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Abstract
Purpose  Clear cell, papillary cell, and chromophobe renal cell carcinomas (RCCs) have now been well characterised thanks 
to large collaborative projects such as The Cancer Genome Atlas (TCGA). Not only has knowledge of the genomic landscape 
helped inform the development of new drugs, it also promises to fine tune prognostication.
Methods  A literature review was performed summarising the current knowledge on the genetic basis of RCC.
Results  The Von Hippel–Lindau (VHL) tumour suppressor gene undergoes bi-allelic knockout in the vast majority of clear 
cell RCCs. The next most prevalent aberrations include a cohort of chromatin-modifying genes with diverse roles including 
PBRM1, SETD2, BAP1, and KMD5C. The most common non-clear cell renal cancers have also undergone genomic profiling 
and are characterised by distinct genomic landscapes. Many recurrent mutations have prognostic value and show promise in 
aiding decisions regarding treatment stratification. Intra-tumour heterogeneity appears to hamper the clinical applicability of 
sparsely sampled tumours. Ways to abrogate heterogeneity will be required to optimise the genomic classification of tumours.
Conclusion  The somatic mutational landscape of the more common renal cancers is well known. Correlation with outcome 
needs to be more comprehensively furnished, particularly for small renal masses, rarer non-clear cell renal cancers, and for 
all tumours undergoing targeted therapy.
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Introduction

In this review, we consider what is currently known of the 
genetic landscape of the commonest subtypes of renal cell 
cancer (RCC). A glossary has been provided to aid the 
understanding of specialist terminology (Table 1). Clear cell, 
papillary, and chromophobe cancers have now been well 
characterised thanks to the development of sequencing tech-
nologies (Table 2) and large collaborative projects such as 

The Cancer Genome Atlas (TCGA). Not only has knowledge 
of the genomic landscape helped inform the development of 
new drugs, this understanding also promises to improve risk 
stratification of tumours and to determine their sensitivity 
to systemic therapies. We shall consider each subtype in 
turn describing genes and pathways of oncogenesis and how 
these relate to prognosis and treatment response. We finish 
by discussing limitations of these metrics before widespread 
clinical applicability may be adopted. 

Methods

A non-systematic literature search was conducted using 
Medline, updated to May 2018. The reference lists of 
selected manuscripts were checked manually for eligible 
articles. The most relevant articles summarising exist-
ing knowledge on RCC genomics, including tumour cell 
evolution and progression, were selected for this review. 
Recurrent aberrations have been defined as those with false 
discovery rates of < 0.1 and reported in multiple studies 
in the literature. For prognostic markers, those events that 
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Table 1   Glossary of terms used in this manuscript

Term Definition

5′UTR​ The 5′ untranslated region is located downstream of where transcription begins but upstream of the first 
protein-coding region

A:T-to-T:A transversions The substitution of a purine for a pyrimidine or vice versa in DNA. This changes the base from adenine 
(A) to thymine (T) (or vice versa)

Allele Different versions of the same gene are called alleles. Humans have two alleles at each genetic locus, with 
one allele inherited from each parent

Arm-level loss Loss of genetic material from the end of a chromosome (telomere) to the centre (centromere)
Autosome Any chromosome that is not a sex chromosome (i.e., in chromosomes 1–22 in humans)
Bi-allelic knockout Inactivation of both copies of a gene
Chromatin Chromatin is a set of molecules found in cells whose primary function is to package DNA into a more 

compact structure
Clonal expansion In cancer evolution, clonal expansion is the production of daughter cells with the same genetic makeup as 

the original cell
Convergent evolution A process where independent clones evolve with similar traits, likely as a result of pressures to survive and 

grow within the tumour microenvironment
Copy number aberration Gain or loss of part of a chromosome
Driver gene A driver gene is one whose mutations increase the oncogenic potential of a tumour
Epigenetic Epigenetic refers to non-genetic influences on gene expression
Epithelial to mesenchyme transition Epithelial–mesenchymal transition describes the process by which epithelial cells lose their cell polarity 

and cell–cell adhesion, and gain migratory and invasive properties
Focal deletions Deletion of genomic material within a chromosome spanning in general less than 5 million base pairs
Gene fusion The result of a re-arrangement between different parts of the genome that aligns two genes
Germline mutation A germline mutation is one present in the germ cells, i.e., can be passed onto offspring
GWAS A genome-wide association study (GWAS), is an observational study of a genome-wide set of genetic vari-

ants in different individuals to see if any variant is associated with a trait
Haploinsufficiency Presence of only one functional copy of a gene (see mono-allelic inactivation)
Loci Loci refers to a position within the genome
Loss of heterozygosity The loss of one allele of a genetic locus
Methyltransferase Methyltransferases are a large group of enzymes that all methylate their substrates. In genetics, this affects 

gene transcription
Mono-allelic inactivation Inactivation of one copy of a gene. We are born with two copies of all genes (aside from those on the sex 

chromosomes)
Mutational burden The total number of mutations present within a cell or tumour
Mutational signature For the context of this paper, mutational signatures relate to the effect of mutational processes such as age 

or smoking on the specific types of point mutation seen in the tumour. For instance, signature 1 is found 
in all cancer types and is associated with age at diagnosis. Signature 2 is attributed to the AID/APOBEC 
family of cytidine deaminases. See https​://cance​r.sange​r.ac.uk/cosmi​c/signa​tures​ for details

Non-synonymous mutation A mutation in the protein-coding part of the genome that results in a change in the resulting amino acid 
sequence

Point mutations Alteration of a single base in the genome to an alternative base
Proto-oncogene A normal gene which, when altered by mutation, becomes an oncogene—one that can contribute to cancer
Somatic mutation Mutations that are acquired during the lifetime of an individual, i.e., are not inherited
Splice-site variants A genetic alteration in the DNA sequence that occurs at the boundary of a protein-coding and non-coding 

region. This change can, therefore, alter the protein-coding sequence
Stochastically A random probability distribution that cannot be precisely predicted
Structural variants Variation in the structure of a chromosome. This encompasses many changes including the abnormal join-

ing of different chromosomal regions and copy number aberrations
Telomeres Repetitive genetic sequence at the ends of a chromosome that protect against degradation or fusion with 

other chromosomes
Trisomy A trisomy is where there are three copies of a particular chromosome, instead of the normal two (in 

humans)
Ubiquitination The addition of ubiquitin to a substrate protein which affects their subsequent use, interaction, localisation, 

or breakdown

https://cancer.sanger.ac.uk/cosmic/signatures
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are significant after multiple hypothesis testing have been 
included (adjusted p value < 0.1). The commonly accepted 
significance threshold (p < 5 × 10−8) has been used for 
genome-wide association studies (GWAS).

Results

Clear cell renal cell carcinoma

Epidemiology and genetics

The mutational landscape of clear cell RCC (ccRCC) has 
been defined most recently through several large-scale whole 
genome-sequencing studies [1–4]. These studies reveal 
that recurrent somatic mutations occur in only a handful 
of genes, with an overall mutational burden of roughly 
1–2 per Mb. In addition, there are only a small number of 
recurrent copy number aberrations and rare gene fusions. 
Some insights into clinical risk factors and their genomic 
correlates have been made. These include patient age, 
with mutational burden correlating strongly with age via 
the predominance of the clock-like mutational signature in 
these genomes [5]. The higher incidence of ccRCC in male 
patients may partially be accounted by mono-allelic inactiva-
tion of the chromatin remodelling gene, KDM5C on the X 
chromosome [6]. No tobacco-specific mutational process has 
been detected despite the strong clinical risk factor [5]. The 
high frequency of A:T-to-T:A transversions consistent with 

mutational damage as a result of aristolochic acid exposure 
was detected via sequencing of patients from Eastern Europe 
[1] and has directly influenced primary prevention strategies.

Genetic risk factors are known to play a role in sporadic 
RCC development [7, 8]. Patients who have at least one first 
degree relative with RCC are at an increased risk of devel-
oping the disease (OR 1.4, 95% CI 0.71–2.76) [9]. The first 
renal large-scale GWAS in Europe revealed susceptibility 
loci at 2p21 and 11q13.3 [10]. The two correlated variants 
on 2p21 map to EPAS1, a transcription factor previously 
implicated in RCC, whereas the variant on 11q13.3 contains 
no characterised genes. An additional susceptibility locus 
on 12p11.23 was later discovered containing two variants in 
the ITPR2 gene, though direct functional evidence between 
ITPR2 and oncogenesis is lacking [11]. Subsequently, a 
locus on intron 2 of the ZEB2 gene was discovered which 
may play a role in decreasing regulation of epithelial to mes-
enchymal transition [12].

Most recently, a variant on 8q24.21 was discovered via 
interrogation of GWAS from an Icelandic population [13], 
prior to discovery of an additional seven new loci in the 
largest such GWAS study to date [14]. More comprehensive 
details of these loci are shown in Table 3.

Somatic mutations

VHL  The Von Hippel–Lindau (VHL) tumour suppressor 
gene, located at 3p25, undergoes bi-allelic knockout in 
the majority of ccRCCs [15]. Haploinsufficiency of VHL 
occurs via arm-level loss of chromosome 3p in over 90% 

Table 1   (continued)

Term Definition

Warburg-like metabolic shift This is a phenomenon, whereby cells can produce additional energy through increased oxygen-dependent 
glycolysis followed by lactic acid fermentation

Table 2   Overview of the development of sequencing technologies that have enabled the understanding of the genetic component of cancer 
development

DNA sequencing technologies allow us to “read” DNA. By comparing the sequence of DNA in cancer compared to normal cells, we can iden-
tify changes that might be driving the growth of cancer. Comparisons between patients with cancer and those without may also reveal the pres-
ence of inherited mutations

Methods Explanation

Cytogenetics These are methods used to study the structure and function of chromosomes. In cancer, they commonly refer 
to methods such as karyotyping, fluorescent in situ hybridisation (FISH), and comparative genomic hybridi-
zation (CGH), and give an overview of which areas of the chromosome may have been lost or gained during 
oncogenesis

Polymerase chain reaction (PCR) The amplification of a few copies of a short region of DNA, generating thousands to millions of copies of this 
sequence. This allows the detection of mutations within the amplified sequence

Next generation sequencing Next generation sequencing (NGS), massively parallel or deep sequencing are related terms that describe a 
DNA sequencing technology that can sequence an entire human genome within a single day. This is a catch-
all term used to describe a number of different sequencing technologies such as Illumina (Solexa), Roche 
454, Ion torrent or SOLiD sequencing
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of tumours. Astonishingly, this event appears to occur in 
a handful of cells in childhood or late adolescence, often 
many decades prior to diagnosis [16] (Fig. 1). The second 
copy of VHL is lost, usually much later in life, by either 
non-synonymous mutation or epigenetic down-regulation 
[1–4, 16]. VHL inactivation prevents the ubiquitination of 
hypoxia-inducible factor (HIF) for degradation. Upregu-
lation of HIF is advantageous to tumour cell survival due 
to increased expression levels of angiogenic factors, lower 
rates of apoptosis, and higher rates of cellular proliferation 
(Fig. 2). The ubiquitous nature of upregulated HIF pathways 
and, therefore, neo-angiogenesis has provided the ration-
ale for treatment with vascular endothelial growth factor 
(VEGF) inhibitors. Perhaps, unsurprisingly, given its ubiq-
uitous role, no consistent relationship between VHL status 
and clinical outcome has been found [17, 18].

Chromatin‑modifying genes  A cohort of chromatin-mod-
ifying genes with diverse roles including PBRM1, SETD2, 
BAP1, and KMD5C constitutes the next most prevalent 
somatic mutations. The first three of these genes are also 
co-located with VHL on chromosome 3p, meaning that 
after 3p loss, any further non-synonymous mutation will 
result in complete inactivation of these haploinsufficient 
genes. PBRM1, a methyltransferase is the second most 
commonly mutated gene in ccRCC, found in 30–50% of 
tumours [1, 2]. PBRM1’s inactivation could lead to loss of 
DNA methylation via reduction of H3K36me3 [2]. SETD2 
is mutated in 10–30% of ccRCCs [1, 19–21]. SETD2’s 
intracellular roles are numerous, including the regulation 
of transcription elongation, RNA processing, and double-
stranded DNA break repair [22] that may then activate 
the p53-mediated checkpoint in the absence of specific 
p53 mutations [23]. BAP1, a histone deubiquitinase, is 

mutated in up to 5–15% of ccRCCs [1–3, 24, 25]. BAP1’s 
other roles include control of cellular proliferation and 
regulation of DNA damage repair [24].

Due to their prevalence, PBRM1, SETD2, and BAP1 
have all been investigated as prognostic markers and for 
possible treatment stratification. A retrospective, validated 
analysis found that tumours with BAP1 mutations con-
ferred a worse prognosis, higher grade, and worse over-
all survival when compared to those with PBRM1 muta-
tions or when compared to those without BAP1 mutations 
[2, 24–26]. The presence of BAP1 and PBRM1 mutants 
appeared anti-correlated, though when co-existing, their 
presence conferred the worst overall survival. Similarly, 
the presence of SETD2 confers worse overall survival by 
a hazard ratio of 1.7 [26].

Genomic profiling of tumours from patients with ccRCC 
is beginning to illustrate how the presence of mutations in 
chromatin-modifying genes may aid systemic treatment 
stratification. For instance, in the RECORD-3 trial [27], 
different sequences of everolimus (an mTOR inhibitor) 
and sunitinib (a VEGF inhibitor) appeared to affect pro-
gression free survival in metastatic patients according to 
PBRM1 and BAP1 status. Immuno-oncological agents are 
now showing increasing promise in metastatic ccRCC set-
tings, where PBRM1 mutations appear to confer clinical 
benefit after treatment with these agents [28].

TERT  Somatic mutations have been detected within the 
core promoter [27, 29, 30] and 5’UTR [16] of telomerase 
reverse transcriptase (TERT) in 6–14% of ccRCCs. Their 
functional corollary appears to include the lengthening of 
telomeres [16]. Furthermore, the presence of TERT pro-
moter mutations has been shown to decrease cancer-spe-
cific survival [29] and increased disease stage [30].

Table 3   Summary of the inherited genetic locations believed to be associated with the development of RCC​

Name Chromosome band Possible gene Putative mechanism References

rs11894252 2p21 EPAS1 Transcription factor encoding hypoxia-inducible-factor-2 alpha [10]
rs7579899 2p21 EPAS1 Transcription factor encoding hypoxia-inducible-factor-2 alpha [10]
rs7105934 11q13.3 – – [10]
rs718314 12p11.23 ITPR Possibly through obesity related effects [11]
rs1049380 12p11.23 ITPR Possibly through obesity related effects [11]
rs12105918 2q22.3 ZEB2 Regulation of the epithelial to mesenchyme transition [12]
rs35252396 8q24.21 – Within potential regulatory region associated with other solid cancers [13]
rs4381241 1p32.3 FAF1 Facilitates increased expression of genes driving cell proliferation [14]
rs67311347 3p22.1 CTNNB1 Facilitates increased expression of genes driving cell proliferation [14]
rs10936602 3q26.2 [14]
rs2241261 8p21.3 GFRA2 Activation of the RET tyrosine kinase receptor [14]
rs11813268 10q24 OBFC1 Regulator of telomere length [14]
rs74911261 11q22.3 KDELC2 Functional disruption in endoplasmic reticulum [14]
rs4903064 14q24.2 DPF3 Chromatin remodelling [14]
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PTEN‑ and  mTOR‑signalling pathway  The PTEN gene 
undergoes both recurrent point mutations (2–12% of sam-
ples) and focal deletions (approximately 7% of samples) in 
ccRCC [2, 3, 27]. The gene encodes a protein and phos-
pholipid phosphatase that controls the balance between cell 
proliferation, apoptosis, and migration via the PI(3)K/AKT/
MTOR pathway. Specific mutations may act in a dominant 
negative manner, implying that bi-allelic knockout is not 
always required to suppress function [31]. An interroga-
tion of the TCGA data set revealed that bi-allelic loss of 
PTEN was uncommon but conferred worse overall survival. 
Mono-allelic loss was also associated with higher stage and 
histological grade [32]. Tumours with mutant PTEN status 
showed a non-significant increase in rates of progression 
when compared to non-PTEN mutant tumours after either 
VEGFR or MTOR inhibition in metastatic patients in the 
RECORD-3 trial [27].

The PI3K-AKT-mTOR signalling axis is directly aug-
mented via MTOR mutations, observed in 4–9% of ccRCC 
neoplasms [1, 3]. Numerous other genes are involved in 
the mTOR pathway including PTEN, whose importance is 
discussed above. Other members of the pathway, such as 
TSC1/TSC2/PIK3CA, are infrequently mutated. Although 
FGFR4 undergoes copy gain as part of an arm-level gain 
of the long-arm of chromosome 5 in approximately 50% of 
ccRCC, a direct causal link between this event and PI3K-
AKT-mTOR has not yet been conclusively found. The 
PI3K–mTOR pathway is an important growth factor-signal-
ling cascade that alters cellular metabolism. It is, therefore, 
an attractive target for systemic therapies via compounds 
collectively named rapalogs that bind to FKBP12 to inhibit 
the PI3K–AKT–mTOR pathway via abrogated mTORC1 
kinase activity [33]. There is some evidence that tumours 
with mutations in MTOR/TSC1/2 have a better response 

Fig. 1   Schematic depicting a—trunk-branch model of tumour development (based on [50]) and b—evolution of ccRCC (based on [16])
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to rapalogs, although statistical significance has not been 
reached [27, 34, 35].

TP53  TP53 appears relatively infrequently mutated in 
ccRCC (2–9% of tumours) [2, 3]. However, aberrations in 
genes involved in the P53 pathway are relatively common 
implying that the p53 pathway and cell-cycle checkpoint 
inhibition play significant roles in ccRCC [3, 23]. TP53 
appears to be more frequently mutated in metastases [36] 
and on survival analysis, confers a worse cancer-specific 
survival than any other single mutation [37].

Structural variants  Structural variants promote onco-
genesis by altering the number of copies of genes in the 
genome or re-arranging the order of the genome such 
that either new genes are formed or the expression of a 
gene is altered. Aside from translocation renal cell car-
cinoma, gene fusions are uncommon in renal cell can-
cer. Large-scale copy number variations are common, 
however, including the almost ubiquitous heterozygous 
loss of the short arm of chromosome 3. The next most 
common aberrations are: gain of chromosome 5 (~ 60% 
of samples) and loss of chromosome 14 (~ 40% of sam-
ples), loss of chromosomes 6q, 8p, and 9p, and gain of 
chromosome 7 (~ 30% of samples) [1–4, 16, 37, 38]. Mul-
tiple authors have investigated copy number aberrations 
as potential biomarkers, mainly using array comparative 
genomic hybridisation and cytogenetic studies. Although 
many of these aberrations have been shown to predict 
prognosis [38–43], only few were repeatedly validated on 
multivariable analyses. Due to most copy number altera-
tions covering large segments of the genome, it is difficult 

to uncover the mechanism by which the change confers 
oncogenic advantage. Some interesting and notable genes 
within these regions include CDKN2A on chromosome 
9p, which has been shown to modulate VEGF expression 
via its interaction with HIF-1alpha, encoded by HIF1A on 
14q [44].

Immunotherapy and mutational burden

Targeted immunotherapy, for instance, in the form of pro-
grammed death 1 (PD-1) checkpoint inhibition or cytotoxic 
T-lymphocyte associated antigen 4 (CTLA-4) inhibition is 
being increasingly used in both first- and second-line ther-
apies [45]. Prediction of favourable response has not been 
correlated with PD-1 ligand biomarker expression [46]. In 
bladder cancer amongst others [47], mutational burden as 
a surrogate for neoantigen levels has been associated with 
enhanced response to targeted immunotherapy. Although 
the total mutational burden is relatively low in renal can-
cer, it may be a useful adjunct for response prediction to 
novel immunotherapeutic agents. Recently, a small study 
correlated total mutational burden with response to tar-
geted immunotherapy in RCC [48]. In this study, estimated 
tumour mutational burden was similar in those with pro-
gressive disease and clinical benefit (10 vs. 11, p = 0.8), 
as was the duration of therapy in patients with high- and 
low-tumour mutational burden (71 vs. 70 days, p = 0.39). 
However, this study was fairly small (n = 31) and included 
both patients with ccRCC and non-clear cell RCC who 
received several different targeted immunotherapies.

Fig. 2   Mutation frequencies of 
the most commonly mutated 
genes in ccRCC and their effect 
as described by the Hallmarks 
of Cancer [64]
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Heterogeneity

Intratumoural heterogeneity in ccRCC is well understood 
through bulk tissue DNA sequencing with branching evolu-
tion occurring more commonly and earlier than other cancer 
types [4, 49]. It dominates the evolutionary landscape at the 
genomic, transcriptomic, and proteomic levels [50]. Phy-
logenetic analyses led to the trunk-branch model of RCC 
development (Fig. 1). Somatic mutations that are found in 
all sampled tumour regions present in the trunk of the phylo-
genetic tree, including VHL mutations and 3p loss [51, 52]. 
This finding supports the Knudson two-hit hypothesis [53], 
where two ‘hits’ (i.e., bi-allelic inactivation of VHL) are 
required for clonal expansion to yield a clone large enough 
to stochastically acquire independent branches. Less preva-
lent mutations appear more commonly on branches with the 
same gene sometimes mutated on different branches in a 
fashion consistent with convergent evolution [4, 52]. One 
direct corollary of these findings is that the estimation of 
driver gene prevalence based on single regional sequencing 
significantly under-estimates the true tumour-based estima-
tion. Increased driver prevalence was seen, particularly in 
PBRM1, BAP1, TP53, PTEN, PIK3CA, and TSC2. Incom-
plete molecular profiling from single biopsies may hinder 
accurate prognosis and response to therapy. Extensive multi-
regional sequencing appears to demarcate tumour behaviour 
according to evolutionary subtypes [4].

Clearly, the development of methods to infer tumour 
behaviour without resorting to exhaustive spatial tissue 
sampling is vital. Current estimates of the sampling density 
required to adequately represent tissue biology lie between 
3 and 8 [4, 51], making these methods impractical in clinical 
practice. Alternatively, tumour behaviour and the Darwinian 
phylogeny may be predicted from other methods of molecu-
lar profiling such as transcriptomic analysis or functional 
imaging.

Papillary renal cell carcinoma

Papillary RCC (pRCC) represents approximately 20% of all 
kidney cancers and accumulates mutations at a similar rate 
to ccRCC [54], again with a predominance of a clock-like 
process. Signature 2, associated with APOBEC family of 
cytidine deaminases is the next most common signature. 
Classified as either type I or type II in roughly equal pro-
portions, pRCC occurs either sporadically or as an inher-
ited form [7]. In general, type I cancers are often multifocal 
and confer a better prognosis than the more aggressive and 
typically unifocal type II cancers [55]. Although classi-
fied as separate entities, types I and II pRCCs share many 
molecular features, including chromatin modifications seen 
in ccRCC [56]. Some of the shared genomic features, such 
as gene fusions involving TFE3 or TFEB, are present in 

approximately 10% of samples and show no particular dis-
position to type I or type II cancers [56]. The functional 
implication of these events remains unclear [57]. Due to 
the molecular overlap between both types and the fact that 
prognostic significance of types I vs. II was not confirmed on 
multivariable analyses, the clinical utility of papillary type 
has been questioned [55].

Type I

Hereditary papillary renal cancer (HPRC) predisposes to 
type I pRCC via autosomal dominant inheritance of a muta-
tion in the MET proto-oncogene [7]. Increased MET mRNA 
expression is commonly observed in the sporadic form of the 
disease [56]. This increased expression is potentially directly 
driven by whole chromosomal copy number aberrations, in 
particular trisomy 7 which is present in the majority of type I 
pRCC tumours. In addition, approximately fifteen per cent of 
sporadic cases harbour activating mutations in the tyrosine 
kinase domain or contain splice-site variants [56, 58]. The 
MET pathway interacts with other key oncological pathways 
such as RAS and PIK3 causes increased angiogenesis and 
increased cell dissociation and is, therefore, the subject of 
interest for targeted inhibition. A multicentre phase II study 
investigated foretinib, an inhibitor of MET, VEGFR2, RON, 
and AXL tyrosine kinase in sporadic and HPRC-associated 
papillary RCC [59]. Although overall response rates were 
moderate, half of patients with germline MET mutations 
had a partial response. Unfortunately, no other pathological 
or molecular review was undertaken, but improved treat-
ment stratification by type I or MET mutational status shows 
promise.

Additional genes recurrently mutated in type I pRCC 
include KDM6A, SMARCB1 and NFE2L2 [56]. Despite 
widening the net to discover other candidate driver muta-
tions through known-cancer associated genes, one-third of 
tumours had no clearly discernible driver, other than trisomy 
of broad copy number alterations, most commonly chromo-
some 7.

Type II

The inherited form of the more aggressive, type II pRCC 
tumours is caused by germline mutation of the gene encod-
ing fumarate hydratase (FH) [7]. Sporadic FH mutations are 
rarely found; however, mutations of genes in the downstream 
NRF2–antioxidant response element (ARE) pathway such as 
NFE2L2 are recurrently detected.

CDKN2A alterations are present in 25% of type II pRCC 
tumours when loss of heterogeneity, promoter hypermeth-
ylation, and somatic mutations are considered together 
[56]. Increased expression of cell-cycle related genes was 
seen, most likely via retinoblastoma protein. The presence 
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of CDKN2A alterations was also adversely associated sur-
vival in univariate analysis of the whole cohort and when 
limited to the more aggressive type II phenotype [56].

A small subset of type II pRCC; CpG island methyla-
tor phenotype (CIMP) had universal hypermethylation of 
the CDKN2A promoter and also a high prevalence of ger-
mline or somatic mutations in FH [56]. These tumours 
expressed increased levels of hypoxia-related genes and 
evidence of a Warburg-like metabolic shift. These effects 
underpin the rationale to trial agents such as bevacizumab 
(VEGF inhibition) and erlotinib (TKI), in the phase II set-
ting (NCT01130519).

The chromatin-modifying genes SETD2, BAP1, and 
PBRM1 are recurrently mutated in the absence of consist-
ent loss of heterozygosity or promoter hypermethylation 
[56].

Chromophobe renal cell carcinoma

Chromophobe RCC (chRCC) accounts for 5% of renal car-
cinomas, but this figure is higher amongst young women. It 
is relatively indolent, although sarcomatoid differentiation 
renders it highly aggressive [55]. These tumours derived 
from the distal nephron accumulate mutations at a low rate 
(~ 0.4 per Mb) [54]. The most characteristic feature is exten-
sive whole chromosomal loss of heterozygosity involving 
chromosomes 1, 2, 6, 10, 13, 17, and 21 [60]. The TP53 and 
PTEN genes were recurrently mutated almost exclusively in 
classic (i.e., non-eosinophilic) variants [60, 61]. Recurrent 
aberrations in the TERT gene were also detected with some 
harbouring the canonical 228T mutations, but mainly via 
structural variants that correlated strongly with increased 
TERT expression [60]. The eosinophilic subtype, describing 
an eosinophilic cytoplasm with densely packed mitochon-
dria, harboured cases that were devoid of copy number aber-
rations and some that were enriched for the mitochondrial 
MT-ND5 gene mutations [60, 61]. The causal mechanism 
between this mutation and the histopathological phenotype 
has not yet been ascertained.

There are little data on genomic correlates with patient 
outcomes. Sun et al. analysed 66 patients from the TCGA 
database. TP53 mutations were found in 33% of tumours, 
while loss of HNF1B was seen in 88%. Prevalence of both 
TP53 mutations and loss of HNF1b increased with tumour 
stage and were linked with poor survival [62]. Casuscelli 
et al. [63] studied genomic outcome correlates of 79 chRCCs 
of all stages. TP53 mutations (58%), PTEN mutations (24%), 
and imbalanced chromosome duplication (duplication of ≥ 3 
chromosomes, 25%) were enriched in patients with meta-
static disease. While each feature was associated with infe-
rior survival, the combination of all three changes yielded 
the worst prognosis.

Oncocytoma

Oncocytomas are benign tumours that share many features 
with eosinophilic chRCCs, including derivation from the 
distal tubule and recurrent mutations in mitochondria-
encoded proteins [61]. Type 2 oncocytomas also contains 
recurrent whole chromosome losses that resemble those seen 
in eosinophilic chRCC [61]. The absence of PT53 mutations 
and activation of the p53 pathway in oncocytomas highlights 
p53 as a barrier to oncocytoma progression.

Conclusions

Scientific literature provides a detailed view of the genomic 
landscapes for each of the more common renal cancers. 
The genomic archaeology of clear cell tumours is particu-
larly well characterised through exhaustive multi-regional 
sequencing. Through this knowledge, there is the potential 
to better stratify the risk of progression and survival for kid-
ney cancer. Emerging evidence is showing that the presence 
or the absence of certain mutations may relate to therapeu-
tic sensitivity or resistance. There are a number of gaps in 
our knowledge; these particularly relate to the behaviour of 
small renal masses, rarer subtypes of renal cell cancer, and 
the response of tumours to newer targeted agents.
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