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Abstract— Moments of continuous random variables ad-
mitting a probability density function are studied. We show
that, under certain assumptions, the moments of a random
variable can be characterised in terms of a Sylvester equa-
tion and of the steady-state output response of a specific
interconnected system. This allows to interpret well-known
notions and results of probability theory and statistics in
the language of systems theory, including the sum of inde-
pendent random variables, the notion of mixture distribu-
tion and results from renewal theory. The theory developed
is based on tools from the center manifold theory, the the-
ory of the steady-state response of nonlinear systems, and
the theory of output regulation. Our formalism is illustrated
by means of several examples and can be easily adapted to
the case of discrete and of multivariate random variables.

Index Terms— Differential equations, interpolation, non-
linear systems, probability, random variables, statistics,
transfer functions.

I. INTRODUCTION

One of the most important and challenging problems in

probability theory and statistics is that of determining the

probability distribution of the random process that is thought

to have produced a given set of data. Without making any

assumptions on the underlying random process, this problem

is extremely difficult in general. In parametric statistics [1 – 4],

where the probability distribution which generates the given

data is assumed to belong to a family of probability distributions

parameterized by a fixed set of parameters, the problem can

be dealt with using different approaches. A classical way [1 –

4] to solve this problem is to find mathematical objects that,

under specific assumptions, uniquely identify a probability

distribution in the family. In probability theory [5 – 8], a similar

necessity arises when one is confronted with the problem of

specifying uniquely a probability measure through a sequence

of numbers. The determination of simple, yet meaningful,

objects with these features is therefore of paramount importance.

The significance of the moments of a random variable in this

context is comparable to that of the derivatives (at a point) for
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an analytic function. The representation of an analytic function

through its Taylor series [9] allows to know the whole function

once all the derivatives (at a point) are specified. Similarly, the

set of all moments of a random variable uniquely identifies the

probability distribution of the random variable, provided that

certain conditions are satisfied. This means that the essential

features of a random variable can be captured by its moments,

which can be then used as an alternative description of the

random variable.

Moments have been used in a number of different contexts in

probability theory, including the Stieltjes moment problem [10],

the Hamburger moment problem [11], the Hausdorff moment

problem [12] and the Vorobyev moment problem [13]. Moments

have proved instrumental in the first rigorous (yet incomplete)

proof of the central limit theorem [14], but also in the proof of

the Feynman-Kac formula [15], in the characterisation of the

eigenvalues of random matrices [16], and in the study of birth-

death processes [17]. The correspondence between moments

and probability distributions is also exploited in statistics to fit

curves and to design parameter estimation procedures [1 – 4].

For example, the method of moments introduced in [18] takes

advantage of this correspondence to build consistent (usually

biased) estimators. Approximations of probability density

functions may be computed exploiting such correspondence

through Pearson’s and Johnson’s curves [2]. A revisitation of

this correspondence has also led to the exploratory projection

pursuit [19 – 21], a graphical visualisation method for the

interpretation of high-dimensional data. While this list of

examples is far from being exhaustive, it illustrates the central

role of moments in a number of interesting problems. Further

detail on theory and applications of moments can be found,

e.g., in [22 – 24].

This work represents a step towards bridging the gap between

the notions of moment in probability theory and in systems

theory. Connections are first established between moments

of random variables and moments of systems [25]. These

connections are then used to support the claim that a system

can be seen as an alternative, equivalent description of the

probabilistic structure of a random variable. This, in turn,

indicates that systems-theoretic techniques and tools can be

used to revisit and shed new light on classical results of

probability theory and statistics.

The benefits of a dialogue between the two areas of research

has been highlighted, e.g., in [26] and briefly mentioned in [27].

The literature on the analysis of results of probability theory

in systems-theoretic terms, however, appears to be limited to

specific topics and scattered across different research fields.
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Linear systems theory has allowed to reinterpret basic results

of probability theory for probability density functions with

rational Laplace transform, e.g., in [28 , 29]. Concepts and

tools of systems theory have been used to investigate phase-

type distributions [30 , 31] and matrix exponential distributions

[32]. The study of the properties of these distributions have

grown into a well-established area of research which goes

under the name of “matrix analytic methods” [33 , 34]. Another

well-known class of models which has attracted the interest

of systems theorists over the past century is that of Markov

chains [5 , 6 , 8 , 35 – 37]. One of the reasons for this interest is

that these models can be regarded as a special class of positive

systems [38], which can be studied exploiting the theory of non-

negative matrices [39 – 42]. Queuing systems have been studied

borrowing analysis and design tools from systems theory,

e.g., in [43 , 44], whereas a systems-theoretic approach has

been adopted to study risk theory, e.g., in [45 , 46]. In circuits

theory, moments have been used for the approximation of the

propagation delay in a RC tree network by interpreting the

impulse response of a circuit as a probability density function

[47]. Finally, we emphasise that a number of fundamental tools

for modelling, estimation and prediction may not be sharply

categorised as belonging to the sphere of probability theory or

to that of systems theory, but rather lie at the intersection

of these areas of research. The Kalman filter [48 , 49] is

perhaps the most successful example of exchange of ideas

between probability theory and systems theory, but several

other examples can be found (see, e.g., [50 – 56] and references

therein).

The main objective of this work is to establish a one-to-one

correspondence between moments of random variables and

moments of systems [25]. This goal is readily achieved by

interpreting probability density functions as impulse responses

whenever these can be realized by linear time-invariant systems.

The situation is more delicate when a probability density

function can be only realized, e.g., by means of a linear

time-varying system or a system in explicit form [57 , 58],

for which the interpretation in terms of impulse responses

does not possess a direct counterpart. This issue is overcome

exploiting recent developments in systems theory [58 – 63],

where the moments of a linear system have been characterised

as solutions of a Sylvester equation [59 , 60] and, under certain

hypotheses, as steady-state responses of the output of particular

interconnected systems [61 – 63]. The characterisation of the

moments of a system in terms of steady-state responses is based

on tools arising in the center manifold theory [64], the theory

of the steady-state response of a nonlinear system [65], and the

output regulation theory for nonlinear systems [66]. Existing

results on moments of linear and nonlinear systems [61 – 63]

are extended and the notion of moment for systems which

only possess a representation in explicit form is revisited [58].

As a direct by-product of our approach, Sylvester equations

and Sylvester-like differential equations may be interpreted

as powerful computational tools which allow to calculate

moments of random variables. Our approach allows to revisit

and re-interpret well-known notions and results of probability

theory and statistics using the language of systems theory,

including the sum of independent random variables [6 , 8 , 67],

the notion of mixture distribution [7 , 68], and results from

renewal theory [6 , 7 , 69 , 70]. Given the conceptual nature of

the paper, we focus on linear systems, linear time-delay systems

and systems in explicit form to streamline the exposition,

although generalisations to further classes of systems are

possible. The formalism is developed for univariate continuous

random variables, but can be easily extended to discrete and

multivariate random variables.

Preliminary results have been presented in [71], where

a first connection between moments of probability density

functions and moments of linear time-invariant systems has

been established. As a result, the moment generating function

of a random variable and the solution of a Sylvester equation

have been shown to be closely related. The present manuscript

extends our results to probability density functions which may

not be described by means of a linear time-invariant system.

To this end, the notion of moment of a system is revisited and

extended to systems the impulse response of which is defined

on the whole real line or on a compact subset of the real

line. The theory is supported by several worked-out examples

and applications to identifiability, queueing theory and renewal

theory.

The rest of the paper is organized as follows. Section II

provides basic definitions and the necessary background

concerning moments of linear systems, of time-delay systems,

of systems in explicit form and of random variables. Section III

contains our main results and includes a characterisation of

the moments of a random variable admitting a (linear or

explicit) realization in terms of the systems-theoretic notion of

moment. The moments of probability density functions defined

on the real axis as well as probability density functions with

compact support are also characterised by means of Sylvester

equations and steady-state responses. Section IV provides

selected applications of the theoretical results developed,

including the sum of independent random variables, the notion

of mixture distribution, and results from renewal theory. Finally,

conclusions and future research directions are outlined in

Section V.

Notation: Z≥0 and Z>0 denote the set of non-negative

integer numbers and the set of positive integer numbers,

respectively. R, Rn and R
p×m denote the set of real numbers,

of n-dimensional vectors with real entries and of p × m-

dimensional matrices with real entries, respectively. R≥0 and

R>0 denote the set of non-negative real numbers and the

set of positive real numbers, respectively. C denotes the

set of complex numbers. C<0 denotes the set of complex

numbers with negative real part. i denotes the imaginary unit.

I denotes the identity matrix. ej denotes the vector with the

j-th entry equal to one and all other entries equal to zero.

σ(A) denotes the spectrum of the matrix A ∈ R
n×n. M ′

denotes the transpose of the matrix M ∈ R
p×m. ‖x‖ denotes

the standard Euclidean norm of the vector x ∈ R
n while, with

some abuse of notation, ‖A‖ denotes the induced norm of the

matrix A ∈ R
n×n. ∆k denotes, for all k ∈ Z≥0, the standard

k-simplex, i.e. ∆k =
{
w ∈ R

k+1
≥0 : w1 + . . .+ wk+1 = 1

}
.

diag(λ) denotes the diagonal matrix whose diagonal elements

are the entries of the vector λ ∈ R
n. J0 denotes the matrix
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with ones on the superdiagonal and zeros elsewhere. Jλ
denotes the Jordan block associated with the eigenvalue λ ∈ C,

i.e. Jλ = λI + J0. k! and (k)!! denote the factorial and the

double factorial of k ∈ Z≥0, respectively. ẋ denotes the time

derivative of the function x, provided it exists. f1 ∗ f2 denotes

the convolution of the functions f1 and f2. L{f} denotes

the bilateral Laplace transform of the function f . δ0 and

δ−1 denote the Dirac δ-function and the right-continuous

Heaviside unit step function, respectively. The time reversal

of the function f : R → R is defined as t 7→ f(−t). δ−1

denotes the right-continuous time reversal of δ−1. 1S denotes

the indicator function of the subset S of a set X , i.e. the

function 1S : X → {0, 1} defined as 1S(x) = 1 if x ∈ S
and as 1S(x) = 0 if x 6∈ S. By a convenient abuse of

notation, 1 also denotes the vector the elements of which

are all equal to one. The translation of the function f :
R → R by τ ∈ R is defined as fτ : t 7→ f(t− τ). C[−T, 0]
denotes the set of continuous functions mapping the interval

[−T, 0] into R
n with the topology of uniform convergence.

For all s⋆ ∈ C and A(s) ∈ C
n×n, s⋆ ∈ C \ σ(A(s)) denotes

det(s⋆I −A(s⋆)) 6= 0, while σ(A(s)) ⊂ C<0 indicates that

if s⋆ ∈ C is such that det(s⋆I −A(s⋆)) = 0, then s⋆ ∈ C<0.

E[X] denotes the expectation of the random variable X .

II. PRELIMINARIES

This section contains a short digression on the notion of

moment, which is used with different meanings in the literature

and throughout the paper. To give a compact and self-contained

exposition, we first provide some material on the notion of

moment of a linear system [25 , 59 – 62]. We then illustrate and

extend notions and results concerning moments of a system in

explicit form [58] and of a time-delay systems [72]. Finally,

we recall the notion of moment of a random variable [73].

A. Moments of a linear system

Consider a single-input, single-output, continuous-time,

linear, time-invariant system described by the equations

ẋ = Ax+Bu, y = Cx, (1)

in which x(t) ∈ R
n, u(t) ∈ R, y(t) ∈ R and A ∈ R

n×n, B ∈
R

n×1 and C ∈ R
1×n are constant matrices. Throughout the

paper we assume that the system (1) is minimal, i.e. reachable

and observable, and let W (s) = C(sI−A)−1B be its transfer

function.

Definition 1. [61] The moment of order zero of system (1) at

s⋆ ∈ C \ σ(A) is the complex number η0(s
⋆) =W (s⋆). The

moment of order k ∈ Z>0 of system (1) at s⋆ ∈ C \ σ(A) is

the complex number

ηk(s
⋆) =

(−1)k

k!

[
dk

dsk
W (s)

]

s=s⋆
. (2)

The moments of system (1) can be characterised in terms of

the solution of a Sylvester equation [59 – 62]. The following

statements provide a version of the results presented in [61 , 62].

Lemma 1. Consider system (1). Assume k ∈ Z≥0 and

s⋆ ∈ C \ σ(A). Then [ ηk(s
⋆) · · · η1(s⋆) η0(s⋆) ]′ = ΨkΥkB,

where Ψk ∈ R
(k+1)×(k+1) is a signature matrix1 and

Υk ∈ R
(k+1)×n is the unique solution of the Sylvester equation

Js⋆Υk + ek+1C = ΥkA. (3)

Lemma 2. Consider system (1). Assume k ∈ Z≥0 and

s⋆ ∈ C \ σ(A). Then there exists a one-to-one correspondence

between the moments η0(s
⋆), η1(s

⋆), . . . , ηk(s
⋆) and the ma-

trix ΥkB, where Υk ∈ R
(k+1)×n is the unique solution of the

Sylvester equation

SΥk +MC = ΥkA, (4)

in which S ∈ R
(k+1)×(k+1) is a non-derogatory2 matrix with

characteristic polynomial

χ(s) = (s− s⋆)k+1 (5)

and M ∈ R
k+1 is such that the pair (S,M) is reachable.

The moments of system (1) can be also described under

special circumstances by means of the (well-defined) steady-

state output response3 of the interconnection of system (1) with

a system described by equations

ω̇ = Sω +Mv, d = ω, (6)

with ω(t) ∈ R
k+1, v(t) ∈ R, d(t) ∈ R

k+1 and v = y, i.e. of

the interconnected system

ẋ = Ax+Bu, ω̇ = Sω +MCx, d = ω, (7)

in which S ∈ R
(k+1)×(k+1) is a non-derogatory matrix with

characteristic polynomial (5), M ∈ R
k+1 is such that the pair

(S,M) is reachable, as detailed by the following statement,

which is a variation of [62, Theorem 1]. In what follows,

we tacitly assume that the pair (S,M) always satisfies these

properties.

Theorem 1. Consider system (1), system (6), and

the interconnected system (7). Assume σ(A) ⊂ C<0,

s⋆ ∈ C \ σ(A), x(0) = 0, ω(0) = 0 and u = δ0. Then there

exists a one-to-one correspondence4 between the moments

η0(s
⋆), η1(s

⋆), . . . , ηk(s
⋆) and the (well-defined) steady-state

response of the output d of system (7).

B. Moments of a time-delay system

Consider a single-input, single-output, continuous-time, lin-

ear, time-delay system with discrete constant delays described

by equations

ẋ(t) =

ς∑

j=0

Ajxτj +

̺∑

j=ς+1

Bjuτj , y(t) =
ς∑

j=0

Cjxτj , (8)

with x(θ) = ϕ(θ) for −T ≤ θ ≤ 0, in which x(t) ∈ R
n,

u(t) ∈ R, y(t) ∈ R, τ0 = 0, τj ∈ R>0, for 1 ≤ j ≤ ̺,

1A signature matrix is a diagonal matrix with ±1 on the diagonal [74].
2A matrix is non-derogatory if its characteristic and minimal polynomials

coincide [41].
3 The notion of steady-state response is taken from [75] (see

also [65 , 66 , 76]). Note that if system (1) is stable and the signal u is bounded
backward and forward in time, system (1) has a unique, well-defined steady-
state response.

4The terminology is borrowed from [61 , 62]. By one-to-one correspondence
we mean that the steady-state response of the output d is uniquely determined
by the moments and vice versa.
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T = max0≤j≤̺ τj , ϕ ∈ C[−T, 0], and Aj ∈ R
n×n,

Bj ∈ R
n×1 and Cj ∈ R

1×n are constant matrices for

0 ≤ j ≤ ς and ς + 1 ≤ j ≤ ̺, respectively. Throughout the

paper the system (8) is assumed to be minimal, i.e. reachable

and observable, and let W (s) = C(s)(sI − A(s))−1B(s)
be its transfer function, with A(s) =

∑ς
j=0Aje

−τjs,

B(s) =
∑̺

j=ς+1Bje
−τjs and C(s) =

∑ς
j=0 Cje

−τjs.

Definition 2. [72] The moment of order zero of sys-

tem (8) at s⋆ ∈ C \ σ(A(s)) is the complex number

η0(s
⋆) =W (s⋆). The moment of order k ∈ Z>0 of system (8)

at s⋆ ∈ C \ σ(A(s)) is the complex number

ηk(s
⋆) =

(−1)k

k!

[
dk

dsk
W (s)

]

s=s⋆
. (9)

A theory of moments can be also developed for time-delay

systems exploiting a particular Sylvester-like equation [72].

For completeness, we briefly formulate the results of [72] in a

form that is more convenient for our purposes.

Lemma 3. Consider system (8). Assume k ∈ Z≥0 and

s⋆ ∈ C \ σ(A(s)). Then [ ηk(s
⋆) · · · η1(s⋆) η0(s⋆) ]′ =∑̺

j=ς+1 Ψke
−Js⋆τjΥkBj , where Ψk ∈ R

(k+1)×(k+1) is a

signature matrix and Υk ∈ R
(k+1)×n is the unique solution

of the equation

Js⋆Υk +

ς∑

j=0

ek+1Cje
−Js⋆τj =

ς∑

j=0

AjΥke
−Js⋆τj . (10)

Lemma 4. Consider system (8). Assume k ∈ Z≥0 and

s⋆ ∈ C \ σ(A(s)). Then there exists a one-to-one correspon-

dence between the moments η0(s
⋆), η1(s

⋆), . . . , ηk(s
⋆) and

the matrix
∑̺

j=ς+1 e
−SτjΥkBj , where Υk ∈ R

(k+1)×n is the

unique solution of the equation

SΥk +

ς∑

j=0

MCje
−Sτj =

ς∑

j=0

AjΥke
−Sτj , (11)

in which S ∈ R
(k+1)×(k+1) is a non-derogatory matrix with

characteristic polynomial (5) and M ∈ R
k+1 is such that the

pair (S,M) is reachable.

C. Moments of a system in explicit form

Consider a single-output, continuous-time system in explicit

form5 described by equations

x(t) = Λ(t, t0)x0, y(t) = Cx(t), (12)

in which x(t) ∈ R
n, y(t) ∈ R, t0 ∈ R≥0, x(t0) = x0 ∈ R

n,

C ∈ R
1×n and Λ : R ×R → R

n×n is piecewise continuously

differentiable in the first argument and such that Λ(t0, t0) = I .

In analogy with the theory developed for linear systems,

a characterisation of the steady-state output response of the

interconnection of system (6) and of system (12), with v = y,

i.e. of the system

x(t) = Λ(t, t0)x0, ω̇ = Sω +MCx, d = ω, (13)

can be given in terms of the solution of a matrix differential

equation which plays the role of the Sylvester equation (4).

5The terminology is borrowed from [57 , 58].

This, in turn, allows to define a notion of moment for systems

in explicit form [77]. To this end, the following technical

assumptions are needed.

Assumption 1. The matrix Λ(t, t0) is non-singular for every

t ≥ t0.

Assumption 2. The function t 7→ Λ̇(t, t0)Λ(t, t0)
−1 is piece-

wise continuous.

Assumption 3. There exist K ∈ R≥0 and α ∈ R>0 such that

‖Λ(t, t0)‖ ≤ Ke−α(t−t0) for every t ≥ t0.

Assumption 4. The point s⋆ ∈ C is such that Re(s⋆) < −α.

Assumption 5. The entries of Λ have a strictly proper Laplace

transform.

Assumption 6. The pair (x0, C) is such that the poles of the

Laurent series associated with L{CΛx0} and L{Λ} coincide.

Remark 1. The manifold

M =
{
(x, ω, t) ∈ R

n+k+2 : ω(t) = Υ(t)x(t)
}
, (14)

is an invariant integral manifold6 of system (13) whenever

the function Υ : R → R
(k+1)×n satisfies (except at points of

discontinuity) the ordinary differential equation

Υ̇(t) = SΥ(t)−Υ(t)Λ̇(t, t0)Λ(t, t0)
−1 +MC, (15)

the solution of which is

Υ(t) = eS(t−t0)Υ(t0)Λ(t0, t) +

∫ t

t0

eS(t−ζ)MCΛ(ζ, t)dζ, (16)

with initial condition Υ(t0) ∈ R
(k+1)×n, for all t ≥ t0. △

The following result is instrumental to define the notion of

moment for system (12) and is adapted to the purposes of this

paper from a statement originally presented in [77].

Theorem 2. Consider system (6), system (12) and the intercon-

nected system (13). Suppose Assumptions 1, 2, 3 and 4 hold.

Then there exists a unique matrix Υ∞(t0) ∈ R
(k+1)×n such

that limt→∞ ‖Υ(t)−Υ∞(t)‖ = 0 for any Υ(t0) ∈ R
(k+1)×n,

where Υ and Υ∞ are the solutions of (15) with initial

conditions Υ(t0) and Υ∞(t0), respectively. Moreover, the

manifold (14) is an attractive invariant integral manifold of

system (13).

Proof. To begin with note that by Assumption 1 the right-

hand side of (15) is well-defined. Let Υ1 and Υ2 be the

solutions of (15) (except at point of discontinuity) corre-

sponding to the initial conditions Υ1(t0) ∈ R
(k+1)×n and

Υ2(t0) ∈ R
(k+1)×n. Defining the function E as the differ-

ence of Υ1 and Υ2 and differentiating with respect to

the time argument yields the ordinary differential equation

Ė(t) = SE(t)− E(t)Λ̇(t, t0)Λ(t, t0)
−1 the solution of which,

in view of (16), is E(t) = eS(t−t0)E(t0)Λ(t0, t). By As-

sumptions 3 and 4, this implies limt→∞ ‖E(t)‖ = 0. As

a result, there exists a solution Υ∞ to which every so-

lution of (15) converges asymptotically, i.e. there exists

Υ∞(t0) ∈ R
(k+1)×n such that limt→∞ ‖Υ(t)−Υ∞(t)‖ = 0

for any Υ(t0) ∈ R
(k+1)×n, where Υ and Υ∞ are the solutions

of (15) with initial conditions Υ(t0) and Υ∞(t0), respectively.

6See [78].
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Moreover, by Assumption 2, Υ∞ is unique. To complete the

proof, note that by Remark 1 the set (14) is an invariant integral

manifold of system (13) and that the set (14) is attractive since

every solution of (15) converges asymptotically to Υ∞.

Theorem 2 allows to introduce the following definition,

which is reminiscent of the notion of moment given in [58].

Definition 3. Consider system (6), system (12) and the inter-

connected system (13). Suppose Assumptions 1, 2, 3 and 4

hold. The moment of system (12) at s⋆ is the function Υ∞x,

where Υ∞ is the unique solution of (15) with Υ(t0) = 0.

Theorem 3. Consider system (6), system (12) and the intercon-

nected system (13). Suppose Assumptions 1, 2, 3, 4, 5 and 6

hold. Then there exists a one-to-one correspondence between

the moment of system (12) at s⋆ and the (well-defined) steady-

state response of the output d of system (13).

Proof. By Assumptions 1, 2, 3 and 4, in view of Theorem 2,

the steady-state response of the output d is well-defined. By

Assumption 5 and 6, the steady-state response of the output

d coincides with Υ∞x, which by definition is the moment of

system (12) at s⋆.

Remark 2. Equations (12) describe a considerably general

class of continuous-time signals. In particular, under the stated

assumptions, this class contains all (exponentially bounded)

piecewise continuously differentiable functions that can be

generated as the solution of a single-input, single-output,

continuous-time, linear, time-varying system of the form

ẋ = A(t)x+B(t)u, y = Cx, (17)

with x(t) ∈ R
n, u(t) ∈ R, y(t) ∈ R, x(0) = 0, u = δ0,

A : R → R
n×n defined as A(t) = Λ̇(t, t0)Λ(t, t0)

−1 for all

t ≥ t0 such that Λ is differentiable in the first argument and

B : R → R
n such that the pair (A(t), B(t)) is reachable for

all t ∈ R≥0. △

D. Moments of a random variable

For completeness, we now recall the notion of moment of a

random variable.

Definition 4. [73] The moment of order k ∈ Z≥0 of the

random variable X is defined as µk = E[Xk] whenever the

expectation exists.

To simplify the exposition, in the sequel we consider

exclusively continuous random variables admitting a probability

density function with finite moments of all orders. We also

ignore all measure-theoretic considerations as they are not

essential for any of the arguments. A discussion on the

extension of our results to more general situations is deferred

to Section V.

To illustrate our results and to demonstrate our approach we

use several worked-out examples throughout this work.

Example 1 (The exponential distribution). The probability

density function of a random variable X having exponential

distribution with parameter λ ∈ R>0 is defined as

fX : R → R, t 7→ λe−λtδ−1(t). (18)

A direct computation shows that the moment of order k ∈ Z>0

of the random variable X satisfies the relation µk = k
λ
µk−1,

with µ0 = 1, and hence µk = k!
λk . N

Example 2 (The hyper-exponential distribution). The proba-

bility density function of a random variable X having hyper-

exponential distribution is defined as

fX : R → R, t 7→
n∑

j=1

pjλje
−λjtδ−1(t), (19)

where n ∈ Z>0 is referred to as the number of phases

of X and λ = (λ1, λ2, . . . , λn) ∈ R
n
>0 and p =

(p1, p2, . . . , pn) ∈ ∆n−1 are given parameters. Observe

that fX can be written as fX =
∑n

j=1 pjfXj
, in which

fXj
: R → R, t 7→ λje

−λjtδ−1(t) is the probability density

function of a random variable Xj having exponential distribu-

tion with parameter λj . Thus, by linearity of the expectation

operator, the moment of order k ∈ Z≥0 of the random variable

X is µk =
∑n

j=1 pj
k!
λk
j

. N

III. MAIN RESULTS

This section contains the main results of the paper. The

moments of a random variable are shown to be in one-to-one

correspondence with the moments of a system at zero. This

is established first for the special situation in which a given

probability density functions can be identified with the impulse

response of a linear system. The theory developed is then

extended to the broader class of probability density functions

which can be represented by a system in explicit form using the

theory of moments presented in the previous section. Finally,

the case of probability density functions defined on the whole

real axis and on compact sets is considered.

A. Probability density functions realized by linear systems

Definition 5. Consider system (1) and a random variable X
with probability density function fX . The probability density

function fX is realized by system (1) if fX(t) = CeAtBδ−1(t)
for all t ∈ R, in which case system (1) is referred to as a (linear)

realization of fX .

Necessary and sufficient conditions for a probability density

function to be realized by a linear system can be established

using well-known results of linear realization theory [79 – 81].

Note that every linear realization of a probability function must

be stable7, as detailed by the following statement.

Lemma 5. Consider system (1) and a random variable X with

probability density function fX . If system (1) is a realization

of fX , then σ(A) ⊂ C<0.

As a direct application of Definitions 1, 4, 5 and of Lemma 5

the moments of a random variable can be characterised by

means of moments of systems.

Theorem 4. Consider system (1) and a random variable X
with probability density function fX . Assume system (1) is a

7 See [25] for the definition.
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realization of fX . Then the moments of the random variable

X and the moments of system (1) at zero are such that

µk

k!
= ηk(0), (20)

for all k ∈ Z≥0.

Corollary 1. Consider system (1) and a random variable X
with probability density function fX . Assume system (1) is a

realization of fX . Then the moments up to the order k ∈ Z≥0

of the random variable X are given by the entries of ΨkΥkB,

where Υk is the unique solution of the Sylvester equation (3),

with Ψk = diag((−1)kk!, . . . ,−1, 1) and s⋆ = 0.

Remark 3. The moments of a random variable can be deter-

mined by direct application of Definition 4 or by “pattern

matching” using existing tables of moments. The one-to-one

correspondence established in Corollary 1, on the other hand,

indicates that a closed-form expression for the moments of

a random variable can be computed from the solution of a

Sylvester equation, which can be solved with numerically

reliable techniques [25]. The computation of moments of

random variables through Sylvester-like equations is one of

the leitmotifs underlying our approach. △

Corollary 2. Consider system (1) and a random variable X
with probability density function fX . Assume system (1) is a

realization of fX . Then the moments up to the order k ∈ Z≥0

of the random variable X are in one-to-one correspondence

with the matrix ΥkB, where Υk is the unique solution of the

Sylvester equation (4), in which S is a non-derogatory matrix

with characteristic polynomial (5) and M is such that the pair

(S,M) is reachable.

Corollary 3. Consider system (1), system (6), and the intercon-

nected system (7). Let X be a random variable with probability

density function fX . Assume system (1) is a realization of fX ,

s⋆ = 0, x(0) = 0, ω(0) = 0 and u = δ0. Then there exists a

one-to-one correspondence between the moments up to the

order k ∈ Z≥0 of the random variable X and the (well-defined)

steady-state response of the output d of system (7).

Example 3 (The exponential distribution, continued). Consider

a random variable X having exponential distribution with

probability density function fX and parameter λ ∈ R>0. A

direct inspection shows that the probability density function

fX is realized by the linear, time-invariant system

ẋ = −λx+ λu, y = x, (21)

i.e. by system (1) with A = −λ, B = λ and C = 1. Note that

the only eigenvalue of system (21) has negative real part, which

is consistent with Lemma 5. A direct application of Definition 1

yields ηk(0) =
1
λk , which, in view of Example 1 and in

agreement with Theorem 4, shows that the moments of the

random variable X are in one-to-one correspondence with the

moments of system (21) at zero. In accordance with Corollary 1,

setting Ψk = diag((−1)k+1k!, . . . ,−1, 1) and Σk = J0 yields

ΨkΥkB =
[

k!
λk · · · 1

λ
1
]′
, in which Υk is the unique

solution of the Sylvester equation (3). By Corollary 2, a

one-to-one correspondence can be also inferred between

the moments of the random variable X and the Sylvester

equation (4). Finally, note that the components of the (well-

defined) steady-state response of the output d of system (7)

can be written as dl(t) =
∑l−1

j=0(−1)j 1
λj t

j =
∑l−1

j=0 µj
(−t)j

j! ,
for all l ∈ {1, 2, . . . , k + 1}, and hence there is a one-to-one

correspondence between the moments up to the order k of the

random variable X and the steady-state response of the output

d of system (7). N

B. Probability density functions realized by systems in

explicit form

We have seen that a systems-theoretic interpretation can be

given to probability density function which can be realized

by a linear system. However, the vast majority of probability

density functions cannot be described by a linear time-invariant

differential equation. To provide a generalisation of the results

established which accounts for more general probability density

functions, we develop a parallel of the formulation presented in

the previous section using the theory of moments for systems

in explicit form [58]. To begin with, we introduce the following

definition.

Definition 6. Consider system (12) and a random vari-

able X with probability density function fX . The proba-

bility density function fX is realized8 by system (12) if

fX(t) = CΛ(t, t0)x0δ−1(t) for all t ≥ t0, in which case sys-

tem (12) is referred to as a (explicit) realization of fX .

Theorem 5. Consider system (6), system (12) and the inter-

connected system (13). Suppose Assumptions 1, 2, 3 and 4

hold. Let X be a random variable with probability density

function fX and assume system (12) is a realization of fX .

Then the moments of the random variable X up to the order

k ∈ Z≥0 are in one-to-one correspondence with the moment

of system (12) at zero.

Proof. To begin with, note that by Assumptions 1, 2, 3

and 4 the moment of system (12) at zero is well-defined.

By Definition 3 and by (16), the moment of system (12) at

zero reads as

Υ∞(t)x(t) =

(∫ t

t0

eS(t−ζ)MCΛ(ζ, t)dζ

)
Λ(t, t0)x0

= eSt

∫ t

t0

e−SζMCΛ(ζ, t0)x0dζ

= eSt

∫ t

t0

e−SζMfX(ζ)dζ,

where the last identity holds since system (12) is a realization

of fX . Define H+(t) =
∫ t

t0
e−SζMfX(ζ)dζ. Since S is a non-

derogatory matrix with characteristic polynomial (5), with s⋆ =
0, and since the pair (S,M) is reachable, there exists a non-

singular matrix T ∈ R
(k+1)×(k+1) such that T−1M = ek+1

and T−1ST = J0. This implies

lim
t→∞

H+(t) =
[

(−1)k

k! µk · · · −µ1 µ0

]′
(22)

8The impulse response may depend on the time of the impulse t0 for time
varying systems. Note, however, that our purpose is to model the probabilistic
structure of a random variable representing its probability density function
by means of a system and its impulse response. This means that t0 can be
considered as a parameter that can be assigned.
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and hence that the components of the moment of system (12) at

zero grow polynomially as t→ ∞, with coefficients uniquely

determined by the moments µ0, µ1, . . . , µk, which proves the

claim.

Remark 4. Assumption 1 is violated by any explicit realization

of the form (12) associated with a probability density function

with compact support, i.e. zero everywhere except on a compact

subset of the real line. A discussion on the extension of

Theorem 5 to such class of probability density functions is

deferred to Section III-D. △

Remark 5. While every linear realization of a probability

density function must be internally stable (Lemma 5), it is not

possible to prove that every explicit realization of a probability

density function must satisfy Assumption 3. The reason is

that there exist probability density functions with a “tail”

that is “heavier” than the one of the exponential [69 , 82],

including those of Pareto, Weibull, and Cauchy random

variables. Assumption 3 is therefore a strong assumption

which rules out important probability density functions. Note,

however, that a generalisation of our results to probability

density functions with a heavy tail can be established with

more advanced measure-theoretic tools. △

Example 4 (The half-normal distribution). The probability

density function of a random variable X having half-normal

distribution with parameter σ ∈ R>0 is defined as

fX : R → R, t 7→
√

2

πσ2
e−

t2

2σ2 δ−1(t). (23)

A direct inspection shows that the probability density function

fX is realized by the linear, time-varying system

ẋ = − t

σ2
x+

√
2

πσ2
u, y = x, (24)

in which x(t) ∈ R, u(t) ∈ R, y(t) ∈ R. Consider now the

interconnection of system (6) and of system (24), with v = y,

set s⋆ = 0 and note that Assumptions 1, 2, 3 and 4 hold.

Equation (15) boils down to

Υ̇(t) =

(
S +

t

σ2
I

)
Υ(t) +M (25)

and can be solved by direct application of formula (16), with

Υ(t0) = 0, yielding Υ∞(t) = eStH+(t), with

H+(t) =




(−1)k

k!

∫ t

0
ζke−

(ζ2−t2)

2σ2 dζ
...

−
∫ t

0
ζe−

(ζ2−t2)

2σ2 dζ
∫ t

0
e−

(ζ2−t2)

2σ2 dζ



. (26)

Since x(t) =
√

2
πσ2 e

− t2

2σ2 δ−1(t), by Definitions 3 and 4, this

implies (22) holds, with µ0 = 1 and

µk =

{
σk (k − 1)!!, if k is even,√

2
π
σk (k − 1)!!, if k is odd.

In accordance with Theorem 4, this shows that the moments

of the random variable X up to the order k ∈ Z≥0 uniquely

specify the moment of system (24) at zero as t→ ∞. N

Corollary 4. Consider system (6), system (12) and the inter-

connected system (13). Suppose system (12) is a realization of

fX and Assumptions 1, 2, 3, 4, 5 and 6 hold. Then there exists

a one-to-one correspondence between the moments up to the

order k ∈ Z≥0 of the random variable X and the (well-defined)

steady-state response of the output d of system (13).

C. Probability density functions on the whole real axis

The results established so far characterise probability density

functions with support on the non-negative real axis. These

results are not satisfactory because most probability density

functions are defined over the whole real line. This issue,

however, can be easily resolved using the following approach.

Every probability density function fX can be decomposed

as the sum of a function fc which vanishes on the non-positive

real axis and of a function fac which vanishes on the non-

negative real axis, i.e. fX(t) = fc(t)δ−1(t) + fac(t) δ−1(t)
for all t ∈ R. We call fc the causal part of fX and fac the

anticausal part of fX . Note that the function need not to be

continuous, but only integrable.

With these premises, the following result holds.

Theorem 6. Consider a random variable X with probability

density function fX . Let fc and fac be the causal part and the

anti-causal part of fX , respectively. Assume fc is realized by

the minimal system

ẋc = Acxc +Bcuc, yc = Ccxc, (27)

and the time reversal of fac is realized by the minimal system

ẋac = Aacxac +Bacuac, yac = Cacxac, (28)

with xj(t) ∈ R
nj , uj(t) ∈ R, yj(t) ∈ R, and Aj ∈ R

nj×nj ,

Bj ∈ R
nj×1 and Cj ∈ R

1×nj constant matrices for

j ∈ {c, ac}. Then the moments of the random variable

X and the moments of systems (27) and (28) at zero satisfy

the identity
µk

k!
= (−1)kηack (0) + ηck(0). (29)

for every k ∈ Z≥0.

Proof. Let k ∈ Z≥0 and note that

µk =

∫ ∞

−∞
tkfX(t)dt

=

∫ 0

−∞
tkfac(t)dt+

∫ ∞

0

tkfc(t)dt

= (−1)k
∫ ∞

0

tkfac(−t)dt+
∫ ∞

0

tkfc(t)dt

= (−1)kk!ηack (0) + k!ηck(0),

which proves the claim.

Corollary 5. Consider system (1) and a random variable X with

probability density function fX . Assume fX is even and the

causal part of fX is realized by system (1). Then the moments

of the random variable X and the moments of system (1) at

zero satisfy the identity

µk

k!
=

(−1)k + 1

2
ηk(0). (30)
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for all k ∈ Z≥0.

Proof. Let fc and fac be the causal part and the anti-

causal part of fX , respectively. By hypothesis the iden-

tity fX(t) = fc(t)δ−1(t) + fac(t) δ−1(t) = fc(t)δ−1(t) +
fc(−t) δ−1(t) holds for all t ∈ R. By the time-reversal prop-

erty of the Laplace transform [83, p. 687], this implies

L{fX}(s) = L{fc}(s) + L{fc}(−s), from which the claim

follows.

Example 5 (The Laplace distribution). The probability density

function of a random variable X having a Laplace distribution

with parameter λ ∈ R>0 is defined as

fX : R → R, t 7→ λ

2
e−λ|t|. (31)

The causal part of fX is fc : R → R, t 7→ λ
2 e

−λtδ−1(t), while

the anticausal part of fX is fac : R → R, t 7→ λ
2 e

λt δ−1(t).
The causal part and the time reversal of the anti-causal part of

fX are both realized by the minimal system

ẋ = −λx+
λ

2
u, y = x, (32)

in which x(t) ∈ R, u(t) ∈ R, y(t) ∈ R. Thus, by Theorem 6,

the moment of order k ∈ Z≥0 of the random variable X is

µk = (−1)k
k!

2λk
+

k!

2λk
. (33)

In agreement with Corollary 5, since fX is even and the

causal part of fX is realized by system (32), the moment

of order k ∈ Z≥0 of the random variable X can be written

as µk = (−1)k+1
2

k!
λk , which is consistent with formula (33).

Finally, we emphasise that a simple exercise in integration

shows that the moments of the random variable X are indeed

given by (33). N

Remark 6. Theorem 6 and Corollary 5 allow to establish

Corollaries 1, 2 and 3 for a random variable X with probability

density function defined on the whole real axis, provided that

its causal part and the time reversal of its anti-causal part are

realized by systems of the form (27) and (28), respectively.

This can be achieved noting that the moments up to the order

k ∈ Z≥0 of the random variable X are given by the entries of

ΨTΥTBT , where ΨT =
[
Dk ΨkDk

]
∈ R

(k+1)×(2k+2),

with Ψk ∈ R
(k+1)×(k+1) a signature matrix and

Dk = diag(k!, . . . , 1!, 1), and ΥT ∈ R
(2k+2)×(na+nac)

is the unique solution of the Sylvester equation

J0ΥT + ek+1CT = ΥTAT , (34)

with

AT =

[
Aac 0

0 Ac

]
, BT =

[
Bac

Bc

]
, C ′

T =

[
C ′

ac

C ′
c

]
. (35)

△

The arguments used to prove the results above extend

immediately to the case in which the probability density

function a given random variable is defined on the whole

real axis and its causal and anticausal parts are realized by

a system in explicit form. The key point is that one has to

consider a signed sum of the moments of the systems which

realize the causal part and the anticausal part of the probability

density function of the random variable of interest. For brevity

we do not repeat other versions of these results for probability

density functions realized by systems in explicit form; instead,

we consider the following important example.

Example 6 (The normal distribution). The probability density

function of a random variable X having a normal distribution

with parameter σ ∈ R>0 is defined as

fX : R → R, t 7→ 1√
2πσ2

e−
t2

2σ2 . (36)

The causal part of fX is fc : R → R, t 7→ 1√
2πσ2

e−
t2

2σ2 δ−1(t),
while the anticausal part of fX is fac : R → R,

t 7→ 1√
2πσ2

e−
t2

2σ2 δ−1(t). The causal part and the time

reversal of the anti-causal part of fX are both realized by the

linear, time-varying system

ẋ = − t

σ2
x+

1√
2πσ2

u, y = x, (37)

in which x(t) ∈ R, u(t) ∈ R, y(t) ∈ R. Consider now the

interconnection of system (6) and of system (37), with

v = y, set s⋆ = 0 and note that Assumptions 1, 2, 3

and 4 hold. In analogy with Example 4, noting that equa-

tion (15) boils down to (25) gives Υ∞(t) = eStH+(t), with

H+(t) defined as in (26). For a suitable signature matrix

Ψk, defining ΥT,∞(t) = Υ∞(t) + ΨkΥ∞(t) and noting that

x(t) = 1√
2πσ2

e−
t2

2σ2 δ−1(t), by Definitions 3 and 4, allows to

conclude (22) holds, with µ0 = 1 and

µk =

{
σk (k − 1)!!, if k is even,

0, if k is odd.

Generalising the results of Theorem 6, this shows that the

moments up to the order k ∈ Z≥0 of the random variable X
uniquely specify the moment of system (24) at zero as t→ ∞.

Note also that ΥT,∞ can be written as ΥT,∞ = (I +Ψk)Υ∞,
which, in a broad sense, is in agreement with Corollary 5. N

D. Probability density functions with compact support

We now concentrate on probability density functions with

compact support. To begin with a limitation of the characterisa-

tion of the moments of a random variables in terms of explicit

systems is illustrated through a simple example.

Example 7 (The uniform distribution). Suppose we wish to find

a realization of the probability density function of a random

variable X having a uniform distribution with parameters

a, b ∈ R>0, with a < b, defined as

fX : R → R, t 7→ 1

b− a
1[a,b](t). (38)

Clearly, any explicit realization of the form (12) necessarily

violates Assumption 1, since fX is zero everywhere except on a

compact subset of the real line. As a result, the theory developed

in Section III-B does not apply. However, the probability density

function (38) can be also interpreted as the impulse response

of the linear, time-delay system with discrete constant delays

ẋ =
1

b− a
(ua − ub) , y = x, (39)
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i.e. by system (8) with x(t) ∈ R, u(t) ∈ R, y(t) ∈ R, τ1 = a,

τ2 = b, B1 = 1
b−a

, B2 = − 1
b−a

and C0 = 1, A(s) = 0,

B(s) = 1
b−a

(e−sa − e−sb), C(s) = 1. Note that the moments

of system (39) are not classically defined at zero, since

0 ∈ σ(A(s)). However, since zero is a removable singularity9

of the transfer function of system (39), the moments of

system (39) can be defined and characterised by means of

Sylvester equations and impulse responses using the notions

and results introduced in [85 – 87]. In particular, the moments

of system (39) at zero satisfy the identity

[ ηk(0) · · · η1(0) η0(0) ]′ = Ψk

(
e−J0a − e−J0b

b− a

)
Υk, (40)

for every k ∈ Z≥0, with Ψk ∈ R
(k+1)×(k+1) a signature matrix

and Υk ∈ R
k+1 a solution of the (Sylvester) equation

J0Υk + ek+1 = 0, (41)

To see this, note that

ηk(0) =
ak+1 − bk+1

(k + 1)!(b− a)
. (42)

Exploiting the definition of matrix exponential, the identity

(41) and the property

Jj−1
0 ek+1 =

{
ej , for 1 ≤ j ≤ k + 1,

0, for j ≥ k + 2,

allows to conclude
(
e−J0a − e−J0b

b− a

)
Υk =

∞∑

j=0

(−1)j

j!

aj − bj

b− a
Jj
0Υk

=

k+1∑

j=1

(−1)j+1

j!

aj − bj

b− a
Jj−1
0 ek+1

=
k+1∑

j=1

(−1)j+1

j!

aj − bj

b− a
ej

which, in view of (42), proves the identity (40). We emphasise

that, in line with the results developed for probability density

functions realized by linear systems, the relation (20) between

the moments of fX and the moments of the corresponding

realization is satisfied: a one-to-one correspondence exists

between the moments of the random variable X and the

moments of system (39), since µk = ak+1−bk+1

(k+1)(b−a) . N

The main reason why it is possible to characterise in systems-

theoretic terms the moments of a random variable having a

uniform distribution is that zero is a removable singularity

of the transfer function of the associated time-delay system.

This observation allows to generalise the argument used in

Example 7 to treat random variables the probability density

function of which has compact support and is polynomial on

the complement of its zero set. To see this, consider a random

variable X having a probability density function of the form

fX : R → R, t 7→ q(t)1[a,b](t), (43)

9See, e.g., [84].

in which a, b ∈ R>0, with a < b, and q(t) =
∑ν−1

k=0 qkt
k,

with qν−1 6= 0. Defining Q1(s) =
∑ν−1

k=0 q
k
1s

k =∑ν−1
k=0

∑k
i=0

k!
i! a

isν−k+i−1 and Q2(s) =
∑ν−1

k=0 q
k
2s

k =∑ν−1
k=0

∑k
i=0

k!
i! b

isν−k+i−1 the Laplace transform

of (43) can be written as L{fX} = Q1(s)e
−sa−Q2(s)e

−sb

sν

and has a removable singularity at zero if and

only if
∑l

k=0(−1)k
(
qk1a

l−k − qk2 b
l−k

)
= 0 for all

l ∈ {0, 1, . . . , ν − 1}. Under these conditions, the probability

density function (43) can be realised by system (8) setting,

e.g., τ1 = a, τ2 = b,

A0 =

[
J0 0
0 J0

]
, B1 =

[
eν
0

]
, B2 =

[
0
eν

]
,

C1 =
[
q01 q11 · · · qν−1

1 0 0 · · · 0
]
,

C2 =
[
0 0 · · · 0 q02 q12 · · · qν−1

2

]
,

and the moments of the random variable X can be shown to

be in one-to-one correspondence with the moments at zero

of such system. To illustrate this point, we consider a simple

example.

Example 8 (The triangular distribution). The probability density

function of a random variable X having a triangular distribution

with parameter τ ∈ R>0 is defined as

fX : R → R, t 7→ 1

τ
max

(
0, 1− |t|

τ

)
. (44)

The causal part of fX is fc : R → R, t 7→ 1
τ

(
1− t

τ

)
1[0,τ ](t),

while the anticausal part of fX is fac : R → R,

t 7→ 1
τ

(
1 + t

τ

)
1[−τ,0](t). The causal part and the time

reversal of the anti-causal part of fX are both realized by the

time-delay system

ẋ = e2u+ e4uτ , y =
τe′2 − e′1
τ2

x+
e′3
τ2
xτ , (45)

i.e. by system (8) with x(t) ∈ R
4, u(t) ∈ R, y(t) ∈ R, τ1 = 0,

τ2 = τ , A0 = 0, B1 = e2, B2 = e4, C1 =
τe′2−e′1

τ2 , C2 =
e′3
τ2 .

The moment at zero of order k ∈ Z≥0 of the system is

ηk(0) =
(−1)kτk + τk

2(k + 2)!
, (46)

which is consistent with the identity (20), since the moment

of order k ∈ Z≥0 of the random variable X reads as

µk =
(−1)kτk + τk

2(k + 2)(k + 1)
. (47)

This also implies that a one-to-one correspondence exists

between the moments of the random variable X and the

moments of the system. We emphasise that exploiting the

argument of Example 7 the moments of the system (and thus

those of the random variable X) may be computed using the

formula (11). N

9



IV. APPLICATIONS

This section contains a series of applications of the proposed

ideas. We first focus on the identifiability of probability density

functions admitting a linear realization. Then, a systems-

theoretic interpretation for sums of independent random vari-

ables, the notion of mixture distribution and basic results from

renewal theory are provided. Finally, connections between the

approximation of probability density functions and the model

reduction problem are studied.

A. Identifiability of probability density functions with linear

realizations

We begin this section considering the case in which the

probability density function of a given random variable is

parameterized by a fixed set of parameters. In other words,

while in the previous sections the parameters of probability

density functions have been assumed to be known, in this

section parameters are constant unknown quantities, which in

principle can (or must) be estimated. In particular, we study the

identifiability of parametric families of probability density func-

tions the elements of which admit a linear realization. This is

important, for example, in the context of parametric estimation,

where identifiability allows to avoid redundant parametrisations

and to achieve consistency of estimates [50 , 51 , 88].

Let Θ be an open subset of Rd representing the parameter

set and let FX be a family of probability density functions

defined on the real axis and associated with a random variable

X . Every element fX ∈ FX is a probability density function

t 7→ fX(t; θ) which is known once the element θ ∈ Θ has been

fixed.

Definition 7. [88] The parameters θ1 ∈ Θ and θ2 ∈ Θ are

observationally equivalent if fX(t; θ1) = fX(t; θ2) for almost

all10 t ∈ R.

The notion of observational equivalence induces an equiva-

lence relation on the parameter set, defined as θ1 ∼ θ2 if θ1 ∈ Θ
and θ2 ∈ Θ are observationally equivalent. The parameter set is

therefore partitioned into equivalence classes the cardinality of

which determines the identifiability of the family of probability

density functions considered, as specified by the following

definition.

Definition 8. The family of probability density functions FX

is identifiable if θ1 ∼ θ2 implies θ1 = θ2 for all θ1 ∈ Θ and

θ2 ∈ Θ.

A characterisation of the identifiability of a family of

probability density functions admitting a linear realization

can be given by means of the systems-theoretic notion of

minimality. To this end, note that the description of proba-

bility density functions as impulse responses has an inherent

non-uniqueness issue, since algebraically equivalent11 linear

10A property is satisfied for almost all t ∈ R if the set where the property
does not hold has Lebesgue measure equal to zero.

11The single-input, single-output, continuous-time, linear, time-invariant
systems ẋ1 = A1x1 + B1u1, y1 = C1x1, with x1(t) ∈ Rn, u1(t) ∈ R,
y1(t) ∈ R and ẋ2 = A2x2 + B2u2, y2 = C2x2, with x2(t) ∈ Rn,
u2(t) ∈ R, y2(t) ∈ R are algebraically equivalent if there exists a non-singular
matrix T ∈ Rn×n such that A2 = TA1T

−1, B2 = TB1, C2 = C1T
−1.

systems have the same impulse response. However, a one-

to-one correspondence between impulse responses and their

realizations can be established resorting to canonical forms

[80], such as the observer canonical form, defined by constant

matrices A ∈ R
n×n, B ∈ R

n and C ∈ R
1×n of the form

A=




−αn 1 0 . . . 0
... 0 1

. . .
...

...
...

. . .
. . . 0

−α2 0 . . . 0 1
−α1 0 . . . 0 0



, B =




βn
...
...

β2
β1



, C = e′1, (48)

with α = (α1, . . . , αn) ∈ R
n and β = (β1, . . . , βn) ∈ R

n.

With these premises, we may recover the following well-

known result [51].

Lemma 6. Let Θ be an open subset of R
d, representing the

parameter set, and let FX be a family of probability density

functions defined on the real axis and associated with a random

variable X . Assume every fX ∈ FX is realized by system (1)

with A ∈ R
n×n, B ∈ R

n and C ∈ R
1×n as in (48) and let

θ = (α, β) ∈ Θ . Then the family of probability density

functions FX is identifiable if and only if every pair (A,B)
is reachable.

Proof. Note that the family of probability density functions

FX is identifiable if and only if for every fX ∈ FX the map

(α, β) 7→FX(s;α, β)=
βns

n−1 + . . .+ β2s+ β1
sn + αnsn−1 + . . .+ α2s+ α1

with FX(s;α, β) = L{fX}, is injective. This, in turn, cor-

responds to the numerator and denominator of the rational

function FX(s;α, β) being coprime. As a result, the identi-

fiability of the family FX is equivalent to the minimality of

system (1) and, by observability of the pair (A,C), to the

reachability of the pair (A,B), which proves the claim.

Remark 7. A dual result can be proved using the controllability

canonical form as long as observability, and hence minimality,

is enforced. This suggests that the identifiability of a family of

probability density functions admitting a linear realization is

equivalent to the minimality of a given canonical realization,

which can be thus taken as the definition of identifiability. △

B. Sums of independent random variables

A classical theorem of probability theory states that the prob-

ability density function of the sum of two jointly continuous,

independent random variables is given by the convolution of

their probability density functions (see, e.g., [73]). This result

can be given a simple systems-theoretic interpretation.

Theorem 7. Let X1 and X2 be jointly continuous, independent

random variables with probability density functions fX1
and

fX2
realized by the minimal system

ẋ1 = A1x1 +B1u1, y1 = C1x1, (49)

and the minimal system

ẋ2 = A2x2 +B2u2, y2 = C2x2, (50)

10



with xj(t) ∈ R
nj , uj(t) ∈ R, yj(t) ∈ R, and Aj ∈ R

nj×nj ,

Bj ∈ R
nj×1 and Cj ∈ R

1×nj constant matrices for j ∈ {1, 2},

respectively. Then the probability density functions of the ran-

dom variable Y = X1 +X2 is realized by the interconnection

of system (49) and system (50) with u1 = y2.

Proof. Recall that the probability density function of the sum of

two jointly continuous, independent random variables is given

by the convolution of their probability density functions [73,

Theorem 6.38], i.e. fY = fX1
∗ fX2

. Taking the Laplace trans-

form on both sides, this implies L{fY } = L{fX1
}L{fX1

}.
Thus, the probability density function fY is realized by the

interconnection of systems (49) and (50) with u1 = y2, since

the transfer function associated with the probability density

function fY is the product of the transfer functions associated

with the probability density functions fX1
and fX2

.

The following result is an immediate extension of Theorem 7.

Corollary 6. Let X1, X2, . . . , XN be jointly continuous, in-

dependent random variables. Assume the probability density

function fXj
is realized by the minimal system

ẋj = Ajxj +Bjuj , yj = Cjxj , (51)

with xj(t) ∈ R
nj , uj(t) ∈ R, yj(t) ∈ R, and Aj ∈ R

nj×nj ,

Bj ∈ R
nj×1 and Cj ∈ R

1×nj constant matrices for

j ∈ {1, 2, . . . , N}, respectively. Then the probability density

functions of the random variable Y = X1 +X2 + . . .+XN is

realized by the interconnection of the family of systems (51)

with u1 = y2, u2 = y3, . . . , uN−1 = yN .

Example 9 (The Erlang distribution). Suppose we wish to

show that the probability density function fY of the random

variable Y = X1 +X2 + . . .+XN , in which N ∈ Z>0 and

X1, X2, . . . , XN are jointly continuous, independent random

variables having exponential distribution with parameter λ ∈
R>0, is that of an Erlang distribution with parameters λ and

N , defined as

fY : R → R : t 7→ λN

(N − 1)!
tN−1e−λtδ−1(t). (52)

Recall that a minimal realization of the probability density

function fXj
of the random variable Xj is described by

system (21) for all j ∈ {1, 2, . . . , N}. Thus, by Corollary 6, a

realization of the probability density function fY is given by

system (1), in which

A = J−λ, B = eN , C =
λN

(N − 1)!
e′1. (53)

We conclude this example noting that a direct computation

shows that the probability density function fY is indeed given

by (52). N

Remark 8. A random variable Y is decomposable if

there exist N ∈ Z>0, with N ≥ 2, and jointly continuous,

independent random variables X1, X2, . . . , XN such that

Y = X1 +X2 + . . .+XN [89]. In case the random variables

X1, X2, . . . , XN are also identically distributed, then Y is

said to be divisible [89]. The notions of decomposability and

of divisibility play an important role in probability theory

[90], particularly in the analysis of Lévy processes [7 , 67].

In light of Theorem 7 of Corollary 6, these notions can

be characterised in systems-theoretic terms. In particular,

decomposability (and divisibility) of a random variable are

related to the possibility of describing the corresponding system

as the series interconnection of finitely many (and possibly

identical) systems. △

The following result provides a systems-theoretic necessary

and sufficient condition which ensures the identifiability of a

family of probability density function the elements of which can

be represented as the sum of random variables with probability

density functions admitting a linear realization.

Theorem 8. Let FX be a family of probability density functions

the elements of which can be realized as the sum of the

probability density functions fX1
and fX2

. Assume fX1
and

fX2
are realized by the minimal systems (49) and (50),

respectively. Then the family of probability density functions

FX is identifiable if and only if

(i) the polynomials C1 adj(sI − A1)B1 and det(sI − A2)
have no common roots and

(ii) the polynomials C2 adj(sI − A2)B2 and det(sI − A1)
have no common roots.

Proof. The identifiability of the family of probability density

functions FX is equivalent to the minimality of the series

interconnection of the minimal systems (49) and (50), which,

in turn, is equivalent to conditions (i) and (ii) [80 , 91].

C. Mixture distributions

We have seen that the sum of two jointly continuous

independent random variables has a natural interpretation

in terms of the series interconnection of the realizations of

their probability density functions. To provide a probabilistic

counterpart of the notion of parallel interconnection we recall

the following definition, which is adapted from [92].

Definition 9. A random variable Z with probability density

function fZ is said to arise from a finite mixture distribu-

tion if there exist N ∈ Z>0 and jointly continuous random

variables X1, X2, . . . , XN with probability density functions

fX1
, fX2

, . . . , fXN
such that the probability density function

fZ satisfies fZ = w1fX1 + w2fX2 + · · ·+ wNfXN
, for some

w = (w1, w2, . . . , wn) ∈ ∆n−1. N is referred to as the number

of components of fZ , fX1
, fX2

, . . . , fXN
are referred to as the

components of fZ , and w1, w2, . . . , wN are referred to as the

weights of fZ .

Theorem 9. Under the hypotheses of Theorem 7, if the random

variable Z with probability density function fZ arises from

a finite mixture distribution with components fX1
and fX2

and weights w1 6= 0 and w2 6= 0, then the probability density

function fZ is realized by the interconnection of system (49)

and system (50) with u = u1 = u2 and y = w1y1 + w2y2.

Proof. By hypothesis, the probability density function fZ arises

from a finite mixture distribution with components fX1
and fX2

and weights w1 and w2, i.e. fZ = w1fX1
+w2fX2

. Taking the

Laplace transform on both sides, by linearity, yields L{fZ} =
w1L{fX1}+w2L{fX2}. Thus, the probability density function

fZ is realized by the interconnection of system (49) and

11



system (50) with u = u1 = u2 and y = w1y1 + w2y2, as

desired.

Example 10 (G/H2/1 queueing system). Consider the G/H2/1
queueing system in Fig. 1, in which the arrival process is a

general random process and the service process is governed by

a two-phase hyper-exponential random variable X . A customer

accesses either the service offered by the first server at rate

λ1 ∈ R>0 with probability p1 ∈ (0, 1) or the service offered

by the second server at rate λ2 ∈ R>0 with probability

p2 = 1− p1. The probability density function of the random

variable X which represents the service time, i.e. the time

spent by an arbitrary customer in the service process, is

fX(t) = p1λ1e
−λ1tδ−1(t) + p2λ2e

−λ2tδ−1(t) for all t ∈ R≥0.

In view of Theorem 9, the probability density function of the

service time is realized by system (1), with

A =

[
−λ1 0

0 −λ2

]
, B =

[
λ1
λ2

]
, C =

[
p1
p2

]′
. (54)

N

A straightforward generalisation of Theorem 9 is given by

the following result.

Corollary 7. Under the hypotheses of Corollary 6, let the

random variable Z with probability density function fZ
arise from a finite mixture distribution with components

fX1 , fX2 , . . . , fXN
and weights w1, w2, . . . , wN 6= 0. Then

the probability density function fZ is realized by the intercon-

nection of systems (51) with u = u1 = u2 = . . . = uN and

y = w1y1 + w2y2 + . . .+ wNyN .

We conclude this section presenting a systems-theoretic

necessary and sufficient condition which guarantees the identi-

fiability of finite mixtures admitting a linear realization (see

also [92]).

Theorem 10. Let FX be a family of probability density

functions, the elements of which arise from a finite mixture

distribution with components fX1 and fX2 and weights

w1 ∈ R>0 and w2 ∈ R>0. Assume fX1 and fX2 are realized

by the minimal systems (49) and (50), respectively. Then the

family of probability density functions FX is identifiable if

and only if σ(A1) ∪ σ(A2) = ∅.

Proof. The family of probability density functions FX is

equivalent to the minimality of the parallel interconnection with

weights w1 ∈ R>0 and w2 ∈ R>0 of the minimal systems (49)

and (50), which, in turn, is equivalent to σ(A1) ∪ σ(A2) = ∅
[80 , 91].

Example 11 (G/H2/1 queueing system, continued). Suppose

we are interested in finding conditions under which the family

of probability density functions

FX =



t 7→ fX(t;λ) =

2∑

j=1

pjλje
−λjtδ−1(t), λ ∈ R

2
>0



 ,

which describes the service time of the G/H2/1 queueing

system displayed in Fig. 1, is identifiable. Note that the

probability density function of the service time is realized by

system (1), with matrices defined as in (54). By Theorem 10,

since p1, p2 ∈ (0, 1), the family of probability density functions

FX is identifiable if and only if λ ∈ R
2 does not lie on the

bisector of the first quadrant, i.e. λ1 6= λ2. Note that in the case

λ1 = λ2 = λ ∈ R>0 a customer accesses the service offered

by a server at rate λ with probability one and hence the model

is overparameterised. In other words, the queueing system

in question may be equivalently described by the G/M/1
queueing system displayed in Fig. 2, in which the service

process is governed by an exponential random variable X with

parameter λ. As anticipated in Remark 7, this phenomenon is

also captured by the systems-theoretic notion of minimality:

in accordance with Theorem 10 for λ1 = λ2 the system (54)

is not minimal. N

D. Renewal processes

We complete this section showing that elementary results

from renewal theory [6 , 7 , 69] can be translated in the language

of systems theory using the notion of feedback interconnection.

Definition 10. [7] A sequence of random variables

{Sj}j∈Z≥0
constitutes a renewal process if it is of the form12

Sj = T1 + T2 + . . .+ Tj , where {Tj}j∈Z>0
is a sequence

of mutually independent random variables with a common

distribution F such that F (0) = 0.

The random variable Sj in the above definition is often

referred to as (the j-th) renewal, while the elements of the

sequence {Tj}j∈Z>0
are referred to as waiting times [7 , 69].

The common distribution of the waiting times of a renewal

process is called the waiting-time distribution [69].

The probabilistic behaviour of a renewal process {Sj}j∈Z≥0

is closely related to the random variable Nt, with t ∈ R>0,

defined as the largest j ∈ Z≥0 for which Sj ≤ t [93]. The

random variable Nt describes the number of renewals occurred

by time t and its expected value H(t) = E[Nt], referred to as

the renewal function, satisfies the integral equation of renewal

theory [93]. Moreover, if the waiting-time distribution of the

renewal process is absolutely continuous then the renewal

density, defined as h(t) = Ḣ(t) for all t ∈ R>0, satisfies the

renewal density integral equation [93], i.e.

h(t) = f(t) +

∫ t

0

h(t− ζ)f(ζ)dζ, (55)

in which f is the derivative of the waiting-time distribution.

Theorem 11. Let {Sj}j∈Z≥0
be a renewal process. Assume

the waiting-time distribution of the renewal process {Sj}j∈Z≥0

admits a probability density function f which is realized by

the minimal system (1). Then the renewal density h of the

renewal process {Sj}j∈Z≥0
is realized by the system obtained

from system (1) with input v(t) ∈ R, output y(t) ∈ R, and

interconnection equation u = v + y.

Proof. To begin with note that under the stated assumptions

the renewal density h of the renewal process {Sj}j∈Z≥0
is

well-defined [69, Proposition 2.7]. In addition, the renewal

density h satisfies the renewal density integral equation (55).

This implies that the Laplace transform of the renewal density

12By convention, S0 = 0 and 0 counts as zero occurrences [7].
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Fig. 1: G/H2/1 queueing system.

Arrival process

Queue Service process
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Fig. 2: G/M/1 queueing system.

is such that L{h} = L{f}/(1− L{f}) [93, p.252]. Thus,

since by hypothesis L{f} coincides with the transfer function

of system (1), the renewal density h is realized by the system

obtained from system (1) with input v(t) ∈ R, output y(t) ∈ R,

and interconnection equation u = v + y.

Example 12 (Poisson processes). Poisson processes are renewal

processes in which the waiting times have an exponential

distribution [70]. In other words, a renewal process is a Poisson

process if there exists λ ∈ R>0 such that the probability density

function of each waiting time is f(t) = λe−λtδ−1(t), for all

t ∈ R≥0. In view of Theorem 11, the renewal density of the

process is realized by the system obtained from system (21)

with input v(t) ∈ R, output y(t) ∈ R, and interconnection

equation u = v + y, i.e. by system (1), with A = 0, B = λ,

C = 1. Note that the impulse response of the system is given

by h(t) = λδ−1(t) for all t ∈ R, which is consistent with the

fact that the renewal function of a Poisson process can be

written as H(t) = λt for all t ∈ R≥0 [94]. N

E. On the approximation of probability density functions

This section investigates some connections between the

approximation of probability density functions and the model

reduction problem [25]. In particular we show that these prob-

lems are essentially the same problem when probability density

functions are regarded as impulse responses. As a guiding

example, we consider phase-type distributions [30 , 31 , 33 , 34],

which play an important role in the analysis of queuing

networks [94] and can be represented by a random variable

describing the time until absorption of a Markov chain with one

absorbing state [95]. Note, however, that similar considerations

can be performed for more general classes of probability density

functions.

Consider a continuous-time Markov chain over the set

S = {0, 1, . . . , n}, with n ∈ Z>0, in which 0 is an absorbing

state and 1, . . . , n are transient states. The random variable

X which characterises the time until absorption is described

by a continuous phase-type distribution represented by the

Q-matrix [37]

Q =

[
0 0
Q0 Q

]
,

in which S ∈ R
n×n is such that Q0 = −Q1. Assuming that

the initial probability of the Markov chain is

π0 =
[
0 α

]
,

with α ∈ R
1×n such that α1 = 1, the probability density

function of X reads as

fX(t) = Q′
0e

Q′tα′δ−1(t), (56)

for every t ∈ R. Note that (56) can be regarded as the

impulse response of system (1), with A = Q′, B = α′ and

C = Q′
0. This indicates that the problem of approximating the

probability density function (56) can be regarded as the problem

of approximating the impulse response of system (1) or,

equivalently, the problem of constructing a reduced order model

of system (1) [25]. In particular, approximating the probability

density function (56) by another phase-type distribution boils

down to constructing a system

ξ̇ = Fξ +Gv, ψ = Hξ, (57)

in which ξ(t) ∈ R
ν , with ν < n, v(t) ∈ R, ψ(t) ∈ R and

F ∈ R
ν×ν , G ∈ R

ν×1 and H ∈ R
1×ν are constant matrices

such that 1
′G = 1 and H = −1

′F . To illustrate this point we

consider a simple example and exploit the model reduction

technique devised in [61 , 62] to obtain reduced order models

(i.e. approximations of a given probability density function)

which match a prescribed number of (systems-theoretic and,

thus, probabilistic) moments. Note, however, that different

model reduction techniques can be used to solve the problem

in question (see [25] and references therein for an overview

of available model reduction techniques).

Example 13. Consider the Markov chain described by the

diagram

210

µ

λ

λ

The Q-matrix of the Markov chain is

Q =




0 0 0
λ −λ 0
µ λ −(λ+ µ)


 ,

and

Q0 =

[
λ
µ

]
, Q =

[
−λ 0
λ −(λ+ µ)

]
.

Let α = [ 0 0 1 ] be the the initial condition of the Markov

chain and let X be the random variable which characterises the

time until absorption. A realization of the probability density

function of the random variable X is given by system (1), with

A =

[
−λ λ
0 −(λ+ µ)

]
, B =

[
0
1

]
, C =

[
λ µ

]
.
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TABLE I: Random variables and associated probability density

function, parameters and realization.

Exponential λe−λtδ−1(t) λ ∈ R>0 (21)

Half-normal

√

2
πσ2 e

− t2

2σ2 δ−1(t) σ ∈ R>0 (24)

Laplace λ
2
e−λ|t| λ ∈ R>0 (32)

Normal 1√
2πσ2

e
− t2

2σ2 σ ∈ R>0 (37)

Uniform 1
b−a

1[a,b](t)
a, b ∈ R

(a < b)
(39)

Triangular 1
τ
max

(

0, 1−
|t|
τ

)

τ ∈ R>0 (45)

Erlang
λntn−1e−λt

(n− 1)!
δ−1(t) λ ∈ R>0 (53)

Following [62], to construct a reduced order model which

matches the moment of order one of the system at zero one

needs to solve the Sylvester equation (4), with S = 0 and

M = 1, which gives Υ1 = [−1 − 1 ]. Then one defines

reduced order model (57) as

F = S −M∆, G = −Υ1B, H = ∆,

with ∆ ∈ (0, 1) a free parameter that can be assigned, yielding

F = −∆, G = 1, H = ∆.

Note that the structure of the original system is preserved

in the reduced order model, since 1
′G = 1 and H = −1

′F .

Moreover, in agreement with the results of [62], the moment

at zero of the reduced order model coincides with the moment

at zero of the original system, regardless of the value of ∆.

From a probabilistic point of view, the impulse response of

the reduced order model corresponds to the probability density

function of the random variable X̃ which quantifies the time

until absorption of the “reduced” Markov chain described by

the diagram

10 ∆

and the Q-matrix

Q̃ =

[
0 0
∆ −∆

]
.

It is interesting to note that the “reduced” Markov chain can

be interpreted as Markov chain built from the original Markov

chain by aggregation of the states 2 and 3, thus showing the

connection between the model reduction problem and the use

of the concept of aggregation to reduce the state space of a

Markov chain [96 – 98].

We conclude this example by emphasising that there is no

natural choice of the parameter ∆. For example, one may

select ∆ = λ to ensure that in the “reduced” Markov chain

the transition rate from 1 to 0 matches that of the original

Markov chain. Another sensible choice is ∆ = λ+µ
2 which

guarantees that the moments of order two at zero of the reduced

order model and of the original system coincide, so that the

moments of order two of the random variables X and X̃ also

coincide. N

TABLE II: Correspondence between concepts of probability

theory and of systems theory.

Sum of independent random variables Series interconnection

Mixture distribution Parallel interconnection

Renewal process Feedback interconnection

V. CONCLUSION

Moments of continuous random variables admitting a

probability density function have been studied. Under certain

hypotheses, the moments of a random variable have been shown

to be in one-to-one correspondence with the solutions of a

Sylvester equation and with the steady-state output response

of a specific interconnected system. The results established

in this work have shown that, under certain assumptions, a

system can be seen as an alternative, equivalent description

of the probabilistic structure of a random variable. This, in

turn, indicates that systems-theoretic techniques and tools can

be used to revisit and shed new light on classical results

of probability theory and statistics. Table I displays a short

list of random variables along with their probability density

functions, parameters and associated realization, while Table II

summarises the correspondence between certain concepts of

probability theory and their systems-theoretic counterpart.

The present work is a first step towards a unified understand-

ing of the role of systems-theoretic concepts in probability

theory and statistics. Several directions for interdisciplinary

research are left open. For example, discrete-time systems

[99] provide the right tool to carry out the analysis presented

in this work for discrete random variables. Hybrid systems

[100 , 101] may be used to deal with random variables the

distribution function of which has both a discrete part and

an absolutely continuous part. Moments of multivariate dis-

tributions may be studied resorting to systems described by

PDEs [102 , 103], for continuous random variables, and nD

systems [104], for discrete random variables. As a consequence,

conditional probabilities may be characterised in systems-

theoretic terms. Note, however, that modelling moments of

multivariate distributions using PDEs might raise challenging

computational issues. Further connections may be explored with

positive systems [38] and, in particular, with Markov chains

[5 , 6 , 8 , 35 – 37]. The interplay between the role of Hankel

matrices in realization theory [79 – 81] and in probability

theory [5 – 8] may be studied. The notions of information and

of entropy may be investigated using the proposed framework.

The discussion on the approximation of probability density

functions which arise from phase-type distributions can be

generalised to probability density functions with a systems-

theoretic representation in explicit form, for which model

reduction techniques are available [58 , 77]. Finally, a systems-

theoretic counterpart of the method of moments [18] may

be developed modifying existing data-driven model reduction

methods [63].
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[11] H. Hamburger, “Über eine erweiterung des stieltjesschen momenten-
problems,” Math. Ann., vol. 81, pp. 235–319, 1920.

[12] F. Hausdorff, “Momentprobleme für ein endliches intervall,” Math. Z.,
vol. 16, pp. 220–248, 1923.

[13] Y. V. Vorobyev, Methods of moments in applied mathematics (translated

from russian by B. Seckler). New York: Gordon and Breach, 1965.

[14] H. Fischer, A history of the central limit theorem: from classical to

modern probability theory. New York: Springer, 2010.

[15] M. Kac, “On some connection between probability theory and differen-
tial and integral equations,” Proc. 2nd Berkeley Sympos. Math. Stat.

Prob, 1951, pp. 189–215.

[16] E. P. Wigner, “On the distribution of the roots of certain symmetric
matrices,” Ann. Math., vol. 67, pp. 325–327, 1958.

[17] S. Karlin and J. L. Mc Gregor, “The differential equations of birth-and-
death processes, and the Stieltjes moment problem,” Trans. Amer. Math.

Soc., vol. 85, no. 2, pp. 481–546, 1957.

[18] K. Pearson, “Contributions to the mathematical theory of evolution,”
Phil. Trans. Roy. Soc., vol. 185a, pp. 71–110, 1894.

[19] J. H. Friedman and J. W. Tukey, “A projection pursuit algorithm for
exploratory data analysis,” IEEE Trans. Comput., vol. 23, pp. 881–890,
1974.

[20] P. J. Huber, “Projection pursuit,” Ann. Stat., vol. 13, no. 2, pp. 435–475,
1985.

[21] J. H. Friedman, “Exploratory projection pursuit,” J. Amer. Stat. Ass.,
vol. 82, pp. 249–266, 1987.

[22] N. I. Akhiezer, The classical moment problem. New York: Hafner,
1965.

[23] S. Karlin and W. J. Studden, Tchebycheff systems: with applications in

analysis and statistics. New York: Interscience, 1966.

[24] H. J. Landau, Ed., Moments in mathematics. Providence, RI: Amer.
Math. Soc., 1987.

[25] A. C. Antoulas, Approximation of large-scale dynamical systems.
Philadelphia, PA: SIAM, 2005.

[26] C. Commault and S. Mocanu, “Phase-type distributions and represen-
tations: some results and open problems for system theory,” Int. J.

Control, vol. 76, no. 6, pp. 566–580, 2003.

[27] L. Benvenuti and L. Farina, “A tutorial on the positive realization
problem,” IEEE Trans. Autom. Control, vol. 49, no. 5, pp. 651–664,
2004.

[28] B. Hanzon and R. J. Ober, “A state-space calculus for rational probability
density functions and applications to non-gaussian filtering,” SIAM J.

Control Optim., vol. 40, no. 3, pp. 724–740, 2001.

[29] ——, “State space calculations for discrete probability densities,” Linear

Algebra Appl., vol. 350, no. 1, pp. 67–87, 2002.

[30] C. A. O’Cinneide, “Characterization of phase-type distributions,” Stoch.

Models, vol. 6, no. 1, pp. 1–57, 1990.

[31] ——, “Phase-type distributions: open problems and a few properties,”
Stoch. Models, vol. 15, no. 4, pp. 731–757, 1999.

[32] M. Bladt and M. F. Neuts, “Matrix-exponential distributions: Calculus
and interpretations via flows,” Stoch. Models, vol. 15, no. 4, pp. 731–757,
2003.

[33] M. F. Neuts, Matrix-geometric solutions in stochastic models: an

algorithmic approach. Baltimore, MD: John Hopkins Univ. Press,
1981.

[34] G. Latouche and V. Ramaswami, Introduction to matrix analytic methods

in stochastic modeling. Philadelphia, PA: SIAM, 1999.

[35] E. B. Dynkin, Markov processes. New York: Plenum, 1963.

[36] K. L. Chung, Markov chains with stationary transition probabilities.
New York: Springer-Verlag, 1967.

[37] J. R. Norris, Markov chains. Cambridge, U.K.: Cambridge Univ. Press,
1998.

[38] L. Farina and S. Rinaldi, Positive linear systems - theory and applica-

tions. New York: Wiley, 2000.

[39] F. Gantmacher, The theory of matrices. New York: Chelsea, 1959,
vol. II.

[40] E. Seneta, Non-negative matrices and Markov chains (2nd edition).
New York: Springer-Verlag, 1981.

[41] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[42] H. Minc, Nonnegative matrices. New York: Wiley, 1988.

[43] C. G. Cassandras and S. Lafortune, Introduction to discrete event

systems. New York: Kluwer, 1999.
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