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Abstract. Fujita and Li have given a characterisation of K-stability of a

Fano variety in terms of quantities associated to valuations, which has been

essential to all recent progress in the area. We introduce a notion of valuative
stability for arbitrary polarised varieties, and show that it is equivalent to K-

stability with respect to test configurations with integral central fibre. The

numerical invariant governing valuative stability is modelled on Fujita’s β-
invariant, but includes a term involving the derivative of the volume. We give

several examples of valuatively stable and unstable varieties, including the

toric case. We also discuss the role that the δ-invariant plays in the study of
valuative stability and K-stability of polarised varieties.

1. Introduction

The notion of K-stability of a polarised variety (i.e. a projective variety en-
dowed with an ample line bundle) has played a central role in algebraic geometry
in recent years. The primary motivation for K-stability is the Yau-Tian-Donaldson
conjecture, which states that K-stability should be equivalent to the existence of
constant scalar curvature Kähler metrics on the polarised variety [50, 46, 22], and
also predicts that one should be able to form moduli spaces of K-stable polarised
varieties.

While this conjecture is completely open in general, there has been enormous
progress on these ideas in the case of Fano varieties. Analytically, it is now known
that K-stability is equivalent to the existence of a Kähler-Einstein metric on a
smooth Fano variety [13, 46, 3]. Algebraically, the theory has advanced massively,
primarily through Fujita and Li’s reinterpretation of K-stability in terms of valua-
tions [26, 37]. These ideas, together with significant input from birational geometry,
have led to an almost-complete understanding of K-stability of Fano varieties. This
is true both abstractly, in the sense that one can now construct moduli spaces of
K-stable Fano varieties (though properness remains open1), and concretely, in the
sense that one can now give a very thorough understanding of which Fano varieties
are actually K-stable. There are many results along these lines, such as [8, 16, 27, 2]
to name only a few. The valuative approach to K-stability of Fano varieties has
been essential to all of these developments.

From this perspective, one of the main issues in understanding K-stability of
an arbitrary polarised variety is that we do not yet understand the role played by
valuations. The original definition of K-stability, due to Donaldson and building on
work Tian, involves test configurations: these are C∗-degenerations of the polarised
variety (X,L) to another polarised scheme (called the central fibre). Donaldson
then assigns a numerical invariant to a test configuration, now called the Donaldson-
Futaki invariant, and K-stability means that this invariant is always positive. Fujita

1Properness has now been proven by Liu-Xu-Zhuang [39].
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and Li reinterpret K-stability by replacing test configurations with valuations on X,
and replacing the Donaldson-Futaki invariant with numerical invariants associated
to the volume and log discrepancy of the valuation [26, 37].

Our main result gives a complete understanding of how valuations can be used
to study K-stability of polarised varieties, primarily based on the ideas of Fujita
[26]. We briefly give the definition, before stating the main results. Let (X,L) be
an n-dimensional polarised variety and let F be a prime divisor over X. Denote
by AX(F ) the log discrepancy of F , and Vol the volume function. We define the
β-invariant of F by

β(F ) = AX(F ) Vol(L) + nµ

∫ ∞
0

Vol(L− xF )dx+

∫ ∞
0

Vol(L− xF )′ ·KXdx,

where Vol(L−xF )′ ·KX denotes the derivative of the volume in the direction KX ,
and

µ = µ(X,L) =
−KX .L

n−1

Ln

is a topological constant. In comparison with Fujita’s invariant, the main novelty is
the appearance of the derivative of the volume; we note that in general the volume
is a continuously differentiable function [9]. As in Fujita’s work, an important
class of divisorial valuations are those that are dreamy ; this is a finite generation
hypothesis. We then say that (X,L) is valuatively stable if β(F ) > 0 for all dreamy
divisorial valuations F . Our main result demonstrates the relationship between
valuative stability and K-stability.

Theorem 1.1. A polarised variety is valuatively stable if and only it is K-stable
with respect to test configurations with irreducible central fibre.

This fully explains the role played by valuations in the study of K-stability of po-
larised varieties. We also prove analogous results for K-semistability, (equivariant)
K-polystability and uniform K-stability. Our proof is modelled on that of Fujita
[25, 26], and the primary differences arise from the fact that the Donaldson-Futaki
invariant takes a significantly simpler form in the Fano setting; this explains the
appearance of the derivative of the volume in the β-invariant.

In general one should not expect that valuative stability is equivalent to K-
stability, and equivariant versions of this statement fail in the toric setting. Never-
theless, a deep result of Li-Xu states that for K-stability of Fano varieties (X,−KX),
it is equivalent to check K-stability with respect to test configurations with irre-
ducible central fibre [38]. Thus Fujita’s work implies that valuative stability of
Fano varieties is equivalent to K-stability. This therefore explains, from the point
of view of valuations, the difference between the Fano theory and the general theory.
Moreover, test configurations with smooth, hence irreducible, central fibre play an
important role in many analytic works concerning the existence of constant scalar
curvature Kähler metrics [15, 44], and hence one should expect Theorem 1.1 to
be a powerful tool. Theorem 1.1 in any case produces a concrete obstruction to
K-stability of polarised varieties, which we expect to play a similar role to Ross-
Thomas’ slope stability [43], in that the resulting criterion should be practically
checkable in concrete examples.

Beyond the case of anticanonically polarised Fano varieties, Delcroix has recently
shown that there are certain polarised spherical varieties (X,L) for which the ex-
istence of a constant scalar curvature Kähler metric is equivalent to equivariant
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K-polystability with respect to test configurations with irreducible central fibre
[18, Section 11], and is hence also equivalent to K-polystability [4]. Thus we obtain
a full valuative criterion for K-polystability also in this case. Delcroix’s examples
have polarisations close to the anticanonical class −KX in their ample cone, and he
suggests that an analogous statement should be true for arbitrary polarised spheri-
cal varieties, provided the polarisation is sufficiently close to the anticanonical class.
Going even further, it seems reasonable to suggest that for general polarisations of
Fano varieties (X,L), provided the polarisation is sufficiently close to −KX , it may
be the case that K-polystability is equivalent to K-polystability with respect to test
configurations with irreducible central fibre, generalising the result of Li-Xu [38] and
meaning our valuative criterion would characterise K-polystability for more general
polarisations of Fano varieties.

We hope that some of the numerous applications that the valuative approach to
K-stability of Fano varieties can be applied to general polarised varieties through
Theorem 1.1, and we plan to return to this in future work. In the present work,
we prove some foundational results along these lines. For example, we show that
Calabi-Yau varieties and canonically polarised varieties are uniformly valuatively
stable provided they have mild singularities. This follows from Theorem 1.1 and
work of Odaka, but demonstrates how one should use the β-invariant for general
polarised varieties. We also prove alpha invariant bounds modelled on work of
Fujita-Odaka [30].

We also give a complete geometric description in the toric case. For this we take
(X,L) to be a Q-factorial polarised toric variety. We then call F a toric prime
divisor over X if there is a normal compact toric variety Y and ψ : Y → X a
proper birational toric morphism whose exceptional set coincides with F , a toric
prime divisor on Y . By considering only valuations emanating from toric prime
divisors we obtain a weak notion of equivariant valuative semistability, which turns
out to be equivalent to the classical Futaki invariant [31], which is a function on
holomorphic vector fields on X. We then say that the Futaki invariant vanishes
identically if it vanishes for each holomorphic vector field.

Theorem 1.2. The Futaki invariant of (X,L) vanishes identically (on the torus)
if and only if

β(F ) ≥ 0

for any toric prime divisor F over X.

This extends Fujita’s result on toric divisorial stability of Fano varieties [23].
The proof uses the expression of the classical Futaki invariant of (X,L) as the
difference of the barycentres of the the moment polytope and its boundary exhibited
in Donaldson’s work [22].

Beyond the work of Fujita and Li, perhaps the most important foundational
development in the study of valuative stability of Fano varieties has been Fujita-
Odaka’s introduction of the δ-invariant δ(L) [30], proved by Blum-Jonsson to equal

δ(L) = inf
F

AX(F ) Vol(L)∫∞
0

Vol(L− xF )dx
,

where the infimum is taken over all prime divisors F over X [7]. It follows from
work of Fujita-Odaka and Blum-Jonsson that δ(−KX) ≥ 1 if and only if (X,−KX)
is K-semistable, with δ(−KX) > 1 characterising uniform K-stability. While it is
clear from our definition of β(F ) for general polarised varieties that δ(L) plays an
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important role, it is natural to ask whether or not a condition on δ(L) actually
characterises valautive stability more generally. While this seems unlikely, we show
that one can provide sufficient conditions for valuative stability in terms of δ(L):

Theorem 1.3. Write δ(L)−µ(L) = (n+ 1)γ(L), and suppose that the line bundle

(µ(L) + γ(L))L+KX

is effective. Then (X,L) is uniformly valuatively stable.

Note that this recovers one direction of Fujita-Odaka’s work as a special case:
when L = −KX and δ(−KX) > 1, γ is strictly positive and hence (µ+γ)L+KX =
γL is indeed effective. The hypothesis is reminiscent of the sufficient criterion for
uniform K-stability of general polarisations of Fano varieties due to the first au-
thor [19] (and [20, Theorem 1.9]); the effectivity hypothesis, however, has a slightly
different flavour. It is interesting to ask whether one can prove that under the
hypothesis of Theorem 1.3 that (X,L) is actually uniformly K-stable, or admits a
constant scalar curvature Kähler metric. We refer work of K. Zhang [51, Corol-
lary 6.13] for a closely related analytic result, and also note that, under the alpha
invariant hypotheses just mentioned, the existence of such a metric is now known
[21, 14].

To this end, we remark that K. Zhang has recently introduced an analytic coun-
terpart δA(L) to the δ-invariant, and has made the strong conjecture that the two
invariants agree [51]2. Roughly speaking, δA(L) is the optimal constant for which
the entropy term in the Mabuchi functional on the space of Kähler metrics dom-
inates the (I − J)-functional. Thus one can ask whether, under the hypotheses
of Theorem 1.3 but replacing the bound on δ(L) with one on δA(L), that (X,L)
admits a cscK metric; this seems to require new ideas in comparison with the cor-
responding result concerning the alpha invariant [21], and perhaps suggests that
there are important properties of δ(L) yet to be discovered.

We finally remark that K. Zhang’s invariant has another more direct algebro-
geometric invariant, defined as the optimal constant for which the discrepancy
term of the Donaldson-Futaki invariant (defined in Equation (2.2)) dominates the
minimum norm:

(1.1) δH(L) = inf
(X ,L)

H(X ,L) Vol(L)

‖(X ,L)‖m
,

with the infimum taken over all test configurations. It would follow from Zhang’s
conjecture and other conjectures surrounding the Yau-Tian-Donaldson conjecture
that all three δ-invariants agree, and it is again natural to ask whether one can
prove that under the hypotheses of Theorem 1.3 but replacing the bound on δ(L)
with one on δA(L), (X,L) is uniformly K-stable; this would give some evidence for
K. Zhang’s conjecture, but also seems to require new ideas.

Outline. In Section 2 define the various notions of stability relevant to us, most
centrally valuative stability and K-stability. In Section 3 we prove Theorem 1.1
and variants for other notions of stability, such as K-polystability. In particular
3.10 proves valuative semistability implies K-semistability with respect to test con-
figurations with integral central fibre, with Lemma 3.12 relating the norms and

2K. Zhang has recently established his conjecture [52].
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demonstrating that uniform valuative stability implies uniform K-stability with re-
spect to the same class of test configurations. Proposition 3.15 and Lemma 3.16
give the converse. Section 4 provides various examples, including a proof of Theo-
rem 1.3, while Section 5 considers the toric setting, including a proof of Theorem
1.2.

Acknowledgements: We thank Ivan Cheltsov, Thibaut Delcroix, Kento Fujita
and Yaxiong Liu for helpful comments, and the referee for their suggestions.

Notation: We work throughout over the complex numbers, though everything
goes through over an algebraically closed field of characteristic zero. All varieties
are taken to be normal.

2. Preliminaries

2.1. Valuations and associated invariants. We define the invariants associated
to valuations of interest to us, and refer to [36] or the work of Fujita for an intro-
duction.

Let X and Y be normal projective variety, and let π : Y → X be a surjective
birational morphism, with X and Y of dimension n.

Definition 2.1. A prime divisor F ⊂ Y for some Y is called a prime divisor over
X.

We view F as defining a divisorial valuation on X; in particular, the information
associated to F which we will be concerned with depends only on the valuation
associated to F . In particular, one can always take Y to be smooth by passing to
a resolution of singularities.

Define a vector subspace H0(X, kL− xF ) ⊂ H0(X, kL) via the identifications

H0(X, kL− xF ) = H0(Y, kπ∗L− xF ) ⊂ H0(Y, kπ∗L) ∼= H0(X, kL),

where we note that the last isomorphism is canonical.

Definition 2.2. For x ∈ R, we define the volume of L− xF to be

Vol(L− xF ) := lim sup
k→∞

dimH0(X, kL− bkxcF )

kn/n!
.

A basic property is that the limsup defining the volume is actually a limit [36,
Remark 2.2.50]. The volume function extends by homogeneity from Pic(X) to
PicQ(X), and continuously from PicQ(X) to PicR(X). The big cone of X is the
locus inside PicR(X) of R-line bundles with positive volume; this is an open cone.

Theorem 2.3. [9] The volume is a continuously differentiable function on the big
cone of X.

For a big line bundle L on X, and another arbitrary line bundle H on X, we
denote by Vol(L)′ ·H the value

Vol(L)′ ·H =
d

dt
Vol(L+ tH)

∣∣∣
t=0

.

Definition 2.4. We define the pseudoeffective threshold of F with respect to L to
be

τL(F ) = sup{x ∈ R|Vol(L− xF ) > 0.}
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Observe that if j > τL(F ), then H0(Y,m(π∗L− jF )) = 0.
We now assume that KX and KY are Q-Cartier.

Definition 2.5. The log discrepancy AX(F ) is defined to be

ordF (KY − π∗KX) + 1.

In all cases of interest to us, X will have either log canonical or log terminal
singularities, from which it follows that AX(F ) ≥ 0 in the former case and AX(F ) >
0 in the latter.

An important class of divisors are those which are dreamy.

Definition 2.6. [26, Definition 1.3] We say that F is dreamy if for some (equiva-
lently any) r ∈ Z>0 the Z⊗2

≥0-graded C-algebra⊕
j,k∈Z≥0

H0(X, krL− jF )

is finitely generated.

While this concept depends on L, we will always omit this from our notation.

Example 2.7. Suppose Y a Fano type variety, in the sense that there exists an
effective Q-divisor D on Y such that (Y,D) is log terminal and such that −(KY +D)
is big and nef. Then any F ⊂ Y is dreamy [5, Corollary 1.3.1]. This applies, for
example, if Y is itself Fano or toric.

Not all prime divisors are dreamy, however. An example of a non-dreamy prime
divisor F over (P2,−KP2) has been produced by Fujita [28, Example 3.8].

Now let (X,L) be an n-dimensional normal polarised variety, by which we mean
that L is an ample line bundle on X. The invariant of ultimate interest to us is the
following analogue of Fujita’s β-invariant. Denote by

µ = µ(X,L) =
−KX .L

n−1

Ln

the slope of (X,L). It is interesting to note the value µ(X,L) can be interpreted
as a derivative of the volume, namely

−nµ(X,L) = Vol′(L) ·KX .

Definition 2.8. Let F be a prime divisor over (X,L). We define the β-invariant
of F to be

β(F ) = AX(F ) Vol(L) + nµ

∫ ∞
0

Vol(L− xF )dx+

∫ ∞
0

Vol′(L− xF ) ·KXdx.

Remark 2.9. The integrands vanish once x ≥ τ(F ), meaning one can instead
define

β(F ) = AX(F ) Vol(L) + nµ

∫ τ(F )

0

Vol(L− xF )dx+

∫ τ(F )

0

Vol′(L− xF ) ·KXdx.

Example 2.10. Suppose L = −KX , so that (X,−KX) is a Fano variety. Then we
show in Corollary 3.11 using integration by parts that

β(F ) = AX(F ) Vol(−KX)−
∫ τ(F )

0

Vol(−KX − xF )dx,

which is precisely Fujita’s β-invariant [26]. Thus our invariant is a generalisation
of Fujita’s invariant to arbitrary polarised varieties.
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There are three natural numerical invariants on the space of divisorial valuations
which, roughly speaking, play the role of norms. Following Fujita and Blum-Jonsson
[26, 7], we set

S(F ) =

∫∞
0

Vol(L− xF )dx

Ln
,

j(F ) = Ln(τ(F )− S(F )) =

∫ ∞
0

(Vol(L)−Vol(L− xF ))dx.

Proposition 2.11. The quantities τ(F ), S(F ) and j(F ) are strictly positive on
the space of non-trivial divisorial valuations. Moreover, they are each mutually
uniformly bounded above and below.

That is, for example, there are constants c1, c2 > 0 such that for all non-trivial
prime divisors F we have

0 < c1S(F ) ≤ τ(F ) ≤ c2S(F ).

Proof. The proof is essentially the same as that of Fujita and Fujita-Odaka in the
case of Fano varieties with L = −KX [30, 29], and in particular the perspective of
viewing these as analogous to norms is due to Fujita [29].

We begin by noting that each is strictly positive on non-trivial divisorial valu-
ations. This is clear for τ(F ) and S(F ), and for j(F ) follows from the fact that
Vol(L− xF ) < Vol(F ) for each x ∈ (0, τ(F )).

Thus what remains to show is Lipschitz equivalence. We claim

(2.1)
1

n+ 1
τ(F ) ≤ S(F ) ≤ τ(F ).

Arguing as in [30, Lemma 1.2], note that∫ ∞
0

Vol(L− xF )dx ≤ Lnτ(F )

since Vol(L−xF ) ≤ Vol(F ). Thus S(F ) ≤ τ(F ). Concavity of the volume function
gives

Vol(L− xF ) ≥ Ln
(

x

τ(F )

)n
,

which implies S(F ) ≥ 1
n+1τ(F ).

By transitivity of Lipschitz equivalence, what remains is to show that τ(F ) is
Lipschitz equivalent to j(F ). We claim

1

n+ 1
τ(F )Ln ≤ j(F ) ≤ n

n+ 1
τ(F )Ln,

which is equivalent to asking

1

n+ 1
τ(F ) ≤ τ(F )− S(F ) ≤ n

n+ 1
τ(F ).

But this is a simple rearrangement of Equation (2.1). �

Remark 2.12. These quantities are closely related to the functionals I, J and
I − J on the space of Kähler potentials in a fixed Kähler class, together with their
analogues for test configurations, which play similar roles. In particular, S(F ) is
analogous to the minimum norm of a test configuration; this observation is due
to Fujita and Blum-Liu-Zhou [29, 6]. We also note that Boucksom-Jonsson have



8 RUADHAÍ DERVAN AND EVELINE LEGENDRE

recently proven a stronger result than Proposition 2.11, that applies to more general
“non-Archimedean metrics” [11, Theorem C].

Definition 2.13. We say that a polarised variety (X,L) is

(i) valuatively semistable if
β(F ) ≥ 0

for all dreamy prime divisors F over (X,L);
(ii) valuatively stable if

β(F ) > 0

for all non-trivial dreamy prime divisors F over (X,L);
(iii) uniformly valuatively stable if there exists an ε > 0 such that

β(F ) ≥ εj(F )

for all dreamy prime divisors F .

One could, of course, use any of the three Lipschitz equivalent norms; we use j(F )
to mirror Fujita’s original definitions in the Fano setting.

Remark 2.14. The invariants of interest scale as

βkL(F ) = knβL(F ), jkL(F ) = kn+1jL(F ).

Thus (X,L) is valuatively semistable, for example, if and only if (X, kL) is so. This
allows us to scale L harmlessly in many of the arguments, simplifying the notation.

Remark 2.15. In general, it is not clear whether or not to expect that in the
definitions of valuative uniform and semistability one can remove the dreaminess
hypothesis; it is unlikely that the analogue of this is true for stability.

2.2. K-stability. The primary aim of the present work is to relate valuative stabil-
ity to K-stability. This involves a class of degenerations, called test configurations,
as well as an associated numerical invariant.

Definition 2.16. [22, 46] A test configuration is a normal variety X with a line
bundle L together with

(i) a flat projective morphism X → C, making L relatively ample,
(ii) a C∗-action on (X ,L) making π an equivariant map with respect to the usual

action on C,

such that (Xt,Lt) ∼= (X,Lr) for all t 6= 0 and for some r ∈ Z>0. We call r the
exponent of the test configuration.

Since there is a C∗-action on the central fibre (X0,L0), there is an induced C∗-
action on H0(X0,Lk0) for all k. The total weight of this C∗-action is, for k � 0, a
polynomial of degree n+ 1 which we denote

wtH0(X0,Lk0) = b0k
n+1 + b1k

n +O(kn−1).

We similarly denote the Hilbert polynomial by

dimH0(X0,Lk0) = a0k
n + a1k

n−1 +O(kn−1).

Definition 2.17. [22] The Donaldson-Futaki invariant of (X ,L) is defined to be

DF(X ,L) =
b0a1 − b1a0

a0
.

Definition 2.18. [22] We say that (X,L) is
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(i) K-semistable if for all test configurations (X ,L), we have DF(X ,L) ≥ 0;
(ii) K-stable if for all non-trivial test configurations (X ,L), we have DF(X ,L) > 0.

Here a test configuration is trivial if it is of the form (X × C, L), with trivial
C∗-action on X.

In the equivariant setting, we assume G ⊂ Aut0(X,L) is a connected subgroup of
the connected component of the identity Aut0(X,L) of Aut(X,L). A test configu-
ration is then called G-equivariant if there is a G-action on (X ,L) which commutes
with π and extends the usual action on the fibres (Xt,Lt) over t ∈ \{0}.
Definition 2.19. We say that (X,L) is G-equivariantly K-polystable if for all G-
equivariant test configurations (X ,L) we have DF(X ,L) ≥ 0, with equality if and
only if (X0,L0) ∼= (X,Lr) for some r ∈ Z>0.

Another useful perspective on the Donaldson-Futaki invariant is via intersection
theory. For this it is convenient to rescale L so that on the general fibre it is
isomorphic to L rather than Lr; this may make L a Q-line bundle. We will always
assume that we have performed this scaling. While this will not be used in our proof
of Theorem 1.1, it will be important in motivating our discussion concerning the
various delta invariants contained in the introduction, and will give some motivation
for the definitions of the norms which will be introduced momentarily. A test
configuration can be compactified to a family over P1, by compactifying trivially
at infinity. We denote this compactification, abusively, by (X ,L), with X now a
projective variety.

Theorem 2.20. [41, 48] We have

DF(X , L) =
n

n+ 1
µ(X,L)Ln+1 + Ln.KX/P1 ,

where KX/P1 denotes the relative canonical class, which is a Weil divisor by nor-
mality of X . Moreover,

b0 =
Ln+1

(n+ 1)!
.

We next turn to the analogues of norms for test configuration. Much as for
valuations, there are three natural norm-type quantities one can use. Passing to a
resolution of indeterminacy of the rational map X ×P1 99K X if necessary, we may
assume that X admits a morphism to X × P1. All quantities defined in this way
are independent of choice of resolution of indeterminacy.

Definition 2.21. [20, 10] We define

JNA(X ,L) =
L.Ln

Ln
− Ln+1

(n+ 1)Ln
,

‖(X ,L)‖m =
Ln+1

(n+ 1)Ln
− L

n.(L − L)

Ln
,

INA(X ,L) = ‖(X ,L)‖m + JNA(X ,L),

and call ‖(X ,L)‖m the minimum norm of the test configuration.

We have divided the minimum norm by an unimportant factor of Ln in com-
parison with it original definition [20], to remain consistent with the literature
elsewhere. Boucksom-Hisamoto-Jonsson denote

INA(X ,L)− JNA(X ,L) = ‖(X ,L)‖m,



10 RUADHAÍ DERVAN AND EVELINE LEGENDRE

to emphasise the links to the associated functionals used in Kähler geometry; we
prefer to use the terminology of [20] to emphasise that it plays the role of a norm
(which can more geometrically be defined via the minimum weight of an associated
C∗-action, explaining its name).

Proposition 2.22. [20, 10] The quantities JNA(X ,L), INA(X ,L) and ‖(X ,L)‖m
are strictly positive when (X ,L) is non-trivial, and are moreover are mutually uni-
formly bounded below and above.

The mutual uniform boundedness is due to Boucksom-Hisamoto-Jonsson.

Definition 2.23. [20, 10] We say that (X,L) is uniformly K-stable if there exists
and ε > 0 such that for all test configurations (X , L)

DF(X ,L) ≥ ε‖(X ,L)‖m.

The final numerical invariant which plays only a minor role in the present work
is the non-Archimedean entropy [10, Definition 7.17]:

(2.2) H(X ,L) =
Ln.KX/X×P1

Ln
+
Ln.(X0,red −X0)

Ln
,

computed as above on a resolution of indeterminacy, and with X0,red denoting the
the central fibre given the induced reduced structure. This invariant is, up to the
error term vanishing when the central fibre of the test configuration is reduced, the
same as the “discrepancy term” of Odaka [41].

By work of Witt Nyström, a test configuration induces a filtration of the coor-
dinate ring of (X,L) [49].

Definition 2.24. A filtration of

R = ⊕k≥0H
0(X, kL)

is a chain of vector subspaces

R = F0R ⊃ · · · ⊃ FiR ⊃ Fi+1R ⊃ · · · ⊃ C

which is

(i) multiplicative, in the sense that (FiRl)(FjRm) ⊂ Fi+jRl+m;
(ii) homogeneous, in the sense that if f ∈ FiR then each homogeneous piece of f

is in FiR.

Theorem 2.25. [49] Let (X ,L) be a test configuration, and denote

F jRk = {s ∈ Rk|t−js is holomorphic on X}.

Then F is a filtration.
Set

λ
(k)
min = inf{j ∈ R|F jVk 6= Vk}, λ(k)

max = sup{j ∈ R|F jVk 6= 0},

and let

λmin = lim
k→∞

λ
(k)
min

k
, λmax = lim

k→∞

λ
(k)
max

k
.
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Then the weight polynomial of (X ,L) is given for k � 0 by

w(k) =

λ(k)
max∑

j=λ
(k)
min

j(dimF jV k − dimFj+1V k),

=

λ(k)
max∑

j=λ
(k)
min

dimF jVk + λ
(k)
min dimVk.

Remark 2.26. In fact, by rescaling L so that the test configuration has exponent

one, one can assume that λ
(k)
max = kλmax and λ

(k)
min = kλmin. Geometrically, taking

s ∈ H0(X0,L0) is a section of maximal weight, for example, then s⊗k is a section of
H0(X0, kL0) of weight kwt(s). It follows from [42, Lemma 4] that no section can
have weight greater than that of s⊗k.

Of most importance for us will be integral test configurations. Recall that a
scheme is integral if it is reduced and irreducible.

Definition 2.27. We say that a test configuration (X ,L) is integral if its central
fibre X0 is an integral scheme. We then say that a polarised variety (X,L) is

(i) integrally K-semistable if for all integral test configurations (X ,L) we have

DF(X ,L) ≥ 0;

(ii) integrally K-stable if for all non-trivial integral test configurations (X ,L) we
have

DF(X ,L) > 0;

(iii) uniformly integrally K-stable if there exists an ε > 0 such that for all integral
test configurations (X ,L) we have

DF(X ,L) ≥ ε‖(X ,L)‖m;

(iv) G-equivariantly integrally K-polystable if for all G-equivariant integral test
configurations (X ,L) we have

DF(X ,L) ≥ 0,

with equality only when (X ,L) is a product test configuration. When G is
taken to be the identity, we simply say (X,L) is integrally K-polystable.

The total space X of a test configuration is always an irreducible variety, hence X
itself is always an integral scheme, so no confusion will arise from the terminology.

Example 2.28. Integral K-semistability should not be equivalent to K-semistability.
Counterexamples to the equivariant version of this claim arise in the toric setting,
giving strong evidence that this claim fails in general. Restricting to toric test
configurations (that is, those equivariant under the torus action), the only integral
toric test configurations are those induced by C∗-actions on the variety itself. Thus
a counterexample to the equivariant version of this question is given by any toric
variety which has vanishing Futaki invariant, but which is K-unstable. Examples
of this kind have been produced by Donaldson [22, Section 7.2].

The key hypothesis is the irreducibility of the central fibre, rather than it being
reduced:
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Lemma 2.29. Integral K-semistability is equivalent to asking

DF(X ,L) ≥ 0

for all test configurations (X ,L) with irreducible central fibre. Analogous statements
also hold for (equivariant) K-polystability and uniform K-stability.

Proof. The proof follows the proofs of analogous statements for K-stability of po-
larised varieties [1, 38] [10, Proposition 7.15]. Suppose (X ,L) is a test configuration
with central fibre irreducible, but not reduced. Taking the normalised base change
(X(d),L(d)) over the finite cover C→ C induced by t→ td for d sufficiently divisible
induces a test configuration with reduced and irreducible central fibre. But from
Boucksom-Hisamoto-Jonsson [10, Proposition 7.8 and Proposition 7.15], we have

DF(X(d),L(d)) ≥ dDF(X ,L),

‖(X(d),L(d))‖m = d‖(X ,L)‖m,

with equality in the first equation if and only if (X0,L0) is actually reduced. This
proves the result. �

This justifies why in the Introduction we only mention test configurations with
irreducible central fibre.

3. Integral K-stability and valuative stability

Here we prove our main result:

Theorem 3.1. A polarised variety (X,L) is

(i) valuatively semistable if and only if it is integrally K-semistable;
(ii) valuatively stable if and only if it is integrally K-stable;

(iii) uniformly valuatively stable if and only if it is uniformly integrally K-stable.

The proof will take the entirety of the current section. Many of the ideas involved
in our proof of the above follow the work of Fujita in the case of Fano varieties
[26, 25], and the primary differences arise due to the difference in the definition of
the Donaldson-Futaki invariant for arbitrary polarised varieties. In particular, for
integral test configurations for Fano varieties, one can understand the Donaldson-
Futaki invariant entirely from the leading order term b0 of the associated weight
polynomial, while this is no longer the case for arbitrary polarised varieties.

3.1. Passing from a valuation to a test configuration. We begin by showing
that K-semistability, and its variants respectively, implies valuative semistability,
and its variants. Let F ⊂ Y → X be a dreamy prime divisor over X. The goal
of the present section is to produce an integral test configuration associated to F .
The approach follows the streamlined strategy of Fujita, improving on his earlier
technique.

For any k ∈ Z>0, denote the vector space

Vk = H0(X, kL).

Associate to the prime divisor F over X the vector subspace

F jVk = H0(X, kL− jF ) if j ≥ 0,
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with F jVk = Vk otherwise. Since F is dreamy, we can define a scheme

X = ProjC
⊕
k∈Z≥0

⊕
j∈Z

t−jF jVk


by taking relative Proj over C. Thus by the relative Proj construction X admits a
morphism to C and a line bundle L = O(1) which is relatively ample over C.

Lemma 3.2. (X ,L) is an integral test configuration for (X,L).

Proof. The proof is in essence identical to Fujita’s proof in the Fano setting [25,
Lemma 3.8], but we recall his proof for the reader’s convenience. It follows from
[10, Proposition 2.15] and [49, 45] that (X ,L) is a test configuration (apart from
the claim that X is normal, which we will shortly demonstrate).

We show that X0 is an integral scheme, by showing that its coordinate ring is
an integral domain. Note that by construction its coordinate ring is given by⊕

k≥0

H0(X0, kL0) ∼=
⊕

j,k∈Z≥0

F jVk/F j+1Vk,

and denote Sk,j = F jVk/F j+1Vk. Suppose s1 ∈ Sk1,j1\{0}, s2 ∈ Sk2,j2\{0}. Thus
by definition of F jVk, the product section s1 ⊗ s2 vanishes precisely j1 + j2 times
along F . It follows that s1⊗s2 ∈ Sk1+k2,j1+j2\{0}, which shows that X0 is integral.
Since X0 is reduced, it follows that X is normal. �

We next interpret the Donaldson-Futaki invariant of (X ,L) in terms of the fil-
tration F associated to F . By construction of (X ,L) and Theorem 2.25, it follows
that the associated weight polynomial takes the form

w(k) =

λ(k)
max∑

j=λ
(k)
min

dimF jVk + λ
(k)
min dimVk,

= f(k) + λ
(k)
min dimVk,

(3.1)

where

f(k) =

λ(k)
max∑

j=λ
(k)
min

dimF jVk,

= fn+1k
n+1 + fnk

n +O(kn−1).

(3.2)

As usual, the weight polyonial is only a genuine polynomial for k � 0. Rescaling
L so that the test configuration has exponent one, by Remark 2.26 we may assume

that λ
(k)
min = kλmin, λ

(k)
max = kλmax.

Corollary 3.3. The numerical invariants of the test configuration are given by

DF(X ,L)fn + n
µ(X,L)

2
fn+1

and

λmax = τ(F ), λmin = 0.
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Proof. The description of λmin, λmax follows immediately from the description of
the filtration. For k � 0 asymptotic Riemann-Roch provides

dimH0(X, kL) =
Ln

n!
kn +

−KX .L
n−1

2(n− 1)!
kn−1 +O(kn−2),

from which the result follows using Theorem 2.25. �

Remark 3.4. We will shortly see that the pseudo-effective threshold τ(F ) is ra-
tional, since F is assumed to be dreamy.

3.2. Running the MMP. In the range x < τ(F ) we are interested in, the line
bundle L−xF is merely a big line bundle in general. We next use the minimal model
program to produce birational models of Y on which L−xF is actually ample. The
ampleness will then allow us to give a geometric understanding of the Donaldson-
Futaki invariant of the test configuration produced in the previous section. The
following is a direct consequence of [34], using the dreaminess hypothesis.

Theorem 3.5. [34, Theorem 4.2] There exists a sequence of rational numbers

0 = τ0 < τ1 < · · · < τm = τL(F ),

and birational contractions
ϕj : Y 99K Yj

such that (ϕj)∗(L − xF ) is ample for all x ∈ (τj−1, τj) and semiample for all
x ∈ [τj−1, τj ], and each Yj is a normal projective variety.

Moreover, for x ∈ (τj−1, τj), the map ϕj is L − xF negative, in the sense that
letting (p, q) : Z → Y × Yj be a resolution of indeterminacy we have

p∗(L− xF ) = q∗((ϕj)∗(L− xF )) + E,

where E ≥ 0 is effective and SuppE contains the proper transform of the ϕj-
exceptional divisors. In particular, for all k ≥ 0 and x ∈ (τj−1, τj) there is a
canonical isomorphism

(3.3) H0(Y, k(L− xF )) = H0(Yj , (ϕj)∗(kL− kxF )).

Denote
Lj = (ϕj)∗L, Fj = (ϕj)∗F.

The most important consequence is the following.

Proposition 3.6. The leading coefficients of f(k) are given as

fn+1 =

m∑
j=1

1

n!

∫ τj

τj−1

(Lj − xFj)ndx,

fn = −
m∑
j=1

1

2(n− 1)!

∫ τj

τj−1

((Lj − xFj)n−1.(KYj + Fj)dx.

Moreover for x ∈ [τj−1, τj ], we have an equality

Vol(L− xF ) = (Lj − xFj)n.

Proof. The claim concerning the coefficients of f(k) follows from Fujita’s variant of
asymptotic Riemann-Roch [23, Proposition 4.1], using the isomorphism of Equation
(3.3). This isomorphism also proves the claim concerning the volume, using as well
that the volume function is continuous in x. �
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It remains to interpret fn more geometrically. We will require the following
minor variant of [26, Claim 5.6].

Lemma 3.7. Let F ′ 6= F be a π-exceptional divisor. Then F ′ is ϕj-exceptional.
Thus

KYj − (ϕj)∗π
∗KX = (AX(F )− 1)Fj .

Proof. The claim concerning ϕj-exceptionality follows from [26, Claim 5.6], whose
proof does not use anything specific to his situation that does not apply to ours.
That all such F ′ are ϕj-exceptional implies

(ϕj)∗(KY − π∗KX) = (AX(F )− 1)Fj .

But since ϕj is a birational contraction,

(ϕj)∗(KY ) = KYj ,

proving the final statement. �

The following geometric description of fn explains the appearance of the deriv-
ative of the volume in β(F ).

Lemma 3.8. For any Cartier divisor E on Y and any x ∈ [τj−1, τj ], there is an
equality

(Lj − xFj)n−1.((ϕj)∗E) =
1

n
Vol′(L− xF ) · E.

Proof. We argue analogously to the above. By differentiability of the volume, it is
enough to prove the result for any fixed x ∈ (τj−1, τj). Thus ϕj is L−xF negative,
and hence it is also L−xF+tπ∗E negative for all t sufficiently small. It then follows
from [34, Remark 2.4 (i)] that for all m ≥ 0 for which L− xF + tE is integral that

H0(Y,m(L− xF + tE)) = H0(Yj ,m(Lj − xFj + t(ϕj)∗E)),

which implies

Vol(L− xF + tπ∗E) = (Lj − xFj + t(ϕj)∗E)n

as for t small this line bundle is ample. Differentiating gives the result. �

We are now in a position to relate the numerical invariants of interest.

Proposition 3.9. The Donaldson-Futaki invariant of DF(X ,L) is given by

2(n− 1)!DF (X ,L) = AX(F ) Vol(L) + nµ

∫ τ(F )

0

Vol(L− xF )dx+

∫ τ(F )

0

Vol′(L− xF ) ·KX ,

= β(F ).

Proof. By what we have proven so far and Lemma 3.7

2(n−1)! DF(X ,L) =

m∑
j=1

∫ τj

τj−1

(Lj−xFj)n−1. (((ϕj)∗π
∗KX +AX(F )Fj) + (Lj − xFj)) dx.

Thus by Proposition 3.6 and Lemma 3.8

2(n−1)! DF(X ,L) =

∫ τ(F )

0

(µVol(L−xF ) +
1

n
Vol′(L−xF ) · (KX +AX(F )F ))dx.
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The fundamental theorem of calculus implies∫ τ(F )

0

Vol′(L− xF ) · Fdx = Ln,

hence

2(n−1)! DF(X ,L) = AX(F ) Vol(L)+

∫ τ(F )

0

(nµVol(L−xF )+Vol′(L−xF )·KX)dx,

which is our formula for β(F ). �

Corollary 3.10. Valuative semistability implies integral K-semistability.

It also follows that β(F ) generalises the usual β-invariant used in the study of
Fano varieties.

Corollary 3.11. We have

β(F ) = AX(F ) Vol(L)−µ
∫ τ(F )

0

Vol(L−xF )dx+

∫ τ(F )

0

Vol′(L−xF )·(µL+KX)dx.

Thus when L = −KX , β(F ) agrees with Fujita’s invariant.

Proof. Integrating by parts gives∫ τ(F )

0

(L− xF )n−1.Ldx =

(
1 +

1

n

)∫ τ(F )

0

Vol(L− xF )dx,

which provides the second interpretation of DF(X ,L). When L = −KX , the term
involving µL + KX = 0 in the formula β(F ) vanishes, recovering Fujita’s formula
in this case since µ = µ(X,−KX) = 1. �

We next turn to the norms involved. It seems most convenient to use JNA and
j(F ), though one could use any of the Lipschitz equivalent norms.

Lemma 3.12. We have

Vol(L) JNA(X ,L) = j(F ).

Proof. [10, Lemma 7.7] gives

L.Ln

Ln
= λmax = τ(F ),

which is one of the terms in interest in

JNA(X ,L) =
L.Ln

Ln
− Ln+1

(n+ 1)Ln
.

The remaining term can be understood through Theorem 2.20 from the leading
order term of the weight polynomial b0, giving

JNA(X ,L) = τ(F )− n!b0
Ln

.

Since the leading order term of the weight polynomial satisfies by Equation (3.1)

b0 = fn+1 + λmina0 = fn+1,

the equality λmin = τ(L) together with the equation for fn+1 given by Propositon
3.6 provides

Vol(L) JNA(X ,L) =

∫ τ(F )

0

(Vol(L)−Vol(L− xF ))dx = j(F ),
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as required. �

3.3. The converse. We now show that valuative semistability implies integral K-
semistability. Thus let (X ,L) be an integral test configuration. We fix a resolution
of indeterminacy as follows.

(3.4)

Y

X × P1 X

q
p

Denote by X̂0 the strict transform of X0 in Y. Then by pulling back functions from
X to Y, X̂0 induces a divisorial valuation on X which we denote vX0 [10, Section
4.2]. The induced valuation is independent of choice of resolution of indeterminacy.
The filtration associated to (X ,L) can then be understood through the divisor

p∗L − q∗L = D.

Lemma 3.13. [10, Lemma 5.17] The filtration associated to (X ,L) can be described
as

F jVk = {f ∈ Vk|vX0
(f) ≥ −k ordX̂0

(D) + j}.
Thus when j ≥ k ordX̂0

(D) we have

F jVk = H0(X, kL− (k ordX̂0
(D) + j)vX0

),

with F jVk = Vk otherwise.

In fact Boucksom-Hisamoto-Jonsson’s result is more general, but the resulting
filtration simplifies when the central fibre X0 is integral. Note that X0 is dreamy,
since the filtration F is finitely generated as it arises from a test configuration [10,
Proposition 2.15]. The maximal and minimal weights are thus the following.

Corollary 3.14. We have

λmax = τ(vX0) + ordX̂0
(D),

λmin = ordX̂0
(D).

Using this, we can relate the Donaldson-Futaki invariant and the norm.

Proposition 3.15. The Donaldson-Futaki and β-invariants agree u to a constant:

2(n− 1)! DF(X ,L) = β(vX0
).

Proof. From the definition of the filtration and a change of variables in the integral,
we have

w(k) =

∫ τ(vX0
)

0

h0(X, kL− xvX0
)dx+ k ordX0

(D)h(k).

Adding a constant multiple of kh(k) to the weight polynomial, which geometrically
corresponds to adding a constant to the weight polynomial, leaves the Donaldson-
Futaki invariant unaffected, so we may disregard the term k ordX0(D)h(k). Since
vX0

is a dreamy prime divisor, we may apply the arguments of Section 3.2 to
understand the integral

f(k) =

∫ τ(vX0
)

0

h0(X, kL− xvX0
)dx.
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Indeed, this is precisely the polynomial considered in Section 3.2, showing by Propo-
sition 3.9 that 2(n− 1)! DF(X ,L) = β(vX0). �

A similar calculation applies to the norm, the details are the same as Lemma
3.12 and are thus left to the interested reader.

Lemma 3.16. We have

Vol(L) JNA(X ,L) = j(vX0).

Remark 3.17. In the case that the central fibre X0 is actually smooth or has
orbifold singularities, the Donaldson-Futaki invariant of (X ,L) agrees with the
classical Futaki invariant of the induced holomorphic vector field on X0 by a result
of Donaldson [22, Proposition 2.2.2]. Thus in this situation, the beta invariant of the
induced divisorial valuation β(vX0) also agrees with the classical Futaki invariant,
since by our results 2(n− 1)! DF(X ,L) = β(vX0

).

3.4. Equivariant K-polystability. We now turn to the equivariant setting. The
key notion is the slightly non-geometric notion of a product type dreamy prime
divisor, based on the definition due to Fujita in the Fano setting [25, Definition
3.9]. From Lemma 3.2 we obtain a test configuration, which we denote (XF ,LF ).

Definition 3.18. We say that a dreamy prime divisor F over (X,L) is of product
type if its associated test configuration (XF ,LF ) is a product test configuration.

The reason we have postponed this definition until the present section is that
the definition relies on the correspondence between integral test configurations and
dreamy prime divisors. What we have proven thusfar immediately produces:

Corollary 3.19. A polarised variety (X,L) is integrally K-polystable if and only
β(F ) ≥ 0 for all dreamy prime divisors F over (X,L), with equality if and only if
F is of product type.

We finally turn to G-equivariant K-polystability, with G ⊂ Aut0(X,L) a con-
nected algebraic group. We say that a dreamy prime divisor F ⊂ Y is G-invariant
if there is a G action on Y , making the map Y → X a G-invariant map, such that
F is itself a G-invariant divisor on Y (by which we mean G sends F to itself rather
than F being contained in the fixed point locus of G). The following is a variant
of work of Golota and Zhu [32, 53].

Theorem 3.20. A polarised variety (X,L) is G-equivariantly integrally K-polystable
if and only if β(F ) ≥ 0 for all G-invariant dreamy prime divisors F over (X,L),
with equality if and only if F is of product type.

Proof. The claim follows from two facts. The first is that the valuation vX0 associ-
ated to a G-equivariant integral test configuration (X ,L) is a G-invariant valuation.
This follows directly from its construction. Indeed, taking a G-equivariant resolu-
tion of indeterminacy

Y

X × P1 X ,

one realises the proper transform X̂0 ⊂ Y0 as a G-invariant divisor of Y, implying
that vX0

is a G-invariant divisorial valuation on X, exactly as in Golota’s proof in
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the Fano case [32, Proposition 3.13]. The second is that the integral test configu-
ration associated with a G-invariant dreamy prime divisor is a G-equivariant test
configuration, which, as noted by Zhu in the Fano setting [53, Theorem 3.5], follows
immediately from its definition as

X = ProjC
⊕
k∈Z≥0

⊕
j∈Z

t−jF jVk

 ,

with the G-action induced from the natural action on⊕
k∈Z≥0

⊕
j∈Z

t−jF jVk.

�

4. Examples and properties

4.1. Calabi-Yau and canonically polarised varieties. It is a well-known result
of Odaka that Calabi-Yau varieties and canonically polarised varieties are K-stable
[40], and one can even show that they are uniformly K-stable [20, 10]. It follows
from Theorem 1.1 that they are, therefore, also valuatively stable. Nevertheless,
it seems worth providing a direct proof as a demonstration of how to understand
valuative stability. We will use the δ-invariant δ(L), which is defined as [30, 7]

δ(L) = inf
F

AX(F ) Vol(L)∫∞
0

Vol(L− xF )dx
.

Theorem 4.1. Let (X,L) be a polarised variety and suppose that either

(i) X has log terminal singularities KX = 0; or
(ii) X has log canonical singularities and L = KX .

Then (X,L) is uniformly valuatively stable.

Proof. (i) In this case, the invariant of interest simplifies to

βL(F ) = AX(F )Ln,

which is clearly non-negative. To show strict positivity, we use a result of Blum-
Jonsson which implies that, since X has log terminal singularities, δ(L) > 0 [7,
Theorem A] and hence

β(F ) ≥ δ(L)S(F ),

proving the result by Proposition 2.11.
(ii) Using µ(X,KX) = −1, one calculates

βKX (F ) = AX(F )(KX)n +

∫ τ(F )

0

Vol(KX − xF )dx.

Since X has log canonical singularities, AX(F ) ≥ 0, and the result follows again

by Lipschitz equivalence of j(F ) and
∫ τ(F )

0
Vol(KX − xF )dx proved in Proposition

2.11. �

We next turn to a sufficient criterion involving δ = δ(L).

Theorem 4.2. Write δ(L)− µ(L) = (n+ 1)γ(L), and suppose

(µ(L) + γ(L))L+KX is effective.

Then (X,L) is uniformly valuatively stable.
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Proof. We use the formulation of Corollary 3.11, which demonstrates that

β(F ) = AX(F ) Vol(L)− µ
∫ ∞

0

Vol(L− xF )dx+

∫ ∞
0

Vol′(L− xF ) · (µL+KX)dx.

We write (n + 1)γ = (n + 1)γ′ + ε, with ε > 0 chosen so that (µ + γ′)L +
KX is effective; such a choice exists since effectivity is an open condition in the
Néron-Severi group.

Since by definition of δ there is a lower bound

AX(F ) Vol(L) ≥ δ
∫ ∞

0

Vol(L− xF )dx,

the β-invariant has a lower bound of the form

β(F ) ≥ (δ − µ)

∫ ∞
0

Vol(L− xF )dx+

∫ ∞
0

Vol′(L− xF ) · (µL+KX)dx,

= (n+ 1)γ

∫ ∞
0

Vol(L− xF )dx+

∫ ∞
0

Vol′(L− xF ) · (µL+KX)dx.

Note from integration by parts as in the proof of Corollary 3.11 that∫ ∞
0

Vol(L− xF )dx = (n+ 1)

∫ ∞
0

Vol′(L− xF ) · Ldx.

Thus

β(F ) ≥ ε
∫ ∞

0

Vol(L− xF )dx+

∫ ∞
0

Vol′(L− xF ) · ((µ+ γ′)L+KX)dx.

The proof is concluded by noting that since (µ + γ)L + KX is assumed effective,
the derivative of the volume in this direction is non-negative [9, Corollary C], with
the term ε

∫∞
0

Vol(L− xF )dx providing uniform valuative stability by Proposition
2.11. �

The same proof shows that provided (µ+ γ)L+KX is nef, (X,L) is valuatively
semistable. We remark that in the case L = −KX , this result recovers Fujita-
Odaka’s result that if δ(−KX) > 1, then (X,−KX) is uniformly valutively stable
(hence uniformly K-stable by the work of Fujita and Li [26, 37]). Thus Theorem
4.2 can be through of as a generalisation of Fujita-Odaka’s work to more general
polarised varieties.

Remark 4.3. It is interesting to note that the dreaminess hypothesis is irrelevant
in all of our sufficient criteria for valuative stability.

4.2. Valuatively unstable varieties. Since valuative stability implies the classi-
cal Futaki invariant vanishes, one obtains many examples of valuatively unstable
varieties. It seems worth providing one calculation of this fact directly. The exam-
ple we choose is the blow up of P2 at a point, which is K-unstable with respect to
any polarisation. We show that it is even valuatively unstable.

Proposition 4.4. Blp P2 is valuatively unstable with respect to any polarisation.

Proof. We show that the exceptional divisor destabilises. Note that as X is Fano,
the exceptional divisor is dreamy with respect to any polarisation by Example 2.7.

Let H be the pullback of the hyperplane class on P2 to Blp P2, and let E be the
exceptional divisor. The ample divisors are of the form

xH − yE, x > y ≥ 0;
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this line bundle is nef when x = y. The big divisors are of the form

xH − yE, x ≥ 0.

By [36, Example 2.2.46], the volume is given by

Vol(xH − yE) = x2 − y2, when x > y ≥ 0,

= x2, when x ≥ 0, y ≤ 0.

Thus the pseudoeffective threshold is

τxH−yE(E) = x− y.
A calculation then gives that

βxH−yE(E) = x2−y2+
6x− 2y

x2 − y2

∫ x−y

0

(x2−y2−2yz−z2)dz+

∫ x−y

0

(−6x+2y+2z)dz.

By homogeneity, in considering the sign of this invariant, we may assume that
x = 3. Then we have

β3H−yE(E) = −4(y − 3)2y

3(y + 3)
,

which is negative for 0 < y < 3. Note that when y = 1, the polarisation is given by
the anticanonical class, β3H−E(E) = −4/3 and one can check this agrees with the
calculation of Fujita’s β-invariant.

�

Example 4.5. It is in general not difficult to produce valuatively unstable varieties
with discrete automorphism group. For example, let E be a simple unstable vector
bundle over a polarised Riemann surface (B,L) of genus at least one. Then we
claim (P(E), kL + OP(E)(1)) is valuatively unstable for all k � 0. Indeed, any
subbundle F ⊂ E induces a test configuration

(P(E),OP(E)(1))→ B × C

with E a bundle over B × C which satisfies

E0 ∼= F ⊕ E/F.
Thus P(E)0 is smooth, hence integral. Since B has dimension one and E is by
hypothesis unstable, there exists a destabilising subbundle F ⊂ E. It then follows
from a result Ross-Thomas that the Donaldson-Futaki invariant of (P(E), kL +
OP(E)(1)) is strictly negative for k � 0 [43, Section 5.4], and hence by Theorem
1.1 is also valuatively unstable. The associated divisorial valuation is induced by
P(E)0 through the constructions.

4.3. Bounds on the alpha invariant. Recall that the alpha invariant of (X,L)
is defined as

α(X,L) = inf
D∈|kL|

lct

(
X,

1

k
D

)
,

where

lct(X,D) = sup{t ∈ R>0 | (X, tD) is log canonical}.
Fujita-Odaka have shown that K-semistable Fano varieties have alpha invariant
bounded below by 1

n+1 [30]. The analogue for for general K-semistable varieties is

the following. Let us say that (X,L) is strongly valuatively semistable if β(F ) ≥ 0
for all prime divisors over X, not necessarily dreamy.



22 RUADHAÍ DERVAN AND EVELINE LEGENDRE

Theorem 4.6. Suppose (X,L) is a strongly valuatively semistable. Then

α(X,L) ≥ µ(X,L)

n+ 1
.

Proof. Consider a divisor D ∈ |kL|. Note that lct(X,D) = AX(D) [35, Proposition
8.5]. By working withD as a Q-divisor, we may assume k = 1, and hence τL(D) = 1.
It follows that

βL(D) = lct(X,D)Ln + nµ

∫ 1

0

(1− x)n Vol(L)dx+

∫ 1

0

(1− x)n−1 Vol′(L) ·KXdx,

= lct(X,D)Ln +
Ln

n+ 1
+ Ln−1.KX .

By hypothesis, (X,L) is a strongly valuatively semistable, and hence βL(D) ≥ 0.
Thus

lct(X,D) ≥ µ(X,L)

n+ 1
.

The result follows by taking the infimum over all such D. �

In the toric setting, we can replace strong valuative semistability with valuative
semistability.

Corollary 4.7. Suppose (X,L) is a valuatively semistable toric variety. Then

α(X,L) ≥ µ(X,L)

n+ 1
.

Proof. By a result of Cheltsov-Shramov, the alpha invariant α(X,L) can be com-
puted using toric divisors D on X [12, Lemma 5.1]; the proof degenerates an arbi-
trary divisor in the linear system |kL| to a linearly equivalent one which is invariant
under each C∗-action inside the torus successively, and uses that the log canonical
threshold can only drop when taking such a limit.

Thus let D be a toric divisor. Since D is toric, one can take a toric resolution of
singularities Y → X of (X,D). Since Y is toric, the proper transform of D on Y
is thus dreamy. This means that in the previous argument, we can weaken strong
valuative semistability to simply valuative semistability, proving the result. �

These results are of course only interesting when µ(X,L) > 0; this is automatic
for toric varieties. Since K-semistability implies valuative semistability, the above
applies to K-semistable toric varieties.

5. Toric varieties

Let X = XΣ be a compact n–dimensional toric variety associated to a fan
Σ ⊂ NR where N is the lattice of circle subgroups of the torus TN ' (C∗)n. We
first consider valuative stability for toric divisors on X itself. We follow the notation
of [17] and thus denote M = N∗ the lattice of characters of TN and Σ(1) the set
of rays of Σ. Each ρ ∈ Σ(1) determines both a prime divisor Dρ and an element
uρ ∈ N , namely the (unique) primitive vector in ρ ∩N , see [17, §4.1]. The ample
line bundle corresponds to a full dimensional lattice polytope P = PL (uniquely
determined by the linear equivalence of L up to a translation) whose fan is Σ.

We will consider the case where Σ is simplicial, to ensure that XΣ is a Mori
dream space [33]. In that case, XΣ has at worst orbifold singularities; equivalently
it is normal and Q–factorial (i.e any Weil divisor is Q-Cartier) [17, p.549].
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The torus relative Futaki invariant of a toric polarised variety (X,L) can be
identified with the difference of the barycentres of the polytope PL and its boundary
as highlighted in [22]. More precisely, NR is the Lie algebra of the real compact
torus lying in TN and thus parameterises the space of toric holomorphic vector
fields on X. Alternatively, elements of NR are identified with affine-linear functions
on PL. The Futaki invariant in this setting coincides, up to a positive factor, with
a function Fut : NR → R defined at f ∈ NR by

(5.1) Fut(f) =
1

VolM (∂PL)

∫
∂P

f$∂P − 1

VolM (PL)

∫
P

f$M

where VolM (∂PL) =
∫
∂P

$∂P , VolM (PL) =
∫
P
$M and the measures $M and $∂P

will be defined in the next paragraph. It follows from this formula (5.1), since f is
affine linear, that the vanishing of the Futaki invariant for all such functions f is
equivalent to the barycentres of P and ∂P being the same, as claimed.

We now recall the definition of the measures used to compute these barycentres.
With the lattice M comes a unique measure on MR, the Lebesgue measure, scaled
so that MR/M has volume 1. The same happens for each rational subspaces H
of MR, i.e., those such that M ∩ H span H. In particular, this is true for the
hyperplane ρ∨ +m where ρ ∈ Σ(1) and m ∈M and more generally by translation
for m ∈MR. These measures will be encoded by volume forms, say $M ∈ Λn(MR)
and $ρ ∈ Λn−1(ρ∨ + m). We define $∂P so that its restriction to the facet of P
corresponding to ρ ∈ Σ(1) equals $ρ.

Remark 5.1. Note that along ρ∨ +m, we have

(5.2) uρ ∧$ρ = −$M

so the Futaki invariant formula (5.1) coincides with Donaldson’s formula in [22].

Recall that a Cartier divisor D on X is necessary of the form D ∼
∑
ρ∈Σ(1) aρDρ

and is associated to a polyhedron

PD := {m ∈MR | 〈m,uρ〉 ≥ −aρ, ρ ∈ Σ(1)}.
For ρ ∈ Σ(1), we define the (possibly empty) convex set FPDρ := PD ∩ {m ∈
MR | 〈m,uρ〉 = −aρ}. The boundary of PD, if non-empty, is an union of set of the
forms FPDρ . If D is ample FPDρ is a non empty codimension 1 face for any ρ ∈ Σ(1),

otherwise FPDρ might be of lower dimension or empty. If dimFPDρ < dimMR − 1

then FPDρ has no contribution on the following numerical invariant:

VolM (∂PD) :=
∑

ρ∈Σ(1)

∫
F
PD
ρ

$ρ.

Here, if dimFPDρ = n− 1, then FPDρ is endowed with the orientation coming from

the inclusion FPDρ ⊂ PD; that is,
∫
F
PD
ρ

$ρ > 0.

Thanks to [17, Theorem 4.1.3], VolM (∂PD) depends on D only up to linear
equivalence. The notation VolM (∂PD) might be misleading because when dimPD =
n − 1, the usual boundary ∂PD = ∅ but VolM (∂PD) 6= 0. This situation does not
happen when D is big [17, p.427].

Lemma 5.2. Let L be an ample line bundle over X = XΣ. For any x ∈ [0,+∞)
and ρ ∈ Σ(1), we have Vol(L) = n! VolM (P ),

Vol(L− xDρ) = n! VolM (PL ∩ (〈, uρ〉 ≥ x− aρ)),
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and for x ∈ [0, τL(Dρ))

Vol′(L− xDρ) · (KX) = −n! VolM (∂(PL−xDρ)).

Proof. The first two statements are proved by substituing −KX with L in Fujita’s
argument of Claim 6.2 in [23]. For the last statement, note that for x ∈ [0, τL(Dρ)),
the divisor L − xDρ is big and thus Px := PL−xDρ is a full dimensional polytope,
and the same hold for Px,t := PL−xDρ+tKX when t ∈ R is sufficiently small. We
pick aλ(x) ∈ R so that

L− xDρ ∼
∑

λ∈Σ(1)

aλ(x)Dλ

and recall that −KX ∼
∑
λ∈Σ(1)Dλ [17, Theorem 8.2.3]. Hence

L− xDρ + tKX ∼
∑

λ∈Σ(1)

(aλ(x)− t)Dλ.

Assuming t > 0, Px,t ⊆ Px and if ε > 0 is small enough the combinatorial type
of Px,t does not depend on t ∈ [0, ε). Then

VolM (Px,t) = VolM (Px)−VolM (Px\Px,t)

= VolM (Px)−
∫ t

0

VolM (∂Px,s)ds.
(5.3)

The derivative with respect to t of the right hand side is −VolM (∂(PL−xDρ)).

To conclude the proof, one argues that the left hand side is C1 so that we may
compute the derivative at t = 0 using any converging sequence (so assuming t > 0
is sufficient). �

Corollary 5.3. For a compact toric variety XΣ and ample bundle L, we have that

µ(X,L) =
VolM (∂PL)

nVolM (PL)

and for any prime toric divisor D = Dρ, we have

βL(D) = VolM (PL) +
VolM (∂PL)

VolM (PL)

∫ τ

0

VolM (PL−xD)dx−
∫ τ

0

VolM (∂(PL−xD)dx.

Lemma 5.4. Fix λ ∈ Σ(1) and an ample line bundle L. We have

βL(Dλ)

VolM (∂PL)
= 〈bPL − b∂PL , uλ〉

where bPL := bar(PL, $
M ) and b∂PL := bar(∂PL, $Σ) are the barycentres.

Remark 5.5. Whenever L = −KX , using −KX ∼
∑
λ∈Σ(1)Dλ one can check that(

1 +
1

n

)
bP = b∂P

and we recover Fujita’s formula [23, Theorem 6.1].

Proof. We denote P = PL, Px := PL−xDλ and τ = τDλ(L). Note that

P =
⊔

0≤x≤τ

Fλ,x
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where Fλ,x = P ∩ {m ∈MR | 〈m,uλ〉 = −aλ + x} and L =
∑
ρ∈Σ(1) aρDρ. Then,∫

P

〈m,uλ〉$M =

∫ τ

0

(x− aλ)

(∫
Fλ,x

$λ

)
dx =

∫ τ

0

(x− aλ) Volλ(Fλ,x)dx

where Volλ(Fλ,x) :=
∫
Fλ,x

$λ. Now, we have

Volλ(Fλ,x) =
−1

n!

d

dx
Vol(L− xDλ) = − d

dx
VolM (PL−xDλ).

Hence, using integration by parts, we obtain

(5.4)

∫
P

〈m,uλ〉$M = −aλ VolM (P ) +

∫ τ

0

VolM (PL−xDλ) dx.

We define the affine-linear function `λ(m) = 〈m,uλ〉+ aλ so that 0 = minP {`λ}
and thus τ = maxP {`λ}. The boundary barycentre gives

(5.5) 〈b∂P , uλ〉+ aλ =
1∫

∂P
$Σ

∫
∂P

`λ$Σ.

As before we can write∫
∂P

`λ$Σ =

∫ τ

0

xVoln−2
λ,$ (∂P ∩ {`λ = x})dx

where Voln−2
λ,$ (∂P ∩ {`λ = x}) is the volume of ∂P ∩ {`λ = x} with respect to a

volume form and orientation that are cumbersome to define but satisfy

− d

dx
VolM (∂P ∩ {`λ > x}) = Voln−2

λ,$ (∂P ∩ {`λ = x}).

Using that VolM (∂P ∩ {`λ > x}) = VolM (∂Px) − Volλ(Fλ,x) and integration by
parts produces

∫
∂P

`λ$Σ =

∫ τ

0

d (x [VolM (∂Px)−Volλ(Fλ,x)]) +

∫ τ

0

(VolM (∂Px)−Volλ(Fλ,x)) dx

= −τ VolM (∂Pτ ) + τ Volλ(Fλ,τ ) +

∫ τ

0

VolM (∂Px)dx − VolP

=

∫ τ

0

VolM (∂Px)dx − VolP.

(5.6)

Here, VolM (∂Pτ ) := limx→τ VolM (∂Px) and for the last line we have used that
VolM (∂Pτ ) = Volλ(Fλ,τ ). Indeed, if there is no parallel facets to FPλ in P then
both vanish, while if Fλ,τ is a facet of P then VolM (∂Pτ ) = Volλ(Fλ,τ ). We get the
result we seek by combining (5.6), (5.5) and (5.4). �

5.1. Star subdivision. We next consider the case of a toric prime divisor on a
birational toric model Y → X. Assume again that X = XΣ is a compact toric
manifold with (complete and simplicial) fan Σ. Consider uν ∈ N a primitive lattice
element with ray ν = Cone(uν) and the associated star subdivision Σ∗ν := Σ∗(ν) as
defined in [17, p.515] which is refinement of Σ. Note that

Σ∗ν(1) = Σ(1) ∪ {ν}
as proved in [17, Theorem 11.1.6] and that Σ∗ν is complete and simplicial. Thus
Σ∗ν is associated to a (normal) compact toric variety say Y , with at worst orbifold
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singularities [17, Theorem 11.4.8], and on which ν defines Dν , a prime Weil divisor.
This divisor is the exceptional divisor of the toric morphism ψ : Y → X induced
from the inclusion ψ : Σ∗ν → Σ.

We assume that ν /∈ Σ(1) (actually the case ν ∈ Σ(1) coincides with what we
have done above) and denote σ the cone of Σ of minimal dimension, say r, among
those containing ν. Thus σ(1) = {u1, . . . , ur} and there exists ci ∈ N∗ such that
uν =

∑r
i=1 ciui. Using [17, Lemma 11.4.10], we have that

KY +Dν = ψ∗KX +AX(Dν)Dν

where AX(Dν) =
∑r
i=1 ci.

Letting L =
∑
ρ∈Σ aρDρ be an ample line bundle over X, we denote ϕL : Σ→ R,

the support function of L (so that aρ = −ϕL(uρ)). Using the fact that the support
function of ψ∗L =: H is also ϕL (see the proof of [17, Lemma 11.4.10]) we obtain
that

H =

(
−

r∑
i=1

ciϕL(ui)

)
Dν +

∑
ρ∈Σ

aρDρ.

Moreover, since L is ample on X there are points m ∈ PL such that 〈m,ui〉 =
ϕL(ui), ∀ui ∈ σ(1). More precisely, the hyperplane A := {m ∈ MR | 〈m,uν〉 =∑r
i=1 ciϕL(ui)} intersects PL in a face F whose normal cone is σ. Denote the

affine-linear function

`ν(m) := 〈m,uν〉 −
r∑
i=1

ciϕL(ui).

We have that PL ⊂ {`ν ≥ 0} and thus PH = PL.
Observe that in the proof of Lemma 5.4 does not use that Cone(uλ) ∈ Σ, hence

recycling it in our case gives

(5.7)
βL(Dν)

VolM (∂PL)
= (AX(Dν)− 1)

VolM PL
VolM (∂PL)

+ 〈bPL − b∂PL , uν〉.

Corollary 5.6. Assume that the (torus relative) Futaki invariant of (X,L) vanishes
identically (i.e bPL = b∂PL). To any primitive vector ν ∈ N there is an associated a
valuation Dν , defined via the refinement Σ∗ν as above, which satisfies βL(Dν) ≥ 0.
Moreover, equality holds if ν ∈ Σ(1).

Suppose now that Y is a compact toric variety Y and ψ : Y → X is a proper
birational toric morphism with exceptional (toric prime) divisor F . Note that in

that situation, Y is associated to a fan, Y = XΣ̃, and the associated map ψ : Σ̃→ Σ

is a refinement. Also, Σ̃ must be of the form above using the description of the
exceptional sets [17, Proposition 11.1.10]. Thus Corollary 5.6 gives a complete
description of toric valuative stability.

Proof of Theorem 1.2. Assume βL(F ) ≥ 0 for any toric prime divisor F over X.
Because X compact, Σ is complete and thus some positive real numbers tρ > 0
satisfy ∑

ρ∈Σ(1)

tρuρ = 0.

By linearity of the Futaki invariant and by Lemma 5.4, we have

0 ≤
∑

ρ∈Σ(1)

tρβL(Dρ) = VolM (∂PL)
∑

ρ∈Σ(1)

tρFutL(uρ) = 0.
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Thus, βL(Dρ) = 0 for any ρ ∈ Σ(1). The converse is Corollary 5.6. �
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models. (Kyoto, 2011), 215–245, Adv. Stud. Pure Math., 70, Math. Soc. Japan, [Tokyo],
2016.

[35] J. Kollár, Singularities of pairs. Algebraic geometry–Santa Cruz 1995, 221-287, Proc.

Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997.
[36] R. Lazarsfeld, Positivity in algebraic geometry I: Classical setting line bundles and

linear series. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of

Modern Surveys in Mathematics, 48. Springer-Verlag, Berlin, 2004. xviii+387 pp.
[37] C. Li, K-semistability is equivariant volume minimization. Duke Math. J. 166 (2017),

no. 16, 3147-3218.

[38] C. Li and C. Xu, Special test configuration and K-stability of Fano varieties. Ann. of
Math. (2) 180 (2014), no. 1, 197-232.

[39] Y. Liu, C. Xu and Z. Zhuang, Finite generation for valuations computing stability
thresholds and applications to K-stability arXiv:2102.09405, 36pp.

[40] Y. Odaka, The Calabi conjecture and K-stability. Int. Math. Res. Not. IMRN 2012, no.

10, 2272-2288.
[41] Y. Odaka, A generalization of the Ross-Thomas slope theory. Osaka J. Math. 50 (2013),

no. 1, 171-185.
[42] D. Phong and J. Sturm, Test configurations for K-stability and geodesic rays. J. Sym-

plectic Geom. 5 (2007), no. 2, 221-247.

[43] J. Ross and R. Thomas, An obstruction to the existence of constant scalar curvature

Kähler metrics. J. Differential Geom. 72 (2006), no. 3, 429-466.
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