
1 

 

Risk prediction models for colorectal cancer incorporating common genetic variants: a 

systematic review 

 

Luke McGeoch
1
, Catherine L Saunders

2
, Simon J Griffin

2
, Jon D Emery

2,3
, Fiona M 

Walter
2,3

, Deborah J Thompson
4
, Antonis C. Antoniou

4
, Juliet A Usher-Smith

2
 

 

1
School of Clinical Medicine, University of Cambridge, Cambridge, UK 

2
The Primary Care Unit, Department of Public Health and Primary Care, University of 

Cambridge School of Clinical Medicine, Box 113 Cambridge Biomedical Campus,  

Cambridge CB2 0SR, UK
  

3
Department of General Practice and Centre for Cancer Research, Faculty of Medicine, 

Dentistry & Health Sciences The University of Melbourne, Victorian Comprehensive Cancer 

Centre, 305 Grattan St, Melbourne  Victoria, 3010, Australia 

4
Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, 

Strangeways Research Laboratory, Wort’s Causeway, Cambridge, CB1 8RN, UK 

 

Running title: Genetic risk prediction models for colorectal cancer 

Key words: Risk, prediction, colorectal cancer, genetics, review 

Financial support: This work was funded by a grant from Bowel Cancer UK (18PG0008). J 

Usher-Smith is funded by a Cancer Research UK Prevention Fellowship (C55650/A21464). 

The University of Cambridge has received salary support in respect of SJG from the NHS in 

the East of England through the Clinical Academic Reserve. All researchers were 

independent of the funding body and the study sponsors and funder had no role in study 

design; data collection, analysis and interpretation of data; in the writing of the report; or 



2 

 

decision to submit the article for publication. ACA is supported by Cancer Research-

UK  (C12292/A20861). JDE is supported by an NHMRC Practitioner Fellowship 

 

Correspondence to: J Usher-Smith, The Primary Care Unit, Department of Public Health 

and Primary Care, University of Cambridge School of Clinical Medicine, Box 113 

Cambridge Biomedical Campus,  Cambridge CB2 0SR, UK Email: 

jau20@medschl.cam.ac.uk   Tel: 01223 748693 Fax: 01223 768412 

Competing Interests: The authors declare no potential conflicts of interest 

Word count: 5195 

Number of tables/figures: 5 

 



3 

 

ABSTRACT 

Colorectal cancer (CRC) screening reduces CRC incidence and mortality. Risk models based 

on phenotypic variables have relatively good discrimination in external validation and may 

improve efficiency of screening. Models incorporating genetic variables may perform better. 

In this review we updated our previous review by searching Medline and EMBASE from the 

end date of that review (January 2014) to February 2019 to identify models incorporating at 

least one single nucleotide polymorphism (SNP) and applicable to asymptomatic individuals 

in the general population. We identified 23 new models, giving a total of 29. Of those in 

which the SNP selection was based on published GWASs, in external or split-sample 

validation the AUROC was 0.56-0.57 for models including SNPs alone, 0.61-0.63 for SNPs 

in combination with other risk factors and 0.56 to 0.70 when age was included. Calibration 

was only reported for four. The addition of SNPs to other risk factors increases 

discrimination by 0.01-0.05. Public health modelling studies suggest that, if determined by 

risk models, the range of starting ages for screening would be several years greater than using 

family history alone. Further validation and calibration studies are needed alongside 

modelling studies to assess the population-level impact of introducing  genetic risk-based 

screening programme. 
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INTRODUCTION 

Colorectal cancer (CRC) is the second leading cause of cancer-related death in Europe and 

the United States (1). There is good evidence that screening adults in the general population 

who are at average risk with faecal occult blood testing, flexible sigmoidoscopy or 

colonoscopy reduces CRC incidence and mortality (2–7).  However, as with all screening 

programmes, CRC screening has the potential to cause harm, both directly to those screened 

and indirectly through diversion of resources away from other services. Targeted or stratified 

screening could potentially provide a way of reducing complication rates and demand on 

services while still ensuring those at greatest risk are effectively screened. For example, the 

U.S. Multi-Society Task Force on Colorectal Cancer endorse a risk-stratified approach with 

faecal immunochemical testing (FIT) screening in populations with an estimated low 

prevalence of advanced neoplasia and colonoscopy screening in high prevalence 

populations(8). 

 

We have previously published a systematic review of risk prediction models for CRC and 

identified 40 models that have been developed and could potentially be used for risk 

stratification(9). These range from models including only data routinely available from 

electronic health records, such as age, sex and body mass index, to more complex models 

containing detailed information about lifestyle factors and genetic information. Using the UK 

Biobank cohort for external validation we have shown that several of those including only 

phenotypic risk factors and/or family history exhibit reasonable discrimination in a UK 

population (10). At the time of the literature search for that review (January 2014) only six 

risk models incorporating genetic risk factors and predicting future risk of developing CRC 

had been published, and their performance was similar to models including only phenotypic 

information. Since then, findings from genome-wide association studies have resulted in a 
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rapid rise in the number of published risk models incorporating genetic information. 

Simulation studies have also shown that using genetic information to stratify screening has 

the potential to improve efficiency (11) by reducing the number of individuals screened while 

still detecting as many cases (12). It is not clear, however, which genetic risk models perform 

best, how much combining common genetic variants with phenotypic risk factors improves 

model performance, or the potential public health impact of incorporating these models into 

screening programmes. 

 

In order to inform future stratification of CRC screening using genetic data, we have updated 

our previous systematic review to identify and synthesize the performance of all published 

CRC prediction risk models that include common genetic variants and estimates of the 

potential public health impact of stratifying populations for screening based on genetic risk. 

 

MATERIALS AND METHODS 

We updated a previous systematic review following a published study protocol (PROSPERO 

2018 CRD42018089654 Available from: 

http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018089654). 

 

Search strategy 

We searched Medline, EMBASE and the Cochrane Library from January 2014 (the end date 

of the search in our previous review) to February 2019 applying the same search strategy 

used in our previous review, with no language limits (see Supplementary Materials and 

Methods S1, for complete search strategy for Medline and EMBASE). We subsequently 

manually screened the reference lists of all included papers.  

 

Study selection 

http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018089654
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We included studies if they met all of the following criteria: (i) were published as a primary 

research paper in a peer-reviewed journal;  (ii) provided a measure of relative or absolute risk 

using a combination of two or more risk factors, including at least one single-nucleotide 

polymorphism (SNP), that allows identification of individuals at higher risk of colon, rectal 

or colorectal cancer, or advanced colorectal neoplasia; (iii) reported a measure of 

discrimination (e.g. C-statistic, area under the receiver operating characteristic curve 

(AUROC)), or calibration (e.g. Hosmer-Lemeshow statistic, Observed/Expected ratio) , or a 

quantitative estimate of the implications of using the risk model for stratified screening; and 

(iv) included data applicable to the general population (i.e. the risk model was not specifically 

designed for individuals known to carry specific high-risk mutations or from families with a 

known cancer syndrome, such as familial adenomatous polyposis or hereditary nonpolyposis 

colorectal cancer). As in our previous review, studies including only highly selected groups, 

for example immunosuppressed patients, organ transplant recipients, or those with a previous 

history of colon and/or rectal cancer were excluded. We also included studies published prior 

to January 2014 that had been identified in our previous review if they met the above criteria. 

 

One reviewer (LM) performed the search and screened 67% of the titles and abstracts to 

exclude papers that were clearly not relevant. The remaining 33% of titles and abstracts were 

divided between four reviewers (JUS, SG, JE, FW) for screening. The four reviewers also 

each independently assessed a random selection of 3% of the papers screened by LM. The 

full-text of all papers for which a definite decision to reject could not be made from the title 

and abstract alone were independently assessed by two reviewers (LM and JUS/SG/JE/FW). 

Those assessed as not meeting the inclusion criteria by both researchers were excluded. 

Those for which it was not clear were discussed with the wider research team. One paper was 

translated into English for assessment and subsequent data extraction. 
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Data extraction and synthesis 

Data were extracted independently by two researchers (LM and JUS/SG/JE) directly into data 

tables to minimize bias. These tables included details on: (i) the development of the model, 

including potential sources of bias such as the selection processes for participants and SNPs; 

(ii) the risk model itself, including the variables included; (iii) the methods of model 

development (genetic and phenotypic components); (iv) the performance measures 

(discrimination (e.g. C-statistic, AUROC), or calibration (e.g. Hosmer-Lemeshow statistic, 

Observed/Expected ratio) of the risk model in the development population; (v) any external 

validation studies of the risk model, including the study design and performance of the risk 

model; and (vi) any public health modelling of the potential impact of using the risk models 

in practice. In papers that reported performance data for multiple step-wise models developed 

in the same population we included only the best performing model in our main analysis. If 

performance data were presented separately for a model including only SNPs and a model 

including both SNPs and phenotypic variables in the same paper, these were considered as 

two models. If performance data were presented separately for models that incorporated the 

same SNPs but were developed using unweighted allele counting or with allele weights 

derived either from the literature or the study population, we extracted both sets of data. To 

assess the incremental effect on performance of incorporating SNPs into the risk models, we 

additionally extracted data on the performance of the models including only phenotypic risk 

factors and/or family history, where they were reported.  

 

At the same time as data extraction, an overall assessment of risk of bias was performed 

using four domains from the CHARMS checklist (study population, predictors, outcome and 
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sample size and missing data)(13). We also classified studies into the following groups 

according to the TRIPOD guidelines(14):  

 development only (1a);  

 development and validation using resampling (1b);  

 random (2a) or non-random (2b) split-sample development and validation; 

 development and validation using separate data (3); or  

 validation only (4).  

 

For the models including only SNPs, a model developed using SNPs selected from the 

literature, either with unweighted allele counting, or with allele weights derived from the 

literature, was considered as group 3 (development and validation using separate data). 

However, if the model used weights derived from the study population, or if the model 

included only the SNPs found to be significantly associated with CRC in the study 

population, we assigned it to either group 1b, 2a, 2b or 3, depending on the relationship 

between the study population and the testing population. Simulated populations were 

considered external populations. 

 

RESULTS 

From 12,394 papers we excluded 12,277 at title and abstract level and a further 103 after full-

text assessment. After title and abstract screening by the first reviewer, no additional papers 

met the inclusion criteria in the random 12% screened by a second reviewer. There was also 

complete agreement amongst researchers at the full-text level with the most common reasons 

for exclusion being that the papers did not include a risk score (n=43), were conference 

abstracts (n=19) or did not include any performance measures (n=23) (Supplementary Figure 



9 

 

S1). Four were also excluded as they described models that were developed to detect 

prevalent undiagnosed disease rather than estimate future incident disease risk. 

 

A further four papers were identified through citation searching. The addition of four papers 

(six risk models) which had been included in our previous systematic review gave a total of 

22 papers describing 29 risk models for inclusion in the analysis. Table 1 summarizes these 

29 risk models. Except for the model by Weigl et al., (15) that included CRC or advanced 

adenoma as the outcome, all had CRC as the outcome. The paper by Jung et al., (16) 

developed separate models for colorectal, colon and rectal cancer. As these were the only 

models for colon and rectal cancer, we included only the model for colorectal cancer in the 

analysis. Nine models included only SNPs, six included SNPs plus phenotypic factors but not 

age, and 14 a combination of SNPs, phenotypic factors and age. The number of SNPs 

included in the models ranged from 3 to 95.   

 

Development of the risk models and risk of bias 

Details of the methods used to select the predictors and develop each of the risk models  are 

given in Table 1, with additional details of the setting, design, participants, outcome and 

sample size for each study in Supplementary Table S1. The majority of the risk models (n = 

18) were developed or validated in white or European individuals. The others were developed 

or validated in Japanese (n = 4), Korean (n = 3), Chinese (n = 3) and Taiwanese (n = 1) 

populations.  

 

A summary of the assessment of the risk of bias based on the four domains from the 

CHARMS checklist (study population, predictors, outcome and sample size and missing 
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data) is shown in Table 2. Overall we found 12 risk models to be at low risk of bias, 10 at 

unclear risk and five at high risk.  

 

Risk of bias within the study participant domain was variable between studies. Those judged 

to be at unclear or high risk of bias reflected limited or missing details on the inclusion and 

exclusion criteria used to define study participants and/or use of cases or controls not 

representative of the general population, for example recruiting spouses or individuals 

attending outpatient hospital clinics as controls, or recruiting cases from adjuvant 

chemotherapy clinical trials.  

 

When considering selection of predictors, the majority of the models (n = 18) included SNPs 

identified for inclusion from new or previously published genome-wide association studies 

(GWAS) in European or Asian-ancestry populations. In six, the authors had used GWAS 

studies from European or Asian populations to identify SNPs associated with CRC risk and 

then selected a subset of these SNPs for inclusion in the risk model on the basis of the 

associations with disease risk in an independent Japanese or Taiwanese population. Although 

this method was used to identify SNPs that may be associated with risk in non-European 

populations, given the small sample sizes of many of the studies and low statistical power this 

approach potentially excludes SNPs that are associated with risk in these populations. Two 

models(17) were developed on the basis of a GWAS study in a Korean population by 

selecting SNPs with evidence of association at the p<10
-6 

significance level (which is less 

conservative than the conventionally accepted genome-wide level of significance, p<5x10
-8

 

level for a GWAS study). A further three studies (18–20) selected SNPs based on plausible 

biological mechanisms leading to CRC and epidemiological studies (folate metabolism, DNA 

repair and breakdown of carcinogenic compounds, insulin-like growth factor and insulin). 
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One of these, the model by Jung et al.,(20) included both SNPs related to insulin metabolism 

and dietary fatty acids, potentially overestimating the risk for individuals with the risk allele.  

 

Of the 20 models which include phenotypic risk factors, with or without age, in addition to 

SNPs, four used regression analyses to select which factors to include(15,18,20,21), one a 

bootstrap forest prediction model(19), and three(22,23) used risk factors identified from 

previous risk models. However, for the majority (n = 12) of models the publications included 

few details about how phenotypic factors were selected, and whether all those that had been 

considered were included in the final model. As a consequence, many do not include 

established risk factors for CRC.  

 

The outcome (CRC) was defined histologically or from cancer registries in all studies, 

reducing the risk of bias due to case misclassification All studies reported numbers of cases 

and controls used in their development and/or validation analyses. Three included fewer than 

150 cases (and hence had low statistical power). Only five studies adequately described how 

they dealt with missing data, so we cannot be certain that this was done appropriately in the 

remaining studies.  

 

Discrimination and calibration of the risk models 

Discrimination, as measured by the AUROC or C-statistic, was reported for 27 of the 29 risk 

models and calibration reported for four. The discrimination values are summarized 

graphically in Figure 1 and given in Supplementary Table S2, in which models are divided 

into those that include SNPs only and those that combine SNPs with phenotypic variables 

with or without age and whether the discrimination was assessed in the development 

population, bootstrap or a random-split sample, or in an external population or non-random 
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split sample. Where multiple AUROCs or C-statistics for the same model were reported for 

more than one method, measurement in the development populations always gave the highest 

discrimination, followed by that in bootstrapping or random split-sample validation studies 

and then in external populations. Where model performance was included for both men and 

women, discrimination was higher in men (0.59 in men compared with 0.56 in women(24), 

0.63 in men compared with 0.62 in women(25), and 0.70 in men compared with 0.60 in 

women(17)). 

 

Among the eight models that include only SNPs, the discrimination of seven was reported in 

external populations. This ranged between 0.56 and 0.60 in real-life populations and 0.63 in 

simulated populations. Of those assessed in real-life populations, the three considered at low 

risk of bias (Dunlop et al.,(26) Ibanez-Sanz et al.(21), and Smith et al.(23)) all have reported 

AUROCs of 0.56-0.57.  Of the 19 risk models incorporating both SNPs and phenotypic 

variables, the models created by Procopciuc et al.(18),  Jung et al., (20) and Shiao et al., (19), 

have the highest reported discrimination with AUROCs of 0.90 (95% CI, 0.86 - 0.93) in the 

development population, 0.93 in the development population and 0.85 in cross-validation 

respectively. In all three cases the SNPs were selected on the basis of candidate-gene 

association studies as opposed to GWAS studies. The models by Procopciuc et al. and Shiao 

et al were also developed in a small case-control studies with only 150 and 53 cases and 162 

and 53 controls respectively, thus the resulting models are likely subject to a high degree of 

overfitting.    

 

In the remaining models, in which the SNP selection was based on published GWASs, the 

AUROC in split sample validation or external validation in independent datasets ranged 

between 0.61 to 0.63 in models excluding age and 0.56 to 0.70 in those including age. The 
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best performing model in an independent validation population was the model by Smith et al. 

(23). Calibration was reported for only four of the 29 risk models. In three, the numbers of 

predicted colorectal cancers were in line with the observed numbers with non-significant p 

values of 0.086(18)  and 0.336(27) under a Hosmer–Lemeshow statistic and 0.09  under a 

Grønnesby and Borgan test(22) respectively. Smith et al.,(23) assessed calibration 

graphically and found that the genetic risk score alone (Smith 2018a) was poorly calibrated, 

with over-estimation of risk for those in the top decile of risk. After re-calibration, however, 

both the genetic risk score alone and the genetic plus phenotypic models were well calibrated. 

 

Incremental improvement of genetic over family history and/or phenotypic risk factors  

Of the models that combined SNPs with family history and/or phenotypic risk factors, 15 

compared the discrimination of models including SNPs, family history and phenotypic risk 

factors either alone or in combination(Table 3). Together these showed that adding SNPs to 

family history and/or phenotypic variables, and vice versa, leads to an increase in the 

AUROC of between 0.01 to 0.06. For example, in a cross-validation sample of a Spanish 

population, Ibanez-Sanz et al., report an AUROC of 0.61 (95% CI, 0.59-0.64) for their 

environmental risk score comprising alcohol use, family history of CRC, BMI, physical 

exercise, red meat and vegetable intake, and NSAIDs/aspirin use and an AUROC of 0.56 

(95% CI, 0.54-0.58) for their genetic risk score comprising 21 SNPs. For the combined risk 

score, they report an AUROC of 0.63 (95% CI, 0.60-0.66)(21). Iwasaki et al., (22), Xin et al., 

(27) and Weigl et al.,(15) additionally reported that adding genetic risk factors to a model 

including phenotypic risk factors increased the mean integrated discrimination improvement 

(IDI) by 0.015 (95% CI 0.0044 to 0.027), 0.031 (95% CI 0.023 to 0.039) and 0.04 (95% CI 

0.03-0.05) respectively and the mean continuous net reclassification index (NRI) by 0.39 

(95% CI 0.17 to 0.58), 0.317 (95% CI 0.225 to 0.408) and 0.29 (95% CI 0.14 to 0.43) 
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respectively. The study by Smith et al., in which a genetic risk score incorporating 41 SNPs 

identified from previous GWAS studies was added to two previously published phenotypic 

risk scores including age and family history of CRC (28,29) found that the genetic risk score 

did not meaningfully improve model discrimination. They did not report the IDI or NRI but 

overall the addition of genetic information resulted in 4-5% of individuals having a change in 

absolute risk of ≥ 0.3%. For those with an initial estimated absolute risk of <1%, this 

percentage was 3% and for those with an estimated absolute risk ≥1% 25-33% had a change 

in absolute risk of ≥ 0.3%. 

 

Impact of stratifying populations for screening based on genetic risk 

Eight studies assessed the potential impact of using the risk models to determine the starting 

age for screening. Seven of these calculated either the difference in recommended starting 

age for those at low or high risk or the years earlier those at high risk would be invited. These 

are summarised in Table 4.  Considering SNPs alongside family history would result in 

individuals in the highest quintile of risk, for example, being invited between 13 and 21 years 

earlier, with the difference between the invitation ages of the highest quintile being and 

lowest quintile between 13 and 27 years. In all cases where estimates were provided for SNPs 

alone, family history alone, or SNPs and family history combined, the range was greater for 

SNPs than family history and greater for both combined than for either individually. Jenkins 

et al., (30) additionally estimated that if those in the highest quintile of risk were invited for 

screening at age 46 and those in the lowest quintile at age 59, 3.32 million people would be 

screened earlier, of which 8000 of those would be diagnosed with CRC, and 8.76 million 

would be screened later, of which 18,000 would be diagnosed with CRC. 
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The eighth study compared the size of the English population eligible for screening and the 

number of CRC cases potentially detectable using age-based screening and personalised 

screening in which eligibility is determined by absolute risk calculated using age and the 

Frampton et al. risk score(12). In a simulated population aged 55-69, 61% of men and 62% of 

women would be eligible for age-based screening (≥ 60 years) and 79% and 77% respectively 

of CRC cases would be diagnosed in this subset. With screening based on the genetic risk 

score (≥ average risk for an individual aged 60 (men 1.96%, women 1.19%)), 45% of men 

and 45% of women would be eligible for screening with 69% and 69% of CRC cases being 

identified. This translates into 16% fewer men and 17% fewer women being eligible for 

screening at the cost of detecting 10% and 8% fewer cases respectively.  

 

DISCUSSION 

Key findings 

We  have identified 29 risk models that incorporate common genetic variants to estimate 

future incidence of CRC in average-risk populations and that have either published measures 

of performance or estimates of the implications of using them for stratified screening. In 

external independent validation datasets, the three models considered at low risk of bias that 

include SNPs identified from GWAS studies all had similar discrimination (AUROC 0.56-

0.57) (Dunlop et al.,(26) Ibanez-Sanz et al.(21), and Smith et al.(23)). Among the models that 

included SNPs in combination with other risk factors, the AUROC in split sample or external 

validation ranged between 0.61 to 0.63 in models excluding age and 0.56 to 0.70 in those 

including age. The model with the highest reported discrimination in an independent 

validation population was the model by Smith et al. that included 41 SNPs alongside age, 

diabetes, multi-vitamin usage, family history, years of education, BMI, alcohol intake, 

physical activity, NSAID usage, red meat intake, smoking and oestrogen use in women(23).  
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Only four reported data on model calibration. The addition of SNPs to risk scores already 

including family history and/or phenotypic variables increased discrimination by 0.01 to 0.06. 

Although this represents a modest increase in discrimination measured in terms of the 

AUROC, such differences can lead to substantial changes in risk stratification in the 

population, as illustrated by continuous NRI values of 0.3 to 0.4 seen in this review and 

demonstrated in the context of other diseases(31). Public health modelling within the studies 

suggest that if the models were used to determine the starting age for screening, this would 

result in individuals in the top 20% for risk being invited up to 23 years earlier than if 

determined by age-based criteria only, with the difference in age at invitation between the 

highest and lowest risk quintiles being several years greater for models including SNPs alone 

than for models including family history alone, and the difference for models including both 

SNPs and family history greater than that for models including either SNP or family history. 

 

Strengths and Limitations 

The main strengths of this review are the comprehensive literature search that included both 

subject headings and free text, and the systematic approach we used to screen papers for 

inclusion. The inclusion of more than one risk model from many of the published papers also 

enabled us to make comparisons between models that included different groups of risk 

factors or had been developed using different statistical methods. Although this approach 

enabled us to identify 23 risk models that have been published since our earlier review, we 

cannot exclude the possibility that there are others that we did not identify. Genetic research 

is also a rapidly advancing field with new papers reporting new genetic variants that could be 

incorporated into future risk scores being published regularly.  
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Other limitations of this review relate to the studies themselves. Most of the risk models were 

developed and/or tested in case-control studies. Estimates of absolute risk of developing CRC 

are therefore not possible and the collection of phenotypic risk factors will be subject to both 

recall and responder bias, potentially increasing the apparent discrimination. Conversely, in 

many, the matching variables were not included as covariates within the risk models and this 

may have resulted in underestimation of discrimination(32). The risk models also varied 

substantially in relation to size, selection of cases and controls and variables considered for 

inclusion. This heterogeneity meant it was not possible to assess whether, for example, the 

number of SNPs affected the performance of the models. Furthermore, most risk models were 

developed and/or tested in either European, Chinese or Japanese populations. The risk models 

in this review may therefore not be applicable to other population groups.  

 

There was also heterogeneity in how the SNPs and phenotypic factors were selected and 

combined into risk scores, which ultimately impacts their performance in independent 

samples. For several models SNP selection was based on small sizes and/or there was limited 

detail on how lifestyle/hormonal risk factors were selected. Similarly, several models did not 

include well-established risk factors for CRC. Almost all, however, assumed that the 

associations of the SNPs are independent from each other and that risk follows an additive 

model on the log-Risk scale. These assumptions are generally considered to be robust(33) and 

many of the authors describe how they had sought to remove SNPs in linkage disequilibrium 

or associated with factors on the genetic pathway. In the absence of evidence of interactions, 

the models also assume that the strengths of associations for each SNP with CRC are constant 

with age. This may not be true and further studies are needed to assess for possible 

interactions.  
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Finally, in relation to the performance measures for the models, discrimination for many had 

only been assessed in the development population, no data on discrimination has been 

published for the genetic model with the largest number of SNPs(34), only four models 

reported data on calibration, and only two included estimates of net reclassification. As 

illustrated by the lower AUROCs seen in development populations when compared with the 

performance of the same models from bootstrapping or cross-validation, the performance of 

all prediction models is overestimated due to overfitting when both model development and 

performance assessment use the same data set, particularly in studies with small sample 

sizes(35). Additionally, while the AUROC or other measures of discrimination are important 

when considering how well individuals can be ranked in terms of predicted risk, without 

measures of calibration or reclassification it is not possible to assess how closely the 

estimated risks match the observed risks, how much including different factors in the risk 

scores influences the classification of individuals or whether the models stratify correctly into 

high/low categories of absolute risk that are of clinical importance.  

 

Implications for future research 

This review shows that a large number of risk scores incorporating common genetic markers 

have been developed to estimate future risk of CRC and suggests that many of these are 

better at discriminating between those at higher and lower risk of CRC than age alone, family 

history alone, or risk scores incorporating only phenotypic risk factors. As has been described 

previously(9,36), risk models such as these could be used to stratify the general population 

into risk categories, based either on estimates of absolute risk for those models including age 

or relative risk for those excluding age, to allow screening and preventive strategies to be 

targeted at those most likely to benefit. While the findings of this review therefore suggest 

that future risk prediction in colorectal cancer will improve with the inclusion of polygenic 
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risk factors, it remains uncertain how these models would perform in real-life settings and 

whether the increase in discriminatory performance and wider range of ages at which 

individuals would become eligible for screening that could be achieved through the inclusion 

of genetic variables translates into improved health of the population or the cost effectiveness 

of a screening programme. 

 

Firstly, many of these models have not been externally validated and very few have had 

calibration assessed.  As described above, these steps are essential before risk models can be 

incorporated into practice. To enable direct comparisons between the models, ideally the 

models identified in this review with the greatest number of SNPs and those with the highest 

reported discrimination would be assessed in a single independent cohort. However, the 

predictive ability of risk models is known to vary between populations and the risk of 

developing CRC varies substantially worldwide(37). The choice of models for independent 

validation will therefore depend on the population of interest and these analyses should be 

performed in populations similar to those in which use of the model is being considered. This 

is particularly important in the context of genetic risk models.   Comparisons between the 

population genetics of different ethnic groups have shown that the estimated associated risks 

and population frequencies of SNPs can vary substantially with ethnicity(38,39) and the 

overall magnitude of association of polygenic risk scores derived from GWAS in European-

ancestry populations, as is the case for most models for CRC, may differ when applied to 

other populations(40). As highlighted by De La Vega and Bustamante, to avoid further 

inequities in health outcomes, the inclusion of diverse populations in CRC research, unbiased 

genotyping, and methods of bias reduction in genetic risk scores are critical(41).  
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Secondly, further methodological studies are required to improve genome-wide risk 

prediction in order to understand the potential benefits of including increasing numbers of 

SNPs, together with other rare moderate/high risk genetic variants and established or new 

lifestyle/environmental risk factors, as has been done for other cancers(42). These also 

include exploring more sophisticated statistical methods for developing polygenic risk 

scores(43), and novel methods such as machine learning approaches for combining the 

effects of diverse risk factors(40). Thirdly, there was substantial variation in the reporting of 

the studies in this review. Encouraging the use of reporting guidelines, such as the Genetic 

Risk Prediction Studies (GRIPS) statement(44,45) that includes a checklist of 25 items, 

would improve the transparency, quality, and completeness of the reporting of new models 

and facilitate future syntheses in this field.  

 

Finally, the assessment of model performance is only one component when considering 

whether risk models are ready for clinical use; the context in which the model will be used, 

including the costs of measuring additional risk factors and the risk-benefit of any 

interventions offered, and the wider ethical, legal and social issues around implementation 

must also be considered. To our knowledge, only one study has modelled the potential impact 

of CRC screening based on age and SNPs on preventing deaths from CRC (11). Using age-

specific crude rate of deaths due to CRC in a hypothetical population based on the Australian 

population in 2011 and assuming a 100% attendance rate at screening, that study showed that 

the net effect of inviting individuals for biennial FOBT based on their genetic risk would be 

0.4% more colorectal cancer deaths and 0.2% more years of life lost per person invited to 

screen than inviting those aged between 50 and 74, against a background of 4.9% fewer 

screens, resulting in a 3.1% overall improved efficiency. The risk model used in that study 

was the model by Jenkins et al., 2006 that includes 45 SNPs and had an AUROC of 0.63 in a 
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simulated population. It is likely, therefore, that similar improvements in efficiency would be 

seen with other models, many of which have reported AUROCs of greater than 0.63. 

However, that study did not consider the costs of implementing stratified screening, 

competing risks of death or the psychological harms associated with screening, uniform 

attendance across risk groups was assumed, and no data was included on the calibration of 

the model. Further modelling studies are therefore needed to assess the cost-effectiveness and 

differences in quality adjusted life years (QALYs) and implementation studies to asses risk-

appropriate screening participation and the psychosocial consequences of this approach.  

 

By identifying the published risk models for CRC that include common genetic variants and 

demonstrating the potential public health benefits of using such models to determine the 

starting age for screening, this study provides valuable evidence to support investment in this 

further research.   
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TABLES 

Table 1. Summary of risk models 

Author, 

year 
Country Outcome Factors included in score 

Selection of SNPs Method of development 

of GRS 

Selection of 

phenotypic 

factors 

Method of 

development of 

combined model 

TRIPOD 

level* 

Genetic risk factors alone 

Dunlop 

2013a 

UK, 

Canada, 

Australia, 

USA and 

Germany 

(d) 

Sweden and 

Finland (v) 

CRC 10 SNPs Published GWAS studies from 

European populations 

Unweighted allele 

counting model 

--- --- 3 

Frampton 

2016 

UK (v) CRC 37 SNPs Published GWAS studies from 

European populations 

Weighted allele model 

weighted by published 

log odds 

--- --- 3 

Hosono 

2016a 

Japan  

(d, v) 

CRC 6 SNPs Published GWAS studies from 

European populations followed 

by logistic regression 

Unweighted allele 

counting model 

--- --- 2b 

Huyghe 

2019 

European 

(91.7%) and 

East Asian 

(8.3%) (d) 

CRC 95 SNPs GWAS study  Weighted allele model 

weighted by study 

derived weights 

--- --- 1a 

Ibanez-

Sanz 2017a 

Spain  

(d, v) 

CRC 21 SNPs Published GWAS studies 

included within European 

Bioinformatics Institute 

Unweighted allele 

counting model 

(weighted allele models 

weighted by published 

log-odds and study 

derived log-odds similar 

so not reported)  

--- --- 3 

Jenkins 

2016 

Australia, 

Canada, 

USA (v) 

CRC 45 SNPs Published GWAS studies from 

European populations 

Weighted allele model 

weighted by published 

log odds 

--- --- 3**, 4** 

Smith 

2018a 

UK  

(d, v) 

CRC 41 SNPs Published GWAS studies from 

predominantly European and 

white populations 

Weighted allele model 

weighted by published 

log odds 

--- --- 3 

Wang 2013  Taiwan 

(d, v) 

CRC 16 SNPs Published GWAS studies from 

Asian populations followed by 

replication analysis and jack-

knife selection 

Logistic regression --- --- 1b 

Xin 2018a China 

(d, v) 

CRC 14 SNPs Published GWAS studies from 

European or Asian populations 

Unweighted allele 

counting model;  

--- --- 3 
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Weighted allele model 

weighted by published 

log odds; Weighted allele 

model weighted by study 

derived weights 

Genetic plus phenotypic risk factors excluding age 

Ibanez-

Sanz 2017b 

Spain  

(d, v) 

CRC 21 SNPs, family history of CRC, alcohol 

use, BMI, physical exercise, red meat and 

vegetable intake, NSAIDs/aspirin use 

Published GWAS studies 

included within European 

Bioinformatics Institute 

Unweighted allele 

counting model 

(weighted allele models 

weighted by published 

log-odds and study 

derived log-odds similar 

so not reported) 

Logistic 

regression 

 

 

Logistic 

regression 

1b 

Jeon 2018a  Australia, 

Canada, 

Germany, 

Israel and 

USA 

(d, v) 

CRC 

(female) 

63 SNPs, height, BMI, education, history 

of type 2 diabetes mellitus, smoking status, 

alcohol consumption, regular aspirin use, 

regular NSAID use, regular use of 

postmenopausal hormones, smoking, 

intake of fibre, calcium, folate, processed 

meat, red meat, fruit, vegetables, total-

energy, physical activity 

Published GWAS studies from 

predominantly European and 

Asian populations 

Weighted allele model 

weighted by study 

derived estimated 

regression coefficients  

No details given 

– all considered 

included 

Logistic 

regression 

2a 

Jeon 2018b  Australia, 

Canada, 

Germany, 

Israel and 

USA. 

(d, v) 

CRC (male) 63 SNPs, height, BMI, education, history 

of type 2 diabetes mellitus, smoking status, 

alcohol consumption, regular aspirin use, 

regular NSAID use, smoking, intake of 

fibre, calcium, folate, processed meat, red 

meat, fruit, vegetables, total-energy, 

physical activity 

Published GWAS studies  from 

predominantly European and 

Asian populations 

Weighted allele model 

weighted by study 

derived estimated 

regression coefficients  

No details given 

– all considered 

included 

Logistic 

regression 

2a 

Procopciuc 

2017 

Romania  

(d) 

CRC 7 SNPs, gender, alcohol, fried red meat Candidate genes on metabolic 

pathway 

Logistic regression Logistic 

regression 

Logistic 

regression 

1a 

Xin 2018b China 

(d, v) 

CRC 14 SNPs, smoking status Published GWAS studies from 

European or Asian populations 

Unweighted allele 

counting model 

No details given 

– all considered 

included 

Logistic 

regression 

3 

Yarnall 

2013  

UK (v) CRC 14 SNPs, BMI, smoking, alcohol, fibre 

intake, red meat intake, physical activity 

Published GWAS studies from 

predominantly European 

populations 

Simulation based 

procedure using 

REGENT software 

Literature review 

– all considered 

included 

Simulation based 

procedure using 

REGENT 

software 

3** 

Genetic plus phenotypic risk factors including age 

Abe 2017 Japan 

(d, v) 

CRC 11 SNPs, age, sex, referral pattern, current 

BMI, smoking, alcohol consumption, 

regular exercise, family history of 

colorectal cancer in a first degree relative, 

and dietary folate intake 

Published GWAS studies from 

European and East Asian 

populations followed by logistic 

regression 

Unweighted allele 

counting model 

No details given 

– all considered 

included 

Logistic 

regression 

2b 

Dunlop 

2013b 

UK, 

Canada, 

CRC 10 SNPs, age, gender, first degree relative 

with CRC 

Published GWAS studies from 

European populations 

Unweighted allele 

counting model 

No details given 

– all considered 

Logistic 

regression 

3 
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Australia, 

USA and 

Germany 

(d) 

Sweden and 

Finland (v) 

included 

Hosono 

2016b 

Japan 

(d, v) 

CRC 6 SNPs, age, referral pattern, current BMI, 

smoking, alcohol consumption, regular 

exercise, family history of CRC, dietary 

folate intake  

Published GWAS studies from 

European populations followed 

by logistic regression 

Unweighted allele 

counting model 

No details given 

– all considered 

included 

Logistic 

regression 

2b 

Hsu 2015 USA and 

Germany 

(d, v) 

CRC 27 SNPs, age, sex, family history of CRC, 

history of endoscopic examinations 

Previous GWAS studies from 

European and East Asian 

populations 

Unweighted allele 

counting model 

(weighted model 

weighted by published 

log-odds similar so not 

reported) 

No details given 

– all considered 

included 

Logistic 

regression 

3 

Iwasaki 

2017 

Japan 

(d, v) 

CRC (male) 6 SNPs, age, BMI, alcohol, smoking status Previous published model and 

GWAS from European and East 

Asian populations followed by 

cox proportional hazards 

modelling 

Weighted allele model 

weighted by study 

derived log-transformed 

per allele HR 

From previous 

model (Ma) 

except for 

physical activity 

Weighted cox 

proportional 

hazards 

regression 

1b 

Jo 2012a  Korea 

(d, v) 

CRC 

(female) 

5 SNPs, age, family history of CRC GWAS study in Korean 

population with significance 

level of p<10-6 

Unweighted allele 

counting model; 

weighted allele model 

weighted by study 

derived beta-coefficients 

No details given 

– all considered 

included 

Logistic 

regression 

1b 

 

Jo 2012b  Korea 

(d, v) 

CRC (male) 3 SNPs, age, family history of CRC GWAS study in Korean 

population with significance 

level of p<10-6 

Unweighted allele 

counting model; 

weighted allele model 

weighted by study 

derived beta-coefficients 

No details given 

– all considered 

included 

Logistic 

regression 

1b 

Jung 2015 South Korea 

(d) 

CRC, colon 

and rectal 

cancer 

7 SNPs, age, sex, smoking status, exercise 

status, fasting serum glucose, family 

history of CRC 

Published GWAS studies from 

predominantly European and 

Asian populations followed by 

logistic regression 

Unweighted allele 

counting model; 

weighted allele model 

weighted by study 

derived beta-coefficients 

No details given 

– all considered 

included 

Cox proportional 

hazards 

regression 

1a 

Jung 2019 USA 

(d) 

CRC 4 SNPs, age, percentage calories from 

saturated fatty acids 

Candidate genes related to 

insulin-growth like factor and 

insulin 

Weighted allele model 

weighted by predictive 

value assessed via 

minimal depth method 

in nested random 

survival forest models 

Multi-collinearity 

testing and 

univariate and 

stepwise 

regression 

analyses for final 

set to be 

included. 

Random survival 

forest analysis 

 

1a 

Li 2015 China (d) CRC 7 SNPs, age, sex, smoking, drinking NHGRI GWAS database Unweighted allele 

counting model; 

No details given 

– all considered 

Logistic 

regression 

1a 
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*Tripod level - 1a – Development only; 1b – Development and validation using resampling; 2a – Random split-sample development and validation; 2b – Non-random split-sample development and validation; 3 – 

Development and validation using separate data; 4 – external validation. CRC – colorectal cancer, SNP - single-nucleotide polymorphism, BMI – body mass index, NSAID – non-steroidal anti-inflammatory drug, 

wGRS – weighted genetic risk score. d = development; v - validation 

** Simulated population 

 

  

weighted allele model 

weighted by study 

derived beta-coefficients 

included 

Shiao 2018 USA  

(d, v) 

CRC 5 SNPs, age, gender, BMI, thiamine, 

MTHFRR 677 expression level, HEI score 

(calories, total fruit, whole fruit, 

vegetables, dark green, total grains, whole 

grains, dairy, protein, oil and nuts, 

saturated fat, sodium, empty calories) 

Candidate genes related to folate 

metabolism 

Unweighted allele 

counting model 

Bootstrap forest 

prediction 

modelling 

Generalised 

regression elastic 

net model 

(penalised 

regression) 

1b 

Smith 

2018b 

UK  

(d, v) 

CRC 41 SNPs, age, family history Published GWAS studies from 

predominantly European and 

white populations 

Weighted allele model 

weighted by published 

log odds 

Factors included 

in Taylor et al. 

model 

Standard model: 

log GRS 

combined with 

predicted log 

hazard ratio 

original model.  

3 

Smith 

2018c 

UK 

(d, v) 

CRC 41 SNPs,  age, diabetes, multi-vitamin 

usage, family history, years of education, 

BMI, alcohol intake, physical activity, 

NSAID usage, red meat intake, smoking, 

oestrogen use (women only) 

Published GWAS studies from 

predominantly European and 

white populations 

Weighted allele model 

weighted by published 

log odds 

Factors included 

in Wells et al. 

model 

Standard model: 

log GRS 

combined with 

predicted log 

hazard ratio 

original model.  

3 

Weigl 2018 Germany 

(d) 

CRC or 

advanced 

adenoma 

48 SNPs, age, sex, previous colonoscopy, 

physical activity, BMI 

Published GWAS studies from 

European populations 

Unweighted allele 

counting model 

Factors 

statistically 

associated with 

genetic risk 

categories in 

controls 

Logistic 

regression 

1a 
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Table 2. Assessment of risk of bias of included articles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 + = low risk; ? = unclear risk; - = high risk 

 

  

Author, year Study 

Participants 

Predictors Outcome Sample size and 

missing data 

Overall 

Genetic risk factors alone 

Dunlop 2013a + + + + + 

Frampton 2016 ? + + ? ? 

Hosono 2016a ? ? + ? ? 

Huyghe 2019 + + + ? + 

Ibanez-Sanz 2017a + + + ? + 

Jenkins 2016, 2019 + + + ? + 

Smith 2018a + + + + + 

Wang 2013 ? - + ? - 

Xin 2018a ? + + ? ? 

Genetic plus phenotypic risk factors excluding age 

Ibanez-Sanz 2017b + + + ? + 

Jeon 2018a and b + + + ? + 

Procopciuc 2017 - ? + - - 

Xin 2018b ? ? + ? ? 

Yarnell 2013 ? + + ? ? 

Genetic plus phenotypic risk factors plus age 

Abe 2017 ? + + ? ? 

Dunlop 2013b + ? + + + 

Hosono 2016b ? ? + ? ? 

Hsu 2015b + ? + ? ? 

Iwasaki 2017b + + + ? + 

Jo 2012 a and b ? - + - - 

Jung 2015 + ? + ? ? 

Jung 2019 + - + ? - 

Li 2015 ? ? + ? ? 

Shiao 2018 - ? + - - 

Smith 2018b + + + + + 

Smith 2018c + + + + + 

Weigl 2018 + + + ? + 
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Table 3. Discriminatory performance of models including genomic risk factors only with those including family history and/or phenotypic risk factors only or 

genetic and family history and/or phenotypic risk factors combined 

a All models include age in addition to genomic and/or phenotypic risk factors 

 

  

Author, year 

Genetic risk 

factors only 

(AUROC (95% 

CI)) 

Family history 

alone (AUROC 

(95% CI)) 

Phenotypic risk 

factors only 

(AUROC (95% 

CI)) 

Genetic risk 

factors and 

family history 

(AUROC (95% 

CI))  

Phenotypic risk 

factors and family 

history  

(AUROC (95% 

CI)) 

Genetic and 

phenotypic risk 

factors combined 

(AUROC (95% 

CI)) 

Genetic risk factors, 

family history and 

phenotypic risk factors 

combined  

(AUROC (95% CI)) 

Dunlop 2013 0.57      0.59 

Hosono 2016 0.60    0.70  0.72 

Hsu 2015 
Women 0.55 

Men 0.60 

Women 0.52 

Men 0.51 
 

 
  

Women 0.56 

Men 0.59 

Ibanez-Sanz 

2017 
0.56 (0.54-0.58)  0.60 (0.57-0.61) 

 
0.61 (0.59-0.64)  0.63 (0.60-0.66) 

Iwasaki 2017 0.63a  0.60a   0.66a  

Jeon 2018a 

(female) 
 0.54 (0.52-0.55)  0.59 (0.58-0.60) 0.60 (0.59-0.61)  0.62 (0.61-0.63) 

Jeon 2018b 

(male) 
 0.53 (0.52-0.54)  0.59 (0.58-0.60) 0.60 (0.59-0.61)  0.63 (0.62-0.64) 

Jo 2012    

 Women: 0.60 (0.57-

0.64) 

Men: 0.69 (0.65-

0.73) 

 
Women:0.65 (0.62-0.68) 

Men: 0.73 (0.68-0.77) 

Jung 2015     0.73 (0.69-0.78)  0.74 (0.70-0.78) 

Smith 2018a 

and b 
0.56 (0.55-0.58)   

 0.67 (0.65-0.68) 

Excluding age: 0.52 

(0.51-0.53) 

 0.68 (0.66-0.69) 

Smith 2018a 

and c 
0.57 (0.55-0.58)   

 0.68 (0.67-0.69) 

Excluding age: 0.58 

(0.57-0.60) 

 0.69 (0.67-0.70) 

Li 2015   0.57 (0.55-0.59)   0.59 (0.57-0.61)  

Weigl 2018   0.62   0.67  

Xin 2018b   0.52 (0.50-0.54)   0.61 (0.58-0.63)  
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Table 4. Results of population modelling studies showing the difference in recommended starting age or estimated number of years earlier that individuals 

would be invited to screening if the age of invitation was determined by a risk threshold based on a genetic or phenotypic model 

Author, 

year 

Model specific risk 

threshold used to 

determine starting 

age for screening 

Type of 

risk 

model / 

included 

risk 

factors 

Difference in years in recommended starting age for screening between those in the highest and lowest 

percentiles of risk 

Papers selecting the top 

and bottom 1% of risk 

for comparison 

Papers selecting the top 

and bottom 10% of risk for 

comparison 

Papers selecting the top 

and bottom 20% of risk 

for comparison 

Papers selecting the 

top and bottom 33% of 

risk for comparison 

Hsu 2015 

Average 10 year risk 

of a 50 year old 

(0.91%) 

FH --- 
Men: 5 (44 to 49)* 

Women: 4 (50 to 54)* 
--- 

--- 

FH + 

SNPs 
--- 

Men: 10 (42 to 52) 

Women: 11 (47 to 58) 
--- 

--- 

Jenkins 

2019 

0.3% 5 year estimated 

risk 

SNPs --- --- 
Men: 10 (45-55) 

Women: 14 (47 to 61) 

--- 

FH + 

SNPs 
--- --- 

Men: 22 (35 to 57) 

Women: 27 (35 to 62) 

--- 

Jenkins 

2016 

(USA) 

1% 5 year estimated 

risk 

FH + 

SNPs 
--- 

Men: 27 (46 to 73) 

Women: 32 (48 to 80) 

Men: 18 (48 to 66) 

Women: 21 (52 to 73) 

--- 

Jenkins 

2016  

(Australia) 

1% 5 year estimated 

risk 

FH + 

SNPs 
--- 

Men: 17 (46 to 63) 

Women: 23 (53 to 76) 

Men: 13 (48 to 61) 

Women: 17 (55 to 72) 

--- 

Jeon 2018 

Average 10 year risk 

of a 50 year old 

(0.97%) 

FH + 

SNPs + 

phenotypic 

Men:17 (38 to 55) 

Women:21 (43 to 64) 

Men: 11 (40 to 51) 

Women: 13 (46 to 59)  
--- 

--- 

Huyghe 

2018 

Average 10 year risk 

of a 50 year old 

(1.13% for men and 

0.68% for women) 

SNPs 
Men: 18 (41 to 59) 

Women: 24 (45 to 69) 

Men: 10 (range 44 to 54) 

Women: 12 (range 49 to 61) 
--- 

--- 

Weigl 

2018 

Average relative risk 

for a 60 year old with 

medium genetic risk 

SNPs --- --- --- 17.5 (56 to 73)  

Author, 

year 
Risk threshold 

Risk 

factors 
Years earlier for recommended starting age for those in the highest percentiles 

1% 10% 20% 33% 

Dunlop 

2013 

5% 10 year estimated 

risk 
FH 

Men: >15 (from >75) 

Women: > 12 (from >80) 
--- --- --- 
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base

d on 

pres

ence 

or 
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nce 

of 

fami

ly 

histo

ry 

(FH)

, not top and/or bottom 10%. 

 

 

 

 

 

 

 

FH + 

SNPs 

Men: > 23 (from >75) 

Women: >22 (from >80) 
--- --- --- 

Jenkins 

2016 

(USA) 

1% 5 year estimated 

risk 

FH --- 
Men: 12 (from 67)* 

Women: 12 (from 73)* 
--- --- 

SNPs --- 
Men: 14 (from 67) 

Women: 14 (from 73) 

Men: 10 (from 67) 

Women: 11 (from 73) 
--- 

FH + 

SNPs 
--- 

Men: 21 (from 67) 

Women: 25 (from 73) 

Men: 19 (from 67) 

Women 21 (from 73) 
--- 

Jenkins 

2016  

(Australia) 

1% 5 year estimated 

risk 

FH --- 
Men: 9 (from 61)* 

Women: 12 (from 71)* 
--- --- 

SNPs --- 
Men: 9 (from 61) 

Women: 12 (from 71) 

Men: 6 (from 61) 

Women: 9 (from 71) 
--- 

FH + 

SNPs 
--- 

Men: 15 (from 61) 

Women: 18 (from 71) 

Men: 13 (from 61) 

Women 16 (from 71) 
--- 
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FIGURE LEGENDS 

Figure 1. Relative discriminative performance of the risk scores grouped by those including 

only SNPs, those including SNPs plus family history and/or phenotypic risk factors without 

age and those including SNPs plus family history and/or phenotypic risk factors and age. 

Within each of these groups, the models are ordered according to sample size, with larger 

studies being those towards the bottom of each risk model category.  

 




	Article File
	Figure 1

