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1 Introduction

Since the outbreak of Covid-19, many researchers in epidemiology, behavioral sciences and eco-

nomics have applied various forms of compartmental models to study the disease transmission and

potential outcomes under different intervention policies. The compartmental models are a major

group of epidemiological models that categorize a population into several types or groups, such

as susceptible (S), infected (I), and removed (or recovered, R). Compartmental models owe their

origin to the well-known SIR model pioneered by Kermack and McKendrick (1927), and have

been developed in a number of important directions, allowing for multi-category (multi-location),

a variety of contact networks and transmission channels.

In this paper we follow the individual-based modelling approach and develop a stochastic

network SIR model in which individual-specific infection and recovery processes are modelled,

allowing for group heterogeneity and latent individual characteristics that distinguish individuals

in terms of their degrees of resilience to becoming infected. The model is then used to derive

individual-specific conditional probabilities of infection and recovery. In this respect our modelling

approach is to be distinguished from the individual-based models in epidemiology that specify the

transition probabilities of individuals from one state to another. In modelling the infection process

we consider an individual’s contact pattern with others in the network, plus an individual-specific

latent factor assumed to be exponentially distributed. The time from infection to recovery (or

death) is assumed to be geometrically distributed. The individual processes are shown to aggregate

up to the familiar multigroup SIR model. We allow for group heterogeneity and, in line with the

literature, assume contact probabilities are homogeneous within groups but could differ across

groups.

We then derive the probabilities of individuals within a given group being in a particular state

at a given time, conditional on contact patterns, exposure intensities, and unobserved character-

istics. These conditional probabilities are aggregated up to form a set of moment conditions that

can be taken to the data on the number of infected and active cases both at the aggregate and

group (or regional) levels. We make use of the moment conditions to investigate the identification
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of the underlying structural parameters and most importantly show that, whilst one can not dis-

tinguish between average contact numbers and the degree of exposure to the virus upon contact,

it is nevertheless possible to identify the basic and effective reproduction numbers from relatively

short time series observations on infections and recoveries. Using Monte Carlo simulations, the

small sample properties of the proposed estimator are shown to be satisfactory, with a high degree

of precision even when using 2 or 3 weeks of rolling observations. Most importantly, they are quite

robust to the well-known under-reporting of infected cases. Equipped with daily estimates of the

transmission rates we are then able to calibrate our epidemic model and investigate its properties

under different network topology, population sizes, and group numbers, as well as different types

of interventions that are aimed to alter the transmission rates through policy.

We also apply our estimation approach to examine how well the outcome of the proposed

epidemic model matches the Covid-19 evidence in the case of six European countries (Austria,

France, Germany, Italy, Spain, and United Kingdom) fromMarch to October 15, 2020. We provide

rolling estimates of the transmission rates and related effective reproduction numbers using the

recorded infected cases and show that the estimates are fairly robust to the under-reporting of

the number of infected cases. We then use the estimated transmission rates to calibrate our SIR

network model parameters across the six countries. The stochastically simulated outcomes are

shown to be reasonably close to the reported cases once the under-reporting issue is taken into

account. We estimate that the number of reported infected cases could be 3 to 9 times lower than

the true number of infections across the six European countries under consideration. It is also of

interest that our model allows us to capture the second surge of Covid-19 cases that European

countries began to experience starting August 2020.

Finally, the paper develops a new way of using the modelling of epidemics for counterfactual

inference. We use the calibrated model to investigate the potential outcomes if the lockdown in

Germany had been delayed for one or two weeks; and if the lockdown in the UK had started

one or two weeks earlier. Such counterfactual analyses can be achieved by shifting the estimated

transmission rates forward or backward. We show that early intervention is critical in managing

the infection and controlling the total number of infected and active cases.
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The problem of how to balance the public health risks from the spread of the epidemic with

the economic costs associated with lockdowns and other social-distancing mandated policies will

not be addressed in this paper. However, the proposed network SIR model with its individual-

based architecture is eminently suited to this purpose. The proposed model can be combined with

behavioral assumptions about how individuals trade off infection risk and economic well being,

thus generalizing the aggregate framework proposed in Chudik, Pesaran, and Rebucci (2020) to

individual-based SIR models.

The rest of the paper is organized as follows. Section 2 reviews the related literature. Section

3 introduces the basic concepts and the classical multigroup SIR model. Section 4 lays out our

individual based stochastic model on a network. Section 5 explains the calibration of our model

to basic and effective reproduction numbers. Section 6 documents the properties of the model.

Sections 7 and 8 discuss the estimation of the transmission rate and recovery rate, respectively.

Section 9 presents the calibration of the model to Covid-19 evidence and counterfactual analy-

ses, and Section 10 concludes. The Online Supplement provides some technical derivations and

presents additional simulation results.

2 Related literature

Our modelling approach relates to two important strands of the literature on mathematical mod-

elling of infectious diseases, namely the classical SIR model due to Kermack and McKendrick

(1927) and its various extensions to multigroup SIR models, and the individual-based network

models. The multigroup SIR model allows for a heterogeneous population where each compart-

ment (S, I or R) is further partitioned into multiple groups based on one or more factors including

age, gender, location, contact patterns, and a number of economic and social factors. One of the

earliest multigroup models was pioneered by Lajmanovich and Yorke (1976), who developed a

class of SIS (susceptible-infected-susceptible) models for the transmission of gonorrhea. Subse-

quent extensions to the multigroup SIR model and its variants include Hethcote (1978), Thieme

(1983, 1985), Beretta and Capasso (1986), and many others. Reviews of multigroup models can be
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found in Hethcote (2000) and Thieme (2013). In contrast, we do not model the progression of epi-

demics at the compartment level; instead, we develop an individual-based stochastic model from

which we derive a set of aggregate moment conditions. Interestingly, we are able to show that the

multigroup SIR model can be derived as a linearized-deterministic version of our individual-based

stochastic model.

Our analysis also relates to the more recent literature on mathematical models of epidemics

on networks, whereby the spread of the epidemic is modelled via networks (or graphs), with nodes

representing single individuals or groups of individuals and links (or edges) representing contacts.

The adoption of networks in epidemiology has opened up a myriad of possibilities, using more

realistic contact patterns to investigate the impact of network structure on epidemic outcomes,

and to design network-based interventions. Kiss, Miller, and Simon (2017) provide a systematic

treatment of this literature, with related reviews in Miller and Kiss (2014) and Pastor-Satorras

et al. (2015).

Being based on individual outcomes, our approach is more closely related to the individual-

based models surveyed by Willem et al. (2017) and Nepomuceno, Resende, and Lacerda (2018).

These models consider the transition probability of individuals from one state (S,I,R) to another

(Rocha and Masuda, 2016). In contrast, as noted in the introduction, we do not model the transi-

tion probabilities, but rather we model the contact probabilities and unobserved individual-specific

probability of becoming infected, and then derive individual-specific transition probabilities. Like

the individual-based models, our approach also allows for considerable group heterogeneity and

has the advantage that aggregates up to the multigroup SIR model.

In order to calibrate the average number of contacts in our model, we drew upon the literature

on social contact patterns relevant to the transmission of respiratory infectious diseases. Before

the outbreak of Covid-19, large-scale social contact surveys have been conducted in many countries

aiming to guide effective policies on infectious disease control and prevention.1 The POLYMOD

study of social contacts in eight European countries by Mossong et al. (2008) is a notable land-

1Summaries of these social contact surveys are provided by Hoang et al. (2019) and Supplementary Table S1
of Leung et al. (2017).
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mark.2 Many similar surveys have been conducted since. Among them, the contact studies in

Hong Kong (Leung et al., 2017) and Shanghai (Zhang et al., 2019) provide valuable information

about the pre-Covid social contacts in China. Most of these studies summarize contact patterns

based on age groups, contact locations (e.g. households, schools, workplaces), and time schedule

(e.g. weekday or weekend) that can be utilized in a multigroup epidemiological models. With the

outbreak of Covid-19, a few recent articles reported significant changes in contact patterns. For

example, Zhang et al. (2020a) find that the median number of daily contacts in Wuhan went down

from 7 in normal times to 2 after the Covid-19 outbreak. The median number of daily contacts

in Shanghai fell from 10 to 2. Jarvis et al. (2020) find that the average daily number of contacts

declined from 10.8 in normal times to 2.8 immediately after the lockdown in the UK. In all these

three cases, the contact number by age flattened after the outbreak.

In this paper, we propose a new method of estimating the transmission rate, βt, using the

moment conditions we derive from our stochastic network SIR model. The transmission rate is

closely connected to the reproduction numbers, which are epidemiologic metrics used to measure

the intensity of an infectious disease. The basic reproduction number, denoted by R0, is the

number of new infections expected to result from one infected individual at the start of the

epidemic, and within SIR models it is defined by R0 = β0/γ, where β0 is the initial transmission

rate, and γ is the recovery rate. For the current Covid-19, estimates of R0 range between 2 to

3.3 Since the transmissibility of a disease will vary over time due to changes in immunity and/or

mitigation policies, the effective reproduction number, which we denote by Ret, measures the R

number t periods after the initial outbreak. The effective R number is governed by the extent to

which the susceptible population is shrinking and the effectiveness of mitigation policies (whether

mandated or voluntary). In the single group SIR model we have Ret = (1− ct) βt/γ, where ct is

the per capita number of infected cases at time t.

Various methods are available in the epidemiological literature to estimate the reproduction

numbers at the beginning and/or in real time during epidemics, but there is no uniform framework.

2The eight countries are Belgium, Germany, Finland, Great Britain, Italy, Luxembourg, The Netherlands, and
Poland.

3A summary of published R0 values is provided in Table 1 of D’Arienzo and Coniglio (2020).
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Estimation approaches, that are data-driven and involve simplifying assumptions, include the use

of the number of susceptibles at endemic equilibrium, the average age at infection, the final size

equation, and calculation from the intrinsic growth rate of the number of infections (Heffernan,

Smith, and Wahl, 2005). Estimation of reproduction numbers based on different mathematical

models are reviewed by Chowell and Nishiura (2008), Obadia, Haneef, and Boëlle (2012), and

Nikbakht et al. (2019). More recent contributions, focusing on estimation of reproduction numbers

for the Covid-19 pandemic include Atkeson, Kopecky, and Zha (2020), Baqaee et al. (2020),

Fernández-Villaverde and Jones (2020), Korolev (2020) and Toda (2020).

In this paper we estimate the transmission rate using the moment conditions derived from our

stochastic individual-based network SIR epidemic model. We do not use mortality data due to

its unreliability,4 but instead our method of moment estimation requires only data on per capita

infected cases. Our estimation method is not only simple to apply, but also fairly robust to the

under-reporting of infected cases. It has been widely acknowledged that the reported infected cases

may suffer from considerable under-reporting, especially during the early stages of the epidemic.

Li et al. (2020) estimate that only 14 percent of all infections were documented in China prior to

the January 23, 2020 travel restrictions. This translates to a multiplication factor of 1/0.14 ≈ 7.14,

which is a quantity that measures the degree of under-reporting and will be elaborated in later

sections of our paper. Jagodnik et al. (2020) estimate that the recorded cases were under-reported

by a multiplication factor in the range of 3 to 16 times in seven countries as of March 28, 2020.5

In the US, the number of infected cases is likely to be 10 times more than reported based on

antibody tests from March through May, according to the study by Havers et al. (2020) led by

the Centers for Disease Control and Prevention (CDC). More recently, Rahmandad, Lim, and

Sterman (2020) estimate that the cumulative cases across 86 countries through July 10, 2020 are

10.5 times the number of offi cial reported cases, with 10th − 90th percentile range 3.35 − 23.81.

Another source of measurement errors is reporting delays. Harris (2020) estimates that in New

4The recorded Covid death toll has undergone major revisions on several occasions. For example, the UK
death toll was revised downwards by 5,377 on August 12, 2020 after a review concluded the daily death figure
should only include deaths which had occurred within 28 days of a positive test.

5See Table 2 of Jagodnik et al. (2020). The seven countries considered are China, France, Italy, Spain, US,
Germany and UK.
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York City the mean delay in reporting was 5 days, with 15 percent of cases reported after 10 or

more days, during June 21—August 1, 2020. Many existing estimation methods of reproduction

numbers do not allow for measurement errors and might not be robust to acknowledged under-

reporting errors. For instance, the SUR estimates developed by Korolev (2020) may be biased

downward if one neglects under-reporting of confirmed cases.

Our study also contributes to a growing literature on quantitative epidemic policy analyses.

A number of studies consider the effects of different intervention strategies (such as isolating

the elderly, closing schools and/or workplaces, and alternating work/school schedules) by hypo-

thetically lowering the average number of contacts of some specific age groups, and/or contact

locations/schedules from normal (pre-Covid) levels using SIR or other compartmental models.

(See Acemoglu et al. (2020), Akbarpour et al. (2020), Matrajt and Leung (2020), among others.)

Chudik et al. (2020) simulate the trade-off between flattening the epidemic curves and lessening

unemployment loss under different degrees of mandatory and voluntary social distancing policies

using a modified SIR model. Toda (2020) simulates the effects of different mitigation policies on

epidemic curves by reducing the transmission rate in the SIR model from its initial level. Atkeson

et al. (2020) investigate the impact of earlier or later mitigation measures on the death toll. Our

model can be used to investigate a number of different mitigation policies either by lowering the

number of contacts across age groups and/or by reducing the rate of infection upon contact. In the

present paper we have focused on the timing of the lockdowns, comparing the spread of Covid-19

in UK and Germany in March 2020. But the model can be used in a variety of other contexts.

3 Basic concepts and the multigroup SIR model

We consider a population of n individuals that are subject to the spread of a disease with some

initially infected individuals. We suppose that the susceptible population can be categorized into

L groups of size n`, ` = 1, 2, . . . , L, with L fixed. n =
∑L

`=1 n`, with w` = n`/n > 0, for all n

and as n → ∞. The grouping could be based on demographic factors (age and/or gender), or

other observed characteristics such as contact locations and/or schedules, mode of transmission,
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genetic susceptibility, group-specific vaccination coverage, as well as socioeconomic factors. See,

for example, Hethcote (2000). Individual i in group ` will be referred to as individual (i, `), with

i = 1, 2, . . . , n` and ` = 1, 2, . . . , L. It is assumed that n` is relatively large but remains fixed over

the course of the epidemic measured in days.

Suppose that individual (i, `) becomes infected on day t = t∗i`, and let xi`,t to take the value

of unity for all t ≥ t∗i`, and zero otherwise. In this way, we follow the convention that once an

individual becomes infected, he/she is considered as infected thereafter, irrespective of whether

that individual recovers or dies. Specifically, we set

xi`,t = 0, for all t < t∗i`; and xi`,t = 1, for all t ≥ t∗i`. (1)

The event of recovery or death of individual (i, `) at time t will be represented by yi`,t, which

will be equal to zero unless the individual is "removed" (recovered or dead). An individual (i, `)

is considered to be "active" if he/she is infected and not yet recovered. We denote the active

indicator by zi`,t, which is formally defined by

zi`,t = (1− yi`,t)xi`,t. (2)

zi`,t takes the value of 0 if individual (i, `) has not been infected, or has been infected but recov-

ered/dead. It takes the value of 1 if he/she is infected and not yet recovered. Any individual (i, `)

who has not been infected is viewed "susceptible" and indicated by si`,t = 1, where

si`,t = 1− zi`,t − yi`,t. (3)

It then readily follows that the total (cumulative) number of those "infected" in group ` at

the end of day t is given by

C`t =

n∑̀
i=1

xi`,t, ` = 1, 2, . . . , L, (4)

where the summation is over all individuals in group `. The total number of "recovered" in group
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` in day t is given by

R`t =

n∑̀
i=1

yi`,t, ` = 1, 2, . . . , L. (5)

The total number of "active" cases (individuals who are infected and not yet removed) in group

` in day t is

I`t =

n∑̀
i=1

zi`,t =

n∑̀
i=1

xi`,t −
n∑̀
i=1

xi`,tyi`,t = C`t −R`t. (6)

The number of "susceptible" individuals in group ` in day t is

S`t =

n∑̀
i=1

si`,t = n` − I`t −R`t. (7)

Our model does not distinguish between recovery and death. Once an individual is removed

(recovered or dead), following the SIR literature we assume that he/she cannot be infected again.

Under this assumption, recovery and death have the same effects on the evolution of the epidemic,

and accordingly in what follows we shall not distinguish between recovery and death and refer to

their total as "removed".6

The classic multigroup SIR model in discretized form can be written as7

S`,t+1 − S`t = −S`t
L∑

`′=1

β``′I`′ t, (8)

I`,t+1 − I`t = S`t

L∑
`′=1

β``′I`′ t − γ`I`t (9)

R`,t+1 −R`t = γ`I`t, (10)

for ` = 1, 2, . . . , L and t = 1, 2, . . . , T , where S`t, I`t and R`t are defined as above, γ` is the recovery

rate which is assumed to be time-invariant and the same for all people in group `, and β``′ is the

transmission coeffi cient between S`t and I`′ t. Note that individuals in group `
′
may transmit the

contagion to individuals in group `, with the new infections in group ` given by S`t
∑L

`′=1 β``′I`′ t.
8

6Although it is also possible to calibrate our model using mortality data, we do not pursue this route as it is
well known that it is diffi cult to correctly attribute deaths to Covid-19.

7See, for example, Guo, Li, and Shuai (2006) and Zhang et al. (2020b) and the references therein.
8For some of the recent contributions in the epidemiological literature on the multigroup SIR models and their

stability conditions, see, for example, Hyman, Li, and Stanley (1999), Guo, Li, and Shuai (2006), Li, Shuai, and
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4 An individual based stochastic epidemic model on a net-

work

We depart from the literature by explicitly modelling the individual indicators, xi`,t and yi`,t, (and

hence zi`,t) and then simulate and aggregate up to match the theory predictions with realized

outcomes. In this section, we first describe the infection and recovery processes at individual

level, then show how they lead to the moment conditions at group levels, and finally derive the

relation between aggregated outcomes from our model and the multigroup SIR model.

4.1 Modelling the infection and recovery processes

As an attempt to better integrate individual decisions to mitigate their health risk within the epi-

demic model we propose to directly model xi`,t for each individual (i, `), as compared to modelling

the group aggregates S`t, R`t, and I`t. We follow the micro-econometric literature and model the

infection process using the latent variable, x∗i`,t+1, which determines whether individual (i, `) be-

comes infected. Specifically we begin with the following Markov switching process for individual

(i, `):

xi`,t+1 = xi`,t + (1− xi`,t) I
(
x∗i`,t+1 > 0

)
, (11)

where I (A) is the indicator function that takes the value of unity if A > 0, and zero otherwise.

We suppose that x∗i`,t+1 is composed of two different components. The first component relates to

the contact pattern of individual (i, `) with all other individuals in the active set, denoted by zj`′,t,

both within (when `′ = `) and outside of his/her group (when `′ 6= `). The second component is

an unobserved individual-specific infection threshold variable, ξi`,t+1. Formally, we set

x∗i`,t+1 = τ`

L∑
`′=1

n
`
′∑

j=1

di`,j`′ (t) zi`′,t − ξi`,t+1, (12)

where the first component depends on pattern of contacts, di`,j`′ (t), whether the contacted individ-

uals are infectious, zj`′ ,t, and the exposure intensity parameter, denoted by τ`. D(t) =
[
di`,j`′ (t)

]
is

Wang (2010), Ji, Jiang, and Shi (2011), Ding, Qin, and Ding (2015) and Zhou, Yang, and Zhang (2017).
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the contact network matrix, such that di`,j`′ (t) = 1 if individual (i, `) is in contact with individual(
j, `

′)
at time t. zi`′,t = (1− yi`′,t)xi`′,t is an infectious indicator, already defined by (2), and takes

the value of unity if individual (j, `′) is infected and not yet recovered, zero otherwise. The ex-

posure intensity parameter, τ`, is group-specific and depends on the average duration of contacts,

whether the contacting individuals are wearing facemasks, and if they follow other recommended

precautions.

The multigroup structure of the first component of (12) covers a wide range of observable

characteristics, and can be extended to allow for differences in age, location, and medical pre-

conditions. There are also many unobservable characteristics which lead to different probabilities

of infection even for individuals with the same contact patterns and exposure intensities. To

allow for such latent factors, we have introduced the individual-specific positive random variable

(ξi`,t+1 > 0) which represents the individual’s degree of resilience to becoming infected and varies

across (i, `) and t. Ceteris paribus, an individual with a low value of ξi`,t+1 is more likely to

become infected. ξi`,t+1 is assumed to be independently distributed over i, ` and t, and follows an

exponential distribution with the cumulative distribution function given by

Pr (ξi`,t+1 < a) = 1− exp
(
−µ−1` a

)
, for a ≥ 0, (13)

where µ` = E (ξi`,t+1). As we shall see, it is not possible to distinguish between µ` and τ`.

To complete the specification of the infection process we also need to model yi`,t, namely the

recovery indicator. We assume that recovery depends on the number of days since infection.

Specifically, the recovery process for individual i is defined by

yi`,t+1 = yi`,t + zi`,t ζi`,t+1 (t∗i`) , (14)

where zi`,t = (1− yi`,t)xi`,t, ζi`,t+1 (t∗i`) = 1 if individual (i, `) recovers at time t + 1, having

been infected exactly at time t∗i` and not before, and ζi`,t+1 (t∗i`) = 0, otherwise. The analysis of

recovery simplifies considerably if we assume time to removal, denoted by T ∗i`,t = t − t∗i`, follows
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the geometric distribution (for t− t∗i` = 1, 2, . . .)

Pr [ζi`,t+1 (t∗i`) = 1] = Pr
(
T ∗i`,t = t− t∗i`

)
= γ` (1− γ`)t−t

∗
i`−1 .

Then

E
[
ζi`,t+1 (t∗i`)

∣∣xi`,t, yi`,t, yi`,t−1, . . . , yi`,t∗i` ]
= Pr [ζi`,t+1 (t∗i`) = 1 |xi`,t = 1, yi`,s = 0, for t∗i` ≤ s ≤ t ]

=
Pr [ζi`,t+1 (t∗i`) = 1]

1− Pr [yi`,s = 0, s = t∗i` + 1, t∗i` + 2, . . . , t]

=
Pr
(
T ∗i`,t = t− t∗i`

)
Pr
(
T ∗i`,t > t− t∗i` − 1

) , (15)

which is the probability of recovery at time t+ 1 having remained infected for t− t∗i`− 1 days. As

is well known this is the "hazard function" given by

h` (t− t∗i`) =
Pr
(
T ∗i`,t = t− t∗i`

)
Pr
(
T ∗i`,t > t− t∗i` − 1

) =
γ` (1− γ`)t−t

∗
i`−1

(1− γ`)t−t
∗
i`−1

= γ`, (16)

which is the same across all individuals within a given group, and which most importantly does

not depend on the number of days since infection.9 Therefore, using (15) and (16) in (14), the

recovery micro-moment condition simplifies to

E (yi`,t+1 |yi`,t, zi`,t ) = yi`,t + γ` zi`,t. (17)

We assume that di`,j`′ (t), the elements of the n × n network matrix D (t) =
(
di`,j`′ (t)

)
are

independent draws with E
[
di`,j`′ (t)

]
= p``′ , namely, the probability of contacts is homogeneous

within groups but differs across groups. Let d
′

i (t) be the i
th row of D (t). Also let zt be a column

9A more general specification that allows the recovery probability to depend on the number of days being
infected is considered in Section S1 of the Online Supplement.
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vector consisting of zj`,t, for j = 1, 2, . . . , n` and ` = 1, 2, . . . , L. Then using (11) we have

E [xi`,t+1|xi`,t, zt, di (t)] = xi`,t + (1− xi`,t) Pr
[
x∗i`,t+1 > 0| zt, di (t)

]
= xi`,t + (1− xi`,t) Pr

ξi`,t+1 < τ`

L∑
`′=1

n
`
′∑

j=1

di`,j`′ (t) zj`′ ,t


= xi`,t + (1− xi`,t)

1− exp

− (τ`/µ`)

L∑
`′=1

n
`
′∑

j=1

di`,j`′ (t) zj`′ ,t

 .

It is clear that τ` and µ` are not separately identified. Without loss of generality, in what follows

we set µ` = 1. Since in general individual contact patterns are not observed, we also need to

derive E (xi`,t+1|xi`,t, zt). To this end we first note that

E
{

exp
[
−τ`di`,j`′ (t) zj`′ ,t

]
| zt
}

= exp (0) Pr
[
di`,j`′ (t) = 0

]
+ exp

(
−τ`zj`′ ,t

)
Pr
[
di`,j`′ (t) = 1

]
= 1− p``′ + exp

(
−τ`zj`′ ,t

)
p``′ ,

and since by assumption di`,j`′ (t) are independently distributed, we then have

E (xi`,t+1| zt) = xi`,t + (1− xi`,t)

1− E

exp

−τ` L∑
`′=1

n`′∑
j=1

di`,j`′ (t) zj`′ ,t


= 1− (1− xi`,t)

L∏
`′=1

n`′∏
j=1

[
1− p``′ + exp

(
−τ`zj`′ ,t

)
p``′
]
.

However, recall that zj`′,t = 1 if individual (j, `′) is currently infected (namely if at time t he/she is a

member of the active set, It), otherwise zj`′,t = 0. In the latter case 1−p``′+exp
(
−τ`zj`′ ,t

)
p``′ = 1,

and hence

E (xi`,t+1| zt) = 1− (1− xi`,t)
L∏

`′=1

 n`′∏
j=1,zj`′,t=1

(
1− p``′ + p``′e

−τ`
)

= 1− (1− xi`,t)
L∏

`′=1

(
1− p``′ + p``′e

−τ`
)I`′t , (18)

where I`′t =
∑n`′

j=1 zj`′,t = C`′t −R`′t. See also (6).
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4.2 Moment conditions at group and aggregate levels

Aggregating the micro infection moment conditions, (18), over i for a given group `, we obtain

E

(
n∑̀
i=1

xi`,t+1| zt

)
= E (C`,t+1| zt) = n` − (n` − C`t)

L∏
`′=1

(
1− p``′ + p``′e

−τ`
)I`′t ,

which can be written equivalently as (recall that I`t = C`t −R`t)

E (C`,t+1 − C`t| It) = (n` − C`t)

1−
L∏

`′=1

(
1− p``′ + p``′e

−τ`
)C`′t−R`′t , for ` = 1, 2, . . . , L, (19)

where It = (I1t, I2t, . . . , ILt)
′. Also aggregating the micro recovery moment conditions, (17), we

have

E (R`,t+1|R`t, C`t) = (1− γ`)R`,t + γ`C`t, for ` = 1, 2, . . . , L. (20)

In per capita terms we obtain the following 2L dimensional system of moment conditions (for

` = 1, 2, . . . , L)

E

(
1− c`,t+1

1− c`t
| it
)

=
L∏

`′=1

(
1− p``′ + p``′e

−τ`
)n

`
′ i`′t , (21)

E (r`,t+1|r`t, c`t) = (1− γ`) r`,t + γ`c`t, (22)

where c`t = C`t/n` and r`t = R`t/n` refer to per capita infected and recovered by group, re-

spectively, and it = (i1t, i2t, . . . , iLt)
′ with i`t = c`t − r`t = I`t/n`. Given time series data on

ct = (c1t, c2t, . . . , cLt)
′ and rt = (r1t, r2t, . . . , rLt)

′, the above moment conditions can be used to

estimate the structural parameters, γ`, τ` and p``′ = p`′`.

In relating the theory to the data one may need to further aggregate across groups to the

population level if group-level data are unavailable or unreliable. It is interesting to note that the

multigroup model does not lead to a model for the aggregates, Ct =
∑L

`=1C`t and It =
∑L

`=1 I`t,

without strong restrictions. To see this, set p``′ = κk``′/n`′ , where k``′ is the mean number

of contacts per day between individuals in group ` and `′, and κ is a constant. To preserve the

symmetry of contact probabilities the mean contact numbers must satisfy the so-called reciprocity
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condition, n`k``′ = n`′k`′`.10 That is, the total number of contacts that people in group ` have

with people in group `′ must be the same as the number of contacts that people in group `′ have

with people in group `. In practice n` is often quite large, with k``′ relatively small (often less

than 30). Then we have

ln
[(

1− p``′ + p``′e
−τ`
)n`′ i`′t] = n`′i`′t ln

[
1− p``′

(
1− e−τ`

)]
= −n`′i`′tp``′

(
1− e−τ`

)
+O

(
n`′p

2
``′
)

= −κ
(
1− e−τ`

)
i`′tk``′ +O

(
n−1`′
)
. (23)

Since w` = n`/n > 0, for all `, then n` rises at the same rate as n, and hence

(
1− p``′ + p``′e

−τ`
)n

`
′ i`′t = exp

[
−κ
(
1− e−τ`

)
i`′tk``′ +O

(
n−1
)]
.

Using the above result in (21) gives

E (1− c`,t+1| it) = (1− c`t) exp

[
−κ
(
1− e−τ`

) L∑
`′=1

i`′tk``′ +O
(
n−1
)]
. (24)

It is evident that κ and τ` are not separably identifiable, and thus we set κ = 1 hereafter. Let

β``′ = (1− e−τ`) k``′ . Note that 1 − e−τ = τ + O (τ 2) ≈ τ since τ is small. Then we have

β``′ ≈ τ`k``′ , and (24) can be rewritten as

E (1− c`,t+1| it) = (1− c`t) exp

(
−

L∑
`′=1

β``′i`′t

)
+O

(
n−1
)
. (25)

Notice that
∑L

`=1w`c` = Ct/n = ct and
∑L

`=1w`i` = It/n = it. If we multiply both sides of (25)

by w` and sum across ` = 1, 2, . . . , L, we will get

L∑
`=1

w`E (1− c`,t+1| it) =
L∑
`=1

w` (1− c`t) exp

(
−

L∑
`′=1

β``′i`′t

)
+O

(
n−1
)
,

or

E (1− ct+1| it) =

L∑
`=1

w` (1− c`t) exp

(
−

L∑
`′=1

β``′i`′t

)
+O

(
n−1
)
. (26)

10See, for example, Willem et al. (2020).
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It is now clear that the group moment condition for infected cases, (21), does not aggregate up

to the moment conditions in terms of ct and it, unless β``′/n`′ is the same across all ` and `
′
. It is

also straightforward to see that the group moment condition for recovery, (22), does not aggregate

up either unless γ` = γ for all `.

In the case of a single group, we have τ` = τ , k``′ = k, and β``′ = β ≈ τk, for all ` and `
′
.

Then (26) simplifies to

E

(
1− ct+1
1− ct

| it
)

= e−βit +O
(
n−1
)
. (27)

Also, if γ` = γ, for all `, the recovery moment condition, (22), becomes

E (rt+1|rt, ct) = (1− γ) rt + γct. (28)

Given aggregate data on ct, it and rt, one can estimate β and γ using the moment conditions (27)

and (28), respectively. We shall return to the identification and estimation problem once we have

clarified the relationship between our model and the classical SIR model.

4.3 Relation to the multigroup SIR model

The multigroup SIR model given by (8)—(10) is a linearized-deterministic version of the above

moment conditions. To see this, using the identity S`t = n` − C`t and s`t = S`t/n`, (25) can be

expressed as

E (s`,t+1| it) = s`t exp

(
−

L∑
`′=1

β``′i`′t

)
+O

(
n−1
)
≈ s`t

(
1−

L∑
`′=1

β``′i`′t

)
+O

(
n−1
)
. (29)

Let ∆s`,t+1 = s`,t+1 − s`t. Then (29) can be rewritten as

E (∆s`,t+1| it) ≈ −s`t
L∑

`′=1

β``′i`′t +O
(
n−1
)
. (30)

In comparison, dividing both sides of (8) in the multigroup SIR model gives

∆s`,t+1 = −s`t
L∑

`′=1

β``′i`′t. (31)
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To exactly match the deterministic expression of s`t given by (31) with the stochastic process given

by (30), we can introduce either an additive or a multiplicative random error to the right-hand

side of (31). To ensure that s`t is non-negative for all t, a multiplicative error with mean unity

would be a more reasonable choice.

Turning to the recovery process. The aggregate recovery governed by (20) matches with

the deterministic recovery equation, (10), of the SIR model under a geometric recovery process.

Finally, since I`t = n` − R`t + S`t, the active cases of our model also match with the infected

equation, (9), of the SIR model.

5 Basic and effective reproduction numbers

In this section we consider the calibration of our model to a given basic reproduction number

assuming no intervention, and derive the effective reproduction numbers in terms of mean contact

patterns, exposure intensities, and the recovery rate. We also highlight the diffi culty in identifying

the contact patterns from the exposure rates in single and multigroup contexts.

5.1 Basic reproduction number

We calibrate the parameters of our model so that at the start of the disease outbreak (the initial

state) the model yields the basic reproduction number, denoted by R0, formally defined as "the

average number of secondary cases produced by one infected individual during the infected indi-

vidual’s entire infectious period assuming a fully susceptible population" (Del Valle, Hyman, and

Chitnis, 2013). By construction, R0 measures the ability of an infectious disease spreading in the

absence of any interventions. Infection spreads if R0 > 1 and abates if R0 < 1.

Suppose that in day 1, the equivalent of one individual becomes infected. To capture the

different contact and exposure intensities of the groups, we assume that a fraction w` = n`/n of

each group ` becomes infected. That is, in day 1, R`1 = 0, I`1 = C`1 = w` for ` = 1, 2, . . . , L. In
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day 2, using (19) we obtain (w = (w1, w2, . . . , wL)′)

E (C`2| w) = n`

1−
L∏

`′=1

(
1− p``′ + p``′e

−τ`
)w

`
′

 , (32)

for all `. To simplify the exposition, suppose that γ` = γ, for all `. Then the average infection

duration is 1/γ. Assume further that the individual remains infected over the infectious period,

1/γ. According to the definition of R0, we need to match
∑L

`=1E (C`2| w) to γR0, namely set

γR0 = n−
L∑
`=1

n`

L∏
`′=1

(
1− p``′ + p``′e

−τ`
)w

`
′
. (33)

This is an exact multigroup expression for R0 and it plays a critical role in identification and the

calibration exercises to follow.

To see how the expression in (33) relates to the well known expression R0 = β/γ, consider

the case of a single group with p = k/(n− 1) ≈ k/n since n is large. Then the expression in (33)

reduces to

γR0 = n
[
1−

(
1− p+ pe−τ

)]
= np(1− e−τ ) ≈ τk, (34)

where the last result follows by 1 − e−τ = τ + O (τ 2) , and τ being small. Hence the model can

be calibrated to any choice of R0 and γ by setting the average number of contacts, k, and/or the

exposure intensity parameter, τ . It is clear that τ and k are not separately identified– only their

product is identified. In addition, we would obtain the classical result γR0 = β in SIR models if

we set β = np(1− e−τ ) ≈ τk.

Returning to the multigroup case, expression (34) continues to apply if the population is

homogeneous in the sense that p``′ = p, τ` = τ , for all ` and `
′
. But in the more realistic case

of group heterogeneity we can use (33) to calibrate τ` and/or p``′ for given choices of R0 and γ.

Since we have assumed that n` is large and L is fixed, (33) can be further simplified with a linear

approximation derived as follows. Let An,``′ = (1− p``′ + p``′e
−τ`)

w
`
′ , and use a similar argument
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as in (23) to obtain (recall that p``′ = O(n−1))

lnAn,``′ = w`′ ln
[
1− p``′

(
1− e−τ`

)]
= −w`′p``′

(
1− e−τ`

)
+O

(
p2
``′
)

≈ −τ`w`′p``′ +O
(
n−2
)
.

Then An,``′ = exp (−τ`w`′p``′ ) +O (n−2). Using this in (33) gives

γR0 = n−
L∑
`=1

n`

exp

−τ` L∑
`′=1

w`′p``′

+O
(
n−2
)

=

L∑
`=1

n`τ`

L∑
`′=1

w`′p``′ +O
(
n−1
)

= n
L∑
`=1

L∑
`′=1

w`w`′ (τ`p``′ ) +O
(
n−1
)
. (35)

As before setting p``′ = k``′/n`′ the above expression can be written equivalently as

γR0 =
L∑
`=1

w`β` +O
(
n−1
)
, (36)

where β` is the group-specific transmission rate defined by

β` =
L∑

`′=1

τ`k``′ . (37)

Similar to the case of a single group, equation (35) implies that τ` and p``′ are not separately

identified; only their products are identified (or equivalently, β``′ ≈ τ`k``′ are identified). To see

this more formally, consider the simple case of two groups (L = 2). Then for suffi ciently large n,

using (35) with L = 2 we have

γR0 ≈ nw1 (w1τ1p11 + w2τ1p12) + nw2 (w1τ2p21 + w2τ2p22)

= nw21 (τ1p11) + nw1w2 (τ1p12 + τ2p21) + nw22 (τ2p22)

= nw21 (τ1p11) + nw1w2 (τ1 + τ2) p12 + nw22 (τ2p22) , (38)

where the last line follows by the symmetry of contact probabilities: p``′ = p`′`. It is clear from

(38) that only τ1p11, (τ1 + τ2) p12, and τ2p22 can be identified given w1, w2, n and γ. More generally,
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for finite L ≥ 2, τ`p``′ are identified for any ` and `
′
= 1, 2, . . . , L.

5.2 Effective reproduction numbers and mitigation policies

In reality, the average number of secondary cases will vary over time as a result of decline in the

number of susceptible individuals (due to immunity or death) and/or changes in behavior (due to

mitigation strategies such as social distancing, quarantine measures, travel restrictions and wearing

of facemasks). The effective reproduction number, which we denote by Ret,11 is the expected

number of secondary cases produced by one infected individual in a population that includes

both susceptible and non-susceptible individuals at time t. In a multigroup setting we represent

"one infected individual" by the vector of population proportions, w = (w1, w2, . . . , wL)′. The

evolution of Ret is determined by the remaining number of susceptibles by groups, S`t = n`−C`t,

for ` = 1, 2, . . . , L. Formally, Ret is defined by

γRet =
L∑
`=1

E (C`,t+1 − C`t| It = w) . (39)

In the absence of any interventions, using (19) we have

γRet =
L∑
`=1

(n` − C`t)

1−
L∏

`′=1

(
1− p``′ + p``′e

−τ`
)w`′ . (40)

Recalling that (1− p``′ + p``′e
−τ`)

w
`
′ = exp (−τ`w`′p``′ ) +O (n−2), then for n suffi ciently large we

have the following approximate expression for Ret:

γRet =

L∑
`=1

S`t

(
L∑

`′=1

τ`w`′p``′

)
+O

(
n−1
)
,

Setting p``′ = k``′/n`′ we can alternatively write γRet as (recall that w`′ = n`′/n and s`t = S`t/n`)

γRet =
L∑
`=1

w`β`s`t +O
(
n−1
)
, (41)

where β` is already defined by (37).

In the case of a single group or when β` = β is homogeneous across groups, the above expression

11We use this notation in order to clearly distinguish the effective reproduction number from the number of
removed cases, Rt.
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simplifies to γRet = β
(∑L

`=1w`s`t

)
= βst, which can be written equivalently as

Ret = (1− ct)R0. (42)

In the absence of any interventions Ret declines as ct rises, and Ret falls below 1 when ct >

(R0− 1)/R0. The value (R0− 1)/R0 is often referred to as the herd immunity threshold. For the

multigroup case, using (36) and (41), the condition for herd immunity is more complicated and

is given by (for n suffi ciently large)∑L
`=1w`β`s`t

γ
=

[∑L
`=1w`β` (1− c`t)∑L

`=1w`β`

]
R0 < 1,

and the herd immunity threshold becomes∑L
`=1w`β`c`t∑L
`=1w`β`

>
R0 − 1

R0
.

This formula clearly shows that for herd immunity to apply, the group-specific infection rate, c`t,

must be suffi ciently large —shielding one group requires higher infection rates in other groups with

larger population weights. To see this, let us consider a simple example of two groups (L = 2)

with a homogeneous transmission rate across the two groups (β1 = β2 = β). Suppose that policy

makers want to shield Group 1, which may comprise elderly people, from infection. In the extreme

case where all individuals in Group 1 are protected, namely, c1t = 0, then herd immunity requires

c2t > (R0 − 1)/ (R0w2), which is higher than the threshold value of (R0 − 1)/R0 where the

population groups are treated symmetrically.

Social intervention might be necessary if the herd immunity threshold is too high and could

lead to significant hospitalization and deaths. In such cases intervention becomes necessary to

reduce the transmission rates β`, thus introducing independent policy-induced reductions in the

transmission rates. In the presence of social policy interventions the effective reproduction number

for the multigroup can be written as

γRet =

L∑
`=1

w`β`ts`t +O
(
n−1
)
. (43)
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where (using (37))

β`t =

L∑
`′=1

τ`tk``′,t.

Reductions in β`t can come about either by reducing the average number of contacts within and

across groups, k``′,t, or by reducing the group-specific exposure intensity parameter, τ`t, or both.

Since only the product of τ`t and k``′,t is identified, in our simulations we fix the contact patterns

and calibrate the desired value of β`t by setting the value of τ`t for each ` to achieve a desired

R number. Of course, one would obtain equivalent results if the average number of contacts is

assumed to be time-varying and the exposure intensity parameter is assumed constant. In the

case of a single group or when β`t = βt for all `, we have

Ret = (1− ct)
βt
γ
, (44)

where (1 − ct) is the herding component. It is also worth bearing in mind that at the outset of

epidemic outbreaks the value of ct is close to zero which ensures that Re0 = β0/γ = R0.

6 Simulated properties of the model

We are now in a position to examine the properties of the model by simulations. We first present

simulation results for a fixed transmission rate, β, (assuming no intervention) using the single

and multigroup models. We then consider simulation outcomes under two scenarios with social

interventions such that the transmission rate, βt, is linearly declining and W-shaped, respectively.

6.1 Simulations with a fixed transmission rate

Although it is diffi cult to obtain an analytical solution to the individual based stochastic epidemic

model, we can study its properties by simulations. We start with the baseline case of a single

group (L = 1), with no interventions, so that the transmission rate is a constant. In light of the

recent studies on the value of R0 for Covid-19 we set R0 = 3. A summary of published estimates

of R0 is provided in Table 1 of D’Arienzo and Coniglio (2020). For the recovery rate, in view of
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the World Health Organization guidelines of two weeks self-isolation we set γ = 1/14.12 It follows

that β = γR0 = 3/14. Recall that β = τk and, as has been shown in Section 5, τ and k are not

separately identified. We set the average number of contacts to k = 10 based on the literature

on social contacts in the pre-Covid period that we have reviewed in Section 2, and then set the

exposure intensity parameter, τ , by τ = β/k = γR0/k.

For each replication, the simulation begins with 1/1000 of the population randomly infected

in day 1, that is, c(b)1 = i
(b)
1 = 0.001, and r

(b)
1 = 0, where b denote the bth replication, for

b = 1, 2, . . . , B.13 Then from day 2 onwards, the infection and recovery processes follow (11) and

(14), respectively, with L = 1. After obtaining x(b)i,t , y
(b)
i,t and z

(b)
i,t , we compute the aggregates,

C
(b)
t =

∑n
i=1 x

(b)
i,t , R

(b)
t =

∑n
i=1 y

(b)
i,t and I

(b)
t =

∑n
i=1 z

(b)
i,t . We consider B = 1, 000 replications

and set the population size to n = 10, 000. We also tried larger population sizes but, as will be

seen below, the interquartile range of the simulated infected and active cases is very tight when

n = 10, 000. Some simulation results for n = 50, 000 and n = 100, 000 are provided in Figure S.1

of the Online Supplement.

The only remaining task is to determine the topology of the contact network which, in the

case of a single group, can be denoted by D(b)(t) =
(
d
(b)
ij (t)

)
. Note that the contact network

randomly changes every day (and also across replications). This feature captures the random

nature of many encounters an individual has on a daily basis. We consider two widely used

random networks: Erdős-Rényi and power law (also known as scale-free) random networks. In an

Erdős-Rényi random graph (simply referred to as "the" random graph), each pair of the nodes (or

individuals) are connected at random with a uniform probability p = k/ (n− 1) ≈ k/n, where k is

the mean degree of the network (or mean number of contacts per individual).14 Note that in the

limit of large n (with k fixed), the Erdős-Rényi random network has a Poisson degree distribution,

which may depart from real-world contact networks in which a small number of individuals (such

12Similar guidelines issued by U.S. and U.K. can be found at https://www.cdc.gov/coronavirus/2019-ncov/
if-you-are-sick/quarantine.html and https://www.nhs.uk/conditions/coronavirus-covid-19/
self-isolation-and-treatment/how-long-to-self-isolate/, respectively.

13We find that there will not be outbreaks in many replications if the simulation begins with less than 1/1000
of the population initially infected.

14The degree of a node in a network is the number of connections it has (or number of edges attached to it).
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as school-aged children, medical professionals, delivery drivers and sales workers) may have a

relatively high number of daily contacts. In other words, the degree distribution of the contact

networks may be heavy-tailed (right-skewed). The power law random network is a popular choice

to model this phenomenon. In a (truncated) power law graph, the degree distribution follows the

power-law distribution:

px = Cx−α, x = kmin, kmin + 1, . . . , kmax, (45)

where px is the fraction of nodes in the graph with degree x, kmin (kmax) is the minimum (maximum)

degree, α > 1 is a constant known as the power law exponent, and C is a normalization constant

such that
∑kmax

kmin
px = 1. We consider kmin = 5 and kmax = 50 in the simulations. The value

of α is set so that the mean degree is equal to 10. We provide details on the generation of the

Erdős-Rényi and power law networks in Section S2 of the Online Supplement.

Figure 1 presents the simulation results using the power law contact network. It displays in

fan chart style with the 10th, 25th, 50th, 75th and 90th percentiles of the proportion of infected,

c
(b)
t = C

(b)
t /n, and the proportion of active cases, i(b)t = I

(b)
t /n, over 1, 000 replications. The

mean values are very close to the median and hence not shown. We see that the proportion of

infected starts to increase rapidly around 40 days since the outbreak, and then begins to level

off about 90 days after the start of the outbreak. The maximum proportion of infected averaged

across replications, i.e., cmax = B−1
∑B

b=1 maxt

(
c
(b)
t

)
, eventually peaks at 93.8 percent, which

is markedly higher than the peak value of 2/3 obtained for deterministic SIR models with the

same basic reproduction number. The proportion of active cases is slightly right-skewed and

reaches maximum, imax = B−1
∑B

b=1 maxt

(
i
(b)
t

)
= 0.298, about 59 days since the outbreak. The

simulation results using the Erdős-Rényi random network are very similar to those obtained using

the power law network with the same mean degree. (See Figure S.3 of the Online Supplement.)

Therefore, in what follows we will focus on the power law network.

We now turn to the multigroup case. For illustrative purposes, we consider dividing the

population into L = 3 age groups: [0, 15), [15, 65) and 65+ years old. We calibrate the model to

24



Figure 1: Simulated number of infected and active cases using a single group model with R0 = 3

Infected cases Active cases

Notes: The simulation uses the power law network with mean contact number k = 10 and begins with 1/1000 of
the population randomly infected in day 1. The exposure intensity parameter is set to τ = γR0/k, with R0 = 3
and recovery rate γ = 1/14. Population size is n = 10, 000. Number of replications is 1, 000.

the contact matrix reported by Mossong et al. (2008) for Germany, which is given by

K = (k``′ ) =


3.396 4.109 0.425

0.879 6.812 0.641

0.351 2.471 1.671

 . (46)

The associated population shares are w = (w1, w2, w3)
′

= (0.145, 0.679, 0.176)′.15 Recall that τ`

and p``′ = k``′/n`′ are not separately identified.
16 To capture the fact that older people are more

likely to be infected, we follow the study by Zhang et al. (2020a) who estimate that the odds

ratios for a contact of age group 1 and 3 to be infected relative to age group 2 are 0.34 and 1.47,

respectively. Accordingly, we set τ = (τ1, τ2, τ3)
′

= τ2 (0.34, 1, 1.47)
′
, and then calibrate τ2 such

that

γR0 = n
L∑
`=1

L∑
`′=1

w`w`′ (τ`p``′ ) ,

As in the case of a single group, we set R0 = 3 and γ = 1/14. For each replication the simulation

15These data can be easily retrieved by the Social Contact Rates (SOCRATES) Data Tool at https://lwillem.
shinyapps.io/socrates_rshiny/.

16See Section S2 of the Online Supplement for the generation of networks with the multigroup structure.
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begins with 1/1000 of total population (n = 10, 000) randomly infected in day t = 1, and then

from t = 2 onwards, the infection and recovery processes follow (11) and (14), for ` = 1, 2, 3. We

compute c(b)`t = C
(b)
`t /n` and i

(b)
`t = I

(b)
`t /n` for each group, and the associated aggregate measures

c
(b)
t =

∑L
`=1w`c

(b)
`t and i

(b)
t =

∑L
`=1w`i

(b)
`t . As before, the number of replications is set to B = 1, 000.

Figure 2 displays the simulation results for the three groups separately. As before, the fan

charts depict the 10th percentile through the 90th percentile of c(b)`t and i
(b)
`t ; the mean and median

values are quite close. Among the young people in Group 1, the proportion of infected peaks at

59.1 percent, compared to the maximum proportion of infected equaling 95.8 and 91.9 percents for

Groups 2 and 3, respectively. For the proportion of new cases, Group 1 peaks at 16.2 percent, a

level much lower than 32.2 percent for Group 2 and 29.6 percent for Group 3, respectively. It takes

64, 55, and 57 days, respectively, for the 3 groups to reach their peak proportion of new cases.

Of course, these outcomes depend on our specification of the contact matrix and the exposure

intensity parameters. This exercise aims to demonstrate the simulations with the multigroup

model, rather than produce results that are close to the real data.

It is also of interest to compare the aggregates obtained using the multigroup model with

those from the single group model. Figure 3 compares the median values of c(b)t and i(b)t over 1, 000

replications. What stands out is the similarity of the epidemic curves whether they are obtained

by multigroup or the single group model.17 This is not surprising because the simulations were

performed with the same fixed β = γR0. The heterogeneity in τ` and p``′ affects the epidemic

curves for each group, but do not seem to impact the aggregates. This is interesting and suggests

that an aggregate analysis might be justified if the primary focus is on the spread of the infection

across the population as a whole rather than on particular age/type groups.

17We also obtain similar results when we carry out simulations using 6 and 8 groups instead of 3 groups.
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Figure 2: Simulated number of infected and active cases using a multigroup model with R0 = 3

Group 1: [0, 15) Group 2: [15, 65) Group 3: 65+
Infected cases

Active cases

Notes: We set 1/1000 of the population randomly infected in day 1. Recovery rate is γ = 1/14. The contact
matrix is given by (46). Population size is n = 10, 000, with population shares w = (0.145, 0.679, 0.176)′. Number
of replications is 1, 000.

6.2 Simulations with linearly declining and W-shaped transmission

rates

In reality, the transmission rate varies over time both due to voluntary and mandated social

distancing and other mitigation measures, as well as changes in the share of susceptible population

as the epidemic spreads. But at the early stage of the epidemic the main driver of the transmission

rate is behavioral. Here we consider two scenarios– linearly declining βt and W-shaped βt– that

are representative of transmission rates we observe as a result of different mitigation policies. We

focus on the case of a single group, but note that similar simulations can be conducted for the

multigroup model.

In the case of linearly declining βt, we let βt decrease linearly from β0 = R0γ = 3/14 at
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Figure 3: Median number of infected and active cases under single- and multi-group models with
R0 = 3

Infected cases Active cases

Notes: Median values of c(b)t and i(b)t over replications b = 1, 2, . . . , 1, 000 are displayed. Recovery rate is γ = 1/14.
Population size is n = 10, 000. In the case of a single group, the power law network with mean contact number
k = 10 was used. In the case of the multigroup model, the contact matrix is given by (46) and population shares
are w = (0.145, 0.679, 0.176)′.

the rate of 0.0023 per day during the first 80 days since the outbreak and then remain constant

thereafter. In the case of W-shaped βt, we set βt to fall linearly from 3/14 at the daily rate of

0.0037 in the first 7 weeks, stay constant for another 2 weeks, then rise linearly at the rate of

0.0038 during the 10th−12th weeks, fall linearly at the rate of 0.0031 during the 13th−18th weeks,

and finally remain constant until the epidemic is over. We carry out simulations using the power

law network assuming a single group. Since τt and kt are not separately identified, as have been

shown in Section 5, in simulations we fix k = 10 and set τt = βt/k. As before, we set γ = 1/14

and suppose that 1/1000 of population is randomly infected in day 1.

Figure 4 presents the simulation results with linearly declining andW-shaped βt, in comparison

with the results without intervention (with a fixed β), over 180 days since the outbreak. The figure

also displays the time profile of βt (scaled by 1/γ) and the median of R(b)et = (1 − c(b)t )βt/γ over

1, 000 replications. With linearly declining βt, we find that the maximum proportion of infected

was brought down from 93.8 percent under no intervention to 18.8 percent; and the maximum

proportion of active cases was significantly reduced from 29.8 percent under no intervention to 4.64

percent. With W-shaped βt, we obtain two peaks in the active cases —this shows that our model
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Figure 4: Simulated number of infected and active cases using a single group model under linearly
declining and W-shaped transmission rates

(a) Without intervention

R0 = β/γ Infected cases Active cases

(b) Linearly declining transmission rates βt

Time profile of βt/γ and Ret Infected cases Active cases

(c) W-shaped transmission rates βt

Time profile of βt/γ and Ret Infected cases Active cases

Notes: We set 1/1000 of the population randomly infected in day 1 and use the power law network with mean
contact number k = 10. Recovery rate is γ = 1/14. The exposure intensity parameter is τt = βt/k. Population
size is n = 10, 000. The median of R(b)et = (1− c

(b)
t )βt/γ over 1, 000 replications is displayed together with βt/γ in

the first column.
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Figure 5: Median number of infected and active cases using a single group model under linearly
declining and W-shaped transmission rates

Time profile of βt/γ Infected cases Active cases

Notes: The simulation uses the power law network with mean contact number k = 10 and begins with 1/1000
of the population randomly infected in day 1. Recovery rate is γ = 1/14. The exposure intensity parameter is
τt = βt/k. Population size is n = 10, 000. Number of replications is 1, 000.

is able to produce results that mimic the rebound in Covid-19 cases many countries are currently

experiencing. After 180 days the proportion of infected cases accumulates to 9.35 percent, a level

much lower than that in the case of no intervention. As expected the difference between βt/γ and

Ret is negligible at the beginning of the outbreak as ct is very small; βt/γ becomes higher than

Ret as ct grows. To further compare the scenarios of linearly declining βt and W-shaped βt, we

plot the median infected and active cases over 1, 000 replications in Figure 5. It is clear that the

maximum infected and active cases are much higher with the linearly declining βt than with the

W-shaped βt. Even though there is a surge in βt in the latter scenario, this comparison highlights

the importance of lowering βt sooner rather than later.

7 Estimation of transmission rates

The previous section investigates the properties of the model assuming the transmission rates are

given. We now turn to detailing how to estimate the transmission rate using data on infected

cases. We first derive the method of moments estimation of the transmission rate, present the

finite sample properties of the estimators using Monte Carlo techniques, and then show that the

estimates are robust to considerable under-reporting of infected cases.
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7.1 Estimation without measurement errors

Let us first consider the case of a single group, and recall that the moment condition for this case

is given by (27), which is replicated here for convenience

E

(
1− ct+1
1− ct

| it
)

= e−βit +O
(
n−1
)
. (47)

We can estimate the transmission rate, β, using (47) by nonlinear least squares (NLS) given time

series data on {ct, it}. The recovery rate, γ, can be estimated using the recovery equation, (22):

E (rt+1|rt, ct) = (1− γ) rt + γct. We will discuss the estimation of γ in the next section, but

note that in reality, rt is often not recorded in a timely manner and γ is estimated from the

hospitalization data. In the absence of any interventions (voluntary or mandated), β = γR0,

where as before R0 is the basic reproduction number. Then it follows that R0 can be estimated

by R̂0 = β̂/γ, where β̂ is the NLS estimate of β using (47).

To examine the finite sample performance of β̂, we estimate β using simulated data generated

from the stochastic SIR model on a power law network with mean contact k = 10 and assuming

1/1000 of the population is randomly infected on day 1. The true value of the transmission rate

is set to β = 3/14, which corresponds to the case where R0 = 3 and γ = 1/14.18 We consider

population sizes n = 5, 000, 10, 000, 50, 000 and 100, 000, and set the the number of replications

to B = 1, 000. To alleviate noise induced by zero and near zero observations at the start and the

final stages of the epidemic, estimation of β is carried out over samples with i(b)t ≥ 0.01, for the

bth replication, b = 1, 2, . . . , B.

Since the value of β is quite small, we present the estimation results in terms of R̂0 = β̂/γ.

Table 1 summarizes the bias and root mean square error (RMSE) of R̂0 under different population

sizes, where the bias is computed as B−1
∑B

b=1

(
R̂(b)0 −R0

)
, and the RMSE is computed by√

B−1
∑B

b=1

(
R̂(b)0 −R0

)2
, where R̂(b)0 = β̂(b)/γ and β̂(b) is the estimate of β in the bth simulated

sample. As can be seen from Table 1, although R̂0 slightly underestimates R0, its bias and RMSE

are quite small in all experiments. The RMSE declines as the population size n increases, but

18For the rationale behind setting γ = 1/14, see Footnote 12.
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Table 1: Finite sample properties of the moment estimator of R0

Full Sub-samples
Population Sample Start Middle End
n = 5, 000 Bias -0.040 -0.046 -0.039 -0.023

RMSE 0.068 0.079 0.086 0.320
n = 10, 000 Bias -0.037 -0.039 -0.038 -0.010

RMSE 0.054 0.059 0.067 0.220
n = 50, 000 Bias -0.033 -0.032 -0.035 -0.012

RMSE 0.038 0.038 0.043 0.100
n = 100, 000 Bias -0.033 -0.032 -0.035 -0.008

RMSE 0.035 0.035 0.039 0.073
T 110 37 36 38

Notes: The true value of R0 is set to β/γ, where β = 3/14 and γ = 1/14 so that R0 = 3. We fix γ and estimate β
using (47). Each sub-sample is about 1/3 of the full time series sample size. The time series sample sizes
averaged across replications are reported in the last row. Number of replications is B = 1, 000.

even with n = 5, 000, R0 can be estimated reasonably well. In the absence of any interventions

we would expect to obtain the same estimate of R0 irrespective of what sub-sample we consider.

To illustrate the robustness of R̂0 to the choice of the sub-sample, we estimated R0 over three

non-overlapping sub-samples, each around one third of the full sample, at the start, in the middle,

and at the end of the epidemic. The results show that R0 can be estimated fairly well over all of

the three sub-samples.

Similar moment conditions can also be used to estimate the parameters of the multigroup. If

time series data on {c`t, i`t}, for ` = 1, 2, . . . , L (L is finite) are available, we can estimate the

products, β``′ , using the moment conditions (25), namely,

E

(
1− c`,t+1

1− c`t
| it
)

= exp

(
−

L∑
`′=1

β``′i`′t

)
+O

(
n−1
)
.

Then, as we have discussed in Section 5, β``′ is identifiable from (35) given γ andw = (w1, w2, . . . , wL)′.

Under social interventions the recovery equation holds (since γ is unaffected), but the moment

condition for ct+1 now depends on the time-varying transmission rate, βt. For γ in the range of

1/14 to 1/21, it is reasonable to use 2 or 3 weeks rolling windows when estimating βt. Consider
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the case of a single group. For a window of size W , we have

β̂t (W ) = Argminβ

t∑
τ=t−W+1

(
1− cτ

1− cτ−1
− e−β iτ−1

)2
. (48)

To examine the finite sample properties of the rolling estimator, β̂t (W ), we conduct 2-weekly

and 3-weekly rolling estimation using the simulated data with n = 10, 000 under fixed, linearly

declining and W-shaped transmission rates, respectively. We find that the 2-weekly and 3-weekly

rolling estimates are very close to each other. The bias and RMSE are reasonably small in all

scenarios. The results are provided in Tables S.1 and S.2, and Figure S.4 of the Online Supplement.

We will hereafter focus on the 3-weekly rolling estimates.

7.2 Estimation allowing for measurement errors

It is widely recognized that in practice Ct and Rt (and It = Ct − Rt) are under-reported. The

magnitude of under-reporting is measured by the multiplication factor (MF) in the literature (see,

for example, Gibbons et al. (2014)). This multiple could change over time as the result of testing,

but in any case it is certain that MFt > 1. Denoting the observed values of ct and it by c̃t and ı̃t,

we have (we are assuming that rt = Rt/n = MFtr̃t, where R̃t is the observed value of Rt)

ct = MFtc̃t and it = ct − rt = MFtı̃t.

Then the moment condition in terms of observed values (c̃t and ı̃t) can be written as

E (1−MFt+1c̃t+1| ı̃t, c̃t) = (1−MFt c̃t) e−βMFt ı̃t . (49)

Suppose further that MFt+1 is a martingale process distributed independently of c̃t+1, so that

E (MFt+1) = MFt. In this case, it is easily seen that

E [(MFt+1 −MFt) c̃t+1| ı̃t, c̃t] = E {E [(MFt+1 −MFt) c̃t+1|c̃t+1, ı̃t, c̃t] | ı̃t, c̃t}

= E {c̃t+1E [(MFt+1 −MFt) | ı̃t, c̃t] | ı̃t, c̃t}

= E (c̃t+1| ı̃t, c̃t)E [(MFt+1 −MFt) | ı̃t, c̃t] = 0,
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and then (49) becomes

E (1−MFt c̃t+1| ı̃t, c̃t) = (1−MFtc̃t) e−βMFt ı̃t .

Now noting that βı̃tMFt is likely to be quite small, we obtain

E (1−MFt c̃t+1| ı̃t, c̃t) = (1−MFt c̃t) e−βMFt ı̃t

= (1−MFt c̃t)
(

1− βMFtı̃t +
1

2
β2MF2t ı̃

2
t + ....

)
≈ 1−MFt c̃t − βMFtı̃t + βMF2t c̃tı̃t + . . . .

HenceE (c̃t+1 − c̃t| ı̃t, c̃t) ≈ β (̃ıt −MFt c̃tı̃t)+. . ., and β and some average of MFt can be estimated

using rolling windows. However, in situations where c̃t and ı̃t are very small (as is the case for

the current pandemic), the second term in the above moment condition will be close to zero and

it might not be possible to identify MFt.

Remark 1 Alternatively we could assume that MFt itself is distributed independently of c̃t, but

allow MFt to vary systematically with a measure of testing. It is expected that the data quality will

improve as more testing is conducted. Given the current data availability, we leave the modelling

of MFt as a function of testing to future research.

Figure 6 depicts the median of the 3-weekly estimates of βt (scaled by 1/γ) over 1, 000 repli-

cations with a MF of 1 (no under-reporting) and MF of 10, for the scenarios of linearly declining

βt and W-shaped βt, respectively. It is notable that the estimates are reasonably close to the

assumed value even if infected cases are under-reported 10 times. We have also considered MF

= 20. The estimates are not displayed since they are so close to those under MF = 10 that the

differences are hardly discernible. Also note that when βt remains constant or rises, the estimates

without measurement error (MF = 1) are closer to the assumed value than the estimates with

measurement error; when βt falls, however, the estimates under MF = 10 tend to be closer to the

assumed value.

Let us close this section by addressing the concern about data smoothing. It is a common

practice to take 1-week moving average (MA) of the recorded cases to mitigate daily fluctuation
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Figure 6: Rolling estimates of βt/γ under linearly declining and W-shaped transmission rates
using different values of the multiplication factor (MF = 1, 10)

Linearly declining transmission rates βt W-shaped transmission rates βt

Notes: Estimates refer to the median of 3-weekly rolling estimates of βt/γ computed using (48) over 1, 000 replica-
tions, where γ is set to 1/14. The data were simulated using a single group model with the power law network. The
mean number of contacts is k = 10. The exposure intensity parameter is τt = βt/k. Population size is n = 10, 000.

due to reporting delays, weekend effects and other potential data anomalies. To investigate the

effect of pre-filtering the data on the estimates of βt, we apply a 1-week MA filter to the simulated

data and compare the resulting estimates of βt with the estimates obtained using unfiltered data.

We find little difference in the estimates whether the data are filtered or not. (See Figure S.5 of

the Online Supplement). But it is worth bearing in mind that filtering the data before estimation

will introduce error serial correlation which could negatively affect the estimates. In practice it

might be prudent to obtain estimates of βt using filtered and unfiltered data. But since in our

applications we obtain very similar results whether we use filtered or unfiltered data, we only

report the estimates based on unfiltered observations.

8 Estimation of the recovery rate

As noted earlier, with reliable data on the number of removed (recovered or dead), the recovery

rate, γ, can be estimated using the moment condition given by (22). In reality, however, it is hard

to accurately measure Rt. In the calibration exercise to be presented in the next section, we do

not estimate γ because the data on recovery are either unavailable or problematic in the countries

we considered. In the current section we demonstrate that the recovery rate can be estimated very
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precisely using simulated data. To simplify the exposition, we consider a single group (L = 1) and

suppose that the time to recovery follows a geometric distribution as in the standard SIR model.

The same aggregate outcome follows in the multigroup case when the probability of recovery is

the same across all groups. Under these conditions the aggregate moment condition for recovery,

(22), can be written as

∆Rt+1 = γIt + un,t+1, (50)

where ∆Rt+1 = Rt+1 −Rt and un,t+1 is a martingale difference process with respect to It and Rt.

(It = Ct −Rt). Recall from (5) and (6) that Rt =
∑n

i=1 yit and It =
∑n

i=1 zit, we note that un,t+1

is an aggregated error, namely, un,t+1 =
∑n

i=1 ui,t+1. Dividing both sides of (50) by n yields

∆rt+1 = γit + ūn,t+1, (51)

where ∆rt+1 = rt+1− rt, rt = Rt/n, it = It/n and ūn,t+1 = n−1
∑n

i=1 ui,t+1. For suffi ciently large n

and assuming that the individual differences in recovery are cross sectionally weakly correlated, we

have ūt+1 = Op(n
−1/2). It follows that γ can be consistently estimated from (51) by ordinary least

squares (OLS) regression of ∆rt+1 on it. Note that T is finite as n→∞. Due to the presence of

Op

(
n−1/2

)
in (51), it is expected that as n increases, the randomness will diminish and estimates

of γ become increasingly precise. In the limit we would expect ∆rt+1 − γit = Op(n
−1/2).

To examine the finite sample properties of the OLS estimator of γ, we simulate our model

assuming a homogeneous recovery rate and compute the aggregate time series for B = 1, 000

replications under a given population size, n. Denote the recovery and infection time series of the

bth replication by r(b)t+1 and i
(b)
t , respectively, for b = 1, 2, . . . , B. For each replication, we obtain

γ̂(b) by regressing ∆r
(b)
t+1 on i

(b)
t , without an intercept. As before, we run these regressions using

the observations with i(b)t ≥ 0.01, using the full sample as well as the three sub-samples (start,

middle and end). The true value of γ in the experiment is set to 1/14.

Table 2 reports the bias and RMSE of the OLS estimator of γ in (51). Note that even though

the bias and RMSE in the table have been multiplied by 100, they are very small in magnitude. It

is evident that we can estimate γ very precisely even with short time series samples. The RMSEs
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Table 2: Finite sample properties of the moment estimator of γ

Full Sub-samples
Population Sample Start Middle End
n = 5, 000 Bias(×100) 0.0045 0.0097 0.0014 0.0049

RMSE(×100) 0.1107 0.2019 0.1393 0.3496
n = 10, 000 Bias(×100) 0.0034 0.0033 0.0023 0.0164

RMSE(×100) 0.0765 0.1358 0.0968 0.2437
n = 50, 000 Bias(×100) 0.0001 -0.0021 0.0011 0.0016

RMSE(×100) 0.0347 0.0616 0.0436 0.1066
n = 100, 000 Bias(×100) 0.0005 0.0022 -0.0002 -0.0022

RMSE(×100) 0.0263 0.0435 0.0329 0.0780
T 110 37 36 38

Notes: The true value of γ is set to 1/14. The estimating equation is given by (51). Each sub-sample is about
1/3 of the full time series sample size. The time series sample sizes averaged across replications are reported in
the last row. Number of replications is B = 1, 000.

obtained by using the sub-samples are slightly larger than those obtained using the full sample;

but they are still quite small given that the sub-samples are based on fewer than 40 observations.

The RMSE declines as n increases —this confirms the theory that randomness will diminish with

n at the rate of n−1/2.

9 Calibrating the model to the Covid-19 evidence for se-

lected European countries

We are now ready to calibrate our model to the realized Covid-19 data and perform counterfactual

analyses. In view of the data quality and the current stage of the epidemic, we evaluate how our

model matches with the recorded evidence in six European countries, namely, Austria, France,

Germany, Italy, Spain and the United Kingdom. We first estimate the transmission rate, βt, on

data from these countries, which we then use to calibrate and evaluate our stochastic network

model. The Covid-19 data are sourced from the repository of the Center for Systems Science and

Engineering (CSSE) at Johns Hopkins University,19 and the population data (for year 2019) are

19Available at https://github.com/CSSEGISandData/COVID-19.
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obtained from the World Bank database.20 To estimate βt following (48), we need observations

on per capita infected and active cases, ct and it. Using the recorded number of infected cases,

Ct, and population data, ct is readily available. Since It = Ct − Rt, we can obtain it if the

number of removed (recovered) cases, Rt, is available. Unfortunately, the recovery data is either

not reported or subject to severe measurement error/reporting issues in many countries. For all

six countries we therefore estimate the number of removed (including recoveries and deaths) by

Rt = (1− γ)Rt−1 + γCt−1, where the recovery rate γ is set to 1/14, and the process starts from

R1 = 0. We then compute It by subtracting the estimated Rt from the recorded Ct.21

The Covid-19 outbreak in Europe began with Italy in early February 2020 with the recorded

number of infections accelerating rapidly from February 21 onward. A rapid rise in infections

took place about one week later in Spain, France and Germany, followed by UK and Austria at

the end of February. Accordingly, we first compute 3-weekly rolling estimates of βt using (48)

over the period from mid-March onwards for Italy and about one week later for the other five

countries, ending on October 15, 2020 (the last data point available used in this study). These

estimates are then substituted in (44) to obtain estimates of the effective reproduction number

given by R̂et = (1−MFct) β̂t/γ, where MF represents the extent of under-reporting of infected

cases. As we shall see, MF differs across countries and is estimated to lie in the range of 3 − 9.

The evolution of the 3-weekly rolling estimates of R̂et over the period March—October for the six

countries are displayed in Figure 7.22 The epidemic tends to expand (contract) if R̂et is above

(below) unity, and to highlight this property in Figure 7 we also show the dates for which R̂et

falls below or rise above unity, as well as the start and end dates of the lockdowns.

Among the six countries, Italy started national lockdown on March 9, 2020, followed by Spain,

Austria, and France about a week later, and Germany and UK two weeks later (on March 23,

20Available at https://data.worldbank.org/indicator/SP.POP.TOTL.
21Specifically, among the six countries, the recorded data on recovery are unavailable for Spain and UK; they

are of poor quality for France and Italy; and they are relatively close to our estimated recovery for Austria and
Germany. We have also calibrated our model using the recorded recovery data for Austria and Germany as a
robustness check and obtained similar results.

22In early stages of the epidemic where ct is small, estimates of R̂et and β̂t/γ are very close, even if we set MF
to 10. See Figure S.6 in the Online Supplement where estimates of R̂et, are compared to β̂t/γ, for the six countries.
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Figure 7: Rolling estimates of the effective reproduction numbers (Ret) for selected European
countries, with start and end dates of the respective lockdowns over the period March to October,
2020

Austria France

Germany Italy

Spain UK

Notes: R̂et = (1−MFct) β̂t/γ, where γ = 1/14, β̂t is the 3-weekly rolling estimate of βt computed using (48), and
the value of MF for each country is given in Figure 8. The number of removed (recoveries + deaths) is estimated
recursively using Rt = (1− γ)Rt−1 + γCt−1 for all countries, with C1 = R1 = 0. To render the calibrations
comparable across the six countries, β is set to 3/14 (giving R0 = 3) during the first week of the epidemic. Red
(green) arrows indicate the start (end) dates of the respective lockdowns. Black arrows indicate the dates when
R̂et crosses one.
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2020).23 As can be seen from Figure 7, R̂et fell below one in mid to late April in all these countries

except for the UK which took a bit longer before falling below unity in early May. On average

it took 37 days to bring R̂et down below one from the start of lockdown, with Germany being

the fastest (28 days) and UK being the slowest (46 days). By the end of May 2020, R̂et were

brought down below 0.5 in all six countries except for the UK where the lowest value of R̂et (of

about 0.54) occurred in early July. As lockdowns were eased, not surprisingly, the transmission

rates started to rise, such that at the end of our sample (October 15, 2020) R̂et ended up at 1.3 or

higher in all six countries with the exception of Spain.24 This new surge in estimates of R̂et has

led Austria, France, Germany and UK to announce second lockdowns, effective from late October

or from early November.

Next we used the 3-weekly rolling estimates to calibrate the network SIR model to the Covid-

19 evidence in these six countries. To render the calibrations comparable across these countries,

we start the simulations with β set to 3/14 (giving R0 = 3) for the first week of the epidemic,

and then set βt to the rolling estimates computed from the realized data. As shown in Section

6, it makes little difference to the aggregate outcomes whether we carry out the simulations

using single or multigroup models. Since we are interested in comparing the calibrated outcomes

with realized cases, we conduct simulations using the single group model in this exercise. As

before, we fix the average number of contacts to k = 10 and set the exposure intensity parameter

to τ̂t = β̂t/k; the population size in simulations is set to n = 10, 000; the contact network is

generated according to the power law specification with the number of contacts lying in the range

of 5 to 50. All simulations start with 1/1000 of population randomly infected in day 1 and are

replicated B = 1, 000 times for each country.

Figure 8 presents the realized and calibrated cases. To match the realized proportion of

infected cases with the calibrated ones, we compute the multiplication factor, MF, as the ratio of

cmax between the calibrated and realized data for each country, and then plot the 7-day moving

23Lockdown dates across countries can be found in: https://en.wikipedia.org/wiki/COVID-19_pandemic_
lockdowns.

24The estimates of R̂et seem to be reasonably robust to the choice of the estimation window. Similar estimates
are obtained if a 2-weekly window is used. See Figure S.7 of the Online Supplement.
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Figure 8: Realized and calibrated number of infected and active cases of Covid-19 for selected
European countries

(a) Austria (MF = 4.82)

Infected cases Daily new cases

(b) France (MF = 5.16)

Infected cases Daily new cases

(c) Germany (MF = 8.26)

Infected cases Daily new cases
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Figure 8: (Continued) Realized and calibrated number of infected and active cases of Covid-19
for selected European countries

(d) Italy (MF = 9.27)

Infected cases Daily new cases

(e) Spain (MF = 2.60)

Infected cases Daily new cases

(f) UK (MF = 8.87)

Infected cases Daily new cases

Notes: Realized series (7-day moving average) multiplied by the multiplication factor (MF) is displayed. MF is
computed as the ratio of cmax between the calibrated and realized data. The number of removed (recoveries +
deaths) is estimated recursively using Rt = (1− γ)Rt−1 + γCt−1 for all countries, with C1 = R1 = 0. We set
1/1000 of the population randomly infected in day 1 and use a single group model with the power law network.
The mean number of contacts is k = 10. The exposure intensity parameter is set to τ̂t = β̂t/k, where β̂t is the
3-weekly rolling estimate of βt. n = 10, 000. Number of replications is 1, 000.
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average of realized data multiplied by the computed MF. Figure 8 also shows the proportion of

daily new cases, which are the first differences of the proportion of infected cases after taking

account of the under-reporting of infected cases. The calibrated data are displayed as fan charts

with percentiles range from the 30th to the 70th. The estimates confirm significant evidence of

under-reporting, with the estimated values of MF falling in the range of 3 to 9. These estimates

are comparable to the degrees of under-reporting estimated by other approaches in recent studies,

such as 7 times in China (Li et al., 2020); 3 to 16 times in five European countries, China and

US (Jagodnik et al., 2020); 10 times in the US (Havers et al., 2020); and 10.5 times across 86

countries (Rahmandad, Lim, and Sterman, 2020), just to name a few. Once we have taken account

of under-reporting, the calibrated cases match with the recorded cases fairly well. It is interesting

that our model is able to catch the “second wave” of Covid-19 cases that start to show up in

Europe from mid-August.

9.1 A Counterfactual Exercise

Having shown that the outcomes of the calibrated model closely match the evidence, we now

show how the model can be used for specific counterfactual analysis of interest. Here we consider

different outcomes that could have resulted from different timing of the lockdowns in Germany and

the U.K.25 In particular, we investigate the quantitative effect of bringing forward the lockdown in

the UK on the infected cases, as compared to the effect of delaying the lockdown in Germany. To

this end, we shift the estimated βt values backward or forward for one or two weeks. We examine

the counterfactual outcomes during the “first wave”of Covid-19 that levelled off in early July in

both countries. As shown in Figure 9, if the German lockdown had been delayed by one week,

the maximum proportion of infected cases would have increased from 2.5 to 5.8 percent, and the

maximum proportion of active cases would have risen from 0.7 to 1.6 percent. In contrast, if

the UK lockdown had been brought forward by one week, the model predicts that the maximum

proportion of infected cases would have reduced from 6.2 to 2.6 percent, and the maximum number

25For example, Neil Ferguson, once an advisor to the UK government, stated on June 10 that "Had we introduced
lockdown measures a week earlier, we would have reduced the final death toll by at least a half". See https:
//www.politico.com/news/2020/06/10/boris-johnson-britain-coronavirus-response-312668.
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of active cases would have reduced from 1.3 to 0.5 percent. These results suggest that the UK could

have achieved a similarly low level of infected cases per capita as Germany if it had implemented

social distancing sooner. The maximum proportion of infected (active cases) is estimated to rise

further to 12.8 (3.6) percent if the German lockdown was delayed by two weeks, and the maximum

proportion of infected (active cases) is estimated to decrease further to 1.2 (0.3) percent if the UK

lockdown was brought forward by two weeks.26 In summary, this counterfactual exercise shows

that it is critical to take measures to lower the effective reproduction number as early as possible,

if a policy maker aims to control the accumulative and active number of infected cases.

10 Concluding Remarks

This paper has developed a stochastic network SIR model for empirical analyses of the Covid-19

pandemic across countries or regions. Moment conditions are derived for the number of infected

and active cases for single as well as multigroup models. It is shown how these moment conditions

can be used to identify the structural parameters and provide rolling estimates of the transmission

rate at different stages of the epidemic. In empirical applications to six European countries, the

estimates are shown to be robust to the well-known under-reporting of infected cases. The rolling

estimates of the transmission rate are then used to calibrate the proposed epidemic model. It is

shown that the simulated outcomes are reasonably close to the reported cases, once the under-

reporting of infected is addressed. It is estimated that the number of reported cases could be

between 3 to 9 times lower than the actual number of infected cases over the period from March

to mid-October, 2020. The calibrated model is used for empirically-based counterfactual analyses.

It is shown that the UK could have achieved an outcome similar to that experienced by Germany

during the first wave if she had started the lockdown just one week earlier. Almost symmetrically,

Germany would have experienced much higher infection rates (similar to the UK’s experience) if

she had started the lockdown one week later.

26See Figure S.8 of the Online Supplement.
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Figure 9: Counterfactual number of infected and active cases for Germany and UK under different
lockdown scenarios

What if the German lockdown was delayed one week?

Infected cases Active cases R̂et

What if the UK lockdown was brought forward one week?

Infected cases Active cases R̂et

Notes: The simulation uses a single group model with power law network and begins with 1/1000 of the population
randomly infected in day 1. n = 10, 000. k = 10. γ = 1/14. τ̂t = β̂t/k, where β̂t is the 3-weekly rolling
estimate computed using (48). The number of removed (recoveries + deaths) is estimated recursively using Rt =

(1− γ)Rt−1 + γCt−1 for both countries, with C1 = R1 = 0. The median of R̂(b)et =
(
1− c(b)t

)
β̂t/γ over 1, 000

replications is displayed in the last column.
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This Online Supplement provides technical derivations and presents additional simulation re-

sults. Section S1 generalizes the proposed stochastic network SIR model to allow for truncated

geometric recovery. Section S2 discusses the edge probability and how the random networks were

generated in our simulation exercises. Section S3 provides additional simulation results showing

the robustness of the proposed model to the population size, n, and the network types. Section S4

reports additional Monte Carlo results of estimation of the transmission rate. Section S5 presents

additional findings of the calibration and counterfactual analyses.

S1 Truncated Geometric Model of Recovery

Here we consider a generalization of the recovery model used in the main paper and suppose that

for all individuals in group ` (` = 1, 2, . . . , L) the time to recovery (or infection duration), denoted

by T ∗i`,t = t− t∗i`, follows a truncated geometric distribution with the probability mass distribution

Pr
(
T ∗i`,t = t− t∗i`

)
= A` (1− γ`)t−t

∗
i` , for t− t∗i` = 1, 2, . . . ,D`, (S.1)

where D` is the maximum number of days for an individual to recover and is assumed to be the

same for all individuals in group `, γ` is the probability of recovery on each day if the geometric
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distribution is non-truncated (i.e., D` →∞). A` is a normalizing constant such that

A`

D∑̀
s=1

(1− γ`)s = A`

[
1− (1− γ`)D`
1− (1− γ`)

]
= 1,

which yields

A` =
γ`

1− (1− γ`)D`
. (S.2)

Then the "hazard function", denoted by h` (s,D) (s = 1, 2, . . . ,D), defined as the probability of

individuals in group ` recovering at time s conditional on having remained infected for s− 1 days

is given by

h` (s,D`) =
Pr (T ∗ = s)

Pr (T ∗ > s− 1)
=

Pr (T ∗ = s)

1− Pr (T ∗ ≤ s− 1)

=
A` (1− γ`)s−1

1− A`
∑s−1

x=1 (1− γ`)x
.

Now using (S.2) we have

h` (s,D`) =
γ` (1− γ`)s−1

(1− γ`)s−1 − (1− γ`)D`
, for s = 1, 2, . . . ,D`.

Note that given a finite D` and 0 < γ` < 1, h` (s,D`) monotonically increases with s. Hence,

by assuming a truncated geometric distribution for recovery time, we are able to allow for the

possibility that the longer an individual is infected the more likely s/he will recover. It is also

clear that h` (s,D`) → γ` as D` → ∞, which establishes the familiar result for a non-truncated

geometric distribution used in the main paper. Under the truncated geometric distribution we

have

E
[
ζi`,t+1 (t∗i`)

∣∣xi`,t, yi`,t, yi`,t−1, . . . , yi`,t∗i` ]
= Pr

[
ζi`,t+1 (t∗i`) = 1

∣∣xi`,t, yi`,t = 0, yi`,t−1 = 0, . . . , yi`,t∗i` = 0
]

= h` (t− t∗i`,D`) ,
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and the recovery process will be given by

E (R`,t+1|R`t, C`t) = R`,t +

n∑̀
i=1

h` (t− t∗i`,D`) (1− yi`,t)xi`,t

= R`,t +

n∑̀
i=1

γ` (1− γ`)t−t
∗
i`−1

(1− γ`)t−t
∗
i`−1 − (1− γ`)D`

(1− yi`,t)xi`,t, (S.3)

which does not simplify to the standard recovery process used in the SIR models, unless D` →∞.

S2 Generating random networks

This section describes how we generated random draws from Erdős-Rényi and power law networks

in the case of single and multigroup random networks used in our simulations.

First, in an Erdős-Rényi (ER) random graph each edge has a fixed probability of being present

or not independently of all other edges. Specifically, we generate the ER random network with

n nodes and a single group by considering all possible edges and including an edge between each

distinct pair of nodes with probability p = k/ (n− 1).

Second, we generate the power law random network in the case of a single group following

the standard procedure in the literature:S1 at each time t, we first draw a degree sequence from

the (truncated) power law distribution given by (45), and then generate a network with that

degree sequence based on a configuration model.S2 Specifically, we draw a degree sequence ki (t)

randomly and independently over i for i = 1, 2, · · · , n, (with replacement), such that ki (t) realizes

with probability pki . Then we generate a configuration model with the degree sequence {ki (t)}

by the standard algorithm —first assign each node with a number of stubs (half edges) that is

equal to its degree, then match two stubs uniformly at random to form an edge and continue

until all stubs are matched. Since the number of edges, denoted by m (t), in a graph satisfies

2m (t) =
∑

i ki (t), the generated degrees must add to an even number to be able to construct a

graph. If the generated degrees add to an even number, we simply throw them away and generate

another sequence. Also notice that this algorithm may produce self-loops and multi-edges. This

S1See, for example, Kiss et al. (2017), p. 20.
S2A configuration model is a model of a random graph with a given degree sequence. The name "configuration"

originates from Bollobás (1980) meaning arrangements of edges in the model.
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is not a concern if n is suffi ciently large, since the density of such problematic links is of order

O(n−1).S3 In simulations, we discard self-loops and collapse multi-edges. The resulting graph is

used as the power law contact network for time t and the same procedure is repeated in each t

and over replications.

It follows from the degree distribution given by (45) that the normalizing constant has the

expression C =
(∑kmax

kmin
x−α

)−1
, and then the average degree of the power law graph is

k = E (x) =

kmax∑
kmin

xp (x) = C

kmax∑
kmin

x1−α =

(
kmax∑
kmin

x−α

)−1(kmax∑
kmin

x1−α

)
. (S.4)

In simulations the value of the exponent, α, is solved from (S.4) such that k = 10.

Given the degree sequence k (t) = [k1 (t) , k2 (t) , . . . , kn (t)]
′
, the (conditional) edge probability

between node i and node j in the configuration model isS4

E [dij (t) | k (t)] =
ki (t) kj (t)

2m (t)− 1
,

which in the limit of large m (t) can be rewritten as

E [dij (t) | k (t)] =
ki (t) kj (t)

2m (t)
=

ki (t) kj (t)∑n
r=1 kr (t)

=
ki (t) kj (t)

nk
.

Since ki (t) and kj (t) are independent draws from the power law distribution with mean k, the

(unconditional) edge probability is

pij = E [dij (t)] = E {E [dij (t) | k (t)]} =
k2

nk
=
k

n
,

which is the same as the edge probability in the ER random network.

Finally, the network with multigroup can be generated following the stochastic block model

(SBM), which is a popular random graph model for blocks (groups, or communities) in networks.S5

Recall our assumption that the probability of contacts is homogeneous within groups but different

across groups. Node (or individual) i in group ` is denoted by (i, `). At each time t, we draw

a network in which the edge between each distinct pair of nodes, (i, `) and
(
j, `

′)
, exists with

S3A proof can be found in Newman (2018), pp. 373—375.
S4See, e.g., Newman (2018), p. 373.
S5A recent review of stochastic block models is provided by Lee and Wilkinson (2019).
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probability p``′ . That is, the edge probabilities depend on the groups which nodes belong to. We

set the within group probability p`` = k``/ (n` − 1) ≈ k``/n`, and the between group probability

p``′ = k``′/n`′ . By construction we have p``′ = p`′` under the reciprocity condition, n`k``′ = n`′k`′`.

Note that if p``′ = p for all groups ` and `
′
, the SBM reduces to the ER random graph. If

p``′ are not all identical, the SBM generates ER random graphs within each group and random

bipartite graphs between groups. Accordingly, the degree distribution of the generated network

is a mixture of Poisson degree distributions. To create heavy-tailed degree distributions or other

types of degree heterogeneity, one can generalize the SBM analogous to the configuration model or

consider the degree-corrected SBM, but these generalizations are beyond the scope of the current

paper.S6

S3 Simulated properties of the stochastic network SIR

model

First we consider how the simulated properties of the proposed model vary as we increase the

population size, n. Specifically, we carry out simulations with n = 10, 000, 50, 000, and 100, 000

assuming a fixed transmission rate, where the parameters take the same values as set out in

Section 6.1 of the paper, namely k = 10, γ = 1/14, R0 = 3, β = γR0 = 3/14, and τ = β/k.

For each replication the simulation is initialized with 1/1000 of the population randomly infected

in day 1. The number of replications is set to B = 1, 000, for all experiments. Figure S.1

displays the proportions of infected and active cases, as well as cmax = B−1
∑B

b=1 maxt

(
c
(b)
t

)
and

imax = B−1
∑B

b=1 maxt

(
i
(b)
t

)
, below the respective epidemic curves. As can be seen, the simulated

values of cmax and imax are hardly affected by the choice of n in the range of (10, 000, 100, 1000).

The time at which active cases peak is also almost the same across n. Although uncertainty in

the simulation results decreases with larger n, the interquartile range with n = 10, 000 is quite

tight. Therefore, without loss of generality and to save computational time we set n = 10, 000 in

all experiments below and those reported in the main paper.

S6See, for example, Newman (2018), Section 12.11.16, for a discussion.
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Figure S.1: Simulated number of infected and active cases using a single group model withR0 = 3
under different population sizes

n = 10, 000 n = 50, 000 n = 100, 000

Infected cases

cmax = 93.8% cmax = 93.9% cmax = 93.9%

Active cases

imax = 29.8% at t = 59 imax = 29.8% at t = 58 imax = 29.7% at t = 58

Notes: We set 1/1000 of the population randomly infected in day 1 and use the power law network with mean
contact number k = 10. The recovery rate is γ = 1/14. The exposure intensity parameter is τ = γR0/k. Number
of replications is 1, 000.

We next examine the effect of network topology on the simulation results. In particular, we

consider two widely used random networks —the Erdős-Rényi (ER) and the power law random

networks. Figure S.2 illustrates the two networks with n = 50 nodes and the same average degree,

k = 10. It is assumed that the minimum and maximum degrees of the power law network is

kmin = 5 and kmax = 49, respectively. The networks were generated following the algorithms

described in Section S2 of this Online Supplement. Note that the ER random network has a

binomial degree distribution, and it can be seen from the figure that most nodes have comparable

degrees with the mean degree of 10, approximately. In contrast, the power law network has a

heavy-tailed degree distribution, and there are many small-degree nodes as well as a few highly

S6



Figure S.2: Examples of power law and Erdos-Renyi random networks

(Truncated) Power Law Network Erdős-Rényi Random Network

Notes: n = 50. Mean degree is k = 10 in both networks. The degree distribution in the power law network follows
px = Cx−2.43, for x = 5, 6, . . . , 49.

connected nodes in the graph. Figure S.3 compares the simulation results obtained using the two

random networks with the same average degree of 10. We set kmin = 5 and kmax = 50 for the

power law networks. The values of γ, R0, and τ , and initialization of the simulation process are

as given above. We plot the proportion of infected and active cases with uncertainty bands, and

also the median values across replications for easy comparison. It is clear from Figure S.3 that the

median epidemic curves obtained by the two different random networks overlap. Although not

shown, the mean simulation results are very close to the median values for both types of networks.

We therefore focus on the power law network (viewed as more realistic) in our simulation and

calibration exercises.

S4 Estimation of the transmission rate

Here we provide further evidence on the performance of the rolling estimators of the transmission

rates. Table S.1 below reports the finite sample properties of the rolling estimates of R0 in the

case where it is fixed at R0 = 3 and the population size is n = 10, 000, which complements Table

1 of the paper. The simulated data were obtained under the same set-up as that for Table 1,

and are based on a single group model with the power law network, and the parameter values
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Figure S.3: Simulated number of infected and active cases using a single group model withR0 = 3
under different network topologies

Power Law Network Random Network Comparison of Medians
Infected cases

Active cases

Notes: We set 1/1000 of the population randomly infected in day 1. Both networks have mean degrees k = 10.
The recovery rate is γ = 1/14. The exposure intensity parameter is τ = γR0/k. Population size is n = 10, 000.
Number of replications is 1, 000.

k = 10, γ = 1/14, and β = 3/14. Table S.1 presents the bias and root mean square error

(RMSE) of the rolling estimates, R̂0 (W ) = β̂t (W ) /γ, where the window size, W , is set to 2 and

3 weeks, respectively, and β̂t (W ) is computed based on (48) of the main paper. The results refer

to averages computed over the full sample (4th − 15th weeks after the outbreak), as well as over

the four non-overlapping 3-weekly sub-samples.

As to be expected, the bias remains small and similar over different sub-samples. The RMSE

is smaller in the middle of the epidemic than at the beginning and end stages where it is very

close to zero. Note that unlike Table 1 of the main paper, we do not discard observations with

it < 0.01 in order to show that the transmission rate cannot be estimated very precisely at the

early and late stages of the epidemic. Therefore the RMSEs in early and end sub-samples are

S8



Table S.1: Finite sample properties of the rolling estimates of R0, in the case where it is fixed at
R0 = 3

Full sample 3-weekly sub-samples
Weeks since the outbreak 4th − 15th 4th − 6th 7th − 9th 10th − 12th 13th − 15th

2-weekly rolling estimates Bias -0.031 -0.028 -0.034 -0.040 -0.024
RMSE 0.124 0.157 0.068 0.089 0.184

3-weekly rolling estimates Bias -0.033 -0.031 -0.033 -0.042 -0.027
RMSE 0.105 0.155 0.063 0.072 0.129

Notes: The rolling estimates are computed using (48) of the main paper. The true value of R0 is set to β/γ,
where β = 3/14 and γ = 1/14 so that R0 = 3. Population size is n = 10, 000. Number of replications is 1, 000.

larger than those in Table 1 of the main paper. Nonetheless, the average RMSE of R̂0 over the

full period lies in the range 0.11−0.12, which is reasonably small compared to the true value of 3.

In addition, the properties of the 2-weekly and 3-weekly rolling estimates are very close, with the

3-weekly rolling estimates having slightly smaller RMSE as compared to the 2-weekly estimates.

We now turn to the performance of the rolling estimates under linearly declining βt and W-

shaped βt scenarios. The simulations are described in Section 6.2 of the paper. Figure S.4 compares

the 2-weekly and 3-weekly rolling estimates of βt/γ using the simulated data. The figure displays

the median estimates based on 1, 000 replications, as well as the assumed value of βt. It is readily

seen that the 2-weekly and 3-weekly rolling estimates are very close. As βt changes over time,

the rolling estimates catch up with the true values of βt with a time lag, and as to be expected

2-weekly rolling estimates tend to catch up more quickly. When the assumed value falls (rises),

β̂t slightly overestimates (underestimates) βt, with negligible sampling errors when βt is fixed.

The magnitude of the bias and RMSE in estimating βt/γ are summarized in Table S.2, which

complements the pictorial representation of the results in Figure S.4. Full sample comprises

observations over 180 days since the outbreak. We also divide the full sample into sub-samples

in which βt declines, stays constant, or rises, which only applies to the case of W-shaped βt. We

report the average bias and RMSE of β̂t/γ for the full sample and each sub-sample. Since there

are two declining periods (weeks 1 − 7 and 13 − 18) in the case of W-shaped βt, the bias and

RMSE for the declining sub-sample refer to the values averaged over the two periods over which
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Figure S.4: Rolling estimates of βt/γ under 2- and 3-weekly rolling windows

Linearly declining transmission rates βt W-shaped transmission rates βt

Notes: Median estimates over 1, 000 replications are shown in the figure. The rolling estimates are computed using
(48) of the main paper. The data were simulated using a single group model with the power law network. The
mean number of contacts is k = 10. The exposure intensity parameter is τt = βt/k. Population size is n = 10, 000.

βt is falling. Similarly, results for the fixed βt sub-sample in the case of W-shaped βt refer to the

estimates averaged over the weeks 8− 9 and 19− 26.

The average bias and RMSE over the full sample are found to be reasonably small, with the

rolling estimates having positive (negative) bias when the true transmission rate is decreasing

(increasing), which are in line with the estimates depicted in Figure S.4. The bias and RMSE are

much smaller when the transmission rate is steady, compared to when the transmission rate is

changing. The 2-weekly rolling estimates have smaller bias and RMSE as compared to the 3-weekly

rolling estimates when βt is declining. Over the full sample, the 2-weekly rolling estimates slightly

outperform the 3-weekly estimates in both scenarios of varying transmission rates. Overall, both

2-weekly and 3-weekly rolling estimates are quite close and perform well.

Finally, we show that the rolling estimates of βt are robust to whether a moving average (MA)

filter is applied to the data before estimation. In practice, a 1-week MA filter is often applied when

displaying infected cases in order to smooth out data irregularities and to alleviate the influence

of delayed reporting. It is therefore of interest to see whether the estimated βt are robust to

the application of an MA filter to the data. Figure S.5 presents the results. It can be seen that

whether the data is filtered or not leads to very similar estimates of βt, and the estimates are also

reasonably close to the assumed value in both scenarios of linearly declining βt and W-shaped βt.
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Table S.2: Finite sample properties of the rolling estimates of βt/γ, in the case of linearly declining
and W-shaped transmission rates

Full Sub-samples
Sample Declining βt Fixed βt Rising βt

Linearly declining transmission rates βt
2-weekly rolling estimates Bias 0.055 0.130 0.005 -

RMSE 0.174 0.208 0.151 -
3-weekly rolling estimates Bias 0.085 0.206 0.014 -

RMSE 0.175 0.243 0.135 -

W-shaped transmission rates βt
2-weekly rolling estimates Bias 0.041 0.194 0.033 -0.322

RMSE 0.241 0.282 0.146 0.368
3-weekly rolling estimates Bias 0.067 0.264 0.095 -0.443

RMSE 0.291 0.340 0.171 0.470

Notes: Reported are the average bias and RMSE over the full sample (180 days) and sub-samples in which the
transmission rate declines, remains fixed, or rises. The declining (fixed) sub-samples in the case of W-shaped
transmission rates give averages over declining (fixed) periods. The rolling estimates are computed using (48) in
the main paper. The data were simulated using a single group model with the power law network. The mean
number of contacts is k = 10. The exposure intensity parameter is τt = βt/k. Population size is n = 10, 000.
Number of replications is 1, 000.

Figure S.5: Comparison of rolling estimates of βt/γ using unfiltered and one-week moving average
filtered data

Linearly declining transmission rates βt W-shaped transmission rates βt

Notes: The median of 3-weekly rolling estimates over 1, 000 replications are shown in the figure. The estimates
using filtered data are based on 1-week moving average filtered observations. The rolling estimates are computed
using (48) of the main paper. The data were simulated using a single group model with the power law network. The
mean number of contacts is k = 10. The exposure intensity parameter is τt = βt/k. Population size is n = 10, 000.
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S5 Calibration and counterfactual analyses

In this section, we provide additional results for the calibration and counterfactual exercises

described in the paper. Figure S.6 shows that R̂et = (1−MFct) β̂t/γ is almost the same as β̂t/γ

since the proportion of infected is very small even after taking account of under-reporting. As

infected cases have grown, small differences between β̂t/γ and R̂et start to become visible towards

the end of our sample period (mid-October). Figure S.7 shows that the 2-weekly and 3-weekly

rolling estimates of the effective reproduction numbers using realized data, are very close to each

other for all six countries under consideration. Therefore, our findings would be similar if we

adopt the 2-weekly rolling estimates of βt in calibrating the model to the empirical evidence.

To complement the counterfactuals presented in the main paper if the German (UK) lock-

down were delayed (brought forward) one week, we further examine the potential outcomes if the

lockdown were delayed or advanced two weeks. As shown in Figure S.8, if the German lockdown

had been delayed one week, there would have been a whopping five-fold increase in both infected

and active cases. By contrast, if the UK lockdown had been implemented two weeks earlier, both

infected and active cases could have been one-fifth of the realized level. These results further

highlight the importance of taking mitigation actions early in an epidemic outbreak.
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Figure S.6: Comparison of R̂et and β̂t/γ for selected European countries

Austria France

Germany Italy

Spain UK

Notes: β̂t is the 3-weekly rolling estimate of βt computed using (48) of the main paper. R̂et = (1−MFct) β̂t/γ,
where γ = 1/14 and the value of MF for each country is given in Figure 8 of the main paper. The number of
removed (recoveries + deaths) is estimated recursively using Rt = (1− γ)Rt−1 + γCt−1 for all countries, with
C1 = R1 = 0. To render the calibrations comparable across the six countries, β is set to 3/14 (giving R0 = 3)
during the first week of the epidemic.
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Figure S.7: Rolling estimates of the effective reproduction numbers (Ret) under 2- and 3-weekly
rolling windows for selected European countries

Austria France

Germany Italy

Spain UK

Notes: R̂et = (1−MFct) β̂t/γ, where γ = 1/14 and the value of MF for each country is given in Figure 8 of the
main paper. The rolling estimates of βt are computed using (48) of the main paper. The number of removed
(recoveries + deaths) is estimated recursively using Rt = (1− γ)Rt−1+γCt−1 for all countries, with C1 = R1 = 0.
To render the calibrations comparable across the six countries, β is set to 3/14 (giving R0 = 3) during the first
week of the epidemic.
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Figure S.8: Counterfactual number of infected and active cases for Germany and UK under
different lockdown scenarios

What if the German lockdown was delayed 2 weeks?

Infected cases Active cases R̂et

What if the UK lockdown was brought forward 2 weeks?

Infected cases Active cases R̂et

Notes: The simulation uses a single group model with power law network and begins with 1/1000 of the population
randomly infected in day 1. n = 10, 000. k = 10. γ = 1/14. τ̂t = β̂t/k, where β̂t is the 3-weekly rolling
estimate computed using (48). The number of removed (recoveries + deaths) is estimated recursively using Rt =

(1− γ)Rt−1 + γCt−1 for both countries, with C1 = R1 = 0. The median of R̂(b)et =
(
1− c(b)t

)
β̂t/γ over 1, 000

replications is displayed in the last column.
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