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A B S T R A C T

Objective: The objective of this study was to investigate whether objectively measured sedentary time
and sleep duration are associated with changes in adiposity from mid- to late adolescence.
Methods: Students (n = 504, 42% boys) were recruited from schools in Cambridgeshire, UK. At baseline
(mean age 15.0 ± 0.3 years), sedentary time was objectively measured by ≥3 days of combined heart rate
and movement sensing. Concurrently, sleep duration was measured by combined sensing in conjunc-
tion with self-reported bed times. Fat mass index (FMI; kg/m2) was estimated at baseline and follow-up
(17.5 ± 0.3 years) by anthropometry and bioelectrical impedance. FMI change (ΔFMI) was calculated by
subtracting the baseline from follow-up values. Linear regression models adjusted for basic demograph-
ics, moderate-to-vigorous physical activity (MVPA), and depressive symptoms were used to investigate
associations of sedentary time and sleep duration (mutually adjusted for one another) with ΔFMI.
Results: FMI increased by 0.5 and 0.6 kg/m2 in boys and girls, respectively, but there was no association
between sedentary time and ΔFMI in either gender (p ≥ 0.087), and no association between sleep dura-
tion and ΔFMI in girls (p ≥ 0.61). In boys, each additional hour of baseline sleep significantly reduced the
ΔFMI by 0.13 kg/m2 (p = 0.049), but there was little evidence for this association after adjusting for MVPA
and depressive symptoms (p = 0.15).
Conclusions: Sedentary time may not determine changes in adiposity from mid- to late adolescence, nor
may sleep duration in girls. However, sleep length may be inversely associated with adiposity gain in
boys, depending on whether the relationship is confounded or mediated by MVPA and depression.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Prolonged sitting is highly prevalent in modern society [1], and
it is composed of numerous diverse behaviours many of which (eg,
seated reading, writing, and screen viewing) but not all (seated
cycling or rowing) contribute to the total time spent sedentary. There
is some evidence that a secular trend of increasing sedentary time

has coincided with continuing emergence of the obesity epidemic
[2,3], leading to the conjecture that a causal relationship may exist.
However, most aetiological investigations of sedentary time and
obesity have measured TV-viewing duration only, which is an im-
perfect and unrepresentative proxy of the total time spent sedentary
[4,5]. More studies are needed to investigate the total sedentary time,
also measured more precisely by objective instead of self-report
methods, and its association with obesity in youth, particularly as
doubts have arisen as to whether an association exists for total sed-
entary time that is independent of physical activity [6].

Like sedentary time, sleep is a state of rest that involves immo-
bile posture and low energy expenditure. However, it is further
characterised by reversible complete or partial loss of conscious-
ness and responsiveness to external stimuli. Adequate sleep is
essential for normal growth, development and functioning in youth
[7–9]. It is therefore concerning that sleep durations have de-
clined over the 20th century by >1 h/night [10]. Adolescents are
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currently failing to reach sleep targets [9], and the prevalence es-
timates for adolescent fatigue have increased since the mid-1980s
[11]. Speculatively, short sleep durations may be implicated in the
aetiology of obesity. Supporting this theory, laboratory studies in
adults have shown that restricted sleep deregulates endocrine se-
cretions, causing decreased leptin and increased ghrelin, which may
predispose to obesity through increased energy intake [12]. Phys-
ical activity, sedentary time, and depression have also been proposed
as mediating factors [13]. However, the strength of evidence di-
rectly linking sleep length to obesity in adolescence is currently
limited. The literature is dominated by cross-sectional studies, mea-
suring sleep duration with non-validated questions and utilising body
mass index (BMI) as an outcome [14,15].

The purpose of this prospective study was to incorporate ob-
jective measurements of total sedentary time and sleep duration,
to investigate whether they are independently and oppositely as-
sociated with changes in body fatness from mid- to late adolescence.

2. Subjects and methods

2.1. Study design

Participants were from schools registered in the ROOTS study,
an observational cohort study based in Cambridge, UK [16]. Schools
(n = 18) were recruited from a geographical perimeter surround-
ing the city and extending to surrounding villages. Students within
schools were eligible to take part if they were aged 14 years. At the
start of the study (wave 0), 1238 students gave written informed
consent to participate, with 1203 students (45% boys) eventually
attending for data collection. Details about basic demographics (date
of birth, gender, ethnicity and postcode to indicate socio-economic
status, SES) and pubertal development were self-reported, and
anthropometrics and body composition were also measured. Six
months later (wave 1, from here on referred to as baseline), 930 stu-
dents (43% boys) were seen for a second measurement of
anthropometry and body composition, and at this time habitual ac-
tivity monitoring was performed. Approximately 2.5 years later (wave
2, here referred to as follow-up), 844 students (44% boys) at-
tended for the third and final measurements of anthropometry and
body composition. All stages of the ROOTS project were approved
by the Cambridge Local Research Ethics Committee (reference
number 03/302) and were conducted in agreement with the Dec-
laration of Helsinki guidance.

2.2. Anthropometry and body composition

Detailed physical measurements were made by trained person-
nel at all waves using identical procedures and instrumentation.
Height was measured to the nearest 0.1 cm (Leicester Height Metre;
Invicta Plastics, Leicester, UK) whilst barefoot, and weight was mea-
sured to the nearest 0.1 kg in light clothing (Tanita TBF-300 MA,
Tanita, Tokyo, Japan) using standard procedures. BMI (kg/m2) was
calculated and body tissue impedance (Ω) was measured by bio-
impedance (Tanita TBF-300 MA). Subsequently, child-specific
equations [17] were used to derive multiple estimates of fat mass
(FM, kg) and fat-free mass (FFM, kg) by utilising the data on height,
weight, BMI, and body tissue impedance (values from equations pre-
dicting total body water were converted to FFM and FM using age-
and sex-specific data on the hydration of lean tissue [18]). All
permutations were pooled alongside body composition measured
by the Tanita TBF-300 MA to produce aggregated measures of FM
and FFM [19], which were expressed relative to height-squared (fat
mass index (FMI), kg/m2) and height raised to the power of 2.5 (fat-
free mass index (FFMI), kg/m2.5), respectively [20].

2.3. Sedentary time, sleep duration, and physical activity

Habitual activity was measured objectively by combined heart
rate and movement sensing (Actiheart, CamNtech Ltd, Papworth,
UK) at wave 1. A detailed description of the monitoring protocol can
be found elsewhere [17]. In brief, following a graded sub-maximal
step test to establish individual calibration of heart rate, the sensor
was initialised to record data every 30 s and was worn by partici-
pants without interruption for up to four consecutive days, including
a weekend. Data from participants who had worn the sensor for at
least 32 h on weekdays and 16 h on weekend days were consid-
ered useable, with a further proviso that these hours were distributed
across the 24-h period (thereby providing the equivalent of ≥3 days
and nights of activity monitoring).

Information collected during the free-living period were pre-
processed [21] and an activity intensity (J/min/kg) estimate made
by a branched equation framework [22]. Upon summarising the data,
potential bias caused by non-wear periods (segments of non-
physiological data) was minimised [23] and the resulting time-
series data were collapsed into physical activity energy expenditure
(PAEE, kJ/kg/day) and time spent in different intensity categories.
Standard metabolic equivalents of thermogenesis (METs) were used
to establish the time spent sedentary (≤1.5 METs) and in moderate-
to-vigorous physical activity (MVPA, > 4.0 METs). To assist separation
of sleep and sedentary time, participants were asked to report the
times that they usually went to bed and got up on school days and
weekend days separately, as defined in the Sleep Habits Survey for
Adolescents, which has been validated against sleep diary and
actigraphy [24]. This self-reported information was overlaid on the
habitual activity data to provide a region of interest within which
to identify objective markers of sleep onset (considered the begin-
ning of prolonged minimal movement accompanied by a decline
in heart rate) and termination (movement initiation together with
an abrupt increase in heart rate); the self-reported sleep data were
subsequently adjusted commensurate with these objective sleep in-
dicators by reviewer visual inspection [17]. A single researcher
reviewed all activity plots whilst blinded to all other participant char-
acteristics, and every occurrence of time spent ≤1.5 METs was
allocated either a sleep (=1) or awake (=0, ie, sedentary time) score
depending on whether the behaviour fell within or outside of a des-
ignated sleep phase.

2.4. Other covariates

Home postcodes were used to create an area-level SES indica-
tor that was collapsed from five original groups [25] to three
categories: low (hard-pressed and moderate means), middle (com-
fortably off), and high (urban prosperity and wealthy achievers).

Puberty status (dichotomised as pre- or post-pubertal) was de-
termined by features including self-reported menarcheal status, self-
reported Tanner stages and objective levels of salivary testosterone.
Girls who were post menarche at wave 0 were considered puber-
tal, as were pre-menarcheal girls reporting advanced signs of puberty
(pubic hair or breast development ≥3 of the Tanner scale) [26]. All
remaining girls were defined as pre-pubertal. Boys who reported
pubic hair coverage and genital development ≥4 of the Tanner scale
were classified as post-pubertal, whereas boys reporting stages ≤2
on both axes were regarded as pre-pubertal. All remaining boys were
categorised according to salivary testosterone levels, with those
whose level was ≥25th percentile of the distribution from the pu-
bertal group being labelled post-pubertal.

Students at wave 0 completed the Mood and Feelings Question-
naire (MFQ), a 33-item self-report scale eliciting information about
depressive symptoms occurring in the previous fortnight. The MFQ
has been validated as a screening tool for clinical unipolar depres-
sion in adolescents [27]; higher summed MFQ scores are indicative
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of increased risk [28]. Students rated their symptoms on a four-
point scale (never/sometimes/mostly/always) from which a summed
score was computed and used in analyses. In the ROOTS study, in-
ternal consistency of the separate items of the MFQ has been
demonstrated to be high (Cronbach’s α = 0.96).

At 18 months post wave (a stage in the ROOTS study that was
primarily used to collect adolescent psychosocial measures and is
not otherwise used in this investigation), height and weight were
measured in a subsample of participants’ mothers. These data were
used to compute maternal BMI, which was used only in sensitivi-
ty analyses due to missing data.

2.5. Statistics

All statistical analyses were conducted in Stata/SE 13.1 (StataCorp,
College Station, TX, USA). Participant characteristics at baseline were
summarised as frequencies and percentages, means with stan-
dard deviations or medians with interquartile ranges. Differences
in these characteristics between boys and girls were tested using
chi-squared (χ2) tests, independent t-tests and Wilcoxon rank sum
tests. Pearson correlation was used to explore the nature of the re-
lationships between sedentary time, sleep duration, and MVPA.
Mixed-model analysis of variance (ANOVA) was used to test for dif-
ferences between baseline and follow-up anthropometry and body
composition; the interaction between gender and wave of data col-
lection was used to investigate whether these differences were
gender specific.

This investigation constituted a complete-case analysis involv-
ing only participants with valid exposure (sedentary time and sleep
duration) information at baseline, and complete information for
covariates and adiposity data at both baseline and follow-up. The
following steps were taken to determine the representativeness of
contributing adolescents relative to the wider ROOTS cohort: (1) par-
ticipants with valid exposure data at baseline (wave 1) were
compared to all adolescents who failed to provide these data with
respect to their wave 0 adiposity levels, using the Wilcoxon rank
sum test, and (2) a comparison of sedentary time and sleep dura-
tion levels at baseline was made using independent sample t-tests
between contributing participants and participants who also had
valid exposure data at baseline, but who were excluded from anal-
yses due to missing covariate data or loss to follow-up (i.e., missing
wave 2 adiposity).

Linear regression models were used to investigate whether base-
line sedentary time or baseline sleep duration was associated with
changes in FMI over time (ΔFMI = follow-up FMI – baseline FMI).
Robust standard errors were calculated to account for school-
level clustering. For both exposure/outcome combinations, two
models were fit. Model 1 included baseline age, area-level SES, pu-
bertal status, season of activity assessment, weekday and weekend
monitor wear time and follow-up duration. Ethnicity was not in-
cluded in the model due to low variation (94% of all ROOTS
participants were White). Model 2 included all covariates from Model
1 as well as time spent in MVPA and depressive symptoms. Sed-
entary time and sleep duration were also mutually adjusted for one
another in Model 2; the coefficients of this second model can be
interpreted as the effect of exchanging 1 h of light physical activi-
ty for sedentary time or sleep. Adjustment for PAEE instead of MVPA
was performed as part of a sensitivity analysis, as was adjustment
for maternal BMI, baseline FMI, wave 0 (pre-baseline) FMI or ΔFMI
from wave 0 to 1. Some studies of sleep duration and obesity (par-
ticularly in adults) have reported “U”-shaped associations [29]. Non-
linear associations between sleep duration and ΔFMI were therefore
investigated by introducing quadratic terms for sleep duration. The
results are expressed as the change in ΔFMI per hour of baseline
sedentary or sleep time. Similar models were run for FFMI.

3. Results

As shown in Table 1, which describes the 504 included partici-
pants with complete data (42.3% boys), the sample was homogeneous
with respect to ethnicity and pubertal status, and approximately
85% of participants were from middle- to high-SES locations. Boys
self-reported fewer symptoms of depression and were more phys-
ically active and less sedentary than girls, but both genders engaged
in considerable sedentary time (~6 h/day). Both genders slept for
around 8 h/night with boys sleeping marginally less. Sleep dura-
tion was weakly negatively correlated with MVPA (boys: r = −0.16;
girls: r = −0.14) and seemingly uncorrelated with sedentary time
(boys: r = 0.01; girls: r = 0.02), whereas sedentary time and MVPA
were moderately negatively correlated (boys: r = −0.49; girls:
r = −0.50). Compared to participants who were measured at wave
0 but who chose not to contribute to baseline (n = 273), or partici-
pated at baseline but failed to provide valid exposure data (n = 194),
participants with valid sedentary time and sleep data (n = 736) had
lower FMI at wave 0 [median (IQR): 4.2 (3.0) vs. 4.5 (3.3) kg/m2,
p = 0.034]. There was no difference in the levels of sedentary time
or sleep length (p ≥ 0.82 for both) between the 504 finally in-
cluded participants and those adolescents with valid exposure data
but missing covariates (n = 46, most missing data were for puberty
and depressive symptoms) or missing follow-up adiposity (n = 186).

The data for anthropometry and body composition at baseline
and follow-up are summarised in Table 2. Body size (weight, height,
BMI, FFM and FFMI) increased in both genders over time but to a
greater extent in boys than girls, maybe reflecting a higher propor-
tion of boys transitioning from pre- to post-puberty during follow-
up (at wave 0, 20% of boys were pre-pubertal vs. only 2% of girls).
Fat mass and FMI also increased over follow-up, but the magni-
tude of change was not different between genders; boys acquired
0.5 and girls 0.6 kg/m2 of FMI.

Associations of baseline sedentary time and sleep duration with
changes in FMI and FFMI are shown in Table 3. For FMI, there was
some evidence for interactions between gender and sedentary time
(p-gender interaction = 0.055) and gender with sleep (p-gender in-
teraction = 0.078); therefore, all analyses were stratified by gender.
There were no significant associations between baseline seden-
tary time and ΔFMI in either boys or girls, and there was no
significant association between baseline sleep duration and ΔFMI

Table 1
Demographic characteristics and baseline activity levels.a

Boys
(n = 213)

Girls
(n = 291)

p-gender

Ethnicity (n (%) White)b 202 (95.3)c 266 (93.7) 0.44
Pubertal status (n (%) post-puberty)d 171 (80.3) 285 (97.9) <0.001
Area-level SES (n (%))

Low 35 (16.4) 37 (12.7)
Middle 46 (21.6) 65 (22.3)
High 132 (62.0) 189 (65.0) 0.50

PAEE (kJ/kg/day) 81.1 (30.7)e 63.4 (23.7) <0.001
MVPA (min/day) 80.9 (61.7) 43.5 (40.6) <0.001
Sedentary time (h/day) 5.8 ± 1.8f 6.4 ± 1.9 <0.001
Sleep duration (h/night) 8.0 ± 0.7 8.2 ± 0.8 <0.001
Depressive symptomsd 10 (10) 14 (14) <0.001
Maternal BMI (kg/m2)g 24.6 (6.8) 24.4 (5.5) 0.92

a PAEE, physical activity energy expenditure; SES, socio-economic status; MVPA,
moderate-to-vigorous physical activity.

b Data missing for eight participants (one boy and seven girls).
c Gender comparisons made by chi-squared tests (for all categorical variables).
d Measured at wave 0, approximately 6 months prior to baseline.
e Median (IQR) for all such variables with a skewed distribution and gender com-

parisons made by the Wilcoxon rank sum test.
f Mean ± SD, gender comparisons made by independent t-tests; there were no

changes in results when clustering within schools was accounted for.
g Data available for 127 boys and 174 girls, only.
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in girls. Similarly, there were no significant associations between
exposures (sedentary time and sleep duration) and ΔFFMI. However,
in boys, there was a significant inverse association between sleep
duration and ΔFMI. A difference of 1 h/night of baseline sleep was
associated with 0.13 kg/m2 lower gain in FMI over follow-up in boys
(Model 1), but evidence for this association diminished after ad-
justment for MVPA and depressive symptoms (Model 2). In all
models, the potential for multicollinearity was low as variance in-
flation factors were ≤1.59 and tolerances ≥0.63. There was also no
evidence of non-linear associations for sleep duration (p-value ≥0.17
in Models 1 and 2 for sleep2). All results were materially unchanged
in sensitivity analyses.

4. Discussion

4.1. Sedentary time

This study found little evidence for a relationship between sed-
entary time and change in adolescent body fatness. Seven cross-
sectional and three prospective studies have previously investigated
objectively measured total sedentary time and its association with
fatness in youth [6,31,32]. Consistently, cross-sectional studies have
observed positive associations between variables in minimally ad-
justed models, but associations have been entirely attenuated when

adjusted for engagement in MVPA. The results from longitudinal
studies (two of which have specifically covered the adolescent age
range of 12–18 years) are less consistent, with reported null [33]
and positive associations [34]. It appears that, with few excep-
tions, total sedentary time is not independently associated with body
fatness in youth, especially when accounting for the time spent in
MVPA. Importantly, from a public health perspective, this should
not be interpreted as meaning that sedentariness is irrelevant. Sed-
entary behaviours may under certain circumstances displace physical
activity and sleep, and particular behaviours such as TV viewing do
seem to exhibit positive associations with body fatness in youth,
independent of the level of physical activity [6].

4.2. Sleep duration

To date, 10 longitudinal studies have investigated sleep length
and body fatness in adolescence, and they report mixed findings
[15]. Six studies report no association [35–40], whereas the re-
maining four studies have reported statistically significant inverse
prospective associations between sleep duration and adiposity in
both genders [41–44]. Most of these studies have been pre–post
in design and have related change in BMI or obesity status to
change in self-reported sleep [37,43] or sleep measured at the
earlier time point [35,36,38–40,42]. Notably, however, Silva and

Table 2
Baseline and follow-up anthropometry and body composition.

Boys (n = 213) Girls (n = 291) p-wave (whole sample) p-wave*gender

Baseline Follow-up Baseline Follow-up

Age (years) 15.0 ± 0.3a 17.5 ± 0.3 15.0 ± 0.3 17.5 ± 0.3 – –
Weight (kg) 58.7 (13.2)b 67.4 (14.4) 53.4 (12.4) 57.1 (12.0) <0.001 <0.001
Height (cm) 172.2 ± 7.5 178.7 ± 6.2 162.9 ± 5.8 164.7 ± 5.8 <0.001 <0.001
BMI (kg/m2) 19.8 (3.0) 21.3 (3.7) 20.1 (4.0) 21.2 (3.9) <0.001 <0.001
Fat mass (kg) 8.4 (5.1) 10.3 (6.1) 13.2 (6.7) 15.1 (7.6) <0.001 0.11
Fat mass index (kg/m2) 2.8 (1.7) 3.3 (1.9) 5.0 (2.5) 5.6 (2.5) <0.001 0.61
Fat-free mass (kg) 50.3 (10.0) 58.1 (9.5) 40.2 (5.3) 42.5 (5.1) <0.001 <0.001
Fat-free mass index (kg/m2.5) 12.9 (1.3) 13.5 (1.6) 11.9 (1.3) 12.2 (1.3) <0.001 <0.001
Overweight and obese (n (%))c 33 (15.5) 42 (19.7) 46 (15.8) 54 (18.6) 0.16d –

a Mean ± SD (all such values).
b Median (IQR) for all variables with skewed distribution.
c On the basis of International Obesity Task Force age- and gender-specific weight-for-height growth charts [30].
d Chi-squared test of baseline versus follow-up in boys and girls combined; all other comparisons were made using mixed-model ANOVA; there were no changes in results

when the natural log of continuous variables with skewed distributions was used in analyses or when clustering within schools was accounted for.

Table 3
Prospective associations of sedentary time and sleep duration with changes in fat mass index (kg/m2) and fat-free mass index (kg/m2.5).a

Boys (n = 213) Girls (n = 291)

ΔFMI: β (95% CI) p-value ΔFMI: β (95% CI) p-value

Model 1
Sedentary time 0.039 (−0.037 to 0.11) 0.29 −0.060 (−0.16 to 0.043) 0.23
Sleep duration −0.13 (−0.27 to −0.00054) 0.049 0.049 (−0.15 to 0.25) 0.61

Model 2
Sedentary time 0.073 (−0.012 to 0.16) 0.087 −0.073 (−0.17 to 0.022) 0.12
Sleep duration −0.11 (−0.26 to 0.043) 0.15 0.038 (−0.16 to 0.24) 0.69

ΔFFMI: β (95% CI) ΔFFMI: β (95% CI)

Model 1
Sedentary time 0.014 (−0.046 to 0.073) 0.64 −0.023 (−0.062 to 0.015) 0.22
Sleep duration −0.088 (−0.18 to 0.0058) 0.064 0.0071 (−0.065 to 0.079) 0.84

Model 2
Sedentary time 0.033 (−0.031 to 0.097) 0.29 −0.035 (−0.078 to 0.0082) 0.11
Sleep duration −0.075 (−0.18 to 0.030) 0.15 −0.00014 (−0.072 to 0.071) 0.99

a FMI, fat mass index; FFMI, fat-free mass index; values represent the expected unit change in FMI (kg/m2) or FFMI (kg/m2.5) from baseline to follow-up per 1 h of base-
line sedentary time or sleep duration (95% confidence intervals in parentheses); analyses performed using linear regression models with robust standard errors account for
within-school clustering; Model 1 was adjusted for baseline age, area-level SES, pubertal status, season of activity measurement, weekday and weekend monitor wear time
and follow-up duration; Model 2 was specified as per Model 1 but further adjusted for moderate-to-vigorous physical activity, depressive symptoms, sedentary time (when
sleep duration was the independent variable of interest) or sleep duration (when sedentary time was the independent variable of interest); the results for sedentary time
are restricted to 287 girls (four influential outliers were excluded from analyses).
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colleagues [41] used a single night of polysomnography to objec-
tively characterise sleep in 304 Americans aged 6–12 years, and
used this information to predict the odds of obesity 5 years later.
Adjusted for confounders including TV viewing, video use and
baseline BMI, it was shown that compared to children sleeping
>9 h/night, those sleeping <7.5 h/night had 3.3 (95% CI: 1.09–9.66)
higher odds of obesity. The work by Mitchell and co-workers [44]
also deserves mention as they incorporated a more refined study
design. They followed adolescents every six months from 14 to 18
years of age, thereby providing a total of eight time points for
sleep duration and BMI. Quantile regression showed that sleep
duration was inversely associated with BMI at the 90th to the
25th BMI percentiles, with the magnitude of association diminish-
ing toward the 25th percentile. We also found some evidence that
sleep was inversely associated with ΔFMI in boys in a dose–
response manner, but there was no indication that this association
differed by the degree of baseline FMI (p-interaction = 0.31). Spe-
cifically, we observed that every 1-h difference in baseline nocturnal
sleep was associated with 0.13 kg/m2 lower FMI gain in boys. The
association was only borderline statistically significant, but when
expressed relative to the mean ΔFMI over time (0.5 kg/m2 in boys)
the association equates to 26% lower gain in body fatness per
hour of baseline sleep, which is likely clinically relevant. More-
over, the magnitude of this association may be underestimated
due to the short time frame over which we measured sleep (the
same applies to the associations for sedentary time).

Like this investigation, other studies from diverse locations
including America, Australia, Canada, Portugal, Turkey and Japan
(all cross-sectional designs) have observed that sleep length is
significantly inversely associated with adiposity (specifically BMI)
in boys but not in girls [45–48], or that the magnitude of associa-
tion is stronger in boys [49–51]. Two longitudinal studies, one
situated in America [40] and the other in Portugal [39], have also
reported inverse associations exclusively in boys, but only prior to
adjusting for baseline BMI, the act of which made results non-
significant. This has prompted speculation that girls may be more
resilient to sleep debt [46] or that there may be gender differ-
ences in sleep architecture with adolescent girls experiencing
proportionately more slow-wave sleep than boys, thereby reduc-
ing girls’ sleep need [45]. Contradicting the second hypothesis, we
found that girls on average slept longer than boys, which is a
consistent finding in the literature.

Some of the longitudinal studies reporting inverse associations
between sleep duration and change in adolescent BMI or obesity
have described results that are independent of the self-reported
physical activity level [42,44]. This could be attributed to residual
confounding as a result of measurement error. In the current study,
the association between sleep and ΔFMI in boys dissipated when
adjusting for objectively measured MVPA (adjusting for sedentary
time made no discernible change to the model). Adjusting for
depression also attenuated the sleep–ΔFMI association, as has been
reported by others [35]. Whether or not this means MVPA and
depression mediate or confound the association between sleep
and adolescent body fatness is a matter of interpretation. Ade-
quate sleep may reduce obesity risk by preserving feelings of
vitality and minimising fatigue, thereby augmenting physical ac-
tivity levels (although we actually observed negative correlations
between sleep duration and MVPA). Adequate sleep may also offset
psychiatric co-morbidities, such as depression, which can lead to
positive energy balance (in this study, 1 h/night of sleep was in-
versely cross-sectionally related to depressive symptoms in boys:
β = −1.2, 95% CI −2.2 to −0.20, p = 0.023). Future investigations should
formally test MVPA and depressive symptoms as potential medi-
ating variables of the sleep–fatness association in adolescents,
ideally with exposure, mediating, and outcome variables collect-
ed at multiple time points.

4.3. Strengths and weaknesses

This investigation included a relatively small sample that was
leaner compared to ROOTS participants as a whole and also com-
pared to the wider youth in Cambridgeshire, as identified from the
Health Survey for England data [17]. Nonetheless, this would not
have affected internal validity, and it is reassuring that our sample
correctly reflected Cambridgeshire as a low ethnically diverse and
prosperous county (82% of Cambridgeshire reside in middle- to high-
SES locations) [16]. Due to homogeneity in our sample, attempts
should be made to replicate our findings in larger and more diverse
populations from different locations, preferably using repeated mea-
sures of sleep, sedentary time, body fatness, and potential mediators
over follow-up. We advantageously used FMI as the outcome, not
BMI, and measured sedentary time and sleep duration objectively.
Although our method has not been validated against a criterion such
as polysomnography performed in a free-living environment,
actigraphy is an accepted means of measuring sleep length and we
accompanied movement signals with heart rate by using a dis-
crete monitor worn for multiple days. Heart rate declines significantly
when transitioning from the waking state to sleep and the reverse
occurs when waking and rising from bed [52]. Self-reported “usual”
bed times were also used to inform our measurement of sleep, al-
though we acknowledge that concurrent data from sleep diary would
have been preferable. It is further unfortunate that our question-
naire did not enquire about sleep quality, which may influence
obesity risk. We did, however, adjust for objectively measured MVPA
and for depressive symptoms, which is a first. Future studies should
consider doing the same, and they should also adjust for dietary
components that may further confound or mediate associations.

To conclude, it seems that total sedentary time may not be in-
dependently associated with changes in adolescent body fat levels.
Conversely, the association between sleep and change in adiposi-
ty may differ in boys and girls, with a potential inverse association
in boys only. To clarify the nature of this association, studies are
needed to demarcate MVPA and depression as either confounding
or mediating factors.
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