
Phase transitions in biological systems with many components

William M. Jacobs∗ and Daan Frenkel†

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

(Dated: September 11, 2016)

Biological mixtures, such as the cytosol and fluid membranes, often consist of thousands of distinct
components. There is growing evidence that, under physiological conditions, these mixtures can
phase separate into spatially distinct regions with differing compositions. To exploit phase separation
as a mechanism to create spatial organization, a biological system must navigate a phase diagram
that may, in principle, be exceedingly complex. Here we show that, under certain general conditions,
the formation of phase-separated domains is remarkably robust. To elucidate the conditions for
‘functional’ phase separation, we study the phase behavior of a model of a multicomponent mixture
in which the interactions between the components are chosen randomly. Simulations show that
such mixtures either demix into multiple phases, each involving only a small number of distinct
components, or they behave as if all components were alike, forming two similar-composition phases.
We find a sharp transition between these two classes of phase behavior that depends on the variance
of the inter-molecular interactions and the number of components. Despite the tendency of mixtures
with many components to exhibit binary phase behavior, our model suggests that biological mixtures
are naturally poised to undergo a small number of compositionally distinct phase transitions.

INTRODUCTION

Biological systems carry out complex chemical reac-
tions involving a large number of interacting compo-
nents. However, it would be misleading to view the
cell as a well-mixed reaction vessel. Rather, many of
the molecular species in the cell exist as phase-separated
domains (1, 2), and there is considerable evidence that
such phase separation plays a functional role. Examples
include the formation of cytoplasmic granules (3–6), nu-
cleoli (7, 8) and amorphous clusters of proteins involved
in signaling pathways (9). These structures typically ap-
pear as liquid-like droplets that are selectively enriched
in some components, resulting in spontaneous compart-
mentalization (10). Similarly, in some lipid membranes,
interactions between embedded components are believed
to drive the formation of phase-separated rafts (11–13).
For many of these examples, there is strong evidence
that phase separation is essentially an equilibrium phe-
nomenon: active processes, such as ATP hydrolysis, are
not necessary to observe spatial segregation (14, 15).
If the formation of compositionally distinct domains

is important for the normal functioning of a cell, it is
logical to ask what constraints the condition of multi-
phase coexistence puts on the inter-molecular interac-
tions. Thermodynamic coexistence among bulk phases is
necessary to achieve a heterogeneous spatial distribution
of components in the absence of membranes, such as the
component segregation observed in the nucleolus (16).
For spontaneous compartmentalization to be useful, it is
likely that each phase should be enriched in a relatively
small number of functionally related components. Fur-
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thermore, the stabilization of these phases should entail
only local tuning of the abundances and inter-molecular
interactions that contribute to the segregated phases: the
desired phase behavior should be robust to fluctuations
in the interactions between functionally unrelated com-
ponents.

To understand the physical requirements for meet-
ing these criteria, we first consider what happens in a
multicomponent mixture with random pairwise interac-
tions. We assume that the mixture contains N dis-
tinct components. Adopting a model first proposed by
Sear and Cuesta (17), we treat the pair interactions be-
tween the molecules in the mixture as pairwise additive
and isotropic, i.e., independent of the relative orienta-
tions (18). As a result, a single random variable can be
used to describe the average strength of the interaction
between any pair of components. Assuming no detailed
knowledge of the molecular interactions, we draw each of
the N(N + 1)/2 random interactions independently from
the same distribution (that we shall specify later).

We find that this random-mixture model generates
phase diagrams that meet the criteria for biological func-
tionality under certain general conditions. The phase dia-
grams of such mixtures fall into two classes, depending on
the distribution of interactions and the number of compo-
nents: one class that supports multiple demixed phases
with very different compositions and a much simpler case
where only two compositionally similar phases coexist.
As predicted by a previous simulation study (19), increas-
ing the number of components tends to favor the simpler
phase behavior. Here we show that the disappearance
of multiple demixed phases occurs suddenly and with-
out a smooth transition to the simpler phase behavior.
However, we predict that the location of this cross-over
depends relatively weakly on the number of components.
Thus, although multiphase coexistence is not simply a
consequence of having a large number of components,
our model suggests that this behavior is nevertheless a
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likely outcome in biological mixtures and that the selec-
tion of specific phases requires only local tuning of the
inter-molecular interactions. We provide an intuitive ex-
planation for these results and then discuss the implica-
tions for biological mixtures.

THEORY AND MONTE CARLO SIMULATIONS

Phase diagrams in many dimensions

Classical thermodynamics predicts that in a mixture
with N components, it is possible to observe as many as
N + 2 simultaneously coexisting equilibrium phases (20).
The precise number of coexisting phases that appear in
any particular system depends on the interactions be-
tween the components. Yet before describing the phase
behavior of mixtures with many components, it is useful
to examine the generic features of the phase diagrams of
solutions with two solutes. In what follows, we shall use
an ‘implicit solvent’ picture in which the solvent is not
considered to be a component but is merely the medium
in which the various molecular species move. Moreover,
we shall assume that both the temperature and pressure
are constant; in general, the compositions of the coexist-
ing phases are temperature and pressure-dependent.

Because the two components may have dissimilar pair-
wise interactions, phase separation can drive the forma-
tion of phases with differing compositions. It is conve-
nient to characterize an N -component mixture by the
concentration vector ρ ≡ {ρ1, ρ2, · · · , ρN}, where the to-

tal concentration of a phase is φ ≡∑N
i=1 ρi. We use di-

mensionless units for the component concentrations so
that all concentration vectors lie within a unit (N + 1)-
dimensional simplex, 0 ≤ φ ≤ 1. The composition of a
phase refers to the mole fraction of each component,
xi ≡ ρi/φ. Consequently, the composition describes the
direction (but not the magnitude) of ρ.

During a phase transition, both the magnitude and the
orientation of ρ can change. Let us imagine that, prior to
phase separation, the mixture is described by the parent
concentration vector ρ(0). After phase separation, coex-
istence is established between phases with concentration
vectors ρ(1) and ρ

(2) and associated total concentrations
φ1 < φ2. In the phase diagrams shown in Figure 1a–c,
the shaded areas denote coexistence regions, and the cir-
cles indicate pairs of daughter phases ρ(1) and ρ

(2); the
parent concentration vector lies on the dashed tie line
connecting the two daughter phases. To characterize the
nature of a particular phase transition, it is useful to de-
fine an ‘angle of phase separation,’ the angle between the
parent concentration vector and the tie line connecting
the two coexisting phases:

θ ≡ cos−1

[

ρ
(0) ·

(

ρ
(2) − ρ

(1)
)

∥

∥ρ(0)
∥

∥

∥

∥ρ(2) − ρ(1)
∥

∥

]

. (1)

While this angle does not indicate the composition of the
new phase, it serves as an order parameter that reports
the similarity in composition between the parent phase
and the coexisting daughter phases.
Multicomponent phase separation can result in phases

with equal compositions (Figure 1a), the formation of a
high-concentration phase that is enriched in one com-
ponent (Figure 1b), or some combination thereof. In
the case where θ → 0, the coexisting phases differ only
in their total concentrations. This scenario is referred
to as a condensation phase transition. Alternatively,
if phase separation at an initially low concentration is
driven by the demixing of a single component, then
θ → θN ≡ cos−1(N−1/2). In principle, in mixtures with
more than two components, ‘intermediate’ phase behav-
ior can occur if θ takes a value between 0 and θN ; this
scenario implies the selective phase separation of many,
but not all, components. Figure 1c also shows a three-
phase coexistence region, where the mixture phase sep-
arates into three coexisting phases with concentrations
corresponding to the vertices of the dark shaded triangle.
For parent concentrations lying within this region, multi-
ple demixing transitions occur at the same temperature
and pressure. However, as shown in Figure 1c, only one
phase transition is typically encountered at the boundary
of the homogeneous phase, unless the interaction matrix
is degenerate.

Characterization of phase diagrams via simulation

Simulations allow us to study the nature of phase sep-
aration in the limit of very many components. Unlike the
canonical phase diagrams shown in Figure 1a–c, we per-
form simulations in the grand-canonical ensemble, where
the chemical potential of each component is held fixed
and the number of particles of each type is allowed to fluc-
tuate. The grand-canonical ensemble is ideal for studying
phase behavior because it allows the formation of pure
phases of variable concentration in a single simulation.
This feature allows us to observe coexistence between
bulk phases without the formation of an interface.
Because the component concentrations fluctuate,

grand-canonical simulations sample a free-energy land-
scape in which low-free-energy basins correspond to the
phases on a canonical phase diagram. For each represen-
tative phase diagram shown in Figure 1a–c, a correspond-
ing free-energy landscape is shown below in Figure 1d–f.
In each case, the illustration shows the free-energy land-
scape for the component chemical potentials that corre-
spond to any parent concentration vector on the high-
lighted tie line. Importantly, simulations in the grand-
canonical ensemble reveal metastable free-energy basins
even when the corresponding phase is unstable in the
canonical phase diagram. For example, the metastable
basin in the asymmetric free-energy landscape shown in
Figure 1f corresponds to a third phase that must be sta-
ble at a nearby set of chemical potentials, indicating that
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FIG. 1. Representative phase diagrams and free-energy landscapes of two-component mixtures. In the constant-temperature
and pressure phase diagrams shown in panels a–c, single phase regions are shown in white, two-phase coexistence regions in
light gray and a three-phase coexistence region in dark gray. The components have concentrations ρ1 and ρ2, dotted lines
indicate constant compositions, and dashed lines indicate example tie lines connecting coexisting phases (circles). The red
dotted line indicates an equimolar parent composition, while the red dashed line indicates the tie line at the boundary of the
equimolar homogeneous phase. The angle of phase separation, θ, is the angle between the highlighted parent composition and
the tie line at the cloud point (filled circle). For each phase diagram, panels d–f depict corresponding free-energy landscapes
for parent concentrations lying on the highlighted tie lines. In these landscapes, the chemical potentials of the components are
fixed, and the component concentrations fluctuate around two or more free-energy basins. In panels c and f, the highlighted tie
line is in a two-phase region, but the appearance of a metastable phase on the free-energy landscape indicates close proximity
to a three-phase coexistence region.

the tie line on the canonical phase diagram in Figure 1c
is close to a three-phase coexistence region.
In order to to determine whether a matrix of inter-

molecular interactions supports multiphase coexistence,
we follow a simulation strategy that allows us to charac-
terize the canonical phase diagram. Here we assume that
the parent phase has equal concentrations for all compo-
nents. Starting from the low-concentration homogeneous
phase, we located the lowest-concentration phase bound-
ary that intersects the parent composition vector, i.e.,
ρ
(1) = ρ

(0), which is commonly called the cloud point.
This point is indicated by the filled circles in Figure 1a–c.
Then, we sampled the free-energy landscape at the corre-
sponding chemical potentials to determine the proximity
of this phase boundary to a multiphase coexistence re-
gion. These two sets of simulations are described below.

Monte Carlo simulations of binary phase coexistence

To locate the cloud point associated with an equimo-
lar parent composition, we carried out grand-canonical
Monte Carlo (GCMC) simulations (21) of a three-
dimensional lattice model. In this model, lattice sites
may either be vacant, representing the non-interacting

solvent, or occupied by one of the N components. The
energy, U , of a lattice configuration is calculated by sum-
ming the interactions between all pairs of particles on
nearest-neighbor (n.n.) lattice sites:

U = −
∑

(u,v)∈{n.n.}





N
∑

i=1

N
∑

j=1

δCui ǫij δCvj



. (2)

The tuples (u, v) run over all distinct nearest-neighbor
pairs, Cu is the component index of the particle at lattice
site u (Cu = 0 if the site is vacant), and δ is the Kronecker
delta.
We employed multicanonical biasing (22) to facilitate

rapid crossing of the free-energy barrier that separates
low and high-concentration lattice configurations. In or-
der to locate the cloud point in these simulations, we
tuned the component chemical potentials to achieve equal
free energies in the low and high-concentration phases,
F (1) = F (2), while satisfying the imposed composition
constraint on the low-concentration phase, x(1) = x

(0).
This strategy has been shown to minimize finite-size ef-
fects (23). We note that this approach does not constrain
the simulation to sample only from the two phases of in-
terest if other free-energy basins are present. For com-
putational efficiency, we used a L× L× L cubic lattice
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with periodic boundaries and L = 6. Complete details of
the simulation method are provided in Ref. 19.

Free-energy landscapes near multiphase coexistence

For each realization of the interaction matrix, we gen-
erated approximately 1000 random lattice configurations,
with concentration vectors chosen uniformly from the
unit simplex of component concentrations. We then al-
lowed each initial configuration to evolve via the unbi-
ased GCMC algorithm, with the component chemical po-
tentials fixed at the previously determined cloud point,
until the concentration fluctuations stabilized. These
GCMC trajectories tend to travel ‘downhill’ on the free-
energy landscape, and, without the multicanonical bias-
ing that was used in the previous set of simulations, the
probability of escaping from a free-energy basin is ex-
tremely small. The endpoints of these trajectories there-
fore lie close to the minima of the free-energy basins,
which correspond to stable or metastable thermodynamic
phases. We clustered these endpoints in order to deter-
mine the number of distinct free-energy basins, and then
we found the mean concentration vector of each of these
(meta)stable phases by averaging the endpoint concen-
tration vectors within each basin.

RESULTS

Simulations of condensation and demixing in

mixtures with random pairwise interactions

To study an ensemble of mixtures with random inter-
actions, we generated many independent realizations of
the pairwise interaction matrices {ǫij}. We assume that
the interactions between pairs of components are inde-
pendent random variables drawn from a Gaussian distri-
bution with mean ǭ and variance σ2. (We shall discuss
the effects of correlated interactions in the context of a
mean-field model later.) We limited the number of com-
ponents to 64 for tractability and then chose the variance
of the Gaussian interaction distributions in order to ob-
serve both the demixing and condensation limits of the
phase behavior. The mean interaction strength was fixed
at ǭ = 1.07ǫc, where −ǫc = −0.87kBT is the critical bond
energy of the one-component lattice gas, kB is the Boltz-
mann constant and T is the absolute temperature.
For each realization of {ǫij}, we used our simulation

strategy to calculate the component chemical potentials
at the lowest-concentration phase boundary and to de-
termine the number of free-energy basins at this point.
We also computed the average composition of the coex-
isting high-concentration phase at this set of chemical
potentials in order to calculate θ. As noted above, it
is highly unusual to observe multiple coincident transi-
tions precisely at this first phase boundary. When we do
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FIG. 2. Histograms showing the bimodal distributions of the
angle of phase separation in simulations with (a) 32 and (b) 64
components. The histogram for each random-mixture ensem-
ble was constructed from all high-concentration free-energy
basins at the cloud point (see text). Condensation into two
phases with equal compositions is associated with a small an-
gle of phase separation, θ, whereas demixing into phases with
dissimilar compositions occurs when θ approaches θN , the
angle of phase separation corresponding to the demixing of
a single component. In panel b, the σ = ǭ/2 ensemble has
nearly equal probabilities of condensation and demixing.

observe more than two free-energy basins, multiphase co-
existence must occur at very similar component chemical
potentials. In this case, a stronger driving force — either
higher concentrations or stronger average interactions —
is necessary to push the mixture into the multiphase re-
gion. This scenario is consistent with our expectations for
functional multiphase coexistence, because phase transi-
tions that are close in chemical-potential space may be
easily manipulated by small changes to the component
abundances and inter-molecular interactions.

Bimodal distribution of phase behaviors

Our simulations show that random interactions result
in two distinct types of phase behavior: either a handful
of components will demix or the mixture will condense
into two phases with nearly identical compositions. The
bimodal distribution of the angle of phase separation can
be seen in the histograms shown in Figure 2a–b, where
we have included all high-concentration phases that were
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FIG. 3. The probability of multiphase coexistence correlates with the angle of phase separation at the cloud point. (a) Increasing
the number of components in a solution suppresses demixing and leads to a single condensation phase transition, regardless of
the variance of the interactions. Each point represents an average over an ensemble of random mixtures; error bars indicate
the standard deviation of the distribution of angles for each ensemble. The dashed line roughly indicates where cross-over
from demixing to condensation occurs. (b) The probability of observing more than two free-energy basins at the cloud point,
indicating close proximity to a multiphase coexistence region. Demixing transitions are associated with the presence of multiple
coexisting phases. Vertical error bars indicate the error due to finite sampling.

identified from the free-energy landscapes of hundreds of
random mixtures with 32 or 64 components. Low val-
ues of θ correspond to condensation phase transitions.
In this limit, a multicomponent mixture behaves as if
all the components were alike. In contrast, the higher-θ
peak corresponds to demixing phase transitions. In this
case, the maximum angle of phase separation is given by
θN . Importantly, in simulations with 8 or more compo-
nents, we rarely find phase behavior that is intermediate
between condensation and demixing.

The average phase behavior of a random mixture en-
semble depends on both the width of the distribution of
inter-molecular interactions, σ, and the number of com-
ponents, N . Condensation transitions dominate for large
N and small σ, while demixing transitions are more likely
in mixtures with fewer components and a broader distri-
bution of interactions. In fact, the average angle of phase
separation tends toward zero at large N , regardless of
the variance of the random interactions. This ensemble-
averaged phase behavior is shown in Figure 3a, where θ
is shown relative to the largest possible angle of phase
separation for a given number of components, θN . The
cross-over between demixing and condensation, where 〈θ〉
starts to tend towards 0, occurs at larger N in random-
mixture ensembles with greater values of σ. In Figure 3,
the cross-over occurs near N ≃ 4, N ≃ 16 and N ≃ 64
for ensembles with σ = ǭ/4, σ = ǭ/3 and σ = ǭ/2, re-
spectively. The variance in θ across realizations of in-
teraction matrix also decreases as 〈θ〉 approaches zero,
while the larger variance in the ensemble-averaged angle
of phase separation near 〈θ〉 ≃ 1/2 is a consequence of the

bimodal distribution shown in Figure 2. We shall discuss
the origin of bimodality and the scaling of N , σ and ǭ at
the cross-over between demixing and condensation using
mean-field calculations below.

Multiphase coexistence correlates with the angle of

phase separation

Free-energy landscapes calculated at the cloud point
indicate that multiphase coexistence is most likely to oc-
cur in concert with demixing transitions. In Figure 2c,
we plot the probability, calculated separately for each
random-mixture ensemble, of finding more than one high-
concentration phase in the vicinity of the cloud point.
The correlation of multiphase coexistence near the cloud
point with the ensemble-averaged angle of phase separa-
tion implies that multiphase coexistence can be predicted
by the angle of phase separation at the cloud point. This
observation allows us to classify the likely phase diagram
of a random mixture ensemble based on the statistical
distribution of the inter-molecular interactions in a ran-
dom mixture ensemble. Furthermore, near the cross-over
from demixing to condensation, we find many instances
where a stable, high-concentration homogeneous phase is
accompanied by one or more demixed phases. This fea-
ture indicates that the cross-over from demixing to con-
densation is a sharp, first-order transition that depends
on the relative stability of competing high-concentration
phases; the smooth transition in Figure 3a is the result
of averaging over the bimodal distribution of angles of
phase separation.
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Mean-field model of multicomponent phase

separation

We can gain further insight into the transition between
these two opposing types of phase behavior by analyzing
a mean-field model. In particular, this approach repro-
duces the bimodality of the phase behavior observed in
our simulations. This mean-field model also allows us to
predict the scaling of the condensation–demixing cross-
over as a function of N , σ and ǭ.
Ignoring all spatial correlations between the various

particles and vacancies on the lattice, the Helmholtz free
energy of a mixture with concentration vector ρ and lat-
tice coordination number z is

βF =
∑

i

ρi ln ρi+(1−φ) ln(1−φ)− βz

2

∑

ij

ρiǫijρj , (3)

where φ ≡∑i ρi ≤ 1 and β ≡ (kBT )
−1 is the inverse tem-

perature. In Eq. 3, the second term accounts for the
mixing entropy of vacancies. Because calculating the to-
tal concentration of each phase at coexistence is chal-
lenging in the context of a multicomponent mixture,
we shall make the simplifying assumption that all high-
concentration phases have the same total concentration
φ. With this approximation, we can write the free-energy
difference, ∆F , between a phase with an arbitrary com-
position x and the equal-composition phase as

β∆F

φ
=

(

∑

i

xi lnxi + lnN

)

− βzφ

2

∑

ij

xi∆ǫijxj , (4)

where ∆ǫij ≡ ǫij −
∑

ij ǫij/N
2. The first and second

terms in Eq. 4 represent the mixing entropy and the av-
erage energy differences between the two phases, respec-
tively.
Now let us assume that the components in an arbitrary

phase interact via a specific subset of n2 interaction en-
ergies and that each of these interactions is equally likely
to appear at any bond between nearest-neighbor parti-
cles. Choosing such a subset entails reshuffling the rows
and columns of the interaction matrix in order to select a
n× n sub-matrix of interaction energies, as illustrated in
Figure 4a. For example, a phase with n = 1 could corre-
spond to a single-component phase, if the chosen interac-
tion is on the diagonal of the matrix, or a two-component
phase in which the components occupy alternating lattice
sites, if the chosen interaction is off-diagonal. The lowest
free energy of a phase with n2 interactions, relative to
the equal-composition phase with N2 interactions, is

∆F (n)

β−1φ
= ln

(

N

n

)

−β′max





1

n2

∑

ij

τ
(n)
i ∆ǫijυ

(n)
j





{τ (n),υ(n)}

, (5)

where β′ ≡ βzφ/2. The vectors τ
(n) and υ

(n), which
have precisely n ones and N − n zeros, implement the
reshuffling of rows and columns (Figure 4a). The second
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FIG. 4. A mean-field model predicts bimodal phase behavior
for random mixtures. (a) An illustration of a 2×2 sub-matrix

(red squares) of ∆ǫ selected by the vectors τ (2) and υ
(2); see

Eq. 5. (b) The mean-field free-energy difference between the
most stable phase comprising n2 distinct interaction energies
and the equal-composition phase with N components, under
the constraint that both phases have the same overall con-
centration φ. Numerical calculations of Eq. 5 are averaged
over many realizations of the random matrix ∆ǫ; for this il-
lustration, we have chosen β′σ = 1.05. The conditions for the
cross-over regime can be found by tuning N and σ to achieve
equal free energies in the most stable demixed phase (n = 1)
and the most stable condensed phase (n ≃ N). (c) The mean-
field phase diagram for the control parametersN and β′σ. The
coexistence curve between condensation and demixing scales
approximately as

√
lnN ∼ β′σ.

term in Eq. 5 is proportional to the maximum value (over
all possible vectors τ (n) and υ

(n)) of the average of the
n2 interaction energies.

The composite parameter β′ has units of inverse energy
and sets the scale against which the standard deviation
of the interaction distribution should be measured. This
parameter is an implicit function of the mean interaction
strength, ǭ, which plays an important role in determining
the total concentration, φ, at the cloud point. The pa-
rameter β′ can also be related to the critical interaction
energy, ǫc, in a single-component system. In the anal-
ogous one-component mean-field model, ǫc = 4/βz and
φc = 1/2, meaning that β′ = ǫ−1

c . Clearly, ǭ must be at
least as great as this critical bond strength in order to
observe a condensation phase transition in a multicom-
ponent system. However, the dependence of β′ on ǭ is,
in general, more complicated for ǭ > ǫc.
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Numerical analysis shows that Eq. 5 reproduces the
bimodal phase behavior observed in our simulations. We
evaluated Eq. 5 for many realizations of the random in-
teraction matrix and plotted the results in Figure 4b.
The second term in Eq. 5 is minimized when n = 1, in
which case τ (1) and υ

(1) pick out the largest entry in the
interaction matrix. The average of the n2 interactions
regresses toward the mean,

∑

ij ∆ǫij/N
2 = 0, as more

interaction energies are incorporated. However, this re-
duction in the average interaction strength is not per-
fectly balanced by the increase in mixing entropy. As
a result, Figure 4b shows that the free-energy difference
as a function n is bistable: either a demixing transition
with n = 1 or a condensed phase with n ≃ N is thermo-
dynamically favored. Equal probabilities for these two
scenarios, corresponding to coexistence between demix-
ing and condensation phase transitions, can be obtained
by tuning either the total number of components N or
the standard deviation of the interaction energies such
that ∆F = 0 in the n = 1 phase.

The free-energy curves plotted in Figure 4b resem-
ble a classical first-order phase transition between stable
demixed and condensed phases, where the total number
of components and the standard deviation of the interac-
tion strengths are the control parameters. In random
mixtures with uncorrelated interaction energies, high-
concentration phases with an intermediate number of
components — corresponding to phases with intermedi-
ate values of θ — are unlikely to be observed. The emer-
gence of a condensation phase transition, where n ≃ N ,
can be attributed to the greater mixing entropy of the
equal-composition, high-total-concentration phase. In
contrast, if n ≃ 1, the thermodynamic driving force for
demixing results from the extreme values of the distri-
bution of random interactions. Only a small number of
distinct demixed phases are therefore likely to be sta-
ble. We find that the fluctuations in the extreme values
of ∆ǫ are large in comparison to the standard devia-
tion of the distribution of interaction energies, leading to
significant variance in ∆F (n) across realizations of the
interaction matrix. As a result, the mean-field model
predicts a smooth cross-over between demixing and con-
densation behavior when averaged over an ensemble of
random mixtures, as found in our simulation results.

We can predict the scaling of the condensation–
demixing cross-over by determining the conditions for
coexistence between condensation and demixing tran-
sitions from the extreme-value statistics of the in-
teraction matrix. When n = 1, the expected value
of the second term in Eq. 5 is −β′σ(

√
4.73 lnN − 1),

where σ has units of kBT . It follows that the co-
existence curve between condensation and demixing is√
lnN = aβ′σ +

√

(aβ′σ)2 − β′σ, where a ≃ 1.09. This
relationship between N and β′σ is considerably steeper
than the

√
N ∼ σ/ǭ scaling determined from a stability

analysis of the homogeneous parent phase (17). Conse-
quently, the N–β′σ phase diagram shown in Figure 4c
suggests that, in mixtures characterized by large values

of β′σ, the number of components required to promote
a condensation phase transition may be extremely large.
The simulation results shown in Figure 3 are also incom-
patible with

√
N ∼ σ/ǭ scaling, although our simulation

data is insufficient to test the mean-field prediction.
This mean-field model can also be used to predict the

phase behavior of multicomponent mixtures under more
general assumptions regarding the parent-phase compo-
sition and the inter-molecular interactions. In mixtures
with unequal component concentrations, the dimension-

less Gibbs entropy of the parent phase −∑i x
(0)
i lnx

(0)
i

measures the effective number of components in the mix-
ture. The entropy difference between the condensed and
demixed phases (the first term in Eq. 5) will, in general,
be different for each component. We have also verified
that the predicted bistability is robust with respect to
weak correlations among the inter-molecular interactions.
In particular, we checked this result for mixtures where
the interaction matrix follows the Lorentz–Berthelot mix-
ing rule (24) and thus has the form ǫij ∼ √

sisj , where
the {si} are independent Gaussian random variables with
the constraint si ≥ 0, and the largest value of ǫij is always
found on the diagonal of the interaction matrix. In cases
where the interaction distribution is bimodal, our predic-
tions apply to the subset of strongly interacting compo-
nents, which may condense or demix independently from
the other weakly interacting components.

DISCUSSION

For phase separation to be a viable mechanism of spa-
tial organization, it must be possible to tune the stabil-
ity of multiple coexisting phases via a limited number
of local parameters: the phase behavior of a mixture
with many components should be insensitive to fluctu-
ations in the interactions between each and every pair
of components. We have shown that a model in which
the inter-molecular interactions are chosen randomly pro-
duces phase diagrams that satisfy this requirement under
quite general conditions. The most probable phase be-
havior of such a mixture falls into one of two classes,
depending on the number of components and the statis-
tical distribution of inter-molecular interactions. At the
point where a homogeneous mixture first becomes unsta-
ble, either a few components will demix, or all compo-
nents will condense together. The former type of phase
behavior typically supports coexistence among multiple
compositionally distinct phases given small changes in
the component chemical potentials. This means that,
when demixing occurs in a random mixture, the condi-
tions for multiphase coexistence are both accessible and
easily tunable.
Our results have a number of important implications

for biological mixtures. One consequence of bimodal
phase behavior is that only a small number of interactions
need to be tuned to achieve coexistence among multiple
demixed phases. In the absence of strong correlations
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in the inter-molecular interactions, our mean-field model
predicts that each demixed phase is unlikely to be en-
riched in more than a handful components. The stabili-
ties of these phases can therefore be tuned by optimizing
a few specific chemical potentials. To manipulate phase
behavior within the lifetime of a single cell, such control
is likely achieved through the regulation of macromolec-
ular abundances, while on evolutionary timescales, the
phase behavior may be tuned via local changes to the
inter-molecular interactions. In an intracellular mixture,
multiphase demixing results in the formation of compo-
sitionally inhomogeneous droplets, such as spontaneous
nucleolar compartmentalization (16). However, the spa-
tial ordering of the phases within a droplet depends on
the interfacial free energies, which we have not examined
here.

Functional multiphase coexistence furthermore re-
quires that demixing transitions are not hidden by a dom-
inating condensation instability. Our mean-field model
predicts that the required number of components for
condensation grows rapidly with the variance of the
interaction-energy distribution. This scaling implies that
demixing transitions can be observed in mixtures that
contain a few thousand distinct components with an
interaction-distribution standard deviation on the or-
der of a few kBT . In our simulations, we have chosen
the variance of the interaction strengths in order to ex-
plore the behavior of the model over a computationally
tractable number of components. However, these param-
eters could instead be obtained from high-throughput
protein–protein interaction assays. A previous analy-
sis of Yeast 2-Hybrid experiments (25) found that the
proteome-wide distribution of nonspecific interactions is
indeed quite broad, with an estimated mean and stan-
dard deviation of −4kBT and 2.5kBT , respectively.

Our model also shows that optimization of all inter-
component interactions is not necessary to stabilize a
multicomponent system. In contrast to the complexity
that might be expected from the Gibbs phase rule, phase
separation into two phases with similar compositions is
a common outcome for mixtures with very many compo-
nents. This result may help to explain the condensation-
like phase behavior that has been observed for compo-
nents embedded in lipid membranes (1). Although such
simple phase behavior might look like that of a single-
component solution, this is not a result of the interacting
components being indistinguishable. On the contrary,
this behavior is a consequence of the mixing entropy that
stabilizes homogeneous-composition phases in mixtures
with a large number of distinguishable components.

Owing to the simplicity of our model and the min-
imal constraints imposed on the form of the interac-
tion matrix, our results can be applied to a wide vari-
ety of biological systems, including both two-dimensional
membranes and three-dimensional fluids. However, addi-
tional constraints on the inter-molecular interactions are
required before quantitative conclusions can be drawn
for any specific system. Whereas we have assumed un-

correlated pairwise interactions in our simulations, some
classes of biomolecules, such as intrinsically disordered
proteins, are more likely to interact promiscuously. In
particular, experiments have implicated proteins with
low-complexity sequences in some examples of in vivo

phase separation (26). These considerations imply a
more structured interaction matrix than the uncorrelated
Gaussian ensemble. In addition, protein expression lev-
els are typically anticorrelated with the propensity of a
protein to form nonspecific interactions (25, 27, 28). Our
mean-field calculations indicate that bimodal phase be-
havior is robust to physically realistic correlations among
the random inter-molecular interactions; however, very
strong correlations may affect this result. Further inves-
tigation is warranted to examine the effects of correlated
interactions and unequal concentrations on the phase be-
havior of multicomponent mixtures.

In summary, we have described the phase behavior
of a minimal model of a biological mixture with many
components. We have shown that the general features
of these phase diagrams depend on a small number of
parameters that describe the distribution of interactions
between pairs of components. With a sufficiently broad
distribution of uncorrelated inter-molecular interactions,
such mixtures typically exhibit tunable multiphase co-
existence. Our results therefore suggest that the natural
behavior of multicomponent mixtures with random inter-
actions is similar to that required for phase separation to
be an organizing principle in biological mixtures. While
the study of high-dimensional phase diagrams has long
been a topic of theoretical interest (29, 30), recent ex-
plorations of the organization of complex biological sys-
tems — which are truly multicomponent mixtures —
have brought new relevance to this problem. The general
principles developed here will guide future studies in this
emerging field.
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