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We investigate the dynamics of a spinor Bose-Einstein condensate inside an optical cavity, driven
transversely by a laser with a controllable polarization angle. We focus on a two-component Dicke model
with complex light-matter couplings, in the presence of photon losses. We calculate the steady-state phase
diagram and find dynamical instabilities in the form of limit cycles, heralded by the presence of exceptional
points and level attraction. We show that the instabilities are induced by dissipative processes that generate
nonreciprocal couplings between the two collective spins. Our predictions can be readily tested in state-of-
the-art experiments and open up the study of nonreciprocal many-body dynamics out of equilibrium.
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Introduction.—Ultracold atomic gases loaded into opti-
cal cavities form an ideal setup for the study of quantum
many-body systems far from equilibrium [1]. Their large
cooperativity allows reaching the strong light-matter cou-
pling regime [2,3] and cavity photon losses enable in situ
monitoring of the many-body dynamics in real time [4,5].
A representative example of this idea is the experimental
realization of the Dicke superradiant phase transition [6–8],
using the motional degrees of freedom of a Bose-Einstein
condensate (BEC) [9,10], which provided access to the
observation of critical phenomena [11] and driven-
dissipative dynamics [12]. This was also discussed in
several theoretical works [13–17]. Further advances have
led to the study of competition between short- and long-
ranged interactions using optical lattices [18–20], the
simulation of continuous symmetry breaking with multiple
cavities [21,22], and the observation of complex many-
body phenomena in multimode cavities [23–25].
Recently, considerable progress has been made, both

theoretically [26,27] and experimentally [28–32], on the
coupling of multiple internal atomic states to the cavity
modes, given its potential for quantum simulation of
magnetism [27] and for quantum-enhanced metrology
[31,32]. The focus of these studies has been, however,
on the coherent effects of the coupling, leaving the impact
of dissipative processes largely unexplored. Dissipation can
have noticeable effects on the properties of many-body
systems, such as modifying the nature of phase transitions
[33,34], the form of the phase diagram [35,36], their
dynamical evolution [37–40], or giving rise to topological
effects [41]. Therefore, it is exciting to explore the impact
of dissipation on these complex systems.
In this paper we investigate the driven-dissipative

dynamics of a spinor BEC composed of two hyperfine
states coupled to a single mode of an optical cavity, as
experimentally realized in Ref. [29], see Fig. 1. This can be

captured by an open two-component Dicke model with
complex light-matter couplings. We uncover the emergence
of a novel unstable region that, as we show, is induced by
the photon losses. Our results are to be seen in contrast to
previous studies where this type of dissipation leads to
only minor quantitative changes in the phase diagram
[13–17,42]. By adiabatically eliminating the cavity field,
we find that the interplay between dissipation and complex
coupling results in level attraction between eigenfrequen-
cies and the appearance of antidamping, with the emer-
gence of instabilities being heralded by the presence of
exceptional points in the spectrum. In the unstable region,
the antidamping prevents the system from approaching a
stable steady-state fixed point and leads to limit-cycle
oscillations in the long-time limit. We trace this complex
phenomena back to dissipative processes of the cavity
field mediating nonreciprocal interactions between the
spins. Going beyond adiabatic elimination, we find cavity

FIG. 1. Spinor Bose-Einstein condensate composed of two
hyperfine states mF ¼ �1, coupled to a single-mode optical
cavity with photon loss rate κ and transversely driven by a laser
whose polarization vector ϵ⃗p is at an angle φ with respect to the
cavity field polarization vector ϵ⃗c. This leads to a finite con-
tribution from the vectorial polarizability of the atoms, resulting
in complex light-matter couplings, of equal strength but opposite
phase, between the hyperfine states and the cavity field [29].
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fluctuations to generate an additional antidamping con-
tribution that renders the normal phase unstable.
Nevertheless, we show that this contribution remains
negligible for typical parameters in the current generation
of experiments [29,30], allowing for observation of the
aforementioned phenomena.
Model.—We consider a gas of ultracold spin-1 atoms

forming a BEC inside an optical cavity, see Fig. 1. The
atoms are coupled to a single cavity mode via a linearly
polarized laser that pumps the system transversely. The
atoms mediate two-photon scattering processes between
the cavity and the pump which lead to transitions between
the BEC state jk0i and the excited states jk⃗�;�i ¼
j � ðk⃗c � k⃗pÞi, where k⃗c;p are cavity and pump momenta,

respectively. We fix jk⃗cj ¼ jk⃗pj ¼ k and, in this case, all the

states jk⃗�;�i are degenerate; thus for each atom i the
transitions take place between jk0ii and the symmetric state
jkii ¼ 1

2

P
μ;ν¼�jk⃗μ;νii [9]. This allows for a description of

the system in terms of collective spin operators, which, in
the rotating frame of the pump, reads (ℏ ¼ 1) [29]

Ĥ¼−Δâ†âþ
X
mF

ω0Ĵz;mF
þ Ĵx;mFffiffiffiffiffiffiffiffiffi

NmF

p ðλ�mF
âþλmF

â†Þ; ð1Þ

where â is the bosonic annihilation operator for the cavity
field and Δ ¼ ωp − ωc is the detuning between the cavity
ωc and the pump ωp frequency. The operator Ĵα;mF

¼P
iσ̂

i
α;mF

is a collective spin operator, where σ̂z;mF
¼

jkiiihkj − jk0iiihk0j and σ̂ix;mF
¼ 1

2
ðjk0iiihkj þ H:c:Þ. The

level splitting ω0 equals twice the recoil frequency
ωr ¼ k2=2m, and NmF

is the number of atoms in spin
state mF. The third term in Eq. (1) describes the scattering
of a pump photon into the cavity mode, which is accom-
panied by an atomic transition. Misalignment between
pump and cavity polarizations induces a nonvanishing
vectorial component in the atomic polarizability, so
the spin states couple differently to the cavity [29].
The complex light-matter coupling λmF

¼ jλmF
jeiϕmF have

modulus jλmF
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2s cos2 φþ λ2vm2

F sin
2 φ

p
, where λs;v

is proportional to the scalar and vectorial atomic polar-
izabilities and φ the angle between the pump and
cavity polarization vectors ϵ⃗p and ϵ⃗c, and tanϕmF

¼
ðλvmF=λsÞ tanφ [29].
For the remainder of this Letter, we will focus on the case

N�1 ¼ N, jλ�1j ¼ λ and ϕ1 ¼ −ϕ−1 ¼ ϕ. We obtain a two-
component variant of the Dicke model [6–8]. We stress
that, for the Hamiltonian (1), the two effective atomic spins
cannot be encapsulated in a single collective spin due to the
phase difference between the couplings and that the phase
difference ϕ cannot be removed from the Hamiltonian by
any gauge transformation. Indeed, we find that it is one of
the key ingredients for the effects we discuss below.

The Hamiltonian (1) possesses a Z2 symmetry, associ-

ated with invariance under the transformation Û ¼ eiπN̂ ,

with N̂ ¼ â†âþP
σ¼�1Ĵz;σ , which can be understood as

parity conservation of the total number of excitations in the
system. For ϕ ¼ 0, spontaneous breaking of this symmetry
results in the well-known superradiant phase transition of
the Dicke model [6–8], where the global spins acquire a
finite and equal x component. For the atom-cavity system,
this corresponds to a transition from the BEC state with no
photons inside the cavity, corresponding to the normal
phase (NP), into a self-organized, density-wave state (DW),
accompanied by the emergence of a macroscopic cavity
field [13–17]. It has been shown in Ref. [29] that for
ϕ ≠ 0, the spontaneous breaking of the Z2 symmetry can
lead to a different kind of superradiant order where the x
component of the collective spins antialign, corresponding
to each cloud of atoms self-organizing in opposite
checkerboard patterns, i.e., formation of a spin wave
(SW). In Fig. 2(a) we show the phase diagram obtained
within mean-field theory [43], in agreement with the
observations reported in Ref. [29], where the NP-DW as
well as the NP-SW boundaries are given by λd=scr ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið−ΔÞω0=(1� cos ð2ϕÞ)p

and the DW-SW boundary is
located at ϕ ¼ π=4. In the following we will study how this
phase diagram is modified when taking into account the
dissipative nature of the cavity.

(a)

(b)

FIG. 2. (a) Ground-state phase diagram, obtained from mean-
field theory, and (b) steady-state phase diagram, determined by the
semiclassical equations ofmotion anda linear stability analysis (2),
as a function of the light-matter coupling λ and phase ϕ, for
Δ ¼ −400ω0 and κ ¼ 250ω0. Going beyond adiabatic elimination
and including the cavity field fluctuations renders the NP unstable
(light orange shading) for ϕ ≠ 0;�ðπ=2Þ.
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Steady-state phase diagram.—We start by including
dissipation in our model via a Lindblad master equation
of the form ∂tρ̂ ¼ ð−iÞ½Ĥ; ρ̂� þ κðâ ρ̂ â† − 1

2
â†â ρ̂−

1
2
ρ̂â†âÞ, where κ is the photon loss rate. We first focus

on the bad-cavity limit, ðjΔj; κÞ ≫ ðω0; λÞ, as studied
experimentally in Refs. [29,30]. In this limit, the cavity
evolves much faster than the atoms, allowing us to
adiabatically eliminate the cavity by considering the
cavity field amplitude α ¼ hâi to be in the steady state
α≈ ðλ= ffiffiffiffi

N
p Þ½ðSx;1eiϕþSx;−1e−iϕÞ=ðΔþ i κ

2
Þ�, with Sσ;�1 ¼

hĴσ;�1i. By setting ∂tSσ;�1 ¼ 0 and factorizing higher-
order correlations, we obtain a set of algebraic equations for
the steady-state solutions [43]. To construct the phase
diagram, we determine the stability of these solutions by
linearizing the equations of motion around the steady state
Ĵσ;�1ðtÞ ≃ Sσ;�1 þ δĴσ;�1ðtÞ
0
BBBBBB@

δ _̂Jx;1

δ _̂Jy;1

δ _̂Jx;−1

δ _̂Jy;−1

1
CCCCCCA

¼

0
BBBB@

0 −ω0 0 0

ω0þξþ 0 χþ 0

0 0 0 −ω0

χ− 0 ω0þξ− 0

1
CCCCA

0
BBBBB@

δĴx;1

δĴy;1

δĴx;−1

δĴy;−1

1
CCCCCA
:

ð2Þ

We observe that the effects of the eliminated cavity field
are that of introducing a frequency splitting ξ� between
the spin components, and inducing effective interactions
between the spins χ�, with both ξ� and χ� functions of the
external and order parameters. Note that these are in general
different χþ ≠ χ−, resulting in a nonreciprocal coupling.
This means that the spins respond differently to the motion
of the other one, which turns out to have a strong impact on
the driven-dissipative dynamics of the system. The result-
ing phase diagram is shown in Fig. 2(b), where we identify
five different phases, classified by the order parameters
Sx;�1 and the number of stable solutions, which we will
now describe in turn.
The most striking difference with the ground-state phase

diagram is the emergence of an unstable region inside the
NP. To understand this, we look at the spectrum of the
dynamical matrix in Eq. (2), which in the NP (Sx;�1 ¼ 0)
reads

η�;� ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0ðω0 þ ξÞ � ω0

ffiffiffiffiffiffiffiffiffiffiffi
χþχ−

pq
; ð3Þ

where ξ ¼ ξ� ¼ ΩΔ and χ� ¼ Ω½Δ cosð2ϕÞ ∓
ðκ=2Þ sinð2ϕÞ�, with Ω ¼ λ2=½Δ2 þ ðκ2=4Þ�. From this
expression, we see that when the couplings χ� acquire
opposite sign, tan2 ð2ϕÞ > 4Δ2=κ2, the imaginary parts
(frequencies) coalesce, while the real parts (decay rates)
become finite, resulting in the emergence of decay and

antidamping, see Fig. 3(a). This phenomenon is known
as level attraction and can only arise in non-Hermitian
matrices, such as the dynamical matrix in Eq. (2) [44].
This is signaled by the presence of exceptional points,
where the eigenvalues are degenerate and the eigenvectors
coalesce. In our case, this corresponds to tan2 ð2ϕÞ ¼
4Δ2=κ2, where we have χ� ¼ 0. The emergent antidamping
is what makes the NP unstable. This can be observed in
Fig. 4, where we show the time evolution of the cavity field,
from the semiclassical equations of motion [43]. Initializing
the system in the NP with small fluctuations in the cavity
field, we see how the system does not remain in this phase,
but becomes unstable and at long times features a limit
cycle [45].
We trace the origin of the unstable behavior to the

cavity field mediating nonreciprocal interactions. The
form of the couplings follows from the equations of
motion of the cavity field in the NP, yielding
χ�¼− i

2
λ��1λ∓1χRþ i

2
λ�1λ

�∓1χ
�
R, with χR ¼ ð−iΔþ κ=2Þ−1

the cavity response function in the bad-cavity limit. Each
term represents an amplitude for a photon scattering
process from one spin to another, with χ� being the total
scattering amplitude for each pathway. For κ ¼ 0, the total
scattering amplitudes are symmetric under the exchange of
spins (χþ ¼ χ−). Conversely, for finite κ, the phase shift
induced by the cavity response results in the interference
between the scattering amplitudes being different for each
pathway, leading to a nonreciprocal coupling. Thus, we can
conclude that emergence of the dynamical instability is a
consequence of the dissipative nature of the cavity field.
Note that, nevertheless, the phase difference between λ�1

is a crucial ingredient, as for ϕ ¼ 0 both pathways are
equivalent, independently of the value of κ. This constitutes
one of the major findings of this work, which should be
contrasted with the impact of photon loss in the standard
Dicke model. There, it leads to a shift of the critical point
[14–17,42] and a change in the critical exponent [15], but
the ground-state and steady-state phase diagrams are
qualitatively similar.
For λ>λSScr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð−ω0ÞðΔ2þκ2=4Þ�=½Δ�Δ2cos2ð2ϕÞ−ðκ2=4Þsin2ð2ϕÞ�

p
,

the system becomes unstable favoring two different
steady-state superradiant phases, which we denote as
SDW I and SDW II. These are different from the DW
and SW phases in Fig. 2(a) as the effects of dissipation in
the steady-state equations leads to jSx;1j ≠ jSx;−1j, resulting
in simultaneous presence of density- and spin-wave order.
The SDW I phase is a reminiscent of the DW phase with
two of solutions corresponding to the spins being almost
aligned and the SDW II phase is instead reminiscent of the
SW phase, with a pair of solutions associated with the spins
being almost antialigned. Finally, we identify a fifth phase
at large coupling λ, where both SDW I and II are steady
states of the system. This is analogous to the top middle
part in Fig. 2(a) where both the DW and SW phases are
local minima of the mean-field energy.
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Beyond adiabatic elimination.—Finally, we go beyond
adiabatic elimination and include cavity field fluctuations.
The steady-state equations for the cavity field α and spins
Sx;�1 remain unchanged. In the linear stability analysis we
now have to include the dynamics of the cavity-field
fluctuations δâ and δâ†, leading to a dynamical matrix
that is a 6 × 6matrix which does not allow for an analytical
expression for the eigenvalues. By solving these equations
numerically, we find that the resulting phase diagram is
qualitatively similar to the one presented in Fig. 2(b), with
the important exception of the NP being unstable for all
ϕ ≠ 0;�ðπ=2Þ [43]. This is due to a pair of complex
conjugate eigenvalues ε�þ with finite real positive part. In
Fig. 3(b), we show the real part of these eigenvalues. These
are finite for all ϕ ≠ 0;�ðπ=2Þ and they reduce to expres-
sion (3) we obtained above in the limit ðjΔj; κÞ ≫ ðω0; λÞ.
As a consequence the system is driven into limit cycles
all throughout the region associated with the solutions
Sx;�1 ¼ 0. This is shown in the inset of Fig. 4, where the
time evolution is considered at a point where adiabatic
elimination predicts the NP to be stable, i.e., λ < λSScr and
tan2 ð2ϕÞ < 4Δ2=κ2. We observe how the system initially
remains in the NP, but at longer times, the system dynamics
features limit-cycle behavior.
We investigate this further by calculating the eigenvalues

perturbatively, exploiting that this phenomenon is also
present at small λ. In Fourier space, the linearized equations
of motion for the cavity fluctuations are

χ−1R ðωÞδâðωÞ ¼ −iλ
2

ffiffiffiffi
N

p
X
σ

½δĴþσ ðωÞ þ δĴ−σ ðωÞ�eiσϕ −
ffiffiffi
κ

p
âin;

ð4Þ

with ½δâðωÞ�† ¼ δâð−ωÞ†, χRðωÞ ¼ ½−iðΔþ ωÞ þ κ=2�−1
the cavity response function at finite frequency, Ĵ� ¼
Ĵx � iĴy the spin raising and lowering operators, and âin
the cavity input noise. For λ ¼ 0, δĴþ�1 and δĴ

−
�1 rotate with

frequencies ω0 and −ω0, respectively. Using a rotating-
wave approximation, we can consider these pairs of modes
to be effectively uncoupled and focus only on the dynamics
of δĴ−�1. Substituting Eq. (4) into the equation of motion for
δĴ−�1ðωÞ, we obtain

�
iðω0−ωÞþ i

2
Σðω0Þ i

2
Λþðω0Þ

i
2
Λ−ðω0Þ iðω0−ωÞþ i

2
Σðω0Þ

��
δĴ−1
δĴ−−1

�
¼ ˆ⃗Γin

ð5Þ

with ΣðωÞ ¼ ðλ2=2Þ½−iχRðωÞ þ iχ�Rð−ωÞ� the self-energy
and Λ�ðωÞ ¼ ðλ2=2Þ½−iχRðωÞe∓2iϕ þ iχ�Rð−ωÞe�2iϕ� the
nonreciprocal coupling, where in the sprit of Fermi’s
golden rule we have evaluated the energy-dependent
self-energy and coupling at the unperturbed frequency of
the mode ω0 [46]. We have incorporated all noise terms

in ˆΓ⃗in. The spectrum follows from the determinant of the
dynamical matrix (5) as

ε−� ¼ −iω0 −
i
2
Σðω0Þ �

i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþðω0ÞΛ−ðω0Þ

p
: ð6Þ

The self-energy Σðω0Þ only provides a frequency shift and
a finite damping rate, given that for Δ < 0, Im½Σðω0Þ� < 0.
On the contrary, the couplingsΛ�ðω0Þ always yield an anti-
damping contribution, which cannot be compensated by the

(a) (b)

FIG. 3. (a) The imaginary and real part of the eigenvalues η�;�
of the dynamical matrix (2), resulting from adiabatic elimination
of the cavity field, for λ ¼ 2ω0, Δ ¼ −400ω0, and κ ¼ 250ω0.
We observe level attraction in the spectrum, consequence of the
emergence of exceptional points. (b) The real part of the pair of
eigenvalues ε�þ (solid lines) responsible for antidamping in the
NP, obtained from the full dynamical matrix including cavity
field fluctuations, for jΔj=ω0 ¼ 10; 25; 50; 100; 1000; 10000, κ ¼
0.625jΔj and λ ¼ 2ω0. As the bad-cavity limit is approached, the
eigenvalues reduce to η−;þ (dashed lines) given by Eq. (3). All
quantities are in units of ω0.

(b)

(a)

FIG. 4. Dynamics in the unstable regime, with Δ ¼ −40ω0,
κ ¼ 25ω0, λ ¼ 5ω0, and ϕ ¼ π=4. (a) Time evolution of the
average photon number, displaying limit-cycle oscillations in the
long-time limit. (b) Bloch spheres depicting the long-time
dynamics (blue) of the collective spins preceding the start of
the steady-state limit cycle (thick red line). Insets: (i) Magnified
picture of the limit-cycle oscillations. (ii) Time evolution for
ϕ ¼ 0.4, corresponding to the NP within adiabatic elimination,
but unstable when including the cavity field dynamics.
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self-energy damping, as they emerge in a � pair and due to
Im½Λþðω0ÞΛ−ðω0Þ� ≠ 0 for all ϕ ≠ 0;�ðπ=2Þ and κ ≠ 0.
Thus, the finite-frequency response of the cavity fluctua-
tions is responsible for the emergence of antidamping
and for the NP becoming unstable to self-sustained
oscillations. As expected, in the limit κ → 0, we obtain
Im½Λþðω0ÞΛ−ðω0Þ� → 0 and Re½Λþðω0ÞΛ−ðω0Þ� > 0,
thus restoring the stability of the NP and confirming again
the dissipative nature of the instability. Interestingly, in
this limit, the interaction still remains nonreciprocal
Λþðω0Þ ≠ Λ−ðω0Þ, meaning that outside the bad-cavity
regime the presence of nonreciprocity does not imply
unstable behavior. A second pair of eigenvalues εþ� is
obtained if one considers the dynamics of δĴþ�1 instead,
which together with Eq. (6) provides an approximate form
for the eigenvalues ε�þ shown in Fig. 3(b) in the limit of
small λ. The form of Eq. (6) also explains why in the bad-
cavity limit the instability is confined to a finite region.
More specifically, the bad-cavity limit is equivalent to
ω → 0, corresponding to the zero-frequency response
of the cavity fluctuations being the only component
playing a role in the dynamics. This leads to ΣðωÞ → ξ
and ΛþðωÞΛ−ðωÞ → χþχ−, i.e. the instability occurs if
χþχ− < 0, in agreement with our previous result.
Outlook.—Our work opens exciting avenues for future

investigations. First, finding an exact solution similar to
Ref. [47] or efficient numerics [48] would allow one to
explore the instability beyond the semiclassical approxi-
mation employed here. Second, nonreciprocity has
recently been investigated with several platforms [49–52]
that have been specifically engineered. Here, it emerges
naturally as a consequence of the dissipative nature
of the cavity field, offering a test bed for nonreciprocal
phenomena in a highly controlled environment. In par-
ticular, interesting directions include the impact of non-
reciprocity on higher-order photon correlations [53] or
on synchronization behavior [54]. Third, the effects of
interatomic interactions can be investigated with an addi-
tional optical lattice and lead to complex many-body
behavior [55]. Finally, following Refs. [29,30], we
expect the emergence of the unstable regime and the
steady-state phase diagram in Fig. 2 to be experimentally
observable, by means of photon counting and heterodyne
detection.
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Note added.—Recently, Ref. [56] has reported the obser-
vation of the dissipation-induced instability we discuss.

[1] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger,
Rev. Mod. Phys. 85, 553 (2013).

[2] F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and
T. Esslinger, Nature (London) 450, 268 (2007).

[3] Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger,
and J. Reichel, Nature (London) 450, 272 (2007).

[4] I. B. Mekhov, C. Maschler, and H. Ritsch, Nat. Phys. 3, 319
(2007).

[5] W. Chen, D. Meiser, and P. Meystre, Phys. Rev. A 75,
023812 (2007).

[6] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[7] K. Hepp and E. H. Lieb, Phys. Rev. A 8, 2517 (1973).
[8] Y. K. Wang and F. T. Hioe, Phys. Rev. A 7, 831 (1973).
[9] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,

Nature (London) 464, 1301 (2010).
[10] J. Klinder, H. Keßler, M. Wolke, L. Mathey, and A.

Hemmerich, Proc. Natl. Acad. Sci. U.S.A. 112, 3290 (2015).
[11] R. Mottl, F. Brennecke, K. Baumann, R. Landig, T. Donner,

and T. Esslinger, Science 336, 1570 (2012).
[12] F. Brennecke, R. Mottl, K. Baumann, R. Landig, T. Donner,

and T. Esslinger, Proc. Natl. Acad. Sci. U.S.A. 110, 11763
(2013).

[13] D. Nagy, G. Kónya, G. Szirmai, and P. Domokos, Phys. Rev.
Lett. 104, 130401 (2010).

[14] J. Keeling, M. J. Bhaseen, and B. D. Simons, Phys. Rev.
Lett. 105, 043001 (2010).

[15] D. Nagy, G. Szirmai, and P. Domokos, Phys. Rev. A 84,
043637 (2011).

[16] B. Öztop, M. Bordyuh, Ö. E. Müstecaplolu, and H. E.
Türeci, New J. Phys. 14, 085011 (2012).

[17] M. J. Bhaseen, J. Mayoh, B. D. Simons, and J. Keeling,
Phys. Rev. A 85, 013817 (2012).

[18] J. Klinder, H. Keßler, M. R. Bakhtiari, M. Thorwart, and A.
Hemmerich, Phys. Rev. Lett. 115, 230403 (2015).

[19] R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T.
Donner, and T. Esslinger, Nature (London) 532, 476 (2016).

[20] L. Hruby, N. Dogra, M. Landini, T. Donner, and T.
Esslinger, Proc. Natl. Acad. Sci. U.S.A. 115, 3279 (2018).
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