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1 Introduction and summary

Gauge theories in d > 4 are infrared free and have a Landau pole singularity in the
ultraviolet requiring a cutoff regulator. They should be regarded only as IR effective
theories. Nevertheless, it is interesting to explore what kind of dynamical phenomena
could arise in these models.

Here we will focus solely on the properties of gauge theories in five dimensions. A
unique feature of these gauge theories is that they carry a U(1)(0)

I conserved current asso-
ciated to Yang-Mills instanton configurations, which in five-dimensional spacetime appear
as particles.1 These particles carry a charge QI (the instanton number) and are created
by acting with instanton operators on the vacuum. More abstractly, instanton operators
can be thought of as disorder operators (similarly to ’t Hooft lines in 4d gauge theories)
obtained by imposing boundary conditions on the gauge fields at the insertion point [1, 2].
These are completely analogous to the more familiar example of monopole operators in
three-dimensional gauge theories [3, 4].

Five-dimensional Yang-Mills theory with G = SU(N) also possesses a generalized one-
form global symmetry Z(1)

N , associated to the center of the gauge group, whose effects can be
studied in detail by activating a corresponding nontrivial background two-form ZN gauge
field B [5, 6]. The effect of B is to implement the ’t Hooft twisted boundary conditions [7],
showing that we are considering a bundle whose structure group is not simply connected. In
this case, the instanton number QI can be fractional and the U(1)(0)

I symmetry is destroyed.

1Throughout, we use a superscript (q) in parentheses to indicate a q-form symmetry group.
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In this note, we describe how the U(1)(0)
I global symmetry and the Z(1)

N generalized one-
form global symmetry participate in a mixed ’t Hooft anomaly. In fact, under a background
large gauge transformation for the U(1)(0)

I symmetry, the partition function picks up an
additional nontrivial phase factor depending on B. More precisely, the fractional part
of the instanton number is measured by a cohomological class constructed from the ZN
background field. Such transformation law means that the partition function of the theory
is not a complex number but rather a section of a line bundle, which is the signal of an
anomaly. Our analysis will be close in spirit to the work [8] which has studied the same
anomaly in the three-dimensional Abelian Higgs model.2

Anomalies in d dimensions are often described in terms of an inflow mechanism from
(d+1)-dimensional classical local functionals, the so-called anomaly theories, of background
fields. Anomaly theories have a gauge invariant action on closed manifolds, whereas on a
space with boundary their variation under a background gauge transformation cancels the
anomaly of the original theory.3

Since ’t Hooft anomalies must match along any RG flow [15], their presence is very
useful to put constraints on the phases of the theory. Whilst this has been used extensively
in four and lower dimensions, the same argument also applies to field theories in higher
dimensions (see for instance an early application in six dimensions in [16]).

Let us now briefly summarize our findings in the case of 5d SU(N) Yang-Mills the-
ory which, in this context, we always view as an IR effective theory regulated by a UV
cutoff Λ5. We first analyze the behavior of the theory upon reducing on a circle — or
equivalently at finite temperature. An important phenomenon that takes place here is that
the mixed anomaly between U(1)(0)

I and Z(1)
N persists at finite temperature indicating that

the theory should be in an ordered phase for any value of the temperature. This special
behavior is due to the presence of higher-form symmetries, as first emphasized in [17]. We
consider some qualitative features of the small and large temperature limit and find that a
consistent candidate phase at small temperature implies that the higher form Z(1)

N should
be spontaneously broken. However, without additional knowledge of the UV behavior and
symmetries realized by the dynamics of the theory it is difficult to exclude other candi-
date phases involving spontaneous breaking of U(1)(0)

I or more exotic possibilities such as
symmetry-preserving non-trivial RG fixed points.

Supersymmetry gives us further insight about the symmetries that should be realized
at high energies. Indeed, it was suggested in [18–20] that certain 5d SUSY gauge theories
have a non-trivial supersymmetric RG fixed point. If we flow out of the RG fixed point
by activating a supersymmetric mass deformation, the low-energy effective theory is a
weakly-coupled 5d gauge theory to which our analysis can be applied. For this reason,
we extend our results to discuss candidate supersymmetric phases saturating the mixed
anomaly between U(1)(0)

I and Z(1)
N . For gauge theories with fundamental matter and global

2See also [9] for a recent application in ABJM-type theories. A recent paper [10] has focused on the
interplay between U(1)(1)

I and Z(1)
N for six-dimensional gauge theories, with an interest towards (1, 0) SCFTs.

The U(1)(1)
I symmetry is always gauged in this case, leading to further constraints on the analysis of ’t

Hooft anomaly matching in 6d SCFTs [11, 12].
3They are (d+ 1)-dimensional invertible field theories, as defined in [13, 14].
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flavor group G(0)
F , which do not have a one-form symmetry Z(1)

N , we show that there still
is a finite-order mixed anomaly (i.e. its coefficient only takes a finite number of values)
involving the instanton symmetry U(1)(0)

I and G(0)
F .

In the case of pure SU(2) SYM theory, we find that the simplest possibility among
the candidate supersymmetric phases is that the UV the theory is in a gapless deconfined
phase which preserves the U(1)(0)

I symmetry and spontaneously breaks the Z(1)
N symmetry.

Such phase is perfectly consistent with the proposed UV fixed point for this theory, known
as E1, characterized by global symmetry enhancement to SU(2)(0)

I .

The mixed anomaly we describe is also compatible with a gapless deconfined phase
which preserves both U(1)(0)

I and Z(1)
N . If such phase is realized dynamically, we can further

ask if it is possible to express the anomaly in terms of UV symmetries. Interestingly,
it turns out that this last requirement is only mathematically compatible with SO(3)(0)

I

UV symmetry enhancement of the low-energy U(1)(0)
I instanton symmetry. It would be

interesting to further analyze this phase by computing protected observables that can probe
the topology of the enhanced global symmetry group.

For theories with matter in the fundamental representation a richer picture is available
and we also discuss a candidate phase characterized by spontaneous breaking of the U(1)(0)

I

symmetry.

The mixed anomaly we present here should also be useful for the study of dynamical
interfaces, which we leave for future work. Namely, we can vary the profile of a background
field for the U(1)(0)

I symmetry along one of the spacetime dimensions and use the anomaly
to put constraints on the resulting worldvolume dynamics. For supersymmetric theories,
it would be nice to make contact with the analysis of [21].

The paper is organized as follows. In section 2, we focus on SU(N) Yang-Mills theory,
showing that there is a mixed ’t Hooft anomaly between the U(1)(0)

I symmetry and Z(1)
N . We

also show that Z(1)
N can be explicitly broken to Z(1)

gcd(N,k) by introducing a level-k 5d Chern-
Simons term. We study the finite temperature behavior of the five-dimensional theory in
some limits and present more general implications of the anomaly for its dynamics. We
also describe the relation with the anomaly of four-dimensional Yang-Mills at θ = π found
in [17]. In section 3, we comment on how to extend the mixed anomaly to supersymmetric
theories. In pure SYM, we still have the same mixed anomaly between U(1)(0)

I and the
center symmetry, since the fields that have to be added to pure Yang-Mills transform in
the adjoint representation of the gauge group and thus do not break the center symmetry.
This is not the case if we add hypermultiplets transforming in arbitrary representations
of the gauge group. However, we argue that it is still possible to have a mixed ’t Hooft
anomaly between U(1)(0)

I and the flavor symmetry, and we show in detail its presence in
the case of SU(2) gauge theory with Nf hypermultiplets in the fundamental, with flavor
symmetry Spin(2Nf ). We conclude by presenting some remarks on the implications of
the anomaly for the UV fixed point. The results presented in appendix A do not rely on
supersymmetry and give a general description of how to compute the mixed anomaly in
presence of fundamental matter.
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2 Yang-Mills theory in five dimensions

2.1 Global symmetries and background fields

Consider the Lagrangian of five-dimensional pure Yang-Mills theory with gauge group
SU(N) on a Euclidean spacetimeM5

LYM = 1
g2

5
TrF ∧ ?F . (2.1)

The theory has an ordinary U(1)(0)
I global symmetry whose conserved current is given by

JI = 1
8π2 ? TrF ∧ F . (2.2)

The corresponding charge is given by an integral

QI(Σ4) =
∫

Σ4
?JI = 1

8π2

∫
Σ4

TrF ∧ F ∈ Z , (2.3)

where Σ4 is a codimension 1 surface. Thus, the state charged under the symmetry is
a solitonic configuration which is the uplift of four-dimensional Yang-Mills instantons,
and which in the vacuum of the five-dimensional gauge theory appears as an instantonic
particle.4 The U(1)(0)

I symmetry is often referred to as instanton symmetry because of the
nature of the charged operators. In addition, the theory has a one-form global symmetry
Z(1)
N associated to the center of the gauge group [6]. The one-form symmetry acts on

fundamental Wilson loops WF as: WF → e
2πi
N WF .

These two symmetries will play a very important role in this paper. In order to keep
track of the U(1)(0)

I symmetry, we introduce a background gauge field denoted by A which
couples to JI as

δL = iA ∧ ?JI . (2.4)

Suppose that M5 is such that we can perform a large gauge transformation for the
U(1)(0)

I background gauge field: A → A + λ(1) with λ(1) being a closed but non-exact
one-form. By construction, λ(1) has winding 2π` ∈ 2πZ around the non-trivial one-cycle,
and there exists a non-trivial four-cycle Σ4 by Poincaré duality (for concreteness, one could
considerM5 = S1 × Σ4). As a function of the background field A, the partition function
is subject to the transformation law

Z[A]→ Z[A] exp (2πi`QI(Σ4)) . (2.5)

Clearly, since ` and QI(Σ4) are integers, both the partition function and effective action
are invariant under large gauge transformations. In the following we will restrict to M5
being spin, as we are interested in the possibility of adding spinor fields.

We then activate a background ZN gauge field for the center symmetry, and denote it
by B ∈ H2(M5,ZN ). One way to think about this operation is that we are including in

4By construction, we are considering SU(N) gauge bundles E , so JI = − ? c2(E) where c2 refers to the
second Chern class of E , and QI is integer since c2 ∈ H4(BSU(N),Z) is an integral class.
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the path integral PSU(N) bundles E that are not SU(N) bundles [5, 22, 23], i.e. there is
a non-trivial Brauer class w ∈ H2(BPSU(N),ZN ), and we are setting B = w.5 However,
crucially, PSU(N) bundles do not necessarily have integer instanton number, since ?JI
is not anymore an integral class. Indeed, the integral (2.3) computed using the PSU(N)
curvature form gives QI(Σ4) ∈ 1

NZ.6

For even N , the fractional part of QI(Σ4) can be completely expressed in terms of the
background field B ∫

Σ4

( 1
8π2 TrF ∧ F + 1

2N P(B)
)
∈ Z , (2.6)

where P(B) ∈ H4(M5,Z2N ) is the Pontryagin square whose reduction modulo N is B∪B.7

We thus deduce that when the minimal coupling (2.4) is present, a large gauge trans-
formation for the U(1)(0)

I background field induces a non-trivial change of the partition
function

Z[A,B]→ Z[A,B] exp
(
−2πi

2N `

∫
Σ4
P(B)

)
. (2.7)

The partition function, as a function of the background gauge fields, is no longer invari-
ant under the global U(1)(0)

I . Such non-invariance is due to the presence of the background
field B which implements ’t Hooft twisted boundary conditions and as such modifies the
instanton number quantization. Since there is no additional five-dimensional counterterm
that can be added to cancel the variation (2.7), this implies that five-dimensional pure
Yang-Mills theory has a mixed ’t Hooft anomaly between U(1)(0)

I and Z(1)
N .

The mixed ’t Hooft anomaly can only be cancelled by a six-dimensional anomaly theory.
In our case, the relevant partition function reads

A6[A,B] = exp
(2πi

2N

∫
Y6

dA
2π P(B)

)
. (2.8)

Whilst this is well-defined on a closed space, if instead ∂Y6 = M5, its gauge variation
cancels the anomalous variation (2.7) via inflow, so that the coupled theory Z[A,B]A6[A,B]
is anomaly-free.

In this note, we study what constraints are imposed on the dynamics of five-dimensional
Yang-Mills theory as a result of the mixed ’t Hooft anomaly (2.8).

Note that the arguments in this section can be easily extended to gauge groups that
are not SU(N) using the results of [25]. For instance, Sp(N) Yang-Mills theory has a Z(1)

2
center symmetry for which we can turn on a background gauge field B ∈ H2(M5,Z2) that
is identified with the obstruction to lifting an Sp(N)/Z2 bundle to an Sp(N) bundle.8 As

5A PSU(N) bundle may have an obstruction to lifting it to an SU(N) bundle. Many physics papers on
discrete anomalies have been referring to w as second Stiefel-Whitney class of E . However, this mathematical
terminology is typically adopted only for SO(N) bundles. The Stiefel-Whitney class for an SO(3) bundle
corresponds to the Brauer class for a PSU(2) bundle.

6On a non-spin manifold Σ4, we would have QI(Σ4) = k′/2N mod 1 (for a generic group, this would
involve the dual Coxeter number) [24–26].

7For odd N , we write P(B) meaning B ∪ B ∈ H4(M5,ZN ), with a common abuse of notation.
8We also recall that in five dimensions there is an additional discrete term that identifies the bundles

that we sum over [19]. The discrete term is associated to π4(G), which is trivial for any simply connected
compact Lie group apart from Sp(N), for which we have π4(Sp(N)) ∼= Z2. Such Z2 is not a symmetry but
rather a choice of Sp(N) Yang-Mills theory.
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in the SU(N) case, the instanton number (2.3) may be non-integer — on spin manifolds,
for odd N — and this in turn implies that under a large gauge transformation for U(1)(0)

I

the partition function picks up the factor

Z[A,B]→ Z[A,B] exp
(2πiN

4 `

∫
Σ4
P(B)

)
. (2.9)

In this case, we notice that this is trivial for even N , since the integral of the Pontryagin
square would be even on a spin manifold. Finally, it is interesting to ask what happens to
the mixed anomaly once we take into account the effect of explicitly breaking the symmetry
U(1)(0)

I . Consider summing over instanton configurations with charges multiple of m and
thus explicitly breaking U(1)(0)

I down to Z(0)
m . We can again activate a background gauge

field Am for Z(0)
m which is related to the U(1)(0)

I background gauge field by [8]

exp
(

2πi 1
m

∫
Am

)
= exp

(
i
∫
A
)
. (2.10)

When N is even, the anomalous variation of the partition function is given by9

Z[Am,B]→ Z[Am,B] exp
(
−2πi

2N `

∫
Σ4
P(B)

)
, (2.11)

which could be cancelled by a five-dimensional counterterm of the form

2πi p2N

∫
AmP(B) . (2.12)

The presence of such counterterm modifies the anomalous variation (2.11):

Z[Am,B]→ Z[Am,B] exp
(
−2πi` mp− 1

2N

∫
Σ4
P(B)

)
, (2.13)

which is nontrivial if and only if gcd(N,m) 6= 1. We thus conclude that the mixed
anomaly (2.7) is robust under explicit symmetry breaking of U(1)(0)

I preserving a Z(0)
m .

This phenomenon is particularly interesting if we are interested in regulating the short dis-
tance physics by placing the theory on a lattice which often induces such explicit symmetry
breaking effects.

2.2 Chern-Simons terms

The Lagrangian (2.1) admits a level-k five-dimensional Chern-Simons term given by

LCS = − ik
24π2 Tr

(
A ∧ F ∧ F + i

2A ∧A ∧A ∧ F −
1
10A ∧A ∧A ∧A ∧A

)
, (2.14)

where k ∈ Z. This is proportional to the totally symmetric tensor denoted by dabc ≡
1
2 Tr ta{tb, tc}, with ta’s being the gauge algebra generators. Since we are studying a SU(N)
theory, dabc is only non-vanishing for N ≥ 3.

The presence of a Chern-Simons interaction modifies the one-form symmetry of the
original theory. This phenomenon has been recently studied also in [27–29] with different

9It can be easily shown that similar conclusions will hold true also for odd values of N .
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techniques. Let us introduce a single adjoint scalar field to Higgs the SU(N) gauge group.
At low energy, the theory has a U(1)N−1 gauge group whose fields ai are given in terms of
the following decomposition

A =
N−1∑
i=1

aiTi , (2.15)

where Ti’s are Cartan generators of SU(N). As emphasized in [30], adjoint Higgsing of
pure Yang-Mills theory gives rise to a spontaneously broken

(
U(1)(1))N−1 ×

(
U(1)(2))N−1

symmetry. This symmetry is only accidental, as the UV one-form symmetry is still Z(1)
N

which acts on low energy gauge fields shifting them by a flat ZN connection ε

aj → aj + 2πj
N

ε . (2.16)

Let us now analyze how the Chern-Simons term in the UV Lagrangian (2.1) modifies
this argument. Whenever the above transformation is applied to (2.14), there are mixed
terms of the form

LCS → LCS − 2πi
∑
q,r

kqr
24π2N

ε ∧ daq ∧ dar + . . . . (2.17)

Thus, the UV Z(1)
N symmetry cannot be fully preserved without spoiling the quantization

condition of k in the Chern-Simons Lagrangian. This implies that five-dimensional SU(N)k
theories have a discrete one-form symmetry given by Z(1)

gcd(N,k). Upon Higgsing, the gauge
fields now transform as

aj → aj + 2πj
gcd (N, k)ε , (2.18)

in such a way that the low-energy Lagrangian is well-defined.

2.3 Finite temperature analysis

The mixed ’t Hooft anomaly (2.7) has an interesting connection to four-dimensional physics.
To see this, we study the five-dimensional theory on a circle of radius β by looking at the
backgroundM5 =M4×S1

β . This is equivalent to considering five-dimensional Yang-Mills
theory at a finite temperature T = 1

β . In this section, we will perform two different re-
ductions of pure SU(N) Yang-Mills theory. We will first perform a dimensional reduction
on the circle, corresponding to the standard thermal ensemble. Then, we will also intro-
duce a chemical potential µ for the instanton symmetry U(1)(0)

I and look at the ensemble
e−βH−µQI .

Consider first the effects of the dimensional reduction using the Kaluza-Klein ansatz.
The effective theory on a circle has a compact adjoint scalar Φ which comes from the
component of the dynamical gauge field along S1

β . Moreover, we decompose the U(1)(0)
I

background gauge field A as
A = Ãi dxi + a

2πβ dψ , (2.19)

where xi are local coordinates onM4, ψ ∼ ψ + 2πβ is the coordinate along S1
β and a is a

compact scalar field onM4. From the above, it follows that (2.4) becomes
i

8π2

∫
a TrF ∧ F + iβ

2π

∫
Ã ∧ Tr(F ∧ DΦ) . (2.20)
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The first term is an axion coupling, and the periodicity of a can be informally related to
the presence of a “(−1)-form symmetry” which we denote here by U(1)(−1)

I . Note that
U(1)(−1)

I is not a real global symmetry of the system as its corresponding charge operator
does not have a well-defined action on the Hilbert space [30]. However, as we shall see
below, it is important that a can be thought of as a classical background field for U(1)(−1)

I

with a well defined field strength.
The second term in (2.20) accounts for the possibility of magnetic monopole config-

urations in the effective theory. The topological charge of these objects is measured by
integrating the time component of TrF ∧DΦ. This gives a non-trivial answer since Φ has
a non-trivial winding due to the reduction from five dimensions.

When we reduce the five-dimensional theory on a circle, we get a four-dimensional
effective theory which is valid at distances much larger than the radius β. In particular,
the symmetries of the five-dimensional theory descend to four dimensions, and the resulting
effective theory is characterized by the following symmetry group

Geff = U(1)(−1)
I × Z(0)

N × Z(1)
N . (2.21)

Here we use U(1)(−1)
I simply to denote the transformation property of the axion a. We

can think about U(1)(−1)
I in the effective theory as a special example of non decoupling

due to the reduction of the U(1)(0)
I symmetry in five dimensions, that is, the invariance of

the partition function under a background U(1)(0)
I gauge transformation in five-dimensions

gives rise to a compact scalar field a in the effective theory. In addition to the Z(1)
N symme-

try, the effective theory has a discrete zero-form symmetry Z(0)
N , which we can think of as

coming from the dimensional reduction of the background 2-form gauge field B introduced
in section 2.1. In thermal physics the order parameter for Z(0)

N is a Polyakov loop.
Contrary to the case of anomalies involving ordinary global symmetries, a mixed

anomaly involving a higher-form symmetry persists at finite temperature. By this we
mean that anomalies involving higher-form background gauge fields remain non-trivial
upon circle reduction. Indeed, consider the dimensional reduction of the anomaly (2.8)

A5[a,B, C] = exp
(2πi
N

∫
Y5

da
2π C B

)
, (2.22)

where ∂Y5 =M4 and C is a background gauge field for the Z(0)
N symmetry. All the elements

of Geff participate in a mixed ’t Hooft anomaly. The above anomaly implies that in the
effective theory all the symmetries (2.21) cannot be simultaneously unbroken in a trivially
gapped vacuum.

We can now see how this anomaly affects the finite temperature behavior of the model.
Because of the lack of renormalizability, we shall always assume that the five-dimensional
theory is regulated by a UV cutoff scale Λ5. In addition to the cutoff scale, we also
have a scale O(β−1) associated to the massive Kaluza-Klein modes. It is useful to use
SU(N) gauge freedom to diagonalize Φ. For example, when N = 2, it is common to take

– 8 –
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Φ = φ5(x)σ3 and restrict the discussion to the compact scalar field φ5(x).10 This field gets
a mass contribution from one-loop effects given by m2

5 ∼ g2
5 β
−3 (see, for example, [31] for

a review of thermal field theory).
In the small-β/high-temperature limit, we can integrate out the adjoint scalar and

obtain an effective Lagrangian which is that of pure four-dimensional SU(N) Yang-Mills.
At low energies, it is expected that the effective four-dimensional theory confines, so we
also expect the one-form Z(1)

N symmetry to be preserved, whereas we argue that, in the
high-temperature limit, Z(0)

N should be spontaneously broken. This can be checked by
looking at the finite temperature one-loop effective potential for the adjoint scalar which
has distinct minima signaling spontaneous breaking.

We thus propose that in the high-temperature limit, the vacuum of the four-dimensional
effective theory is fully consistent with the anomaly (2.22) when

U(1)(−1)
I × Z(0)

N × Z(1)
N

small-β X broken X
(2.23)

In the large-β limit, it is no longer legitimate to integrate out the adjoint scalar.
There is a range of values for β in which we can still retain a four-dimensional effective
description whose Lagrangian is that of pure Yang-Mills with an adjoint scalar. However,
as we increase β the details of the five-dimensional theory cannot be ignored and we should
instead consider an effective five-dimensional theory on a circle. We can again resort to
the anomaly (2.22) to propose which symmetries should be preserved by the vacuum at
low temperature

U(1)(−1)
I × Z(0)

N × Z(1)
N

large-β : X X broken
(2.24)

As we decrease the temperature, the distinct vacua of the effective potential for φ5 merge
into each other, thus we expect Z(0)

N symmetry restoration. We do not expect the five-
dimensional theory on a circle to have confining behavior, which would be instead related
to a fully gapped phase realizing Z(1)

N . One way in which the resulting vacuum is consistent
with the anomaly (2.22) is that Z(1)

N is spontaneously broken.
In our qualitative analysis of Yang-Mills theory at finite temperature, we assumed

that there is no spontaneous breaking of global symmetries at zero temperature. However,
10When N > 2, we could also add a five-dimensional Chern-Simons coupling to the original action, whose

dimensional reduction gives

− ik
24π2

∫
M4×S1

β

CS5(A) = − iβk
4π

∫
M4

Tr ΦF4 ∧ F4 .

Since Φ is diagonal, acting with Z(0)
N on its compact scalar eigenvalues gives rise to a non-invariant term

− ik
4πN

∫
M4

TrF4 ∧ F4 ∈ −
2πik
N

Z .

This in turn implies that the correct zero-form symmetry in the reduced theory is Z(0)
gcd(N,k), confirming the

five-dimensional analysis of section 2.2.
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there can be different dynamical scenarios all consistent with the mixed anomaly where
such possibility cannot be excluded. These will be discussed in section 2.4.

Consider now a different reduction where we fix the integral of the background gauge
field along the circle to be a constant ∫

S1
β

A = µ , (2.25)

that is, we introduce a chemical potential for the instanton symmetry U(1)(0)
I . Note that

the chemical potential µ is subject to the identification

µ ' µ+ 2π . (2.26)

In this case, as we consider β → 0, the coupling (2.4) is reduced to a four-dimensional θ
term

iµ
8π2

∫
Σ4

Tr(F ∧ F ) , (2.27)

with angle θ4d = µ. As emphasized in [8], this confirms that the five-dimensional mixed
anomaly between U(1)(0)

I and Z(1)
N found in (2.7) has to exist because it is the uplift of the

anomaly discussed in [17].
An interesting consequence of the dimensional reduction with a fixed chemical potential

for the U(1)(0)
I is that the five-dimensional anomaly is again persistent for any value of

the radius circle β. From this analysis, we immediately see that pure five-dimensional
SU(N) Yang-Mills theory at finite temperature is always in an ordered phase. Thus, we
can analytically confirm and extend certain results regarding the phase diagram of finite
temperature Yang-Mills theory obtained in lattice field theory. An early exploration of
SU(2) Yang-Mills theory on the lattice was carried out in [32]. More recently, the authors
of [33] have proposed that SU(2) Yang-Mills theory on a circle should be in a certain
spontaneously broken phase, which they called “dimensionally reduced”, for any value of
the compactification circle radius. The behavior suggested by lattice analysis matches the
predictions made in this section. Moreover, using the anomaly argument, we can also
immediately predict that this will also hold true for N > 2 where lattice results are not
yet conclusive.

2.4 Dynamical scenarios

A hallmark of ’t Hooft anomalies is that they must match along any RG flow. Often, this
gives rise to useful non-perturbative constraints on the dynamics of a given quantum field
theory. In this section we explore what the mixed U(1)(0)

I × Z(1)
N anomaly (2.8) implies

for pure five-dimensional Yang-Mills theory. Since Yang-Mills theory in d > 4 is a non
renormalizable field theory, we will always assume that a UV cutoff Λ5 is present.11 The
basic idea is that the mixed ’t Hooft anomaly will only give useful constraints about the

11In this section we will restrict our attention to theories without supersymmetry. Certain supersymmetric
5d Yang-Mills theories are expected to be UV completed by a superconformal fixed point. In these examples,
the assumption about Λ5 can thus be relaxed. We will further discuss supersymmetric theories in section 3.
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UV behavior of the theory up to energies E . Λ5. Conversely, if we consider an RG flow
described by the five-dimensional Yang-Mills Lagrangian, the anomaly must be matched
independently of what kind of endpoint such flow might have.

We now discuss a list of candidate phases, all compatible with the anomaly (2.8), that
can be realized dynamically by the UV theory. The mixed anomaly enforces that none of
these is compatible with a unique trivially gapped vacuum.12

1.) Spontaneous breaking of Z(1)
N

The first option that we consider is that the UV theory saturates the anomaly by
spontaneously breaking the one-form symmetry Z(1)

N . The theory is thus both gapless
and deconfined. As discussed in the previous section, this scenario is also consistent
with anomaly matching at small temperature. We expect that this will be the candi-
date phase realized by the dynamics. Note that the anomaly could also be consistent
with a non-trivial U(1)(0)

I -preserving, gapless CFT. It is not at all clear if such con-
formal field theory exists. So far, the search for interacting conformal fixed points in
five spacetime dimensions has not been very successful. As noticed in [34], Yang-Mills
theory has a UV fixed point in d = 4 + ε but it is not obvious that such fixed point
would survive for ε = 1.

2.) Spontaneous breaking of U(1)(0)
I

We could also consider the possibility that the one-form symmetry Z(1)
N is preserved

while the global U(1)(0)
I symmetry is spontaneously broken. In this case, there would

be a corresponding compact Nambu-Goldstone boson χ transforming as χ→ χ+λ(0)

under a U(1)(0)
I gauge transformation. However, this is not possible as long as the

5d gauge theory description is valid. Indeed, in order for U(1)(0)
I to be spontaneously

broken the instantonic particles, whose mass is proportional to g−2
5 , should become

massless and this is never possible at weak coupling.

3.) Gapless phase preserving both Z(1)
N and U(1)(0)

I

As a third option, we could have a hypothetical gapless CFT which preserves both
symmetries Z(1)

N and U(1)(0)
I . For interacting CFTs, the comments in 1.) still apply.

4.) Gapped degrees of freedom

The anomaly is of finite order, so the Coleman-Grossman theorem [35] does not apply.
Therefore, this is also compatible with a non-trivially gapped topological phase i.e.
a topological quantum field theory (TQFT). In the UV, such phase can only be
realized together with other local massless degrees of freedom. These could be thought
of as gapped and deconfined phases described by a non-trivial five-dimensional ZN
TQFT.13

12If all the global symmetries that we observe in the IR theory are accidental, anomaly matching will not
lead to useful constraints. For the purpose of this section we assume that this is not the case.

13Here we are considering a mixed anomaly between a continuous and a finite group. For anomalies
involving finite groups, a number of studies exist on the resulting dynamical constraints, including [36–41].
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3 Comments on supersymmetric theories

3.1 Pure super-Yang-Mills theory

Pure Yang-Mills theory in five dimensions can be easily embedded into N = 1 (pure) super-
Yang-Mills. In addition to Poincaré symmetry, the theory has an SU(2)(0)

R R-symmetry
acting on the supercharges. Furthermore, since the conservation of the instanton cur-
rent (2.2) only depends on the Bianchi identity, SYM also enjoys the U(1)(0)

I symmetry.
The Lagrangian on R5 is given by

LYM = 1
g2

5
Tr
(1

2FµνF
µν +DµφDµφ+ iλγµDµλ−DiDi − iλ[φ, λ]

)
. (3.1)

The field content above is that of a five-dimensional vector multiplet: the gauge field Aµ,
a real scalar φ, two symplectic Majorana spinors λi transforming as a doublet of SU(2)(0)

R ,
and three auxiliary real scalar fields Di in the vector representation of SU(2)(0)

R .14 All fields
transform in the adjoint representation of the gauge group, so we retain the Z(1)

N symmetry.
Therefore, the mixed ’t Hooft anomaly U(1)(0)

I × Z(1)
N derived in (2.8) still holds (and the

same is true of the generalization to other gauge groups). Also note that it is possible to
add five-dimensional Chern-Simons terms, as in the SU(N)k case considered in section 2.2.
In that case, we still have a Z(1)

gcd(N,k) symmetry, as confirmed in [27–29, 46].
Matter is organized in hypermultiplets, each containing a pair of dynamical complex

scalars and a dynamical symplectic Majorana spinor. A system of Nf hypermultiplets
transforms under the symmetry group Sp(Nf ), which is also used to impose the reality
condition on the component fields, and the coupling to the vector multiplet consists in
gauging a subgroup of Sp(Nf ). Adding matter in a generic representation may break the
one-form center symmetry but it introduces zero-form flavor symmetry.

All five-dimensional N = 1 gauge theories have interesting (real) moduli space of vacua
parametrized by the vev 〈φ〉 of the vector multiplet scalar. These are called Coulomb
branches. In the following, we will only consider the case of gauge group SU(2) and Nf

hypermultiplets transforming in the fundamental representation, so the Coulomb branch
will be one-dimensional. Letting 〈φ〉 > 0, the theory is in a Coulomb phase, and the
gauge group is broken to U(1). The low-energy effective theory is described by a prepoten-
tial, which determines the effective gauge coupling (corresponding to the Coulomb branch
metric) as a piecewise linear function of the modulus φ:

1
g2

eff
= 1
g2

5
+ 8φ− 1

2

Nf∑
i=1

(|φ+mi|+ |φ−mi|) . (3.2)

14In flat spacetime we can assume that λ ≡ λ†. On a general curved background, the adjoint operation
needs to be defined with more care. Note that instanton operators should be properly analyzed by placing
the five-dimensional theory on a S1 × S4 background. A supersymmetric Lagrangian on S1 × S4 has been
proposed in [42, 43] (see also [44, 45]). It is currently not known how to obtain supersymmetric instanton
operators on such background except for the point-like (singular) limit.
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For the above expression to make sense physically, g−2
eff has to be non-negative. Let us now

analyze the limit of massless quarks where
1
g2

eff
= 1
g2

5
+ (8−Nf )φ . (3.3)

For Nf > 8 there is a point in the moduli space where g−2
eff would vanish, corresponding to

a singularity of the effective theory description. These theories are thus non-renormalizable
and require g−2

5 6= 0 as a UV cutoff. The case of Nf = 8 is rather peculiar since g−2
eff = g−2

5 .
As a result, it is impossible to take the strong coupling limit g−2

5 → 0 without having
the effective coupling degenerate. Finally, for Nf ≤ 7, g−2

eff is positive. Here, the strong
coupling limit g−2

5 → 0 does not lead to any singular behavior. This strikingly suggests
that, at the origin of the Coulomb branch φ = 0, there is a non-trivial five-dimensional
scale-invariant field theory [18].

Whilst the global symmetry algebra of the low-energy gauge theory is u(1)I⊕so(2Nf )⊕
su(2)R, the global symmetry of the UV completion originally found in [18–20] is enhanced
to ENf+1 ⊕ su(2)R.15 Therefore, it is common to use the name ENf+1 to refer to the fixed
point from which we flow to the SU(2) gauge theory with Nf fundamental hypermultiplets.
This global symmetry enhancement was originally suggested appealing to string-theoretic
reasoning, but has since been verified in numerous examples using a variety of methods
(see e.g. [2, 21, 43, 47–57]). It is clear that the way in which five-dimensional gauge theories
can be UV completed may not be unique and we make no such claims in this regard.16

Arguably the simplest example is that of pure SYM with gauge group SU(2) ∼= Sp(1)
and vanishing discrete θ angle (see footnote 8), for which the UV completion, called E1, has
global symmetry algebra su(2)I ⊕ su(2)R. In particular, the U(1)(0)

I instanton symmetry
of the gauge theory is enhanced to (potentially a subgroup of) SU(2)(0)

I . In the effective
description as SU(2) SYM (3.1), there is a mixed anomaly (2.8) between the instanton
symmetry U(1)(0)

I and the center symmetry Z(1)
2 , and its anomaly matching is compatible

with the following options.

1.) Spontaneous breaking of Z(1)
2

One possibility is that pure SU(2) SYM exhibits spontaneous symmetry breaking
of Z(1)

2 and it is described, at high energies, by a gapless deconfined phase. This
is perfectly consistent with E1 being the candidate UV fixed point. It is also the
natural expectation we could have by looking at the deep IR, where the theory is free
and Z(1)

2 is spontaneously broken. It is possible to show that this phase saturates the
anomaly by shifting the Abelian gauge field in a way analogous to (2.16).

2.) Gapless phase preserving both Z(1)
2 and U(1)(0)

I

The mixed ’t Hooft anomaly (2.8) is also consistent with a non-trivial SCFT which
preserves all the global symmetries. If this is the case, the UV global symmetry group

15Here, E1 ≡ su(2), E2 ≡ su(2) ⊕ u(1), E3 ≡ su(2) ⊕ su(3), E4 ∼= su(5), E5 ∼= so(10), and E6, E7, E8 are
the exceptional Lie algebras.

16Moreover, a criterion to decide whether five-dimensional supersymmetric gauge theories admit a UV
completion as a SCFT is not yet available (see e.g. [58]).
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should at least contain
GUV ⊇ U(1)(0)

I × Z(1)
2 . (3.4)

If we assume that the anomaly (2.8) has to be matched by a UV expression, it is
interesting to ask whether this might be compatible with global symmetry enhance-
ment. We argue that, in this case, at the UV fixed point U(1)(0)

I enhances to SO(3)(0)
I

rather than SU(2)(0)
I . The UV anomaly can be written as

A6[A,B] = exp
(2πi

4

∫
Y6
w2(A)P(B)

)
(3.5)

where w2(A) is the second Stiefel-Whitney class of a SO(3) bundle. Under the sym-
metry breaking pattern SO(3)→ SO(2) we can write

w2 = c1 mod 2 , (3.6)

and thus match the IR anomaly expression (2.8). The above matching argument is
only compatible with enhancement of the global symmetry group to SO(3)(0)

I rather
than SU(2)(0)

I . This happens simply because there is no degree-two characteristic
class for an SU(2) bundle. Such scenario is compatible with known results. Recall
that the five-dimensional superconformal index detects which representations of the
global symmetry the states should transform in. Upon direct inspection of the first
few orders in the expansion of the index [42, 43], we notice that the states transform in
representations of SO(3). Stronger evidence in support of this claim could be obtained
by computing supersymmetric observables that can probe the topology of the global
symmetry group as it was done for the En≥2 fixed points in [59].17 Moreover, starting
from the symmetry-preserving fixed point, it is possible to turn on a supersymmetry
breaking deformation preserving only a U(1)(0)

I × U(1)(0)
R subgroup of the enhanced

global symmetry. Since the SCFT saturates the anomaly (3.5), by anomaly matching
so should the fixed point of [61].

Naively, we could expect spontaneous symmetry breaking of the U(1)(0)
I instanton

symmetry to occur on the Coulomb branch of the theory, where the gauge group is broken
to U(1) and it is not possible to write JI as in (2.2). However, spontaneous breaking of
U(1)(0)

I does not occur there, even for the theories with fundamental hypermultiplets: we
can express the central charge Z of the five-dimensional supersymmetry algebra (in the
case with massless hypers) as

|Z| =
∣∣∣∣(Qe + 2(8−Nf )QI)φ+ QI

g2
5

∣∣∣∣ (3.7)

where Qe can be thought of as the electric charge in the Cartan of SU(2) and QI is (pro-
portional to) the U(1)(0)

I charge. This formula shows that the Coulomb branch description

17The same discussion holds for SU(N)|N| SYM, where again there is a mixed anomaly between U(1)(0)
I

and the center Z(1)
N , and the instanton symmetry enhances in the UV to su(2)(0)

I [60].
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contains BPS instantonic particles charged under U(1)(0)
I with any QI , which is there-

fore generically not spontaneously broken there. We will discuss another scenario where
spontaneous breaking of U(1)(0)

I takes place at the end of the next section.
We conclude this section with some further comments about spontaneous breaking of

the Z(1)
2 symmetry. We consider Sp(N) super Yang-Mills with a hypermultiplet in the rank-

2 antisymmetric representation and vanishing θ angle. The theory has an Sp(1)(0)×U(1)(0)
I

zero-form global symmetry and a Z(1)
2 one-form symmetry subject to a mixed ’t Hooft

anomaly (2.9), since adding a hypermultiplet in the rank-2 antisymmetric representation
does not break the center symmetry. The conjectured RG fixed point for this model exhibits
ordinary global symmetry enhancement to Sp(1)(0) × E(0)

1 [47] and is dual, at large N , to
the massive IIA AdS6 supergravity background of [62]. The order parameter for Z(1)

2 is
the vev of a BPS fundamental Wilson loop, which in the dual picture can be thought
of as a fundamental string with endpoints anchored at the boundary of AdS6. Both the
field theory and gravity results in [63] show that BPS Wilson loops obey a perimeter law,
indicating that Z(1)

2 is indeed spontaneously broken.

3.2 Fundamental matter

Adding matter fields in the fundamental representation of the gauge group leads to explicit
breaking of the one-form center symmetry. Nevertheless, there might still be a mixed ’t
Hooft anomaly between the U(1)I instanton symmetry and the ordinary global symmetry
acting on matter fields.18 This happens because we can introduce gauge bundles with non-
integer instanton number by compensating with the ordinary global symmetry. In four-
dimensional QCD, this is studied in the context of color-flavor center symmetry [64–74]. In
fact, a similar computation can be applied to five-dimensional Yang-Mills with fundamental
quarks, as we show in appendix A. In the following, we focus on the case of SU(2) super-
Yang-Mills theory with Nf fundamental hypermultiplets.

The zero-form global symmetry group of the theory is U(1)I×SU(2)R×Spin(2Nf ), cor-
responding, respectively, to the instanton symmetry, the R-symmetry and the flavor sym-
metry rotating the hypermultiplets. The appearance of Spin(2Nf ) rather than SO(2Nf )
cannot be seen from the Lagrangian, but can be argued for by studying the fermionic
zero-modes in an instanton background [2, 18].

However, it is important to identify which global symmetry group acts faithfully on
the theory. Note that elements in the center of Spin(2Nf ) can be identified with elements
in the center of the gauge group SU(2), so we focus on

SU(2)× Spin(2Nf )
Z2

, (3.8)

and, because of the quotient, bundles in Spin(2Nf )/Z2 may induce PSU(2) ∼= SO(3) gauge
bundles.

The center of Spin(2Nf ) is either Z4 or Z2 × Z2 depending on whether Nf is, re-
spectively, odd or even, but Spin(2Nf )/Z2 ∼= SO(2Nf ) in either cases, by definition. The

18In this section we avoid writing superscript (0) on the groups, as every symmetry is zero-form.
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obstruction to lifting a SO(r) bundle to a Spin(r) bundle is the second Stiefel-Whitney
class w2 ∈ H2(BSO(r),Z2). As discussed in section 2, we introduce a background field
B ∈ H2(M5,Z2) to keep track of the global symmetry Spin(2Nf )/Z2, and we set it equal
to the lifting obstruction w2(Ef ) for the Spin(2Nf )/Z2 bundle. On the other hand, the
quotient (3.8) relates gauge and global symmetry bundles, so we can tune

w2(E) = w2(Ef ) , (3.9)

and sum over gauge bundles in SO(3) with second Stiefel-Whitney class fixed by the back-
ground gauge field for the global symmetry. In turn, as in (2.6), the second Stiefel-Whitney
class of the gauge bundle uniquely fixes the fractional part of the instanton number. As
already seen in section 2, the presence of an instanton with fractional QI determines a non-
trivial transformation of the partition function under a large U(1)I -gauge transformation

Z[A,B]→ Z[A,B] exp
(2πi

4 `

∫
Σ4
P(B)

)
. (3.10)

Here, as before, ` is the winding number of the large gauge transformation around a one-
cycle, and Σ4 is the base of the fibration. In order to conclude that this transformation
signals a mixed anomaly between U(1)I and the global symmetry group, we should first
check that there is no local counterterm that can cancel it. For Nf ≥ 2, the only relevant
local counterterm is

exp
[
2πin

∫ A
2π ∧

( 1
8π2 TrFEf ∧ FEf

)]
, (3.11)

normalized so that n ∈ Z for a Spin(2Nf ) background. However, this can never can-
cel (3.10), as the instanton number of a SO(r) bundle with r ≥ 4 is always integer.19 There-
fore, we conclude that there is a mixed ’t Hooft anomaly between U(1)I and Spin(2Nf ) for
Nf ≥ 2, with anomaly theory

A6[A,B] = exp
(2πi

4

∫
Y6

dA
2π P(B)

)
. (3.12)

The same reasoning goes through for Nf = 1, except for the form of the counterterm (3.11),
which in that case would read c1(Ef )2, and would still not cancel the anomalous variation.

We will now briefly comment on the mixed ’t Hooft anomaly (3.12). As already men-
tioned, SU(2) SYM with Nf ≤ 7 hypermultiplets in the fundamental representation has a
UV completion to the fixed point ENf+1 with global symmetry group given by the product
of the R-symmetry SU(2)R and the simply connected group with algebra ENf+1, represent-
ing the enhancement of the IR symmetry U(1)×Spin(2Nf ).20 The presence of an interact-
ing SCFT preserving all symmetries is fully consistent with the anomaly matching. How-
ever, it is also possible that some (or all) of the global symmetries are spontaneously broken.

This does not happen on the Coulomb branch of the ENf+1 theory: from the expression
for the central charge (3.7) we see that the instanton symmetry is not spontaneously broken

19This follows from Wu’s formula on a spin four-manifold [26, section 6.1].
20The topology of the global symmetry group of the ENf+1 fixed point has been investigated in [59] using

the superconformal index decorated by “ray operators”.
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on the Coulomb branch. Nonetheless, Spin(2Nf ) can be explicitly broken to U(1)Nf by
turning on quarks masses.

On the other hand, the presence of matter allows us to consider additional moduli space
of vacua parametrized by the vevs of the scalar fields in the hypermultiplets, the so-called
Higgs branches. These are complex manifolds, more precisely, hyperKähler cones. Whilst
the Coulomb branch of the ENf+1 fixed point is the same as that of the SU(2) SYM with Nf

hypermultiplets, namely R+, the Higgs branch can instead vary dynamically. This is due
to instantons becoming massless (their mass is proportional to g−2

5 ) [18–20]. Classically,
the Higgs branch is given by the reduced moduli space of one SO(2Nf ) instanton. At
strong coupling, a string theory argument suggests that the Higgs branch is given instead
by the reduced moduli space of one ENf+1 instanton on C2. It was argued in [53] that on
the Higgs branch of the SCFT, the global symmetry ENf+1 (and its U(1)I subgroup) is
spontaneously broken due to supersymmetric states which are explicitly charged under the
instanton symmetry.

Finally, we would like to comment on an alternative method to saturate the
anomaly (2.8) in pure SYM theory. Even though there is no matter, in the SCFT there
is a protected subsector of 1/2-BPS operators that generates the coordinate ring of the
Higgs branch hyperKähler cone.21 Thus, we say that the Higgs branch geometry for the
E1 SCFT is a cone C2/Z2. From a gauge theory point of view, this is due to massless
instantons in the spectrum opening up two flat directions [53]. On this moduli space, the
full global symmetry group E1 (and its subgroup U(1)I) is spontaneously broken. Such
symmetry breaking is clearly consistent with the IR anomaly discussed in section 3.1.
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A Five dimensional Yang-Mills theories with matter

In this appendix, we add fermions to the Lagrangian (2.1) by introducing Nf massive
Dirac spinors transforming in the fundamental of the SU(N) gauge group, thus explicitly
breaking the center symmetry Z(1)

N .22 Nevertheless, as we saw in section 3, there still
21In analogy with four-dimensional N = 2 SCFTs, these can be thought of as Higgs branch operators

since 1/2-BPS operators of 5d SCFTs always have an SU(2)R quantum number.
22As in section 3.2, from now on we avoid writing the superscript (0), as all symmetries are zero-form.

– 17 –



J
H
E
P
0
4
(
2
0
2
1
)
1
8
8

is a mixed ’t Hooft anomaly between the instanton symmetry and the global symmetry.
The computation mirrors closely the analogous center-flavor symmetry anomaly in four-
dimensional QCD [68, 72, 74, 75], and we include it for completeness.

The spinor part of the Lagrangian reads

LDirac = iψ†j /Dψ
j +mψ†jψ

j , (A.1)

where ψj ∈ C4 is a Dirac spinor in five dimension and j = 1, . . . , Nf . The group acting on
the fermions is SU(N)× U(Nf ). However, within the U(1) center of U(Nf ) there is a ZN
subgroup that can be used to undo a ZN transformation in the center of the gauge group.
Therefore, the group that acts faithfully is

SU(N)×U(Nf )
ZN

, (A.2)

and, because of the quotient, a PU(Nf ) bundle for the global symmetry may induce a
PSU(N) gauge bundle.

First, we notice that in a U(Nf ) bundle with connection Ff , the u(1) part of the
connection dC = 1

Nf
TrFf is not required to have quantized fluxes: the fractional flux

can be compensated by the lifting obstruction of a PSU(Nf ) bundle Ef , the Brauer class
w ∈ H2(BPSU(N),ZNf ), so that23∫ (dC

2π −
1
Nf

w(Ef )
)
∈ Z . (A.3)

However, the quotient (A.2) means that the global symmetry of the theory acting faithfully
is U(Nf )/ZN , which we represent as the quotient of SU(Nf ) × U(1) by the equivalence
relation

SU(Nf )×U(1) 3 (g, λ) ∼ (g, e−2πi/Nλ) ∼ (e2πi/Nf g, e−2πi/Nfλ) , (A.4)

modifying (A.3) into ∫ (
N

dC
2π −

N

Nf
w(Ef )

)
∈ Z . (A.5)

From this, we may define the obstruction to lifting a U(Nf )/ZN bundle to a U(Nf )
bundle as ∫

w(N) ≡
∫ (

N
dC
2π −

N

Nf
w(Ef )

)
mod N . (A.6)

We now keep track of the global symmetry U(Nf )/ZN using a ZN background field
B ∈ H2(M5,ZN ) that we tune to be equal to the obstruction w(N). Since the quotient (A.2)
relates gauge and global symmetry, we may construct PSU(N) gauge bundles E cancelling
the cocycle obstruction using w(N). That is, we can turn on gauge bundles with fractional
instanton number provided the two obstructions are related by∫

w(E) =
∫
w(N) mod N . (A.7)

23This may be more familiar to the reader in the context of SO bundles lifted to Spinc bundles using
an additional “U(1) bundle” with fractional fluxes. Indeed, the two coincide for N = 2, since PSU(2) ∼=
SO(3) ∼= PU(2) and U(2) ∼= Spinc(3), and the Brauer class above reduces to the Stiefel-Whitney class.
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This seems to imply again the existence of an anomaly between U(1)(0)
I and the global

symmetry. The form is again (2.7)

Z[A,B]→ Z[A,B] exp
(
−2πi

2N `

∫
Σ4
P(B)

)
, (A.8)

but now B is not anymore a background gauge field for a one-form symmetry. This looks
like a finite-order mixed ’t Hooft anomaly between two global zero-form symmetries, but
a putative anomaly is such only if there is no local counterterm that can cancel it.

In order to make contact with the previous literature, let

K ≡ lcm(N,Nf ) , L ≡ gcd(N,Nf ) = NNf

K
, (A.9)

and introduce the U(1) gauge field C̃ ≡ KC, with fluxes quantized in integer multiples of
2π. Then we may write (A.7) in the equivalent way∫ dC̃

2π =
∫ (

Nf

L
w(E) + N

L
w(Ef )

)
mod K . (A.10)

The relevant local counterterms modify the partition function into

Z ′[A,B] = Z[A,B] exp
[
2πi

∫
Σ4

(
− s

2Nf
P(w(Ef )) + t

2
dC
2π ∧

dC
2π

)]
, (A.11)

with terms normalized so that s, t are integers in the case of true SU(Nf ) and U(1) bundles.
These counterterms can cancel the anomalous variation of the partition function if

exp
[
2πi

∫
Σ4

(
`N − t
2N2 P(w(N)) + sNf − t

2N2
f

P(w(A))− t

NNf
w((N)) ∪ w(A)

)]
= 1 , (A.12)

which holds iff we can find `, s, t such that

`N − t ∈ N2Z , sNf − t ∈ N2
fZ , t ∈ NNfZ . (A.13)

These conditions can only be solved if ` = 0 mod L. Therefore, they can always be solved
iff L = gcd(N,Nf ) = 1. Otherwise, there will be large gauge transformations for which
these cannot be solved, thus potentially leading to an anomaly between the U(1)I and ZN .
As a matter of fact, the counterterms can be used to show that the anomaly is only with
ZL, since we can use (A.6) to write the anomaly in (A.8) as

exp
[2πi
L
`

∫
Σ4

(
r

2−
L+Nr

2N

)
P(B)

]
= exp

[2πi
L
`

∫
Σ4

(
r

2P(B)+jw(Ef )∪B
)]

×exp
[
2πi`

∫
Σ4

(
jN

2NfL
P(w(Ef ))− jK2

dC
2π ∧

dC
2π

)]
,

(A.14)

where j, r ∈ Z such that L + Nr = jK. Thus we can choose s = jNL and t = jK (both
integers) in (A.11) and reduce the ZN anomaly to a ZL anomaly, with anomaly theory

A6[A,B] = exp
(2πi
L

∫
Y6

dA
2π ∪

(
r

2P(B) + j w(Ef )B
))

, (A.15)

which is independent of the choice of j, r satisfying the constraint L+Nr = jK.
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