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Supplementary Tables

Table S1:  Genotyping evaluation on the HGSVC dataset. Precision, recall and F1 score for the call set with the best F1
score. The best F1 scores were achieved with no �ltering in the vast majority of cases (see Fig. S1 and S3). The numbers
in parentheses corresponds to the results in non-repeat regions.

Experiment Method Type Precision Recall F1

Simulated reads vg INS 0.863 (0.918) 0.841 (0.911) 0.852 (0.914)

DEL 0.85 (0.961) 0.796 (0.959) 0.822 (0.96)

Paragraph INS 0.581 (0.831) 0.749 (0.804) 0.654 (0.818)

DEL 0.707 (0.853) 0.73 (0.811) 0.718 (0.832)

BayesTyper INS 0.915 (0.944) 0.839 (0.907) 0.876 (0.925)

DEL 0.894 (0.983) 0.804 (0.932) 0.847 (0.957)

SVTyper DEL 0.811 (0.844) 0.328 (0.74) 0.467 (0.788)

Delly Genotyper INS 0.757 (0.857) 0.094 (0.225) 0.167 (0.356)

DEL 0.681 (0.88) 0.684 (0.823) 0.682 (0.851)

Real reads vg INS 0.5 (0.714) 0.492 (0.712) 0.496 (0.713)

DEL 0.629 (0.864) 0.519 (0.787) 0.569 (0.824)

Paragraph INS 0.404 (0.638) 0.555 (0.595) 0.468 (0.616)

DEL 0.595 (0.787) 0.554 (0.659) 0.574 (0.717)

BayesTyper INS 0.599 (0.757) 0.253 (0.436) 0.356 (0.553)

DEL 0.625 (0.909) 0.324 (0.471) 0.427 (0.62)

SVTyper DEL 0.69 (0.728) 0.242 (0.59) 0.358 (0.652)

Delly Genotyper INS 0.524 (0.632) 0.068 (0.175) 0.12 (0.274)

DEL 0.556 (0.834) 0.429 (0.596) 0.484 (0.695)



Table S2:  Genotyping evaluation on the Genome in a Bottle dataset. Precision, recall and F1 score for the call set with
the best F1 score. The best F1 scores were achieved with no �ltering in the vast majority of cases (see Fig. S7). The
numbers in parentheses corresponds to the results in non-repeat regions.

Method Type Precision Recall F1

vg INS 0.649 (0.776) 0.618 (0.73) 0.633 (0.752)

DEL 0.696 (0.807) 0.691 (0.795) 0.694 (0.801)

Paragraph INS 0.699 (0.827) 0.673 (0.768) 0.686 (0.796)

DEL 0.75 (0.9) 0.726 (0.815) 0.737 (0.855)

BayesTyper INS 0.777 (0.879) 0.285 (0.379) 0.417 (0.53)

DEL 0.807 (0.884) 0.514 (0.694) 0.628 (0.778)

SVTyper DEL 0.743 (0.817) 0.341 (0.496) 0.467 (0.618)

Delly Genotyper INS 0.804 (0.888) 0.178 (0.269) 0.292 (0.413)

DEL 0.721 (0.821) 0.644 (0.766) 0.68 (0.793)



Table S3:  Genotyping evaluation on the pseudo-diploid genome built from CHM cell lines in Audano et al.(1). The
numbers in parentheses corresponds to the results in non-repeat regions.

Method Type Precision Recall F1

vg INS 0.783 (0.907) 0.773 (0.895) 0.778 (0.901)

DEL 0.787 (0.962) 0.635 (0.901) 0.703 (0.93)

SMRT-SV v2 Genotyper INS 0.819 (0.934) 0.582 (0.712) 0.681 (0.808)

DEL 0.848 (0.973) 0.63 (0.839) 0.723 (0.901)



Table S4:  Calling evaluation on the SVPOP dataset. Combined results for the HG00514, HG00733 and NA19240
individuals, 3 of the 15 individuals used to generate the high-quality SV catalog in Audano et al.(1).

Method Region Type TP FP FN Precision Recall F1

vg all INS 23430 18414 18181 0.564 0.563 0.564

DEL 14717 7033 15254 0.677 0.491 0.569

INV 41 16 159 0.719 0.205 0.319

non-repeat INS 8078 3303 1761 0.709 0.821 0.761

DEL 6585 1033 1040 0.862 0.864 0.863

INV 37 15 90 0.712 0.291 0.413

Paragraph all INS 24342 25618 17269 0.493 0.585 0.535

DEL 16986 13376 12985 0.571 0.567 0.569

INV 47 24 153 0.662 0.235 0.347

non-repeat INS 7843 3270 1996 0.706 0.797 0.749

DEL 6523 1000 1102 0.866 0.856 0.860

INV 39 12 88 0.765 0.307 0.438

SMRT-SV v2 Genotyper all INS 16297 26006 25314 0.397 0.392 0.394

DEL 11797 10054 18174 0.544 0.394 0.457

non-repeat INS 4475 4645 5364 0.493 0.455 0.473

DEL 4986 1322 2639 0.788 0.654 0.715



Table S5:  Calling evaluation on the SVPOP dataset in di�erent sets of regions for the HG5014 individual.

Method Region Type TP FP FN Precision Recall F1

vg all INS 7764 6109 6270 0.567 0.553 0.560

DEL 4841 2260 5066 0.684 0.489 0.570

INV 16 6 49 0.727 0.246 0.368

repeat INS 5091 5150 5766 0.507 0.469 0.487

DEL 2684 1922 4648 0.590 0.366 0.452

INV 1 0 9 1.000 0.100 0.182

non-repeat INS 2662 979 521 0.732 0.836 0.781

DEL 2085 322 388 0.865 0.843 0.854

INV 14 6 26 0.700 0.350 0.467

called in SMRT-SV v2 Genotyper INS 3682 4752 1836 0.444 0.667 0.534

DEL 2769 1779 1356 0.609 0.671 0.639

INV 16 6 49 0.727 0.246 0.368

not called in SMRT-SV v2 Genotyper INS 3867 291 4649 0.931 0.454 0.610

DEL 1976 102 3797 0.952 0.342 0.503

SMRT-SV v2 Genotyper all INS 5254 8562 8780 0.394 0.374 0.384

DEL 3743 3367 6164 0.535 0.378 0.443

repeat INS 3858 7119 6999 0.368 0.355 0.362

DEL 2141 2906 5191 0.438 0.292 0.350

non-repeat INS 1394 1464 1789 0.493 0.438 0.464

DEL 1550 443 923 0.778 0.627 0.694

called in SMRT-SV v2 Genotyper INS 4360 5619 1158 0.445 0.790 0.570

DEL 3272 2554 853 0.568 0.793 0.662

not called in SMRT-SV v2 Genotyper INS 111 101 8405 0.549 0.013 0.025

DEL 211 50 5562 0.792 0.036 0.070



Table S6:  Breakpoint �ne-tuning using graph augmentation from the read alignment. For deletions and inversions,
either one or both breakpoints were shifted to introduce errors in the input VCF. For insertions, the insertion location
and sequence contained errors. In all cases, the errors a�ected 1-10 bp.

SV type Error type Breakpoint Variant Proportion Mean size (bp) Mean error (bp)

DEL one end incorrect 220 0.219 422.655 6.095

�ne-tuned 784 0.781 670.518 5.430

both ends incorrect 811 0.814 826.070 6.275

�ne-tuned 185 0.186 586.676 2.232

INS location/seq incorrect 123 0.062 428.724 6.667

�ne-tuned 1877 0.938 440.043 6.439

INV one end incorrect 868 0.835 762.673 5.161

�ne-tuned 172 0.165 130.244 5.884

both ends incorrect 950 0.992 556.274 5.624

�ne-tuned 8 0.008 200.000 1.375

Table S7:  Compute resources required for analysis of sample HG00514 on the HGSVC dataset. elly Genotyper, SVTyper
and Paragraph start from a set of aligned reads, hence we also show the running time for read alignment with bwa 
mem (2). For BayesTyper, the numbers include both khmer counting with kmc and genotyping. We note that BayesTyper
integrated variant calls from GATK haplotypecaller(3) and Platypus(4), derived from reads mapped with bwa mem(2).
The numbers shown for BayesTyper does not include this variant discovery pipeline. More information in the
supplementary information below.

Tool Wall Time (m) Cores Nodes Max Memory (G)

vg

      vg construction 49 8 1 i3.8xlarge 0.4

      xg index 13 8 1 i3.8xlarge 48

      snarls index 23 1 50 i3.8xlarge 17

      gcsa2 index 792 16 1 i3.8xlarge 45

      mapping 177 32 50 r3.8xlarge 32

      genotyping (pack + call) 56 10 1 i3.4xlarge 63

BayesTyper 90 24 1 i3.8xlarge 36

bwa mem 240 32 1 i3.8xlarge 14

      Delly Genotyper 69 1 1 i3.8xlarge 69

      SVTyper 477 1 1 i3.8xlarge 0.7

      Paragraph 76 32 1 i3.8xlarge 5.9



Supplementary Figures

Fig. S1:  Genotyping evaluation on the HGSVC dataset using simulated reads. Reads were simulated from the
HG00514 individual. The bottom panel zooms on the part highlighted by a dotted rectangle.



Fig. S2:  Calling evaluation on the HGSVC dataset using simulated reads. Reads were simulated from the HG00514
individual. The bottom panel zooms on the part highlighted by a dotted rectangle.



Fig. S3:  Genotyping evaluation on the HGSVC dataset using real reads. Combined results across the HG00514,
HG00733 and NA19240.



Fig. S4:  Calling evaluation on the HGSVC dataset using real reads. Combined results across the HG00514, HG00733
and NA19240.



Fig. S5:  Average number of genotyped variants overlapping one variant from the truth set. To evaluate the
genotyping performance, each genotyped variant is matched to variants in the truth set. A same variant can match to
several variant in the other set because of variant fragmentation or when the truth set contains potentially duplicated
SVs. This x-axis shows the average number of genotyped variants that were matched per truth-set variant. For example,
a value higher than 1 means that variants in the truth were often matched to multiple genotyped variants (“over-
genotyping”).



Fig. S6:  Evaluation across di�erent repeat pro�les. The deleted/inserted sequence was annotated with
RepeatMasker (color). The precision and recall was recomputed on each of the most frequent repeat families.



Fig. S7:  Genotyping evaluation on the Genome in a Bottle dataset. Predicted genotypes on HG002 were compared
to the high-quality SVs from this same individual.



Fig. S8:  Calling evaluation on the Genome in a Bottle dataset. Calls on HG002 were compared to the high-quality
SVs from this same individual.



Fig. S9:  Genotyping evaluation on the CHM pseudo-diploid dataset. The pseudo-diploid genome was built from
CHM cell lines and used to train SMRT-SV v2 Genotyper in Audano et al.(1) The bottom panel zooms on the part
highlighted by a dotted rectangle.



Fig. S10:  Calling evaluation on the CHM pseudo-diploid dataset. The pseudo-diploid genome was built from CHM
cell lines and used to train SMRT-SV v2 Genotyper in Audano et al.(1)



Fig. S11:  Calling evaluation on the SVPOP dataset. Combined results across the HG00514, HG00733 and NA19240.



Fig. S12:  Evaluation across di�erent sets of regions in HG00514 (SVPOP dataset). Calling evaluation.



Fig. S13:  Mapping comparison on graphs of the �ve strains set. Short reads from all 12 yeast strains were aligned to
both graphs. The fraction of reads mapped to the cactus graph (y-axis) and the VCF graph (x-axis) are compared. a)
Strati�ed by percent identity threshold. b) Strati�ed by mapping quality threshold. Colors and shapes represent the 12
strains and two clades, respectively. Transparency indicates whether the strain was included or excluded in the graphs.



Fig. S14:  Mapping comparison on graphs of the all strains set. Short reads from all 12 yeast strains were aligned to
both graphs. The fraction of reads mapped to the cactus graph (y-axis) and the VCF graph (x-axis) are compared. a)
Strati�ed by percent identity threshold. b) Strati�ed by mapping quality threshold. Colors and shapes represent the 12
strains and two clades, respectively.



Fig. S15:  SV genotyping comparison using all reads. Short reads from all 11 non-reference yeast strains were used to
genotype SVs contained in the cactus graph and the VCF graph. Subsequently, sample graphs were generated from the
resulting SV callsets. The short reads were aligned to the sample graphs and the quality of all alignments was used to
ascertain SV genotyping performance. More accurate genotypes should result in sample graphs that have mappings
with high identity and con�dence for a greater proportion of the reads. a) Average delta in mapping identity of all short
reads aligned to the sample graphs derived from cactus graph and VCF graph. b) Average delta in mapping quality of all
short reads aligned to the sample graphs derived from cactus graph and VCF graph. Positive values denote an
improvement of the cactus graph over the VCF graph. Colors represent the two strain sets and transparency indicates
whether the respective strain was part of the �ve strains set.



Fig. S16:  Breakpoint �ne-tuning using augmentation through “vg call”. For deletions and inversions, either one or
both breakpoints were shifted to introduce errors in the input VCF. For insertions, the insertion location and sequence
contained errors. a) Proportion of variant for which breakpoints could be �ne-tuned. b) Distribution of the amount of
errors that could be corrected or not. c) Distribution of the size of the variants whose breakpoints could be �ne-tuned or
not.



Fig. S17:  Overview of the SV evaluation by the sveval package. For deletions and inversions, we compute the
proportion of a variant that is covered by variants in the other set, considering only variants overlapping with at least
10% reciprocal overlap. A variant is considered true positive if this coverage proportion is higher than 50% and false-
positive or false-negative otherwise. A similar approach is used for insertions, although they are �rst clustered into pairs
located less than 20 bp from each other. Then their inserted sequences are aligned to derive the coverage statistics. The
SV evaluation approach is described in more detail in the Methods.



Fig. S18:  Benchmark summary when using a more stringent matching criterion. At least 90% coverage was
necessary to consider a variant matched, instead of the 50% minimum coverage used in other �gures.



Supplementary Information

Variation graph and structural variation

A variation graph encodes DNA sequence in its nodes. Such graphs are bidirected, in that we
distinguish between edges incident on the starts of nodes from those incident on their ends. A path in
such a graph is an ordered list of nodes where each is associated with an orientation. If a path walks
from, for example, node A in the forward orientation to node B in the reverse orientation, then an
edge must exist from the end of node A to the end of node B. Concatenating the sequences on each
node in the path, taking the reverse complement when the node is visited in reverse orientation,
produces a DNA sequence. Accordingly, variation graphs are constructed so as to encode haplotype
sequences as walks through the graph. Variation between sequences shows up as bubbles in the
graph (5).

Breakpoint �ne-tuning

In addition to genotyping, vg can use an augmentation step to modify the graph based on the read
alignment and discover novel variants. On the simulated SVs, this approach was able to correct many
of the 1-10 bp breakpoint errors that were added to the input VCF. The breakpoints were accurately
�ne-tuned for 93.8% of the insertions (Fig. S16a and Table S6). For deletions, 78.1% of the variants
were corrected when only one breakpoint had an error. In situations where both breakpoints of the
deletions were incorrect, only 18.6% were corrected through graph augmentation, and only when the
amount of error was small (Fig. S16b). The breakpoints of less than 20% of the inversions could be
corrected. Across all SV types, the size of the variant didn’t a�ect the ability to �ne-tune the
breakpoints through graph augmentation (Fig. S16c).

Mappability comparison between yeast graphs

In order to elucidate whether the cactus graph represents the sequence diversity among the yeast
strains better than the VCF graph, we mapped Illumina short reads to both graphs using vg map .
Generally, more reads mapped to the cactus graph with high identity (Figs. S13a and S14a) and high
mapping quality (Figs. S13b and S14b) than to the VCF graph. The VCF graph exhibited higher
mappability only on the reference strain S.c. S288C with a marginal di�erence. The bene�t of using
the cactus graph is largest for strains in the S. paradoxus clade and smaller for strains in the S.
cerevisiae clade. We found that the genetic distance to the reference strain (as estimated using Mash
v2.1 (6)) correlated with the increase in con�dently mapped reads (mapping quality >= 60) between
the cactus graph and the VCF graph (Spearman’s rank correlation, p-value=3.993e-06). These results
suggest that the improvement in mappability is not driven by the higher sequence content in the
cactus graph alone (16.8 / 15.4 Mb in the cactus graph compared to 12.6 / 12.4 Mb in the VCF graph
for the all strains set and the �ve strains set, respectively). Instead, an explanation could be the
construction of the VCF graph from a comprehensive but still limited list of variants and the lack of
SNPs and small Indels in this list. Consequently, substantially fewer reads mapped to the VCF graph
with perfect identity (Figs. S13a and S14a, percent identity threshold = 100%) than to the cactus
graph. The cactus graph has the advantage of implicitly incorporating variants of all types and sizes
from the de novo assemblies. As a consequence, the cactus graph captures the genetic makeup of
each strain more comprehensively and enables more reads to be mapped.

Interestingly, our measurements for the �ve strains set showed only small di�erences between the
�ve strains that were used to construct the graph and the other seven strains (Fig. S13). Only the
number of alignments with perfect identity is substantially lower for the strains that were not included
in the creation of the graphs (Fig. S13a).



Running time comparison between di�erent tools for HG00514 as genotyped on the HGSVC
dataset

SMRT-SV v2 Genotyper required roughly 36 hours and 30G ram on 30 cores to genotype the three
HGSVC samples on the “SVPOP” VCF. These numbers are not directly comparable to the above table
because 1) they apply to the “SVPOP” rather than “HGSVC” dataset (upon which we were unable to run
SMRT-SV v2 Genotyper) and 2) we were unable to install SMRT-SV v2 Genotyper on AWS nodes and
ran it on an older, shared server at UCSC instead.

Delly Genotyper, SVTyper and Paragraph start from a set of aligned reads, hence we also show the
running time for read alignment with bwa mem (2).

For BayesTyper, the numbers include both khmer counting with kmc and genotyping. We note that
BayesTyper integrated variant calls from GATK haplotypecaller(3) and Platypus(4), derived from reads
mapped with bwa mem(2). The numbers shown for BayesTyper does not include this variant
discovery pipeline.

Note: toil-vg reserves 200G memory by default for vg snarls . For this graph, about an order of
magnitude less was required. It could have been run on 10 cores on 5 nodes instead.
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