#### Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling

Icia Santos-Zas, Jeremie Lemarié, Ivana Zlatanova, Marine Cachanado, Jean-Christophe Seghezzi, Hakim Benamer, Pascal Goube, Marie Vandestienne, Raphael Cohen, Maya Ezzo, Vincent Duval, Yujiao Zhan<sup>g</sup>, Jin-Bo Su, Alain Bizé, Lucien Sambin, Philippe Bonnin, Maxime Branchereau, Christophe Heymes, Corinne Tanchot, José Vilar, Clement Delacroix, Jean-Sebastien Hulot, Clement Cochain, Patrick Bruneval, Nicolas Danchin, Alain Tedgui, Ziad Mallat, Tabassome Simon, Bijan Ghaleh, Jean-Sébastien Silvestre, Hafid Ait-Oufella

Supplementary Figures 1-38

Supplementary Tables 1-6



Supplementary Fig.1. Validation of anti-CD8 monoclonal antibody for immunostaining. CD8 staining was detected on spleen section of *C57Bl6* mouse but not on spleen section of lymphocyte-deficient  $Rag1^{-/-}$  mouse. Bar scale 40µm.

#### Isotype Control

#### Anti-CD8



**Supplementary Fig.2. Validation of anti-CD8 monoclonal antibody for immunostaining**. At day 3 after MI, ischemic heart tissue sections were stained either with rat anti-mouse IgG2b isotype or with anti-CD8 monoclonal antibody. No staining was detected after isotype staining whereas CD8+ cells (Green) were detected using CD8 mAb. Scale bar 50 μm.

CTR



**CD8** Depleted

**Supplementary Fig.3. Following MI, CD8<sup>+</sup> T cells infiltration was detected in both infarct and peri-infarct areas.** Upper panel, immunostaining in the ischemic myocardium at day 3 after MI showing CD8<sup>+</sup> T infiltration (Green). Lower panel, CD8 immunostaining at day 3 after MI in CD8-depleted mice. Scale bar 500 μm.



Supplementary Fig.4. Myocardial infarction induces time-dependent recruitment of effector and central memory CD8+ T cells. Proportion of CD44<sup>+</sup>CCR7<sup>high</sup> central memory and CD44<sup>+</sup>CCR7<sup>low</sup> effector memory CD8<sup>+</sup> T cells in the ischemic heart at day 1 (n=6), 3 (n=7) and 7 (n=8) after MI. mean values  $\pm$  SEM are represented. P values were calculated using two-tailed Kruskal-Wallis test.



**Supplementary Fig.5. Myocardial infarction induces time-dependent activation of CD8+ T cells in mediastinal lymph nodes.** (a) Representative examples and quantitative analysis of CD8+ T cell expressing CD69 in mediastinal lymph nodes in MI (Grey, n=6/9 at day 1/7) and Sham operated (White, n=6/timepoint) mice. Representative example and quantitative analysis of CD8+ T cell expressing CD107a in mediastinal lymph nodes (n=6-8 mice per group/time point). P values were calculated using two-tailed Mann-Whitney test at each time point.



**Supplementary Fig.6. CD8<sup>+</sup> T cells release Granzyme B in peri infarct area.** Immunostaining in the ischemic myocardium at day 3 after MI showing CD8<sup>+</sup> T cells (Green) and Granzyme B degranulation (Red); Scale bar 20μm.



Supplementary Fig.7. CD4<sup>+</sup> T cells regulate CD8<sup>+</sup> T cell trafficking in the context of acute MI. *C57Bl6* Wild-type mice received intraperitoneal injection of anti-CD4 depleting monoclonal antibody (Blue filled)(150  $\mu$ g/mice) or isotype control (Blue borderline) one day before coronary occlusion and CD8<sup>+</sup> T cells were quantified in the blood (A) and in the spleen (B) at day 1 and day 3 after MI (CTR n=4/time point, CD4 Depleted n=5/time point). To evaluate the impact of CD4 depletion on CD8+ T cell mobilization from the spleen to the blood, the Blood/Spleen ratio was calculated at day 1 (C). P values were calculated using two-tailed Mann-Whitney test.



# 6 hours after antibody injection (Blood)

**Supplementary Fig.8. mAb CD8 treatment quickly depletes circulating CD8<sup>+</sup> T cells.** Quantitative analysis of CD8<sup>+</sup> T cell staining in the blood of C57BL/6J mice 6 hours after treatment with isotype control (CTR, white) or the CD8 mAb depleting antibody (CD8 Depleted, Grey) (n=4/Group). P values were calculated using two-tailed Mann-Whitney test.



**Supplementary Fig.9. mAb CD8 treatment efficiently depletes circulating CD8**<sup>+</sup> **T cells.** Quantitative analysis of CD8<sup>+</sup> T cell staining in the blood of C57BL/6J mice treated with isotype control (CTR, Black box) or the CD8 mAb (CD8 Depleted, white circle) until Day 21 (n=6/group/time point); mean values  $\pm$  SEM are represented, \*\*\* P<0.001. P values were calculated using two-tailed Mann-Whitney test at each time point.



Supplementary Fig.10. mAb CD8 treatment efficiently depletes spleen CD8<sup>+</sup> T cells. Quantitative analysis (right) of CD8<sup>+</sup> T cell staining in the spleen of C57BL/6J mice treated with isotype control (CTR, black box) or with the CD8 mAb (CD8 Depleted, white circle) (n=6/group/time point); mean values  $\pm$  SEM are represented, \*\*\* P<0.001. P values were calculated using two-tailed Mann-Whitney test at each timepoint.



**Supplementary Fig.11. (A) Baseline echocardiography-derived parameters** before isotype (White circle) or CD8 monoclonal antibody treatment (Grey circle) (n=10/group) and **(B)** heart rate at day 21 after MI (CTR n=8, CD8 depleted n=9).

CTR

**CD8** Depleted



**Supplementary Fig.12. mAb CD8 treatment reduces infarct size at Day 21.** Representative photomicrographs of infarct size evaluation using Masson Trichrome staining on sections from the entire heart of isotype-treated or anti-CD8 depleted mice at day 21 after MI.



Supplementary Fig.13. mAb CD8 treatment limits deleterious post-ischemic cardiac remodeling at Day 21 in females C57BL/6 mice. A, Representative photomicrographs and quantification of infarct size evaluation using Masson Trichrome staining on sections of isotype-treated (White circle) or anti-CD8 depleted (black circle) mice at day 21 after MI. B, Quantification of LV ejection fraction at day 21 by echocardiography, (CTR n=8 and CD8 Depleted n=7). P values were calculated using two-tailed Mann-Whitney test. LV, Left ventricle.



**Supplementary Fig.14. CD8<sup>+</sup> T depletion decreases pro-fibrotic signature in infarcted heart.** Quantitative evaluation of *Col1a1 and Col1a3* mRNA levels within the ischemic myocardium, on day 7 after MI in CTR (white) and CD8 Depleted (grey) mice (n=5 per group). P values were calculated using two-tailed Mann-Whitney test.



**Supplementary Fig.15. The CD8 T cell depleting antibody improves heart function and reduces infarct size at later stage. (a)** Representative photomicrographs and quantitative analysis of infarct size evaluation using Masson trichrome staining, in the 2 groups of mice at day 56 after MI. (n=6 CTR white and n= 5 CD8 Depleted Grey). (b) Representative photomicrographs and quantitative analysis of myocardial fibrosis evaluated by Sirius Red staining, in the 2 groups of mice at day 56 after MI (n=6 CTR white and n= 5 CD8 Depleted Grey). P values were calculated using two-tailed Mann-Whitney test. bar scale 200 um.



Supplementary Fig.16. The CD8 T cell depleting antibody had no impact on CD4<sup>+</sup> T cell trafficking in infarcted hearts. Cell suspensions from infarcted hearts of control (Black box) or CD8 depleted (White circle) C57BL/6J mice were stained and analyzed by flow cytometry at different time points after MI. (a) CD4+ T lymphocytes were identified as CD45+CD4+ cells. Data are representative of 6 mice per group at each time point. Mean values  $\pm$  SEM are shown.



**Supplementary Fig.17. The CD8 T cell depleting antibody had no impact on B cell trafficking in infarcted hearts.** Cell suspensions from infarcted hearts of control (White) or CD8 depleted (Grey) C57BL/6J mice were stained and analyzed by flow cytometry 5 days after MI. (a) B lymphocytes were identified as CD45+NK1.1-CD19+ cells. (N=5-8/group).



**Supplementary Fig.18. The CD8 T cell depleting antibody had no impact on NK and NKT cell trafficking in infarcted hearts.** Cell suspensions from infarcted hearts of control (White) or CD8 depleted (Grey) C57BL/6J mice were stained and analyzed by flow cytometry 5 days after MI. (a) NKT were identified as CD45+NK1.1+CD3+ cells and NK were identified as CD45+NK1.1+CD3- cells. (N=5-8/group).



**Supplementary Fig.19. The CD8 T cell depleting antibody had no impact on myeloid cell trafficking in infarcted hearts.** Cell suspensions from infarcted hearts of control (Black box) or CD8 depleted (White circle) C57BL/6J mice were stained and analyzed by flow cytometry at different time points after MI. (a) Classical monocytes were identified as CD11b<sup>hi</sup> Ly6G<sup>--</sup> F4/80<sup>--</sup> Ly6C<sup>high</sup>. (b) Non-classical monocytes were identified as CD11b<sup>hi</sup> Ly6G<sup>--</sup> F4/80<sup>--</sup> Ly6C<sup>high</sup>. (b) Non-classical monocytes were identified as CD11b<sup>hi</sup> Ly6G<sup>--</sup> F4/80<sup>--</sup> Ly6C<sup>low</sup>. (c) Neutrophils were identified as CD11b<sup>+</sup> Ly6G<sup>+</sup> (gated on CD45<sup>+</sup> cells)Data are representative of 6 mice per group at each time point. Mean values ± SEM are shown.



Gated on CD45+ cells

**Supplementary Fig.20. The CD8 T cell depleting antibody had no impact on macrophage content in infarcted hearts.** Cell suspensions from infarcted hearts of control (White) or CD8 depleted (Grey) C57BL/6J mice were stained and analyzed by flow cytometry 5 days after MI. Macrophages were identified as CD45+CD11b+F4/80+ cells (CTR n=5 and CD8 Depleted n=8).



**Supplementary Fig.21. The CD8 T cell depleting antibody had no impact on dendritic cell content in infarcted hearts.** Cell suspensions from infarcted hearts of control (White) or CD8 depleted (Grey) C57BL/6J mice were stained and analyzed by flow cytometry 5 days after MI. Dendritic cells were identified as CD45+F4/80-CD11c+MHCII+ cells (CTR n=5 and CD8 Depleted n=8).

# TUNEL/DAPI/Granzyme B



**Supplementary Fig.22. Granzyme B colocalizes with apoptotic cells in the infarcted hearts.** Granzyme B immunostaining (Red) and TUNEL staining (Green) in the infarcted heart of WT C57BL/6J mice at day 3 after MI. Nuclei were stained using DAPI (Blue). Scale bar 20 μm.

#### TUNEL/DAPI/TROPONIN T/WGA



**Supplementary Fig.23. Characterization of TUNEL+ cells in ischemic heart tissue.** Immunofluorescent staining at day 3 showed that apoptotic cardiomyocytes in ischemic heart tissue. TUNEL (Pink), Troponin T (Brown), Plasma membrane (WGA, Green), and Nuclei (DAPI, Blue). Scale bar 20 μm.



**Supplementary Fig.24. The CD8 T cell depleting antibody reduces infarct size at day 3. (a)** Representative photomicrographs and quantitative analysis of infarct size evaluation using TriphenylTetrazolium Chloride (TTC) staining, in the 2 groups of mice at day 3 after MI. CTR (White) and CD8 depleted (Grey) (CTR n=6, CD8 Depleted n=5). P values were calculated using two-tailed Mann-Whitney test.

Supplementary Fig. 25



Supplementary Fig.25. The CD8+ T cell depleting antibody promotes a phenotypic switch of tissue macrophages toward a less inflammatory profile. (a) At Day 3 after MI, heart tissue macrophages defined as CD45+CD11B+Ly6G-F4/80+ cells were cell sorted and (b) *II-1β*, *Tnf-α* and *iNOS* mRNA levels were measured by qPCR, CTR group (white, n=3) and CD8 depleted (Grey, n=4). P values were calculated using two-tailed Mann-Whitney test.



Supplementary Fig.26. The CD8+ T cell depleting antibody promotes a macrophage phenotype associated with alternative activation. Cell suspensions from infarcted hearts of control (Black box) or CD8 depleted (White circle) C57BL/6J mice were stained and analyzed by flow cytometry at different time points after MI. "Alternatively-activated" macrophages were identified as CD45+CD11b+Ly6G<sup>—</sup> Ly6C+F4/80+CD206+. Data are representative of 6 mice per group at each time point. Mean values ± SEM are shown. P values were calculated using two-tailed Mann-Whitney test at each time point.



Heart

Spleen

**Supplementary Fig.27. Granzyme B is not expressed in the infarcted hearts of** *GzmB*<sup>-/-</sup>**mice.** Granzyme B immunostaining (Red) in the infarcted heart (Upper panels) and the spleen (Lower panels) of WT C57BL/6J and *GzmB*<sup>-/-</sup> mice at day 3 after MI. Scale bar 50 μm.



Supplementary Fig.28. Granzyme B deficient CD8+ T cells infiltrate ischemic heart. Representative examples of CD8<sup>+</sup> T cell infiltration (green) in the heart of C57BL/6J mice or  $GzmB^{-/-}$  mice at day 3 after MI. Inf for infarct area. Scale bar 50  $\mu$ m.



**Supplementary Fig.29. Decreased Mmp9 in the infarcted hearts of** *GzmB<sup>-/-</sup>* **mice.** Mmp9 *mRNA* levels measured by qPCR in infarcted heart at Day 3 after MI, (n=9/group). P values were calculated using two-tailed Mann-Whitney test.



**Supplementary Fig.30. Granzyme B deficiency trends to reduce MI-related mortality.** Survival curves following acute MI (WT n=11 and *GzmB*<sup>-/-</sup> n=9).



**Supplementary Fig.31. Validation of CD8**<sup>+</sup> **T cell activation** *in vitro***.** Flow cytometry characterization of purified splenic CD8<sup>+</sup> T cells before and after *in vitro* activation.

Exclusion of dead cells



**Supplementary Fig.32. CD8<sup>+</sup> T cell purity after isolation.** Representative examples of CD3<sup>+</sup>CD8<sup>+</sup> T cells before and after purification, using the CD8 cell isolation kit (Miltenyi Biotec) according to manufacturer's instructions.



**Supplementary Fig.33. Reconstitution of CD8<sup>+</sup> T cell pool in resupplemented** *Rag1<sup>-/-</sup>***mice. (a)** Experimental design of *Rag1<sup>-/-</sup>* mice injected with either CD8-depleted splenocytes (White) or CD8-depleted splenocytes resupplemented with wild-type (Grey) or *GzmB<sup>-/-</sup>* (Green) CD8<sup>+</sup> T cells, 3 weeks before MI. (b) Cell suspensions from infarcted hearts of reconstituted *Rag1<sup>-/-</sup>* mice were stained and analyzed by flow cytometry at day 3 after MI. CD8<sup>+</sup> T cells in the heart were identified as CD45<sup>+</sup>CD3<sup>+</sup>CD8<sup>+</sup>. (c) Cell suspensions from spleen of reconstituted *Rag1<sup>-/-</sup>* mice were stained and analyzed by flow cytometry at day 3 after MI. CD8<sup>+</sup> T cells in the heart were identified as CD45<sup>+</sup>CD3<sup>+</sup>CD8<sup>+</sup>. (c) Cell suspensions from spleen of reconstituted *Rag1<sup>-/-</sup>* mice were stained and analyzed by flow cytometry at day 3 after MI. CD8<sup>+</sup> T cells in the spleen were identified as CD45<sup>+</sup> CD3<sup>+</sup> CD8<sup>+</sup>. Data are representative of 5 mice per group at each time point. P values were calculated using two-tailed Kruskal-Wallis test.

Supplementary Fig. 34



**Supplementary Fig.34. Mouse anti-swine mAb CD8 induced delayed CD8 depletion.** Blood CD8<sup>+</sup> T cells were quantified in the blood at different time points after mAb CD8 injection (15mg/kg, IV) in female pig. CD8+ T cells were defined as CD79-CD3+CD4-CD8+. Cells.



Supplementary Fig.35. Experimental protocol of CD8 depletion in female pigs in the context of myocardial ischemia-reperfusion.



Supplementary Fig.36. Representative pictures of infarct size at Day 14 in Control, Low and High CD8-depleted groups.





**Supplementary Fig.37. Echocardiography parameters at Day 14 in Control (PBS), Low and High CD8-depleted groups** (Control n=6, Low depletion n=5 and high depletion n=5). P values were calculated using two-tailed Kruskal-Wallis test. LV, Left ventricle





**Supplementary Fig.38. Plasma Granzyme B levels in pigs.** Plasma Granzyme B levels was measured at Day 1, 3 and 14 after heart ischemia/reperfusion in control (White box, N=4) and CD8 depleted (High depletion, Dark box, N=5) by ELISA. P values were calculated using two-tailed Mann-Whitney test at each timepoint.

| Parameters                                         |            |
|----------------------------------------------------|------------|
| Myocardial biopsy, n                               | 17         |
| Time between myocardial infarction and LVAD (days) | 14 (5;21)  |
| Male Sex                                           | 88 %       |
| Age, years                                         | 55 (52;61) |
| Hypertension                                       | 41%        |
| Hypercholesterolemia                               | 41%        |
| Diabetus mellitus                                  | 23%        |
| Current smokers                                    | 59%        |
| Chronic kidney disease                             | 12%        |
| STEMI                                              | 88%        |
| No STEMI                                           | 12%        |
| PCI                                                | 70%        |
| Thrombolyse                                        | 0%         |
| Coronary artery bypass surgery                     | 12%        |
| Aspirin                                            | 100%       |
| Heparin or Low Molecular Weight Heparin            | 100%       |
| Cardiogenic shock                                  | 100%       |
| Heart transplantation after LVAD                   | 41%        |

Supplementary Table 1: characteristics of included patients in histopathological study. LVAD, left ventricle assist device; PCI, Percutaneous coronary intervention; STEMI, ST Elevation Myocardial Infarction. Data are expresses as median (1<sup>st</sup>IQR, 3<sup>rd</sup>IQR) or percentage.

|                                                            | < 8.9 pg/mL<br>(N=523) | ≥ 8.9 pg/mL<br>(N=523) | p†   |
|------------------------------------------------------------|------------------------|------------------------|------|
| Demographic and risk factors                               |                        |                        |      |
| Male Sex, No (%)                                           | 402 (76.9)             | 388 (74.2)             | 0.31 |
| Age, yr <sup>‡</sup>                                       | 63.0 ± 13.4            | 64.4 ± 14.0            | 0.11 |
| Hypertension, No (%)                                       | 266 (50.9)             | 276 (52.8)             | 0.54 |
| Hypercholesterolemia, No (%)                               | 231 (44.2)             | 229 (43.8)             | 0.90 |
| Diabetus mellitus, No (%)                                  | 111 (21.2)             | 98 (18.7)              | 0.31 |
| Family history of CAD, No (%)                              | 152 (29.1)             | 138 (26.4)             | 0.33 |
| Current smokers, No (%)                                    | 222 (42.4)             | 191 (36.5)             | 0.05 |
| Prior myocardial infarction, No (%)                        | 69 (13.2)              | 77 (14.7)              | 0.48 |
| Prior PCI or CABG, No (%)                                  | 73 (14.0)              | 82 (15.7)              | 0.43 |
| Prior stroke or TIA, No (%)                                | 18 (3.4)               | 22 (4.2)               | 0.52 |
| Prior heart failure, No (%)                                | 11 (2.1)               | 18 (3.4)               | 0.19 |
| Chronic kidney disease, No (%)                             | 22 (4.2)               | 18 (3.4)               | 0.52 |
| Clinical presentation                                      |                        |                        |      |
| Body mass index, kg/m <sup>2 ‡</sup>                       | 26.8 ± 4.6             | 26.8 ± 4.3             | 0.94 |
| Systolic blood pressure at admission,<br>mmHg <sup>‡</sup> | 144.8 ± 28.7           | 146.7 ± 27.0           | 0.26 |
| Heart rate at admission, beat/min <sup>‡</sup>             | 79.2 ± 20.4            | 77.6 ± 18.4            | 0.18 |
| STEMI, No (%)                                              | 297 (56.8)             | 269 (51.4)             | 0.08 |
| STEMI and/or revascularisation, No (%)                     |                        |                        | 0.22 |
| No STEMI                                                   | 226 (43.2)             | 254 (48.6)             |      |
| STEMI alone                                                | 63 (12.0)              | 55 (10.5)              |      |
| STEMI and revascularisation                                | 234 (44.7)             | 214 (40.9)             |      |
| Killip Max >=2, No (%)                                     | 86 (16.4)              | 99 (18.9)              | 0.29 |
| GRACE score <sup>‡</sup>                                   | 136.8 ± 34.3           | 137.5 ± 34.6           | 0.76 |
| Left ventricular ejection fraction, % <sup>‡</sup>         | 51.6 ± 10.5            | 52.5 ± 11.2            | 0.17 |
| Baseline biological exams                                  |                        |                        |      |
| CRP, mg/L*                                                 | 5.0 [3.0 ; 9.8]        | 5.0 [3.0 ; 10.7]       | 0.78 |
| In-hospital Management                                     |                        |                        | •    |
| PCI, No (%)                                                | 420 (80.3)             | 399 (76.3)             | 0.12 |
| Thrombolyse, No (%)                                        | 45 (8.6)               | 41 (7.8)               | 0.65 |
| Coronary artery bypass surgery, No (%)                     | 13 (2.5)               | 27 (5.2)               | 0.02 |
| Statins, No (%)                                            | 475 (90.8)             | 464 (88.7)             | 0.26 |
| Beta-blockers, No (%)                                      | 431 (82.4)             | 432 (82.6)             | 0.94 |
| Calcium channel blockers, No (%)                           | 125 (23.9)             | 132 (25.2)             | 0.62 |
| ACE inhibitors or ARB, No (%)                              | 226 (43.2)             | 244 (46.7)             | 0.26 |
| Nitrated derivatives, No (%)                               | 251 (48.0)             | 256 (48.9)             | 0.76 |
| Aspirin, No (%)                                            | 502 (96.0)             | 513 (98.1)             | 0.04 |
| Clopidogrel, No (%)                                        | 403 (77.1)             | 410 (78.4)             | 0.60 |
| Heparin, No (%)                                            | 231 (44.2)             | 235 (44.9)             | 0.80 |
| Low Molecular Weight Heparin, No (%)                       | 293 (56.0)             | 306 (58.5)             | 0.42 |
| Diuretics, No (%)                                          | 137 (26.2)             | 157 (30.0)             | 0.17 |

| Glycoprotein IIb/IIIa inhibitors, No (%)                                                                                                                                             | 231 (44.2) | 175 (33.5) | 0.0004 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------|
| Digitalis glycosides, No (%)                                                                                                                                                         | 3 (0.6)    | 4 (0.8)    | 1      |
| <sup>†</sup> p is given by unpaired two-sided Student t or Wilcoxon rank-sum (continuous variables) and exact<br>Pearson X <sup>2</sup> or Fisher exact test (categorical variables) |            |            |        |
| ‡ Mean ± sd, *Median, Q1, Q3                                                                                                                                                         |            |            |        |

Supplementary Table 2: Characteristics of included patients according to baseline plasma Granzyme B level. CAD, Coronary Artery Disease; PCI, Percutaneous coronary intervention; CABG, Coronary By-Pass Graft; TIA, Transient ischemic attack; STEMI, ST Elevation Myocardial Infarction.

#### **Supplementary Table 3**

| Characteristics                 | HR    | CI 95%           | <b>P-value</b> |
|---------------------------------|-------|------------------|----------------|
| Granzyme B median ≥8.9          | 2.261 | (1.221 - 4.188)  | 0.0095         |
| Female gender                   | 0.879 | (0.463 - 1.671)  | 0.6943         |
| Age                             | 1.037 | (1.002 - 1.073)  | 0.0366         |
| Hypertension                    | 0.968 | (0.492 - 1.905)  | 0.9253         |
| BMI >=30                        | 0.835 | (0.395 - 1.766)  | 0.6370         |
| Current smokers                 | 0.953 | (0.402 - 2.255)  | 0.9120         |
| Hypercholesterolemia            | 1.170 | (0.665 - 2.056)  | 0.5859         |
| Diabetes mellitus               | 1.631 | (0.873 - 3.048)  | 0.1249         |
| STEMI and/or revascularisation  |       |                  | 0.0646         |
| STEMI + revascularisation       | 0.464 | (0.207 - 1.043)  |                |
| STEMI without revascularisation | 1.490 | (0.627 - 3.542)  |                |
| No STEMI                        | 1.000 |                  |                |
| Killip Max >=2                  | 1.495 | (0.773 - 2.888)  | 0.2320         |
| LV ejection<br>fraction >=40    | 1.576 | (0.821 - 3.027)  | 0 1715         |
| Prior stroke or TIA             | 1.535 | (0.602 - 3.913)  | 0.3691         |
| Prior myocardial infarction     | 0.478 | (0.217 - 1.053)  | 0.0671         |
| Prior heart failure             | 7.677 | (3.148 - 18.72)  | <.0001         |
| Chronic kidney disease          | 1.798 | (0.817 - 3.961)  | 0.1451         |
| Prior cancer                    | 2.173 | (1.059 - 4.46)   | 0.0343         |
| Family history of CAD           | 0.785 | (0.349 - 1.765)  | 0.5589         |
| Statins                         | 1.571 | (0.711 - 3.471)  | 0.2636         |
| Beta-blockers                   | 0.392 | (0.218 - 0.704)  | 0.0017         |
| Diuretics                       | 1.068 | (0.566 - 2.017)  | 0.8388         |
| Clopidogrel                     | 2.296 | (0.912 - 5.779)  | 0.0776         |
| Low Molecular Weight<br>Heparin | 0.374 | (0.195 - 0.718)  | 0.0031         |
| GPIIb/IIIa inhibitors           | 0.827 | (0.401 - 1.708)  | 0.6084         |
| Coronary artery bypass surgery  | 0.572 | (0.128 - 2.55)   | 0.4639         |
| CPK peak                        |       |                  |                |
| CPK > 1701                      | 3.334 | (1.082 - 10.279) | 0.0360         |
| CPK ]595 ; 1701]                | 1.318 | (0.467 - 3.718)  | 0.6021         |
| CPK ]212 ; 595]                 | 0.722 | (0.247 - 2.114)  | 0.5524         |
| CPK Missing                     | 2.935 | (1.233 - 6.987)  | 0.0150         |
| CPK <= 212                      | 1.000 |                  |                |

Supplemental Table 3: Multivariable logistic regression analysis of risk factors for 1-year mortality, using a multivariable Cox proportional-hazards model. HR, Hazard Ratio, BMI, Body Mass Index ; STEMI, ST Elevation Myocardial Infarction ; LV, Left Ventricle ; CAD ; Coronary Artery Disease; CPK peak value was available in 861 patients.

| Primary<br>Antibody | Fluorochrome     | Clone        | Supplier                   | Reference  | Isotype                  |
|---------------------|------------------|--------------|----------------------------|------------|--------------------------|
| CD3e                | PerCP            | 145-2C11     | <b>BD</b> Biosciences      | 553067     | Armenian Hamster IgG1, K |
| CD3e                | PerCP            | 145-2C11     | eBioscience                | 45-0031-82 | Armenian Hamster IgG1, K |
| CD3e                | BV421            | 145-2C11     | BD Biosciences             | 562600     | Armenian Hamster IgG1, K |
| CD3e                | PE-Cy7           | 145-2C11     | BD Biosciences             | 552774     | Armenian Hamster IgG1, K |
| CD4                 | FITC             | RM4-5        | eBioscience                | 11-0042-85 | Rat IgG2a, k             |
| CD4                 | PE               | RM4-5        | eBioscience                | 12-0043-82 | Rat IgG2b, k             |
| CD8a                | AF700            | 53-6.7       | BD Biosciences             | 557959     | Rat IgG2a, k             |
| CD8a                | APC              | 53-6.7       | BD Biosciences             | 553035     | Rat IgG2a, k             |
| CD45R (B220)        | V500             | RA3-6B2      | BD Biosciences             | 561226     | Rat IgG2a, k             |
| CD19                | PE               | 1D3          | eBioscience                | 12-0193-82 | Rat IgG2a, k             |
| CD19                | PE-Cy7           | 1D3          | BD Biosciences             | 552854     | Rat IgG2a, k             |
| CD107               | APC-Cy7          | 1D4B         | BioLegend                  | 121615     | Rat IgG2a, k             |
| CD69                | PE               | H1.2F3       | eBioscience                | 12-0691-83 | Armenian Hamster IgG1, K |
| CD69                | BV421            | H1.2F3       | BD Biosciences             | 562920     | Armenian Hamster IgG1, K |
| CD45                | FITC             | 30-F11       | BD Biosciences             | 553079     | Rat IgG2b, k             |
| CD45                | PerCP            | 30-F11       | BD Biosciences             | 557235     | Rat IgG2b, k             |
| CD45                | AF700            | 30-F11       | BD Biosciences             | 560510     | Rat IgG2b, k             |
| CD11b               | PE-Cy7           | M1/70        | eBioscience                | 25-0112-82 | Rat IgG2b, k             |
| CD11c               | PerCP-Cy5.5      | HL3          | BD Biosciences             | 560584     | Armenian Hamster IgG1, K |
| LY6G                | PE               | 1A8          | BD Biosciences             | 551461     | Rat IgG2a, k             |
| LY6C                | FITC             | AL-21        | BD Biosciences             | 553104     | Rat IgM, k               |
| F4/80               | APC              | A3-1         | Bio-Rad                    | MCA497APCT | Rat IgG2b, k             |
| F4/80               | PE               | BM8          | eBioscience                | 12-4801-82 | Rat IgG2a, k             |
| CD64                | BV421            | x54-5/7.1    | BioLegend                  | 139309     | Mouse IgG1, k            |
| CD44                | APC              | IM7          | eBioscience                | 17-0441-83 | Rat IgG2b, k             |
| CD206               | AF647            | C068C2       | BioLegend                  | 141712     | Rat IgG2a, k             |
| MHCII               | PerCP-eFluor 710 | M5/114.15.2  | eBioscience                | 46-5321-82 | Rat IgG2b, k             |
| CCR7                | PE-Cy7           | 4B12         | eBioscience                | 17-1971-82 | Rat IgG2a, k             |
| NK1.1               | PE-Cy7           | PK136        | eBioscience                | 25-5941-82 | Mouse IgG2a, k           |
| NK1.1               | APC              | PK136        | eBioscience                | 17-5941-82 | Mouse IgG2a, k           |
| CD172A              | No Conjugated    | -            | Monoclonal Antibody Center | PG2031     | lgG2b                    |
| MSA3 (MHCII)        | No Conjugated    | -            | Monoclonal Antibody Center | PG2006     | lgG2a                    |
| PG68A               | No Conjugated    | -            | Monoclonal Antibody Center | PG2045     | lgG1                     |
| SWC8                | No Conjugated    | MIL3         | Abcam                      | Ab34020    | IgGM                     |
| CD14                | FITC             | TUK4         | GENE TEX                   | GTX43753   | Mouse IgG2a              |
| CD163               | PE               | 2A10/11      | Abcam                      | Ab194889   | Mouse IgG1               |
| PG164A (CD8b)       | No Conjugated    | -            | Monoclonal Antibody Center | PG2020     | lgG2a                    |
| CD4                 | PE-Cy7           | 74-124       | Abcam                      | Ab25408    | Mouse IgG2a              |
| CD3e                | PerCP-Cy5.5      | BB23-8E6-8C8 | BD Biosciences             | 561478     | Mouse IgG2a, k           |
| CD79a               | PE               | HM57         | BD Biosciences             | 563777     | Mouse IgG1               |

**Supplementary Table 4**. General characteristics of antibodies used for flow cytometry characterization of immune cells.

| Secondary Antibody    | Fluorochrome | Clone      | Supplier              | Reference |
|-----------------------|--------------|------------|-----------------------|-----------|
| Goat Anti-Mouse IgG2b | APC-Cy7      | Polyclonal | Abcam                 | ab130791  |
| Rat Anti-Mouse IgG2a  | PE-Cy7       | RMG2a-62   | BioLegend             | 407114    |
| Rat Anti-Mouse IgG1   | PerCP-Cy5.5  | RMG1-1     | BioLegend             | 406612    |
| Rat Anti-mouse IgM    | APC          | Nov-41     | <b>BD</b> Biosciences | 550676    |

**Supplementary Table 5**. General characteristics of secondary antibodies used for flow cytometry characterization of immune cells.

| Genes      | Sequences                                  |
|------------|--------------------------------------------|
| Gapdh      | Forward 5'-CGTCCCGTAGACAAAATGGTGAA-3',     |
|            | Reverse 5'-GCCGTGAGTGGAGTCATACTGGAA-CA-3'; |
| Granzyme B | Forward 5'-GTGCGGGGGGGCCCAAAGACCAAAC-3',   |
|            | Reverse: 5'-GCACGTGGAGGTGAACCATCCTTATAT-3' |
| ΙΙ1β       | Forward 5'-GAAGAGCCCATCCTCTGTGA-3',        |
|            | Reverse 5'-GGGTGTGCCGTCTTTCATTA-3'         |
| 116        | Forward 5'-TGACAACCACGGCCTTCCCTA-3',       |
|            | Reverse: 5'-TCAGAATTGCCATTGCACAACTCTT-3'   |
| I110       | Forward 5'-ACTTCCCAGTCGGCCAGAGCCACAT-3',   |
|            | Reverse: 5'-GATGACAGCGCCTCAGCCGCATCCT-3'   |
| Tnf-α      | Forward 5'-GATGGGGGGGCTTCCAGAACT-3',       |
|            | Reverse 5'-GATGGGGGGGCTTCCAGAACT-3'        |
| Mmp9       | Forward 5'-GCGTCATTCGCGTGGATAAGGAGT-3',    |
|            | Reverse 5'-GTAGCCCACGTCGTCCACCTGGTT-3'     |

Supplementary Table 6. The primer sequences used for quantitative real-time PCR.