins, given the absence of non-photosynthesis genes from peridinin plastid genomes (18, 28). One such pathway is editing, which has been detected in multiple dinoflagellate species (25, 28), although does not seem to happen in Amphidinium (29) (fig. 1; Table S1). The number of sites edited varies between species and genes, with nearly one in ten sites edited in some Ceratium transcripts (Table S1). The most common editing event in dinoflagellate plastids is A-G, followed by C-U and U-C; however, nine different events, including five different transversion substitutions, have been documented (Table S1) (28). Transcript editing is not found in the plastids of other studied algae, including those of chromerid algae (21, 41) (fig. 1). Although editing occurs in plant plastids, it is very different from dinoflagellates, with a more restricted range (predominantly C-U) and generally lower frequency of editing events (< one in one thousand in angiosperms) (6). Thus, the plastid editing pathways found in peridinin dinoflagellates have evolved specifically within that lineage.

An even more remarkable processing event is the addition of a poly(U) tail to the 3' end of many transcripts. This was first reported for Lingulodinium and Amphidinium (24), but has since been reported for other peridinin dinoflagellate species (42). Poly(U) tail addition has also been found in the chromerid algae Chromera velia and Vitrella brassicaformis, suggesting that it is an ancestral feature of red lineage alveolate plastids, although appears not to occur in apicomplexans (12, 41) (fig. 1). The role of the poly(U) tail remains unclear, although in chromerids it is principally added to transcripts of genes encoding photosystem subunits, suggesting that it plays a role in the expression of the photosynthesis machinery (33, 41). This is in contrast to poly(A) tail addition in plant plastids, which principally appears to be involved in the degradation of unwanted transcripts (43). Poly(U) tail addition has been documented in a small number of gene expression pathways in bacteria, and in some eukaryotic nuclear and mitochondrial lineages, although not in those of dinoflagellates (44-46). Poly(U) tail addition is not known to occur in any plastids other than those of dinoflagellates and chromerids, indicating that it is a specific evolutionary innovation within this lineage (21).

### Serial endosymbiosis in dinoflagellates

Not all dinoflagellates possess peridinin plastids. Many (e.g. Perkinsus, Oxyrrhis, Hematodinium) are non-photosynthetic, including some species that are of ecological importance as freeliving predators or as parasites of marine invertebrates (11). These species may possess vestigial plastids, but have lost the capacity for photosynthesis (fig. 1). Some of the lineages that do not possess their own plastids (e.g. Dinophysis) maintain transient symbioses with other photosynthetic organisms. These short term endosymbioses have been reviewed elsewhere, and will not be discussed in further detail here (47). Yet other dinoflagellates are photosynthetic, and possess permanent plastids that are not of the peridinin type. As the peridinin plastid was present in the last common dinoflagellate ancestor, these plastid types must have arisen through subsequent serial endosymbioses. Thus far, three major serially acquired plastid lineages have been documented. They are monophyletic, and each arose through independent serial endosymbiosis events (48, 49). As shown in Fig 1, they are the Karenia/Karlodinium, Kryptoperidinium/Durinskia, and Lepidodinium lineages.

dodinium lineages.404Dinoflagellate species that possess the accessory light-<br/>harvesting carotenoid pigment fucoxanthin (e.g. Karenia, Karlo-<br/>dinium) contain plastids that are derived from haptophyte algae<br/>(fig. 1) (50). Many of the fucoxanthin-containing dinoflagellates404<br/>405404<br/>405406<br/>406407<br/>408

409 are implicated in harmful algal blooms (49, 51). Although some 410 early phylogenetic studies of the fucoxanthin plastid indicated 411 that it might be closely related to the peridinin plastid (52), more 412 recent phylogenies have confirmed that the fucoxanthin plastid 413 arose through a subsequent serial endosymbiosis (53-55). The 414 fucoxanthin plastid is surrounded by three membranes, similarly 415 to the peridinin plastid, and there is no evidence for the retention 416 of a nucleus, or mitochondria, from the haptophyte (20). 417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

The "dinotom" algae, typified by *Kryptoperidinium* and *Durinskia*, possess complex endosymbionts derived from pennate diatoms (56) (fig. 1). In contrast to the fucoxanthin dinoflagellates, the dinotom endosymbiont consists not only of a plastid, but also contains a nucleus and mitochondria, which retain their own genomes (20, 57). The dinotom plastid is surrounded by four membranes, similarly to the plastids of free-living diatoms, and a final, fifth membrane surrounds the entire endosymbiont (20, 58). Two dinotom lineages-*Peridinium quinquecorne*, and *Peridiniopsis sp.*- have been proposed to possess endosymbionts derived from centric, rather than pennate diatom sources (59, 60). As relatively little is known about the molecular biology of the centric diatom endosymbionts in these species, the term "dinotom" will be used here to refer to the pennate diatom endosymbiont.

Finally dinoflagellates of the genus *Lepidodinium* possess plastids derived from green algae (fig. 1) (61, 62). The *Lepidodinium* plastid is surrounded by four membranes, of which the innermost two correspond to the plastid membranes of the original endosymbiont lineage, and the third may correspond to the plasma membrane of the endosymbiont (20, 63). Although mitochondria or nuclei have not been documented within the *Lepidodinium* endosymbiont, membrane-bound bodies, and free ribosomes have been observed between the second and third membranes, which may correspond to a highly reduced endosymbiont nucleus (20, 63).

# Reductive evolution of serially acquired dinoflagellate plastids

The extraordinary diversity of dinoflagellate plastids provides exceptional opportunities for studying the events that occur following plastid acquisition. Following their acquisition, the biology of the fucoxanthin, *Lepidodinium* and dinotom plastids must have been altered to facilitate productive associations with the host. In each lineage, for example, starch is principally detectable in the host cytoplasm (20). Thus, carbohydrates generated through photosynthesis in the plastid are exported across each of the endosymbiont-derived membranes into the host, including ones derived from the outermost membranes of the endosymbiont, which may not have been involved in carboyhydrate transport prior to the endosymbiotic event.

Thus far, plastid genomes have been sequenced for the fucoxanthin dinoflagellate Karlodinium veneficum (55), and for the dinotoms Kryptoperidinium foliaceum and Durinskia baltica (64). The genomes of the endosymbiont mitochondria of both dinotoms have also been sequenced (17). The dinotom plastid and endosymbiont mitochondrial genomes are similar to those of free-living diatoms, with almost no examples of gene loss (Fig. S1) (17, 64). The genome of the dinotom endosymbiont nucleus has not been fully sequenced, but it retains genes for complex metabolic pathways and for structural proteins (e.g. actin, tubulin) that have been lost from other vestigial nuclei found in association with plastids (e.g. the "nucleomorphs" of chlorarachniophyte and cryptomonad algae) (65-67). In contrast to the dinotoms, the Karlodinium veneficum plastid genome has lost over forty genes that are present in the plastids of free-living haptophytes (Fig. S1) (55, 68). In addition, many of the individual genes contain premature termination codons, and may constitute pseudogenes (55, 69).

The different reduction of each serially acquired plastid lineage is reflected by differences in the degree of gene transfer to the host nucleus. EST studies of fucoxanthin dinoflagellates have 477 478 identified many gene transfers from the plastid to its host (70-73). 479 For example, in a recent study of the fucoxanthin dinoflagellates Karlodinium veneficum and Karenia brevis, Burki et al. identified 480 90 ESTs of predicted haptophyte origin, including 34 that were 481 predicted to encode a plastid targeting sequence, out of a total of 482 493 ESTs of definable phylogenetic affinity (74). Thus, approxi-483 484 mately 7% of the fucoxanthin dinoflagellate nuclear genome may encode proteins of haptophyte plastid origin, a figure approach-485 ing that found in other plastid lineages derived through secondary 486 or tertiary endosymbiosis (9). In the same study, the authors 487 screened EST libraries of the dinotom algae Kryptoperidinium 488 foliaceum and Durinskia baltica. Only 14 ESTs out of a total 237 489 490 of definable phylogenetic origin resolved with diatoms, and none was predicted to encode a plastid targeting sequence (74). The 491 most recent study of gene transfer in Lepidodinium identified 492 six ESTs, of probable green algal origin, that were predicted 493 to contain a plastid targeting sequence, from a total dataset of 494 4746 sequences of both definable and uncertain phylogenetic 495 origin (75). Whether gene transfer events have occurred from the 496 497 serially acquired plastids in Lepidodinium to the same extent as in fucoxanthin dinoflagellates awaits further characterisation. 498

Integration of ancestral and serially acquired endosymbionts

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

Given that genes have been relocated from serially acquired plastids to the dinoflagellate host nucleus, has there been a more intricate integration of the host and serially acquired plastid genomes? For example, serially acquired dinoflagellate plastids may have benefited from pathways that are endogenous to the host. Any dinoflagellate that undergoes serial endosymbiosis may retain pathways that had been associated with the original peridinin plastid. If these pathways were applied to the incoming replacement plastid, they might facilitate its integration into the host, or even change its biology (fig. 2).

This hypothesis is consistent with the 'shopping bag' model for plastid evolution proposed by Larkum et al. (76). This argued that the endosymbiotic origin of a plastid is unlikely to have been due to a single event at a particular time and place, but instead followed multiple unsuccessful 'attempts' at endosymbiosis (1). Although these previous attempts did not lead to extant symbioses, they may have contributed genes that help support present-day plastids. It has been proposed that several major photosynthetic eukaryote lineages possess genes that correspond to the "footprints" of such cryptic endosymbioses. For example, diatoms (which possess red algal plastids) may possess genes retained from an ancestral green algal symbiont and plants, and red and green algae (which possess cyanobacterial plastids) may possess genes from an ancestral chlamydiobacterial symbiont (9, 77-79). These hypotheses remain controversial because of the absence of identifiable extant descendants of the cryptic endosymbiont lineages. Serially acquired dinoflagellate plastids, in contrast, provide a well defined opportunity to assess the impact of a historical endosymbiont on its successors.

529 Genes have been identified in the nuclei of fucoxanthin di-530 noflagellates (70, 72, 80, 81) and of Lepidodinium (62, 75) that 531 encode proteins predicted to be targeted to the plastid, and are 532 related to genes from peridinin dinoflagellates, rather than the 533 free-living relatives of the respective serially acquired plastids 534 (Table S2). Thus, the fucoxanthin and Lepidodinium plastids may 535 be supported by pathways retained from the peridinin symbiosis. 536 The dinotom host nucleus has likewise been shown to retain 537 genes for components of several metabolic pathways that were 538 likely to have functioned in the original peridinin plastid (65, 539 66). However, in each case, components for a second copy of 540 the pathway, of diatom origin, appear to be encoded in the 541 endosymbiont nucleus, and the host-derived copies do not possess 542 targeting sequences appropriate for protein import into diatom 543 plastids (65, 66). Thus, the dinotom plastid is supported by the 544 diatom-derived pathways encoded in the endosymbiont nucleus, rather than the pathways from the peridinin symbiosis.

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

610

611

612

# Transcript processing in serially acquired plastids

Perhaps the most compelling evidence for pathways retained from the peridinin symbiosis in serially acquired plastids comes from studies of plastid transcript processing. As previously discussed, the peridinin plastid uses two highly unusual transcript processing pathways- poly(U) tail addition, and extensive RNA editing. These pathways are not found in the progenitors of the serial endosymbionts, such as the haptophyte relatives of fucoxanthin dinoflagellates (12, 21, 33). Recently, however, we have demonstrated that plastid transcripts in the fucoxanthin dinoflagellates Karenia mikimotoi and Karlodinium veneficum receive poly(U) tails (fig. 1) (21, 69). Furthermore, we and others have shown that fucoxanthin plastid transcripts undergo high levels of editing, involving both transition and transversion substitutions, as occurs in the peridinin plastid (fig. 1) (Table S1) (21, 82).

As neither poly(U) tail addition, nor transcript editing, are native to free-living haptophytes, the most parsimonious explanation for their occurrence in the fucoxanthin plastid is that they are remnants of the ancestral peridinin plastid symbiosis, and were applied to the incoming fucoxanthin plastid following serial endosymbiosis (fig. 2) (21, 82). Notably, while editing and poly(U)addition are found in both the peridinin and fucoxanthin dinoflagellate plastids, they do not occur in dinotom or in Lepidodinium plastids (fig. 1) (69). Thus, the pathways required for this unusual degree of endosymbiotic integration have been retained through some, but not all serial endosymbioses.

# Functional consequences of poly(U) addition and editing

Both poly(U) tail addition and editing are widespread features in fucoxanthin dinoflagellate plastid transcript processing. Recently, we profiled the occurrence of each pathway across the plastid genome of the fucoxanthin dinoflagellate Karlodinium veneficum (69). We found evidence of poly(U) and editing sites on almost every transcript (69), including those with non-photosynthesis functions, which are not plastid-encoded in peridinin dinoflagellates (18, 28), and which generally are not polyuridylylated in chromerid algae (41).

583 Many of the major hypotheses for the origins of transcript 584 processing pathways in other plastid lineages propose they are 585 neutral overall, either compensating for changes in the underlying 586 genomic sequence (6, 83), or having silent effects on plastid 587 transcripts (84). Although the acquisition of foreign RNA pro-588 cessing pathways by the fucoxanthin plastid may have had neutral 589 consequences for the host initially, for transcript editing and 590 poly(U) tail addition to have become such major components of 591 transcript processing in fucoxanthin plastids, it is likely that they 592 conferred some advantageous effects, and thus had an adaptive 593 role in fucoxanthin plastid evolution. Poly(U) tail addition and 594 RNA editing may have enabled the fucoxanthin plastid to tol-595 erate the highly divergent sequence evolution of the underlying 596 genome (55). Editing of transcript sequences may enable the 597 compensatory removal of mutations in the genome sequence. For 598 example, premature in-frame termination codons are removed 599 from mRNA sequences by editing in both Karenia mikimotoi and 600 Karlodinium veneficum (21, 69, 82). As detailed above, fucoxan-601 thin plastid genomes are highly divergent from those of free-living 602 haptophytes (55). Transcript editing, by enabling fucoxanthin 603 dinoflagellates to recover regions of sequence that are important 604 for the function of the protein encoded, might allow the plastid to 605 tolerate mutations that would otherwise prove deleterious. Thus, 606 the presence of transcript editing might enable the fucoxanthin 607 plastid to function in a host environment subjected to elevated 608 rates of sequence substitution. 609

The poly(U) machinery of fucoxanthin dinoflagellates might similarly play a role, alongside editing, in compensating for divergent evolution in the underlying genome sequence. For example, several genes in the Karlodinium veneficum plastid are present in 613 multiple copies, one of which is translationally functional, while 614 others are pseudogenes (55, 68). Remarkably, in these cases, 615 while transcripts of the functional gene copy receive poly(U) tails 616 and are highly edited as expected, transcripts of the pseudogene 617 copies do not receive poly(U) tails, and undergo only very limited 618 editing (69). A similar discrimination between functional and 619 pseudogene transcript copies by the poly(U) machinery has also 620 been documented in the chromerid alga Chromera velia (33, 41). 621 Thus, a preferential application of the poly(U) tail might enable 622 the fucoxanthin dinoflagellate plastid to discriminate functional 623 624 gene copies from pseudogenes in its genome. 625

# Convergence of peridinin and fucoxanthin plastid genomes

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

It remains to be determined which other features of serially acquired dinoflagellate plastids, beyond transcript processing pathways, are derived from the ancestral peridinin plastid. There is a dramatic example of convergence between peridinin and serially acquired dinoflagellate plastids in terms of organisation of the plastid genome. As discussed above, the plastid genome of peridinin dinoflagellates is fragmented into small elements termed "minicircles". Recently, the Karlodinium veneficum dnaK gene has been shown to be located on a minicircle (68, 69). This minicircle gives rise to a complete, polyuridylylated and edited dnaK transcript, confirming that it is located in the plastid (69). This minicircle also contains a secondary-structure rich motif that may constitute an equivalent of the peridinin dinoflagellate minicircle core (68, 69). Similar minicircles have not been reported in Lepidodinium or in dinotoms.

The reason why minicircles are present in fucoxanthin plastids remains to be determined. It is possible that whatever factors caused fragmentation of the peridinin plastid genome have been applied to the fucoxanthin plastid following its endosymbiotic acquisition, leading to the convergent evolution of minicircles from each plastid. The gene order in the Karlodinium veneficum plastid genome is highly divergent, with disruptions to gene clusters that are well conserved in other plastids (55). Thus, other rearrangement events may have accompanied the formation of minicircles in fucoxanthin dinoflagellates. The selective consequences of this fragmentation for the fucoxanthin plastid are unclear. As discussed above, the relocation of certain genes to minicircles might have adverse effects on the ability to maintain those genes in the plastid (38). If a similar situation were true in fucoxanthin dinoflagellates, a partial fragmentation of the fucoxanthin plastid genome might have driven the relocation of genes located on plastid minicircles to the nucleus of the host (55, 68).

### Why integration in some lineages, and not others?

659 It is apparent, both from the reduced state of the plastid 660 genome (55), and the acquisition of host-derived pathways such as 661 poly(U) addition and transcript editing (21, 82) that the fucoxan-662 thin dinoflagellate plastid has become intricately integrated with 663 that of the host. This integration is likely to have had beneficial 664 consequences. For example, poly(U) tail addition and editing may 665 mitigate against the divergent evolution of the plastid genome 666 (69, 82). Although the Lepidodinium plastid does not use the 667 poly(U) tail addition or editing pathways (69), it is likely that it has 668 become similarly integrated into the host, given the evidence for 669 endosymbiotic gene transfer, and the presence of plastid-targeted 670 proteins that are retained from the peridinin symbiosis (62, 63, 671 75).

672 In contrast to the situation for the fucoxanthin and Lepi-673 dodinium plastids, there is only very limited evidence for inte-674 gration of the dinotom endosymbiont with its host. Not only is 675 the endosymbiont largely unreduced in terms of genome content 676 (17, 64), there is no significant evidence for the presence of 677 genes in the host nucleus- of any phylogenetic derivation- that 678 are likely to support the plastid (65, 66, 74). It appears instead 679 that the endosymbiont nucleus plays a more significant role in 680 supporting the plastid (65, 66). Why might the dinotom plastid be
much less integrated with its host than the plastids of fucoxanthin
dinoflagellates and *Lepidodinium*?

684 One possible reason for different degree of integration of the 685 dinotom and fucoxanthin plastids with their respective hosts is the 686 relative age of each lineage. The dinotom endosymbiont has been 687 inferred to have been acquired not substantially greater than 50 688 million years ago, whereas the fucoxanthin dinoflagellate plastid 689 may represent a much more ancient acquisition, potentially of the 690 order of 200 million years age or greater (56, 85). The dinotom 691 endosymbiont may thus simply not have had time to have reached 692 as intimate a degree of connection with its host environment. 693 However, plastids of an equivalent age to the dinotom endosym-694 biont can undergo reduction and integration with the host. For 695 example, gene loss, and functional gene transfers have been documented in the independently acquired primary plastids of 696 697 the photosynthetic amoeba Paulinella chromatophora, which are 698 believed to have originated no more than 60 million years ago 699 (86). Gene loss has even been documented in the cyanobacte-700 rial endosymbionts of the diatom Rhopalodia gibba, which are 701 believed to have been acquired by their host as little as 12 million 702 years ago (87). Furthermore, dinotoms do show evidence of post-703 endosymbiotic divergence from one another. For example, the 704 Kryptoperidinium foliaceum endosymbiont has acquired a small 705 number of novel coding sequences (encoding DNA recombinases 706 and RNA maturases) in its plastid and endosymbiont mitochon-707 drial genomes that are found neither in free-living diatoms, nor 708 in the dinotom Durinskia baltica (17, 64). Thus, the biology of the dinotom endosymbiont may have changed since its initial 709 710 endosymbiotic uptake; however, it has not become significantly 711 integrated into the biology of its host. 712

An alternative hypothesis for the lack of integration in some lineages concerns the stages of serial endosymbiosis associated with each plastid lineage. In theory, serial endosymbiosis could either occur via the initial loss of a plastid, then the gain of a replacement, or via the initial gain of a plastid, followed by the loss of the original plastid lineage. In the latter scenario, the two plastids coexist for a certain period of time, allowing the recruitment of maintenance pathways from one lineage to support the other. Thus, the extreme degree of integration of the fucoxanthin plastid with its host might suggest that, for a period of time, the fucoxanthin and peridinin plastids coexisted in the host. In contrast, if the dinotom endosymbiont were only acquired a substantial period of time after loss of the peridinin plastid, plastid-associated pathways that were associated with the peridinin plastid lineage might have been lost prior to the acquisition of the replacement. However, as detailed above, the host nucleus of dinotom algae still possesses genes for biosynthetic pathways inferred to have functioned in the ancestral peridinin plastid

- Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, & Larkum AWD (2008) The origin of plastids. *Phil Trans R Soc Biol Sci* 363(1504):2675-2685.
- Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. *Phil Trans R* Soc Biol Sci 365(1541):729-748.
- Prihoda J, et al. (2012) Chloroplast-mitochondria cross-talk in diatoms. J Exp Bot 63(4):1543-1557.
- Linka N & Weber APM (2010) Intracellular Metabolite Transporters in Plants. Mol Plant 3(1):21-53.
- Miyagishima S (2011) Mechanism of Plastid Division: From a Bacterium to an Organelle. Plant Physiol 155(4):1533-1544.
- Fujii S & Small I (2011) The evolution of RNA editing and pentatricopeptide repeat genes. New Phytol 191(1):37-47.
- Puthiyaveetil S, et al. (2008) The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts. Proc Natl Acad Sci USA105(29):10061-10066.
- Kleine T, Maier UG, & Leister D (2009) DNA Transfer from Organelles to the Nucleus: The Idiosyncratic Genetics of Endosymbiosis. *Ann Rev Plant Biol* 60:115-138.
- Archibald JM (2015) Genomic perspectives on the birth and spread of plastids. Proc Natl Acad Sci USA, in press.
- Suzuki K & Miyagishima S (2010) Eukaryotic and Eubacterial Contributions to the Establishment of Plastid Proteome Estimated by Large-Scale Phylogenetic Analyses. *Mol Biol Evol* 27(3):581-590.

(although from subcellular localisation predictions suggests these<br/>function elsewhere from the replacement plastid (65, 66)). Thus,<br/>the different degree of integration of fucoxanthin and dinotom<br/>plastids with their hosts is not due to a difference in the peridinin-<br/>derived genes present in the host lineage at the point of serial<br/>endosymbiosis, but is due to how these gene complements have<br/>been applied to support each serial plastid lineage.749<br/>750<br/>750A final possible explanation for the lack of integration in749

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778 779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

816

A final possible explanation for the lack of integration in dinotoms concerns the biology of its plastid. There may be specific physiological reasons why the dinotom plastid has not integrated with its host, and is instead supported by the mitochondria and nucleus of the endosymbiont. There may be a selective requirement to retain plastid-targeted genes in the endosymbiont nucleus, which might prevent the transfer of these genes to the host, or the co-option of genes within the host nucleus to support the endosymbiont. In dinotoms, the outermost membrane surrounding the plastid is frequently contiguous with the endosymbiont nuclear envelope (58, 88, 89). It will be interesting to determine whether there are particularly intricate cellular connections between the two organelles, for example in terms of the import of proteins into the plastid, or the coordination of gene expression in the plastid and the endosymbiont nucleus.

Similarly, intricate mitochondria-plastid interactions have been characterised in free-living diatoms, including the use of a mitochondrial urea cycle to modulate plastid nitrogen metabolism, and potentially even pathways that redistribute electron potential between mitochondria and plastids to minimise photoinhibition (3, 90). If these mitochondria-plastid interactions also function in the dinotom endosymbiont, they might also provide a selective barrier to elimination of the endosymbiont mitochondria, and greater integration of the plastid with the host.

Many questions remain to be answered in the context of serial plastid evolution in dinoflagellates. For example, the exact extent of plastid gene transfer, or the number of genes retained from the ancestral peridinin symbiosis to support each serially acquired plastid remain to be determined. In addition, it remains to be determined what the consequences of editing and poly(U)tail addition have been for fucoxanthin plastid evolution. At a broader level, the extreme diversity of integration observed between different plastids with the dinoflagellate host- ranging from the intricate cellular and evolutionary connections between the peridinin and fucoxanthin plastids and the host nucleus, to the largely autonomous function of the dinotom endosymbiontprovides insights into the diversity of evolutionary pathways that plastids and other endosymbiotic organelles may undertake. Further exploration of why different dinoflagellate plastids are so differently integrated with their hosts may provide valuable insights into the fundamental processes associated with postendosymbiotic plastid evolution across the eukaryotes.

- Walker G, Dorrell RG, Schlacht A, & Dacks JB (2011) Eukaryotic systematics: a user's guide for cell biologists and parasitologists. *Parasitol* 138(13):1638-1663.
- Janouškovec J, Horák A, Oborník M, Lukes J, & Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. *Proc Natl Acad Sci USA* 107(24):10949-10954.
- 13. Janouškovec J, *et al.* (2015) Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. *Proc Natl Acad Sci USA*.
- Shoguchi E, et al. (2013) Draft Assembly of the Symbiodinium minutum Nuclear Genome Reveals Dinoflagellate Gene Structure. Curr Biol 23(15):1399-1408.
- Gornik SG, et al. (2012) Loss of Nucleosomal DNA Condensation Coincides with Appearance of a Novel Nuclear Protein in Dinoflagellates. Curr Biol 22(24):2303-2312.
- Nash EA, Nisbet RER, Barbrook AC, & Howe CJ (2008) Dinoflagellates: a mitochondrial genome all at sea. *Trends Genet* 24(7):328-335.
- Imanian B, Pombert J-F, Dorrell RG, Burki F, & Keeling PJ (2012) Tertiary Endosymbiosis in Two Dinotoms Has Generated Little Change in the Mitochondrial Genomes of Their Dinoflagellate Hosts and Diatom Endosymbionts. *PLoS One* 7(8): 43763.
- Bunoflagellate Hosts and Diatom Endosymbionts. *PLoS One* 7(8): 43763.
  Howe CJ, Nisbet RER, & Barbrook AC (2008) The remarkable chloroplast genome of kined and the provided statement of the st
- dinoflagellates. *J Exp Bot* 59(5):1035-1045. 814 19. Haxo FT, Kycia JH, Somers GF, Bennett A, & Siegelman HW (1976) Peridinin-chlorophyll A proteins of the dinoflagellate *Amphidinium carterae*. *Plant Physiol* 57(2):297-303. 815
- Schnepf E & Elbrachter M (1999) Dinophyte chloroplasts and phylogeny a review. Grana

6 | www.pnas.org --- ---

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

**Footline Author** 

38(2-3):81-97.

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

- Dorrell RG & Howe CJ (2012) Functional remodeling of RNA processing in replacement chloroplasts by pathways retained from their predecessors. *Proc Natl Acad Sci USA* 109: 18879-18884.
- 22. Green BR (2011) Chloroplast genomes of photosynthetic eukaryotes. Plant J 66(1):34-44.
- Morse D, Salois P, Markovic P, & Hastings JW (1995) A nuclear-encoded form II RuBisCO in dinoflagellates. *Science* 268(5217):1622-1624.
- Wang YL & Morse D (2006) Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate *Lingulodinium*. Nucl Acids Res 34(2):613-619.
- Zauner S, Greilinger D, Laatsch T, Kowallik KV, & Maier UG (2004) Substitutional editing of transcripts from genes of cyanobacterial origin in the dinoflagellate *Ceratium horridum*. *FEBS Lett* 577(3):535-538.
- Smith DR & Keeling PJ (2015) Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. *Proc Natl Acad Sci USA*, in press.
- Allen JF (2003) The function of genomes in bioenergetic organelles. *Phil Trans R Soc Biol Sci* 358(1429):19-37.
- Mungpakdee S, et al. (2014) Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome. Genom Biol Evol 6(6):1408-1422.
- Barbrook AC, et al. (2012) Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae. Plant Mol Biol79(4-5):347-357.
  - Nisbet RER, Koumandou VL, Barbrook AC, & Howe CJ (2004) Novel plastid gene minicircles in the dinoflagellate Amphidinium operculatum. Gene 331:141-147.
  - Moszczynski K, Mackiewicz P, & Bodyl A (2012) Evidence for horizontal gene transfer from Bacteroidetes bacteria to dinoflagellate minicircles. *Mol Biol Evol* 29(3):887-892.
  - Hackett JD, et al. (2004) Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Curr Biol 14(3):213-218.
  - Janouškovec J, et al. (2013) Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of *Chromera velia*, Mol Biol Evol 30(11):2447-2462.
- Zhang Z, Green BR, & Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. *Nature* 400(6740):155-159.
- Barbrook AC & Howe CJ (2000) Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum. Mol Gen Genet263(1):152-158.
- Laatsch T, Zauner S, Stoebe-Maier B, Kowallik KV, & Maier UG (2004) Plastid-derived single gene minicircles of the dinoflagellate *Ceratium horridum* are localized in the nucleus. *Mol Biol Evol* 21(7):1318-1322.
- Owari S, Hayashi A, & Ishida K-i (2014) Subcellular localization of minicircle DNA in the dinoflagellate Amphidinium massartii. Phycol Res 62(1):1-8.
- Koumandou VL & Howe CJ (2007) The copy number of chloroplast gene minicircles changes dramatically with growth phase in the dinoflagellate *Amphidinium operculatum*. *Protist* 158(1):89-103.
- Lister DL, Bateman JM, Purton S, & Howe CJ (2003) DNA transfer from chloroplast to nucleus is much rarer in *Chlamydomonas* than in tobacco. *Gene* 316:33-38.
- Tabita FR, Hanson TE, Satagopan S, Witte BH, & Kreel NE (2008) Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. *Phil Trans R Soc Biol Sci* 363(1504):2629-2640.
   Dorrell RG, Drew J, Nisbet RE, & Howe CJ (2014) Evolution of chloroplast transcript
- processing in *Plasmodium* and its chromerid algal relatives. *PLoS Genet* 10(1):e1004008.
   Nelson MJ, et al. (2007) Identification and transcription of transfer RNA genes in dinoflag-
- Floate Havier (2007) International and interception of third of the register in the only elisted in the register in the register
- plast mRNA. *EMBO J* 15(24):7137-7146. 44. Aphasizhev R (2005) RNA uridylvltransferases. *Cell Mol Biol* 62(19-20).
- Aphrability R (2007) Ref Finishing mainteneos can non biolog (2012).
   Norbury CJ (2010) 3' uridylation and the regulation of RNA function in the cytoplasm. Biochem Soc Trans 38:1150-1153.
- Otaka H, Ishikawa H, Morita T, & Aiba H (2011) PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. *Proc Natl Acad Sci USA* 108(32):13059-13064.
- Park MG, Kim M, & Kim S (2014) The acquisition of plastids/phototrophy in heterotrophic dinoflagellates. *Acta Protozool* 53(1):39-50.
- Hoppenrath M & Leander BS (2010) Dinoflagellate phylogeny as inferred from heat shock protein 90 and ribosomal gene sequences. *PLoS One* 5(10): 13220.
- Nezan E, et al. (2014) Genetic diversity of the harmful family Kareniaceae (Gymnodiniales, Dinophyceae) in France, with the description of Karlodinium gentienii sp. nov.: A new potentially toxic dinoflagellate. Harmful Algae 40:17.
- Takishita K, Nakano K, & Uchida A (1999) Preliminary phylogenetic analysis of plastidencoded genes from an anomalously pigmented dinoflagellate *Gymnodinium mikimotoi* (Gymnodiniales, Dinophyta). *Phycol Res* 47(4):257-262.
- Brand LE, Campbell L, & Bresnan E (2012) *Karenia*: The biology and ecology of a toxic genus. *Harmful Algae* 14:156-178.
   Yoon HS, Hackett JD, & Bhattacharya D (2002) A single origin of the peridinin- and
- Yoon HS, Hackett JD, & Bhattacharya D (2002) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. *Proc Natl Acad Sci USA* 99(18):11724-11729.
- Yoon HS, et al. (2005) Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. Mol Biol Evol 22(5):1299-1308.
- Inagaki Y, Simpson AGB, Dacks JB, & Roger AJ (2004) Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. *Systematic Biology* 53(4):582-593.
- Gabrielsen TM, et al. (2011) Genome evolution of a tertiary dinoflagellate plastid. PLoS One 6(4): 19132.
- Chesnick JM, Morden CW, & Schmieg AM (1996) Identity of the endosymbiont of *Peridinium foliaceum* (Pyrrophyta): Analysis of the *rbcLS* operon. J Phycol 32(5):850-857.
- 57. Tomas RN, Cox ER, & Steiding.Ka (1973) Peridinium balticum (Levander) Lemmermann,

an unusual dinoflagellate with a mesocaryotic and an eukaryotic nucleus. *J Phycol* 9(1):91-98.
58. Taylor FJR (1979) Symbionticism revisited- discussion of the evolutionary impact of intracellular symbioses. *Proc R Soc Biol Sci* 204(1155):267-286.

- Takano Y, Hansen G, Fujita D, & Horiguchi T (2008) Serial replacement of diatom endosymbionts in two freshwater dinoflagenates, *Peridiniopsis* spp. (Peridiniales, Dinophyceae). *Phycologia* 47(1):41-53.
- Horiguchi T & Takano Y (2006) Serial replacement of a diatom endosymbiont in the marine dinoflagellate *Peridinium quinquecorne* (Peridiniales, Dinophyceae). *Phycol Res* 54(3):193-200.
   Metrumpete T et al. (2011) Crange calculate distribution in the dinoflagellate cannot be mid-dimining. 892
- Matsumoto T, et al. (2011) Green-colored plastids in the dinoflagellate genus Lepidodinium are of core chlorophyte origin. Protist 162(2):268-276.
- Takishita K, et al. (2008) Origins of plastids and glyceraldehyde-3-phosphate dehydrogenase genes in the green-colored dinoflagellate Lepidodinium chlorophorum. Gene 410(1):26-36.
- Watanabe MM, Suda S, Inouye I, Sawaguchi T, & Chihara M (1990) Lepidodinium viride gen et sp-nov (Gymnodiniales, Dinophyta), a green dinoflagellate with a chlorophyll A-containing and B-containing endosymbiont. J Phycol 26(4):741-751.
- Imanian B, Pombert JF, & Keeling PJ (2010) T he complete plastid genomes of the two 'dinotoms' Durinskia baltica and Kryptoperidinium foliaceum. PLoS One 5(5):10711.
- Hehenberger E, Imanian B, Burki F, & Keeling PJ (2014) Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts. *Genom Biol Evol* 6(9):2321-2334.
- Imanian B & Keeling PJ (2014) Horizontal gene transfer and redundancy of tryptophan biosynthetic enzymes in dinotoms. *Genom Biol Evol* 6(2):333-343.
- McEwan ML & Keeling PJ (2004) HSP90, tubulin and actin are retained in the tertiary endosymbiont genome of *Kryptoperidinium foliaceum. J Euk Microbiol* 51(6):651-659.
- Espelund M, et al. (2012) Genome fragmentation is not confined to the peridinin plastid in dinoflagellates. PLoS One 7(6):38809.
- Richardson E, Dorrell RG, & Howe CJ (2014) Genome-wide transcript profiling reveals the coevolution of chloroplast gene sequences and transcript processing pathways in the fucoxanthin dinoflagellate *Karlodinium veneficum*. *Mol Biol Evol* 31(9):2376-2386.
- Patron NJ, Waller RF, & Keeling PJ (2006) A tertiary plastid uses genes from two endosymbionts. J Mol Biol 357(5):1373-1382.
- Ishida K & Green BR (2002) Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclearencoded plastid gene by that of a haptophyte tertiary endosymbiont. *Proc Natl Acad Sci USA* 99(14):9294-9299.
- Nosenko T, et al. (2006) Chimeric plastid proteome in the florida "red tide" dinoflagellate Karenia brevis. Mol Biol Evol 23(11):2026-2038.
- Hoffman GE, Virginia Sanchez-Puerta M, & Delwiche CF (2011) E Evolution of lightharvesting complex proteins from Chl c-containing algae. *BMC Evol Biol* 11:101.
- Burki F, et al. (2014) Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates. Eukaryot Cell 13(2): 246-255.
- Minge MA, et al. (2010) phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate *Lepidodinium chlorophorum*. BMC Evol Biol 10:191.
- Larkum AWD, Lockhart PJ, & Howe CJ (2007) Shopping for plastids. *Trends Plant Sci* 12(5):189-195.
- 77. Becker B, Hoef-Emden K, & Melkonian M (2008) Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. *BMC Evol Biol* 8:203.
- Moustafa A, et al. (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324(5935):1724-1726.
- Huang JL & Gogarten JP (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? *Genom Biol* 8(6):99.
- Nosenko T & Bhattacharya D (2007) Horizontal gene transfer in chromalveolates. BMC Evol Biol 7:173.
- Waller RF, Slamovits CH, & Keeling PJ (2006) Lateral gene transfer of a multigene region from cyanobacteria to dinoflagellates resulting in a novel plastid-targeted fusion protein. *Mol Biol Evol* 23(7):1437-1443.
- Jackson CJ, Gornik SG, & Waller RF (2013) A tertiary plastid gains RNA editing in its new host. Mol Biol Evol 30(4):788-792.
- Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49(2):169-181.
- Hirose T, et al. (1996) Occurrence of silent RNA editing in chloroplasts: its species specificity and the influence of environmental and developmental conditions. *Plant Mol Biol* 30(3):667-672.
- Parfrey LW, Lahr DJ, Knoll AH, & Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. *Proc Natl Acad Sci USA* 108(33):13624-13629.
- Nowack EC & Grossman AR (2012) Trafficking of protein into the recently established photosynthetic organelles of *Paulinella chromatophora*. Proc Natl Acad Sci USA 109(14):5340-5345.
- Nakayama T, et al. (2014) Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proc Natl Acad Sci USA 111(31):11407-11412.
- Pienaar RN, Sakai H, & Horiguchi T (2007) Description of a new dinoflagellate with a diatom endosymbiont, *Durinskia capensis* sp nov (Peridiniales, Dinophyceae) from South Africa. J Plant Res 120(2):247-258.
- Tamura M, Shimada S, & Horiguchi T (2005) *Galeidiniium rugatum* gen. et sp nov (Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. *J Phycol* 41(3):658-671.
   Allen AE, *et al.* (2011) Evolution and metabolic significance of the urea cycle in photosymbol.
- Anen AL, et al. (2011) Evolution and metadone significance of the first system in protosynthetic diatoms. *Nature* 473(7346):203-207.
   Bachvaroff TR, et al. (2014) Dinoffagellate phylogeny revisited: Using ribosomal proteins to Q
- Bachvaroff TR, et al. (2014) Dinoflagellate phylogeny revisited: Using ribosomal proteins to resolve deep branching dinoflagellate clades. *Mol Phyl Evol* 70:314-322.
- 949 950 951 952

885

886

887

888

889

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946