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Abstract— We provide a complete set of necessary and
sufficient conditions for both conservative (lossless) and passive
single-input single-output systems (Theorems 5 and 7, respec-
tively). These conditions generalise the famous lossless positive-
real lemma and positive-real lemma, respectively, by extending
them to include uncontrollable systems.

I. INTRODUCTION

Passivity is a fundamental concept pertaining to physical
systems: there is a limit to the net amount of energy which
can be extracted from a passive system. A related concept
is the notion of a conservative (lossless) system, which is a
passive system for which there is a zero net energy transfer
whenever the initial and final conditions of the system
are identical. The central role of passive and conservative
systems in systems and control is exemplified by the cele-
brated positive-real lemma, sometimes called the Kalman-
Yakubovich-Popov (KYP) lemma, and its counterpart: the
lossless positive-real lemma. These lemmas both demonstrate
the equivalence of a time domain, a frequency domain, and
an integral condition, for linear time-invariant systems. The
integral conditions in the positive-real and lossless positive-
real lemmas reflect the notions of passive and conservative
systems, respectively. However, these lemmas are typically
stated for controllable systems. As emphasised in [1], there
is no explicit link between the concepts of passivity and
controllability. Indeed, it is straightforward to construct
examples of passive electric circuits whose driving-point
behaviors are uncontrollable in a behavioral sense [1]–[4].
Moreover, the behavior of these electric circuits can often
be described using a state-space realization in which the
inductor currents and capacitor voltages are states, yet this
state-space realization is neither controllable nor observable.
There have been several valuable contributions towards a
relaxation of the assumptions of the positive-real and lossless
positive-real lemmas, but no complete set of necessary and
sufficient conditions for a (not necessarily controllable) sys-
tem to be passive is apparent. The purpose of this paper is to
provide such necessary and sufficient conditions for the case
of single-input single-output (SISO) systems. In addition to
the preceding motivation, the results in this paper answer the
question: what behaviors are realizable as the driving-point
behavior of a one-port circuit comprising passive resistors,
capacitors, inductors, transformers, and gyrators (c.f. the
first open problem in [1]).
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The main original contributions of this paper are Theorems
5 and 7, both of which are concerned with SISO systems.
Theorem 5 shows that controllability, which is stated as an
assumption in the lossless positive-real lemma, is in fact a
necessary condition for a system to be lossless. Theorem 7
removes the assumptions of controllability and observability
from the positive-real lemma. For each of these two theo-
rems, we demonstrate the equivalence of (i) a time-domain
condition expressed as a linear matrix inequality (LMI) in
terms of a state-space realization for the behavior; (ii) a
condition relating to the differential equations determining
the behavior, which generalises the known frequency-domain
conditions; and (iii) an integral condition which captures the
notion of a passive/conservative behavior.

Prior to stating and proving these two main theorems in
Sections V and VI, we outline some necessary background
material on behaviors (Section II), passivity (Section III), and
bilinear differential forms (Section IV).

Throughout this paper, we adopt the following notation.
R and C denote the real and complex numbers. C−, C̄−,
C+, C̄+ denote the open left half, closed left half, open
right half, and closed right half plane, respectively. R[s] and
R(s) denote the polynomials and rational functions in the
indeterminate s with real coefficients. For z ∈ C, <(z)
denotes its real part, =(z) its imaginary part, and z̄ its
conjugate. Fm and Fm×n denote vectors and matrices of
the indicated dimensions and with entries from F (F can be
any one of R, C, R[s] or R(s)); • will be used in place of
the dimensions when these are immaterial. For M ∈ C•×•,
M∗ denotes its Hermitian transpose, and M > 0 and M ≥ 0
indicate that M is positive and non-negative definite, respec-
tively. We let col

(
M1 · · · Mn

)
=
[
MT

1 · · · MT
n

]T
,

and diag
(
M1 · · · Mn

)
denotes the block diagonal ma-

trix with M1, . . . ,Mn arranged in this order on the main
diagonal. Lloc

1 (R,R•) and C∞ (R,R•) denote the (vector-
valued) locally integrable and infinitely differentiable func-
tions [5, Definitions 2.3.3, 2.3.4]. A (vector-valued) w is
called absolutely continuous (denoted w ∈ AC (R,R•)) if
(i) w is continuous; (ii) w is differentiable for all R with
the possible exception of a set of measure zero; and (iii)
for any given t0 ∈ R, the derivative dw

dt satisfies w(t1) =

w(t0)+
∫ t1
t0

dw
dt (t)dt for all t1 ≥ t0 (the fundamental theorem

of calculus).

II. BEHAVIORS

The behavioral approach [5], [6] provides a natural frame-
work for the study of linear time-invariant differential behav-
iors. In this section, we outline those aspects of behavioral
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theory of relevance to this paper: controllability, stabilizabil-
ity, observability, and input-state-output representations.

We will consider systems (behaviors) B defined as the set
of locally integrable weak solutions (see [5, Section 2.3.2])
to a system of linear time-invariant differential equations, i.e.

B := {w ∈ Lloc
1 (R,R•) | R

(
d
dt

)
w = 0, R ∈ R•×•[s]}. (1)

At times, we will also consider the subset of B comprised of
the infinitely differentiable solutions to R( ddt )w = 0, which
we denote by B ∩ C∞ (R,R•). We note that any element
in B ∩ C∞ (R,R•) is also a solution to R( ddt ) in the usual
(strong) sense [5, Theorem 2.3.11].

We call the behavior B controllable if for any two trajec-
tories w1, w2 ∈ B, and any t1 ∈ R, there exists a t2 ≥ t1
and a w ∈ B which satisfies w(t) = w1(t) for all t ≤ t1 and
w(t) = w2(t) for all t ≥ t2 [5, Definition 5.2.2]. B is called
stabilizable if for every w1 ∈ B, there exists a w ∈ B which
satisfies w(t) = w1(t) for all t ≤ t1 and limt→∞ w(t) = 0
[5, Definition 5.2.29]. The behavior B in (1) is controllable
(resp., stabilizable) if and only if the rank of R(ξ) is the
same for all ξ ∈ C (resp., ξ ∈ C̄+) [5, Thms 5.2.10 and
5.2.30].

In this paper, our focus is predominantly on single-input
single-output (SISO) systems. These take the general form

B :=


[
u
y

]
∈ Lloc

1

(
R,R2

) ∣∣∣∣∣∣
p( ddt )u = q( ddt )y
p, q ∈ R[s], q 6≡ 0,
G := p/q proper

 . (2)

We will refer to any system which cannot be represented
in the above form as a multi-input multi-output (MIMO)
system. Evidently, the behavior B in (2) is controllable (resp.,
stabilizable) if and only if p and q are coprime (resp., p and
q have no common roots in C̄+).

Any behavior B as in (1) has an input-state-output repre-
sentation (a realization). Specifically, the system’s variables
may be partitioned into inputs u and outputs y such that

B =


[
u
y

]
∈ Lloc

1 (R,R•)

∣∣∣∣∣∣
∃x ∈ AC (R,R•)
with dx

dt = Ax+Bu
and y = Cx+Du.

 . (3)

Here, every input u ∈ Lloc
1 (R,R•) and every initial state

x(0) ∈ R• determine a unique solution to (3). Specifically,
x is given by the variation of the constants formula [5,
Corollary 4.5.5]:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ for all t ∈ R, (4)

whereupon the ‘output’ y is determined from y = Cx+Du.
We say that the pair (A,B) is controllable (resp., stabi-
lizable) whenever

[
λI −A B

]
has full row rank for all

λ ∈ C (resp., λ ∈ C̄+). Clearly, (A,B) is controllable (resp.,
stabilizable) if and only if the behavior Bs := {col

(
x u

)
∈

Lloc
1 (R,R•) | dxdt = Ax+Bu} is controllable. The realization

(3) is called observable if, whenever col
(
x1 u y

)
and

col
(
x2 u y

)
are two solutions to (3), then x1 ≡ x2. From

[5, Section 5.3], the realization (3) is observable whenever
col
(
λI −A C

)
has full column rank for all λ ∈ C,

in which case we also refer to the pair (C,A) as being
observable. For SISO systems (2), an observable realization
is given by the observer canonical form [5, Theorem 6.4.2],
and observable realizations also exist for any MIMO system
[7], [8]. If the realization (3) of B is not observable, then
there exists a non-singular matrix T such that Â, B̂ and Ĉ,
partitioned compatibly, take the form

Â =

[
Â11 Â12

0 Â22

]
, B̂ =

[
B̂1

B̂2

]
, and Ĉ =

[
0 Ĉ2

]
, (5)

with Â = TAT−1, B̂ = TB, and Ĉ = CT−1, (6)

and where (Ĉ2, Â22) is observable [5, Corollary 5.3.14].
Then, using the variation of the constants formula (4), it
is easily shown that B also has an observable realization:

B =


[
u
y

]
∈ Lloc

1 (R,R•)

∣∣∣∣∣∣
∃x̂2 ∈ AC (R,R•) :
dx̂2

dt = Â22x̂2 + B̂2u,

y = Ĉ2x̂2 +Du.

 . (7)

III. PASSIVE AND LOSSLESS SYSTEMS

The physically motivated concepts of passive and con-
servative (lossless) systems play a key role in systems and
control through the famous positive-real lemma and lossless
positive-real lemma, respectively.

Theorem 1 (Positive-real lemma): Let B be as in (3) with
(A,B) controllable and (C,A) observable and with u, y ∈
Lloc

1 (R,Rm). Then the following are equivalent:
1)
∫ t1
−∞ uT (t)y(t)dt ≥ 0 for all t1 ∈ R and col

(
u y

)
∈ B

which have bounded support on the left.
2) There exists a function S which satisfies∫ t1

t0

uT (t)y(t)dt ≥ S(x(t1))− S(x(t0)),

for all t1 ≥ t0 ∈ R and col
(
x u y

)
satisfying (3),

and S(x0) ≥ 0 for all x0 ∈ R•..
3) G(s) := D+C(sI−A)−1B satisfies G(λ)∗+G(λ) ≥ 0

for all λ ∈ C+.
4) There exists a P > 0 such that

Q :=

[
−ATP − PA CT − PB
C −BTP D +DT

]
≥ 0, (8)

and S(x) := xTPx is a non-negative storage function.
Proof: See [9, Sections 3 to 5] and [10].

We say that G ∈ Rm×m(s) is positive-real (PR) whenever
G has the properties outlined in condition 3 of Theorem 1
(we note that this condition implies that G is analytic in C+,
since if G has a pole at some λ ∈ C+, then it may be shown
that, for any ε > 0, there exists z ∈ Cm and an η ∈ C
with |η| < ε such that z∗(G(λ + η)∗ + G(λ + η))z < 0).
We will call the function S defined in condition 2 of the
above theorem a non-negative storage function. Furthermore,
with P,Q as defined in condition 4, it may be verified that
S(x) := xTPx is a non-negative storage function, which we
will call a quadratic state storage function.

Theorem 2 (Lossless positive-real lemma): Let B be as in
(3) with (A,B) controllable and (C,A) observable and with
u, y ∈ Lloc

1 (R,Rm). Then the following are equivalent:
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1) There exists a non-negative storage function S with∫ t1
t0
uT (t)y(t)dt = S(x(t1)) − S(x(t0)) for all t1 ≥

t0 ∈ R and col
(
x u y

)
satisfying (3).

2) G(s) := D+C(sI−A)−1B is PR and satisfies G(s)+
GT (−s) ≡ 0.

3) There exists a P > 0 such that Q in (8) satisfies Q = 0.
Proof: See [9, Section 7] and [10].

We say that G ∈ Rm×m(s) is lossless positive-real (LPR)
whenever G has the properties outlined in condition 2 of
Theorem 2.

Condition 1 of Theorem 1 is reminiscent of the concept
of passivity: the net energy which can be extracted from the
system, when starting at rest, is bounded above by zero. In
fact, this is adopted as the definition of passivity by some
authors [10], [11]. Conversely, in this paper, we adopt the
definition of a passive behavior proposed in [3], [4]. Below,
we state this definition for SISO systems (which are the main
concern of this paper).

Definition 3 (Passive behavior): B in (2) is passive if, for
any given col

(
u y

)
∈ B and t0 ∈ R, there exists a

K ∈ R (which depends on col
(
u y

)
and t0) such that

−
∫ t1
t0
u(t)y(t)dt ≤ K for all t1 ≥ t0.

It is our contention that this definition reflects the funda-
mental property associated with passivity: there is a limit to
the net amount of energy which can be extracted from the
system (irrespective of the initial condition). We then define
a (SISO) lossless behavior as follows.

Definition 4 (Lossless behavior): B in (2) is lossless if it
is passive (see Definition 3), and if

∫ t0+nT

t0
u(t)y(t)dt =

0 for every single integer n whenever col
(
u y

)
∈ B is

periodic with period T .
The above definition captures the fundamental property of
a conservative (lossless) system: there is a zero net energy
transfer whenever the initial and final conditions of the sys-
tem are identical. For linear systems, this condition may be
replaced with

∫∞
−∞ uT (t)y(t)dt = 0 whenever col

(
u y

)
∈

B has compact support; i.e. there is a zero net energy transfer
whenever the system starts and ends at rest.

Note that there are behaviors which satisfy condition 1 of
Theorem 1 but are not passive in accordance with Definition
3. For example, for B := {col

(
u y

)
∈ Lloc

1

(
R,R2

)
| dydt =

du
dt }, then any element in B takes the form col

(
u u+ k

)
for some k ∈ R, whence those elements with bounded
support on the left have k = 0 and

∫ t1
−∞ u(t)y(t)dt =∫ t1

−∞ u2(t)dt ≥ 0. However, with u(t) = −1 and y(t) = 1

for all t ∈ R, then col
(
u y

)
∈ B and −

∫ t1
t0
u(t)y(t)dt =

t1 − t0. Thus, for any K ∈ R, there exists a t1 ≥ t0 such
that−

∫ t1
t0
u(t)y(t)dt > K, and so B is not passive. However,

for controllable systems, Definition 3 is in fact equivalent to
condition 1 of Theorem 1. This is discussed in [3] but no
proof or reference is provided; for SISO systems this follows
from the proof of Theorem 5 of this paper.

We remark that observability is of little consequence in
Theorem 1. Indeed, it is shown in [12] that conditions 1, 2,
and 4 of Theorem 1 are equivalent irrespective of whether
(C,A) is observable providing we relax the condition on P

to P ≥ 0. Moreover, it is shown that any one of these three
conditions imply condition 3 irrespective of observability, but
no proof was provided of the converse implication [12], [13].

The assumption of controllability in Theorem 1 is much
less easy to dispense of. For example, consider again the
behavior B := {col

(
u y

)
∈ Lloc

1

(
R,R2

)
| dydt = du

dt }, and
let B have an observable realization as in (3). From before,
B satisfies condition 1 of Theorem 1, yet B is not passive
in accordance with Definition 3. Moreover, it follows as a
consequence of Theorem 7 of this paper that conditions 2 and
4 do not hold for this behavior. In other words, conditions
1 to 4 are not equivalent when considering uncontrollable
behaviors. The purpose of this paper is to resolve these issues
in the context of SISO systems. In particular, Theorem 5
extends the lossless positive-real lemma (Theorem 2), and
Theorem 7 extends the positive-real lemma (Theorem 1), to
cover general (not necessarily controllable) SISO systems.

There have been several contributions in the literature
which have sought to relax the assumption of controllability
in the positive-real lemma. On the one hand, several papers
have sought to replace this with a weaker assumption (see
[14]–[16] and the references therein). These assumptions are
specified a-priori rather than being motivated by passivity
itself. On the other hand, [17] showed the equivalence of: 3a)
G(s) is analytic in C̄+ and satisfies G(ξ)∗+G(ξ) > 0 for all
ξ ∈ C̄+∪∞; and 4a) there exists a P > 0 such that Q in (8)
satisfies Q > 0. There is still an important class of passive
systems which are not considered by these contributions,
for example none of these papers consider lossless systems.
Moreover, to connect the results with physical systems, it
is necessary to establish the equivalence of these conditions
with an integral condition capturing the concept of passivity.
In this paper we show that, in the SISO case (2), the
assumption of controllability in the positive-real lemma may
be removed providing we augment the frequency domain
condition (condition 3 in Theorem 1) with a condition on the
location of the common divisors of p and q (this is condition
3 of Theorem 7).

We note that Theorem 1 has a companion theorem which
considers the case in which the storage function can take all
real values. The systems covered by this latter theorem are
not necessarily passive (they are sometimes called pseudo-
passive systems, and are a special case of cyclo-dissipative
systems [3]). Nevertheless, this theorem is also referred to
as the positive-real lemma or KYP lemma by some authors
(e.g. [18], [19]). There have have also been several notable
contributions concerned with relaxing the assumption of
controllability for pseudo-passive/cyclo-dissipative systems
(see [18], [19] and the references therein). The papers [1],
[20], [21] adopt a behavioral approach to this problem using
the framework of quadratic differential forms. However, as is
the case for passive systems, no theorem is apparent which
does not require any extraneous assumptions.

IV. BILINEAR DIFFERENTIAL FORMS

The framework of bilinear differential forms (BDFs) was
proposed in [22] for studying dissipativity. Here, we intro-
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duce relevant terminology for BDFs which will be used in
subsequent sections.

A bilinear differential form is a mapping from
C∞ (R,R•)× C∞ (R,R•) to C∞ (R,R) of the form:

LΦ(w, x) :=

M∑
i=1

N∑
j=1

(d
i−1w
dti−1 )TΦij(

dj−1x
dtj−1 ),

for some integers M,N and real-valued matrices Φij .
Such a BDF is naturally associated with the two variable
polynomial matrix Φ ∈ R•×•[ξ, η] defined as Φ(ξ, η) :=∑M
i=1

∑N
j=1 Φijξ

i−1ηj−1. We then note that the product rule
of differentiation yields:
d
dtLΦ(w, x) = LΨ(w, x), for Ψ(ξ, η) := (ξ + η)Φ(ξ, η). (9)

The above relationship can be used to derive a special BDF
which is associated with a generalised integration by parts
formula. We introduce this in the context of scalar differential
equations below; a generalisation to systems of differential
equations is discussed in [23]. To any given r ∈ R[s] we
associate the BDF LΦr , where Φr ∈ R[ξ, η] satisfies

Φr(ξ, η) = (r(ξ)− r(−η))/(ξ + η).

It follows from the factor theorem that Φr is a two variable
polynomial matrix, since r(ξ) − r(−η) = 0 whenever ξ +
η = 0. From (9), we obtain

(
r
(
d
dt

)
w
)
x−w

(
r
(
− d
dt

)
x
)

=
d
dtLΦr (w, x). Thus, with the notation [LΦr (w, x)(t)]

t1
t0

:=
LΦr (w, x)(t1)− LΦr (w, x)(t0), we obtain∫ t1

t0

(
r
(
d
dt

)
w
)
(t)x(t)dt

=

∫ t1

t0

w(t)
(
r
(
− d
dt

)
x
)
(t)dt+ [LΦr (w, x)(t)]

t1
t0
. (10)

Note that in the case r( ddt ) = d
dt , we obtain Φr ≡ 1, and

(10) becomes the formula for integration by parts.

V. ALL LOSSLESS BEHAVIORS ARE
CONTROLLABLE

In this section, we show that any lossless SISO behavior
is necessarily controllable, i.e. p and q are coprime in
(2). This leads to Theorem 5 below, which extends the
lossless positive-real lemma (Theorem 2) to cover general
(not necessarily controllable) SISO systems.

Theorem 5: For B as in (2), the following are equivalent:
1) B is lossless (see Definition 4).
2) B has an observable realization as in (3), and for any

such realization there exists a function S such that∫ t1
t0
u(t)y(t)dt = S(x(t1)) − S(x(t0)) for all t1 ≥

t0 ∈ R and col
(
x u y

)
satisfying (3), and where

S(x0) ≥ 0 for all x0 ∈ R•.
3) G is LPR and p and q are coprime.
4) B has an observable realization as in (3), and for any

such realization there exists a P > 0 such that Q in (8)
satisfies Q = 0.

Our proof will use the following theorem, which was
proved for MIMO systems in [4]:

Theorem 6: Let B in (2) be passive. Then B is stabilizable.
In other words, p and q have no common roots in C̄+.

Proof: See [4, Theorem 6].
Proof: [Theorem 5] We will show that 3 =⇒ 4 =⇒

2 =⇒ 1 =⇒ 3. Note initially that 3 =⇒ 4 by Theorem
2 as any observable realization of a controllable behavior
necessarily has (A,B) controllable (this follows from the
proof of Theorem 5.2 in [8]). To see that 4 =⇒ 2 we note,
since x is absolutely continuous, that∫ t1

t0

u(t)y(t)dt = 1
2

∫ t1

t0

[
x(t)
u(t)

]T
Q

[
x(t)
u(t)

]
dt

+ 1
2

[
x(t)TPx(t)

]t1
t0
. (11)

It follows that {S | S(x0) = xT0 Px0 for all x0 ∈ R•} has
the properties outlined in condition 2. Also, from (11),

−
∫ t1

t0

u(t)y(t)dt ≤ 1
2

(
x(t0)TPx(t0)

)
, (12)

for all t1 ≥ t0, which implies that B is passive. Now,
let col

(
u1 y1

)
∈ B be periodic with period T . Then

col
(
u2 y2

)
∈ B where col

(
u2 y2

)
(t) = col

(
u1 y1

)
(t+

nT ) = col
(
u1 y1

)
(t) for all t ∈ R and for any given

integer n. Thus, whenever the realization (3) is observable,
we have x(t + nT ) = x(t) for all t ∈ R and for any
given integer n (see Section II), whence (11) implies that∫ t0+nT

t0
u(t)y(t)dt = 0. We thus find that 2 =⇒ 1.

It remains to show that 1 =⇒ 3. Accordingly, we will
show the following:

(i) If B is passive, then G is PR.
(ii) If B is lossless, then G is LPR.

(iii) If B is passive and G is LPR, then B is controllable.
To show (i), we consider an arbitrary λ ∈ C+, and

we note that col
(
û ŷ

)
∈ B where col

(
û ŷ

)
(t) =

<(col
(
q(λ) p(λ)

)
eλt) for all t ∈ R. Thus, with the notation

Φ(ξ, η) := (1/2)(p(ξ)q(η) + q(ξ)p(η)), we find that∫ t1

t0

û(t)ŷ(t)dt = 1
2

∫ t1

t0

<(Φ(λ, λ)e2λt)+Φ(λ, λ̄)e(λ+λ̄)tdt

= 1
2

[
<
(

Φ(λ,λ)e2λt

2λ

)
+ Φ(λ,λ̄)e(λ+λ̄)t

λ+λ̄

]t1
t0
.

Now, suppose that 2Φ(λ, λ̄) = p(λ)q(λ̄) + q(λ)p(λ̄) < 0.
Suppose initially that |=(λ)| = ω 6= 0, let T = π/ω,
and let t0 satisfy 2ωt0 + arg(Φ(λ, λ)/λ) = π/2 (so
<(Φ(λ, λ)e2λt0/2λ) = 0). Then, for any K ∈ R, there exists
an integer N such that

−
∫ t0+NT

t0

û(t)ŷ(t)dt = − 1
2

[
Φ(λ,λ̄)e(λ+λ̄)t

λ+λ̄

]t0+NT

t0
> K,

whence B is not passive. If, on the other hand, =(λ) = 0,
then λ = λ̄, and again we find that for any K ∈ R there exists
a t1 ≥ t0 ∈ R such that −

∫ t1
t0
û(t)ŷ(t)dt > K. It follows

that if B is passive then 2Φ(λ, λ̄) = p(λ)q(λ̄) + q(λ)p(λ̄) is
non-negative whenever λ ∈ C+. Since, in addition, q 6≡ 0
and p, q ∈ R[s], then G(λ)∗ + G(λ) ≥ 0 for all λ ∈ C+,
whence G is PR.
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To show (ii), we consider an arbitrary 0 6= ω ∈ R,
we let col

(
û ŷ

)
(t) = <(col

(
q(jω) p(jω)

)
ejωt) for all

t ∈ R, and we note that col
(
û ŷ

)
∈ B and col

(
û ŷ

)
is periodic with period T = 2π/ω. In this case, again
with Φ(ξ, η) := (1/2)(p(ξ)q(η) + q(ξ)p(η)), we find that∫ t0+nT

t0
û(t)ŷ(t)dt = (1/2)Φ(jω,−jω)nT , whence we re-

quire Φ(jω,−jω) = 0 for all 0 6= ω ∈ R. This implies that
G(jω)∗ + G(jω) = 0 all 0 6= ω ∈ R. Since, in addition
G ∈ R(s), then this implies that G(s)+G(−s) ≡ 0, whence
G is LPR.

To show (iii), note initially from Theorem 6 that if B is not
stabilisable then B is not passive. It remains to consider the
case where B is stabilisable but not controllable, B is passive,
and G is LPR. Accordingly, let g be the greatest common
divisor of p and q, and let p̂ := p/g and q̂ := q/g, whence
p̂, q̂ ∈ R[s] and p̂ and q̂ are coprime. Then any col

(
u y

)
∈

B satisfies g( ddt )
[
−p̂( ddt ) q̂( ddt )

]
col
(
u y

)
= 0. Since B

is stabilisable but not controllable, then g has a root λ ∈ C−.
We then let col

(
u1 y1

)
(t) = <(col

(
ũ ỹ

)
eλt) for all t ∈

R and for some fixed but arbitrary ũ, ỹ ∈ C, and it follows
that col

(
u1 y1

)
∈ B. Moreover, whenever z ∈ C∞ (R,R),

then g( ddt )
[
−p̂( ddt ) q̂( ddt )

]
col
(
q̂( ddt ) p̂( ddt )

)
z = 0, and

so col
(
u2 y2

)
= col

(
q̂( ddt ) p̂( ddt )

)
z is also in B. By

linearity, col
(
u y

)
:= col

(
u1 + u2 y1 + y2

)
∈ B. Here,∫ t1

t0

u(t)y(t)dt = J1 + J2 + J3 + J4, (13)

where J1 :=

∫ t1

t0

(q̂( ddt )z)(t)(p̂(
d
dt )z)(t)dt, (14)

J2 :=

∫ t1

t0

<(ũeλt)(p̂( ddt )z)(t)dt, (15)

J3 :=

∫ t1

t0

(q̂( ddt )z)(t)<(ỹeλt)dt, (16)

and J4 :=

∫ t1

t0

<(ũeλt)<(ỹeλt)dt. (17)

Consider first J1, and note that this clearly satisfies J1 =
(1/2)

∫ t1
t0

(q̂( ddt )z)(t)(p̂(
d
dt )z)(t) + (p̂( ddt )z)(t)(q̂(

d
dt )z)(t)dt.

By initially setting r = p̂, w = z, and x = q̂( ddt )z in (10),
and then setting r = q̂, w = z, and x = p̂( ddt )z, we obtain
J1 = 1

2

∫ t1
t0
z(t)

(
(p̂(− d

dt )q̂(
d
dt ) + q̂(− d

dt )p̂(
d
dt ))z

)
(t) +

1
2

[
LΦp̂(z, q̂( ddt )z)(t) + LΦq̂ (z, p̂(

d
dt )z)(t)

]t1
t0

. Since q is
non-zero and p/q is LPR, then q̂ is non-zero and p̂/q̂ is
LPR, whence p̂(−s)q̂(s) + q̂(−s)p̂(s) ≡ 0, and

J1 = 1
2

[
LΦp̂(z, q̂( ddt )z)(t) + LΦq̂ (z, p̂(

d
dt )z)(t)

]t1
t0
. (18)

For J2 we let r = p̂, w = z, and x = u1 (i.e. x(t) = <(ũeλt)
for all t ∈ R) in (10); and for J3 we let r = q̂, w = z, and
x = y1 (i.e. x(t) = <(ỹeλt) for all t ∈ R). Then

J2 =

∫ t1

t0

z(t)<
(
p̂(−λ)ũeλt

)
dt+

[
LΦp̂(z, u1)(t)

]t1
t0
, and

J3 =

∫ t1

t0

z(t)<
(
q̂(−λ)ỹeλt

)
dt+

[
LΦq̂ (z, y1)(t)

]t1
t0
. (19)

Now, let z be chosen such that dlz
dtl

(t0) = dlz
dtl

(t1) = 0
for l = 0, 1, 2, . . .. Then all of the BDFs in (18) and
(19) are zero (i.e. LΦp̂(z, q̂( ddt )z)(t0) = 0, and so forth).
Furthermore, let ũ, ỹ ∈ C satisfy (p̂(−λ)ũ + q̂(−λ)ỹ) = 1
and <(ũeλt)<(ỹeλt) = 0 for all t ∈ R (if p̂(−λ) 6= 0 then
take ũ = 1/(p̂(−λ)) and ỹ = 0, otherwise q̂(−λ) 6= 0 since
p̂ and q̂ are coprime, and we can take ỹ = 1/(q̂(−λ)) and
ũ = 0). It follows from (13)-(19) that −

∫ t1
t0
u(t)y(t)dt =

−
∫ t1
t0
z(t)<(eλt)dt.

To complete the proof of the present theorem, we show
that, for any given K ∈ R, there exists a t1 ≥ t0 and a
z ∈ C∞ (R,R) with dlz

dtl
(t0) = dlz

dtl
(t1) = 0 for l = 0, 1, 2, . . .

such that −
∫ t1
t0
z(t)<(eλt)dt > K. Let f(t) := <(eλt)

2 for
all t ∈ R, so f(t) > 0 for all t ∈ R with the possible excep-
tion of a set of measure zero. Next, let φ(t) = e1/(t2−1) for
−1 < t < 1 with φ(t) = 0 otherwise (this is the bell-shaped
function in [5, Fig. 2.5]). Further, for any given integer k,
let ηk(t) = f(t)φ(t− 1− t0 − 2k) for all t ∈ R. It may be
verified that ηk ∈ C∞ (R,R) and

∫ t0+2(k+1)

t0+2k
ηk(t)dt > 0.

Now, let N be a positive integer with N > K, and let
ψ(t) = −

∑N−1
k=0 φ(t − 1 − t0 − 2k)/(

∫ t0+2(k+1)

t0+2k
ηk(t)dt)

for all t ∈ R. It may be verified that ψ ∈ C∞ (R,R),
that dlψ

dtl
(t0 + 2k) = 0 for k, l = 0, 1, 2, . . ., and that

−
∫ t0+2N

t0
(fψ)(t)dt = N > K. Accordingly, we let z(t) =

ψ(t)<(eλt) for all t ∈ R, and we find that z ∈ C∞ (R,R);
dlz
dtl

(t0) = dlz
dtl

(t0 + 2N) = 0 (l = 0, 1, 2, . . .); and
−
∫ t0+2N

t0
z(t)<(eλt)dt = −

∫ t0+2N

t0
(fψ)(t)dt > K.

VI. NECESSARY AND SUFFICIENT CONDITIONS
FOR A SISO SYSTEM TO BE PASSIVE

In Theorems 5 and 6, we showed that any given passive
SISO behavior B as in (2) is necessarily stabilizable, and
controllable whenever B is lossless. In this section, we show
that these conditions, together with the condition that G in (2)
is PR, are sufficient to ensure passivity. We thus obtain the
following theorem, which extends the positive-real lemma to
cover general (not necessarily controllable) SISO systems:

Theorem 7: For B as in (2), the following are equivalent:
1) B is passive (see Definition 3).
2) B has a realization as in (3), and for any such realization

there exists a function S such that
∫ t1
t0
u(t)y(t)dt ≥

S(x(t1)) − S(x(t0)) for all t1 ≥ t0 ∈ R and
col
(
x u y

)
satisfying (3), and where S(x0) ≥ 0 for

all x0 ∈ R•.
3) G is PR, and one of the following two conditions hold:

a) G is not LPR and B is stabilizable. In other words,
G(s) + G(−s) 6≡ 0, and p and q have no common
roots in C̄+.

b) G is LPR and B is controllable. In other words,
G(s) +G(−s) ≡ 0 and p and q are coprime.

4) B has an observable realization as in (3), and for any
such realization there exists a P > 0 such that Q in (8)
satisfies Q ≥ 0.

5) B has a (not necessarily observable) realization as in
(3), and for any such realization there exists a P ≥ 0
such that Q in (8) satisfies Q ≥ 0.
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We note that, for SISO passive behaviors, the above
theorem demonstrates that the existence of a non-negative
quadratic state storage function is equivalent to the existence
of a non-negative quadratic observable state storage function.
In contrast, we note there are systems which possess a (not
necessarily non-negative) quadratic state storage function but
do not possess a quadratic observable state storage function
[1], [2], [18].

Finally, it is straightforward to show from results in [11]
that condition 4 of Theorem 7 implies the existence of an
electric circuit comprising resistors, inductors, capacitors,
transformers, and gyrators whose driving-point behavior is
equal to B.

Proof: [Theorem 7] We will show that 5 =⇒ 2 =⇒
1 =⇒ 3 =⇒ 4 =⇒ 5. That 5 =⇒ 2 follows from (11),
which shows that {S | S(x0) = xT0 Px0 for all x0 ∈ R•} has
the properties outlined in condition 2. To see that 2 =⇒ 1,
we note from the first paragraph of the proof of Theorem 5
that (12) holds. That 1 =⇒ 3 follows from Theorems 5 and
6. That 3b =⇒ 4 was shown in Theorem 5. It can be shown
that whenever B is stabilisable then B has an observable
realization as in (3) for which (A,B) is stabilisable (the
proof of this is similar to the proof of Theorem 5.2 in [8]).
Since, in addition, G is not LPR, then G(s) + G(−s) 6≡ 0,
and 3a =⇒ 4 by [20, Theorem 5].

It remains to show that 4 =⇒ 5. Accordingly, let (3) be
a (not necessarily observable) realization of B. Then, from
Section II, there exists a non-singular matrix T such that
Â, B̂, Ĉ in (6) take the form of (5), and where B has an
observable realization as in (7). By condition 4, this implies
that there exists a P̂2 > 0 such that

Q̂2 :=

[
−ÂT22P̂2 − P̂2Â22 ĈT2 − P̂2B̂2

Ĉ2 − B̂T2 P̂2 D +DT

]
≥ 0.

Then, by direct calculation, P̂ := diag
(
0 P̂2

)
≥ 0 satisfies

Q̂ :=

[
−ÂT P̂ − P̂ Â ĈT − P̂ B̂
Ĉ − B̂T P̂ D +DT

]
= diag

(
0 Q̂2

)
≥ 0.

Finally, with P := TT P̂ T ≥ 0, and with S := diag
(
T 1

)
,

we find that Q in (8) satisfies Q = ST Q̂S ≥ 0.

VII. CONCLUSIONS AND EXTENSIONS

We presented a theory of SISO conservative and passive
linear systems which makes no controllability assumptions
(Theorems 5 and 7). Notably, we showed that passivity
(Definition 3) is equivalent to the existence of solutions to a
particular linear matrix inequality. Moreover, if a SISO pas-
sive system is lossless then it is (behaviorally) controllable,
and otherwise it is (behaviorally) stabilizable.

Theorem 5 extends to MIMO systems (this can be shown
by making only minor adjustments to the proof in this paper).
Theorem 7 can also be extended to MIMO systems with an
amendment to condition 3. These extensions will be shown
in the accompanying ECC presentation.
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