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Abstract

This paper concerns the influence of the phase of the heat release response on thermoacoustic systems. We focus on one pair of
degenerate azimuthal acoustic modes, with frequency ω0. The same results apply for an axial acoustic mode. We show how the
value φ0 and the slope −τ of the flame phase at the frequency ω0 affects the boundary of stability, the frequency and amplitude of
oscillation, and the phase φqp between heat release rate and acoustic pressure. This effect depends on φ0 and on the nondimensional
number τω0, which can be quickly calculated. We find for example that systems with large values of τω0 are more prone to oscillate,
i.e. they are more likely to have larger growth rates, and that at very large values of τω0 the value φ0 of the flame phase at ω0 does
not play a role in determining the system’s stability. Moreover for a fixed flame gain, a flame whose phase changes rapidly with
frequency is more likely to excite an acoustic mode.

We propose ranges for typical values of nondimensional acoustic damping rates, frequency shifts and growth rates based on a
literature review. We study the system in the nonlinear regime by applying the method of averaging and of multiple scales. We
show how to account in the time domain for a varying frequency of oscillation as a function of amplitude, and validate these results
with extensive numerical simulations for the parameters in the proposed ranges. We show that the frequency of oscillation ωB and
the flame phase φqp at the limit cycle match the respective values on the boundary of stability. We find good agreement between
the model and thermoacoustic experiments, both in terms of the ratio ωB/ω0 and of the phase φqp, and provide an interpretation of
the transition between different thermoacoustic states of an experiment. We discuss the effect of neglecting the component of heat
release rate not in phase with the pressure p as assumed in previous studies. We show that this component should not be neglected
when making a prediction of the system’s stability and amplitudes, but we present some evidence that it may be neglected when
identifying a system that is unstable and is already oscillating
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Nomenclature

′ the prime denotes time derivative of the preceding
quantity

ˆ the hat denotes the Fourier transform of the underlying
quantity

p acoustic pressure, suitably nondimensionalized

u acoustic velocity in the azimuthal direction, suitably
nondimensionalized

uax acoustic velocity in the axial direction, typically long
the axis of the burner, suitably nondimensionalized

q fluctuating heat release rate, suitably nondimensional-
ized, often called flame response

Q(A,ω) describing function of the fluctuating heat release rate
q = q[p] as function of p. Defined in (3)

Aj slowly varying amplitudes of oscillations, introduced
in (29)
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n azimuthal order of the mode, e.g. n = 3 refers to the
third azimuthal

α equivalent acoustic damping coefficient, appearing in
(7b)

β flame strength, i.e. the nondimensional linear flame
response gain as function of p, as in |q| ∝ β|p|

γk standard deviation of the k-th time delay, see (12), ap-
pearing also in Fig. 4

δ nonlinear saturation coeff. as in (37a)

ηjn amplitudes of the azimuthal acoustic velocity of the 2
modes as in (8), for j = 1, 2

η′j amplitudes of the acoustic pressure of the 2 modes as
in (8), for j = 1, 2

θ azimuthal coordinate along the annular combustion
chamber, θ ∈ [0, 2π)

κ nonlinear saturation coefficient, appearing in (16)

λ eigenvalue, λ = σ + iω, with ω in rad/s

µ L2 norm of the mode, as defined in (11)

ν expression for the growth rate appearing in (38)

σ growth rate, i.e. real part of the eigenvalue λ = σ+iω
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−τω0 Nondimensional slope of the flame phase in the vicin-
ity of the acoustic mode with frequency ω0

τ equivalent time delay of the transfer function q̂/p̂ as
introduced in (15), i.e. minus the local slope of of the
flame phase of such transfer function at frequencies
close to ω0.

φ(ω) flame phase response, i.e. the argument of Q, as func-
tion of the frequency ω. We assume that it does not
depend on the amplitude of oscillation A. This quan-
tity depends on the geometry upstream of the flame
and on the flame response.

φ0 flame phase at the acoustic frequency ω = ω0, i.e.
φ(ω0)

φqp phase between q and p of a thermoacoustic mode at
frequency ωB , i.e. φ(ωB)

ϕj slowly varying phase of the j-th azimuthal mode, j =
1, 2

ϕ slowly varying phase difference ϕ1 − ϕ2 of the two
azimuthal mode

χ radial and axial shape of the azimuthal modes, χ(r, z)

ω angular frequency, variable

ω0 angular acoustic frequency of oscillation when the
flame and the damping are virtually shut off and the
system becomes conservative. This is the frequency
of oscillation of the acoustic mode without being ex-
cited by the flame and without being damped by the
acoustic losses

ωB angular thermoacoustic frequency of the system if
the flame response gain β is virtually decreased un-
til the system is neutrally stable, i.e. the growth rate
σ becomes zero, solution of (27). We prove that ωB
is also the frequency of the limit-cycle solution if the
flame phase does not depend on the amplitude and the
damping losses are linear, as is the case in this work

ωLC angular frequency of oscillation at the limit cycle,
proved to match ωB

Ω Domain of the combustor

1. Introduction

We first review fundamentals of thermoacoustic instabilities
in §1.1 and present three key questions on the subject, then re-
view the existing literature in §1.2, and briefly outline the paper
in §1.3.

1.1. Motivation of this work

Rayleigh [1] was the first to observe that if part of the fluctu-
ating heat release rate q is in phase with the acoustic pressure p
self sustained acoustic oscillations can occur. Accounting also

for acoustic losses [2, 3], considering the case of a single acous-
tically compact flame and assuming a low Mach number flow,
the criterion requires that

1

T

∫ t+T

t

q(t)p(t)dt >
acoustic
losses

(1)

where T = 2π/ω is the period of the thermoacoustic instabil-
ity and ω its angular frequency, q and p are considered at the
flame location, and we assume thermodynamic equilibrium and
a perfect gas. Under suitable assumptions discussed later, one
can express1 the fluctuating heat release rate as function of the
pressure p as q = Q[p]. For the sake of brevity, in the following
we will often refer to q as the flame response to the pressure p,
or simply as the flame response. We assume and substitute a
sinusoidal pressure p(t) = A cos(ωt) in (1):

1

T

∫ t+T

t

Q[A cos(ωt)]A cos(ωt)dt >
acoustic
losses

(2)

We now define the describing function Q(A,ω) of an operator
Q of a sinusoidal input at frequency ω and with an amplitude A
similarly to [4]:

Q(A,ω) ≡ 1

A

2

T

∫ t+T

t

Q[A cos(ωt)]e−iωtdt (3)

We multiply and divide the left hand side of (2) by 2/A2, and
by substituting the real part of (3) we obtain

1

2
Re[Q(A,ω)]A2 >

acoustic
losses

(4)

On the left hand side, we recover the typical structure of a
conservative potential; for example, for a linear spring with
constant k loaded with a steady displacement A, the energy
is kA2/2, where the describing function is real valued, does
not depend on the amplitude A because the spring is linear and
matches the constant k. We can rewrite the complex valued de-
scribing function in terms of its real valued, non-negative gain
G and real valued phase response φ:

Q(A,ω) = G(A,ω)eiφ(A,ω) (5)

In the following we will refer for brevity toG as flame gain and
to φ as flame phase. By substituting (5) in (1) we obtain:

1

2
G(A,ω) cos (φ(A,ω))A2 >

acoustic
losses

(6)

Equation (6) allows the same interpretation of (1), but in terms
of the flame gainG and flame phase φ of the describing function
Q. We then review known results discussed first by [1]. We
observe that the acoustic loss term on the right hand side of
(6) is positive, so that in order for (4) to hold we require that
cos(φ) > 0, i.e. that −π/2 < φ(A,ω) < π/2. Once this first

1with the exception of the trivial cases where the flame is located at a pres-
sure node of the acoustic field at frequency ω. These cases cannot be unstable
because the left hand side of (1) is zero.
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necessary condition is satisfied, there exists a threshold value
of the gain above which (4) is verified and a thermoacoustic
oscillation ensues.

This perspective in terms of an acoustic energy balance
correctly captures the dominant feature of the thermoacous-
tic problem as a self excited closed loop system, which in an
enclosed cavity has a set of countable thermoacoustic eigen-
modes. We can interpret the Rayleigh criterion at the frequency
ω of the nonlinearly saturated eigenmode at a limit cycle, i.e.
at the dominant frequency peak of a thermoacoustically unsta-
ble experiment. We distinguish ω from the eigenfrequency ω0

of the acoustic mode of the combustor obtained when a pas-
sive flame is considered. We now consider three other scenar-
ios, where the Rayleigh criterion does not allow us to conclude
much.

1. We consider a thermoacoustic system with an acoustic
mode at frequency ω0, with a flame phase that in the lin-
ear regime is2 φ(ω0) = −π. We can conclude based on
the analysis above that the system cannot pulsate at the
frequency ω0. However, the acoustic mode could shift to
a frequency ω0 + ∆ω such that the phase φ(ω0 + ∆ω)
becomes favourable for the instability. Under what condi-
tions does this happen? Which nondimensional numbers
characterizing the flame response govern this?

2. We consider a given thermoacoustic system that is pulsat-
ing at large amplitudes at a frequency ω. What would hap-
pen3 if — as a pulsation mitigation strategy — we could
change the flame response so that the flame phase would
be φ(ω) + π instead of φ(ω)? Would this make the sys-
tem stable without acoustic pulsations? Could the system
instead exhibit pulsations at a perturbed frequency of os-
cillation ω + ∆ω such that the phase φ(ω + ∆ω) would
still be favourable for pulsations?

3. We consider two flames characterized by two different
transfer/describing functions, and predict what happens
when they are placed one at a time in a hypothetical com-
bustor with a given set of random (but physical) acoustic
modes. Which features of the flame transfer function are
most influential at provoking instability? We know already
that large flame gains provoke instability but wish to exam-
ine the influence of the flame phase

We will refer to these three questions as the three scenarios
in the following, and we will answer them as we unfold the
problem. All three of them show how the Rayleigh criterion (1)
or (6) is not sufficient to answer them. We will show that the
missing piece of the puzzle is the imaginary part of the flame re-
sponse Im[Q(A,ω)], which is the component of the fluctuating
heat release q in quadrature with the pressure p. We review how
this component is well known to be responsible for shifting the

2for the sake of the examples we make the reasonable assumption that the
gain saturates smoothly with amplitude, i.e. that the Hopf bifurcation is super-
critical

3for the sake of the example we assume that no other thermoacoustic mode
would be excited when φ is changed, and that φ does not depend on amplitude,
as discussed later in §2.1

frequency from the acoustic frequency ω0 to the thermoacoustic
frequency ωB in the next subsection.

1.2. Literature review
All three scenarios can be tackled numerically for a specific

combustor and flame response. In particular all the questions
can be made more specific and quantitatively answered. We
first discuss the methods, and review the results in the next
paragraph. One can calculate the stability of a thermoacoustic
system by coupling the acoustic field with the flame response
and study the system both in the linear and nonlinear regime
with respect to the amplitude of pulsation. See e.g. [5, 6, 7]
for a finite element approach in the frequency domain, [8] in
the time domain. Low order models can be analyzed in the
frequency domain [9, 10, 11, 12, 13] and both in the frequency
and time domain [14, 15, 16, 17]. These stability analyses allow
the prediction of the frequencies and amplitudes of oscillation
for a specific system [18], can account for subcritical bifurca-
tions [19] and can be extended to quasi-periodic solutions [20].
However because the whole system behaviour depends first of
all on the set of eigenmodes and eigenfrequencies of the sys-
tem, which are specific to the geometry, it is hard to isolate the
effect of the flame response on the system’s stability when all
the modes are considered. In particular when one changes the
flame response, a new acoustic mode may be excited, or a com-
petition of closely spaced eigenmodes can be observed. To iso-
late the effect of the flame response we focus here on one mode
only or similarly on a couple of degenerate azimuthal modes.

Lang et al. [21] study a duct with a n-τ compact flame model
with a wave-based approach, in terms of a linear dispersion re-
lation. For n = 0 they calculate the acoustic frequency ω0 of
the system when the flame response is analytically switched off
in the equations. They then apply a Maclaurin series truncated
to the first order in the interaction index n to the dispersion
relation to obtain an approximation of the thermoacoustic fre-
quency ω in terms of the unperturbed frequency ω0. Lang et al.
[21] says: When [the flame response is absent] the perturbation
vanishes and the angular frequency is identical to one of the
resonant frequencies of the duct. Similarly also [22, eq. (50),
Fig. 5] do not study the nondimensional numbers governing
the system’s stability, and present an approximate solution of
the boundary of stability that does not account for the fact that
the frequency of oscillation shifts from ω0. Dowling & Stow
[23, Fig. 2, eq. (21)] carry out a numerical sensitivity study of
a n-τ model in a one dimensional duct, in terms of normalized
frequency shifts and growth rates. The results are correct on a
qualitative level, but the model does not account for damping
losses, and the sensitivity is restricted to a small range of τ and
for rather small levels of heat release rate response. Schuller
et al. [24] also consider a n-τ model applied on the Helmholtz
mode of one experiment. They assume that the frequency of
oscillation is known, and apply the Rayleigh criterion to distin-
guish stable and unstable cases. A model similar to [24] is used
by [25] to predict growth rates and frequencies of oscillation of
one experiment at different operating conditions.

Although not written with this terminology, [21, 22, 23] show
that the imaginary part Im[Q(A,ω)] of the flame describing
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function — the part of the flame response that is in quadrature
with the acoustic pressure p — is responsible for a frequency
shift of the system from the acoustic frequency ω0 to the ther-
moacoustic frequency ωB . They show that the phase of the
flame response introduced in (5) can make the system stable
or unstable, as one can conclude from (6). This is for exam-
ple apparent in [24, Fig. 10], and in [24, eq. (11)] where also
acoustic losses are accounted for. They also typically consider
the sensitivity of frequency and growth rate on the delay τ , see
e.g. [23, Fig. 2], as is customary of many other studies, e.g.
[8, 26, 27, 28, 29, 7]. The change of the delay affects at the
same time the value and the slope of the flame phase at a cer-
tain frequency ω0. It is then hard to pinpoint separately the role
of the phase value and the role of the phase slope, which is one
of the outcomes of this work.

We review in Table 1 selected references from the literature
that discuss growth rates, damping rates and frequency shifts.
These numbers allow us to quantify how weakly perturbed the
thermoacoustic system is, i.e. how weakly the flame response
and the acoustic losses are perturbing the acoustics of the prob-
lem. We observe that the thermoacoustic frequency ωB can
shift from ω0 for approximately 10% of the value of ω0, and
that the nondimensional growth rate |σ/ω| is typically smaller
than 0.1. Regarding the first column, we point out that strongly
damped acoustic modes are not of interest in the applications
because they tend to be very stable.

1.3. Outline

Our starting point is the work of [47, 48], who neglect the
part of the flame response q that is not in phase with the acous-
tic pressure p, i.e. they consider only the real part of the transfer
function Re[Q(A,ω)]. We instead maintain the complex trans-
fer functionQ(A,ω) so that we can discuss the role of the phase
of this transfer function on the stability boundaries and on the
nonlinear saturation of the system.

We limit the study to the more common case of a limit cy-
cle solution, excluding for example quasi-periodic [49, 20] and
chaotic [50, 51, 52] solutions that are beyond the limits of the
model. We also neglect the study of intrinsic thermoacoustic
modes [53, 54]. An important result of this work is that most
results obtained on the linear boundary of stability are then also
valid in the nonlinear regime at the limit cycle solution, allow-
ing the practical usage of the results on self-excited thermoa-
coustic oscillations, under a set of assumptions regarding the
flame response that are typically respected, discussed in §2.1.

The manuscript is organized as follows. In §2 we briefly
characterize the problem, with a focus on the flame model. In
§3 we carry out the linear analysis, and discuss the boundary
of stability of the system. In §4 we extend the linear results
to the nonlinear regime. We apply two analytical nonlinear
methods to predict amplitudes and frequencies of the limit cy-
cles. We validate them with extensive numerical simulations
in the whole range of parameters explored. Results apply both
to azimuthal and axial modes, and are discussed for azimuthal
modes first and then extended to axial modes in §2.3 and §4.5.
In §5 we discuss some implications of neglecting the part of

heat release rate not in phase with the pressure when identify-
ing linear growth rates of a system. Finally in §6 we draw the
conclusions.

2. Brief derivation of the model

Low-order models of azimuthal instabilities usually describe
the system as a damped wave equation, with the fluctuating heat
release rate q as a source term. The nondimensional equations
are [48, 55]:

∂u

∂t
+∇p = 0 (7a)

∂p

∂t
+∇u = q − αp (7b)

In (7) α is a positive damping coefficient, p(t, θ) is the fluctuat-
ing pressure, u(t, θ) is the fluctuating velocity in the azimuthal
direction, with θ being the azimuthal angle in the periodic do-
main [0 , 2π). The damping is modelled as linear because it
is usually linear with respect to the amplitude, see e.g. [56],
but one can account for an amplitude dependence, as discussed
e.g. by [57] for the losses at the boundaries. We focus on a
rotationally symmetric system in the azimuthal direction θ, i.e.
we assume that u, p, q do not have any direct dependence on
θ. A discussion of the effect of a discrete rotation group of
symmetry, instead of full rotational symmetry, can be found in
[44]. The discussion of the case covering the loss of degen-
eracy of the couple of eigenmodes is beyond the scope of this
manuscript. This can occur for many reasons, e.g. a non uni-
form flame [58, 48] or damping [39] response or a non-zero
mean azimuthal velocity [59, 60].

We approximate the solution of (7) with a superposi-
tion of the two excited degenerate thermoacoustic modes,
which at the flames’ positions have shapes cos(nθ)χ(r, z) and
sin(nθ)χ(r, z), in a cylindrical coordinate system {r, z, θ}with
the z axis as the axis of rotational symmetry of the combustor.
We fix arbitrarily the value of the mode χ at the burners’ radial
and axial location to 1. At these {r, z} coordinates the acoustic
azimuthal velocity and pressure have the expressions

u(t, θ) ≈ nη1(t) sin(nθ)− nη2(t) cos(nθ) (8a)
p(t, θ) ≈ η′1(t) cos(nθ) + η′2(t) sin(nθ) (8b)

where here and in the following the prime denotes a time deriva-
tive and n is the azimuthal wavenumber of the mode we are
studying. By substituting (8) into (7) and by projecting the
equations on the two modes we obtain [44]:

η′′1 (t) + ω2
0η1(t) = 〈q〉cos(t)− αη′1(t) (9a)

η′′2 (t) + ω2
0η2(t) = 〈q〉sin(t)− αη′2(t) (9b)

where we introduce the spatial averaging operator for the
generic function m(θ) as

〈q〉m(t) =
1

πµ

∫ 2π

0

q(θ, t)m(θ)dθ, (10)
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Table 1: List of values of damping/growth rates and frequency shifts from the literature. The references regard experiments or models tuned in some way to
experimental data. This includes for example calculations with flame transfer functions evaluated with LES, thermoacoustic models tuned to experimental data or
that use measured reflection coefficients, etc.. In this manuscript the eigenvalue is λ = σ + iω, where f = ω/2π is the frequency in Hz and σ is the growth rate.
The acoustic frequency of oscillation is ω0, and the thermoacoustic frequency of oscillation is ωB . In each reference we collect the largest negative growth rates for
the first column, largest positive growth rate for the second, and largest positive and negative shift from unity for the third column. This allows us later to discuss
the boundaries of these parameters, rather than their common values. For the calculation of σ/ω0 the approximation ωB ≈ ω0 was made in the cases where ω0 is
not available

wo. flame
σ/ω0

w. flame
σ/ω0

ωB/ω0 Reference and brief description

1.114
From Bloxsidge et al. [2], experiment. Freq. shift observed when the controller
is switched on from an unstable point, stabilizing the system

-0.128 From Moeck et al. [19, Table 1], experiment
-0.052
-0.026

0.039 0.968
From Noiray et al. [30, Fig. 8] experiment. Comparison between zero ampl. and
LC ampl. See also Fig. 11

0.862
From Noiray et al. [30, Fig. 9], experiment. Comparison between
lin. unstable point LC and lin. stable LC (triggering)

-0.011 1.001 From Gullaud et al. [31, table 3], estimated damping of perforated plates
-0.055 1.012

0.025 From Bothien et al. [32, Fig. 12], experiment
0.125 0.902 From Nicoud et al. [33, Fig. 13], Helmholtz solver with FTF from LES
-0.232

0.870 From Boudy et al. [34, Fig. 4, 5], experiment
1.060
1.500 We treat this value as an outlier and discard it
0.880

0.072 From Boudy et al. [35, Fig. 4, 7, mode 2], experiment
-0.021 From Boudy et al. [35, page 1126], experiment

1.044 From Palies et al. [36, Fig. 8, bottom left], experiment
0.836 From Palies et al. [36, Fig. 9, bottom right], experiment
0.872 From Salas [37, Fig. 6.13, page 178],

-0.046 0.956 Helmholtz solver with a FTF extracted from LES
0.920

-0.009 From Schwing et al. [38, at cold conditions], experiment
0.023 From Bothien et al. [39, Fig. 8, without dampers], annular heavy duty gas turbine

-0.039 From Bothien et al. [39, Fig. 8, growth rate reduction with dampers]
0.047 0.958 From Silva et al. [40, Fig. 6], Helmholtz solver/experiment,

1.051 with flame, varying the time delay

-0.109 0.239 1.071
From Silva et al. [40, Fig. 8, 9, mode C08, flame A], Helmholtz solver/experiment.
See also [36]

-0.014 From Wagner et al. [41, Fig. 13, 14], experiment
-0.061 From Stadlmair et al. [42, Fig. 5], experiment
-0.032 very common value in this reference
-0.011 From Stadlmair et al. [42, Table 2]
-0.012

0.019 From Bothien et al. [43, Fig. 12, ∆T/T = 2%], annular industrial gas turbine
0.96 From Bothien et al. [43, Fig. 12, ∆T/T = 4%]
1.05

-0.010 From Bothien et al. [43, Fig. 9, growth rate reduction due to dampers]
-0.062 From Mejia et al. [25, Table 3, NR], experiment
-0.047 From Mejia et al. [25, Table 4, NR]
-0.067 From Mejia et al. [25, Table 6, NR]

-0.050
From Ghirardo et al. [44]. Damping of the dominant frequency of the model.
Reported by the authors, not in the paper

-0.026 0.011 From Boujo et al. [45, Fig. 6], experiment
0.011 From Noiray & Denisov [46, condition c3], experiment

we introduced α = α/µ, and µ is the Euclidean norm of the eigenmode, defined as

µ =

∫

Ω

|χ(r, z)|2 cos(nθ)2dΩ (11)
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2.1. Flame model
We neglect the effect of the transverse acoustic field on the

the fluctuating heat release rate q coming from the flame, as
studied previously by [55], and assume that q depends only on
the longitudinal acoustic field in the mean flow field direction.
This is a good approximation in the linear regime if one as-
sumes axisymmetric flames [61], but not as much in the nonlin-
ear regime at high amplitudes of acoustic transverse velocity, as
measured experimentally by [62, 63] for a swirl stabilized tur-
bulent flame. We also do not study the general case of a discrete
number of flames, each modelled in terms of a generic flame de-
scribing function as carried out by [44]. Instead, we assume that
the number of burners is large enough that the flame model q[p]
is homogeneous in the azimuthal direction, and the nonlinear-
ity consists of a fundamental cubic saturation. We then model
q as a nonlinear, time-invariant operator of the acoustic axial
fluctuating velocity uax at the flame inlet. The reasoning behind
this is that an acoustic fluctuation of the longitudinal velocity at
the burner induces a perturbation of the fuel/air mixture fraction
[64, 65, 66, 67]. The local flow field perturbation can also be
amplified by flow instabilities (see e.g. [68, 69, 70] for laminar
flames) and/or modulates the swirl in swirling flames [71], and
both mechanisms lead to perturbations of the flame response
[72, 73]. For a review of these and other mechanisms, refer
to [74, 75]. The resulting transfer function typically involves a
set of time delays τk, of standard deviations γ2

k , and interaction
indices nk, all real valued quantities:

q̂(ω)

ûax(ω)
=
∑

k

±nke−iωτke−γ
2
kω

2

(12)

The structure of this transfer function holds also for turbulent
flames, see e.g. [76, 73, 71, 56]. The fluctuating axial velocity
uax can be expressed as a linear transfer function of the pressure
p in the annular chamber, as long as only one mode, or two
degenerate modes, oscillate, as discussed in detail in [44]. In
particular one can write

ûax(ω)

p̂(ω)
= An(ω) = β∗(ω)eiξ(ω) (13)

where An(ω) is the admittance of the whole part of the com-
bustor upstream of the section where uax is measured, calcu-
lated for the n-th azimuthal instability. This admittance de-
pends on the upstream geometry and boundary conditions and
on the burner transfer matrix. From (12) and (13) it follows that

q̂(ω)

p̂(ω)
= β∗(ω)eiξ(ω)

Nk∑

k=1

±nke−iωτke−γ
2
kω

2

(14)

Despite the quite complicated expression of (14), this trans-
fer function typically exhibits a gain with a certain number of
bumps4 as function of the frequency, and a phase that decreases
with frequency5. This holds both in the linear and nonlinear
regime, see e.g. [30] for a matrix burner and [77] for a swirl
burner. This means that in the neighbourhood of the acous-

4sequence of local maxima and minima alternating along the frequency axis
5this is the case of most cases of interest. The flame phase can sometimes

increase, usually in small ranges of frequencies in which the gain is low

ω0

    angular
frequency ω

φ0

ψ
≡ φ0 + τω0

0
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a
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e
p
h
a
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φ
(ω

)
o
f
q̂(

ω
)/

p̂
(ω

)

ψ

τ

ωB

φqp

Figure 1: Flame phase, i.e. phase of q̂(ω)/p̂(ω). In the vicinity of the fre-
quency ω0 of the acoustic mode we approximate the phase response φ(ω)
(black line) with a straight line (red dashed line). The value of the phase at
ω0 is φ0 ≡ φ(ω0). We define the equivalent time delay τ as minus the local
slope of the phase in ω0. The results are obtained first for the case ofψ = 0, for
which the model becomes q = p(t−τ), and generalized later. The frequency of
the thermoacoustic system can shift from ω0 to the frequency ωB such that the
phase φqp between the fluctuating heat release rate q and the acoustic pressure
p is more favourable

tic frequency ω0 of the azimuthal mode of interest (14) can be
simplified to:

q̂(ω)

p̂(ω)
=βeiφ(ω) (15a)

φ(ω) =φ0 − τ(ω − ω0) with φ0 ∈ [−π, π) (15b)

where τ is an equivalent time delay and describes the local slope
of the flame phase close to ω0, i.e. τ ≡ −∂φ(ω = ω0)/∂ω and
φ0 is the value of the flame phase for ω = ω0. A sketch of the
flame phase φ(ω) and of the linear approximation in the vicinity
of ω0 is presented in Fig. 1. In (15) we also choose a constant
real valued gain β with frequency because in the general case
there is no established trend, i.e. the gain can either grow or
decay with frequency due to the bumps mentioned earlier. We
introduce the quantity ψ ≡ φ0 + τω0 and observe that if we set
it to zero the red dashed line in Fig. 1 passes through the origin.
This means that the exponential in (15) becomes exp(−iωτ)
and we can write in the time domain that q = βp(t − τ). In
the following we first simplify the discussion by setting ψ = 0
and generalize the results later for ψ 6= 0. This simplification
allows us to interpret −τω as the phase between q̂ and p̂.

In the time domain and in the nonlinear regime, we can write

q(t) = βp(t− τ)− κp(t− τ)3 (16)

In (16) κ is a positive valued constant describing how fast with
amplitude the flame response saturates. Applying the definition
(3) on q[p] from (16) we obtain the describing function Q:

Q(A,ω) =

(
β − 3

4
κA2

)
e−iωτ (17)

where the first factor is the gain G(A) of the describing func-
tion. We are making two key assumptions in (16-17). The first
regards the chosen cubic saturation, which is fundamental and
simple as discussed by [48], and features a monotonic decrease
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of the gain G(A) with the amplitude A, which is usually the
case. The effect of a non monotonic decrease of the flame gain
with the amplitude [78] on the system’s stability is well under-
stood in the literature, see e.g. [19, 79] for axial instabilities
and [44, 80] for azimuthal instabilities.

The second regards the delay τ that is assumed to be constant
in the linear and nonlinear regime, so that the phase response φ
does not depend on the amplitude A. The phase dependence
with amplitude is usually weak, see [81; 82; 56, Fig. 12; 71, in
the conclusions], and is a less common mechanism of saturation
to limit cycles, with a few notable exceptions, see e.g. the ma-
trix burner at EM2C [13, Fig. 11 above 900 Hz]. Saturation of
a thermoacoustic system to a limit cycle is usually governed by
the drop of the flame gain |Q(A,ω)| with amplitude. We also
constrain the phase to not depend on amplitude to investigate
specifically the effect of the slope τ of the phase response as in-
troduced in (15). This will also allow us to compare the model
with a successful low order model that exists already [83, 84],
which has been used to identify growth rates in real system.

2.2. Model equations
By substituting (16) into (9) we obtain

η′′1 (t) + ω2
0η1(t) = f(η′1(t), η′1(t− τ), η′2(t− τ)) (18a)

η′′2 (t) + ω2
0η2(t) = f(η′2(t), η′2(t− τ), η′1(t− τ)) (18b)

where the function f is defined as:

f(a, aτ , bτ ) ≡ aτ
[
β − 3

4
κ
(
a2
τ + b2τ

)]
− αa (19)

where we denote with a subscript τ a delayed quantity, e.g.
aτ (t) = a(t − τ). An example of a time domain simulation
of the oscillators (18) is presented in Fig. 2, where in a) the
continuous thin lines are the fast oscillating signals η1(t) and
η2(t), and the thick lines are their slowly varying amplitudes of
oscillation A1(t) and A2(t). In Fig. 2.b we present the instan-
taneous frequency of oscillation of the same simulation with a
black line. To link this study with the existing literature, we
remark that one can take the time derivative of (18) and obtain:

ζ ′′1 (t) + ω2
0ζ1(t) =

∂

∂t
f(ζ1(t), ζ1(t− τ), ζ2(t− τ)) (20a)

ζ ′′2 (t) + ω2
0ζ2(t) =

∂

∂t
f(ζ2(t), ζ2(t− τ), ζ1(t− τ)) (20b)

where the function ζj(t) ≡ η′j(t) was introduced. By setting
τ to zero in (20) one recovers the equations discussed in [48].
One disadvantage of the second formulation (20) of the problem
is the additional time-derivative of the function f that includes
the heat release rate and leads to the study of the problem with
mixed terms ζkj (t)ζ ′j(t) in the equations.

We mention that any stochastic contribution qs(t) to the heat
release rate appears on the right hand sides of (18) after spatial
averaging, and hence should appear in (20) as a time deriva-
tive, and not outside of the time derivative as presented in [85].
We stick to the formulation in terms of equations (18) in the
following.

2.3. The case of an axial mode
When carrying out the projection of the equations (7) on a

single mode η1 one obtains

η′′1 (t)+ω2
0η1(t) = f(η′1(t), η′1(t− τ)),

with f(a, aτ ) = aτ (β − κa2
τ )− αa (21)

Note that the definition of µ for an axial mode stays the same,
but since the mode does not depend on the azimuthal compo-
nent (11) becomes

µ =

∫

Ω

|χ(r, z)|2dΩ (22)

Results of §3 and §4 apply for axial modes too. We will discuss
in particular the case of an axial mode later in §4.5 and in §5.

2.4. Range of the parameters {α, β, τω0}
In this manuscript all the analytical expressions are valid for

{β, α} ∈ R+2 and τ ∈ R unless otherwise indicated. It is
however important to estimate the range of typical values of
these parameters in thermoacoustics.

Based on the first column of Table 1 we consider as typi-
cal a thermoacoustic system with a level of acoustic damping
such that the negative nondimensional growth rate σ/ω0 equals
−0.04 when the flame response is shut off. We then consider
the case of a zero time delay τ , for which the growth rate of the
system is (β − α)/2 as discussed in [48]. When the flame re-
sponse is shut off, i.e. β = 0, we obtain the value of the nondi-
mensional acoustic damping coefficient α/ω0 = 0.08, which
we keep fixed in the following. We will reconsider the role of
α/ω0 in §3.4.

Based on the relative values of the first two columns of Table
1, we consider a strongly unstable system to have a positive,
linear nondimensional growth rate σ/ω equal to 0.08 when both
damping and flame act on the acoustic field. This leads to a ratio
β/ω0 = 0.12, and a ratio β/α = 3. We then decide to study
in the following the system for β/α ∈ [1 , 3], where values of
β smaller than 1 will be found to be trivially stable in the next
section.

For estimating the range for τω0, we consider an example of
a thermoacoustic mode at f = 300 Hz, subject to a convective
time delay of τ = 5 ms. For example we will later discuss one
thermoacoustic mode at f0 ≈1000 Hz of [34], for which τω0 =
3π based on their Fig. 7. This leads to a product of τω0 ≈ 3π.
Note moreover that the superposition of different time delays
often leads to a steeper flame phase in certain frequency ranges.
In these ranges, the equivalent time delay τω0 discussed just
after (15) would be even larger. Accounting for longer time
delays and larger frequencies of oscillation, in the following
we study the system for τω0 ∈ [0 , 8π]. To summarize, we
investigate:

{
β/α ∈ [1 , 3]

τω0 ∈ [0 , 8π]
for α/ω0 = 0.08 (23)

and we will reconsider the role of the level of acoustic damping
α/ω0 in §3.4.
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Figure 2: a) Example of time domain simulation of the two azimuthal modes η1 and η2 of an annular combustor chamber. The fast oscillating pressure values ηj(t)
are obtained by integrating the original system of equations (18) (continuous lines), while the slowly varying amplitudes of oscillation Aj are obtained with the
method of multiple scales (MMS, dashed lines) and alternatively with the averaging method (AVG, dotted lines). In this case we choose τω0 = π/8 6= 0 and this
leads to a non-trivial response: the two amplitudesAj undergo a non-monotonic transient whereA1 overshoots the final amplitude andA2 grows more slowly than
A1. b) Dependence of the frequency of oscillation on time: ω is the calculated instantaneous frequency of oscillation extracted from the modes ηj , while ωAVG
and ωMMS are the predicted instantaneous frequencies using the method of multiple scales (MMS) and the averaging method (AVG). In a) and b) both nonlinear
methods have both good accuracy in predicting the slowly varying amplitudes and the instantaneous frequency

3. Linear analysis

We first tackle in §3.1 the case where in Fig. 1 the response
ψ at zero frequency is zero, and then generalize the results in
§3.2 to ψ 6= 0.

3.1. Simplified case with ψ ≡ φ0 + τω0 = 0

In this section we study the boundary of linear stability of
(18). We proceed by retaining only the linear terms in (18a)
and (18b), and obtain:

η′′j (t) + αη′j(t)− βη′j(t− τ) + ω2
0ηj(t) = 0 j = 1, 2 (24)

We observe that in the linear regime the equations for the az-
imuthal and axial modes match, so that the analysis of (24)
carried out in this section applies to both cases. We substitute
η1(t) = e(σ+iω)t into (24) where σ is the growth rate and ω
the real valued angular frequency of oscillation, and obtain the
characteristic equation. We then split the equation into real and

imaginary parts and after some manipulation obtain:

β cos(τω)e−στ − α
2

=σ

[
1 +

βτ

2
sinc(τω)e−στ

]
(25a)

ω2 − ω2
0 + βω sin(τω)e−στ =σ2 + ασ − βσ cos(τω)e−στ (25b)

We study for which parameters {α, β, τ} ∈ R+3 the system is
neutrally stable, i.e. there exist real-valued solutions ωB of the
system of equations (25) when setting the growth rate σ to zero:

β cos (τωB)− α = 0 (26a)

ω2
B − ω2

0 + βωB sin (τωB) = 0 (26b)

In (26), we call ωB the thermoacoustic frequency of the sys-
tem, as opposed to ω0 that is the acoustic frequency, where the
subscript refers to the fact that it is calculated on the bound-
ary of stability. We observe that the left hand side of (26a)
is the difference between the real part of the transfer function
Q(A = 0, ωB) minus the gain α of the acoustic losses, both
projected on the mode shape as discussed just after (9). This
conveys the same information as the Rayleigh criterion (6), but
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with an equal sign since we are looking for the boundary of
neutral stability.

Equation (26b) is the key ingredient that was missing in the
introduction to quantify how a thermoacoustic eigenmode can
shift its frequency of oscillation due to the flame response. It
resembles (21) of [23] as discussed in the introduction. In par-
ticular the last term on the left hand side is ωBIm[Q(A = 0, ω)],
i.e. ωB times the imaginary part of the describing function cal-
culated at zero amplitude. This terms act as a perturbation in the
equation, in the way that ωB deviates from ω0 as this term in-
creases. In particular this frequency shift from ω0 to ωB is zero
if the phase is zero or a multiple of 2π, as expected. We carry
out with rigour the analysis of the implicit dispersion relation
ωB = ωB(β/α, τω0) in the appendix §A, but we mention here
that the frequency ωB at the boundary of stability is calculated
as the root of

h(τ, ωB) ≡ ω2
B − ω2

0 + αωB tan(τωB) = 0 (27)

We present in Fig. 3.a the stability map of the system, where
the ranges of the horizontal and vertical axes are representa-
tive of a class of thermoacoustic systems as discussed in §2.4.
The boundary of stability is reported with a coloured line as a
function of the nondimensional slope τω0 introduced in (15),
where ω0 is the natural acoustic frequency of the system and τ
is the slope of the flame phase close to ω0. Above this bound-
ary of stability the system is linearly unstable and the region
is coloured with grey. The colour of the boundary is the linear
frequency of oscillation ωB/ω0 of the system and the respective
colourmap is reported on the right.

Where τω0 is a multiple of 2π we have that ω = ω0 and q
is exactly in phase with p, and the required ratio β/α to render
the system neutrally stable equals unity and is minimum, as
expected from the Rayleigh criterion. As the value of τω0 gets
farther away from a multiple of 2π, the strength of the flame
response required to de-stabilize the system increases, and the
curve β/α takes the form of a trough with the minimum at each
multiple of 2π.

Moreover, the width of the troughs increases with the mul-
tiples of 2π, so that the boundary of stability approaches the
horizontal asymptote β/α = 1 as τω0 → ∞. This means that
for a given system with a fixed ratio of β/α, flames governed
by large time delays, i.e. equivalently flames with a steep phase
in the vicinity of the acoustic frequency ω0, are more likely to
be unstable than flames governed by smaller time delays, and
the overall system’s stability is less affected by the flame phase
close to the frequency of oscillation. In other words, for a fixed
flame gain, a flame with a steeper phase is more likely to excite
an acoustic mode, because the troughs in Fig. 3.a are wider.
These results compare well with [86, Fig. 6,7], who plot one
over the expected mean value of the amplitude of oscillation,
for a a similar6 set of linear equations forced with gaussian ad-
ditive white noise.

6Crawford et al. [86] study only axial modes, for which case it is more
straightforward to study q as function of the acoustic velocity instead of the
acoustic pressure, as [86] do. This leads to a different delay definition. Their
Fig. 6 and 7 should be compared for εv < 0, where −εv plays the same role
of β of this manuscript

Figure 3.b presents the same information as Fig. 3.a but
swapping the vertical axis with the colourmap. In Fig. 3.b,
where τω0 is a multiple of 2π, the frequency ωB matches the
natural frequency of oscillation ω0. For values of the time de-
lay τω0 < π/2 the linear frequency of oscillation ωB is smaller
than the natural frequency of oscillation ω0. We observe that
for values of β/α < 3 we can see a linear frequency shift of up
to about 10% even for small values of τω0. This is in line with
the experimental findings reviewed in the introduction. This
will be confirmed in §4 also in the nonlinear regime, and shows
how assuming that the frequency of oscillation of the system
matches the natural frequency of oscillation ω0 is a rough ap-
proximation.

Fig. 3 generalizes the linear results observed in [26] for a
specific combustor and flame, where a parametric study of the
linear growth rate as function of the delay is presented in their
Fig. 7, reproduced here in Fig. 4. In particular the contour
lines of the growth rate in that figure follow the same pattern
presented in Fig. 3. This shows how the assumption of studying
one acoustic mode leads to results that are in good agreement
with numerical analyses where all modes are considered.

In the same Fig. 3.a and 3.b we present with black lines the
result obtained neglecting the part of heat release rate out of
phase with the pressure, as assumed in [47, 48], so that one
can compare the results with and without this assumption. The
derivation is in §A.1. In Fig. 3.a we observe that the black
troughs are exactly the same and simply shifted by 2π on the
horizontal axis τω0, so that the error on the boundary of insta-
bility increases for larger values of τω0. As expected, in Fig.
3.b we show how the predicted frequency of oscillation matches
ω0 at all linearly unstable conditions.

3.2. Generalization to ψ ≡ φ0 + τω0 6= 0

In Fig. 5 we present the results for the more general flame
response presented in Fig. 1. In particular the vertical and
horizontal axis of Fig. 5 are the flame phase and the nondi-
mensional flame phase slope of Fig. 1. We refer the reader to
§A.2 for how these results are obtained from the results of Fig.
3. We observe that for a fixed ratio β/α depicted by respec-
tive pairs of red lines, the system is unstable and pulsates if the
point (τω0, φ0) is between the two red straight lines, and does
not pulsate otherwise. The frequency of oscillation ωB at the
boundary of stability is presented with the colourbar. We will
prove in §4.2 that the frequency ωB matches the frequency at
the limit cycle, so that the colourbar of Fig. 5.a applies also to
the limit cycle solutions. For a constant nondimensional flame
phase slope τω0, the most favourable value of the phase φ0 to
make the system pulsate is zero, which is the case where the
thermoacoustic frequency ωB matches the acoustic frequency
ω0. If within a period of oscillation the fluctuating heat release
rate comes later in time than the acoustic pressure, φ0 is nega-
tive and the thermoacoustic frequency ωB is be lower than the
acoustic frequency ω0, i.e. in the Fig. ωB/ω0 < 1. If instead
the fluctuating heat release rate occurs before the acoustic pres-
sure, φ0 is positive and ωB is larger than ω0. For the limit case
of β/α = 1 the unstable region shrinks to the line φ0 = 0,
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which requires that the phase between pressure and heat release
rate is exactly zero.

We now discuss the first scenario introduced in the introduc-
tion, where the flame phase φ0 is−π. The term on the left hand
side in the Rayleigh criterion (6) is negative at ω0 and one is
then tempted to conclude that the acoustic mode will be stable
and pulsations will not be observed. In Fig. 5.a we then focus
on the line φ0 = −π, and we want to determine whether the
system pulsates or not. We observe that for τω0 . 5π the point
is always in the white region and the system will not pulsate.
However for larger values of τω0 the system will pulsate if it
falls between the two red lines for a given ratio of β/α. We
can then conclude that the system will be unstable if the slope
of the phase response is sufficiently steep and the flame gain is
sufficiently steep. This can be intuitively understood by the fact
that if the flame has a steep phase at the resonance frequency
ω0, even a little shift of the frequency from ω0 can lead to a
variation of the phase between q and p sufficient to obtain a
phase φqp between heat release rate and acoustic pressure that
is favourable to pulsations. This can be confirmed by looking at
Fig. 5.b, where we present the phase φqp. One can observe that
along horizontal lines larger values of τω0 lead to a value of the
phase φqp closer to zero, i.e. more favourable for pulsations.

We can similarly also address the second scenario, which
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Figure 5: Stability boundary of an acoustic mode at frequency ω0 coupled to a flame with nondimensional gain β and phase φ(ω) = φ0 − τ(ω−ω0) as presented
in Fig. 1. In both figures the vertical axis is the phase φ0 = φ(ω = ω0) between heat release rate q and the acoustic pressure at the flame location p, calculated at
ω = ω0. The horizontal axis is the nondimensional slope of the flame phase τω0. The boundary of stability depends parametrically on the ratio of the flame linear
driving β over the level of acoustic damping α. For a fixed ratio β/α, the system is unstable between the two red lines linked by the black arrow.
In a) we present the frequency of oscillation ωB in terms of the ratio ωB/ω0 on the colourbar on the right. ωB is both the frequency of oscillation on the boundary
of instability as introduced in §3 and also the frequency of oscillation of the limit cycle solution as proved in §4. The domain in the vertical axis is periodic in
[−π, π] and lies between the two horizontal thick black lines. It is extended beyond its periodic boundaries to plot both frequency shifts in the two regions where
the two colours would overlap. Note that if the slope of the phase τω0 is larger than approximately 5π, for a value of β/α = 3: a) the system pulsates regardless
of the phase φ0; b) the system admits two limit cycle solutions at two different frequencies, one larger and one smaller than ω0, in the two regions at the top and at
the bottom where the red lines cross. The range of frequency shifts from ω0 is in line with the literature discussed in the introduction.
In b) we present the phase φqp between heat release rate q and pressure p. This value is valid both on the boundary of stability and in the nonlinear regime, and is
consistent with experimentally determined values [87, 88]. The black arrow is the interpretation of an experiment [34], detailed in §3.3

considers a thermoacoustic system that is already pulsating, to
whose flame phase π is added. In Fig. 5.a this corresponds to
moving the point vertically by π. If the point moves to the white
region the addition of π makes the system stable. Similarly to
the previous result, this is more likely to happen on the left part

of the figure, i.e. with flames with non steep phase responses,
and secondarily if the ratio β/α is small.

One observes how for quite a small value of β/α = 1.5 and
for not steep flame phases τω0 ≈ 0 the range of the phase φ0

at which the system is unstable is already quite broad, approx-
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imately [−π/4, π/4]. If τω0 is increased, the unstable range
for φ0 leading to pulsations becomes larger, and is one of the
novel results of this paper. The same applies if the ratio β/α
of the strengths of flame response and acoustic damping in-
creases, consistent with the literature that higher flame gains
lead to larger unstable regions. This allows us to partially dis-
cuss the third scenario. We find that the actual value of the
phase φ of the flame transfer function is not a feature strongly
linked with the risk of an unstable combustor if the slope of the
phase is steep, and secondarily if the flame gain is very large.
This means that if the flame phase is sufficiently steep and/or
the flame strength β sufficiently strong, the system will pulsate
regardless of the flame phase φ(ω). Moreover when compar-
ing two flames with the same gain, the one with steepest phase
has a higher pulsation risk. However, one should not jump to
the more general but hasty conclusion that shorter values of τ
lead to fewer pulsations. For example longer convective time
delays from the injection point lead to better mixing which re-
duces in turn the amplitude of equivalence ratio fluctuations at
the flame, and longer flames have a larger standard deviation γ
in (14). Both factors usually lead to a smaller equivalent gain β
in (15), as discussed for one particular system in Fig. 4.

We observe how there is a region on the right of Fig. 5.a
where there exist two different frequencies of oscillation. In
particular the yellow triangle above the line φ0 = π actually
overlaps the indigo blue triangle below the line φ0 = −π. In
the nonlinear regime, either one of the two could take over.
The numerical simulations suggest that, for the simple nonlin-
ear saturation model considered in this manuscript, the limit
cycle solution with the higher linear growth rate prevails over
the other. This would mean that in the experiments only the
strongest mode of the two would be observed, making valida-
tion difficult.

We present in Fig. 5.b the same data, but plot in colour the
phase φqp between the heat release rate q and acoustic pressure
p. The critical value of |φqp| on the boundary of stability is
smaller than π/2 because of the acoustic damping, as discussed
by [88], and agrees well with their experimental values. [88]
concludes that the phase φqp [. . . ] may be used to quantify the
state of the combustor within a dynamic mode. Consistently, we
observe in Fig. 5.b that φqp is a good metric for how close to the
boundary of neutral stability the mode is. The critical values of
|φqp| slightly larger than 3π/8 on the boundary of stability for
β/α = 3 compare well with the maximum experimental values
measured by [88, Fig. 6]. The range covered by φqp depends
on the ratio β/α. For example the range of φqp found by [87,
Fig. 8] to be approximately [−π/4 , π/4] corresponds in Fig.
5.b approximately to β/α ≈ 2.

3.3. Interpretation of one thermoacoustic transition observed
by Boudy et al. [34]

We conclude this section with the interpretation of one ex-
periment using the results of Fig. 5. Boudy et al. [34, Fig.
4] characterize a combustor that during a controlled parametric
reduction of the feeding manifold L1 transitions through three
states: 1) the pulsation frequency decreases from the acous-
tic frequency ω0 of the second mode, with a decreasing ratio

ωB/ω0; 2) the combustor stays quiet for a small interval of
∆L1; 3) the combustor pulsates again, but on the other side
of ω0, with ωB > ω0. In the two pusating states the amplitude
u′rms/Ubulk of the limit cycles stays in the range [0.2 , 0.3] [34,
Fig. 8], where the phase slope is quite constant [34, Fig. 7].
With reference to Fig. 5, one can interpret the transition be-
tween the first two states as a point in the figure moving down
from φ0 = 0, with a ratio ωL/ω0 dropping. This is qualitatively
presented in the Figure with a black arrow passing through the
three states 1,2,3. Due to the change of the frequency ω0 which
now approaches 900 Hz, the gain of the flame reduces [34, Fig.
7]. As a result, the unstable region shrinks towards the line
φ0 = 0, the point exits the unstable region from the bottom and
the combustor becomes stable. Due to the reduction of L1, we
have a change of ω0 and of the phase φ0, and the point con-
tinues going down and reenters the domain from the top due to
the periodicity. When it touches the top boundary of stability,
the system pulsates at a frequency now larger than ω0. Further
reduction of L1 leads to a decrease of φ0 towards 0 so that the
frequency ωB approaches ω0. This subsection showed how the
proposed model captures the transition between different ther-
moacoustic states, and amplitude and frequency variations that
are typical of thermoacoustic systems.

3.4. Sensitivity to the level of acoustic damping

As discussed at the end of §2.4, the plots presented so far
are for a value of α/ω0 = 0.08, which we chose as representa-
tive of a class of thermoacoustic systems. In general this value
depends on very many factors, e.g. the compactness of the
combustion system, the flow path, the installation of acoustic
dampers, the acoustic dissipation at the combustor boundaries,
the Mach number of the flow, etc.. We conclude this section by
discussing the sensitivity with respect to this value. We present
in Fig. 6 the same results of Fig. 5 but for α/ω0 = 0.04. Be-
cause we fix the ratio β/α to the same range [0, 3], we find that
smaller values of α and hence β lead to smaller frequency shifts
of ω from ω0 for a fixed value of τω0 in Fig. 3.b. Physically,
this has the simple interpretation that if the acoustics are little
damped and little amplified, the acoustic frequency is little af-
fected by them. Conversely, the smaller frequency shift leads
to a smaller change in the phase φ, resulting in a weaker depen-
dence of the boundary of stability on the slope of the phase.

4. Nonlinear analysis

The main objective of this section is to extend the validity
of the results obtained on the boundary of stability in the lin-
ear regime to the nonlinear regime. In particular this will allow
us to interpret ωB and φqp as the limit cycle frequency and the
limit cycle flame phase. To this aim we apply two nonlinear
methods to predict analytically the amplitudes and frequencies
of oscillation. As compared to previous work on the topic, the
major technical novelty of this section is in the fact that we ex-
plicitly calculate how the instantaneous frequency of oscillation
varies as a function of the amplitudes of oscillations, instead of
fixing it to a constant value, as presented for example in Fig.

12



−2π −π 0 π 2π 3π 4π 5π 6π 7π 8π

nondimensional slope τω0 of the flame phase response at ω = ω0, with τ ≡ −∂φ(ω = ω0)/∂ω

−π
−3π/4

−π/2

−π/4

0

+π/4

+π/2

+3π/4

+π

fl
am

e
p

h
as

e
φ

0
≡
φ

(ω
=
ω

0
)

u
n
st

a
b
le

fo
r

β
/
α

=
1
.0

2

u
n
st

a
b
le

fo
r

β
/
α

=
1
.5

0

u
n
st

a
b
le

fo
r

β
/
α

=
3
.0

0

a)

0.944

0.960

0.976

0.992

1.008

1.024

1.040

1.056

ω
B
/ω

0

−2π −π 0 π 2π 3π 4π 5π 6π 7π 8π

nondimensional slope τω0 of the flame phase response at ω = ω0, with τ ≡ −∂φ(ω = ω0)/∂ω

−π
−3π/4

−π/2

−π/4

0

+π/4

+π/2

+3π/4

+π

fl
am

e
p

h
as

e
φ

0
≡
φ

(ω
0
)

u
n
st

a
b
le

fo
r

β
/
α

=
1
.0

2

u
n
st

a
b
le

fo
r

β
/
α

=
1
.5

0

u
n
st

a
b
le

fo
r

β
/
α

=
3
.0

0

b)

−3π/8

−π/4

−π/8

0

π/8

π/4

3π/8

p
h

as
e
φ
q
p

b
et

w
ee

n
q̂

an
d
p̂

Figure 6: Same as Fig. 5, but for a level of acoustic damping α/ω0 = 0.04 instead of 0.08. Since the investigated range of β/α is the same as Fig. 5, this case
presents smaller forcing terms f on the right hand side of (18), the acoustic field is less perturbed and the thermoacoustic frequency ωB in a) is closer to ω0 than in
Fig. 5.

2.b. The section is structured so that a reader mostly interested
in the results can directly start reading at §4.6. In §4.1 we apply
the method of averaging and in §4.2 we discuss the choice of
the frequency of oscillation. In §4.3 we apply the method of
multiple scales and in §4.4 we validate both methods numeri-
cally.

4.1. Method of averaging

In this section we apply first order averaging to the model, as
defined and discussed in [89]. We rewrite (18) as a first order
system (xj , yj) ≡ (ηj , η

′
j):

x′j(t) = yj(t) (28a)

y′j(t) = −ω2
0xj(t) + fj (28b)

where f1 = f(y1(t), y1(t − τ), y2(t − τ)) and f2 =
f(y2(t), y2(t− τ), y1(t− τ)). We introduce the change of vari-
ables (xj , yj)→ (Aj , ϕj):

{
2xj(t) = Aj(t)e

i(ωt+ϕj(t)) + c.c.
2yj(t) = iωAj(t)e

i(ωt+ϕj(t)) + c.c.
(29)

where c.c. denotes the complex conjugate of the expression to
its left. Note that we do not constrain the oscillation frequency
ω in (29) to match the acoustic frequency ω0. The application

of the method of averaging is standard (see appendix §B) and
assumes that the delay is small compared to the slowly vary-
ing timescale. We obtain a set of equations in the variables
{A1, A2, ϕ, ϕavg ≡ (ϕ1 + ϕ2)/2}:

A′1 =
A1

2
(β cos(τω)− α)− 3

32
A1κω

2
(
A2

2 cos(τω + 2ϕ) + . . .

. . . 3A2
1 cos(τω) + 2A2

2 cos(τω)
)

(30a)

A′2 =
A2

2
(β cos(τω)− α)− 3

32
A2κω

2
(
A2

1 cos(2ϕ− τω) + . . .

. . . 2A2
1 cos(τω) + 3A2

2 cos(τω)
)

(30b)

ϕ′ =
3

16
κω2 sin(ϕ)

(
A2

1 cos(ϕ− τω) +A2
2 cos(ϕ+ τω)

)
(30c)

ϕ′avg +
ω

2
=
ω2

0

2ω
− 1

2
β sin(τω) +

3

64
κω2

(
A2

2 sin(τω + 2ϕ)− . . .

. . . A2
1 sin(2ϕ− τω) + 5(A2

1 +A2
2) sin(τω)

)
(30d)

In (30), the first three equations describe the amplitudes and
the synchronization of the two oscillators: the fixed points of
these three equations in the three variables {A1, A2, ϕ}, which
depend parametrically in ω, are the synchronized solutions of
the system. The role of the last eq. (30d) will be explained in
the next section §4.2.

For a fixed value of ω there are only two stable solutions
among the fixed points of the system of equations (30a),(30b)
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and (30c). These stable solutions are spinning waves and have
amplitudes and phases:

{
A1 = A2 = 2√

3ω

√
β−α sec(τω)

κ

ϕ = ±π/2
(31)

4.2. The choice of ω
We recall that ω defines the period 2π/ω over which we carry

out the time averaging, so that we should always choose ω to
match the instantaneous frequency of oscillation of the oscil-
lator in order to average exactly over one period of oscillation.
When applying the method of averaging, one often assumes that
the frequency of oscillation ω is close to the acoustic frequency
of oscillation ω0 of the unperturbed oscillator, and is approxi-
mately ω ≈ ω0. This assumption is often carried out earlier in
the analysis, by fixing ω = ω0 in (29). We have however ob-
served in §3 that the frequency of oscillation ωB of the neutrally
stable, linearized system departs from ω0, and is most notice-
ably dependent on τ , as in Fig. 3.b.

We can improve the choice of ω from ω0 by using (30d), and
choosing ω such that the mean average phase ϕavg is a fixed
point of the system too. This also means that the frequency of
averaging ω of the system matches the instantaneous frequency
of the two oscillators, since we have that

ωinst
AVG(t) =

∂

∂t

(ωt+ ϕ1(t)) + (ωt+ ϕ2(t))

2
= ω + ϕ′avg(t) (32)

This leads to an equation for ω:

ω2 =ω2
0 − βω sin(τω) +

3

32
κω3

(
A2

2 sin(τω + 2ϕ)− . . .

. . . A2
1 sin(2ϕ− τω) + 5(A2

1 +A2
2) sin(τω)

)
(33)

In the linear regime Ai → 0, and from (33) we recover the lin-
ear dispersion relation (26b), with the difference that this time
it is not calculated on the boundary of instability, i.e. (26a) does
not hold.

In the general nonlinear regime before saturation, the fre-
quency of oscillation shifts from the value ω solution of (33)
and depends on the two amplitudes A1 and A2 and also on ϕ
as described by (33). We numerically integrate in time the first
three equations (30), and at each timestep calculate the instanta-
neous frequency ω, which satisfies (33). An example of a sim-
ulation is reported in Fig. 2, where A1, A2 and ϕ are reported
as dotted lines.

In the nonlinear regime but at the converged limit cycle solu-
tion, we calculate the frequency ωLC of oscillation at the limit
cycle by substituting (31) into (33) and obtain:

h(τ, ωLC) ≡ ω2
LC − ω2

0 + αωLC tan(ωLCτ) = 0 (34)

We find that (34), defining ωLC, matches (27) defining ωB ,
which is the frequency of the system on the boundary of linear
stability obtained by suitably reducing the flame response of the
unstable system to make it neutrally stable. We now show an
example of the predictions of (32) in a time domain simulation.

To numerically integrate in time the system of equations (30),
at each time step we numerically solve (33) for ω, and then cal-
culate the right hand sides of (30) and proceed at the next time
step. In Fig. 2.b we compare the instantaneous frequency ω
as extracted from the original oscillators and the solution ωAVG
of (33) calculated as a function of the instantaneous amplitudes
Aj . We have overall very good agreement, while we observe
some small error in the fully linear and fully nonlinear regime.

In the fully linear regime at the left of Fig. 2.b the error be-
tween the frequency ωAVG and the frequency of the linearized
system is due to an inherent limitation of the method of averag-
ing, which assumes that ηj and ∂ηj/∂t are exactly in quadra-
ture. This is exact at the limit cycle if one neglects higher order
harmonics, while the error made is largest where the growth
rates are largest, which in this case is at the onset of oscilla-
tion. This error is however marginal and smaller than 0.02% in
this time simulation. In the fully nonlinear regime at the right
of Fig. 2.b the error between the frequency ωAVG and the pre-
dicted frequency of oscillation ωB is due to the fact that we are
neglecting the contribution of higher order harmonics that in
this case makes the amplitudes Aj just 1.5% smaller than the
prediction AAVG in Fig. 2.a. This in turn affects the amplitudes
in (33), leading to an error however smaller than 0.02%.

We add a final note on the formal correctness of this deriva-
tion where the frequency of oscillation ω depends on time. The
time-derivatives of {ηj , η′j} are O(1) quantities i.e. are gov-
erned by time t. The method of averaging assumes that the
slowly varying amplitudes and phases are O(ε) quantities, i.e.
are governed by time T ≡ εt. In (B.1) we keep the terms that
are O(ε) i.e. we keep the time derivatives of the slow flow
variables. In the mathematical derivations leading to (B.1), and
more clearly in (32), we are implicitly assuming that the time
derivative of ω can be neglected, i.e. we assume that ∂ω/∂t is a
term that scales with O(ε2) and neglect it. We present evidence
that this approximation is reasonable in Fig. §2.b, where we
observe that ωAVG is rather close to the reconstructed value of
ω especially in the regions where ∂ω/∂t 6= 0.

4.3. The method of multiple scales
We apply the method of multiple scales. We do not report

the details of the derivation, which can be found in [90]. One
obtains the set of equations:

A′1 =A1
L− κNA(A2

1, A
2
2,+ϕ)

D
(35a)

A′2 =A2
L− κNA(A2

2, A
2
1,−ϕ)

D
(35b)

ϕ′ =κ
Nϕ(A2

1, A
2
2, ϕ)

D
(35c)

ϕ′avg =
Nϕavg(A

2
1, A

2
2, ϕ)

2D
(35d)

where the expressions of L,NA, Nϕ, Nϕavg and D are reported
in appendix §C, and the method predicts the instantaneous fre-
quency of oscillation as

ωinst
MMS(t) = ωB + ϕ′avg(t) (36)

14



In the first two equations, L/D is a linear growth coefficient and
the term NA/D is responsible for the nonlinear saturation of
the amplitudes. The third equation governs the synchronization
of the two oscillators, and depends only on nonlinear terms,
since it is proportional to κ. The right hand side of (35d) is
the frequency shift of the two oscillators, which depends on the
amplitude of oscillation.

There are only two stable solutions among the fixed points of
the system of equations (35a),(35b) and (35c) and they match
exactly the solutions (31) of the method of averaging. The mean
frequency of oscillation of the limit cycle is ωB , because once
we substitute (31) into (35d) we find that the numerator on the
right hand side evaluates to zero. This means that the method of
multiple scales predicts that the frequency of oscillation at the
limit cycle equals ωB , matching the prediction of the method of
averaging.

For completeness, we present the instantaneous frequency of
oscillation using the method of multiple scales as ωMMS(t) in
Fig.2.b. The performance of this estimate is overall similar to
the method of averaging, slightly better in the linear regime at
small amplitudes.

4.4. Accuracy of the nonlinear solution

We tested the quality of these analytical solutions for a se-
ries of numerical simulations of (18) using the solver PYDELAY
[91]. In particular we fix α/ω = 0.08 and run simulations of
(18) on a fine grid with 153 values of β/α equispaced between
0 and 3 and 337 values of τω0 equispaced between 0 and 8, for
a total of 51561 simulations. We started the numerical integra-
tion at t = 0, with a history function defined for t ∈ [0 , −τ ],
which is oscillatory. We then extract the amplitude and the fre-
quency of the solutions once the numerical code has converged
to a limit cycle. We report the amplitude in Fig. 7.a, and the
frequency in Fig. 7.b. The agreement is overall very good, ex-
cept for a small discrepancy at small values of β/α, where the
contour line of the numerical solution at A = 0.051 is slightly
jagged and slightly underpredicts the analytical solution in a
few regions. This is due to the fact that we extracted the am-
plitudes from the numerical solutions too early in time, before
the system had fully converged to the limit cycle. This is cor-
roborated by the fact that for a constant α, smaller values of
β/α make the system more weakly nonlinear, leading to longer
time-scales for the evolution of the slow flow variables. On the
horizontal line β/α = 3 at the border of the investigated pa-
rameter space, where the system is more strongly nonlinear, the
error between the predicted and measured amplitude was found
to be smaller than 2.2%. On the same line, the error in the pre-
diction of the frequency of oscillation was smaller than 0.08%.

4.5. The case of an axial mode

The averaged equations of (21) are obtained similarly:

A′1 =A1,τ

[
ν − δA2

1,τ

]
(37a)

ϕ′1 +
ω

2
− ω2

0

2ω
=− β

2
sin(τω) + δ tan(τω)A2

1,τ (37b)

where we introduce
{
ν = (β cos(τω)− α)/2

δ = 3κ cos(τω)ω2/8
(38)

For reference, we observe that we can rewrite the right hand
side of (37a) in terms of the flame describing function as
Re[Q(A(t− τ))]A(t− τ)/2 and similarly for (37b). Note how
the amplitude A1 on the right hand side of (37a) is delayed, i.e.
A1,τ (t) = A1(t−τ). In other words, we are not assuming here,
as we did just after §4.1, that the delay τ is small compared to
the time scale of A′1, because this section focuses in detail on
the growth rate of A1

7. The limit cycle solution of the axial
mode has the same amplitude A and the same frequency ωB of
the solution of the problem with two azimuthal modes8:

A =

√
ν

δ
=

2√
3ωB

√
β − α sec(τωB)

κ

with ωB solution of h(τ, ωL) = 0 in (34). This means that the
nonlinear results of Fig. 7.a apply also to a single mode.

4.6. Discussion
Using the method of averaging and the method of multiple

scales we have obtained two sets of equations, respectively (30)
and (35). Despite the fact that the two sets of equations differ,
they share the same stable limit cycle solution, oscillating at the
frequency ωB of the neutrally stable system9, and at the ampli-
tude described by (31). This and the other results hold both for
azimuthal and axial modes. As discussed in §4.4, the analytical
solutions were validated against numerical simulations with ex-
cellent agreement, confirming that they characterize correctly
the limit cycle solution. We present in Fig. 7 the amplitudes
and frequencies of oscillation of the limit-cycle solution. As
expected, in Fig. 7.a the amplitude grows from a value of 0
on the boundary of neutral stability as the ratio β/α increases
along vertical lines of constant τω0. Importantly, the smooth
amplitude contour of the system in the nonlinear regime con-
firms that all the practical considerations discussed in §3 are
still valid in the nonlinear regime.

We observe in Fig. 7.b that along vertical lines the frequency
of oscillation at the limit cycle is constant, i.e. is independent
of the flame strength β for a fixed level of acoustic damping α,
as discussed also analytically in §4.2. This means that systems
with different flame strengths β start at zero amplitude of oscil-
lation with a different, linear frequency of oscillation ωlin as in
Fig. 2.b, but they all converge to the same frequency of oscil-
lation ωB . Note that we observe a frequency shift as a function
of amplitude despite the fact that the flame phase does not de-
pend on amplitude. This shift is small in the specific case of
Fig. 2.b, but can be larger, and has been already observed in
the literature: In particular [36, Fig. 8, first column] carry out
a describing function limit cycle calculation and observe a shift

7Note that this does not affect any of the results of §4.1
8solutions for the two modes were presented in (31)
9defined as the solution of (26b)
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Figure 7: Nonlinear stability analysis of axial and azimuthal thermoacoustic modes characterized by an acoustic frequency of oscillation ω0. a) Amplitude of
oscillation A

√
κω0. b) Frequency of oscillation ω/ω0. We compare the saturated amplitude and frequency at the limit cycle (l.c.) extracted from the numerical

integration of the original system (18) (in colour) and of the analytical solution (black lines). In both a) and b) the black lines were chosen to be at the same levels as
the colour contour boundaries. The two coincide almost exactly showing that the analytical solution matches the results of the numerical integration of the original
system.

from the linear frequency to the limit cycle frequency up to 3%,
in a range of frequencies where the flame phase is constant with
amplitude [36, Fig. 2 at 145 Hz].

We have just discussed that ωB does not depend on the flame
strength β, but only on the level of acoustic damping α/ω0 and
on the phase response, as presented in Fig. 5 and 6. This has
the physical interpretation that no matter how strong the flame
response, pulsations will grow to an amplitude where the non-
linear gain of the flame balances the level of acoustic damping,
which will be the same level obtained by reducing the flame
strength to take the system onto the boundary of stability.

Both methods predict the evolution of the frequency of os-
cillation with time, as shown in Fig. 2.b. In the general case,
sources (flames) and sinks (dampers) have a phase response that
depends on the amplitude, leading to larger frequency shifts
from the linear to the nonlinear regime. It is especially in these
situations that one should take into account, in the time domain,
the dependence of the frequency of oscillation on the ampli-
tudes, as done here in (33).

5. Linear growth rate estimation

We have presented evidence at the end of §3 commenting on
Fig. 3 of how neglecting the part of the heat release rate q not

in phase with the pressure p as assumed in [47, 48] leads to sys-
tematic errors in the prediction of the boundary of stability and
as a consequence of the amplitudes of oscillation. However,
this assumption allows us to use a simplified model to identify
the linear growth rate based on the pressure time series of a
thermoacoustic system [48, 92]. One can then ask if the sim-
plified model suffers the same systematic errors if it is used to
identify a system instead of predicting its state, with a partic-
ular focus on the quantity of interest that is the linear growth
rate. To this aim, in this section we show how the system of
equations assumed by [92] with a zero delay τ , resembles in
a certain mathematical sense the original system of equations
with a non-zero delay τ . If this is the case, then one can safely
use the methods discussed in [92] for linear growth rate esti-
mation. We leave open the question of the identification of the
delay τ and the case of azimuthal instabilities and focus on a
thermoacoustic system with a single mode. We observe that the
frequency of oscillation ω(t) is close to ωB and in the following
assume that ω(t) = ωB ∀t in (37a) and discard the study of the
equation for ϕ1. [92] identifies a system of equations like (21)
but with τ(E) set to zero:

η′′1 (t)+ω2
0(E)η1(t) = f(η′1(t), η′1(t− τ)),

with f(a) ≡ a(β(E) − κ(E)a
2)− αa (39a)
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with the respective slow flow equation:

A′1 =A1

[
ν(E) − δ(E)A

2
1

]
(39b)

We then want to understand if there exists a set of coefficients
{ν(E), δ(E), ω0(E)} such that the dynamics of the equivalent
(hence the subscript (E)) system (39b) matches the dynamics
of the original system (37a), so that the system identification
would identify it. We first observe that the frequency of os-
cillation of (39a) is well approximated by ω0(E), so that it has
to be ω0(E) = ωB . We then observe that in principle the dy-
namics of (37a) and (39b) cannot match because the first is of
delayed differential type, while the second is of ordinary differ-
ential type. We can however approximate the Taylor expansion
of the delayed term to the first order in τ :

A1,τ = A1(t− τ) ≈ A1(t)− τA′1(t) +O(τ2) (40)

By substituting (40) into (37a) and after some manipulation we
obtain:

A′1(1 + ντ − 3δτA2
1) = νA1 − δA3

1 (41)

Despite the fact that (41) does not have the same structure as
(39b) in the nonlinear regime, one can expand in Maclaurin se-
ries the expression ofA′1 in powers ofA1, truncate it to the third
order, and match suitably the coefficients {ν(E), δ(E)}. In the
linear regime the two systems are equivalent:

σ(E) = ν(E) ≈
ν

1 + τν
(42)

where σ(E) is the growth rate of (39a).
A similar argument can be applied with the method of mul-

tiple scales. In the linear regime the two modes A1 and A2 are
decoupled in (35) and the linear coefficient matches the case
of one thermoacoustic mode only. In this case the system is
already of ordinary differential type, and one expects that

σ(E) = ν(E) ≈
L

D
(43)

We find good qualitative agreement in Fig. 8 between the
exact growth rate of (21) in blue, the growth rate (42) in red,
and the growth rate (43) in green, with the discrepancies to be
attributed to the imperfect accuracy of the two nonlinear meth-
ods. As a comment, we observe in Fig. 8 a reduction as a
function of τω0 of all three growth rates. This effect of the
delay τ can be observed in (42) and is additional to the direct
effect of the phase τω between q and p accounted for in the
cos(τω) term in the definition (38) of ν. To conclude, we ob-
serve that equations (39) used by [92], with suitable coefficients
{ν(E), δ(E)}, match either the third order Maclaurin expansion
of the equations (41) of the truncated method of averaging, or
the equations of the method of multiple scales for one mode, as-
suming the approximation introduced by the truncation of the
equations is acceptable. Then it follows that the system identifi-
cation method [92] applied to timeseries of the original system
(2.3) with delay should produce good growth rate estimates of
the original system, within the limits of these approximations.

The mismatch in Fig. 8 shows that some of these approxima-
tions play a limited role.

This approximate equivalence between the models with and
without delay is in line with past experience [43] with growth
rate predictions on a model with a time delay, but requires fur-
ther numerical evidence.

6. Conclusions

The aim of this work is to draw general conclusions about
the stability10 of thermoacoustic systems, by accounting for the
fact that most flames have a response with a decreasing phase as
function of the frequency ω, which can be approximated with a
slope −τ .

We find that the system’s stability depends on the flame phase
and gain as expected but also that steep phase responses, i.e.
large values of τ , make the system more unstable, i.e. lead to
an increase of the growth rate. This latter effect is closely re-
lated to how a thermoacoustic system can pulsate at a frequency
ωB different from the frequency ω0 of the acoustic mode of the
system that we focus on. In particular for a fixed frequency
shift ∆ω = ωB − ω0, a steeper phase response leads to a larger
phase change ∆ϕ = τ∆ω that in turn can make the Rayleigh
term positive and the system unstable. We show that: 1) flames
with a steep flame phase are more likely to excite pulsations
in a given combustor; 2) a flame responding in anti-phase with
the pressure at the flame location at the frequency ω0 can still
make the system unstable at a frequency ω 6= ω0 in the neigh-
bourhood of ω0; 3) a flame can destabilise an acoustic mode
regardless of its phase at ω0. For a given system characterized
by a certain local phase slope τ in the vicinity of the frequency
of oscillation ω0, the quick calculation of τω0 allows the esti-
mation of the strength of the effect of the flame phase slope on
the boundary of stability and amplitudes of the system.

We show how the model recovers frequency shifts that match
typical experimental values, which are reviewed together with
damping rates and growth rates for a selected set of references.
Also the range of the phase φqp between heat release rate and
acoustic pressure is close to experimental experience. In partic-
ular the model explains how φqp is an indicator of mode transi-
tion as proposed by [88]. We also present the interpretation of
one transition between unstable/stable/unstable conditions with
a strong frequency shift in the experiment of Boudy et al. [34].

We apply in the nonlinear regime the method of averaging
and multiple scales. Both nonlinear methods lead to excellent
results in the range of parameters that are typical of thermoa-
coustic oscillations when compared to numerical simulations.
We prove that the results that apply in the nonlinear regime at
the limit cycle match the results on the boundary of instabil-
ity, obtained by suitably reducing the flame gain to the point of
making the system neutrally stable. Both linear and nonlinear
results apply to systems with either only one axial mode oscil-
lating, or two degenerate azimuthal modes oscillating, where

10here and in the following, we use for brevity the term flame to mean the
fluctuating heat release rate coming from the flame
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Figure 8: Linear growth rates (g.r.) of: the original equations of the system (2.3) with delay (blue), the truncated equations of the method of averaging (red), the
equations of the method of multiple scales (green). These results are for β/α = 2, α/ω = 0.08.

the coefficients in the equations differ in the two cases, as dis-
cussed first by [93].

We discuss also the sensitivity to the level of acoustic damp-
ing in the system. We find that, assuming the system saturation
occurs because of nonlinear flame gain saturation, larger lev-
els of acoustic damping lead to larger shifts of frequency at the
limit cycle from the acoustic frequency ω0. This effect is not
governed by the flame gain because, regardless of its value in
the nonlinear regime, it decreases up to the point of matching
the level of acoustic damping.

We show that the part of flame response not in phase with the
pressure at the flame location cannot be neglected when car-
rying out a prediction of the solution of a thermoacoustic sys-
tem. This however does not imply that one must account for
this component when identifying the linear growth rate of an
observed thermoacoustic system. In an attempt to address this
latter point, we present in §5 a conjecture suggesting that one
may neglect this component when estimating the linear growth
of a time series. A quantitative discussion of this conjecture
will require further numerical validation.
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Appendices
A. Mathematical derivation of the linear stability analysis

By studying as a function of σ the left and right hand sides
of (25a) for fixed values of the other parameters in the dis-
cussed ranges, we find that there exists only one solution for
the growth rate σ, and that it is positive if β cos (τω)− α > 0.
It follows that (26a) defines the boundary of stability, with the
system being unstable if the left hand side is positive. We
also observe from (26b) that on the boundary, if τ is zero, ωB
matches the acoustic frequency of oscillation ω0. We observe
that if (α, β, τ) provide a real-valued solution ωB of (26), then
(α, β, τk) is a solution too, with

τk =τ + 2kπ/ωB , k ∈ N+. (A.1)

We can then initially limit the search of solutions restricting the
domain of τ to

τ ∈
[
− π

ωB
,
π

ωB

)
(A.2)

and then exploit (A.1) to generate the other solutions. Since ωB
is close to the natural frequency of the system, ω0, the domain
(A.2) is bounded. Moreover, since α and β are positive, (26a)
allows us to further restrict the domain so that the cosine term
is positive:

τ ∈
[
− π

2ωB
,
π

2ωB

)
(A.3)

This is in line with the Rayleigh criterion [1]: the phase dif-
ference between q and p must be in the range (−π/2, π/2) to
maintain or sustain instability.

The domain (A.3) allows negative values of τ , though a neg-
ative value in the system does not make physical sense. We
investigate negative solutions nonetheless, because they lead to
positive solutions τk by the application of (A.1). The neutrality
of the solutions is defined by (26a), from which we can calcu-
late the linear driving βL at the onset of instability as a function
of α and τ :

βL = α sec(τωB), (A.4)
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The frequencies of the neutrally stable solutions are the solu-
tions ωB of (26b). We substitute β from (A.4) into (26b) and
obtain:

h(τω0, ωB/ω0) ≡ ω2
B − ω2

0 + αωB tan(τωB) = 0 (A.5)

We can solve τω0 as function of ωB/ω0 parametrically in the
level of damping α/ω0:

τω0 =

(
ωB
ω0

)−1

arctan




1−
(
ωB
ω0

)2

α

ω0

ωB
ω0


 (A.6)

reported in Fig. A.1. There are two solutions ωB for each value
of τ if τ̂ < τ < 0, with τ̂ω0 ≈ −1.13. This line shows the
effect of τω0 on the frequency shift, ωB/ω0, on the border
of neutral stability. We present in Fig. A.2.a the curve for

−π/2 0 π/2

τω0
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ω
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0

α/ω0 = 0.02

α/ω0 = 0.04

α/ω0 = 0.08

α/ω0 = 0.12

Figure A.1: Curves (A.6) for different values of the nondimensional damping
α/ω, zoomed in to the approximate range for ω for thermoacoustic applications
fixed to ω0 ± 20%. In the following we use α/ω = 0.08.

α/ω0 = 0.08, but colour it based on the value of the ratio β/α
that makes the system neutrally stable calculated using (A.4)
and zoom to the range of parameters typical of thermoacous-
tic applications discussed in §2.4. We present in Fig. A.2.b the
same information but invert the vertical axis and the colourmap.
We mention how similar plots for liquid propellant rockets date
back at least to [93, Fig. 1].

We then recover the full boundary of neutral stability by ap-
plying the transformation (A.1) to values of (β/α, τω0) from
Fig. A.2 and present it in Fig. 3. In Fig. 3.a the lobe/trough
with a minimum at τω0 = 2π is obtained for k = 1 in (A.1),
the lobe/trough with a minimum at 4π is obtained for k = 2 in
(A.1) and so on so forth. The mapping (A.1) is key to interpret
how the boundary of stability is deformed as function of k. In
particular one sees that if ωB = ω0, the point τω0 is simply

mapped to τω0 +2kπ, in a periodic fashion. Then, if ωB < ω0,
the point is mapped to a larger value than τω0 + 2kπ, and if
ωB > ω0 it is mapped to a smaller value of τω0 + 2kπ.

A.1. Results obtained neglecting the imaginary part of the de-
scribing function

For comparison with the previous work of [47, 48], we now
make the same assumption and set to zero the part of the heat
release rate q out of phase with p, i.e. the sin(.) term appearing
in equations (26b). The equations (26) simplify to

β cos (τωB)− α = 0 (A.7a)

ω2
B − ω2

0 = 0 (A.7b)

In equations (A.7) we find that regardless of the values of α, β
and τ the linear frequency of oscillation at the neutral boundary
of stability coincides with the natural acoustic frequency of the
unperturbed oscillator:

{
β = α/ cos(τω0)

ωB = ω0

(A.8)

These results are presented in Fig. A.2 and 3 with black lines.

A.2. Generalization for ψ ≡ φ0 + τω0 6= 0

We can rewrite (15) as

q̂(ω)

p̂(ω)
= βei(ψ−τω) for ω close to ω0, ψ ∈ [−π, π) (A.9)

where

ψ = φψ0 + τψω0 (A.10)

One looks for the solution of (26) where the additional term−ψ
appears in the equations:

β cos (τωB − ψ)− α = 0 (A.11a)

ω2
B − ω2

0 + βωB sin (τωB − ψ) = 0 (A.11b)

One can generate a solution for (A.11) from the solution of (26).
In particular, we observe that if {α, β, τψ=0ω0} lead to a neu-
trally stable frequency ωB/ω0 in (26), then {α, β, τψω0} lead
to the same frequency ωB/ω0 if:

τψ=0ωB = τψωB − ψ (A.12)

We substitute in (A.12) the expression (A.10) for ψ and obtain:

τψ=0ωB = τψ(ωB − ω0)− φ0 (A.13)

We now observe from (A.10) that

φψ=0
0 = −τψ=0ω0 (A.14)

We manipulate the left hand side of (A.13), and substitute
(A.14) to obtain

τψ=0ωB = τψ=0ω0 + τψ=0(ωB − ω0) (A.15)

= −φψ=0
0 + τψ=0(ωB − ω0) (A.16)

21



−π/2 −π/4 0 π/4 π/2

τω0

0.90

0.95

1.00

1.05

1.10

ω
B
/ω

0

1.2

1.5

1.8

2.0

2.2

2.5

2.8

β
/α

(a) frequency of neutral stability

−π/2 −π/4 0 π/4 π/2

τω0

1.0

1.5

2.0

2.5

3.0

β
/α

0.893

0.915

0.936

0.958

0.979

1.001

1.025

1.050

1.074

1.099

ω
B
/ω

0

(b) ratio β/α of driving over damping at neutral stability

Figure A.2: Linear stability analysis, carried out parametrically as a function of the local slope τω0. a) The coloured line is the frequency of the neutrally stable
modes as a function of τω0. This is the line for α/ω0 = 0.08 presented first in Fig. A.1, but coloured with the values of β/α that make the system neutrally stable.
b) stability map of the system. This is the same data of a) but swapping the vertical axis with the colourmap. The coloured line represents the values of β/α as a
function of τ on which the system is neutrally stable. We study the system for positive values of τω0, where the linearly unstable region is reported in grey. The
same analysis on the system obtained by neglecting the component of q not in phase with p as done in [47, 48] is reported with black lines in frames a) and b)

Finally, by moving the terms between the two sides, (A.13) be-
comes

φψ0 − φψ=0
0 =

(
ωB
ω0
− 1

)
(τψω0 − τψ=0ω0) (A.17)

Equation (A.17) shows that one point (τψ=0ω0, β/α) of the
boundary of stability of Fig. 3, which has a flame phase at
ω = ω0 expressed by (A.14), is mapped in the general case to
a line with slope ωB/ω0 − 1. We draw these lines of neutral
stability in red in Fig. 5 for different values of the ratio of β/α.
In particular for each value of the ratio β/α there are two lines,
one with positive and one with negative slope. A point (τω, φ0)
is linearly unstable if it is between these two lines, linearly sta-
ble otherwise. In the same figure we plot also in colour the ratio
ωB/ω0, which is constant along these lines, with the colourbar
on the right.

The phase between heat release rate and the pressure is the
argument of the complex exponential in (15):

φqp =φψ0 − τψ(ω − ω0) (A.18)

=φψ0 − τψω0

(
ωB
ω0
− 1

)
(A.19)

We remind the reader that φqp is the flame phase at the fre-
quency ω = ωB of the thermoacoustic mode, which does not
match φ0 because the latter is the flame phase calculated at
ω = ω0. The phase φqp is presented in Fig. 5.b.

B. Mathematical aspects of the method of averaging

We substitute (29) into (28), and add (28a) multiplied by
iei(ωt+ϕj)ω and (28b) multiplied by −ei(ωt+ϕj). We obtain

ω2 − ω2
0

2
Aje

2i(ωt+ϕj(t)) + ω

(
ϕ′i(t) +

ω

2
− ω2

0

2ω

)
Aj(t) + . . .

. . . iωA′j(t) = −ei(ωt+ϕj(t))fj(t, A1(t), A1(t), . . .) (B.1)

where f depends on the fast time variable t and on the slow vari-
ables, which are the amplitudesA1(t), A2(t), A1(t−τ), A2(t−
τ) and the phases ϕ1(t), ϕ2(t), ϕ1(t− τ), ϕ2(t− τ). Note that
f is periodic in its direct dependence on t, with period 2π/ω.
We apply first order averaging as discussed by [89]: we approx-
imate the slow variables as constant in the period of oscillation
2π/ω and time-average both sides of (B.1). The first term on
the left hand side has period π/ω and vanishes. We are left
with:

(
ϕ′i(t) +

ω

2
− ω2

0

2ω

)
Aj(t)ω + iωA′j(t) ≈ (B.2)

− 1

2π/ω

∫ t+π/ω

t−π/ω
ei(ωs+ϕj(t))fj(s,A1(t), . . .)ds

In the integral on the right hand side, the delayed slow variables
such as A1(t− τ) are approximated as A1(t) since the delay τ
is assumed to be of the same order as the period of oscillation,
i.e. small compared to the time scale of the slow variables, as
discussed by [94, 95]. We will relax this assumption later in §5.

We then evaluate the right hand side RHSj of (B.2). We take
the constant term eiϕj(t) out of the integral, introduce the point
z = eiωs on the complex unit circle and change the integration
variable from s to z, obtaining a closed path integral on the unit
circle around the origin:

RHSj = −eiϕj(t) 1

2πi

∮
fj(z,A1(t), . . .)dz

= −eiϕj(t)Resz=0[fj ] (B.3)

The term fj(z,A1(t), . . .) is a Laurent polynomial in z, and is
then holomorphic everywhere except at z = 0, so that in the
last passage above we applied the residue theorem. The residue
is the coefficient of 1/z in the expression of fj . The right hand
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side of (B.2) divided by ω for j = 1 evaluates to

g(A1, A2, ϕ) ≡ RHS1

ω
= −e

iϕ1(t)

ω
Resz=0[f1] (B.4a)

=
1

2
iA1

(
βeiτω − α

)
− . . .

. . .
3

32
iA1κω

2eiτω
(
A2

2e
2iϕ + 3A2

1 + 2A2
2

)

where ϕ is the difference between the phases of the first and
second oscillator, ϕ ≡ ϕ1 − ϕ2, and the expression for g2 is
obtained similarly. In particular one finds

RHS2

ω
= g(A2, A1,−ϕ) (B.4b)

We divide both sides of (B.2) by ω, substitute (B.4), and obtain
the equations for the time evolution of the slow variables of the
two oscillators:(
ϕ′1(t) +

ω

2
− ω2

0

2ω

)
A1(t) + iA′1(t) =g(A1, A2,+ϕ) (B.5a)

(
ϕ′2(t) +

ω

2
− ω2

0

2ω

)
A2(t) + iA′2(t) =g(A2, A1,−ϕ) (B.5b)

with ϕ ≡ ϕ1 − ϕ2. This dynamical system is in terms of
the variables {A1, A2, ϕ1, ϕ2} and can present solutions where
both phases ϕ1 and ϕ2, in the limit t → ∞, present a common
oblique asymptote, i.e. the two oscillators undergo the same
shift of their oscillation frequency. However, these solutions
are not fixed points of (B.5) since ϕ′j(t) 6= 0. These solutions
are however fixed points of an equivalent system, in terms of
the variables x = {A1, A2, ϕ, ϕavg ≡ (ϕ1 + ϕ2)/2}, which is
presented in (30).

C. Slow flow equations for the method of multiple scales

We report in (C.1) the expressions introduced in
(35) and obtained with the method of multiple scales:

D = 16
(
α2 +

(
4(ατ + 1)ω2

L − α2
)

cos (2τωL) + 2(ατ(ατ + 2) + 2)ω2
L + 2α(ατ + 2)ωL sin (2τωL)

)

L = −16ωL (α− β cos (τωL)) (α sin (2τωL) + 2ωL (ατ + cos (2τωL) + 1)) (C.1a)

NA(A2
1, A

2
2, ϕ) = 3ω3

L

(
2ωL

(
A2

2 cos(2ϕ) + 3A2
1 + 2A2

2

)
cos (τωL) (ατ + cos (2τωL) + 1)

+ sin (2τωL) (cos (τωL)
(
αA2

2 cos(2ϕ) + 3αA2
1 + 2αA2

2 − 2A2
2ωL sin(2ϕ)

)

− αA2
2 sin(2ϕ) sin (τωL))

)
(C.1b)

Nϕ(A2
1, A

2
2, ϕ) = 6ω3

L sin(ϕ) cos (τωL)
(

2
(
A2

1 −A2
2

)
sin(ϕ) sin (τωL) (α sin (τωL) + 2ωL cos (τωL))

+
(
A2

1 +A2
2

)
cos(ϕ) (α sin (2τωL) + 2ωL (ατ + cos (2τωL) + 1))

)
(C.1c)

Nϕavg(A
2
1, A

2
2, ϕ) = ωL

(
sin (2τωL) (α sin (τωL) + 2ωL cos (τωL))

(
15
(
A2

1 +A2
2

)
κω2

L − 32β + 32α sec (τωL)
)

+ 3
(
A2

1 +A2
2

)
κω2

L cos(2ϕ) sin (2τωL) (α sin (τωL) + 2ωL cos (τωL))

− 3
(
A2

1 −A2
2

)
κω2

L sin(2ϕ) cos (τωL) (α sin (2τωL) + 2ωL (ατ + cos (2τωL) + 1))
)

(C.1d)
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