
ICRS-Filter: A Randomized Direct Search Algorithm for

Constrained Nonconvex Optimization Problems

Biyu Li1, Viet H. Nguyen1, Chieh. L. Ng1, E. A. del Rio-Chanona1

Vassilios S. Vassiliadis1∗, Harvey Arellano-Garcia2

1Department of Chemical Engineering and Biotechnology, University of

Cambridge, Pembroke Street, Cambridge CB2 3RA, UK

2Department of Chemical and Process Engineering, University of Surrey,

Guildford GU2 7XH, UK

Abstract

This work presents a novel algorithm and its implementation for the stochastic optimization of

generally constrained Nonlinear Programming Problems (NLP). The basic algorithm adopted

is the Iterated Control Random Search (ICRS) method of Casares and Banga (1987) with

modifications such that random points are generated strictly within a bounding box defined by

bounds on all variables. The ICRS algorithm serves as an initial point determination method

for launching gradient-based methods that converge to the nearest local minimum. The issue

of constraint handling is addressed in our work via the use of a filter based methodology, thus

obviating the need for use of the penalty functions as in the basic ICRS method presented

in Banga and Seider (1996),which handles only bound constrained problems. The proposed

algorithm, termed ICRS-Filter, is shown to be very robust and reliable in producing very good

or global solutions for most of the several case studies examined in this contribution.

∗Corresponding Author: vsv20@cam.ac.uk

1

1 Introduction 2

Keywords:

nonconvex programming problem; randomized search; nonlinear programming; stochastic

search algorithms;

1 Introduction

Optimization of nonconvex programming problems has an important role in Applied

Mathematics, Computer Science as well as scientific and engineering practices. The sig-

nificance of the global solution in some cases is ’non-negotiable’, as it could signify “profit

or loss” for chemical manufacturers, or “make-or-break” functional properties of proteins

in drugs research by predicting their conformational structure.

There are two main approaches to addressing global optimization problems: determin-

istic and stochastic methods. Reviews of the deterministic global optimization methods

are given in Floudas (1999) and Floudas and Misener (2009). For a given problem,

deterministic methods are able to provide a certificate of global optimality of the final

solution. Deterministic methods generally tend to be computationally expensive with

computational times growing very quickly with problem sizes.

The other approach, which is based on stochastic algorithms, improves an initial point

using stochastic perturbations. In the stochastic approach, the objective function is eval-

uated at randomly generated points and the process terminates when there is no further

improvement in the objective function value as well as satisfaction of convergence criteria.

Stochastic methods can only guarantee solutions which are local optima, without being

able to certify global optimality. However, the methods’ ability in efficiently and reli-

ably locating local optima has been proven in various practical applications, especially for

very large problems when “good enough” solutions are acceptable. Stochastic methods

frequently employ multiple starting points to increase the chance of finding the global

optimum (Hickernell and Yuan (1997),Torn (1978), Fouskakis and Draper (2002)).

Our work falls into the latter category of optimization methods and a new method,

termed ICRS-Filter Method, will be presented which is the combination between the

2 The generic ICRS method 3

Integrated Controlled Random Search (ICRS) algorithm originally developed by Casares

and Banga (1987) and the Filter approach (Fletcher and Leyffer (2000)) to deal with

generally constrained NLP problems.

2 The generic ICRS method

The ICRS method was first developed by Casares and Banga (1987). Banga proposed

the ICRS method as a stochastic search method for global optimization of problems

with bounds on variables. The method operates by generating random points obeying

a normal distribution within the bounds. As the iterations progress, and as acceptances

of improving points become fewer, the standard deviation of the normal distribution is

suitably reduced thus inducing a more localized search around a current point desired to

be improved.

The original ICRS Algorithm applies to an unconstrained problem, which is assumed

to have the following formulation (P1):

Problem P1

min
x

f(x) (2.1a)

subject to

xL ≤ x ≤ xU (2.1b)

where x ∈ Rn

The Algorithm is presented as Algorithm 1. The ICRS Algorithm is a search method,

which instead of employing a set of search directions, it uses randomly generated points.

As the Algorithm generates points closer to a local minimum, the standard deviation σ

is reduced, hence the “contracting spheres” picture as shown in Figure 2.1.

It is important to note that the ICRS Algorithm is a randomized direct search method

and this is to be constrasted with other well-known methods in which the search directions

2 The generic ICRS method 4

Algorithm 1 ICRS Algorithm

1: Initial Guess ← x0

2: Initial Deviation Factor ← k1

3: Reduction Deviation Factor ← k2

4: Expansion Deviation Factor ← k3

5: Maximum Number of Samples ← NSample

6: Maximum Number of Failures ← NFailure

7: Variable Convergence Tolerance ← ε
8: Evaluate Best Objective Function Value fBest ← f(x0)
9: Compute Initial Deviation Factor σ ← k1 · (xU − xL)

10: Set Current Solution Vector xBest ← x0

11: Set ifailure← 0
12: for i← 1 to NSample do
13: Generate a new point xNew which is Normally distributed between xU and xL, given

the Mean xBest and Standard Deviation σ
14: fNew ← f(xNew)
15: if fNew < fBest then
16: Variable Tolerance ← φ(xNew, xBest)
17: Update Objective Value fBest ← fNew

18: Update Current Solution xBest ← xNew

19: Expand Deviation Factor σ ← k3 · σ
20: if Variable Tolerance < ε then
21: Exit Sampling Loop
22: end if
23: else
24: if fNew ≥ fBest then
25: ifailure← ifailure+ 1
26: if ifailure > NFailure then
27: Reduce Deviation Factor σ ← k2 · σ
28: Reset Counter ifailure← 0
29: end if
30: end if
31: end if
32: end for
33: return Best Solution xBest and Best Objective Value fBest

2 The generic ICRS method 5

Fig. 2.1: Illustration of the ICRS Algorithm

are generated deterministically, such as the Nelder-Mead Simplex Algorithm (Correia

et al. (2010) and Nelder and Mead (1965)). Their algorithm is evidently unable to handle

any other constraints on the variables’ domain, which can be easily induced by adding

equalities or inequalities to the original (P1) problem. Consequently, the ICRS approach

is only effective at solving unconstrained optimization problems.

The most important step in the ICRS algorithm is the generation of normally dis-

tributed points within given bounds. The following methods have been attempted in this

work:

1. Projection to bounds method

The principle behind the method is very simple: given x0 and σ, generate a random

point x which is normally distributed with mean x0 and with a standard deviation σ. The

method used to generate the points x is adapted from Box and Muller (1958). Further-

more, if any elements in x are falling below the lower bound or exceeding the upper bound,

they will be replaced by the correspoding lower or upper bound values, i.e. “clipped to

the bounds”.

The “Projection to bounds method” often causes the sampling points to “stick” onto

the bounds too often and leads to an uneven distribution in the interior of the sam-

pling region. Furthermore, in problems containing functions, which are undefined at the

bounds, the method could lead to numerical instabilities. Therefore, the method is not

2 The generic ICRS method 6

strongly recommended, but it is still included in the discussion as a legacy of the original

implementation.

2. Rejection method

The approach is the same as before. However, this method would reject a point if

any element in x lies outside its bounds. Consequently, generated points are verified

whether they are within the bounds. If they are not, the corresponding variable values

are rejected until a point is found to satisfy the bounds. The method possibly requires

more iterations in the normal random number generator so the CPU time would be

slightly more intensive. However, the method tends to sample more evenly in the variable

domains, and the overall behaviour is ’smoother’ in comparison to that of the original

“Projection to bounds method”.

3. Truncated normal distribution method

This method guarantees to generate points precisely within the bounds. To illustrate

the key idea, the problem is first restated below

Given the mean x0 and standard deviation σ and bounds xL and xU , generate

a random point x such that x ∈N(x0, σ) and xL ≤ x ≤ xU

Given a random variable x, the cumulative distribution function I(x) is defined as the

area under the Normal Distribution curve between −∞ and x:

I(x) = CDF (x0, σ, x) (2.2)

where CDF is the Cumulative Distribution Function.

Conversely, given I(x), the inverse of the cumulative distribution function is defined

as the random variable x which satisfies the above relation:

x = CDF−1(x0, σ, I(x)) (2.3)

Since I(x) is a monotonic increasing function of x , there is a one-to-one correspondence

between I(x) and x. Based on this idea, the “Truncated normal distribution method” is

presented in Algorithm 2:

3 Filter methods for constraint handling 7

Algorithm 2 Truncated Normal Distribution Method

1: Calculate IL = I(xL) and IU = I(xU)
2: Generate a random number u which is uniformly distributed between 0 and 1
3: Compute the cumulative distribution function I ← IL + (IU − IL) · u
4: Invert I to obtain the corresponding random variable x using equation (2.2)

Since IL ≤ I ≤ IU , and the function is monotically increasing, this leads to xL ≤ x ≤

xU . Furthermore, to generate a randon number which is uniformly distributed between 0

and 1, the work by Park and Miller (1988) has been adapted in our implementation.

The “Truncated normal distribution method” method is considered to be the most

preferred among the three approaches mentioned above because it neither tends to fa-

vor sampling on the bounds nor rejects any points as the other two methods would do,

respectively. Therefore, it has been used for all the case studies in this work.

In addition to the modifications made to generate points within bounds, another

improvement of the original ICRS method corresponds to the application of the filter

concept to handle additional constraints. To be specific, it is a modification of the ICRS

method acceptance criterion from strict improvement of an unconstrained function to

that of a filter method for constraint handling, and thus, taking into account directly

the values of the objective and the constraints in deciding whether a candidate point is

acceptable as an improving point for generally constrained optimization problems. The

next section will show how the filter method is adapted to deal with constraints.

3 Filter methods for constraint handling

For a generally constrained optimization problem, the following formulation (P2) is

assumed:

Problem P2

min
x

f(x) (3.1a)

subject to

h(x) = 0 (3.1b)

3 Filter methods for constraint handling 8

g(x) ≤ 0 (3.1c)

and

xL ≤ x ≤ xU (3.1d)

where x ∈ Rn, h ∈ Rneand g ∈ Rni . A well-known approach is to convert the constrained

problem into an unconstrained one. Popular methods are the penalty functions, barrier

methods, and the augmented Lagrangian method (Edgar et al., 2001; Powell, 1969). All

of these methods in essence absorb the equalities, inequalities and objective function into

a single function. Such an approach is not always successful since the resulting function

is often highly nonlinear and nonconvex. Thus, the determination of local and global

optima can be very challenging.

The original ICRS algorithm is effective at solving problem (P1), but is expected to

perform poorly for the (P2) type problem. To handle the extra issue of having constraints

the concept of a filter is applied, which leads to the ICRS-Filter method, the key original

contribution in this work.

A brief review of the filter concept is given by Fletcher et al. (2006). Similar discussions

can also be found in Correia et al. (2010) and Karas et al. (2006). The following definitions

are central to the construction of a filter:

Definition 1. Let F (x) and G(x) be two real-valued scalar functions. A point x is said

to dominate point y if and only if F (x) < F (y) and G(x) < G(y). Or equivalently, the

entry (F (x), G(x), x) is said to dominate the entry (F (y), G(y), y).

Definition 2. A filter F is a list of entries (F (x), G(x), x) such that no entry dominates

the others.

The ICRS-Filter method separates the objective function from the equalities and in-

equalities. The method essentially attempts to solve a bi-objective problem: minimizing

the objective value of f(x) while keeping the constraints satisfied by reducing their vio-

lation norm.

3 Filter methods for constraint handling 9

The second objective (i.e. constraint satisfaction) is formulated by aggregating the

equalities and inequalities into a single function. This single function effectively measures

the overall deviation of the constraints from zero. Some possible functions are:

Norm-1 Φ1(x) =
ne∑
i=1

|hi(x)|+
ni∑
j=1

|max{0, gj(x)}| (3.2a)

Norm-2 Φ2(x) =
ne∑
i=1

(hi(x))2 +

ni∑
j=1

(max{0, gj(x)})2 (3.2b)

Norm-∞ Φ∞(x) = max
i∈{1,...,ne}

{|hi(x)|}+ max
j∈{1,...,ni}

{max{0, gj(x)}} (3.2c)

which are respectively the sums of the norm-1, norm-2, and the infinity norm of h(x) and

the violations of g(x).

In this work, the norm-1 in equation (3.2a) is chosen for the implementation of the

ICRS-Filter method due to its equal weighting of the constraint values.

The final formulation of problem (P2) becomes problem (P2’):

Problem P2’

min
x

(f(x),Φ(x)) (3.3a)

subject to

xL ≤ x ≤ xU (3.3b)

It is noted that in equations (3.3a-3.3b) and in the rest of this work, the subscript

1 in Φ1(x) is dropped to simplify notation and allow for generality. To apply the filter

concept to the above problem, from Definition 1, let f(x) be the objective function and

the aggregated constraint norm be Φ(x). Thus, each point in the filter is represented by

the pair (f(x),Φ(x)) or entry (f(x),Φ(x), x). Additionally, during the construction of a

filter, two steps are required. The first step is to decide whether or not to accept a new

point to the current filter list:

3 Filter methods for constraint handling 10

Acceptance Criterion 1 :

A new point x is accepted to the filter if and only if it is not dominated by any present

entry in the list. Therefore, for a newly generated point, the above criterion is equivalent

to checking Definition 1 for the point against all other points in the current filter. This is

perhaps the simplest and most straightforward criterion. Another simple criterion regards

the magnitude of the constraint norm Φ(x).

Acceptance Criterion 2 :

A new point x is accepted to the filter if and only if Φ(x) ≤ Φmax, where Φmax is

a user-defined upper bound on the norm. Hence, if Φ(x) is too large then the point is

rejected, which is useful when the filter already has many entries.

The second step in the filter construction is to update the filter. It essentially consists

of two basic steps:

Filter Updating Step 1 :

Given that a new point x is accepted to the filter, check and eliminate all the current

entries, which are dominated by x.

Filter Updating Step 2 :

Reorganize the filter points according to the ascending order of the constraint norms

Φ(x) (for convenience in our implementation).

Thus, after the filter updating steps, the points are organized based on their constraint

satisfaction (i.e. feasibility) with the left-most entries being the most feasible and the

right-most entries being the least feasible. The construction of the filter in this work

follows the above description. Fletcher and Leyffer (2000) and Fletcher et al. (2006) add

the extra following steps to their algorithm:

1. Removal of the blocking entries from the filter.

2. Addition of an ’envelope’ to the current filter.

3. For a new point with a reduction in constraint norm, check that there is also a

“sufficient reduction” in the objective value.

3 Filter methods for constraint handling 11

Point 1 and 2 prevent their algorithm from converging to infeasible local minima and

hence are not considered in this work as the ICRS method is stochastic and not locating

local minima precisely. Furthermore, since it is possible that the filter points form a

monotonic decreasing sequence of constraint norms Φ(x), but the objective value f(x)

may form an increasing sequence at the same time, Point 3 guards against such an issue

by accepting only points which show some degree of reduction in the value of f(x). The

work in this contribution does not use these criteria, but it could be easily adapted in a

future implementation.

By repetitively applying the acceptance and updating steps, a filter with decreasing

constraint norm values (i.e. more feasible points) is constructed. It is also worth men-

tioning that due to the updating steps, the filter is a dynamic object which changes size

frequently.

An illustration of the working mechanisms of a dynamic filter is given in Figure 3.1.

With reference to this figure, the following steps illustrate the operation of the filter:

1. Suppose that the filter currently has four points 1, 2, 3 and 4

2. If a point such as A is generated, it will be rejected because it is dominated by other

points in the current filter based on Acceptance Criterion 1

3. If a point such as B is generated, it will be accepted because it is not dominated by

any other point in the current filter based on Acceptance Criterion 1

4. If a point such as C is generated:

(a) It will be accepted because it is not dominated by any other point in the current

filter

(b) The Filter Updating Steps will remove Points 2, 3 and B because they are

dominated by C

(c) The current Filter now has Points 1, C and 4

4 The ICRS-Filter method Algorithm and Implementation 12

Fig. 3.1: Filter method illustration

Having introduced the ICRS algorithm and shown the complete construction of a filter,

the next section will discuss the implementation of the ICRS-Filter method and show how

it is used to solve constrained optimization problems.

4 The ICRS-Filter method Algorithm and Implementation

4.1 ICRS-Filter Method

Assuming the formulation (P2’) above, the ICRS-Filter Method is presented in Algo-

rithm 3. In this algorithm FilterSize is the number of points in the filter.

4 The ICRS-Filter method Algorithm and Implementation 13

Algorithm 3 ICRS-Filter Method

1: Initial Guess ← x0

2: Initial Deviation Factor ← k1

3: Deviation Reduction Factor ← k2

4: Deviation Expansion Factor ← k3

5: Maximum Number of Samples ← NSample

6: Maximum Number of Failures ← NFailure

7: Maximum Number of Elements in Filter ← Nmax filter

8: Maximum Constraint Norm ← Φmax

9: Variable Convergence Tolerance ← εVariable

10: Objective Convergence Tolerance ← εObjective

11: Constraint Norm Convergence Tolerance ← εNorm

12: Evaluate the Objective Function Value f0 ← f(x0)
13: Evaluate the Constraint Norm Value Φ0 ← Φ(x0)
14: Compute Initial Deviation σ ← k1 · (xU − xL)
15: Initialize the Filter with the first entry f0,Φ0, x0

16: Set the Current Centre x← x0

17: for i← 1 to N do
18: Apply Algorithm 2 to generate a new point xNew

19: fNew ← f(xNew)
20: ΦNew ← Φ(xNew)
21: Decide whether the entry (fNew,ΦNew, xNew) is accepted to the current filter using

the acceptance criteria
22: if the point is accepted then
23: Updade the filter using the updating steps
24: if FilterSize > NMax Filter then
25: Remove right-most filter entries to restore NMax Filter

26: end if
27: Update Centre x← x1 where x1 is the left-most entry in the current filter
28: Compute Variable Tolerance ← φ1(xNew, x1)
29: Compute Objective Tolerance ← φ2(fNew, f(x1))
30: Compute Constraint Norm Tolerance ← φ3(ΦNew,Φx1)
31: if |φ1| < εVariable and |φ2| < εObjective and |φ3| < εNorm then
32: Exit Sampling Loop
33: end if
34: Reset Counter ifailure← 0
35: Expand Deviation σ ← k3 · σ
36: else
37: if the point is not accepted then
38: ifailure← ifailure+ 1
39: if ifailure > NFailure then
40: Reduce Deviation σ ← k2 · σ
41: Reset Counter ifailure← 0
42: end if
43: end if
44: end if
45: end for
46: Filter points are used to initialize a local optimization solver
47: The smallest objective value obtained is the final solution

4 The ICRS-Filter method Algorithm and Implementation 14

4.2 Implementation of the ICRS-Filter Method

The ICRS-Filter method was implemented in MathematicaTM (Version 8.0). The ICRS-

Filter method has 9 parameters which are to be initialized before any computations. The

parameter values used are listed in Table 1:

Tab. 1: ICRS-Filter Method Parameters’ Values
Parameter Value

Initial Deviation Factor k1 1/6
Deviation Reduction Factor k2 1/2
Deviation Expansion Factor k3 1

Maximum Number of Samples NSamples 106

Maximum Number of Failures NFailure 25 ·NVariable

Maximum Constraint Norm Φmax 1030

Variable Convergence Tolerance εVariable 10−3

Objective Convergence Tolerance εObjective 1030

Constraint Norm Convergence Tolerance εNorm 1030

Maximum Filter Size Nmax filter NSample

NVariable is the number of variables in a specific problem. The values for k2 and NVariable

are adapted from Banga and Seider (1996). It is noted that in their paper, k1 = 1/3 and

εVariable = 10−4, i.e. their algorithm allows a wider search region as well as a more stringent

convergence condition.

It is evident that setting tight values to εVariable, εObjective and εNorm (e.g. 10−3) would

demand a great deal of computation, so it has been decided to set a tight tolerance only on

the variables and set the other tolerances to relaxed values. Consequently, since εObjective

and εNorm are very large, the functional forms of φ2 and φ3 would not be factors in deciding

the convergence of the method. By contrast, the functional form of the variable tolerance

is the most important factor and the following has been used (Banga and Seider (1996)):

φ1 = max(
|xNew − x1|
|xU − xL|

) (4.1)

Due to Acceptance Criterion 2, Φmax has been set to a high value to increase the chance

of a point being accepted to the filter . In addition, the expression of Φmax (3.2a) implies

that it is more difficult to satisfy equality than inequality constraints, hence in problems

with many equalities and/or large variable bounds, Φmax could become and remain large

4 The ICRS-Filter method Algorithm and Implementation 15

during the sampling loop. Therefore, a stringent acceptance condition (i.e. low Φmax)

would lead to a filter with very few elements.

It is likely that many samples would be required before the variable tolerance is satis-

fied, hence a large number of samples NSample was also chosen. A large number is also set

for Nmax filter because it is intended to keep as many points in the final filter as possible.

Additionally, it is worth noting that the step of checking (and possibly trimming) the

filter size is entirely optional and can be omitted without affecting the overall behaviour

of the algorithm. (may require more storage if left large)

The local optimization solver used in this study is the FindMinimum provided in Math-

ematicaTM (Version 8.0). The solver could handle both constrained and unconstrained

problems but occasionally requires good starting points for successful convergence. Thus,

in the last two steps in Algorithm 3, the symbolic problem model with objective function,

constraints and variable bounds is passed to FindMinimum along with the initial value

for variables taken from the filter points. Multiple local minima are to be expected and

the smallest value is taken as the final solution.

Furthermore, the initial vector x0 is chosen to be the bounds’ midpoint. This is by no

means the only option, but seems to be the simplest one:

x0 =
xL + xU

2
(4.2)

Like other stochastic algorithms, the ICRS-Filter Method cannot guarantee the global

optimum. In addition, the most feasible points in the filter may not always lead to

the global solution. As a consequence, a balance needs to be kept between pushing for

more feasible points (i.e. reductions of constraint norm) and accepting points from wider

regions to the filter. The second objective may lead to more infeasible points in the final

filter, but also increases the chance of starting the local solver into the attraction region of

the global optimum. This justifies the reason for setting a high Φmax and large Nmax filter.

Obviously, such objective can be assisted by having k3 > 1. In some sense, this could be

viewed as being equivalent to taking extra sampling loops at k3 = 1.

Having completed the presentation of the implementation, the next section will il-

5 Numerical Results 16

lustrate the performance of the method in solving a number of standard constrained

optimization problems.

5 Numerical Results

The ICRS-Filter method has been tested using 104 cases studies taken from Hock and

Schittkowski (1981a), Floudas et al. (1999), Rumarsson and Yao (2000) and Al et al.

(2012). All case studies were modelled in MathematicaTM (Version 8.0) and ran on a

standard desktop PC with AMD AthlonTM II X2 250 Processor at 3.00 GHz. The method

was initially tested with simple models from Hock and Schittkowski (1981a). Case stud-

ies from Floudas et al. (1999) have been selectively chosen to represent diverse classes of

problems in Optimization. They are Quadratic Programming Problems, Quadratically

Constrained Problems, Bilinear Problems, Biconvex and Difference of Convex Functions

Problems, Generalized Geometric Programming Problems, Parameter Estimation and

Equations of State Problems. Additional problems are supplied from literature (Rumars-

son and Yao (2000) and Al et al. (2012)).

A summary of the problems’ characteristics is given in Tables 2, 3, 4, 5, and 6. Each

case study has been run 10 times. The information regarding the CPU Time, Number of

Samples (i.e. Sample Size), and Filter Points is given in Tables 7 and 8 (“Sub” means the

suboptional result and “Fail” indicates that the local solver fails to converge). Summary

of average values of the objective and constraint norm for the most and least feasible

points are shown in Tables 9 and 10. Furthermore, for each problem, the best and the

worst solution are identified for each run and the number of times in which they are

found are highlighted in the corresponding columns in Tables 7 and 8. Vector solutions

for cases that show improved solutions are summarized in Table 11. In addition, the

original “maximization problems” 2.1.9, 5.2.2 Case 1, 5.2.2 Case 2, 5.2.2 Case 3, 5.2.4

and 5.2.5 have been reformulated as the “minimization problems” by reversing the signs

of the corresponding objective functions. Thus, to keep the consistency, the signs of the

best known solutions in literature were also reversed (Table 7).

Out of 104 case studies, global or best known solutions for 96 of them have been

5 Numerical Results 17

confirmed. Our solutions match those reported in literature by at least 3 significant

figures in all cases. This represents a 92% successs rate for our proposed method. In

addition, 7 out of 96 cases are found to yield slightly better solutions. For the cases with

better solutions, tests have been carried out to ensure that the objective values obtained

from our models are consistent with the given vector solutions in literature.

In Tables 7 and 8, it is seen that 60 out of 104 cases require less than 5 seconds of CPU

time. For other case studies CPU times are higher. It is possible that by implementing

the algorithm in C++ or another language, the computational times can be significantly

reduced as MathematicaTM is slow. The average amount of time in which the best solution

was found is 5.7 seconds and 50 cases have obtained the best solutions for every run.

FindMinimum has failed to converge in 4 case studies, namely HS 101, HS 103, 5.3.3

and 8.6.3 (Tables 7 and 8). In the first three case studies, it is noted that the issue happens

frequently when the solver is initialized with the left-most (i.e. most feasible) points in

the filter. By constrast, FindMinimum converges very well given the right-most (i.e. least

feasible) points. However, the situation is reversed in case 8.6.3 in which FindMinimum

was able to converge without difficulties when it was initialized with the left-most points.

In addition, from Table 3, case 5.3.3 was the largest problem that was attempted.

FindMinimum was found to fail consistently given any point in the filter in any run.

Some details of the running of the problem are given in Table 12. In runs 3, 4, 5, and 6,

the most feasible points in the filter already approximate the known solution (i.e. 3.324

Floudas et al. (1999)). The fact that FindMinimum fails to converge implies either i)

the starting points are not good enough or ii) the local solver’s algorithm has difficulties

in locating the local minimum. Regarding the first implication, it is possible that even

though the objective values are similar, the starting variable vectors could be still very

far away from the neighbourhood of the desired local optimum.

In case 7.2.5, it was found that by putting the vector solutions published in the liter-

ature into the objective function, the objective value computed did not match the given

value in the literature. Hence, it is suspected that there might be a typing error in the

literature. This explaines why the solutions yielded by our tests are different from the

5 Numerical Results 18

known solutions.

Tab. 2: Problem description for cases from Hock and Schittkowski (1981b)
Problem Number of Number of Number of Solution Remark
Name Variables Equalities Inequalities Type

HS 018 2 0 2 Global Matched
HS 019 2 0 2 Global Matched
HS 021 2 0 1 Global Matched
HS 023 2 0 5 Global Matched
HS 030 3 0 1 Global Matched
HS 038 4 0 2 Global Matched
HS 041 4 1 0 Global Matched
HS 059 2 0 3 Global Matched
HS 062 3 1 0 Global Matched
HS 071 4 1 1 Global Matched
HS 080 5 3 0 Global Matched
HS 083 5 0 6 Global Matched
HS 085 5 0 38 Global Matched
HS 093 6 0 2 Global Matched
HS 095 6 0 4 Global Matched
HS 098 6 0 4 Global Matched
HS 101 7 0 6 Global Local solver did not converge
HS 103 7 0 6 Global Local solver did not converge
HS 104 8 0 6 Global Matched
HS 109 9 6 4 Global Improved solution
HS 114 10 3 8 Global Matched
HS 118 15 0 17 Global Improved solution
HS 119 16 8 0 Global Matched

5 Numerical Results 19

Tab. 3: Problem description for cases from Floudas et al. (1999)
Problem Number of Number of Number of Solution Remark

Name Variables Equalities Inequalities Type

2.1.1 5 0 1 Global Matched

2.1.2 6 0 2 Global Matched

2.1.3 13 0 9 Global Matched

2.1.4 6 0 5 Global Matched

2.1.5 10 0 11 Global Matched

2.1.6 10 0 5 Global Matched

2.1.7 Case 1 20 0 10 Global Matched

2.1.7 Case 2 20 0 10 Global Matched (Bounds provided)

2.1.7 Case 3 20 0 10 Global Matched (Bounds provided)

2.1.7 Case 4 20 0 10 Global Matched (Bounds provided)

2.1.7 Case 5 20 0 10 Global Matched (Bounds provided)

2.1.8 24 10 0 Global Matched (Bounds provided)

2.1.9 10 1 0 Global Matched

2.1.10 20 0 10 Global Matched

3.1.1 8 0 6 Global Matched

3.1.2 5 0 6 Global Matched

3.1.3 6 0 6 Global Matched

3.1.4 3 0 3 Global Matched (Bounds provided)

5.2.2 Case 1 9 4 2 Global Matched (Bounds provided)

5.2.2 Case 2 9 4 2 Global Matched

5.2.2 Case 3 9 4 2 Global Matched

5.2.4 7 1 5 Global Matched

5.2.5 32 3 16 Global Matched

5.3.2 22 16 0 Global Matched

5.3.3 62 53 0 Best Known Local solver did not converge

5.4.2 8 0 6 Best Known Matched

5.4.3 16 13 0 Global Matched

5.4.4 27 19 0 Global Matched

5 Numerical Results 20

Tab. 4: Problem description for cases from Floudas et al. (1999)
Problem Number of Number of Number of Solution Remark

Name Variables Equalities Inequalities Type

6.3.1 8 6 0 Global Matched

6.3.2 4 3 0 Global Matched

6.3.3 12 9 0 Global Matched

6.3.4 6 4 0 Global Matched

6.4.2 9 3 0 Global Matched

6.4.3 3 1 0 Global Matched

6.4.4 9 3 0 Global Matched

6.4.5 3 1 0 Global Matched

6.4.7 4 2 0 Global Matched

6.4.8 9 3 0 Global Matched

6.4.9 3 1 0 Global Matched

6.4.11 4 2 0 Global Matched

6.4.12 6 3 0 Global Inferior point

6.4.14 4 2 0 Global Improved soluton

7.2.1 7 0 14 Global Matched

7.2.2 6 4 1 Global Matched

7.2.3 8 0 6 Global Matched

7.2.4 8 0 4 Global Improved solution

7.2.5 5 0 5 Global Error in reported solution

7.2.6 3 0 1 Global Matched

7.2.7 4 0 2 Global Matched

7.2.8 8 0 4 Global Matched

7.2.9 10 0 7 Best Known Matched

7.2.10 11 0 9 Global Matched

8.5.1 24 10 0 Global Matched

8.5.2 24 10 0 Global Matched

8.5.3 52 25 0 Global Matched

8.5.4 17 12 0 Global Matched

8.5.5 15 11 0 Global Matched

8.5.6 14 8 0 Global Inferior point

8.5.7 52 20 0 Global Improved solution

8.5.8 22 10 0 Global Matched

8.6.1 4 2 0 Global Inferior point

8.6.2 4 2 0 Global Inferior point

8.6.3 3 2 0 Global Local solver did not converge

8.6.4 3 2 0 Global Inferior point

8.6.5 3 2 0 Global Inferior point

8.6.6 4 2 0 Global Matched

5 Numerical Results 21

Tab. 5: Problem description for cases from Rumarsson and Yao (2000)
Problem Number of Number of Number of Solution Remark

Name Variables Equalities Inequalities Type

A g01 13 0 9 Global Matched

B g02 20 0 2 Best Known Inferior point

C g03 10 1 0 Best Known Matched

D g04 5 0 6 Best Known Matched

E g05 4 3 2 Best Known Matched

F g06 2 0 2 Best Known Matched

G g07 10 0 8 Best Known Matched

H g08 2 0 2 Best Known Improved solution

I g09 7 0 4 Best Known Matched

J g10 8 0 6 Best Known Improved solution

K g11 2 1 0 Best Known Matched

M g13 5 3 0 Best Known Matched

Tab. 6: Problem description for cases from Al et al. (2012)
Problem Number of Number of Number of Solution Remark

Name Variables Equalities Inequalities Type

P1 6 0 6 Best Known Matched

P2 10 3 0 Best Known Improved solution

P3 2 0 2 Best Known Matched

5 Numerical Results 22

Tab. 7: Solution summary
Problem Known Best No. of Worst No. of Mean Mean Mean

Name Solution Solution Times Solution Times Samples Filter CPU

Found Found Size Points Time

HS 018 5 5 10 5 10 1852 91 0.450

HS 019 -6961.81 -6961.81 10 -6961.81 10 607 7 0.120

HS 021 -99.96 -99.96 10 -99.96 10 461 1 0.094

HS 023 2 2 10 2 10 851 18 0.180

HS 030 1 1 10 1 10 1268 10 0.310

HS 038 0 0 10 0 10 1108 1 0.320

HS 041 1.92593 1.92593 10 1.92593 10 1887 25 0.570

HS 059 -7.80423 -7.80279 5 -6.74951 10 2465 161 0.860

HS 062 -26272.5 -26272.5 10 -26272.5 10 1217 20 0.300

HS 071 17.014 17.014 10 32.944 1 2076 19 0.610

HS 080 0.05395 0.05395 8 1.00000 2 3171 33 1.070

HS 083 30665.5 -30665.5 10 -30665.5 10 10848 100 3.970

HS 085 -1.90513 -1.90516 10 -1.90516 10 4338 11 1.520

HS 093 135.076 135.076 10 242.710 1 4048 15 1.540

HS 095 0.0156195 0.0156195 10 0.0156195 10 2426 1 0.920

HS 098 3.1358 3.1358 10 4.0712 8 8240 29 3.270

HS 101 1809.76476 4.34370/Fail 1 1809.7648 10 11007 110 5.110

HS 103 543.668 16.324/Fail 1 543.668 10 9590 84 4.410

HS 104 3.951163 3.951163 8 4.218/Sub 4 17042 153 8.800

HS 109 5362.069 711.454/Fail 1 5326.8500 8 14292 100 7.700

HS 114 -1768.81 -1768.81 10 -1768.81 10 11368 82 6.830

HS 118 664.82045 662.52000 10 662.52000 10 31000 36 28.01

HS 119 244.899698 244.90000 10 244.90000 10 16311 31 14.04

2.1.1 -17 -17 1 -2.5 1 2095 2 0.680

2.1.2 -213 -213 10 -213 10 32397 435 15.36

2.1.3 -195 -195 10 -195 10 5526 1 3.690

2.1.4 -11 -11 10 -11 10 26861 346 15.07

2.1.5 -268.015 -268.015 10 -268.015 10 14870 18 8.280

2.1.6 -39.000 -39.000 3 -18.222 1 6093 2 3.310

2.1.7 Case 1 -394.7506 -394.751 10 -135.970 1 39992 87 39.19

2.1.7 Case 2 -884.75058 -884.751 10 -631.617 1 68468 152 68.98

2.1.7 Case 3 -8695.01193 -8695.01 10 -3683.77 1 48621 97 49.80

2.1.7 Case 4 -754.75062 -754.75100 10 -514.10200 1 26616 51 26.58

2.1.7 Case 5 -4150.4101 -4150.4100 10 -904.69500 1 10.472 70 40.20

2.1.8 15639 15639 10 27168 2 29980 56 34.08

2.1.9 -0.375 -0.375 10 -0.333 10 8394 85 4.770

2.1.10 49318 49318 10 133719 2 43835 30 42.55

3.1.1 7049.24 7049.25 10 7049.25 10 10588 10 5.040

3.1.2 -30665.53 -30665.50 10 -30665.50 10 11217 97 4.070

3.1.3 -310 -310 8 -168 1 15807 278 7.050

3.1.4 -4 -4 10 -3.28179 1 1726 17 0.420

5.2.2 Case 1 -400 -400 10 -100 6 7816 22 3.950

5.2.2 Case 2 -600 -600 5 1901.37 1 6635 24 3.320

5.2.2 Case 3 -750 -750 10 782.87 1 6836 22 3.460

5.2.4 -450 -450 8 420.395 1 3769 26 1.570

5.2.5 -3500 -3500 10 2415.34 1 41279 80 61.55

5.3.2 1.86416 1.86416 10 2.21220 1 29566 50 31.83

5.3.3 3.234 1.737/Fail 1 9.621/Fail 1 146809 41 289.8

5.4.2 7512.23 7512.23 10 7512.23 10 12487 9 5.970

5.4.3 4845.00 4845.46 8 5937.44 9 14783 40 12.17

5.4.4 10077.8 10077.8 3 22168.5 1 25454 39 32.64

6.3.1 -0.0202 -0.0202 2 -0.0175 10 6827 28 3.150

5 Numerical Results 23

Tab. 8: Solution summary
Problem Known Best No. of Worst No. of Mean Mean Mean

Name Solution Solution Times Solution Times Samples Filter CPU

Found Found Size Points Time

6.3.2 -0.03247 -0.03246 3 3.0000E-6 1 2900 33 0.850

6.3.3 -0.3574 -0.3524 10 -0.3242 1 10951 19 7.020

6.3.4 -0.29454 -0.294541 10 8.0Eˆ-7 1 4369 22 1.640

6.4.2 -70.75208 -70.75210 3 -70.5581 10 7183 49 3.670

6.4.3 0 7.0Eˆ-7 10 7.0Eˆ-7 1 1183 10 0.280

6.4.4 -0.16085 -0.16085 10 -0.13839 3 6753 38 3.480

6.4.5 -0.027 -0.027 10 6.0Eˆ-7 1 1281 12 0.310

6.4.7 -0.03407 -0.03406 10 0.15652 10 3749 75 1.150

6.4.8 -3.02954 -3.05198 10 -2.66062 10 9842 133 4.040

6.4.9 0 -2.7Eˆ-6 1 1.6Eˆ-6 10 1127 13 0.280

6.4.11 0.28919 0.28919 10 0.39359 10 7379 159 2.380

6.4.12 -0.25457 -0.21621 4 -0.21620 6 5137 51 1.950

6.4.14 -0.07439 -0.69536 8 0.09867 10 3448 76 1.120

7.2.1 1227.23 1227.23 10 1227.23 10 9965 31 4.330

7.2.2 -0.388000 -0.388811 10 -0.388811 10 4587 38 1.720

7.2.3 7049.25 7049.25 10 7049.25 10 12086 11 5.580

7.2.4 3.95110 3.91801 10 4.20285 6 19872 120 9.210

7.2.5 1.1436 10122.5000 10 10122.5 10 9696 98 3.900

7.2.6 -83.2540 -83.2497 10 -83.2497 10 4261 103 1.140

7.2.7 -5.73980 -5.74376 10 -5.74376 10 6545 101 2.080

7.2.8 -6.04820 -6.04823 10 -5.72294 1 20289 98 10.16

7.2.9 1.14360 1.14362 10 1.14362 10 18054 29 10.93

7.2.10 0.140600 0.140607 10 3.78137 1 16628 45 10.46

8.5.1 0.618570 0.618573 10 0.618573 10 32462 43 38.37

8.5.2 0.485150 0.485152 10 0.485152 10 18855 24 22.37

8.5.3 0.00464972 0.00464971 6 0.005777 1 76456 43 181.7

8.5.4 0.21246 0.21246 10 0.21246 10 15833 38 13.76

8.5.5 0.0003075 0.0003075 2 0.001225 1 18204 34 14.26

8.5.6 0.0011400 0.0016085 1 28434.3 1 15473 49 11.37

8.5.7 29.0473 23.6129 10 23.6129 10 72406 56 172.35

8.5.8 3.32000 3.32185 10 3.32185 10 22804 35 24.74

8.6.1 -0.00988 -5.8Eˆ-7 1 0.0063610 1 7119 23 2.200

8.6.2 0 -9.8Eˆ-9 1 1.9Eˆ-7 1 12282 29 3.860

8.6.3 -0.00400 0.15284 9 1.966/Fail 1 1694 29 0.440

8.6.4 -0.000330 0.134798 10 0.38771 1 1615 28 0.410

8.6.5 -0.00700000 -0.00116737 1 9.9Eˆ-7 1 2615 47 0.690

8.6.6 -0.00120000 -0.00116737 8 1.0Eˆ-7 8 2163 22 0.610

A g01 -15 -15 10 -12.6562 0 44280 367 35.86

B g02 -0.803619 -0.740749 0 -0.363375 10 44921 71 31.43

C g03 -1 -1 10 -1 0 5313 29 2.840

D g04 -30665.539 -30665.500 10 -30665.5 0 11429 101 3.920

E g05 5126.4981 5126.5000 10 5126.5 0 3827 60 0.980

F g06 -6961.81388 -6961.81000 10 -6961.81 0 747 8 0.120

G g07 24.3062091 24.3062000 10 24.3062 0 17804 34 10.48

H g08 0.095825 -0.105460 10 1.2Eˆ-8 10 613 9 0.120

I g09 680.6300573 680.6300000 10 680.6300000 0 22881 247 11.79

J g10 7049.3307 7049.2480 10 7049.2480 0 10639 10 5.550

K g11 0.75 0.75 10 1 10 1852 116 0.440

M g13 0.0539498 0.0539498 10 0.0539498 0 3358 32 1.230

P1 -310 -310 4 -168 6 9640 69 3.780

P2 -47.764888 -47.761100 10 -47.761100 10 25627 299 16.56

P3 -5.508 -5.508 10 -5.508 10 1247 35 0.270

5 Numerical Results 24

Tab. 9: ICRS-Filter information
Problem Most Feasible Point Least Feasible Point

Name Mean Objective Mean Constraint Norm Mean Objective Mean Constraint Norm

HS 018 5.04 0.00 0.40 35.26

HS 019 -4939 0.340 -7766 20.89

HS 021 -99.95 0.000 -99.95 0.000

HS 023 3.42 0.00 0.00 11.00

HS 030 20.9300 0.0008 2.2300 1.0300

HS 038 0.15 0.00 0.15 0.000

HS 041 1.9900 0.0002 1.7400 1.9800

HS 059 -7.27 0.00 -15.65 374.20

HS 062 -22540 0.0006 -27901 0.5100

HS 071 70.50 0.0002 21.64 21.2000

HS 080 0.80 0.03 0.00 41.54

HS 083 -30659 0 -31851 2.060

HS 085 -1.81 0.00 -2.03 101.00

HS 093 1605.00 0.030 981.88 2.180

HS 095 0.04 0.00 0.04 0.004

HS 098 3.65 0.00 2.56 12.96

HS 101 2538.40 0.34 11.34 166.10

HS 103 1238.29 0.00 10369.00 158.30

HS 104 4.16 0.007 -4.44 10.56

HS 109 5649 5603.65 178 110769

HS 114 -590.71 10.83 -19233.00 7310

HS 118 734.71 0.00 659.88 78.16

HS 119 2724.820 0.3 1377.5 8.780

2.1.1 -12.01 0.00 -12.12 0.070

2.1.2 -208.36 0.00 -862.3 70.85

2.1.3 -187.63 0.00 -187.63 0.000

2.1.4 -8.54 0.00 -180.64 814.62

2.1.5 -257.62 0.00 -269.30 8.970

2.1.6 -26.34 0.00 -26.71 0.160

2.1.7 Case 1 -187.74 0.00 -31457.00 1156

2.1.7 Case 2 -684.70 0.00 -38367.00 1192

2.1.7 Case 3 -5586 0.00 -691699 1136

2.1.7 Case 4 -616.80 0.00 -25409.00 1224

2.1.7 Case 5 -2884 0.00 -357597 1118

2.1.8 42772 0.00 33328 50.36

2.1.9 0 0.00 -6 4.000

2.1.10 168840 0.00 -800637 26562

3.1.1 9173 0.00 7216 226944

3.1.2 -30657 0.00 -31868 2.000

3.1.3 -253.58 0.00 -129101 115.26

3.1.4 -3.56 0.00 -4.36 2.350

5.2.2 Case 1 157.96 59.14 1806.41 28181.00

5.2.2 Case 2 646.07 31.27 -3978.5 33985.00

5.2.2 Case 3 -4.12 141.45 -4140.80 72824.00

5.2.4 112.83 0.00 -1699.3 31.60

5.2.5 -2030.74 0.02 -8114.8 322.70

5.3.2 4.44 7.86 1.79 950.40

5.3.3 3.283585 218.0682 2.108546 5659

5.4.2 9506.44 0.00 7816.00 241203.00

5.4.3 5692.9 76.4 1774.8 2286.0

5.4.4 4875.6 259.39 2410.98 7608.00

5 Numerical Results 25

Tab. 10: ICRS-Filter information
Problem Most Feasible Point Least Feasible Point

Name Mean Objective Mean Constraint Norm Mean Objective Mean Constraint Norm

6.3.1 0.01 54846.000 -0.20 0.870

6.3.2 -0.03 0.340 -0.44 1.240

6.3.3 0.25 0.830 0.12 0.990

6.3.4 0.04 0.540 -0.42 1.040

6.4.2 -61.93 0.01 -115.04 66.44

6.4.3 0.27 0.000 0.03 0.310

6.4.4 -0.09 0.000 -0.21 0.530

6.4.5 0.04 0.000 -0.02 0.190

6.4.7 0.16 0.000 -0.01 0.480

6.4.8 -2.66 0.000 -3.97 0.480

6.4.9 0.34 0.000 0.04 0.320

6.4.11 0.39 0.000 0.01 0.510

6.4.12 0.22 0.000 -0.48 0.420

6.4.14 0.099 0.000 -0.67 0.420

7.2.1 1286.29 0.000 598.84 0.410

7.2.2 -0.30 0.000 -0.94 1.530

7.2.3 7873.88 0.000 6632.34 5.350

7.2.4 4.13 0.000 -3.37 5.730

7.2.5 10133 0.000 8958.2 0.500

7.2.6 -83.21 0.000 -98.69 0.910

7.2.7 -5.73 0.000 -9.07 2.330

7.2.8 -5.82 0.000 -14.10 6.960

7.2.9 3.42 0.00 2.31 49.04

7.2.10 4.03 0.04 0.11 978.7

8.5.1 1.49 0.13 0 15.60

8.5.2 1.08 2.71 0 15.60

8.5.3 2.17 0.03 0 86.97

8.5.4 0.55 0.016 0 1.880

8.5.5 0.0008 0.004 0 1.030

8.5.6 153466 0.04 1.28 7.020

8.5.7 104.77 0.003 0 0.960

8.5.8 41.32 0.009 0 0.720

8.6.1 0.77 0.0001 -0.52 0.2300

8.6.2 0.35 0.0006 -1.02 0.3200

8.6.3 1.59 0.008 -0.13 1.040

8.6.4 0.69 0.020 -0.16 1.080

8.6.5 0.019 0.0002 -0.5 0.3750

8.6.6 0.24 0.0005 -0.24 0.6000

A g01 -5.38 0.00 -170.07 644.10

B g02 -0.50 0.000 -0.51 0.450

C g03 -0.02 0.000 -203.00 2.220

D g04 -30659 0.000 -25578 2.170

E g05 5354.93 1.350 1607.87 1120.800

F g06 -4961.55 0.00 -7806.89 12.64

G g07 26.15 0.00 7.85 63.08

H g08 -0.105 0.000 -87.150 4.390

I g09 680.98 0.000 299.860 7974.400

J g10 7788.80 0.00 7140.52 1470812.00

K g11 1 0.000 0.019 0.900

M g13 0.84 0.02 0.00 42.73

P1 -263.710 0.000 -421.110 2.610

P2 -42.48 0.006 -1156.46 94.720

P3 -5.49 0.000 -6.83 3.740

5 Numerical Results 26

Tab. 11: Improved solutions
P

ro
b

le
m

n
u

m
b

er
H

S
1
0
9

fr
o
m

H
o
ck

a
n

d
S

ch
it

tk
ow

sk
i

(1
9
8
1
b

)

R
ep

or
te

d
so

lu
ti

on
in

li
te

ra
tu

re
S

o
lu

ti
o
n

ve
ct

o
r

o
b

ta
in

ed
fr

o
m

th
e

st
u

d
y

(
67

4
.8

88
1

11
34
.1

70
0
.1

33
56

91
−

0.
37

11
52

6
(

6
6
9
.1

0
9
7
6

1
1
3
1.

6
6
3
1
5

0.
1
3
2
9
5
9
−

0
.3

6
0
4
2

25
2

25
2

20
1
.4

65
42

6
.6

61
36

8.
49

4
)T

2
5
2

2
5
2

2
0
9.

2
1
2
4
7

3
8
6
.4

4
2
4
6

3
2
7.

9
9
0
4
9

)T

P
ro

b
le

m
n
u

m
b

er
H

S
1
1
8

fr
o
m

H
o
ck

a
n

d
S

ch
it

tk
ow

sk
i

(1
9
8
1
b

)

R
ep

or
te

d
so

lu
ti

on
in

li
te

ra
tu

re
S

o
lu

ti
o
n

ve
ct

o
r

o
b

ta
in

ed
fr

o
m

th
e

st
u

d
y

(8
49

3
1

56
0

1
63

6
3

70
12

5
77

18
) T

(8
4
9

3
0

5
6

0
1

6
3

6
3

7
0

1
2

5
7
7

1
8
) T

P
ro

b
le

m
n
u

m
b

er
7
.2

.4
fr

o
m

F
lo

u
d

a
s

et
a
l.

(1
9
9
9
)

R
ep

or
te

d
so

lu
ti

on
in

li
te

ra
tu

re
S

o
lu

ti
o
n

ve
ct

o
r

o
b

ta
in

ed
fr

o
m

th
e

st
u

d
y

(6.
47

47
2.

23
4

0
.6

67
1

0.
59

57
5.

93
1

5
.5

27
1

1.
01

08
0.

4
0
0
4
) T

(6.
3
4
5
7
8

2.
3
4
1
0
1

0.
6
7
0
8
6
9

0
.5

3
4
7
4
6

5
.9

5
2
7
9

5.
3
1
6
4

1.
0
4
3
9
9

0
.4

2
0
0
8
6
) T

P
ro

b
le

m
n
u

m
b

er
8
.5

.7
fr

o
m

F
lo

u
d

a
s

et
a
l.

(1
9
9
9
)

R
ep

or
te

d
so

lu
ti

on
in

li
te

ra
tu

re
S

o
lu

ti
o
n

o
b

ta
in

ed
fr

o
m

th
e

st
u

d
y

θ
=

(0
.0

16
8

12
.4

33
2

) z
=

 0.
99

85
0.

88
26

0
.1

15
9

54
7
.8

4
66

3.
7
8

0.
98

78
0.

84
37

0
.1

44
1

53
1
.4

9
67

5.
6
3

1.
00

11
0.

82
82

0
.1

72
9

51
2
.0

6
68

4.
9
5

0.
99

20
0.

78
74

0
.2

04
6

49
0
.8

4
69

5.
4
4

1.
00

58
0.

76
60

0
.2

39
8

46
4
.8

0
70

4.
6
2

1.
00

05
0.

72
42

0
.2

76
3

43
8
.6

4
71

4.
6
2

0.
99

95
0.

68
22

0
.3

17
3

40
7
.6

6
72

4.
9
4

0.
99

97
0.

63
77

0
.3

60
0

37
5
.3

5
73

5.
3
2

1.
00

13
0.

59
62

0
.4

05
2

34
0
.3

9
74

5.
5
5

1.
00

71
0.

55
87

0
.4

48
4

30
6
.5

6
75

4.
9
6

θ

=

(0.
0
9
7
0
9
6
6

9
.5

1
4
5
7

) z
=

 0.
9
9
6
7
5
7

0
.8

8
0
9
4
3

0
.1

1
5
8
1
5

5
4
7
.5

6
8

6
6
3
.3

8
2

0.
9
8
9
8
2
6

0
.8

4
5
4
7
4

0
.1

4
4
3
5
2

5
3
1
.7

2
9

6
7
6
.0

8
1

1
.0

0
1
1
5

0.
8
2
8
2
5
1

0
.1

7
2
8
9
7

5
1
2
.0

6
1

6
8
4
.9

5
9

0.
9
9
1
2
4
8

0
.7

8
6
7
5
2

0
.2

0
4
4
9
5

4
9
0
.7

8
2

6
9
5
.2

7
8

1.
0
0
2
1

0.
7
6
2
8
0
5

0.
2
3
9
2
9

4
6
4
.5

3
5

7
0
3
.8

2
5

1
.0

0
2
0
5

0.
7
2
5
5
4
9

0
.2

7
6
5
0
3

4
3
8
.4

3
4

7
1
4
.9

3
6

1
.0

0
5
8
7

0.
6
8
7
7
2
5

0.
3
1
8
1
5

4
0
7
.9

9
7
2
6
.1

4
0.

9
9
9
1
8
2

0
.6

3
9
0
1
8

0
.3

6
0
1
6
3

3
7
5
.4

1
8

7
3
5
.5

8
2

1
.0

0
1
4
4

0.
5
9
6
2
6
3

0
.4

0
5
1
7
4

3
4
0
.3

9
3

7
4
5
.5

6
7

1
.0

0
1
5
3

0.
5
5
3
7
7
2

0
.4

4
7
7
5
6

3
0
6
.3

6
7

7
5
4
.1

2

P

ro
b

le
m

n
u
m

b
er

H
g
0
8

fr
o
m

R
u

m
a
rs

so
n

a
n

d
Y

a
o

(2
0
0
0
)

R
ep

or
te

d
so

lu
ti

on
in

li
te

ra
tu

re
S

o
lu

ti
o
n

o
b

ta
in

ed
fr

o
m

th
e

st
u

d
y

(1.
22

79
71

3
4
.2

45
37

33
) T

(1.
2
2
7
8
1
6
4
7
1

3
.7

4
4
9
0
7
8
9
) T

P
ro

b
le

m
n
u
m

b
er

J
g
1
0

fr
o
m

R
u

m
a
rs

so
n

a
n

d
Y

a
o

(2
0
0
0
)

R
ep

or
te

d
so

lu
ti

on
in

li
te

ra
tu

re
S

o
lu

ti
o
n

o
b

ta
in

ed
fr

o
m

th
e

st
u

d
y

(
57

9
.3

16
7

13
59
.9

43
51

10
.0

71
18

2.
01

74
(

5
7
9
.3

0
6
7

1
3
5
9.

9
7
0
7

5
1
0
9.

9
7
0
7

1
8
2
.0

1
7
7

29
5
.5

98
5

21
7
.9

79
9

28
6
.4

16
2

39
5
.5

97
9

)T
2
9
5
.6

0
1
2

2
1
7
.9

8
2
3

2
8
6
.4

1
6
5

3
9
5
.6

0
1
2

)T

P
ro

b
le

m
n
u
m

b
er

P
2

fr
o
m

A
l

et
a
l.

(2
0
1
2
)

R
ep

or
te

d
so

lu
ti

on
in

li
te

ra
tu

re
S

o
lu

ti
o
n

o
b

ta
in

ed
fr

o
m

th
e

st
u

d
y

(0
.0

40
66

0
.1

47
72

12
0
.7

83
20

57
0
.0

01
41

43
39

0
.4

85
29

3
6
3

(
0
.0

4
0
6
7

0
.1

4
7
7
3
0
4

0.
7
8
3
1
5
3
3

0.
0
0
1
4
1
4
2
2
0

0
.4

8
5
2
4
6
6
5

0.
00

06
93

13
8

0
.0

74
05

2
0
.0

17
95

09
66

0
.0

37
32

68
18

6
0.

09
68

8
4
4
6

)T
0.

0
0
0
6
9
3
1
7
2
6

0.
0
2
7
3
9
9
3
2

0
.0

1
7
9
4
7
2
8

0
.0

3
7
3
1
4
3
7

0
.0

9
6
8
8
4
4
6

)T

6 Conclusions and future work 27

Tab. 12: Problem 5.3.3 ICRS-Filter information for multiple runs
Run Filter Most Feasible Point Filter Least Feasible Point

Objective Value Constraint Norm Objective Value Constraint Norm

1 1.959 206.080 1.827 1010.07

2 2.545 207.717 2.031 6845.00

3 3.899 262.990 1.968 8296.00

4 3.199 185.753 2.000 3369.80

5 3.449 220.061 1.889 6652.00

6 3.729 231.500 2.622 7707.00

7 2.620 257.828 2.486 5118.00

8 3.790 150.625 2.17 9643.00

9 2.514 233.207 1.878 2403.60

10 5.130 224.921 2.214 5545.20

6 Conclusions and future work

This paper presents a new approach towards obtaining improved solutions for generally

constrained nonconvex optimization problems. By combining the ICRS Algorithm of

Casares and Banga (1987) with the concept of a dynamic filter, the new method ICRS-

Filter is produced.

Our computational results suggest that the method works well with “small” problems

(i.e. up to 52 variables and 25 constraints). Failures of the method are attributed to the

local optimization solver which was unable to converge. However, it should be noted that

the ICRS-Filter method gives the most feasible points whose objective values are very

close to the best known solution.

The future work following from the very encouraging results obtained in this study

would be to use an alternative local optimization solver and scaling up the algorithm

by implementing it in C++. Large-scale applications with many more variables and

constraints will be examined to evaluate the performance of the algorithm.

References

Al, M., Golalikham, M., Zhuang, J., 2012. A computational study on different

penalty approaches for solving constrained global optimization problems with the

6 Conclusions and future work 28

electromagnetism-like method. Optimization, 1–17.

Banga, J. R., Seider, W. D., 1996. Global optimization of chemical processes using stochas-

tic algorithms. In: Floudas, C. A., Pardalos, P. M. (Eds.), State of Art in Global

Optimization. Kluwer Academic Publishers, pp. 563–583.

Box, G., Muller, M., 1958. A note on the generation of random normal deviates. The

Annals of Mathematical Statistics 29, 610–611.

Casares, J., Banga, J., 1987. Icrs: application to a wastewater treatment plant model.

Process Optimisation, 183–192.

Correia, A., Matias, J., Mestre, P., Serodio, C., 2010. Derivative-free nonlinear optimiza-

tion filter simplex. International Journal of Applied Mathematics and Computer Science

20, 679–688.

Edgar, T., Himmelblau, D., Lasdon, L., 2001. Optimization of Chemical Process.

McGraw-Hill Higher Education.

Fletcher, R., Leyffer, S., 2000. Nonlinear programming without a penalty function. Math-

ematical Programming 91, 239–269.

Fletcher, R., Leyffer, S., Toint, P., 2006. A Brief History of Filter Methods. Tech. rep.,

Argonne National Laboratory, Mathematics and Computer Science Division.

Floudas, C., 1999. Deterministic Global Optimization: Theory, Methods and Applica-

tions. Springer.

Floudas, C., Misener, R., 2009. Advances for the pooling problems: Modelling, global

optimization, and computational studies. Appl. Comput. Math. 1, 3–22.

Floudas, C., Pardalos, P., Adjiman, C., Esposito, W., Gumus, Z., Harding, S., Klepeis, J.,

C.A., M., C.A., S., 1999. Handbook of Test Problems in Local and Global Optimization.

Kluwer Academic Publishers.

6 Conclusions and future work 29

Fouskakis, D., Draper, D., 2002. Stochastic optimization: a review. International Statis-

tical Review 70, 315–349.

Hickernell, F. J., Yuan, Y.-X., 1997. A simple multistart algorithm for global optimization.

OR Transactions 1, 1–12.

Hock, W., Schittkowski, K., 1981a. Test examples for nonlinear programming codes. Vol.

187 of Lecture Notes in Economics and Mathematical Systems. Springer Verlag.

Hock, W., Schittkowski, K., 1981b. Test Examples for Nonlinear Programming Codes.

Vol. 187. Springer.

Karas, E., Ribeiro, A., Sagastizabal, C., Solodov, M., 2006. A bundle-filter method for

nonsmooth convex constrained optimization. Mathematical Programming 1, 297–320.

Nelder, J., Mead, R., 1965. A simplex method for function minimization. The Computer

Journal 7, 308–313.

Park, S. K., Miller, K. W., 1988. Random number generators: good ones are hard to find.

Commun. ACM 31 (10), 1192–1201.

Powell, M. J. D., 1969. A method for nonlinear constraints in minimization problems. In:

Fletcher, R. (Ed.), Optimization. Academic Press, New York, pp. 283–298.

Rumarsson, T., Yao, X., 2000. Stochastic ranking for constrained evolutionary optimiza-

tion. IEEE 4, 284–294.

Torn, A., 1978. A search clustering approach to global optimization. North-Holland, Am-

sterdam.

