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Abstract
The paper considers the problem of performing a post-processing task defined
on a model parameter that is only observed indirectly through noisy data
in an ill-posed inverse problem. A key aspect is to formalize the steps of
reconstruction and post-processing as appropriate estimators (non-randomized
decision rules) in statistical estimation problems. The implementation makes
use of (deep) neural networks to provide a differentiable parametrization of
the family of estimators for both steps. These networks are combined and
jointly trained against suitable supervised training data in order to minimize a
joint differentiable loss function, resulting in an end-to-end task adapted recon-
struction method. The suggested framework is generic, yet adaptable, with a
plug-and-play structure for adjusting both the inverse problem and the post-
processing task at hand. More precisely, the data model (forward operator and
statistical model of the noise) associated with the inverse problem is exchange-
able, e.g., by using neural network architecture given by a learned iterative
method. Furthermore, any post-processing that can be encoded as a trainable
neural network can be used. The approach is demonstrated on joint tomographic
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image reconstruction, classification and joint tomographic image reconstruction
segmentation.

Keywords: inverse problems, image reconstruction, tomography, deep learning,
feature reconstruction, segmentation, classification

(Some figures may appear in colour only in the online journal)

1. Introduction

The overall goal in inverse problems is to determine a model parameter that generates model
predictions matching measured data to sufficient accuracy. Such problems arise in science and
engineering applications, like imaging/sensing applications. Here, the model parameter to be
determined is the image and data represents noisy indirect observations that is acquired using
an imaging device, like a tomography scanner or microscope. Perhaps, the most-prominent
example is computed tomography (CT) imaging where data is a series of x-ray scans of the
patient taken from different directions. The aim in CT imaging is to use the data to computa-
tionally recover a 3D image representing the interior anatomy. The technique was introduced
into the medical field in late 1960s with the Nobel Prize in Physiology or Medicine awarded
shortly afterwards in 1979. Tomography has since then revolutionized health care, allowing
doctors to find disease earlier and improve patient outcomes [54].

The inverse problem of reconstructing the model parameter from data is often only one
out of many steps in a procedure that ultimately involves decision making. The reconstructed
model parameter is typically summarized, either by an expert or automatically, and the result-
ing task dependent descriptors are used as basis for decision making. As an example, in clinical
CT imaging the image is segmented and annotated (semantic segmentation) by a clinical radi-
ologist. Depending on the underlying referral to radiology, the radiologist may also compute
specific quantitative measures, like the size/volume of lesions. The above is complemented
with qualitative assessment and the findings, bearing in mind the underlying referral, are
summarized in a radiology report, that serves as basis for decision making. This workflow
for clinical CT, where the recovered model parameter undergoes several down-stream post-
processing steps before being integrated into decision making, is typical for applications that
involve solving inverse problems as outlined in figure 1.

There could be several disadvantages with a sequential approach in which the various steps
of the above pipeline are performed independently from each other. Each single step introduces
approximations that are not accounted for by subsequent steps, the reconstruction may not
consider the end task, and the feature extraction may not consider how data was acquired.
Actually, the task is almost always only accounted for at the final step. It is therefore natural
to ask whether one may adapt the reconstruction method for a specific task. Task adapted
reconstruction refers to methods that integrate the reconstruction procedure with (parts of) the
decision making associated with the task. This is sometimes also referred to as ‘end-to-end’
reconstruction. The numerical examples in the paper compares the task adapted reconstruction
against a sequential approach to see whether there are any advantages with the former.

Overview. We start with a brief survey of existing approaches to task adapted reconstruction
in the context of tomographic image reconstruction (section 1.1), which also points out the
drawbacks that come with these approaches. The section that follows (section 2) introduces
the Bayesian view on inverse problems where a reconstruction method is a statistical estimator.
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Figure 1. Typical workflow involving an inverse problem. The second row represents
the data acquisition where raw data is acquired and pre-processed, resulting in cleaned
data. In the third row, the cleaned data is used as input to a reconstruction step that
recovers the model parameter, which is then post-processed to extract features that are
used as input for model building. The final outcome is a task adapted model that can be
used for decision making. The dotted part outlines steps that are unified by task adapted
reconstruction.

In a similar manner we also formulate post-processing applied to the model parameter space
as a statistical estimation problem (section 3). Section 4 starts by introducing task adapted
reconstruction in an abstract setting. It then outlines three approaches, all well suited for data
driven approaches based on neural networks. This is followed by two applications that are
worked out in detail in section 5. Section 6 provides some theoretical considerations regarding
regularizing properties and the potential advantage that comes with using a joint approach.
Section 7 has a concluding discussion and outlook on future research in this area.

1.1. Survey of task adapted reconstruction

There is an ongoing effort within the inverse problems community to perform reconstruction
jointly with various post-processing tasks.

Current approaches are primarily based on a functional analytic/frequentist formalism
where the aim is to recover some true (unknown) post-processing feature d∗ ∈ D from data
y ∈ Y , which is a single sample of the Y-valued random variable of 𝕪 where

d∗ = T (x∗) with 𝕪 = A(x∗) + 𝕖 and 𝕖 ∼ Pnoise. (1)

In the above, Pnoise is the probability distribution for the noise in measured data, which
is assumed to be known. Furthermore, the mappings A : X → Y (forward operator) and
T : X → D (post-processing operator) are also assumed to be known. The forward operator
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models how a model parameter (an image in tomography) gives rise to data and the post-
processing operator extracts the post-processing features of interest from the model parameter.

(2)

Task adapted reconstruction amounts to finding the dotted mapping in (2). Note that the
post-processing operator T : X → D is often highly non-injective, so it makes no sense to view
A ◦ T −1 : D → Y as a ‘new forward operator’ in a regular (non-task adapted) reconstruction
problem. Approaches for ‘solving’ the inverse problem formalized in (1) heavily depends on
the nature of T . Below are some examples in the context of tomographic imaging.

1.1.1. Model based approaches. Most previous work in model based task adapted recon-
struction is in tomography. Here, edge recovery by means of Lambda-tomography is one of
the earliest examples. This is a non-iterative reconstruction method of filtered backprojection
(FBP) type for recovering edges of an image directly from tomographic data. It is based on
a microlocal analysis of the reconstruction operator, see [32] for a nice survey. Another non-
iterative approach combines the method of approximate inverse with an explicit edge detector
[41]. Variational models represent a flexible approach for solving inverse problems where con-
sistency against data is balanced against the need to avoid overfitting. The former is quantified
in terms of the negative data log-likelihood whereas the latter is given by a functional that
penalises unwanted features (regularizer). When applied to tomographic imaging, variational
models do not recover edges in the formal sense. One can, however, choose a regularizer that
emphasizes edges. An example is sparsity promoting regularization with respect to an underly-
ing dictionary that is designed to sparsely represent edges (like curvelets, shearlets, beamlets,
and bandlets) [34, 55], another is variants of total variation regularization [8].

Another example is joint tomographic reconstruction and segmentation where most
approaches use a variational model with a suitably chosen regularizer. One is the Mum-
ford–Shah-type of regularizer [11, 26, 31, 50], another is a regularizer given as the negative
log-likelihood of a Potts-prior [57]. A further refinement is to consider joint reconstruction and
semantic segmentation. A maximum a posteriori estimator with a Gauss–Markov–Potts type
of prior leads to a variational model [45] that shows promising results on small-scale examples.
Another approach uses a hidden Markov measure field model for estimating the probability of
different segmentation classes [52].

The final example refers to tomographic reconstruction in spatiotemporal imaging where
one needs to recover an image along with its motion. As surveyed in [22], current approaches
are based on variational models where the motion is parametrized, e.g., by a partial differential
equation (optical flow or a continuity equation) [10, 42] or by a sequence of time dependent
diffeomorphic deformations acting on a template [12], which builds on variational models for
joint reconstruction and image registration (indirect registration) [13, 19, 36].

1.1.2. Data driven approaches. Model based approaches require access to a handcrafted post-
processing operator T : X → D that can be interpreted as a feature extraction.6 It can how-
ever be difficult to handcraft the post-processing operator for many natural post-processing
tasks, and especially so for tasks involving some kind of classification. Next, state-of-the-
art approaches for task adapted reconstruction are mostly based on variational models. These

6 Such approaches to task adapted reconstruction are often called ‘feature reconstruction’ [41].
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are computationally demanding and involve several hyper-parameters, like when tomographic
reconstruction is performed jointly with segmentation or registration.

The above issues seriously limits the usefulness of model based approaches to task adapted
reconstruction in applications involving large scale and/or time-critical. An option is there-
fore to resort to data driven approaches to simultaneously address both these limitations. First,
there is ample empirical evidence of successfully using machine learning to perform complex
post-processing tasks. Some of these, like object detection, image caption generation, and style
transfer, are even challenging to formalize, let alone solve, in the context of classical signal pro-
cessing. Next, once trained, data driven models are also computationally efficient to evaluate,
which addresses the issue of computational feasibility. It therefore makes sense to integrate
reconstruction with a data driven model for the post-processing task.

The earliest and most commonly occurring example of machine learning in image recon-
struction is for denoising/restoration of reconstructed images. In such a sequential approach,
the post-processing can only be made aware of the underlying reconstruction method through
the choice of training data. As an example, deep learning in CT imaging relies often on training
a deep neural network to denoise/restore CT images obtained from a particular reconstruction
method (usually FBP) [5, section 5.1.5]. An alternative to such sequential approaches is to
perform the denoising/restoration task jointly with reconstruction as outlined in [43, 44].

A more complex task is joint reconstruction and segmentation. In MRI imaging, one can
have a unified deep neural network architecture (SegNetMRI) that performs combined Fourier
inversion (MRI image reconstruction) and segmentation [58]. Here, one has two neural net-
works with the same encoder–decoder structure, one for MRI reconstruction consisting of
multiple cascaded blocks, each containing an encoder–decoder unit and a data fidelity unit,
and the other for segmentation. These are pre-trained and coupled by ensuring they share
reconstruction encoders. Another example of data driven approach to joint reconstruction
and segmentation is [9], which considers photo-acoustic tomography. The idea is to jointly
train a learned iterative scheme for reconstruction [2] with a convolutional neural network for
segmentation. A similar approach is taken in [65] for joint reconstruction and abnormality
detection, e.g., tumour detection in low-dose CT imaging. Here one jointly trains a learned
iterative scheme for reconstruction [2] with a 3D convolutional neural network for detecting
the abnormality in the reconstructed images.

A final example of data driven approaches to task adapted reconstruction refers to spa-
tiotemporal imaging. A key part in performing reconstruction jointly with a motion model is
the ability to vary the motion model itself through an explicit parametrization [22]. There are
many approaches that use machine learning to model motion, but most try to learning the entire
motion and therefore they do not admit an explicit parametrization that can be used in recon-
struction. What is needed for joint reconstruction and motion modelling is machine learning
approaches that learn a motion model that belongs to a pre-defined class of motion models with
an explicit parametrization. One example of this is given in [49] for spatiotemporal positron
emission tomography (PET) image reconstruction. Here, the ML–EM iterates for updating
the PET activity image are intertwined with a parametrized learned diffeomorphic deforma-
tions that are given by deep neural networks (VoxelMorph) [7] Another similar approach for
indirect registration ( joint reconstruction and registration) intertwines iterates for a variational
model with learned deformation operators [39]. Finally we point to [56] for and example of
reconstruction in MRI with a learned optical flow model for the motion.
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1.2. Motivation and specific contributions

The approaches surveyed in section 1.1 involve post-processing tasks from classical image pro-
cessing, like edge detection, segmentation, and registration. These represent a small (but impor-
tant) sub-set of the tasks necessary for integrating imaging with decision making. Meanwhile,
data driven approaches based on deep learning have made impressive progress in automating a
wide range of complex tasks, like object detection, image caption generation, and image trans-
lation. Tasks like these typically involve classification and/or generative modelling and they
constitute an important part of image guided decision making. Integrating such deep learning
based approaches with reconstruction opens up for the ability to perform reconstruction jointly
with a wide range of complex post-processing tasks, like those required for in radiomics where
the aim is to extract features from images and integrate these into clinical-decision support
systems to improve diagnostic, prognostic, and predictive accuracy [35, 61].

The aim here is to develop a generic, yet highly adaptable, framework for task adapted
reconstruction that is based on considering both the reconstruction and the post-processing
task as statistical estimation problems To the best of our knowledge, this is the first paper that
offers an approach where reconstruction can be performed jointly with a range of diverse post-
processing tasks in a computationally feasible manner. Statistical decision and learning theory
coupled with efficient inference algorithms from deep learning are the guiding principles and
the framework can re-use algorithmic components. This opens up for new ways of thinking
about machine learning and inverse problems that may ultimately lead to deeper understanding
of the possibilities for integrating elements of decision making into the reconstruction. Further
novel contributions is usage of the joint loss in (18) and investigating its properties (section 6).

2. Reconstruction as statistical estimation

Representing a reconstruction method as a statistical estimator (non-randomized decision rule)
requires one to define probability measures on both X (reconstruction space) and Y (data space),
i.e., we have measurable spaces (X,SX) and (Y,SY) where X and Y are separable Banach
spaces. Furthermore, PX and PY denotes corresponding spaces of measures on X and Y .
Finally, one has a data model M : X→ PY that maps a model parameter to the distribution
of the data generated by it, i.e., the data model simulates the measurement. Following [16],
reconstruction corresponds to a point estimator of (𝕩 |𝕪 = y) where measured data y ∈ Y is a
single sample of (𝕪 |𝕩 = x∗) ∼ M(x∗) with x∗ ∈ X unknown.

Remark 1. It is common to express the data model in terms of a forward operator A :
X → Y that models how data is generated in absence of noise and a part that represents
measurement noise. This corresponds to M(x) := δA(x) � Pnoise = Pnoise ( · − A(x)) where
Pnoise ∈ PY models measurement noise. Expressed equivalently, 𝕪 = A(𝕩) + 𝕖 where 𝕖 ∼
Pnoise is the measurement noise. An additional assumption is that 𝕖 is independent of 𝕩, e.g.,
as when Pnoise is a Gaussian random measure with a mean and co(variance) independent of 𝕩.
Another data model is when M(x) is a Poisson random measure on Y with mean A(x), which
is suitable for imaging in a low-dose setting that relies on counting statistics [25].

One possibility is to use maximum likelihood estimation for reconstruction, i.e., to maxi-
mize x �→ M(x). This is however unsuitable for ill-posed inverse problems since it leads to
overfitting, e.g., this estimator corresponds to un-regularized least-squares fitting when 𝕖 is
Gaussian white noise. Statistical decision theory offers a systematic framework for comparing
estimators and selecting one that is optimal according to some pre-defined criteria. This can
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be used for selecting an estimator for reconstruction that is better suited for ill-posed inverse
problems. This requires us to formalize reconstruction as Bayesian estimation. To do this,
note first that the tuple

(
(Y,SY), {M(x)}x∈X

)
formally defines a statistical model in the sense

of [38, equation (1.1)]. If one is given a loss �X : X × X → R, then a reconstruction method
can be seen as a non-randomized decision rule (estimator) in a statistical estimation problem
[38, definition 3.5] with (X,SX) as the decision space. Using a Bayes estimator for recon-
struction amounts to selecting the reconstruction method that minimizes the average loss [38,
definition 3.36]. Such a reconstruction method is given by a mapping R̂ : Y → X that solves
the following supervised statistical learning problem

R̂ ∈ argmin
R∈Drec

E(𝕩,𝕪)∼PX⊗M(x)

[
�X (𝕩,R(𝕪))

]
for given PX ⊗M(x)∈ PX×Y . (3)

Here, Drec is a given class of measurable X-valued mappings on Y . Next, M : X→ PY (data
model) is also known, whereas the ‘true’ PX ∈ PX (prior) is often unknown.

Implementation. The expectation in (3) is w.r.t. the joint law (𝕩, 𝕪) ∼ PX ⊗M∈ PX×Y .
Domain specific expertise in inverse problems often provides a reasonably accurate data model
x �→ M(x)∈ PY . In contrast, less is known on how to handcraft a prior that is sufficiently
close to the ‘true’ prior PX ∈ PX, so the joint law for (𝕩, 𝕪) is unknown.

One alternative to handcrafting a prior is to take a data driven approach. If one has (super-
vised) training data (xi, yi) ∈ X × Y generated by (𝕩, 𝕪) ∼ PX ⊗M, then one can replace the
joint law PX ⊗M in (3) with its empirical counterpart given by this training data. Inverse prob-
lems are often large scale, meaning that elements in X and Y are represented by high dimen-
sional arrays even after clever discretization. The amount of training data is furthermore often
limited, so a key aspect is to consider a domain adapted class of estimators Drec = {Rθ}θ∈Θ in
(3). In the context of inverse problems, this means making use of the a priori knowledge that
Rθ : Y → X should represent a (regularized) inverse of an explicitly known forward operator
A : X → Y. One option is to consider Rθ given by a deep neural network architecture that is
obtained by unrolling a suitable iterative scheme, which is originally designed to approximate
a regularized inverse of the forward operator, see [5, section 4.9.1] and [46] for further details.
These deep neural network architectures have been successfully used in solving large scale
inverse problems where there is little training data [2]. To summarize, we use empirical risk
minimization to approximate the Bayes estimator in (3):

R̂ ≈ R
̂θ where θ̂ ∈ argmin

θ∈Θ

m∑
i=1

�X (xi,Rθ(yi)) . (4)

In the above, Rθ : Y → X is given by a domain adapted deep neural network architecture that
accounts for an explicit forward operator.

The final remark concerns the choice of �X : X × X → R in (4). In imaging one commonly
uses the squared L2-distance, so the resulting Bayes estimator becomes the conditional mean
(posterior mean) [24]. Other alternatives that are based on image features not expressible as
point-wise differences are the Wasserstein distance [3] and perceptual losses [28].

3. Post-processing as a decision rule

A wide range of post-processing tasks that act on model parameters in X can be represented
by a non-randomized decision rule in a suitably formulated statistical estimation problem.

The underlying statistical model is here
(
(X,SX), {Pz}z∈


)
with 
 denoting the set

parametrizing the probability distributions on X. Next, let (D,SD) and �D : D × D → R denote
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the decision space and loss associated with the post-processing task. Using a Bayes estimator to
represent the post-processing task amounts to finding the mapping (post-processing operator)
T̂ : X → D that solves the following statistical learning problem:

T̂ ∈ argmin
T ∈Dpost

E(𝕫,𝕩)∼η [�D (τ (𝕫), T (𝕩))] for some η∈ P
×X. (5)

Here, Dpost is a given suitable class of measurable D-valued mappings on X and τ : 
→
D is a given mapping, whereas the joint law η∈ P
×X is usually unknown. This abstract
formalization covers a wide range of post-processing tasks, including many relevant for image
analysis like classification and segmentation as shown next.

Remark 2. It is worth reflecting over the role of the sets 
 and D. Many (complex) tasks
can ‘naturally’ be represented through a hand-crafted mapping τ : 
→ D. The issue is that
elements in 
 are not observable, instead observables reside in X. The post-processing opera-
tor is therefor an estimator T̂ : X → D given by the statistical learning problem in (5) while
τ : 
→ D remains as the hand-crafted natural representation of the post-processing. The
examples in the following sections further clarify these points.

3.1. Classification

The task here is to classify an image into one of k distinct labels, or more precisely, associate
an image to a probability distribution over all k labels. This post-processing task can be rep-
resented as a statistical estimation problem where the statistical model is

(
(X,SX), {Pz}z∈


)
with 
 :=Zk, D :=P
 (i.e., the decision space is probability distributions over the k labels),
and τ : 
→ D as τ (z) := δz for z ∈ 
.

A Bayes estimator is now a mapping T̂ : X → D given by (5) where Pz ∈ PX is the 
-
marginal of η∈ P
×X and �D : D × D → R quantifies similarity between probability mea-
sures on 
. Since elements in D are probability measures on the finite set 
, one common
choice is to use the cross-entropy between probability measures:

�D(d, d′) := −
∑
z∈


d(z) log d′(z) for d, d′ ∈ D. (6)

Implementation. The joint law (𝕫, 𝕩) ∼ η∈ P
×X in (5) is unknown, so we approximate
it with the empirical measure given by supervised data (zi, xi) ∈ 
× X generated from (𝕫, 𝕩).
Next, the family of estimators Dpost = {Tϑ}ϑ∈Ξ in (5) is given by a suitable (deep) neural
network architecture for classification. An early approach based on a convolutional neural net-
work is in [37], AlexNet [33] and ResNet [23] represent further development along this line.
To summarize, the Bayes estimator in (5) is approximated from supervised data by

T̂ ≈ T
̂ϑ where ϑ̂ ∈ argmin

ϑ∈Ξ

{
1
m

m∑
i=1

[− log [Tϑ(xi)(zi)]

}
. (7)

3.2. Semantic segmentation

The aim here is to classify each point in an image into one of k possible labels, so the special
case k = 2 corresponds to (binary) segmentation. Stated more formally, semantic segmentation
applies a mapping that associates each point in an image in X to a probability distribution over
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all k labels. This post-processing task can be represented as a statistical estimation problem
where the statistical model is

(
(X,SX), {Pz}z∈


)
where 
 :=M (Ω,Zk) is the set of measur-

able mappings from Ω to Zk and the decision space D :=M (Ω, PZk ) is the set of measurable
mappings from Ω to the class of probability measures on Zk. Here, τ : 
→ D is given as
τ (z)(t) := δz(t) for z : Ω→ Zk ∈ 
. Note here that we could have chosen D= P
 as in classi-
fication, but this is intractable for high-dimensional images, so we restrict to a subset of P

given by probability distributions for which the label distribution of every pixel is independent.

A Bayes estimator is now a mapping T̂ : X → D given by (5) where Pz ∈ PX is the 
-
marginal of η∈ P
×X and �D : D × D → R quantifies similarity between elements in D.
Such an element is a function on Ω that yields a probability measure on the finite set Zk at
each point t ∈ Ω. The cross entropy is commonly used for quantifying the similarity between
probability distributions, so an option is to define �D : D × D → R as the integral of the point-
wise cross entropy of the (point-wise) independent probability measures d(t), d′(t)∈ P
. This
translates into

�D(d, d′) :=
∫
Ω

⎡⎣−∑
i∈Zk

d(t)(i) log
[
d′(t)(i)

]⎤⎦ dt for d, d′ : Ω→ PZk ∈ D. (8)

Implementation. The joint law (𝕫, 𝕩) ∼ η∈ P
×X in (5) is unknown, so we approximate
it with the empirical measure given by supervised data (zi, xi) ∈ 
× X generated from (𝕫, 𝕩).
Next, the family of estimators Dpost = {Tϑ}ϑ∈Ξ in (5) is given by a suitable (deep) neural
network architecture for (semantic) segmentation, see [21, 40, 48, 60]. In particular, the SegNet
architecture has been successful for semantic segmentation of 2D images [6] and for (binary)
segmentation one may use the U-net architecture [53]. To summarize, the Bayes estimator in
(5) is approximated from supervised data by

T̂ ≈ T
̂θ where ϑ̂ ∈ argmin

ϑ∈Ξ

{
1
m

m∑
i=1

∫
Ω

− log [Tϑ(xi)(t) (zi(t))] dt

}
. (9)

Note that Tϑ(x)(t) in (9) is a probability distribution over Zk for any t ∈ Ω and z(t) ∈ Zk when
z ∈ 
, so in particular Tϑ(x)(t) (z(t)) ∈ [0, 1] for any t ∈ Ω.

3.3. Further examples

A common trait with the examples in sections 3.1 and 3.2 is that each of the tasks were repre-
sented by a Bayes estimator that was approximated by a deep neural network trained against
appropriate supervised training data. Many other image processing tasks that can be handled
in this way, like edge detection (find edges and their orientations) [4], de-pixelization/super-
resolution (upsample images to increase resolution) [14, 51], in-painting (fill out lost parts of
images/videos) [66], de-mosaicing (reconstructing a full colour image from the incomplete
colour samples) [59], object recognition (localize and classify objects in images) [17, 23], and
non-rigid image registration (deform a template image so that it matches a target image) [7,
18, 67]. More complex tasks from image analysis can also be handled similarly, like colorizing
(apply colour to grey scale images) [27], image translation (translate between two classes of
images of the same object) [64], and image caption generation (generate text that summarizes
content of image) [30, 62].
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4. Task adapted reconstruction

A straightforward approach to perform reconstruction and post-processing is to compose the
mappings for these two steps with each other. This constructs the dotted mapping in (2)
where reconstruction and post-processing are performed independently from each other. In
contrast, the idea in task adapted reconstruction is to perform reconstruction jointly with
post-processing.

An important aspect is to retain the possibility to identify the reconstruction and post-
processing steps, i.e., we seek a task adapted reconstruction method of the form

T̂ ◦ R̂ : Y → D for some R̂ : Y → X and T̂ : X → D. (10)

The proposed framework considers task adapted reconstruction methods of the form in (10).
The framework is generic but adaptable in the sense that the forward operator (in the recon-
struction step) and the post-processing task are replaceable in a plug-and-play manner. As such,
it differs from approaches surveyed in section 1.1 that are tailored to a specific post-processing
task (some allow for replacing the forward operator in a plug-and-play manner).

All approaches are based on statistical decision theory where both R̂ : Y → X (reconstruc-
tion operator) and T̂ : X → D (post-processing operator) in (10) are represented as statistical
estimators. This requires one to extend the formalism in (1) by assuming that the (unknown)
true model parameter x∗ ∈ X and (unknown) true post-processing feature d∗ ∈ D are generated
by X- and D-valued random variables 𝕩 and 𝕕 := τ (𝕫), respectively.

In the following sections, we outline different approaches for constructing a task adapted
reconstruction method of the form in (10). The implementations consider estimators for post-
processing and reconstruction that are parametrized by fixed domain adapted classes Dpost =
{Tϑ}ϑ∈Ξ and Drec = {Rθ}θ∈Θ, respectively. Hence, task adapted reconstruction is given as in
T̂ ◦ R̂ : Y → D where

T̂ ≈ T
̂ϑ : X → D and R̂ ≈ R

̂θ : Y → X. (11)

In the above, (θ̂, ϑ̂) ∈ Θ× Ξ are computed from training data. Note that θ̂ corresponds to
using training data to learn a reconstruction method. Likewise, ϑ̂ corresponds to a learned
post-processing method.

4.1. Sequential approach

Here one first determines the reconstruction operator (as a Bayes estimator) independently
of the post-processing. This is then used in defining the estimator representing the post-
processing, i.e., the post-processing accounts for the reconstruction. Task adapted reconstruc-
tion in (10) is then given as⎧⎪⎨⎪⎩

R̂ ∈ argmin
R∈Drec

E(𝕩,𝕪)∼PX⊗M
[
�X (𝕩,R(𝕪))

]
T̂ ∈ argmin

T ∈Dpost

E(𝕫,𝕩)∼η

[
�D (τ (𝕫), T (𝕩)) |𝕩 = R̂(𝕪)

] (12)

In the above, the joint law (𝕫, 𝕩) ∼ η∈ P
×X needs to be consistent with the joint law (𝕩, 𝕪) ∼
PX ⊗M∈ PX×Y , e.g., by requiring that the 
-marginal of η∈ P
×X, denoted by Pz ∈ PX ,
is the push forward of M∈ PY through the reconstruction operator R̂ : Y → X. Alternatively,
if one is given a ‘task prior’ P
 ∈ P
 so η = P
 ⊗ Pz, then the requirement is that PX = Pz

where Pz ∈ PX denotes the 
-marginal of η∈ P
×X.

10
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Implementation. The data driven approach for approximating (12) assumes access to cou-
pled supervised training data of the form: (zi, xi, yi) ∈ 
× X × Y for i = 1, . . . , m where
(xi, yi) and (zi, xi) are generated by the marginal distribution PX ⊗M and η, respectively. One
needs to ensure that training data is random samples of distributions that are consistent in
the sense stated above. In particular, a post-processing operator trained in (zi, xi) is only well
defined for input taken from the support of its training data, i.e., it may fail when applied to
data it has never seen like when new data has a different statistical assumption.

Task adapted reconstruction is then approximated as in (11) where (θ̂, ϑ̂) ∈ Θ× Ξ solves⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ̂ ∈ argmin

θ∈Θ

{
1
m

m∑
i=1

�X (xi,Rθ(yi))

}

ϑ̂ ∈ argmin
ϑ∈Ξ

{
1
m

m∑
i=1

�D

(
τ (zi), Tϑ(x′i)

)}
with x′i :=R

̂θ(yi).

(13)

Note that ϑ̂ ∈ Ξ in (13) is not learned from training data (zi, xi). Instead, we make use of training
data (zi, x′i) where x′i :=R

̂θ(yi). This is a pragmatic way for ensuring that the range of the learned
reconstruction operator is contained in the support of the elements in X used for learning the
post-processing. In particular, it ensures that the statistical assumptions on training data are
consistent.

4.2. End-to-end approach

Here one only uses the post-processing related loss when defining the Bayes estimator for task
adapted reconstruction, i.e., one considers (10) with

(T̂ , R̂) ∈ argmin
T ∈Dpost
R∈Drec

E(𝕪,𝕫)∼ν

[
�D (τ (𝕫), T ◦ R(𝕪))

]
for some ν ∈ PY×
. (14)

Implementation. One data driven approach is to approximate (14) using supervised training
data of the form:

(yi, zi) ∈ 
× X generated by(𝕪, 𝕫) ∼ ν for i = 1, . . . , m. (15)

Task adapted reconstruction is then approximated as in (11) where (θ̂, ϑ̂) ∈ Θ× Ξ solves

(ϑ̂, ϑ̂) ∈ argmin
ϑ∈Ξ
θ∈Θ

{
1
m

m∑
i=1

�D (τ (zi), Tϑ ◦ Rθ(yi))

}
. (16)

4.3. Joint approach

Task adapted reconstruction is here given by (10) with

(T̂ , R̂) ∈ argmin
T ∈Dpost
R∈Drec

E(𝕩,𝕪,𝕫)∼σ

[
�X×D ((𝕩, τ (𝕫)) , (R(𝕪), T ◦ R(𝕪)))

]
(17)

for some (𝕫, 𝕩, 𝕪) ∼ σ∈ PX×Y×
 and �X×D : (X × D) × (X × D) → R. This defines a Bayes
estimator for (𝕫, 𝕩 | 𝕪 = y) in the joint statistical estimation (inverse problem) that is obtained
by assuming that x∗ ∈ X and d∗ ∈ D in (1) are generated by random variables 𝕩 and 𝕕 := τ (𝕫).

11
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Of particular interest is to choose

�X×D

(
(x, d), (x′, d′)

)
:= (1 − C)�D(d, d′) + C�X(x, x′) for fixed 0 � C � 1, (18)

where �X : X × X → R and �D : D × D → R are given. This represents a ‘middle-way’ between
the sequential and end-to-end approaches. To see this, start by decomposing the measure
σ ∈ σ∈ PX×Y×
 in terms of conditional probabilities using the chain rule: dσ(z, x, y) =
dM(x)(y) dη(z, x). This follows by inserting (𝕫, 𝕩) ∼ η and (𝕪 |𝕩 = x) ∼ M(x) and making
use of the additional assumption that dP(y | z, x) = dP(y | x) (which holds if 𝕩 is a sufficient
statistic for 𝕪). In the limit C → 1, the joint approach reduces to the sequential one.

Note also that it may seem sufficient to only consider the loss �D in (17), i.e., to set C = 0
in (18). Then (17) becomes equivalent to the end-to-end approach in (14). There is however an
issue problem with non-uniqueness in this case since the loss does not consider reconstruction
space at all, so any model parameter can be reconstructed as long as the downstream post-
processing operator is adopted appropriately. Stated formally,

(R̂, T̂ ) solves (17) ⇒ (B−1 ◦ R̂, T̂ ◦ B) solves (17) for any invertible B : X → X.

This non-uniqueness does not arise when C > 0, so incorporating a loss term associated with
the reconstruction may act as a regularizer. This also indicates that the limit C → 0 in (17) does
not necessarily coincide with the case C = 0 in (17).

Implementation. The data driven approach for approximating (17) is based on supervised
training data that jointly involves the reconstruction and task:

(xi, yi, zi) ∈ X × Y ×
 generated by (𝕩, 𝕪, 𝕫) ∼ σ for i = 1, . . . , m. (19)

Task adapted reconstruction is then approximated as in (11) where (θ̂, ϑ̂) ∈ Θ× Ξ solves

(θ̂, ϑ̂) ∈ argmin
(θ,ϑ)∈Θ×Ξ

{
1
m

m∑
i=1

�X×D

(
(xi, τ (zi)) ,

(
Rθ(𝕪i), Tϑ ◦ Rθ(𝕪i)

))}
(20)

where �X×D : (X × D) × (X × D) → R is the joint loss in (18). Note that one may in addition
have access to separate sets of training data generated by (𝕩, 𝕪) ∼ PX ⊗M and (𝕫, 𝕩) ∼ η. In
such case, it is possible to first pre-train by approximately solving (5) and (4) separately, and
use the resulting outcomes to initialize an algorithm for solving (20).

5. Applications

In the following we demonstrate performance of the task adapted reconstruction schemes out-
lined in section 4. All cases involve reconstruction from tomographic 2D parallel beam data,
so elements in X are compactly supported real-valued functions representing 2D images. As
post-processing tasks, we consider MNIST classification and segmentation.

5.1. Joint tomographic reconstruction and classification

Post-processing task. Recover probabilities that a 2D grey scale MNIST image is a 0, 1, . . . ,
9 from noisy parallel beam tomographic data (see section 3.1).

Data. Elements in Y are real-valued functions representing samples of a Poisson random
variable with mean equal to the exponential of the parallel beam ray transform and an inten-
sity corresponding to 60 photons/line. The ray transform is digitized by sampling the angular
variable at 5 uniformly sampled points in [0, π] with 25 lines/angle.

12
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Table 1. In both the pre-training and sequential approaches, the reconstruction and
post-processing operators are trained separately. In the sequential approach, the post-
processing operator is then further trained on the output of the trained reconstruction
operator. In the end-to-end approach (C = 0 in (18)) the reconstruction operator is pre-
trained with L2-loss. Finally, the joint approach uses the full loss (18). We see that the
classification accuracy (explained in ‘decision space’ in section 5.1) improves when
using a joint approach. In fact, using a ‘suitable’ C (figure 2(a)) yields an accuracy of
97.00% that is quite close to the upper limit of 97.76%, which is the accuracy of the
classifier when trained on true images.

Approach Accuracy L2-loss Cross entropy

Pre-training 93.61% 9.0 0.643
Sequential 96.01% 9.0 0.124
End-to-end 96.70% 19.7 0.118
Joint with C = 0.01 96.74% 12.8 0.108
Joint with C = 0.5 97.00% 9.2 0.100
Joint with C = 0.999 96.61% 9.0 0.108
Classification on true images 97.76% 0.088

Model parameter space. Elements in X are functions representing images supported on
a fixed rectangular region Ω ⊂ R

2, so X :=L2(Ω,R). These are discretized by sampling on a
uniform 28 × 28 grid. The loss �X : X × X → R is the squared L2-distance on X.

Decision space. 
 := {0,1, . . . ,9} is the set of labels and D is probability distributions
over 
 with a loss function �D : D × D → R given by the cross entropy in (6). In addition
to cross entropy, we employ classification accuracy to measure performance. Given a prob-
ability distribution d ∈ D over 
, the single label prediction is defined to be the element in

 that is assigned the highest probability, i.e. arg maxz∈
 d(z). The percentage of images in
the evaluation data set for which the predicted label coincides with the real one is reported as
classification accuracy.

Reconstruction and post-processing operators. Reconstruction Rθ : Y → X is given by
an unrolled gradient descent scheme [1] and post-processing Tϑ : X → D is a MNIST classifier
given by a standard convolutional neural net classifier with three convolutional layers, each
followed by 2 × 2 max pooling for segmentation. The activation functions used were ReLUs,
layers had 32, 64 and 128 channels, respectively. The final layer is dense and transforms the
output of the last convolutional layer to a logit layer of size 10, with the last activation function
being a softmax.

Joint training. Joint supervised data is given as 512 000 triplets (xi, yi, zi) where zi ∈ 

is the label corresponding to the MNIST labels. We also performed pre-training for both
the reconstruction and post-processing operator (classifier). The reconstruction operator was
pre-trained using 256 000 pairs (xi, yi) with 8000 steps with a batch size of 64 and the post-
processing operator (classifier) was pre-trained until 97.7% accuracy. Note here that we use
about 60 000 entries from the MNIST database, so the above supervised data is not statistically
independent.

Example outcomes, which are summarized in table 1 and figure 2, show that a joint approach
outperforms a sequential one when considering the classification accuracy. Besides an
improved classification accuracy we also see a significant improvement regarding interpretabil-
ity. The reconstructed image part can in the joint setting actually be used as a benchmark to
assess the reconstructed classification probabilities. On the other hand, the sequential approach
results in classification probabilities that deviates from this intuitive observation. We also see

13
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Figure 2. Joint tomographic reconstruction and classification of MNIST images
described in section 5.1. Training data is to the left and reconstructed image with clas-
sification probabilities are on the right. Table 1 summarizes the overall performance
(accuracy) on the entire MNIST dataset.

that in both cases, the classification probabilities are unnaturally concentrated on a single label,
but this is a know phenomena also for regular for MNIST classification [20].

5.2. Joint tomographic reconstruction and segmentation

Post-processing task. Recover the probability map for segmentation of a grey scale image (see
section 3.2 with k = 2) from noisy parallel beam tomographic data. In this specific example,
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Figure 3. Joint tomographic reconstruction and segmentation as described in section 5.2
for different values of C in (18).

we consider segmenting the grey matter of CT images of the brain, which is relevant in imaging
of neurodegerantive diseases like Alzheimers’ disease.

Data. Y contains real-valued functions on lines representing parallel beam tomographic
data.These are digitized by sampling the angular variable uniformly at 30 points in [0,π] with
183 lines/angle. We also add 0.1% additive Gaussian noise to data.

Model parameter space. X contains functions representing images supported on a fixed
rectangular region Ω ⊂ R

2, so X :=L2(Ω,R). These are discretized by uniform sampling on a
128 × 128 grid. The loss �X : X × X → R is the squared L2-distance.

Decision space. Elements in D are point-wise probability distributions over binary images
on Ω, which can be represented by grey-scale images with values in [0, 1] that gives the prob-
ability that a point is part of the segmented object. Hence, D = M (Ω, [0, 1]) with the loss
function �D : D × D → R as in (8).

Reconstruction and post-processing operators. Rθ : Y → X is given by unrolling a
primal-dual scheme [2] and Tϑ : X → D is given by an ‘off the shelf’ U-net convolutional neural
net for segmentation [53].

Joint training. Joint supervised data is given as 100 triplets (xi, yi, di) where di is the
segmentation (binary image). We extend joint training data by data argumentation (±5 pixel
translation and ±10◦ rotation). There was no pre-training.

Figure 3 summarizes example outcome, note that image in figure 3(c) for C = 0.99 can
be seen as the outcome from a sequential approach since C = 1 corresponds to the sequential
approach. Clearly, a joint approach with C between 0.1 and 0.5 outperforms a sequential one.

Next, as C decreases the reconstruction becomes more adapted to the segmentation task.
In the limit C → 0 this post-processed image is viable but the reconstruction part is useless,
which is to be expected. In the other direction, as C decreases the reconstructed part becomes
less adapted to the post-processing task and the latter becomes increasingly challenging due to
the low contrast between white and grey matter.

Finally, using C > 0 not only reduces the non-uniqueness as explained in (17), it further reg-
ularizes in the sense that information from the reconstruction guides the segmentation, which

15



Inverse Problems 38 (2022) 075006 J Adler et al

otherwise would amount to learning the segmented image directly from the noisy sinogams.
Intuitively there seems to be an ‘information exchange’ between the task of reconstruction and
that of segmentation, which when properly balanced by choosing C acts as a regularizer for the
segmentation, e.g., the white/grey matter contrast in the reconstruction is overemphasized for
small C. This improves the interpretability since it shows how the reconstructed image ‘helps’
in interpreting why a certain segmentation is taken.

6. Theoretical considerations

The task adapted reconstruction in (17) is a Bayes estimator, so it is natural to investigate
whether theory of Bayesian inversion [15, 29, 47] can be used to analyse its regularizing prop-
erties. This theory however does not apply since results are based on too many restrictive
assumptions.

Another line of investigation considers the potential advantage that comes with using a
joint approach over a sequential one. Since the reconstruction and post-processing operators are
trained separately in a sequential approach, some information is inevitably lost when applying
a regularized reconstruction operator. In contrast, the joint approach involves simultaneously
training both reconstruction and post-processing operators, so there is a better chance of pre-
serving the information. We therefore expect a joint approach to perform better. This is also
supported by the observation in (17) and the empirical evidence in section 5.

Albeit convincing, the above heuristic argument is flawed! As stated by proposition 1, it is
surprisingly difficult to prove that a joint approach outperforms a sequential one in a non-
parametric setting where one has access to all of data. The reason is that many standard
operators from data space Y to model parameter space X are formally information conserv-
ing. The adjoint of a (linear) forward operator, its Moore–Penrose pseudo-inverse, and even
some regularized reconstruction operators like the usual Tikhonov regularization are informa-
tion conserving under standard Gaussian noise. Another example in planar tomography is the
FBP reconstruction operator (with a filter that is strictly non-zero in frequency space). The next
results provides the theoretical foundation for the above claims.

Proposition 1. Let 𝕩 and 𝕪 be a X- and Y-valued random variables that are both defined
on the same probability space. Next, Π : Y → Y is a measurable operator with closed range
and B is an arbitrary measurable map on Y that is injective when restricted to ran(Π). Then

E
[

f (𝕩)|𝕪
]
= E

[
f (𝕩)|B(Π𝕪)

]
for f : X → R measurable ⇐⇒ 𝕩⊥⊥(𝕪−Π𝕪)|Π𝕪. (21)

The proof follows directly from inserting the definitions. When applied to an inverse
problem, Π typically represents an orthogonal projection onto the closure of the range of A.
From proposition 1 we get that (𝕩 | 𝕪) and

(
𝕩|B(Π𝕪)

)
have the same distribution if and only if,

given the knowledge of Π𝕪, the ‘noise’ 𝕪 −Π𝕪 in the null space of Π is independent of 𝕩.

Corollary 1. Consider the setting in section 4 for task adapted reconstruction and assume
in particular that 𝕪 and 𝕫 are conditionally independent given 𝕩. Finally, let B satisfy the
assumptions in proposition 1; we also assume that the equality in proposition 1 holds, that is
π(x | y) = π(x | B(y)). Then, P(z | y) = P

(
z | B(y)

)
.

Proof. The conditional independence assumption can be written as π(z | x, y) = π(z | x).
Using this, we compute P(x, y, z) = P(z | x, y)P(x, y) = P(z | x)P(x, y), which yields

P(x, z | y) = P(z | x)P(x | y). (22)
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Notice that B(𝕪) and 𝕫 are also conditionally independent given 𝕩, so we similarly obtain

P(x, z | B(y)) = P(z | x)P(x | B(y)). (23)

Now, (22) and (23) imply in particular that

P(z | y) =
∫

P(z, x | y) dx =

∫
P(z | x)P(x | y) dx

P
(
z | B(y)

)
=

∫
P
(
z, x | B(y)

)
dx =

∫
P(z | x)P

(
x | B(y)

)
dx.

(24)

Our assumption is that P(x | y) = P
(
x | B(y)

)
, which combined with (24) proves the claim. �

Corollary 1 implies that (𝕫 | 𝕪 = y) and (𝕫 |𝕩 = B(y)) are equally distributed as 
-valued
random variables. In particular, a task adapted reconstruction method (sequential or joint) is
equivalent to first performing reconstruction by some B : Y → X followed by the learned mea-
surable map C : X → D that is given as C :=T ◦ R ◦ B−1. Here, C defines a non-randomized
decision rule that in principle serves as a ‘task’ operator.

To conclude, theoretical arguments for proving superiority of the joint approach over a post-
processing approach cannot be based on a ‘information bottleneck’ type of argument. Hence,
the reason must be related to either the choice of architecture or the training protocol. Unfortu-
nately, both these are related to the central open problem, namely why deep learning ‘works’.
Another argument in favour of a joint approach is that it is highly non-trivial to select an appro-
priate architecture for parametrizing C, whereas T and R are easier to parametrize by means
of neural networks. Furthermore, evaluating B or its inverse B−1 may not be stable. Finally, as
we have seen from the examples, using knowledge about the reconstruction may in fact act as
a regularizer, either by improving the trainability or the generalization properties.

7. Discussion and outlook

A key aspect for the implementation of the joint task adapted reconstruction method in (17)
is that both reconstruction and post-processing are given by trainable neural networks, which
after joint training forms a single intertwined neural network.

As argued for in section 3, a wide range of post-processing tasks can be represented by
an Bayes estimator. The abstract framework for task adapted reconstruction (section 4) works
with any task that can be represented by a neural network as long as the parametrization and the
loss functions are differentiable, like those listed in section 3. Hence, our approach opens up
for truly task adapted reconstruction that goes well beyond performing reconstruction jointly
with simple feature extraction. In particular, more advanced post-processing tasks, like image
caption generation or image-processing steps in radiomics can be performed jointly with recon-
struction. The potential for task adapted reconstruction in radiomics is also emphasized in [63],
which introduces the term rawdiomics (on p 1294).

An important advantage that comes with a joint approach is increased robustness. Advanced
post-processing, like radiomics, commonly rely on deep neural networks that are trained on
images in a supervised setting. Such images are however computed from measured data, so
contrast and texture may depend on the instrumentation used to acquiring the data and the
reconstruction method used for computing the images. Hence, a neural network that has been
trained against images acquired from a particular equipment, or obtained using a particular
reconstruction method, may generalize poorly when either of these factors change. This is
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especially the case for tasks involving elements of visual classification, such as semantic seg-
mentation, that can be sensitive to variations in texture and contrast. In contrast, task adapted
reconstruction acts on measured data instead of images (model parameters). Using a recon-
struction step that incorporates a physics guided model for how measured data is generated
results in a joint approach that is more robust against variations in how data is acquired. This
is e.g. essential if radiomics is to be part of clinical-decision support systems for improving
diagnostic, prognostic, and predictive accuracy.

Another advantage relates to computationally feasibility. Scalability is a serious issue
with the model based approaches in section 1.1, e.g., state-of-the-art methods for
joint reconstruction and segmentation quickly become computationally infeasible. In contrast,
once trained, neural networks for task adapted reconstruction scale to large scale problems. The
examples in figure 3 for joint reconstruction and segmentation obtained by using section 5.2
take a few milliseconds on a desktop gaming PC.

Finally, examples involving tomographic image reconstruction (section 5) support the claim
that a joint approach outperforms a sequential one. Understand this theoretically (section 6)
is however an open problem. In particular, there is currently no theory motivating using
a joint loss of the type in (18), even though empirical evidence suggests such a choice
outperforms the end-to-end and sequential approaches.
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