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Turbulence and Transport in Stars and Planets

Adam Sean Jermyn

In this dissertation I have argued that the study of stars and gaseous planets has
relied too heavily on simplifying assumptions. In particular, I have demonstrated
that the assumptions of spherical symmetry, thermal equilibrium, dynamical equilib-
rium and turbulent anisotropy all hide interesting phenomena which make a true
di�erence to the structure and evolution of these bodies.

To begin I developed new theoretical tools for probing these phenomena, starting
with a new model of turbulent motion which accounts for many di�erent sources
of anisotropy. Building on this I studied rotating convection zones and determined
scaling relations for the magnitude of di�erential rotation. In slowly-rotating systems
the di�erential rotation is characterised by a power law with exponent of order
unity, while in rapidly-rotating systems this exponent is strongly suppressed by
the rotation. This provides a full characterisation of the magnitude of di�erential
rotation in gaseous convection zones, and is in reasonable agreement with a wide
array of simulations and observations.

I then focused on the convection zones of rotatingmassive stars and found them to
exhibit significantly anisotropic heat fluxes. This results in significant deviations from
spherical symmetry and ultimately in qualitatively enhanced circulation currents
in their envelopes. Accordingly, these stars ought to live much longer and have a
di�erent surface temperature. This potentially resolves several outstanding questions
such as the anomalously slow evolution of stars on the giant branch, the dispersion
in the observed properties of giant stars and the di�culty stellar modelling has to
form massive binary black holes.

In the same vein I examined the convection zones of bloated hot Jupiters and
discovered a novel feedback mechanism between non-equilibrium tidal dissipation
and the thermal structure of their upper envelopes. This mechanism stabilises shallow
radiative zones against the convective instability, which would otherwise take over
early on in the planet’s formation as it proceeds to thermal equilibrium. Hence tidal
dissipation is dramatically enhanced, which serves to inject significant quantities of
heat into the upper layers of the planet and causes it to inflate. This mechanism can
explain most of the observed population of inflated planets.

Finally, I studied material mixing in the outer layers of accreting stars and
developed a method for relating the observed surface chemistry to the bulk and
accreting chemistries. This enables the direct inference of properties of circumstellar
material and accretion rates for a wide variety of systems.
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Turbulence and Transport
in Stars and Planets

Adam Sean Jermyn

The Universe is a place of unmaginable scales, both large and small.

The challenge in astronomy is to tame these scales, to bridge the gap

between the fundamental laws of Nature and the incredible variety of

phenomena that result from their application to the countless constituents

of the heavens. Nowhere is this challenge as evident as in the study of stars

and planets. These bodies exhibit physics ranging in energy from the radio

all the way to the nuclear. They evolve on timescales of billions of years,

yet they oscillate in hours, flare in minutes and explode in seconds. Their

features span the gamut from hurricanes the size of Earth to prominances

and winds many times the size of the Sun. And most importantly, all of

these phenomena interact with one another across great swaths of space

and time.

Broadly speaking there are two tools that theoretical physics has to meet

this challenge. The first is to impose assumptions on Nature. This often

serves to make questions more tractable, but at the cost that the answers

one finds are only as good as the assumptions one uses. The second is to

climb up the ladder of complexity, using the laws of physics on one rung

to formulate e�ective laws on the next. This is more physically justified

but also considerably more di�cult. In this dissertation I have argued

that in the study of stars and gaseous planets astronomy has relied too

heavily on the former and perhaps not enough on the latter. In particular,

I have demonstrated that the assumptions of spherical symmetry, thermal

equilibrium, dynamical equilibrium and turbulent anisotropy all hide

interesting phenomena which make a true di�erence to the structure and

evolution of these bodies.

To begin I developed new theoretical tools for probing these phenom-

ena, starting with a new model of turbulent motion which accounts for

many di�erent sources of anisotropy. Building on this I studied rotating

convection zones in stars and gaseous planets and determined scaling re-

lations for the magnitude of di�erential rotation across all possible mean

rotation rates. In slowly-rotating systems the di�erential rotation is char-

acterised by a power law with exponent of order unity, while in rapidly-

rotating systems this exponent is strongly suppressed by the rotation. This

provides a full characterisation of the magnitude of di�erential rotation
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in gaseous convection zones, and is in reasonable agreement with a wide

array of simulations and observations.

I then focused on the convection zones of rotating massive stars and

found them to exhibit significantly anisotropic heat fluxes. This results

in significant deviations from spherical symmetry and ultimately in qual-

itatively enhanced circulation currents in their envelopes. Accordingly,

these stars ought to live much longer and have a di�erent surface tempera-

ture. This potentially resolves several outstanding questions such as the

anomalously slow evolution of stars on the giant branch, the dispersion in

the observed properties of giant stars and the di�culty stellar modelling

has to form massive binary black holes.

In the same vein I examined the convection zones of bloated hot Jupiters

and discovered a novel feedback mechanism between non-equilibrium

tidal dissipation and the thermal structure of their upper envelopes. This

mechanism stabilises shallow radiative zones against the convective insta-

bility, which would otherwise take over early on in the planet’s formation

as it proceeds to thermal equilibrium. As a result there is a hysteresis e�ect

whereby radiative zones, present when the planet forms, may be preserved

for most of the lifetime of the host star. This dramatically enhances tidal

dissipation and can inject significant quantities of heat into the upper layers

of the planet, causing it to inflate. This mechanism can explain most of

the observed population of inflated planets.

Finally, I studied material mixing in the outer layers of accreting stars

and developed a method for relating the observed surface chemistry to

the bulk and accreting chemistries. This enables the direct inference of

properties of circumstellar material and accretion rates for a wide variety

of systems.

My work suggests a new landscape of complex feedback between heat

and momentum transport processes and turbulence which is only apparent

when overly-simple assumptions are replaced by a picture which better

reflects the true complexity of Nature.



Contents

1 Introduction 17

1.1 Overview 17

1.2 Constituents 20

1.3 Thermodynamics 22

1.4 Di�usion 24

1.5 Advection 32

1.6 Turbulence 37

1.7 Geometry and Symmetry 41

2 Turbulence Closure 45

2.1 Introduction 46

2.2 Closure Formalism 48

2.3 Perturbative Corrections 52

2.4 Equations of Motion 54

2.5 Stresses and Transport 57

2.6 Software Details 57

2.7 Results 59

2.8 Discussion and Outlook 82

3 The Magnitude of Convective Di�erential Rotation 83

3.1 Introduction 84



12

3.2 Assumptions 87

3.3 Vorticity 89

3.4 Magnetic Fields 92

3.5 Thermal Equilibrium 94

3.6 Thermal Wind 98

3.7 Sti�ness 99

3.8 Slow Rotation 100

3.9 Advective Terms 106

3.10 Rapid Rotation 118

3.11 Inverse Cascade 133

3.12 Breakup Rotation 135

3.13 Tests 138

3.14 Limitations 143

3.15 Discussion and Outlook 146

3.16 Data Processing 149

4 Rotational Mixing in Massive Stars 161

4.1 Introduction 162

4.2 Origins of Meridional Flow 163

4.3 Di�erential Rotation 167

4.4 Anisotropic Convection 174

4.5 Centrifugal E�ects 179

4.6 Meridional Circulation in the Convection Zone 179

4.7 E�ects in Massive Stars 183

4.8 Chemical Composition Gradients 195

4.9 Convective Overshooting 195

4.10 Implementation in Stellar Models 200

4.11 Interpretation 202

4.12 Dicsussion and Outlook 203



13

5 Tidal heating of Hot Jupiters 205

5.1 Introduction 206

5.2 Isotropic Planetary Structure 207

5.3 Angular Temperature Distribution 213

5.4 Heated Thermal Structure 217

5.5 Expansion 221

5.6 G-Modes 223

5.7 Equilibrium Radius 237

5.8 Energetic Timescales 241

5.9 Comparison 241

5.10 Discussion and Outlook 242

6 Stellar Photospheric Abundances as a Probe of Disks and Planets 243

6.1 Introduction 244

6.2 Theory 245

6.3 Mixing Depth 250

6.4 Mixing Processes 259

6.5 Application to observations 266

6.6 Discussion and Outlook 281

7 Conclusions 283

Bibliography 289





Preface

This dissertation is the result of my work at the Institute of Astronomy at

the University of Cambridge between September 2015 and April 2018

with the guidance of Christopher Tout. All of the text is mine, though some

of it is based on work for which he, Pierre Lesa�re, Shashikumar Chitre,

Gordon Ogilvie, Mihkel Kama, Rob Izzard, Anna Żytkow, Sterl Phinney,

Jim Fuller, Matteo Cantiello and anonymous referees have provided advice

and/or editing. All figures are mine except where noted; all external

sources of data and ideas are referenced in the text; and any errors or

omissions are mine.

Parts of this dissertation have been previously published or submitted

for publication and parts will be submitted for publication in the near

future. Chapter 2 is based on work which has been published 1. Chapter 3 1 Jermyn, Lesa�re, Tout & Chitre 2018

will soon be submitted for publication in the Monthly Notices of the Royal

Astronomical Society under the title “TheMagnitude of Di�erential Rotation

in Convection Zones”2. Chapter 4 is in review at the same under the title 2 This work was done in collaboration with
Shashikumar Chitre, Pierre Lesa�re and
Christopher Tout.“Enhanced Rotational Mixing in the Radiative Zones of Massive Stars”3.
3 This work was done in collaboration with
Christopher Tout and Shashikumar Chitre.Chapter 5 is based on work which has been published 4. Chapter 6 is based
4 Jermyn, Tout & Ogilvie 2017on work which has been published 5.
5 Jermyn & Kama 2018

I hereby declare that this dissertation entitled “Turbulence and Transport

in Stars and Planets” is the result of my own work and includes nothing

which is the outcome of work done in collaboration except as declared

in this Preface and specified in the text. It is not substantially the same as

any that I have submitted or is being concurrently submitted for a degree

or diploma or other qualification at the University of Cambridge or any

other University or similar institution. I further state that no substantial

part of my dissertation has already been submitted or is being concurrently

submitted for any such degree, diploma or other qualification at the Uni-

versity of Cambridge or any other University or similar institution. This

dissertation does not exceed 60,000 words.





1 Introduction

There’s such a lot in the world. There’s so

much distance between the fundamental

rules and the final phenomenon that it’s

almost unbelievable that the final variety

of phenomena can come from such a

steady operation of such simple rules.

Richard P. Feynman

1.1 Overview

The theoretical study of stars has proceeded in earnest for over a century,

from early investigations of their thermal structure 1 to the discovery of 1 Jeans 1902, 1917; Eddington 1917, 1918;
Chandrasekhar 1931

nuclear processes 2 to detailed modelling 3. These e�orts have been met 2 Becquerel 1896; Rutherford 1919; Chad-
wick 1932
3 Paczyński 1969; Eggleton 1971; Pols et al.
1995; Paxton et al. 2015

with success beyond any reasonable hope and mark some of the great

triumphs of physics, including the origin of the chemical elements 4, the 4 Holloway & Bethe 1940; Wagoner et al.
1967; Hoyle & Fowler 1973age of the solar system, the compositions of the stars and the origins of

their heat and light.

Along the way a persistent theme that emerged was the need to un-

derstand the role fluid dynamics and turbulence play in transporting heat,

momentum and chemistry within stars. Early on significant attention was

paid to the details of these processes 5 but over time the field has accreted 5 Eddington 1929; Chandrasekhar 1961

more and more simplifying assumptions, many of which are now used

well beyond the regimes in which they are justified. This has caused a

great deal of confusion and gives the mistaken impression that fundamental

problems are few and far between.

In fact nothing could be further from the truth. In the regimes where

they fail, many simplifying assumptions hide a rich variety of fascinating

and exciting phenomena6. Some of these have come to light with new 6 A fun example is provided by Lecoanet
& Quataert (2013), who find that while
convectively-excited internal gravity
waves are essentially always negligible
in terms of the total energy budget of a
star, under the right conditions they can
come to dominate the radiative luminosity
which escapes from its surface.

numerical simulations and observations, but it is usually quite di�cult to

decompose the results into distinct physical processes which can then be

understood and used predictively. Thus there is a great deal still to be
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learned by starting from the full set of physical equations and evaluating

them with pen on paper.

This is doubly true in light of the vast array of extra-solar planets that

have recently been discovered 7. These worlds, which in many ways are 7 Rein 2012

quite similar to stars in their structure and evolution 8, exhibit a striking 8 Stevenson 1991; Guillot et al. 2004

diversity that cannot be explained without invoking a wide range of

complex physical interactions.

The purpose of this dissertation is then twofold. First, I have developed

several theoretical tools for understanding the structure and evolution

of stars and gaseous planets which make fewer simplifying assumptions.

These are principally analytic methods though I have employed numerical

methods where advantageous. Secondly, I have applied these tools in

various specific instances to learn more about astrophysical systems.

In the remainder of this introduction I review the basic physics which

enters into the study of stellar structure and evolution, with a focus on those

aspects which arise in this work. This is largely the same physics as enters

into the study of gaseous planets though I note where di�erences arise. A

key point of this overview is that convection is critically important to heat,

momentum and material transport in a wide variety of circumstances.

Following this, in Chapter 2 I develop a new turbulence closure model

which provides access to turbulent correlation functions without imposing

any significant assumptions apart from axisymmetry. I include rotation,

magnetism, shear and baroclinicity. Attempts have been made to include

and analyze some of these complications 9, but now is the first time that such 9 Canuto 1997; Lesa�re et al. 2013

a breadth of e�ects have been incorporated without invoking many free

parameters10 and in a way that can be rapidly incorporated into existing 10 Many models perform extremely well by
virtue of having many fitted parameters.
This makes them good for engineering ap-
plications where they serve as e�ective in-
terpolations but poor as predictive models.

computational models of stellar and planetary structure. In particular my

approach, which covers all of the e�ects that are likely to be relevant for

stars and planets, requires just one free parameter11 and is computationally 11 This makes it both predictive and readily
testable.

e�cient. Using this model I also extracted scaling laws to understand

turbulence analytically and explained them in intuitive physical terms.

Several of these laws were already known but many are brand new.

Using results obtained from this turbulence closure model I then turn

to the question of di�erential rotation in Chapter 3, where I derive general

scaling relations for di�erential rotation in convection zones of stars and

planets. The results suggest that the order-unity di�erential rotation ob-

served in the Sun is actually a generic feature of slowly rotating convection

zones, regardless of the mean rate of rotation. Beyond a certain point the

shear continues to growwith the rotation rate but the relative shear declines.
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This is driven by the increasing importance of the Taylor-Proudman term

in the vorticity equation, which couples the shear to the rotation axis.

Along the way I also derive previously-known scaling relations for the tur-

bulent magnetic field and use these to highlight the additional suppression

of di�erential rotation owing to magnetism.

In Chapter 4 I then build on that analysis to study the e�ects of rotation

on massive stars. I have found that because convection in their cores is

quite slow, even relatively modest rotation su�ces to make it substantially

anisotropic. This causes the flux distribution in the core to be far from

spherical. At the core-envelope interface heat transport transitions from

convective to radiative, which translates this flux anisotropy into a thermal

anisotropy. In e�ect the envelope becomes strongly baroclinic. This drives

a circulation current in the radiative envelopes of massive rotating stars

which is qualitatively enhanced relative to what was previously expected.

As a result these stars ought to live longer, because more fuel is mixed from

the envelope into the core, and ought to be redder, because the metallicity

of the envelope is enhanced by fusion ashes from the core. This potentially

resolves several outstanding questions such as the anomalously slow evolu-

tion of stars on the giant branch, the dispersion in the observed properties

of giant stars and the di�culty stellar modelling has in forming massive

binary black holes such as those discovered by the LIGO collaboration

recently 12. These are large e�ects which were entirely missed because 12 Abbott et al. 2016

of one simple assumption: that convection is isotropic. Ordinarily this

assumption is fine because either the corrections are not so great or the

consequences of those corrections are not so significant, but in this case

both the corrections and the consequences are large.

Turning to the question of planetary structure, in Chapter 5 I examine

the common assumptions of mechanical and thermal equilibrium. I found

that in hot Jupiter systems both can fail. In particular, I discovered a form

of feedback between the thermal and mechanical structures of the outer

envelopes of these planets. If there is a region with a shallow temperature

gradient in the envelope, so that heat is transported by radiation rather

than convection, that region acts as a resonant cavity for tides. In e�ect

the tidal pull from the host star has an enhanced impact in such zones.

Ordinarily this phenomenon is of little interest because radiative zones

disappear early on in the thermal evolution of gaseous planets. What I

found however is that the non-equilibrium tides inject heat into such

zones and this sustains them out of thermal equilibrium. Thus they are

allowed to survive throughout the planet’s evolution and so tidal dissipation
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is significantly enhanced over a long period of time. The tides inject

additional energy into the regions above the radiative zone and causes

such planets to expand. This mechanism explains most of the observed

population of inflated hot Jupiters, potentially resolving one of the great

mysteries of the field.

Finally in Chapter 6 I study themanner inwhichmaterial accreting onto

a star mixes into its outer layers. I developed a tool, the Contamination by

Accretion Method (CAM), to link the observed chemistry of the photosphere

to those of the stellar bulk and circumstellar material. This provides an

independent means to infer the accretion rate onto a star from its assumed

bulk chemistry and observed surface chemistry. Likewise the method

may be used in reverse to infer the chemistry of either the accretion or

bulk material from the accretion rate and observed surface chemistry.

This provides an important cross-check of existing measurements of stellar

accretion rates, which are often highly uncertain, and allows for previously-

impossible inferences of circumstellar disk chemistry.

I close in Chapter 7 with a summary of these results and a discussion of

future prospects. This work emphasizes that stars and gaseous planets are

vastly richer than one-dimensional equilbrium models give them credit

for. More than anything that is the result I wish to convey.

1.2 Constituents

Stars and gaseous planets are composed principally of protons, neutrons

and electrons13. Except for brief intervals of freedom between fission and 13 Neutrinos are generally also present but
usually negligible owing to their weak in-
teractions, which allow them to easily pass
through a star or planet. Dark matter may
or may not be present but if present its
e�ects on stellar and planetary structure
have yet to be observed. There are also,
of course, the force-carrying bosons, but
these are so di�erent in behaviour that we
consider them separately.

fusion events, neutrons are generally bound together with protons by the

nuclear forces in atomic nuclei14. This is a result of the immense energy

14 The exceptions to this are in compact
stellar remnants, such as neutron stars.

scales involved in the nuclear forces, which generally exceed the kinetic

energy per particle that may be found in these systems.

By contrast electrons may or may not be bound together with atomic

nuclei to form atoms15. This is because the force which binds them, namely
15 In some cases these atoms even bind to
form molecules!

the electromagnetic interaction, is characterised by much smaller energy

scales than the nuclear forces. There is thus much more opportunity for

free motion of electrons. Indeed as we shall note further on, whether

electrons are free or bound is often a key determinant of the properties of

matter, and has significant consequences for stellar and planetary structure.

It is not generally practical to calculate the motions of all of the particles

in a bacterium, let alone in a star or planet. There are simply too many

particles to give any a meaningful amount of attention. Furthermore

particles may influence one another at arbitrary distances16, making the 16 This is a consequence of the photon and
graviton being massless, and is also why
seeing is possible and why the large-scale
structure of the Universe is so complex.
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task appear even less tractable. In order for us to proceed then it must

be the case that in some fashion the small-scale interactions of individual

particles give rise to behaviours which may be understood on larger scales.

Fortunately this is a common theme in physics17. Whilst the resulting 17 This is best known as the Renormaliza-
tion Group, which was introduced in its
modern form by Wilson (1971) and later
expanded by Fisher (1974).

behaviours may look very unlike those from which they emerge 18, it

18 This was perhaps best expressed by An-
derson (1972) with the phrase “More is dif-
ferent.”

appears that in a great many cases we may construct useful and intuitive

descriptions of the behaviour of the unimaginably-numerous particles

which make up macroscopic matter.

In general the approach that is taken is to create a description of the

physics which emerges at a slightly larger scale than that of the current

description, making approximations as needed, and to then iterate on this

procedure until the desired scale is reached. Indeed we have already taken

one step in that direction by discussing the bound states of protons and

neutrons, and have implicitly taken another by not beginning with quarks

and gluons. The next significant step is one which carries us a great deal

further, and that is to divide the motions of these constitutent particles into

two categories, namely random and structured. The former encompasses

thermal motions, and is relevant whenever particles scatter frequently19 19 Whenever a scale is large or small, or a
phenomenon is frequent or rare, the crucial
question is with respect to what? In this
case frequently means relative to the time-
scale over which the boundary conditions
on the region of interest change.

and thereby ergodically explore the available phase space 20. A defining

20 Kardar 2006

feature of these random motions is that they are readily summarised at

larger scales by local thermally-averaged quantities. Thus, for instance,

the flux of momentum carried by particles is renormalized and becomes

the pressure. Similarly the energy of the particles is summarised by the

temperature, and their numbers by the density.

By contrast structured motion is not so easily summarised. This encom-

passes phenomena such as waves, shocks, and flows. In each case there is

some large-scale structure which is imposed on the small-scale motions

of particles. Unlike the case of random motions there is very little which

can be said generically of structured motions. Sometimes they obey the

principal of superposition, in which di�erent structures may coexist and

linearly superimpose, but sometimes not. This is usually determined by

the amplitude of the motion. Sometimes they interact with small-scale

random motions, as in the case of waves in a fluid, but sometimes not, as

in the case of magnetic prominences.

Of course there are also motions which are di�cult to classify, of which

turbulence is the most notorious example21. The chief di�culty posed 21 To highlight this, Horace Lamb was
quoted by Goldstein (1969) as saying “I am
an old man now, and when I die and go
to Heaven thereare two matters on which
I hope for enlightenment. One is quan-
tum electrodynamics, and the other is the
turbulent motion of fluids. And about the
former I am really rather optimistic.”

by turbulence is that it is structured. Depending on the circumstances

it can exhibit granules 22, bands 23 and eddies of all scales 24. On the

22 Bahng & Schwarzschild 1961
23 Rhines 1973
24 Richardson 1922

other hand turbulence is undeniably random, at least in the sense in which
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thermal motion is random. Turbulent motion is fluctuating and chaotic

in nature 25. The resolution of this apparent conflict is that turbulence 25 Deissler 1986

exhibits structure in its statistical correlations, but is e�ectively random

in its instantiation. This is also the reason that turbulence has proven so

di�cult a problem: it is structured yet it does not su�ce to examine a

specific instance. For our purposes therefore we shall use theories which

make statistical predictions about turbulence and other such in-between

phenomena.

Broadly speaking then there are three classes of phenomena we shall

consider, namely thermal, turbulent and structured. We now proceed to

discuss descriptions of specific physical phenomena which arise in stars

and planets.

1.3 Thermodynamics

It is a general rule that systems of identical featureless particles in a translationally-

invariant thermal ensemble may be described by two state variables 26. 26 Kardar 2006

Intuitively this is because once one specifies the temperature the mean

energy of particles is fixed. The mean momentum is therefore also fixed,

and because momentum determines velocity this combined with the den-

sity also determines the pressure. This relationship is often summarised in

terms of the equation of state, which may be written as

f (ρ,p,T ) = 0,

where ρ is the density, p is the pressure and T is the temperature.

When the particles are not featureless the system may require more

variables to be fully specified. For example when particles have spin then

one might specify the magnetisation of the ensemble, which plays a role in

determining thermal averages which couple to magnetism. While this is a

commonly considered case in the realm of condensed matter, it is rarely of

interest in stars and planets because the temperatures involved are typically

much greater than the energy which couples individual spins to the overall

magnetic field. Hence for the purposes of this work we neglect spin as a

thermodynamic variable.

Of more interest, in cases in which there are multiple kinds of particles

present the density may be broken out into a per-species density, such that

f ({ρi},p,T ) = 0,

where ρi is the density of species i. In particular, for an ideal gas the
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existence of multiple species only matters in determining the relationship

between the number density n of particles and their mass density ρ. Hence

the equation of state is often written as

f (µ, ρ,p,T ) = 0,

where µ is the mean molecular weight. For historical reasons this is ex-

pressed as a multiple of the proton massmp.

While a great deal of work has gone into characterising the equation

of state in stellar and planetary matter 27, the e�ects which are caused by 27 Rogers et al. 1996; Timmes & Swesty
2000; Guillot et al. 2004

complications in the equation of state are quite well-captured in modern

one-dimensional stellar evolution simulations 28 and are not our focus. 28 Eggleton 1971

Even in places where significant mysteries remain as towhat the equation of

state is, as in neutron stars 29, the consequences of di�erent such equations 29 Lattimer 2012

of state are well-understood. The main exception to this arises in the case

of turbulence in radiatively-dominated optically-thin regions where the

impact of the equation of state is not particularly well-understood and is

under active investigation 30. Exciting as those questions are, however, 30 Shaviv 2001, 2005

such considerations are not relevant in any of the cases which we shall

consider and so we neglect them. Hence we use the ideal gas equation of

state, which is written as

mpµp = ρkBT , (1.1)

where kB is the Boltzmann constant.

A straightforward consequence of equation (1.1) and the first law of

thermodynamics is that the entropy of matter is given by 31 31 Kardar 2006

s = lnp −γ ln ρ +д
({
ρi
ρ

})
+ c,

where γ is the adiabatic index, д is a function only of the mass fractions of

the various species and c is a constant which serves to non-dimensionalise

p and ρ. In cases in which the composition of the material is held fixed the

third term is constant and so we may write

s = lnp −γ ln ρ, (1.2)

where we have neglected the constant because only di�erences in entropy

are physically meaningful. As one final simplification we often take γ =

5/3, which is appropriate for a monotomic gas which is not undergoing

ionization 32. This is changed by ionization and radiation pressure but 32 Hansen & Kawaler 1994
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such changes are not important in our analysis and so we neglect them.

Finally it is useful to note that the specific33 internal energy of an ideal 33 By specific we always mean per unit
mass.

gas is

U =

(
1

γ − 1

)
kBT

µmp
,

which with γ = 5/3 produces

U =
3
2
kBT

µmp
. (1.3)

1.4 Di�usion

An assumption we made in the previous section was that the thermal en-

semble was translationally invariant. When properties of the system vary

in space this fails. For instance in the Earth’s atmosphere translational

symmetry is broken by the gravitational field, causing particles to pref-

erentially group near the surface of the planet. So long as the scale over

which this symmetry-breaking occurs is large relative to the mean free

path λ particles take between thermalising collisions this is not a problem.

There is still a nearly-thermal ensemble in each region larger than λ, so

we may simply promote each of pressure, temperature and density to be a

function of position.

If the ensemble in each region were independent of all of the others

there would be nothingmore to say. This is not the case, however. Particles

may flow freely, subject to scattering, between neighbouring regions. As

they do so they carry energy and momentum and mass, and so generate

fluxes of these quantities. On length-scales larger than λ these fluxes are

characterised by Fick’s law of di�usion 34, which states that the flux of a 34 Fick 1855

quantity ψ which is carried by particles in random motion is given by

Fψ = −Dψ · ∇ψ , (1.4)

where Dψ is the di�usivity tensor associated with ψ . Note that ψ may

be vector- or tensor-valued, in which case the di�usivity tensor must

carry and sum over indices associated with these additional properties35. 35 In particular the di�usivity of a rank-n
object requires 2n + 2 components. These
are broken down as one to match the gra-
dient, one to give the flux a direction and
2n to mix the n indices of ψ into the n
corresponding indices of the flux.

For instance the di�usivity of spin, which is a vector, must incorporate

the fact that in scattering events particles may change their spins, such

that the components of ψ mix in the process of di�usion. Further note

that equation (1.4) holds even if ∇ψ is quite large, though under such

circumstances the di�usivity tensor may become dependent on ∇ψ and
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the flux may cease be linear in this gradient.

An important consequence of equation (1.4) is that the di�usivity has

dimensions of length squared per unit time. That is, material di�uses a

distance l in time proportional to l2. Fundamentally this arises because

the particles in our system are undergoing random walks, but from a

practical perspective it means that the scale of a di�usivity is best judged

by a combination of two lengths, which may be the same, and one time.

A crucial simplification of equation (1.4) comes about when the random

motion of particles is locally rotationally symmetric. That is there must be

no preferred directions apart from that of ∇ψ . When this is the case Dψ

must be isotropic. Furthermore when the quantity ψ is a scalar such as

energy density the di�usivity must be a rank-2 tensor because there are

no additional indices to sum over. The only rank-2 isotropic tensors are

multiples of the identity, so

Fψ = −Dψ∇ψ ,

where Dψ is a scalar.

Even when ψ is not a scalar the assumption of rotational invariance36 36 e.g. isotropy

significantly simplifies the di�usivity tensor. For instance momentum is a

vector so its di�usivity tensor is rank-4. All isotropic rank-4 tensors may

be written as linear combinations of 37 δi jδkl , δikδ jl and δilδ jk , where δi j 37 Landau & Lifshitz 1959

is the Kronecker delta and equals one when i = j and zero otherwise. In

this case the di�usivity may be written as

Fi j = −
�
D1δi jδkl +D2δikδ jl +D3δilδ jk

� ∂ψl
∂xk

, (1.5)

where D1, D2 and D3 are scalars, Fi j is the flux of ψj along the direction ei ,

xk are spatial coordinates and summation is implied over repeated indices.

The assumption of isotropy is very often satisfied in stars and planets.

Random thermal motions are often very nearly rotationally symmetric.

This is because the energy scale involved in thermal motions is usually

much greater than that involved in the various symmetry-breaking forces

such as gravity acting over the mean free path38. We therefore proceed 38 A notable exception to this is in highly-
magnetised compact stellar remnants such
as white dwarfs and neutron stars. Intense
magnetic fields in those systems make the
motion of electrons highly anisotropic and
cause the charge di�usivity tensor to be
similarly anisotropic. See e.g. Yakovlev &
Shalybkov (1991).

on the assumption that these di�usivities associated with random motion,

hereinafter referred to as microscopic di�usivities, are isotropic. In the

remainder of this section we examine the typical forms and magnitudes of

several important microscopic di�usivities.
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1.4.1 Viscosity

The viscosity is the di�usivity of momentum. Because momentum is a

vector this must be a rank-4 tensor. On the assumption of isotropy we

follow equation (1.5) and write

Di jkl = D1δi jδkl +D2δikδ jl +D3δilδ jk .

In the case of momentum di�usion though there is another constraint,

namely that the flux Fi j must be symmetric 39. To see this note that the 39 Landau & Lifshitz 1959

torque on a piece of material is given by the flux of angular momentum

through its boundary. Hence

τj =

∫
S

Ji jdAi , (1.6)

whereAi is the area element of the closed surface S over which the integral

runs and Ji j is the flux of angular momentum. The angular momentum

flux is related to the momentum flux by

Ji j = ϵjlmxlFim ,

where ϵjlm is the Levi-Civita symbol, which equal to zero when any of its

indices are equal, +1 when its indices represent an even permutation of

the sequence {1, 2, 3} and −1 when they represent an odd permutation of

the same. Inserting this into equation (1.6) we find

τj = ϵjlm

∫
xlFimdAi ,

This is related to the rate of change of the mean angular velocity Ω of the

piece of material by its moment of inertia I, so that

Ijs
dΩs

dt
= ϵjlm

∫
xlFimdAi . (1.7)

Now the moment of inertia scales linearly with the massm of the material

and the square of its linear size l . Using m ∝ ρl3 we find I ∝ ρl5. The

right-hand side, on the other hand, scales as l3 because it contains the

coordinate x once and is an integral over a surface. It follows that

dΩs

dt
∝ l−2.

This, which diverges as the element of interest becomes smaller, is not

physical40. It follows that the flux of angular momentum into the element

40 An exception arises when the mean free
path λ is not small. This is because the
l → 0 limit is actually not physical: the
most we can do is proceed to l ≈ λ, at
which point our description of the sys-
tem in terms of locally averaged quantities
breaks down. Hence if the behaviour of
the angular acceleration is reasonable when
l = λ then the stress need not be symmetric.
This only arises in the astrophysical context
in very low-density systems and so is not
of interest for stars or planets.

must vanish as l → 0.
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The resolution to this contradiction is symmetry. Using the divergence

theorem we write equation (1.7) as

τj = ϵjlm

∫
∂

∂xi
(xlFim)d3x ,

where now the integral runs over the volume of interest rather than its

bounding surface. Expanding the derivative yields

τj = ϵjlm

∫
Flm + xl

∂Fim
∂xi

d3x .

The second term in the integral counts the angular momentum flux which

arises from the flux of linear momentum into the volume and may be

eliminated in the limit as l → 0 by centering the coordinate system on the

mean point of the volume41. The first term vanishes if either Flm vanishes 41 For a small enough volume the gradient
of Fim may be treated as constant. If xl is
centered on the mean point of the volume
then the integral of xl over the volume van-
ishes by definition. The next-order term is
non-vanishing but scales as l5 and so does
not cause a divergence in the angular ac-
celeration as l → 0.

or else if it is symmetric. The former is not generally possible so we find

the latter to be true.

The constraint of symmetry further restricts the form of the di�usivity,

so we write

Di jkl = D1δi jδkl +D2
�
δikδ jl + δilδ jk

�
. (1.8)

This is the most general form of the microscopic viscosity tensor. An

important consequence of this form relating to the symmetry of Fi j is

that rigid rotational motion does not couple to the viscosity, so a rigidly-

rotating state does not exhibit di�usive transport of angular momentum.

The viscosity is generally quite small in magnitude relative to the mo-

mentum scales of interest. The fluids of interest are typicaly ionized

hydrogen-dominated plasmas, so the di�usivity has magnitude42 42 We have neglected the radiative viscosity
because it is often, though not always, sim-
ilarly small. Because it scales as T 4 while
the particle viscosity scales as T 5/2 this be-
comes more relevant at high temperatures
and may dominated in the deep interiors
of massive stars. This becomes relevant in
Chapter 4 and we discuss the radiative vis-
cosity there.

|D| ≈ 5.2 × 10−15
�
lnΛ

�−1 (T
K

)5/2 (
ρ

g cm−3

)−1
cm2 s−1 (1.9)

(Spitzer, 1956), where |...| denotes the maximum value of any entry in the

tensor,

lnΛ =



−17.4 + 1.5 lnT − 0.5 ln ρ T < 1.1 × 105K

−12.7 + lnT − 0.5 ln ρ T > 1.1 × 105K

andT and ρ are implicitly divided by C.G.S.K. units when they appear in a

logarithm. Putting in typical numbers for the interiors of stars and gaseous

planets we see that typical magnitudes of the viscosity are 100 − 105cm2 s−1.

To put this number in context we define the Reynolds number 43 43 Stokes 1851
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Re ≡
3l

|D| ,

where 3 is the characteristic velocity scale of a shear and l is the char-

acteristic length scale. This number is responsible for determining the

importance of the viscosity in a fluid flow. In the slow convective cells

of planets and stellar cores44 3 ≈ 100cm s−1 and l ≈ 107 − 1011cm so the 44 See Chapters 4 and 5 for examples.

Reynolds number is in excess of 104. Likewise in regions which are di�er-

entially rotating typically 3 ≈ ∆Ωl , where ∆Ω is the di�erential rotation

rate and l ≈ 1011cm is of order the radius of the system. Typical di�erential

rotation rates45 are at least of order 10−6s−1 so 3l ≈ 1016cm2 s−1, which 45 See Chapter 3 for details.

again produces an enormous Reynolds number. These numbers are quite

approximate, but they are at the very low end of what is seen in stars and

gaseous planets. The full question of stability is somewhat more compli-

cated than a simple Reynolds number calculation, but this strongly suggests

that stellar and planetary systems readily develop turbulence. Under such

circumstances the microscopic viscosity may usually be neglected, and

unless explicitly noted we do so from now on.

1.4.2 Electrical Di�usivity

The electrical di�usivity is the di�usivity associated with electric charge.

When electrons and protons are strongly bound in individual atoms this

vanishes because charge carriers are unable to move without a carrier of

the opposite charge moving in the same manner. Hence in non-ionized

gaseous regions like the outer parts of Jupiter this conductivity is small,

typically vanishingly so 46. As a result we ignore the electrical conductivity 46 Liu et al. 2008

of atomic and molecular matter. This e�ectively decouples the matter from

the e�ects of electromagnetic fields. In particular, this also means that the

di�usivity of electromagnetic fields through the material is infinite because

the two are non-interacting.

There are two ways in which a significant electrical di�usivity may

be achieved. First, material may be ionized 47. In this case electrons are 47 Spitzer 1956

unbound and charge di�uses easily. Secondly, atoms may bind together

in a metallic state 48. Electrons are then bound but have wavefunctions 48 Ashcroft & Mermin 1976

which are spread out over many atomic sites, and so may easily hop from

nucleus to nucleus in the metal. In both cases for simplicity we take the

electrical di�usivity to be so large as to be e�ectively infinite. There are

two consequences of this. First, electric fields cannot penetrate the material

because it instantaneously adjusts its charge distribution to repel them 49. 49 Feynman 1964

Secondly, magnetic fields cannot move through the material because in
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doing so they set up infinitely large currents which oppose the change

according to Lenz’s law 50. In most cases the infinite charge-di�usivity 50 Feynman 1964

zero field-di�usivity limit is an excellent approximation for metallic or

ionized systems 51 so we proceed with this approximation. 51 Liu et al. 2008

There is, as usual, an intermediate regime. This arises most often in

the context of accretion disks, where the ionization fraction may be low

yet produce a non-negligible conductivity 52. Our focus here is never 52 Ilgner & Nelson 2006

on such systems, however. This regime also arises in some low-mass stars

and many gaseous planets in their ionization zones, but these are typically

small enough relative to either the atomic or ionized regions that they may

safely be neglected in the cases we examine. Hence we ignore this regime

completely and take systems to be in one or the other extreme.

Before moving on there is one subtlety worth noting, which is that

whether the electrical di�usivity is physically relevant really depends on

what one is interested in. When the question is one of charge transport the

di�usivity is relevant whenever it is large, whereas when the question is one

of electromagnetic field transport it is relevant when small. In general we

are much more concerned with field transport than with charge transport,

as we expect systems to do a good job of remaining neutral 53. For the same 53 Spitzer 1956

reason magnetic fields are generally of much more interest than electric

fields, except to the extent that electric fields arise from time-varying

magnetic fields.

1.4.3 Thermal Di�usivity

The thermal di�usivity is just the di�usion coe�cient associated with heat.

This generally arises from two sources, namely material conduction and

radiative transfer.

Material conduction just refers to the di�usion of particles between

regions of di�erent temperatures. This motion carries energy from hot

regions to cold ones54 and so transports heat. This occurs even when

54 More formally heat is carried from re-
gions of high free energy density to those
of low free energy density.

there are collisions or interactions which transfer momentum between

particles because these on average serve to transfer energy from hot to

cold55. While the thermal di�usivity of solids is rather complicated 56 and

55 While there are physical justifications for
this for any given kind of microscopic in-
teraction, the fundamental reason for this is
the second law of thermodynamics, which
among other things precludes heat from
di�using from cold to hot without an in-
put of free energy. See Kardar (2006) for
more details.
56 Ashcroft & Mermin 1976not particularly of interest, that in gaseous systems is well approximated

by the viscosity. That is, the particle di�usivity of heat is similar to that

of momentum. The reason for this is that both heat and momentum are

carried by particles, so both di�usivities are to leading order just given by

the particle di�usivity. There are of course corrections to this arising from

the microscopic details of particle interactions57. These serve to modify

57 For instance, the more collisions preserve
the directions of the incident momenta the
more the momentum is carried along the
direction of motion. This may be viewed
as a modification to the mean free path, but
di�erent modifications are required for the
di�usion of other quantities such as spin,
which depends on the probability of spin
flips in collisions, and heat, which depends
on the extent to which collisions exchange
energy.
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the mobility58 of the di�using quantity. The mobility X then sets the 58 The ratio of drift velocity to applied force

di�usivity via the Einstein relation 59 59 Einstein 1905

D = XkBT .

These considerations typically correct the mobility by a dimensionless

factor of order unity, so as a first approximation they may be neglected.

Radiative transfer, similarly, refers to the di�usion of photons between

regions of di�erent temperatures. This di�usion occurs because the photon

density scales asT 4 and hence gradients in temperature result in gradients in

photon density 60. This mode of thermal di�usion has two key advantages 60 Kardar 2006

over material conduction. First, photons travel at the speed of light rather

than at the necessarily subliminal speeds of matter. Secondly, photons often

have much smaller collisional cross-sections than electrons and nuclear

matter. The chief disadvantage of photons in this race is that their share of

the thermal energy scales much more strongly with temperature, going

as T 4 rather than as T for the matter component. At high temperatures

this favours optical conduction, but at low temperatures there may be

insu�cient thermal energy in photons for them to provide any significant

heat transport. Needless to say these calculations have been done, with

the conclusion that radiative transfer is the dominant source of thermal

di�usivity in all gaseous phases of stellar and planetary matter 61. In 61 Hansen & Kawaler 1994

degenerate matter such as that found in white dwarfs, neutron stars and

giant planetary cores material conduction is the dominant e�ect, but these

regions are not of interest here and so we only need to consider radiative

e�ects moving forward.

Radiative transfer is often parameterised in terms of the opacity κ, which

is a measure of the cross-section for photon-matter interactions per unit

mass. This is generally a function of frequency as well as of thermodynamic

state. When the mean free paths of photons are short, however, the

frequency dependence becomes irrelevant because the photons are well

approximated as being in local thermal equilibrium and so follow a black-

body distribution 62. This is the limit of interest so we use the resulting 62 Planck 1914

frequency-averaged opacity, known as the Rosseland mean opacity 63, 63 Hansen & Kawaler 1994

which is appropriate for calculating the heat flux associated with radiative

transfer.

Where detailed opacities are needed, as in Chapter 6, we use the

OPAL (Iglesias & Rogers, 1996) and Ferguson (Ferguson et al., 2005)

tables for solar composition and metallicity. This is not quite right when

the composition is di�erent from solar, but is a good enough approxi-
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mation for our purposes. The Ferguson tables are more accurate at low

temperatures while OPAL extends to much higher temperatures, so we

choose the Ferguson opacities where available and the OPAL otherwise.

The result is shown as a function of temperature and density in Fig. 1.1.

White regions are those not covered by the tables or with opacities falling

outside the range from 10−2 − 105cm2 g−1.
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Figure 1.1: The opacity for solar compo-
sition is shown in colour on a logarithmic
scale as a function of density and tempera-
ture. The top-right region is most repre-
sentative of the deep interiors of stars, the
bottom-left of their atmospheres, and the
top-left of the interiors of gaseous planets.

Where detailed opacities are not needed we approximate them as appro-

priate to the regime of interest, using electron-scattering calculations in

the high-temperature limit64 and molecular/dust calculations in the low- 64 See Chapter 4.

temperature limit65. These limits have opacities of order 10 cm2 g−1 and 65 See Chapter 5.

10−2 cm2 g−1 respectively. Additionally in intermediate temperatures at

the densities typical of stellar interiors we sometimes use Kramers’ opacity

law, which states that 66 66 Kramers 1923

κ ∝ ρT −7/2,

where the proportionality constant depends on both metallicity and com-

position and is omitted because in all cases where we use this law we are

only concerned with the scaling of the opacity and not with its overall

magnitude. The regime in which this scaling is applicable is readily seen

in Fig. 1.1 as beginning at a density of 10−6 g cm−3 and at temperatures

between 103K and 105K. This window extends with T ∝ ρ2/7 up to

densities of order 1g cm−3, at which point free electron scattering sets a

lower bound on the opacity.
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1.5 Advection

In the previous section we saw that random thermal motions result in

di�usion, and before that we saw that thermal systems may be summarised

by just a few local variables. This represents a dramatic reduction in

complexity and so it is not too steep a price to pay that in the process

we picked up di�usivities which vary with temperature and pressure in

complicated ways.

The next step is to determine an equivalent large-scale description for

ordered motions. To do so we let the momentum density be p and the

mean velocity be 3. Both are defined as averages over a distance somewhat

greater than the mean free path of particles in the system.

Next consider some small volumeV with bounding surface ∂V . The

rate of change of some locally conserved quantity ψ in this volume is

related to its flux through the volume by67 67 When defined in this manner ψ must
be a volumetric density of some quantity
which is carried by individual particles.d

dt

∫
V

ψd3x = −

∫
∂V

Fψ ,idAi , (1.10)

where Fψ is the flux of ψ and dAi is the outward-oriented area element. If

ψ is carried by particles in the system then

Fψ = 3ψ .

That is, the flux of ψ is given by the rate at which particles move times

the density of ψ among them68. Inserting this into equation (1.10) and 68 It is interesting to note that this statement
holds even for thermal motions, it is just
not terribly useful in that case because on
average particles move in one direction just
as much as they move in any other so one
immediately has to consider the statistics
of the motion rather than the motion itself.

employing the divergence theorem we find69

69 Note that the derivatives in time become
partial derivatives because our volume has
become a point with spatial coordinates
which may also vary.

∂ψ

∂t
= −∇ · (3ψ ).

A special instance of this is given when ψ = ρ, in which case we find that

local conservation of mass requires

∂ρ

∂t
= −∇ · (3ρ). (1.11)

It is usually the case that conserved quantities carried by particles are

proportional to the mass density. This is because they are proportional

to the particle density, which is related to the mass density by the mean

molecular weight µ. Letting

ψ ≡ ρψ̄ ,

where ψ̄ is a conserved quantity per unit mass rather than per unit volume,
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we find

∂(ρψ̄ )
∂t

= −∇ · (3ρψ̄ ).

Expanding the derivatives on both sides produces

ρ
∂ψ̄

∂t
+ ψ̄
∂ρ

∂t
= −ρ3 · ∇ψ̄ −∇ · (3ρ)ψ̄ .

Inserting equation (1.11) the second term on the left-hand side cancels the

second term on the right-hand side and we find

∂ψ̄

∂t
= −3 · ∇ψ̄ . (1.12)

This expression of the conservation of specific70 quantities is so important 70 e.g. per unit mass

that it is often simplified using the so-called material derivative, defined as

D ≡
∂

∂t
+ 3 · ∇. (1.13)

With this, equation (1.12) becomes

Dψ̄
Dt
= 0. (1.14)

An immediate application of equation (1.14) may be made to the ve-

locity, which is just the specific momentum density. In the absence of

accelerating forces,

ρ
D3
Dt
= 0,

where by convention we have left in a prefactor of density. This is not

quite right, however, because there is also a flux of momentum owing to

the viscosity. Incorporating this we find

ρ
D3
Dt
= ∇ · Tν , (1.15)

where, following equation (1.8),

Tν ,i j ≡ ρ
(
D1
∂3k
∂xk
+D2

(
∂3i
∂x j
+
∂3j

∂xi
)
))

is the viscous stress tensor. The form of this tensor is fixed by the arguments

in Section 1.4.1. Notably because the tensor is symmetric with respect to

interchange of indices it does not couple to rigid rotation, and so can only

act on rotational motion when it is di�erential.
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A key point to note is that this seemingly-linear equation hides a non-

linearity. Expanding the material derivative we find

ρ
∂3

∂t
+ ρ3 · ∇3 = ∇ · Tν .

The second term depends quadratically on velocity. This non-linearity

is the source of turbulence and the many other varied and complicated

phenomena which fluids are known to exhibit. Without it the velocity

would evolve linearly in time and be unable to exhibit chaos.

In addition to producing di�usion, random thermal motions may also

contribute to the orderedmotion of the flow. When the pressure is uniform

these motions carry no net momentum and so do not couple to the velocity.

When this condition is removed the random thermal motions pick up an

ordered component associated with the fact that particles preferentially

flow along the pressure gradient71. Hence equation (1.15) becomes72 71 Imagine a box containing vacuum on
one side of a divider and a gas on the other.
Upon removing the dividing barrier the
gas flows into the vacuum side because mo-
tions which were previously turned around
by collisions with the wall simply carry on-
wards, whereas those oriented away from
the vacuum side continue to experience
collisions. In this way particles orient to-
wards the vacuum and random motion be-
comes ordered. The second law of thermo-
dynamics is satisfied because what we gain
in knowledge of the momenta of the parti-
cles we more than lose in ignorance of their
positions in the now-expanded volume.
72 The precise form, with no prefactor mul-
tiplying ∇p, arises because the pressure is
by definition a flux of momentum, so its
gradient specifies howmuch more momen-
tum flows in one direction than in its re-
verse.

ρ
D3
Dt
= −∇p +∇ · Tν .

In the presence of accelerating forces, which we summarize with the term

f , this becomes

ρ
D3
Dt
= f −∇p +∇ · Tν . (1.16)

This is the famous Navier-Stokes equation 73. While its formal closure

73 Landau & Lifshitz 1959

remains an open question we shall proceed in the normal tradition of

physics by assuming that it fully determines the evolution of velocity given

equations specifying f , p and ρ everywhere.

There are two further complications which we must introduce to equa-

tion (1.16). The first is to note that pressure and density do not evolve

independently. In particular they are related to each other and to the

temperature by the equation of state. When the temperature is specified

this is not a problem, but when it is not this requires a further equation

for closure. This is supplied by the first law of thermodynamics, which

states that the change in the internal energy of a system is equal to sum of

the heat it receives and the work done upon it74. That is 75, 74 This is assuming that there is no signifi-
cant entropy of mixing and that there are
no chemical or nuclear reactions.
75 Kardar 2006dU = dQ + dW ,

where U is the specific internal energy, Q is the specific heat76 andW is 76 This is related to the entropy via dQ =
(kB/µ)Tds , see e.g. Kardar (2006).
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the specific work. The work done upon a fluid is

dW = −pdV = p
dρ
ρ2

,

where V ≡ ρ−1 is the specific volume. Using equation (1.3) we find

3
2
kBdT = dQ +

p

ρ2
dρ.

Because this relation applies to a specific piece of material the derivatives

may be promoted to materials derivatives. This yields

3
2
kB

DT
Dt
=
DQ

Dt
+

p

ρ2
Dρ
Dt

.

The heating term is usually split into a component associated with local

heat input and one associated with the heat flux. The former is generally

written in terms of the specific heating rate ϵ while the latter is −ρ−1∇ · F ,

where F is the heat flux. Hence we find

ρcV
DT
Dt
= ρϵ −∇ · F +

p

ρ

Dρ
Dt

, (1.17)

where

cV ≡
3
2

(
kB
µmp

)
is the specific heat capacity at constant volume.

Two special limits of equation (1.17) are commonly used. First suppose

that the fluid is nearly incompressible. Then ρ does not vary along the

flow and

ρcV
DT
Dt
= ρϵ −∇ · F .

On the other hand suppose that p does not vary along the flow and neglect

variations in µ. Then using equation (1.1) we find

ρ (cV + 1) DTDt
= ρϵ −∇ · F .

This is more commonly written as

ρcP
DT
Dt
= ρϵ −∇ · F , (1.18)

where

cP ≡
5
2

(
kB
µmp

)
(1.19)
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is the specific heat capacity at constant pressure. For our purposes this is

the one which is most often of interest because the pressure gradients in

stars and gaseous planets are large and so flows typically proceed primarily

along isobars. There are exceptions to this but the di�erence between the

two equations is a factor of γ which does not make a significant di�erence

in any of our analyses.

The second complication is magnetism. In the limit of vanishing charge

di�usivity77 magnetism is completely decoupled from matter and so there 77 This is the non-ionized non-metallic
limit.

is nothing further to be done. In the opposing limit the magnetic field is

pinned to the matter. This statement has the pleasingly-simple expression

D
Dt

(
B

ρ

)
= 0, (1.20)

so that the magnetic flux through the material is conserved and advected

along as it flows. This may be seen intuitively by noting that if a conduct-

ing material is stretched perpendicular to B the field lines must dilute in

proportion to preserve the magnetic flux, while if it stretched along the

field no dilution is required.

Assuming that there no magnetic monopoles78 the magnetic field also 78 These are expected to exist as per argu-
ments by Dirac (1931) but upper bounds
on their density and lower bounds on their
mass suggest that they may be neglected
for our purposes. See e.g. Cabrera (1982).

obeys

∇ · B = 0. (1.21)

Furthermore in this limit there is no charge accumulation, such that the

electic field is fully determined by the magnetic field. When the flow is

non-relativistic79 the magnetic field is much greater than the electric. In 79 That is, much slower than the speed of
light.

this case the electromagnetic force on the fluid is given by the divergence

of the magnetic stress tensor80 80 Here we have used the C.G.S.K. unit sys-
tem in which µ0 = 4π .

ΠB,i j ≡ −
1
4π

(
BiBj − B

2δi j
)
. (1.22)

Hence equation (1.16) becomes

ρ
D3
Dt
= f −∇p −∇ ·ΠB +∇ · Tν , (1.23)

where f now excludes electromagnetic forces. This may also be written as

ρ
D3
Dt
= f −∇ ·Π +∇ · Tν , (1.24)

where

Πi j ≡ −
1
4π

(
BiBj −

(
4πp + B2

)
δi j

)
(1.25)
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is the combined magnetic and thermal stress tensor.

When velocities are small81 equations (1.16) and (1.24) both support 81 In this case they must be small relative to
the scale

√
f l/ρ , where f is a characteristic

force-scale and l is the length-scale over
which it acts.

waves. These are oscillatory modes which appear in the linear expansion

of the equations which satisfy

3(x , t) = h
(
x −

∫
cdt

)
for some function h and some velocity c. In other words wave solutions

propagate. This makes them almost uniquely tractable to study amongst

solutions for the motions of fluids and forms the basis for the seismic study

of stars 82. 82 Gough & Thompson 1991

Waves, along with shocks83, together describe the bulk of structured 83 We do not discuss shocks here because
they are rarely relevant in the interiors of
stars and gaseous planets, though as always
there are exceptions. These include plan-
etary systems with jet-streams and the ex-
plosions stars may su�er towards the ends
of their lives.

fluid motions. In the next section we shall examine turbulence, which

straddles the line between structure and randomness.

1.6 Turbulence

Turbulence is the motion which arises when the non-linearities inherent

in equation (1.16) dominate. The full behaviour of turbulence is far from

fully-characterised and so here we shall just give an overview of its known

characteristics.

To begin we neglect pressure, assume incompressibility84 and neglect 84 Hence ∇ · 3 = 0.

D1 relative to D2 in the viscosity85. Equation (1.16) then becomes 85 None of these are particularly physical
assumptions but they serve to illustrate the
character of the problem.D3

Dt
= ρ−1 f + 2∇ · (D2∇3) .

We further take D2 to be spatially invariant and write it instead with the

symbol ν/2, so that

D3
Dt
= ρ−1 f + ν∇23.

Expanding the material derivative we find

∂3

∂t
+ 3 · ∇3 = ρ−1 f + ν∇23. (1.26)

Now let

д(x) ≡ 1
(2π )3/2

∫
д̃(k)eik ·xd3k

define the inverse Fourier transform of any variable д̃. The forward trans-
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formation is

д̃(k) ≡ 1
(2π )3/2

∫
д(x)e−ik ·xd3x .

With these we may take the Fourier transform of equation (1.26) to find86 86 This can be accomplished using the Con-
volution Theorem. Equivalently it su�ces
to note that

∫
e ik ·x d3x = (2π )3δ 3(k ),

where δ is the Dirac delta distribution.
∂3̃(k)
∂t
+

1
(2π )3/2

∫
ik ′ · 3̃(k −k ′)3̃(k ′)d3k ′ = ρ−1 f̃ (k) − νk23̃(k).

When the velocity is small the second term on the left-hand side may be

ignored. In this case there is some forcing f which causes the fluid to

move. This motion evolves independently for each di�erent k and decays

owing to the viscosity.

On the other hand when the velocity is not small the second term in

equation (1.26) cannot be ignored. This term may exceed the damping87, 87 This is particularly the case for small k
because the non-linear term scales as k
whereas the damping scales as k2.in which case it serves to move energy between di�erent points in k-

space. This allows energy to build up at longer length-scales and grows

the importance of the non-linear term. Eventually the system may reach a

statistical steady state where the expected amount of energy at each k is no

longer changing. When this occurs there must be a pathway which flows

from the scales on which f injects energy to those which are principally

responsible for removing it through the damping. In the limit as ν → 0

this must constitute a flow from large to small scales because otherwise

there is no damping.

The flow of energy from large scales to small is known as the turbulent

or energy cascade 88. When the system is isotropic and incompressible 88 Richardson 1922

the analysis becomes particularly straightforward because the flow must

be purely unidirectional89. This special case results in the so-called Kol- 89 That is, with these constraints all orien-
tations at fixed k hold the same amount of
energy and so the flow is just in the scalar
k , and the only one-dimensional flow with
no accumulation at intermediate scales is a
unidirectional one.

mogorov Cascade, with the celebrated scaling relation 90

90 Kolmogorov 1941b
E(k) ∝ k−5/3,

where E(k) is the specific energy per unit lnk. Under more realistic

conditions the cascade is less straightforward91, but such a flow must 91 There are even cases where the flow is
reversed and proceeds for a while to larger
scales before turning around and heading
for smaller ones. See e.g. Sukoriansky et al.
(2006); Danilov & Gurarie (2002).

nevertheless be present in the limit of vanishing viscosity92

92 i.e. infinite Reynolds number.

A more general framework has since emerged in the form of the Renor-

malization Group 93. In this framework one defines the correlation func-
93 Wilson 1971

tions of interest and then studies how they vary with length-scale. More

specifically, in analogy to what one does in statistical mechanics and high

energy field theory one might define a partition functional Z with the
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property that

δn lnZ
δw(r1)...δw(rn) = 〈3(r1)...3(rn)〉,

where n is the order of the correlation function, w is an auxiliary field

which couples to the velocity and δ denotes a functional derivative. One

further defines an upper length scale L0 characteristic of the large-scale

structure of the system as well as a lower length-scale λ characteristic of

the vicsosity94 The idea is then to study the behaviour of Z as one varies 94 The system must be laminar on scales of
order λ and must not possess features on
scales larger than L0. These are often called
the dissipative or Kolmogorov scale Kol-
mogorov (1941b) and the outer scale re-
spectively.

L0 and λ. Frequently this allows one to define a set of di�erential equations

relating the e�ective fluid properties such as viscosity to the length scales

of interest 95. The net result is a set of equations of motion, the form and
95 Yakhot & Orszag 1986

scaling of which capture the correlations of turbulence but produce an

e�ective laminar flow. This is a very powerful method and has found great

success in reproducing the statistics of turbulence 96. Unfortunately unlike 96 Carati 1990; Zhou et al. 1997

in solid state systems, astrophysical fluids rarely enjoy many symmetries

or convenient boundary conditions and so the algebraic manipulations

involved in this analysis rapidly become extremely unwieldy. This does

not appear to be an insurmountable barrier but has thus far discouraged

this approach which otherwise has so many appealing properties.

A key insight of the renormalization approach to turbulence is that the

Reynolds-averaged turbulent stress

T ≡ 〈32〉 − 〈3〉2

plays the same role as the viscous stress and indeed originates in the viscous

stress 97. That is, the viscous stress Tν flows under the renormalization 97 Yakhot & Orszag 1986

group procedure into the turbulent stress T. This provides a formal justifi-

cation for the use of equations (1.16) and (1.24) with e�ective turbulent

stresses and has proven to be a powerful technique to calculate the e�ects of

turbulence on large-scale structures within a purely laminar framework98. 98 For an example of this in action
see Kitchatinov (2013).

Finally a discussion of turbulence would not be complete without com-

ment on numerical simulations. These are methods in which space and

time are discretised. The equations of motion are then likewise discretised.

In this way one arrives at an equation of the form

ψi (t + ∆t) −ψi (t) = ∆tH
�{ψj (t)}�

,

whereH is a non-linear operator99. The clear advantage of this method is 99 For simplicity we have written the
equation using an explicit time-stepping
scheme, though generally one instead re-
lates several consecutive time-steps and
solves for ψi (t ) self-consistently across
them. This often provides more rapid nu-
merical convergence to the true solution.

that it provides solutions to the equations of motion in whatever instances

one desires, subject to the convergence properties of the numerical methods
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used. This has led to great success in studying convection and dynamos

and a host of other turbulent phenomena100. 100 See e.g. Brown et al. (2007).

Unfortunately there are three significant challenges posed by simula-

tions. First, they introduce an artificial length scale, namely that of the

discretisation. In astrophysical systems this is never even close to the scale

on which the fluid is laminar101 and so the simulation intrinsically misses 101 Stars are often discretized on scales of
30km or larger, which is vastly larger than
the 102cm or smaller scales on which vis-
cosity dominates. See e.g. Brown et al.
(2007).

turbulent dynamics on all scales in between this and the dissipative scale.

Fortunately analyses performed with both the renormalization group and

simulations have found that correlations between motions on di�erent

scales frequently decay as the separation between the scales increases102. 102 This may be understood as saying that
the turbulent stress T depends only weakly
on the smallest length-scale in the system.With the former this may be shown formally in certain cases 103, while
103 Yakhot & Orszag 1986the latter demonstrates it by exhibiting invariant results with respect to the

discretisation scale once this scale is su�ciently small. There is still room

for error in this regard, but these results suggest that it su�ces to resolve a

few orders of magnitude around the scales of interest and hence that it is

not necessary to resolve down to the dissipation scale104. 104 The former is within reach on modern
supercomputers while the latter requires
of order 1020 times more computational
power. The latter was estimated using
the fact that the dissipation scale is typi-
cally 105 times smaller than the scales cur-
rently reached and computation cost scales
proportional to resolution to the power
of dimension. The dimension is four be-
cause the temporal discretisation must scale
with the spatial one in accordance with
the Courant condition. See Courant et al.
(1929) for details.

A related point is that for computational reasons one must often pick

and choose what physics to employ in a simulation. The simulation does

not indicate whether the choice of physics is appropriate, so there is a

danger of significant error arising from the choice of physics. For instance

simulations of the solar convection zone which omit magnetic fields are

known to be significantly in error yet remain commonplace 105.

105 Browning et al. 2003
The second challenge is that any given simulation only provides a single

instance of the turbulent flow. Because turbulence is chaotic 106 what is of 106 Deissler 1986

interest is not the particular flow achieved by one set of initial conditions

but rather the statistics of the flow averaged over initial conditions. These

simulations are generally very expensive and so one usually averages the

quantities of interest over time 107 rather than over multiple runs in the 107 Brown et al. 2007

hope that the simulation ergodically explores the space of possible con-

figurations. There is reason to believe that this is a justified approach108,

108 The chaotic nature of turbulence means
that configurations which are initially sim-
ilar diverge exponentially in time. Nu-
merical error therefore rapidly compounds
and so may provide something akin to an
ensemble average over initial conditions.
Unfortunately this averaging has not been
characterised in any formal way and so this
remains an assumption, albeit one which
empirically seems to hold. This may be
understood intuitively by noting that the
energy input rapidly reaches the dissipation
scale, which sets an e�ective upper bound
on the autocorrelation time.

but the time-scales available remain relatively short and so the uncertain-

ties in the averaging process remain large. Furthermore this limits the

study of time-dependent processes, which intrinsically cannot use such an

averaging process and must instead employ multiple simulations.

The third challenge posed by simulations is more philosophical in nature.

Even when they definitely provide the correct answer this does not come

with an explanation. A very productive route around this problem is to

develop intuition from a broader study of the output of a simulation and

use that to construct explanations, but this makes simulations very di�erent
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in kind from other a priori methods.

In short, simulations provide a valuable tool in the study of turbulence

but, like many other theoretical tools, their application carries significant

caveats. For the kind of analyses in this dissertation they are useful as a

means of empirical validation and motivation but not as a substitute for

theoretical reasoning. We therefore compare our results with simulations

wherever possible and appropriate but avoid leaning too heavily on their

results for justification. Furthermore as a precuation we refer to simula-

tions from as many di�erent groups and codes as possible and practical

because these likely exhibit di�erent averaging properties and di�erent

forms of numerical error. This approach is justified in Chapters 2 and 3,

where we find significant scatter amongst di�erent simulations of the same

underlying phenomenon.

1.7 Geometry and Symmetry

The final aspect of stellar and planetary structure we must discuss is geom-

etry. A defining property of these bodies is that they are gravitationally

bound109. When the system is rotationally symmetric and in steady state 109 This is meant in the thermodynamic
sense rather than in the purely dynamical
sense. That is, it may be the case that the
net energy of the system is positive, but so
long as the free energy is negative they are
statistically and in all practical senses bound.
The distinction is relevant in, for instance,
red giants, where the net energy is often
positive owing to the energy of ionization
yet the system remains bound because it is
entropically disfavoured for all of the elec-
trons to bind to nuclei and release their
energy kinetically. Likewise in common
envelope systems there are indications that
the unbinding process takes advantage of
the energy input from the central stellar
cores to overcome this entropy barrier.

the velocity must vanish. This is because the only spherically symmetric

vector field up to rescaling is radial and this cannot satisfy equation (1.11) in

steady state. Likewise the magnetic field vanishes because a non-vanishing

radial field cannot satisfy equation (1.21). Hence the only possible bound

configuration is one in which

∇p = −ρд, (1.27)

where д is the acceleration owing to gravity. It is straightforward to show

that110 110 This was first done by Newton (1687).
For a more modern version of the same
approach see Schmid (2011).д = −

GMer
r2

,

where er is the radial unit vector,G is Newton’s gravitational constant and

M is the mass in a spherical shell of radius r .

The assumption that the system is in steady state was crucial in deriving

equation (1.27). This is because this assumption in its most basic form

precludes turbulence, in which case there is no spontaneous symmetry

breaking111. When this assumption is relaxed to one of statistical steady

111 The analysis proceeds by supposing a
perturbation which breaks the system away
from spherical symmetry and showing that
the resulting perturbations to the velocity
field scale as a positive power-law with the
perturbation. This has not been shown
in full generality but has been demon-
trated for many di�erent classes of pertur-
bations. In particular it was shown for ro-
tation by Zahn (1992) and for magnetism
is a result of the conservation of magnetic
flux. It has likewise been shown for grav-
itational perturbations in analyses of tides
such as that of Ogilvie (2013) and for ther-
mal perturbations in analyses of asymmetri-
cally heated systems such as that of Jermyn
(2015).

state, such that turbulence is allowed, spontaneous symmetry breaking

becomes possible112. This is a consequence of the Mermin-Wagner the-

112 This was pointed out to me by the late
Donald Lynden-Bell.

orem, which states that spontaneous symmetry breaking is possible in
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statistical ensembles with local interactions only when the dimension is

at least two 113. Despite this possibility, spontaneous symmetry breaking 113 Mermin & Wagner 1966

has not been observed or seen in any simulations of turbulence, though

it has been suggested in several instances114. A case which comes close is 114 See Chapter 2 for examples.

the turbulent dynamo, which amplifies seed magnetic fields to magnitudes

independent of that of the seed 115. For slowly rotating systems, however, 115 Christensen & Aubert 2006

the resulting field is generally not structured and so likely does not break

spherical symmetry on expectation. Given this we proceed on the assump-

tion that there is no spontaneous symmetry breaking, so that turbulent

phenomena at most modify equation (1.27) with an additional pressure

term 116. 116 Gough 1977

The geometry of equation (1.27) may be used in conjunction with the

mechanisms of heat transport to infer the thermal structure of the system.

In particular, we show that the temperature decreases or is constant as one

moves radially outwards. To see this first note that in a convection zone

the entropy is constant or decreasing along er . Hence equation (1.2) gives

∂ lnp
∂r

≤ γ
∂ ln ρ
∂r

.

Inserting equation (1.1) and neglecting variations of µ we find

∂ lnp
∂r

≤ γ

(
∂ lnp
∂r
−
∂ lnT
∂r

)
.

Hence

∂ lnT
∂r

≤
γ − 1
γ

∂ lnp
∂r

.

Because γ > 1 and ∂ lnp/∂r < 0 it follows that the temperature and

pressure gradients are in the same direction, so the body is hotter at the

centre.

When the system is radiative rather than convective the direction of the

temperature gradient may instead be inferred with the steady state assump-

tion and the assumption that there are no heat sinks. That is, nowhere

in the body is heat converted into other forms of energy in significant

quantities117. With this we see that 117 Because the system is assumed to be in
steady state, except perhaps in the com-
position of regions responsible for energy
generation, this amounts to precluding net-
endothermic reactions. Such reactions do
occur in some stars, for instance when tem-
peratures are high enough for electron-
positron pair creation, but in all known
cases these endothermic reactions lead to
violent instabilities and so strongly violate
the steady state assumption.

∇ · F ≥ 0.

This, combined with spherical symmetry, implies that F points radially

outward. Because in radiative zones the temperature gradient is anti-

parallel to the radiative heat flux this means that ∇T is pointed radially
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inward, along ∇p.

In stars energy is generated by nuclear fusion. Because fusion rates are

generally increasing in both pressure and temperature118 119 and because 118 The rates depend most strongly on tem-
perature because this enters exponentially
by virtue of the Coulomb barrier. The sep-
arate dependence on pressure is really a de-
pendence on density, which enters because
of the multibody nature of fusion reactions.
119 Burbidge et al. 1957

both temperature and pressure increase with depth these processes are

largely confined to the centres of stars. Hence to first approximation heat

is generated at a point in the centre of a star and must then be transported

outwards to the surface in order for the system to remain in equilibrium.

When this does not happen heat accumulates in the star and causes the

pressure to rise and the star to expand. This causes the central temperature

to fall, which reduces the luminosity, and provides the luminosity with

more area over which to spread. Hence thermal equilibrium is usually

restored by this process. In the event that this does not prove su�cient the

system continues to expand, either exploding or asymptotically stabilising.

Fascinating though stellar explosions are, we do not consider them here.

Likewise the latter case may prove of interest in other contexts but is not

in any of the situations considered here. As a result we generally assume

that stars gradually adjust in size to carry the available luminosity.

By contrast in planets there is little internal heat generation. Heat may

be generated centrally if there is radioactive material present, but this is not

expected to contribute much to the overall energy budget of the system.

Hence to leading order we approximate planets as having no internal heat

source unless some other e�ect such as tidal dissipation gives us reason

to believe otherwise. Over time they cool, and in the process heat flows

out of the interior to the surface where it is radiated away120. When the 120 In principle this means we must give
up the steady state assumption, though in
practice the cooling time is so long that the
violation is negligible.

system is spherically symmetric this produces a heat flux which is actually

quite similar to that found in stars, with the main component being radially

outwards and, because the bulk of the thermal mass is in the core where the

material is densest, central in origin. In Chapter 5 we discuss the question

of when planets may be approximated as spherically symmetric and so we

leave that question for now, only noting that it is generally very accurate

at even modest depths.

In summary then, in both planets and stars, our expectation is of an

approximately radial heat flux which originates from a small region near

the centre of the object. Outside of the centre this flux is related to the

temperature by

ρcp
∂T

∂t
= −∇ · F .
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In equilibrium this reduces to

∇ · F = 0.

In nearly every case we will assume the systems of interest to be in thermal

equilibrium, with the exception of the scenario in Chapter 5, where the

violation of this assumption is of central importance.

While both the assumption of spherical symmetry and that of a statistical

steady state are generally violated they provide a useful starting point

from which to study more general scenarios. Moreover certain broad

statements remain true despite this. In particular stars and planets are

usually hottest in their centres. Furthermore the heat flow and pressure

and temperature gradients are usually at least approximately radial. Because

this is a special and highly-symmetric state we are principally interested

in its response to symmetry-breaking perturbations. Hence Chapters 2, 5

and 6 study deviations from a steady state, both in the strict sense and in

the statistical. Likewise Chapters 2, 3, 4 and 5 examine magnetic, tidal

and rotational e�ects, which introduce a preferred direction and so break

spherical symmetry.



2 Turbulence Closure

Big whirls have little whirls,

That feed on their velocity;

And little whirls have lesser whirls,

And so on to viscosity.

Lewis Fry Richardson

Abstract

We present an approach to turbulence closure based on mixing length

theory with three-dimensional fluctuations against a two-dimensional

background. This model is intended to be rapidly computable for imple-

mentation in stellar evolution software and to capture a wide range of

relevant phenomena with just a single free parameter, namely the mixing

length. We incorporate magnetic, rotational, baroclinic and buoyancy

e�ects exactly within the formalism of linear growth theories with non-

linear decay. We treat di�erential rotation e�ects perturbatively in the

corotating frame using a novel controlled approximation which matches

the time evolution of the reference frame to arbitrary order in the shear.

We then implement this model in an e�cient open source code and discuss

the resulting turbulent stresses and transport coe�cients. We demonstrate

that this model exhibits convective, baroclinic and shear instabilities as

well as the magnetorotational instability (MRI). It also exhibits non-linear

saturation behaviour, and we use this to extract the asymptotic scaling of

various transport coe�cients in physically interesting limits.
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2.1 Introduction

An understanding of turbulent transport and stresses remains one of the

major outstanding problems in the astrophysics of fluids. While many

pieces of this puzzle are understood in broad strokes, the nature of this

problem is such that the details are almost as important as the big picture.

The magnetorotational instability (MRI), for instance, is understood con-

ceptually but making predictions which match observed accretion discs is a

persistent problem 1. Similarly the solar di�erential rotation is understood 1 Murphy & Pessah 2015

to arise from turbulent stresses but precisely how this works and in balance

with what other forces remains uncertain 2. 2 Schou et al. 1998

Significant progress has indeed been made with three-dimensional

turbulence simulations 3 but these are generally relevant only on short 3 Lee 2013; McKinney et al. 2014; Salvesen
et al. 2016

timescales and in small volumes. Performing so-called global simulations

over large times and distances requires a turbulence closure model to

substitute for resolution at small scales 4. 4 Launder & Spalding 1974; Canuto 1994

At the other extreme models of stellar evolution generally assume ex-

tremely simple analytical transport coe�cients to overcome the tremen-

dous gap between turbulent timescales of minutes and nuclear timescales

of millions of years 5. A variety of such approaches have been developed. 5 Maeder 1995

For instance the mixing length theory of Böhm-Vitense (1958) provided

a closure of convection. This was then put on firmer theoretical ground

by Gough (1977, 2012) and extended to include additional phenomena 6. 6 Smolec et al. 2011; Lesa�re et al. 2013

Kichatinov (1986) introduced an entirely di�erent closure formalism, arriv-

ing at an expression for the so-called Λ-e�ect 7, and later incorporating it 7 Kichatinov 1987

under the α −Λ formalism with Rudiger 8. What these formalisms have in 8 Kichatinov & Rudiger 1993

common is a minimal set of free parameters: the mixing length formalism

has just the mixing length, and the formalism of Kichatinov & Rudiger

(1993) has just the anisotropy parameter.

Another set of models has arisen which aims to reproduce higher-order

moments of the turbulent fields. This increases the number of free pa-

rameters and a number of approaches have been developed to deal with

this. For instance Garaud et al. (2017) and Garaud et al. (2010) fit their

free parameters against small-scale simulations while Canuto (1997) fits

his against experimental results. In addition there are models, such as that

of Canuto (1994), which fix at least some free parameters by introducing

new assumptions, in that case regarding the various relevant time-scales.

Regardless of the details of how they close the equations of turbulent mo-

ments, models of this sort generally take the form of physically motivated
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analytic expressions which provide ready access to scaling laws. Their free

parameters then serve to better their agreement with data, at the cost of

being less straightforwardly interpreted and extended.

The availability of growing computational resources in recent years

has provided a new niche in this landscape in the form of computational

closure models. These are models which do not seek analytic solutions

but which are nonetheless distinct from attempts to simulate turbulence

in all its detail. Some may introduce new dynamical fields, as in the k − ϵ

model 9, while others invoke e�ective theories of small-scale motion 10. 9 Launder & Spalding 1974
10 Canuto & Hartke 1986

The latter kind are theories which accept the cost of having to numerically

accommodate complex behaviour in exchange for more precision over a

wider variety of phenomena. Combined with perturbation theory this ap-

proach represents a tunable middle-ground between expensive simulations

and simple analytic models, allowing the computational cost to be traded

o� against fidelity to suit the problem at hand. The model we present here

is in this spirit.

We construct a mixing-length theory which incorporates a spectrum

of three-dimensional fluctuations against a two-dimensional axisymmetric

background. This is done by treating each mode as growing with its

linear growth rate before saturating at an amplitude set by the turbulent

cascade 11. The motion in each mode is taken to be uncorrelated with that 11 Lesa�re et al. 2013

in each other mode. We treat the geometry of the flow in full generality,

allowing for baroclinic e�ects as well as magnetism and rotational shears.

To incorporate di�erential rotation we use a time-dependent sheared

coordinate system 12. In this frame there is a continual flow of modes across 12 Balbus & Schaan 2012

Fourier space, lending a time dependence to growth rates. Corrections to

saturation amplitudes owing to this flow are incorporated perturbatively

with the time derivatives of the growth rate.

In Section 2.2 we describe our closure framework in more detail, paying

particular attention to the choice of mixing length. We then develop a

perturbative approach for correcting the saturation amplitude in Section

2.3. In Section 2.4 we introduce the sheared coordinate system and the

linearised equations of motion. Finally in Section 2.7 we show results

from our theory, including calculations for the solar convection zone and

accretion discs.

The software implementing our model is open source and available

under a GPLv3 license. Details of the implementation are given in Sec-

tion 2.6. Tabulated transport coe�cients produced by the code are also

available under the same license and both may be found at github.com/

github.com/adamjermyn/Mixer
github.com/adamjermyn/Mixer
github.com/adamjermyn/Mixer
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adamjermyn/Mixer.

2.2 Closure Formalism

Turbulent phenomena generically exhibit a cascade of energy between

large and small scales 13. With some notable exceptions 14 this cascade 13 Zhou et al. 1997; Lohse & Xia 2010
14 Galperin et al. 2007

begins at a large scale L0 set by the overall structure of the fluid flow and

ends at an extremely small scale λ related to the microscopic viscosity15. 15 This is what we have previously called
the dissipative scale.

Between these scales, yet far from each of them, lies the so-called inertial

range where the fluid flow is scale-free 16. In this range all correlations of 16 Kolmogorov 1941b

the turbulent motion obey simple power laws.

This statement was originally proved by Kolmogorov (1941b) for

isotropic turbulence. It was later found to be a broader consequence of

the renormalizability of the Navier-Stokes equation 17 and consequently 17 Yakhot & Orszag 1986; Carati 1990

holds quite generally. This means that there is a single relevant scale

L0 for a given turbulent flow which fully characterises the turbulence

as seen by measurements performed over length scales L � L0. This is

the modern interpretation and justification of the original mixing length

hypothesis, which asserts that turbulent fluctuations on scales L � L0 are

not dynamically coupled to the large-scale (L � L0) flow properties 18. 18 Böhm-Vitense 1958

The scale-free nature of turbulence in the inertial range means that

modes of significantly di�erent wavevectors are uncorrelated. A natural

extension of this is to assume that all modes of distinct wavevectors are at

least approximately uncorrelated. That is, we assume that

〈3̃k ⊗ 3̃∗k ′〉 = (2π )3δ3(k −k ′)Vk , (2.1)

where v is the velocity, ⊗ denotes the outer product, 〈...〉 denotes the
time-averaged expectation, 3̃k is the amplitude of the Fourier mode with

wavevector k and Vk is the tensor specifying how di�erent components

of the same mode are correlated with one another. It is crucial to no-

tice that the quantity Vk is also the Reynolds stress of mode k. This,

and several other closely related quantities, are ultimately what we seek.

These two-point correlation functions su�ce to characterise not only the

stresses but also all higher-order correlations through Wick’s theorem and

perturbation theory 19 20. 19 Wick 1950; Isserlis 1918
20 This is, of course, subject to the exis-
tence of a Gaussian fixed point. Should
this not exist the two-point functions suf-
fice to characterise the stress but not the
higher-order moments.

To determine Vk we begin bywriting the linearised equations of motion

as

∂t 3(r ) = L �
3(r ), ∂i3, ∂i∂j3, ...,r , t�

,

github.com/adamjermyn/Mixer
github.com/adamjermyn/Mixer
github.com/adamjermyn/Mixer
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where L is a linear operator of its first argument and 3 is the fluctuat-

ing part of the velocity field. In principle we can work with this opera-

tor, though the derivatives of the velocity field make it highly inconve-

nient. Fortunately at short length scales the operator L may be treated

as translation-invariant and so we may compute a Fourier transform in r

without coupling di�erent modes. This gives

d 3̃k
dt
= L̃ [3̃k ,k, t] .

The modes are decoupled in this regime so L̃ can be represented by a

matrix L, and we write

d 3̃k
dt
= L(k, t)3k . (2.2)

When L is independent of t equation (2.2) is straightforward to solve

and gives us

d 3̃k
dt
=

∑
i

v0,iv̂k ,ie
λi t , (2.3)

where v0,i are the initial mode amplitudes and v̂k ,i and λi are respectively

the normalised right eigenvectors and eigenvalues of L. The vectors v̂k ,i
then specify the modes of the system at a given wavevector.

If the eigenvalues are not precisely degenerate then modes which begin

in phase rapidly become uncorrelated and we may extend equation (2.1)

to the modes at each wavevector and write

〈3̃k ,i ⊗ 3̃∗k ′,j 〉 = (2π )3δ3(k −k ′)δi jVk ,i . (2.4)

This result holds even when modes are degenerate. Because evolution

under L is deterministic, the expectation 〈...〉 represents a sum over initial

conditions. In this sum all relative phases between the modes are explored,

so even degenerate modes become uncorrelated.

Inserting equation (2.3) into equation (2.4) and summing over j and

integrating over k ′ gives us

Vk ,i = v̂k ,i ⊗ v̂k ,i 〈|v0,i |2 exp [2t< [λi ]]〉. (2.5)

Generally some λi have positive real parts and so in a long-term expectation

this exponential diverges. Indeed it turns out that these growing modes

are precisely those which matter! What happens of course is just that

these modes eventually reach amplitudes where the linear approximation

fails. By assumption the system is stable over long times relative to the
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turbulent scale so this must result in these modes saturating. This has been

variously described as mode crashing or the action of parasitic modes 21 21 Pessah & Goodman 2009; Lesa�re et al.
2009

but, regardless of the mechanism, it simply means that these modes exit

the linear regime and find their growth impeded.

To complete the closure we must find the saturation amplitude. Relying

again on the scale-free nature of turbulence we note that this must be a

power law in k. That is,

〈ṽ2k ,i 〉 = Tr
�
Vk ,i

�
=

A

M

(
k0
k

)2n
, (2.6)

whereA depends on the large scale properties of the flow but is independent

of k, M is the number of modes per wavevector and n is the index of the

turbulence.

The general question of which turbulent index to use and under what

circumstances remains open though many specific cases are well under-

stood. In the case of isotropic incompressible turbulence the Kolmogorov

index is well-known to be n = 11/6 22. There is more debate over the 22 Kolmogorov 1941a

index to use for convection, with answers ranging from n = 5/2 23 to 23 Benzi et al. 1994

n = 21/10 24 and n = 2.4 ± 0.2 25. There has also been work attempt- 24 Procaccia & Zeitak 1989
25 Ashkenazi & Steinberg 1999

ing to determine the spectrum in a context-sensitive manner through

energy balance arguments 26. In the magnetised case sources di�er even 26 Yakhot & Orszag 1986

more, with some suggesting that this range still applies 27, some arguing 27 Dobrowolny et al. 1980

for a Kolmogorov-like spectrum 28 and others giving a range of indices 28 Goldreich & Sridhar 1995

depending on geometry and the direction of the wavevector 29. 29 Sridhar & Goldreich 1994

From numerical experiments with our closure model we have found

that the magnetic stress scales su�ciently rapidly with k that it is divergent

for n = 11/6 and not for30 n = 8/3. This favours the scenario of Goldreich 30 As we shall discuss later, the turbulent
magnetic field scales with k so its contribu-
tion to the stress scales with k2. In order for
this to converge when integrated against
k−2n over all k above some cuto� it must
be that 5 − 2n < 0. Hence n = 11/6 is not
suitable but n = 8/3 is.

& Sridhar (1995), who argue that in the strongly-magnetised limit the

index ought to be n = 8/3.

In order to consistently treat both the non-magnetic and the strongly-

magnetised limits, we choose a simple prescription in which n = 11/6

when one of |N |, or |R∇Ω| exceeds k3A, where 3A is the Alfvén speed, and

use n = 8/3 otherwise. This means that there is a critical wavenumber

kc ≡
max (|N |, |R∇Ω|)

3A

at which the spectrum changes. In the non-magnetic case the evolution

matrix is independent of the magnitude of the wavevector and so altering

the index just alters the correlation coe�cients by a multiplicative factor.

In the magnetic case the potential for error is larger because the magnitude
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of the wavevector is relevant but there appears to be no consensus on the

best prescription and so we make do with what is available.

The wavenumber k0 is just that of the characteristic lenght-scale, and is

given by

k0 =
2π
L0

. (2.7)

Replacing the divergent expression in equation (2.5) with this amplitude

we find

Vk ,i =
A

M

(
k0
k

)2n
v̂k ,i ⊗ v̂k ,i .

It only remains to determine A. To do this we note that there is one

characteristic length scale L0 and one characteristic timescale, the growth

rate< [λi ] of the mode. Because A has dimensions of velocity squared we

find

Vk ,i =
c

M
L20< [λi ]2

(
k0
k

)2n
v̂k ,i ⊗ v̂k ,i , (2.8)

where c is a dimensionless constant of order unity. This constant, known

as the mixing length parameter, varies from theory to theory, so for clarity

we set c = 1 in this work but this degree of freedom is important to

note when comparing between models. In e�ect what we have done is

incorporate the non-linearity of turbulence by means of the spectrum

while using linear growth rates to set the characteristic scale. In practice

the spectrum only acts to provide a convergent measure over modes, and

it is the growth rate and the modes themselves that yield the anisotropies

and other phenomena of interest. This is closely related to the approaches

of Lesa�re et al. (2013) and Canuto & Hartke (1986).

This prescription is easily extended in cases where there are additional

dynamical fields, such as the turbulent displacement or a fluctuating mag-

netic field. The additional fields are simply incorporated into the vector

describing the state and M is increased accordingly. We can continue to

use equation (2.6) to fix the amplitude of the entire mode against that of

the velocity as long as we know the turbulent index n. Note, however,

that if the addition fields have their own characteristic length-scales those

must be considered in choosing L0, as the Kolmogorov hypothesis is only

valid in the inertial range.

Up to this point this prescription is mathematically identical to that

of Lesa�re et al. (2013), with the exception that we define the mixing wave

vector as in equation (2.7) while they use π/L0 instead. In the next section



52 TURBULENCE AND TRANSPORT IN STARS AND PLANETS

we introduce perturbative corrections to this model to capture a wider

variety of phenomena.

2.3 Perturbative Corrections

Now consider the case where the matrix L is time-dependent. Most of

our reasoning about the behaviour of modes from the previous section

still holds but, because the eigenvectors are time-dependent, we no longer

have a well-defined notion of a mode as a long-running solution to the

equations of motion. When the time dependence is periodic Floquet

theory applies, but in the cases of interest the time dependence is aperiodic.

To recover modes when the time evolution matrix itself evolves and does

so aperiodically we begin by expanding as

L(t) = L(0) + t dL
dt
+
1
2
t2
d2L
dt2
+ ... . (2.9)

This series can be truncated to produce an approximation of L which is

accurate in a certain window around t = 0.

We may likewise write the velocity at a given wavevector as

3̃k (t) = 3̃k (0) + t d 3̃k
dt

�����0
+
1
2
t2

d23̃k (t)
dt2

�����0
+ ... .

This suggests defining a new vector

Φk (t) ≡
{
3̃k ,

d 3̃k
dt

,
d23̃k
dt2

, ...
}
,

which, in principle, encodes the full time evolution of the velocity field.

This vector evolves according to

dΦk

dt
= AΦk (2.10)

where A is formed of blocks given by

Ai j =

(
i

j

)
di−j

dt i−j
L.

By definition though we also have

dΦk ,i

dt
= Φk ,i+1, (2.11)

where Φk ,0 = 3̃k , Φk ,1 = d 3̃k/dt and so on. Thus we are searching for a

simultaneous solution of equations (2.10) and (2.11).

In order to close the system we must truncate it at some finite order
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N . Doing so makes the assumption that the behaviour of the system at all

greater N is known. Inspired by the solution for time-independent L, we

try an exponential behaviour. This truncates equation (2.11) such that it

applies only to i < N − 1 and means that we are searching for vectors with

(AΦk )N−1 = λΦk ,N−1

and

Φk ,i+1 = (AΦk )i , i < N − 1.

These equations are most straightforwardly written as a general eigensys-

tem and this has the advantage of restricting the dimension of the linear

space to just those states obeying the constraint of equation (2.11). This

is possible because both A and the constraint are lower-triangular in the

same basis, and so each row may be substituted into the next, leading to

an eigenproblem of the form

QΦk ,0 = λWΦk ,0, (2.12)

where Q and W are matrices acting only on the 0-block. For example, in

the case where N = 2, our equations are

Φk ,1 = MΦk ,0

and

MΦk ,1 + ṀΦk ,0 = λΦk ,1,

which may be put in the form of equation (2.12) with

Q = M2 + Ṁ

and

W = M.

The eigenvectors of this system are solutions of the original equation (2.2)

because if ψ i
k
is such an eigenvector then

3̃k ,i (t) ≡
N∑
j=0

t j

j!
ψ i
j
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solves
d 3̃k ,i
dt
= L(t)3̃k ,i (t)

over the time window for which L is well-approximated at N -th order.

As a result we say that ϕi (t) are the instantaneous modes of the system at

N -th order and use them and in equation (2.8). In place of the eigenvalue

we use the instantaneous growth rate of the velocity, which is given by

д ≡
1
2
dv2

dt
=
<

�
Φk ,0 · Φk ,1

�

|Φk ,0|2 .

This approximation is controlled in the sense that so long as L(t) converges
as N grows, so does the inferred velocity history. In this work we present

results with N = 2 so that A involves both L and L̇. We leave the exploration

of larger N to later work.

2.4 Equations of Motion

We now specialise to the case of an ideal gas obeying the ideal MHD

equations. This section largely follows the derivation of Balbus & Schaan

(2012) so we present only the pieces necessary to understand later parts

of this work as well as the few places where our derivation diverges from

theirs.

We take the background to be axisymmetric, the fluctuations to be

adiabatic and we work in cylindrical coordinates. We neglect both the

microscopic viscosity and the microscopic thermal di�usivity because these

are both negligible in most circumstances in stellar physics31. For simplic- 31 It would not be di�cult, however, to in-
corporate them into this framework at a
later date.ity we also ignore the meridional circulation32. Because our closure model
32 In convecting systems this is a good ap-
proximation because, as we shall discuss in
the next two chapters, this flow is usually
small relative to the convection speed and
in any case obeys the same symmetries as
the convection. In stably stratified systems
this is approximation is worse and we in-
tend to explore the consequences of this in
the future.

treats turbulent properties as local, we compute all background quantities

at a reference point r0. Relative to this point we define the Lagrangian sep-

aration δr and velocity δv equivalent to ξ and Dξ/Dt of Balbus & Schaan

(2012). In addition we take the Boussinesq approximation that density

variations are ignored except in terms involving gravitational acceleration.

With the above definitions the continuity equation may be written as33 33 In Fourier space this is

q · ˜δr = 0.

Taking the time derivative of both sides we
see that

∂t (q · δ r̃ ) = q · δ 3̃ + δ r̃ · ∂tq = 0.

As a result

δ 3̃ · q = −δ r̃ · ∂tq , 0.

This is quite peculiar, but is just an arte-
fact of our coordinate system. Because the
wavevectors are time-dependent, maintain-
ing the volume of a fluid parcel requires
that the displacement be orthogonal to the
wavevector, which actually means that the
velocity is generally not orthogonal to the
wavevector.

∇ · δr = 0. (2.13)

In a fixed coordinate system di�erential rotation is di�cult to analyze

so we make two reference frame changes. First we switch from an inertial

frame to one rotating at

Ω0 ≡ Ω(r0).
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Secondly we make a formal change of coordinates

ϕ → ϕ − tδr · ∇Ω

without altering the corresponding unit vectors. Under this last change

the gradient transforms as

∇ → ∇− t(∇Ω)∂ϕ .

Because the operator L is most easily expressed in Fourier space we define

the transformed wavevector as

q ≡ k − tkϕR∇Ω.

With this the transformed equations (1.20) and (1.24) may be linearised

and written as

δ B̃ = B ·qδ r̃ (2.14)

and

∂tδ 3̃ + 2Ω × δ 3̃ + R̂Rδ r̃ · ∇Ω2 −
1
γ ρ

(δ r̃ · ∇s)∇ ·Π + i

ρ
q · δ Π̃ = 0, (2.15)

where s is the specific entropy given by equation (1.2) and Π is the stress

tensor given by equation (1.25) as

Π ≡ pI −
1
µ0

(
B ⊗ B −

1
2
B2I

)
.

All quantities prefixed with δ are fluctuating, a tilde denotes the Fourier

transformed function, and all other quantities are background fields evalu-

ated at r0. It is straightforward to see that this is the same equation as that

derived by Balbus & Schaan (2012) once the appropriate relations for the

pressure and magnetic force are substituted. Note that the second term

describes the Coriolis e�ect 34 and the third is a restoring force related 34 Coriolis 1835

to the centrifugal acceleration. Both arise from our choice of reference

frame and not from the underlying dynamics, though their e�ects are

quite real35. 35 Had we chosen an inertial reference
frame these terms would disappear but
other terms related to the background az-
imuthal motion would arise and play a sim-
ilar role.

The fluctuation in the pressure tensor may be written as

δΠ = δpI −
1
µ0

(B ⊗ δB + δB ⊗ B − IB · δB) ,

so in Fourier space

δ Π̃ = δp̃I −
1
µ0

(
B ⊗ δ B̃ + δ B̃ ⊗ B − IB · δ B̃

)
.
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Combining this with equation (2.14) and the Boussinesq approximation

we find

q · δ Π̃ = qδp −
i

µ0
(B ·q)2δ r̃ .

Note that as did Balbus & Schaan (2012) we take B ·q to be constant in

time as implied by the Boussinesq and ideal-MHD conditions. We now

depart from prior work and use this equation along with equation (2.15)

taking the component perpendicular to q to eliminate δp and find

0 =
(
∂tδ 3̃ + 2Ω × δ 3̃ + R̂Rδ r̃ · ∇Ω2

−
1
γ ρ

(δ r̃ · ∇s)∇ ·Π + 1
µ0ρ

(B ·q)2δ r̃
)
⊥q

, (2.16)

where the notation (...)⊥q denotes the component perpendicular to q.

Equation (2.16) is the linear equation which we aim to solve. To do

this we construct the matrix version L of this equation. In the process we

must choose a coordinate system. Both because of the constraint (2.13)

and because equation (2.16) is written in the plane perpendicular to q we

choose the unit vectors

â ≡
q̂ × ŵ√

1 − (q̂ · ŵ)2

and

b̂ ≡ q̂ × â,

where ŵ is any unit vector with ŵ · q̂ , 1. This choice of basis ensures

that our vectors are perpendicular to the wavevector.

A choice of particular convenience for ŵ is36 36 In the limit as ∇Ω vanishes this vector be-
comes meaningless, but in that case there is
no di�erential rotation and our motivation
for this choice similarly disappears. In that
limit we choose ŵ arbitrarily.

ŵ =
∇Ω

|∇Ω| .

With this choice â is time-independent, because the component of q

perpendicular to w is time-independent, and so we may write

δ r̃ = αâ + βb̂

and

δṽ = α̇â + β̇b̂ + β∂t b̂.

Note that there is a removeable singularity when ŵ ‖ q̂. The matrix

L is then given by computing the relation between ∂t
{
α , β , α̇ , β̇

}
and

{
α , β , α̇ , β̇

}
. The result is quite unwieldy so we do not present it here but
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note that it is fully documented in the software in which we implement

these equations.

2.5 Stresses and Transport

The equations of motion contain the position and the velocity, so our

expanded vector space is

Φ = {δr ,δ3, ∂tδ3, ..., } .

Combining the linearised equations of motion with our closure scheme

we can compute the correlation function

〈Φ ⊗ Φ〉 =
∫

d3k

(2π )3
∑
i

〈Φi
k ⊗ Φ

i∗
k 〉,

where the index i ranges over eigenvectors. This function contains all of

the usual stresses and transport functions. For instance, the Reynolds stress

is

R ≡ 〈δ3 ⊗ δ3〉 = 〈Φ1 ⊗ Φ1〉.

Likewise up to a dimensionless constant of order unity the turbulent

di�usivity is

d ≡ 〈δ3 ⊗ δr 〉 = 〈Φ1 ⊗ Φ0〉.

and the turbulent viscosity is

Q ≡ 〈δ3 ⊗ δr 〉 + 〈δr ⊗ δ3〉 = 〈Φ1 ⊗ Φ0〉 + 〈Φ0 ⊗ Φ1〉.

Similar expressions hold for the dynamo e�ect, the transport of magnetic

fields, and material di�usion.

2.6 Software Details

The software used for this work is Mixer version 1, which we have released

under a GPLv3 license at github.com/adamjermyn/Mixer. This solves

equation (2.12) with the time evolution given by equation (2.16) and, by

integrating over wave-vectors, produces the correlation functions given

in Section 2.5. All data produced for this work are available at the same

location as HDF5 tables with attributes documenting the physical inputs.

Post-processing and visualisation of the data was done with the Python

modules Numpy 37 and Matplotlib 38 and the relevant scripts for this are 37 van der Walt et al. 2011
38 Hunter 2007

included with Mixer.

The core of Mixer is written in C++, for performance reasons, and

github.com/adamjermyn/Mixer
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the code is supplied with a Makefile which supports compilation on both

Linux and MacOS. Mixer makes use of the Eigen library 39 for linear 39 Guennebaud et al. 2010

algebra. Mixer also uses the Cubature library for numerical integration.

This library is an implementation of the algorithms by Genz & Malik

(1980) and Berntsen et al. (1991). These integration routines are supple-

mented by a Python integration routine tailored for integrands with small

support regions. The details will be explored in later work. In addition,

many routines provide a Python interface. Currently Mixer only supports

single-threaded operation, though it may be used inside parallelised scripts

through the Python wrapper. The version of Mixer used to generate the

data in this work was compiled against Cubature version 1.0.2 and Eigen

version 3.3.3, though the code does not use any features which require

recent versions, so many likely su�ce.

Mixer is optimised for convecting systems for which achieving accuracy

better than 10−5 relative and absolute typically requires between 1ms and

1s on a single core of a 2016 Intel CPU. This is further improved when the

di�erential rotation is minimal, in which case the perturbative expansion

may be turned o� to save a factor of several in runtime. In stably stratified

zones and those with magnetic fields up to 103s may be required to achieve

good convergence.

In cases where the code has more di�culty it is quite likely that Mixer

becomes the bottleneck in simulations and so, under these circumstances,

we recommend tabulating results in advance. This is still considerably

more performant than direct numerical simulation, and the results can

generally be guaranteed to converge at much higher precision, so that

derivatives may be extracted as well.

At various points in the software we must divide by the magnitude

of the velocity of an eigenmode. This may approach zero in some cases.

To avoid dividing by zero in these cases we place a lower bound on this

magnitude, such that

|δ3|2 ≥ ϵ ,

where ϵ = 10−20L20|N |2 in the calculations presented in this work and N is

the Brunt-Väisälä freuqency. This corresponds to setting an upper bound

on the length scale d of the displacements δr , namely

|δr |2 ≤ L30|N |ϵ−1/2,

which means that d = 1010L0 in this work.
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To verify that this numerical fix does not impact our results we have

examined the correlation functions in several scenarios as a function of

this numerical cuto� L. For example, figure 2.1 shows the r − θ and r −ϕ

correlations as a function of d for a stably stratified di�erentially rotating

system. The results are constant over many orders of magnitude so long

as d > 105L0, which is easily satisfied by our default choice.
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Figure 2.1: The absolute values of
〈δ 3r δ 3θ 〉 (left) and 〈δ 3r δ 3ϕ 〉 (right) are
shown as a function of d , with both axes
log-scaled. These results are for a stably
stratified region with di�erential rotation
in the radial direction with |R∇ lnΩ| =
10−3, Ω = 0.1|N | and no magnetic field.
The data is computed for a point on the
equator with di�erential rotation at an an-
gle of π/4. Note that the dips in these
curves are indicative of sign changes. All
quantities are given in units of the mixing
length and the Brunt-Väisälä frequency.

2.7 Results

In this section we exhibit a number of results which come from applying

our model to a wide variety of astronomically- and physically-relevant

circumstances. We also compare with the results of Lesa�re et al. (2013)

and Kichatinov & Rudiger (1993). We modify the former to use the

convention in equation (2.7) to avoid spurious di�erences in scale. We

likewise assume that our L0 is equal to three times the mixing length

of Kichatinov & Rudiger (1993), as this is an inherent freedom in the

formalism and resolves an otherwise-persistent scale di�erence between

our model and theirs. These models have been well-tested against a variety

of data, most notably helioseismic results, and so provide a useful reference

for our work.

We have also included more direct comparisons but, because direct

experiments are extremely di�cult to perform under most circumstances
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relevant to astrophysics, we have instead included comparisons with simu-

lations and observations where available and applicable. Simulations are

often the most useful comparison for stellar phenomena, because a vari-

ety of processes, including meridional circulation, can mask the e�ects of

turbulent transport 40. In accretion discs, however, there are several observ- 40 Kitchatinov 2013

able quantities which are thought to correlate closely with the underlying

turbulence and these provide very helpful constraints 41. 41 King et al. 2007

These comparisons and calculations are not intended to be a complete

collection of the results our model can produce, nor have we exhaustively

explored the circumstances and dependencies of each result. Rather it is

our hope to demonstrate that there is a great deal of interesting physics in

this model, that our perturbative corrections give rise to realistic results

and reproduce many known results, and that there is much to warrant

further exploration along these lines.

2.7.1 Rotating Convection

We begin with the e�ect of rotation on convection in the case of a rotating

system with radial pressure and entropy gradients. It is useful to start by

comparing our results with those from simulations. Fig. 2.2 shows the

ratios
√
〈δ32r 〉/〈δ32〉,

√
〈δ32θ 〉/〈δ32〉 and

√
〈δ32ϕ〉/〈δ32〉 for several rotation

rates as a function of latitude. The positive latitudes come from Table 2 of

Chan (2001) while the negative are from Table 2 of Käpylä et al. (2004).

In order to match the units for the rotation rates we put everything in

terms of the coriolis number

Co ≡
Ωh

〈δ32〉1/2 ,

where, following the convention of Käpylä et al. (2004), 〈δ32〉1/2 was

computed for a non-rotating system and h is the pressure scale-height

h ≡ −
dr

d lnp
.

Our model overestimates the anisotropy of the turbulence but captures

its symmetries and trends. For instance we find that near the poles and in

non-rotating systems the θ and ϕ components of the velocity fluctuations

have identical magnitudes, in line with the simulations. We reproduce

the trend of decreasing anisotropy towards the equator and decreasing

anisotropy with increasing rotation, though we do not reproduce the

reordering of velocity components which occurs at high rotation rates near

the equator. Where there are di�erences between the θ and ϕ velocities
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we typically reproduce both their sign and magnitude, though there are

exceptions. Notably we find that 〈δ32r 〉 ≥ 〈δ32θ 〉 ≥ 〈δ32ϕ〉, which is seen in

these and other simulations 42. Likewise we find that radial motion makes 42 Rüdiger et al. 2005a

up a greater fraction of the total velocity near the poles than at the equator,

and that as the Coriolis number increases 〈δ32r − δ32θ − δ32ϕ〉 → 0, all of

which is in agreement with the predictions of Rüdiger et al. (2005b).

Our overestimate of the anisotropy may be due to our model incorpo-

rating the large-scale fields on all scales, as noted by Lesa�re et al. (2013).

This suggests that a future refinement might be to use estimates of the

large-scale modes to compute the environment of those at smaller scales,

but we do not treat such complications for now43. 43 For analyses of that sort see Winterberg
(1968) and Canuto & Hartke (1986)

As a further comparison we consider the o�-diagonal Reynolds stresses

of both Chan (2001) and Käpylä et al. (2004). These numbers were ex-

tracted from Table 3 of the former and also Table 3 of the latter and are

shown along with our predictions in Fig. 2.3. In the former they were

straightforward to analyse but in the latter they do not provide a precise

test because the simulations included a forced shear. To correct for this we

used a linear expansion to subtract results across simulations which were

identical in all conditions other than the rotation and thereby determine

the e�ect of the rotation alone. As we will see in Section 2.7.2 this proce-

dure is problematic because the shear may interact non-linearly with the

rotation. Furthermore because these corrections are of the same order as

the terms themselves some care must be taken in interpreting the results.

Despite these di�culties some trends are clear and sustained between

both sets of data. For instance in the northern hemisphere44 〈δ3rδ3θ 〉 < 0, 44 i.e. θ > 0

while in both hemispheres 〈δ3rδ3ϕ〉 < 0, in keeping with predictions and

simulations by Rüdiger et al. (2005b). Likewise we find that 〈δ3θδ3ϕ〉 > 0

in the northern hemisphere, in agreement with the findings of Rüdiger

et al. (2005a).

Once more, however, our model overestimates these anisotropic terms

by an amount which is largely invariant as a function of rotation. This

suggests that this overestimate is a systematic o�set rather than an error in

scaling. We also have some di�culty to reproduce the signs of some of

the stresses, particularly in the results of Käpylä et al. (2004), though this

could simply be a subtraction di�culty. This is supported by the fact that

the simulations themselves do not agree on the signs of these terms and

highlights the challenges of making comparisons of terms which are small

in magnitude relative to the scale of the turbulence.

To better understand which trends are significant and which are arte-
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Figure 2.2: The ratios
√
〈δ 32r 〉/〈δ 32〉 (blue),

√
〈δ 32θ 〉/〈δ 32〉 (red) and

√
〈δ 32ϕ 〉/〈δ 32〉 (purple) are shown for our model (solid) and for simulations

by Käpylä et al. (2004) (dots, negative latitude) and Chan (2001) (dots, positive latitude) for a wide range of rotation rates as a function of
latitude. The rotation rate is captured by the Coriolis number Co = Ωh/〈δ 32〉1/2. Our model generally overestimates the anisotropy but
captures its variation well.
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facts we have placed data from comparable rotation rates for the two sets

of simulations side-by-side in Fig. 2.4. The top five panels show the same

data as in Fig. 2.2 while the bottom three show the data from Fig. 2.3. In

general there is good agreement in the top five panels. The data of Käpylä

et al. (2004) gives systematically larger anisotropies and the two sets of

simulations occasionally di�er on the relative magnitudes of the velocity

components45, but otherwise the two are in good agreement. By contrast 45 i.e. their ordering

the bottom three panels paint two very divergent pictures. Neither order-

ing, trends nor signs are consistent between the two sets of simulations.

Only the magnitudes agree in these cases. Thus the two sets of simulations

agree that our model systematically overestimates anisotropies and that,

beyond that, our model agrees with them to the extent that they agree

with one another.

Having compared in detail with these simulations we now consider

predictions which go beyond the domain where simulations are possible.

In convection with radial entropy and pressure gradients the leading order

e�ect is to transport heat and material radially. Fig. 2.5 shows 〈δ3rδ3r 〉 and
〈δ3rδrr 〉, which are the correlation functions controlling this transport.

Both correlators vary at second order in Ω in the slow rotation limit

as expected 46. In the rapid rotation limit on the other hand they exhibit 46 Lesa�re et al. 2013; Kitchatinov 2013

clear Ω−1 scaling, consistent with what is seen in other closure models and

in simulations 47. The quenching of turbulence in this limit arises because 47 Garaud et al. 2010

the Coriolis e�ect acts as a restoring force, stabilising modes.

The peak of each correlator is of order unity and occurs when Ω = 0.

In fact for the stress the maximum is 0.254647 while for the di�usivity

it is 0.28125, both of which are consistent to this precision with Lesa�re

et al. (2013), noting that we used the definition in equation (2.7) for their

mixing length. This is because our model is precisely the same as theirs in

this limit. Based on this and the observed scalings a good approximation is

〈δ3rδrr 〉 ≈ 〈δ3rδ3r 〉 ≈ 1 − (Ω/|N |)2
1 − (Ω/|N |)3 ,

where we have neglected factors of order unity.

Next we consider the e�ect of rotation on the r −θ correlation functions.

These functions are responsible for latitudinal transport of heat, mass

and momentum and vanish as a result of spherical symmetry in the non-

rotating limit. Fig. 2.6 shows 〈δ3rδ3θ 〉 and 〈δ3rδrθ 〉 as a function of the

rotation rate.

In the slow-rotation regime both quantities scale as Ω2, while in the

rapid rotation limit they scale as Ω−1. The peak is of order unity and
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Figure 2.3: The ratios
√〈δ 3r δ 3θ 〉/〈δ 32〉

(red),
√
〈δ 3θ δ 3ϕ 〉/〈δ 32〉 (purple) and√

〈δ 3r δ 3ϕ 〉/〈δ 32〉 (blue) are shown from
our model (solid) and from simulations
by Käpylä et al. (2004) (dots, negative
latitude) and Chan (2001) (dots, positive
latitude) as a function of latitude. Note
that Käpylä et al. (2004) cautions that the
moderate rotation simulations had di�-
culty converging, and these results arise
as the di�erence between two simulations,
so it is not clear how significant this test is.
Our model generally overestimates these
stresses, and suggests a di�erent symmetry
for the variation, going as sin θ rather than
sin(2θ ).
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Figure 2.4: The functions shown in
Figs. 2.2 and 2.3 are shown from our model
(solid), simulations by Käpylä et al. (2004)
(dots, negative latitude) and Chan (2001)
(crosses, positive latitude) as a function of
latitude. The most comparable pairs of ro-
tation rates were placed side-by-side for
each function. A solid black line is shown
along the equator where the latitude is zero.
There is reasonable agreement on the distri-
bution of velocities in direction but not on
the correlations between di�erent velocity
directions.
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Figure 2.5: The radial velocity correlation
function 〈δ 3r δ 3r 〉 (red) and the radial dif-
fusivity 〈δ 3r δrr 〉 (blue) are shown in linear
scale for Ω < |N | (left) and log-log scale
for Ω > |N | (right). These results are for
uniform rotation at a latitude of π/4 with
no magnetic field. On this and all subse-
quent figures vrvr /L20 |N |2 should be read
as 〈δ 3r δ 3r 〉/L20 |N |2 and similarly for other
correlations. Shown in purple (*, dashed)
for comparison is the result of Kichatinov
& Rudiger (1993) with an anisotropy fac-
tor of 2, which agrees in sign, scale and
variation. The bumps in our results reflect
parameter values where the numerical in-
tegration was more di�cult. All quantities
are given in units of the mixing length and
the Brunt-Väisälä frequency.
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Figure 2.6: The absolute value of
the r − θ velocity correlation function
〈δ 3r δ 3θ 〉 (red) and corresponding di�usiv-
ity 〈δ 3r δrr 〉 (blue) are shown in log-log
scale against rotation rate. These results
are for uniform rotation at a latitude of
π/4 with no magnetic field. Shown in
purple (*, dashed) for comparison is the re-
sult of Kichatinov & Rudiger (1993) with
an anisotropy factor of 2, which agrees in
sign, scale and variation. All quantities are
given in units of the mixing length and the
Brunt-Väisälä frequency.
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occurs near Ω = |N |. This gives rise to the approximation

〈vr rθ 〉 ≈ 〈vrvθ 〉 ≈ (Ω/|N |)2
1 + (Ω/|N |)3 .

These scalings may be interpreted as a competition between symmetry

breaking and quenching: the correlation function rises as rotation breaks

symmetries but excessive rotation stabilises the system and quenches the

turbulent motions. The symmetry is broken quadratically because, at first

order, the Coriolis e�ect only couples radial and azimuthal motions.

The properties of turbulence vary with latitude in a rotating system

because the rotation axis picks out a preferred direction. Fig. 2.7 shows the

r − r and r − θ stress and di�usivity correlations as a function of latitude.

The r − r correlations vary similarly to one another, exhibiting a minimum

at the equator and maxima on-axis. On-axis the rotation drops out of

the equations and so the on-axis functions are just those for non-rotating

convection. The e�ect of rotation is then largest at the equator, where

the convective motion is predominantly perpendicular to the rotation axis.

The correlation functions are smallest where the rotation has the largest

e�ect because rotation primarily acts to stabilise modes.

By contrast the r − θ correlator is largest in magnitude at mid-latitudes,

vanishing both on-axis and at the equator. On-axis this correlation func-

tion must vanish because the θ̂ unit vector is ill-defined. The sign change

between the northern and southern hemispheres occurs because (r̂ × Ω)ϕ
has the same sign everywhere while (θ̂ × Ω)ϕ changes sign between the

hemispheres. This also explains the vanishing correlation at the equator.

The quantities of particular interest for studying the origins of di�eren-

tial rotation are the radial-azimuthal correlation functions 〈δ3rδ3ϕ〉 and
〈δ3rδrϕ〉. The former provides a stress coupling the angular momentum to

radial motions known as the Λ-e�ect48, while the latter provides a viscosity 48 The Λ-e�ect just refers to the terms
proportional to Ω in the series expansion
of 〈δ 3r δ 3ϕ 〉 and 〈δ 3θ δ 3ϕ 〉. Such terms
were initially expected to vanish because it
was assumed that turbulence produces an
isotropic viscous e�ect, analogous to the
microscopic viscosity, which inherently
cannot couple to rigid rotation. This fails
when turbulence is anisotropic (Kippen-
hahn, 1963).

coupling radial shears to azimuthal motion and so acts as a proxy for the

α-e�ect 49. Fig. 2.8 shows these quantities as a function of the rotation

49 Kichatinov & Rudiger 1993

rate. In the slow-rotation limit both scale as Ω before peaking near unity

and falling o� as Ω−2 in the rapid-rotation limit. The linear scaling at

slow rotation rates is a consequence of the Coriolis e�ect directly cou-

pling radial and azimuthal motions. These quantities fall o� more rapidly

than the others in the case of rapid rotation because it is preferentially the

modes which couple strongly to the Coriolis e�ect which are stabilised

the most. The absolute scale of our Λ-e�ect is approximately what is seen

in simulations, slightly overestimating relative to Käpylä et al. (2004) and

similar to other theoretical predictions 50. 50 Kitchatinov 2013; Gough 2012
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Figure 2.7: Various correlation functions
are shown as a function of the angle θ from
the rotation axis. The functions are the
r − r (left) and r − θ (right) velocity (red)
and di�usivity (blue) correlation functions.
These results are for uniform rotation at
Ω = 0.2|N | (top), Ω = |N | (middle) and
Ω = 5|N | (bottom). Shown in purple (*,
dashed) for comparison is the KR result,
which agrees in sign and variation but not
scale. For slow rotation the scale of the
variation is generally smaller than we pre-
dict, while for fast rotation the variation is
somewhat larger. All quantities are given
in units of the mixing length and the Brunt-
Väisälä frequency.
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Figure 2.8: The absolute value of
the r − ϕ velocity correlation function
〈δ 3r δ 3ϕ 〉 (red) and corresponding di�u-
sivity 〈δ 3r δrϕ 〉 (blue) are shown in log-
log scale versus rotation rate. These results
are for uniform rotation at a latitude of
π/4 with no magnetic field. Shown in
purple (*, dashed) for comparison is the re-
sult of Kichatinov & Rudiger (1993) with
an anisotropy factor of 2 which agrees in
sign, variation and scale up until Ω = |N |,
at which point the behaviour di�ers sig-
nificantly. Shown in grey (**, dotted) for
comparison is 〈δ 3r δ 3ϕ 〉 from that of Lesaf-
fre et al. (2013). This agrees precisely in
the Ω → 0 limit and the agreement is good
even near Ω ≈ 0.5|N |. All quantities are
given in units of the mixing length and the
Brunt-Väisälä frequency.

2.7.2 Di�erential Rotation and Convection

We now turn to the dependence of convective transport coe�cients on

di�erential rotation. We expand our closure model to linear order in the

shear and so restrict this analysis to cases where the dimensionless shear

|R∇ lnΩ| is at most of order unity.

Fig. 2.9 shows the r − θ and r − ϕ velocity and di�usivity correlation

functions as a function of di�erential rotation for a situation where ∇Ω is at

an angle of π/4 relative to the pressure gradient. All four functions behave

linearly near the origin, with intercept set by the stress and di�usivity in

the uniform rotation limit. This is precisely as expected: the intercept is

non-zero, giving rise to the Λ-e�ect, while the slope is non-zero, giving

rise to the α-e�ect 51. Note that the favourable comparison of our results 51 Kichatinov & Rudiger 1993

with those of Kitchatinov (2013) are helpful because their model was

implemented in a two-dimensional solar model which compared well

with helioseismic observations.

A key di�erence between our work and what we compare with in

Fig. 2.9 is that, while we predict the same sign and comparable magni-

tude for the α-e�ect in the zero-shear limit, the e�ect greatly reduces

near R∇ lnΩ| ≈ 0.1, indicating that, at least for this configuration, this is

the point at which non-linear e�ects become important. This does not

represent a particularly severe shear and highlights a key point that the

correlation functions we find are generally non-linear in all of the small

parameters in which one might wish to expand. Our model captures this
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Figure 2.9: The r −θ (left) and r −ϕ (right)
velocity (red) and di�usivity (blue) correla-
tion functions are shown in log-scale versus
the di�erential rotation. These results are
for a convecting region with di�erential
rotation in the cylindrical radial direction,
Ω = 0.1|N | and no magnetic field at a lati-
tude of π/4. Shown in purple (*, dashed)
for comparison is the result of Kichatinov
& Rudiger (1993) with an anisotropy factor
of 2. This disagrees on the magnitude of
the slope but agrees in the sign of the slope.
Shown in grey (**, dotted) for comparison
is 〈δ 3r δ 3ϕ 〉 of Lesa�re et al. (2013). This
generally predicts smaller stresses though
with the same sign and slope sign as our
model. All quantities are given in units of
the mixing length and the Brunt-Väisälä
frequency.

nonlinear behaviour despite being carried out to linear order in |R∇ lnΩ|.
This is because, in our expansion, the time evolution operator is what is ex-

panded linearly. The resulting eigenvalues and eigenvectors are generally

non-linear functions of this operator.

This caution aside, there is a significant regime where the α −Λ expan-

sion is valid and, in this regime, key quantities of interest are the derivatives

of the various correlation functions with respect to the shear |R∇Ω|. Fig.
2.10 shows these derivatives as a function of Ω. The r − ϕ stress deriva-

tive is constant in Ω. This means that the stress scales as R∇Ω. This is

as expected52 and indicates that there is a well-defined e�ective viscosity 52 See, e.g. Equation 79 of Lesa�re et al.
(2013).

transporting angular momentum. This viscosity is given by

νrϕ ≈ L20|N |.

By contrast the derivatives of the r − θ correlations as well as the r −ϕ

di�usivity all diverge in the limit as Ω → 0. In particular, the r −θ velocity

correlation diverges as Ω−1, the r −θ di�usivity correlation diverges as Ω−2

and the r −ϕ di�usivity diverges as Ω−2. These divergences are signatures

of symmetry breaking. They indicate that the direction in which the

R∇Ω → 0 limit is approached matters. That is, this limit can be approached

by first letting Ω → 0 and then di�erentiating or by di�erentiating and

then taking Ω → 0 and the divergence we find in the latter approach

indicates that the order matters. This means that the r − θ stress does not

admit a linear expansion in terms of a viscosity, whereas the r − ϕ stress

may be treated in that fashion.
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Figure 2.10: The derivatives of various cor-
relation functions with respect to |R∇Ω| are
shown as a function of Ω, with both axes
log-scaled. The functions are the r −θ (left)
and r − ϕ (right) velocity (red) and di�u-
sivity (blue) correlation functions. These
results are for a convecting region with dif-
ferential rotation in the cylindrical radial
direction and no magnetic field at a latitude
of π/4. All quantities are given in units of
the mixing length and the Brunt-Väisälä
frequency.

When Ω = 0 and |R∇Ω| = 0 there is a symmetry between ±θ and

between ±ϕ. As a result both the r − θ and r −ϕ terms vanish in this limit.

When Ω , 0 these symmetries are broken by the rotation and we know

from Figs. 2.6 and 2.8 that this occurs at first order for r −ϕ and second

order for r − θ . In the opposing limit the situation is di�erent because in

the time evolution described by equation (2.16) L is independent of |R∇Ω|
when Ω = 0. There is, however, a dependence on |R∇Ω| through the time-

dependence of q. This breaks the ϕ symmetry because ∂tq is proportional

to qϕR∇Ω and hence is sensitive to ϕ. It does not, however, break the

θ symmetry, because qϕR∇Ω is symmetric with respect to changing the

signs of both θ and q. It follows then that we should find divergences

in the r − θ correlation derivatives owing to the path-dependence of the

zero-rotation limit and that we should find the r − ϕ derivatives to be

generally well-behaved.

The curious divergence is then that in the r − ϕ di�usivity, because

this correlation function does not su�er from a symmetry-derived path-

dependence. Rather, the divergence arises because the di�erential rotation

means that L is time-dependent. This introduces polynomial corrections to

the usual exponential growth, as discussed in Section 2.3. This formalism

captures the fact that the di�erential rotation turns vertical displacement

into ϕ displacements which vary as polynomials in time. There are there-

fore modes with very small radial velocities which nevertheless have large
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azimuthal displacements and these dominate the di�usivity derivative.

These modes grow proportional to |R∇Ω| and their growth may proceed

in the azimuthal direction until bounded by the Coriolis e�ect at a time

Ω−1. As a result these modes contribute to the di�usivity as |R∇ lnΩ| and
hence lead to a diverging derivative in |R∇Ω| as Ω → 0. However, this is

not physical because the autocorrelation time of turbulence is not infinite,

so in practice this growth is cut o� by fluctuations in the fastest-growing

modes. This suggests a potential improvement to our formalism.

2.7.3 Di�erential Rotation and Stable Stratification

Stably stratified regions are those with

N 2 > 0,

such that buoyancy acts to counter perturbations in the vertical direction.

This tends to damp turbulence.

In the presence of such damping there can still be turbulence if there

is also a shear. The classic example of this is the Kelvin-Helmholtz phe-

nomenon53, which can occur in such a system if the Richardson criterion 53 von Helmholtz 1868; Thomson 1871

|du/dz|2
|N |2 >

1
4

(2.17)

is satisfied 54. Here u is the velocity and z is the coordinate parallel to the 54 Zahn 1993

stratification. Even when this criterion is not satisfied, latitudinal shear

can still generate turbulence 55. These motions are suppressed in vertical 55 Galperin et al. 2007; Canuto et al. 2008

extent by the stratification and hence are primarily confined to the plane

perpendicular to the stratification direction.

Fig. 2.11 shows the dependence on shear strength of all non-vanishing

stress components in a rotating stably stratified zone with latitudinal ro-

tational shear. All exhibit linear scaling with the shear strength. This is

unusual in an otherwise-stable zone because it implies a viscosity which,

to leading order, does not depend on the shear. That is,

νi j ≈ L20N fi j

(
Ω

|N |
)
,

where fi j is some function of the angular velocity. Fig. 2.12 shows the

dependence of the stress components on Ω/|N | for fixed |R∇ lnΩ| = 0.1.

The components all scale as Ω2 in both regimes. Thus, for instance, frϕ =

Ω/|N | because the viscosity is the derivative of the stress with respect to
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the shear, and hence

νrϕ ≈ 10−5L20Ω. (2.18)

The scaling in equation (2.18) arises owing to the centrifugal term,

which has a destabilising e�ect when Ω increases with R̂. When |R∇Ω| = 0

this e�ect is not present so the system is stable but introducing a small

di�erential rotation produces an acceleration proportional to ΩRδr · ∇Ω

and hence

∂2t δr ≈ д
2δr ∝ R̂ΩRδr · ∇Ω, (2.19)

which means that the stress scales as Ω∇Ω and thence the viscosity scales

as Ω. This could termed an epicyclic viscosity because it relies on the

epicyclic term to relate motion to stress.
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Figure 2.11: The absolute value of the r-
r (red), θ-θ (blue), ϕ-ϕ (purple) and r-ϕ
(grey) velocity correlation functions are
shown as a function of |R∇ lnΩ|, with both
axes log-scaled. These results are for a sta-
bly stratified region with di�erential rota-
tion in the radial direction, Ω = 0.1|N | and
no magnetic field. The data is computed
for a point on the equator with radial di�er-
ential rotation. All quantities are given in
units of the mixing length and the Brunt-
Väisälä frequency.

To better understand the e�ect of our perturbative corrections we com-

puted the same results without them. This produced stresses which were

zero to within numerical precision in all cases, indicating that the entire

contribution in this case is coming from the perturbation. This is consistent

with findings that without thermal di�usion 56 or a magnetic field 57 equa- 56 Canuto & Hartke 1986
57 Lecoanet et al. 2010

tion (2.17) represents a strict criterion. However with a di�erent angle of

di�erential rotation we obtained non-zero results. This is consistent with

the findings of Zahn (1992), who showed that horizontal turbulence58 58 i.e. turbulent motion on isobars
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Figure 2.12: The absolute value of the r-
r (red), θ-θ (blue), ϕ-ϕ (purple) and r-ϕ
(grey) velocity correlation functions are
shown as a function of Ω/|N | for fixed
|R∇ lnΩ| = 0.1 with both axes log-scaled.
These results are for a stably stratified re-
gion with di�erential rotation in the radial
direction and no magnetic field. The data
is computed for a point on the equator with
radial di�erential rotation. All quantities
are given in units of the mixing length and
the Brunt-Väisälä frequency. Note that
the r-ϕ and θ − ϕ correlations undergo a
sign change at Ω/|N | ≈ 10 = |R∇ lnΩ|−1,
where terms which are linear in the dif-
ferential rotation are overtaken by those
which are quadratic.
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Figure 2.13: The absolute value of the
r-r (red), θ-θ (blue), ϕ-ϕ (purple), θ-ϕ
(grey), r-θ (yellow) and r-ϕ (green) ve-
locity correlation functions are shown as
a function of |R∇ lnΩ| with both axes log-
scaled. The correlation functions are eval-
uated at first order in the perturbative ex-
pansion. These results are for a stably strati-
fied region with di�erential rotation in the
radial direction, Ω = 0.1|N | and no mag-
netic field. The data are computed for a
point on the equator with di�erential ro-
tation at an angle of π/4. All quantities
are given in units of the mixing length and
the Brunt-Väisälä frequency. Note that the
r -θ correlation undergoes a sign change at
|R∇ lnΩ| ≈ 10−2 ≈ (Ω/|N |)2, where terms
which are linear in the di�erential rotation
are overtaken by those which are quadratic.
Both this and the θ − ϕ component un-
dergo sign changes near |R∇ lnΩ| = |N |,
where the shear competes directly with the
stable stratification.
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Figure 2.14: The absolute value of the r -r
(red), θ -θ (blue), ϕ-ϕ (purple), θ -ϕ (grey),
r -θ (yellow) and r -ϕ (green) velocity cor-
relation functions are shown as a function
of |R∇ lnΩ| with both axes log-scaled. The
correlation functions are evaluated at ze-
roth order in the perturbative expansion
rather than first order. These results are for
a stably stratified region with di�erential
rotation in the radial direction, Ω = 0.1|N |
and no magnetic field. The data are com-
puted for a point on the equator with dif-
ferential rotation at an angle of π/4. All
quantities are given in units of the mixing
length and the Brunt-Väisälä frequency.

serves to enable vertical turbulence.

It is instructive then to compare Fig. 2.13 with Fig. 2.14. These show

the same correlation functions as each other in the same physical scenario,

with di�erential rotation this time at an angle of π/4, but the former uses

the first order perturbative expansion while the latter only expands to

zeroth order59. The di�erence between the two calculations is striking: 59 By zeroth order we mean that L is repre-
sented by a constant in equation (2.9).

many of the correlation functions have fundamentally di�erent scalings

when the perturbative corrections are taken into account. In particular

the non-vanishing stresses are quadratic in the shear, whereas they are

all linear in the shear in the expanded calculation. This di�erence relates

in part to the centrifugal term, which couples the displacement to the

acceleration. Without expanding the equations of motion we would have

δr ∝ δ3, because the mode would need to be an eigenvector of M. The

modes which couple to the centrifugal term would still grow according

to equation (2.19) but, for most modes, arranging for the displacement

to couple to this term requires coupling to the stabilising buoyant term

too. To make this clearer, in Fig. 2.15 we have computed the growth rate

as a function of wave-vector orientation without using the perturbative

expansion. There are several rapidly-growing regions, oriented at angles

of ±π/4 relative to the vertical. These angles represent a compromise

between maximising the magnitude of the centrifugal acceleration and
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maximising its projection on to the velocity, both subject to the Boussinesq

condition that motion be in the plane perpendicular to q.

By contrast the growth rates in the expanded system, shown in Fig.

2.16, are significant over a much wider swath of parameter space. This is

because, in the expanded system, the displacement and velocity need not

be parallel so the displacement can be chosen to maximise the centrifugal

term while the velocity can be chosen to maximise the projection of the

acceleration on to the velocity.
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Figure 2.15: The square of the growth rate
is shown as a function of wave-vector ori-
entation on a logarithmic colour scale. The
wave-vector is specified by a magnitude
and two angles, θ (q) and ϕ(q), which are
spherical angles relative to the rotation axis.
These rates were computed with a zeroth-
order expansion. Regions with squared
growth rates below 10−16 are shown in
white. All quantities are given in units of
the mixing length and the Brunt-Väisälä
frequency.

0 1 2 3 4 5 6
φ(q)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ(
q)

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

G
ro

w
th

 R
a
te

 S
q
u
a
re

d
/|N
|2

Figure 2.16: The square of the growth rate
is shown as a function of wave-vector ori-
entation on a logarithmic colour scale. The
wave-vector is specified by a magnitude
and two angles, θ (q) and ϕ(q), which are
spherical angles relative to the rotation axis.
These rates were computed with a first-
order expansion. Regions with squared
growth rates below 10−16 are shown in
white. All quantities are given in units of
the mixing length and the Brunt-Väisälä
frequency.
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2.7.4 Baroclinic Instability

The baroclinic instability arises in otherwise stably stratified fluids when

the entropy gradient is not parallel to the pressure gradient 60. In fact this 60 Killworth 1980

is part of a family of instabilities which includes the convective instability
61. This family provides a continuous connection between the unstable 61 Lebovitz 1965

convective and stably stratified limits. To explore it consider Fig. 2.17

which shows the variation of r − r and r − θ correlation functions against

the angle δ between the entropy gradient and the pressure gradient. The

radial correlations peak when the two gradients are aligned. This is the

convective limit. These correlations fall to zero in the opposing limit

where the two gradients are anti-aligned, which is the stably stratified

limit. In between these limits the behaviour is approximately that of cos2 δ .
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Figure 2.17: Various correlation functions
are shown as a function of the angle δ be-
tween the entropy and pressure gradients.
The functions are the r − r (left) and r − θ
(right) velocity (red) and di�usivity (blue)
correlation functions. These results are for
a non-rotating convective region on the
equator and with no magnetic field. |N |
is evaluated for normalisation purposes for
a system with δ = 0. Shown in purple (*,
dashed) for comparison is the KR result.
This agrees in sign, and for r − r agrees in
scale, but their r − θ prediction is consid-
erably larger. Notably this comparison is
precisely as cos(δ ) (left) and sin(δ ) (right)
and crosses zero at non-extremal angles.
This is most likely because their theory is
not designed for nearly-stable regions with
extreme baroclinicity. All quantities are
given in units of the mixing length and the
Brunt-Väisälä frequency.

By contrast the r − θ correlations behave approximately as sinδ , and

vanishes when δ = 0. This is because both the aligned and the anti-aligned

limits are spherically symmetric and so must have this correlation function

vanish. Deviations from the convective limit give rise to linear scaling so

the convective baroclinic instability transports heat and momentum at first

order in the baroclinicity. This is an entirely distinct phenomenon from

the thermal wind balance, which is a large-scale e�ect while this results

from integrating out the small-scale turbulent modes. In the stable limit

perturbations arise quadratically, a deviation from the behaviour of sinδ .

This is because there are no existing turbulent motions to perturb, and
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so each position and velocity component is linear in δ and gives rise to a

quadratic two-point correlation function.

It is instructive to compare these results with the Schwarzschild criterion

for dynamic stability62, namely 62 We use this rather than the Solberg-
Høiland criteria because the systems con-
sidered in Figure 2.17 are not rotating and
hence these more general criteria reduce
to that of Schwarzschild.

N 2 cos2 δ > 0,

where δ is the angle between ∇p and ∇s, and N 2 is the Brunt-Väisälä

frequency which would arise were the two parallel. From this we see that

as δ → ±π/2 the system becomes marginally stable so the stress ought to

vanish. This is indeed what we see in Figure 2.17, which suggests that our

model does indeed captures the relevant linear instability.

2.7.5 Stellar Magnetism

We now turn to the impact of the magnetic field on convective turbu-

lence in stars. Fig. 2.18 shows 〈δ3rδ3r 〉 in a mildly rotating (Ω = 0.1|N |)
convection zone as a function of B for three polarisations; radial (B ‖ r̂ ),

latitudinal (B ‖ θ̂ ), and longitudinal (B ‖ ϕ̂). As the field increases the stress

falls o�. This is because the field quenches the turbulence by providing

a stabilising restoring force, and is in general agreement with Canuto &

Hartke (1986). Interestingly the only significant di�erences are between

the radial and angular field polarisations! The θ and ϕ polarisations show

precisely the same behaviour out to very strong fields. This is a result of

symmetry, because the radial stress is not sensitive to rotation about the

radial direction. The deviation seen with strong fields is a numeric artefact

and decreases with increasing integration time.

By contrast consider 〈δ3rδ3ϕ〉, shown in Fig. 2.19. This component,

along with the corresponding Maxwell stress, is responsible for transport-

ing angular momentum. Interestingly it shows di�erences amongst all

polarisations, with the strongest di�erence between the θ polarisation and

the others. This is because the stress is mixed between di�erent directions

and so is sensitive to all variations in the magnetic field direction. The large

di�erence of the θ polarisation relative to the others reflects the fact that

motion is damped perpendicular to the magnetic field so the θ polarisation

damps motion in both directions involved in this component of the stress

whereas the r and ϕ polarisations only damp motion in one of the two

directions.
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Figure 2.18: The stress 〈δ 3r δ 3r 〉 is shown
as a function of magnetic field strength.
The magnetic field is polarised radially
(red), longitudinally (purple) and latitudi-
nally (blue). The system is rigidly rotating
at Ω = 0.1|N | at a latitude of π/4. All
quantities are given in units of the mixing
length and Brunt-Väisälä frequency.
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Figure 2.19: The stress 〈δ 3r δ 3ϕ 〉 is shown
as a function of magnetic field strength.
The magnetic field is polarised radially
(red), longitudinally (purple) and latitudi-
nally (blue). The system is rigidly rotating
at Ω = 0.1|N | at a latitude of π/4. All
quantities are given in units of the mixing
length and Brunt-Väisälä frequency.
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2.7.6 Magnetorotational Instability

As a final example we consider the magnetorotational instability 63. This 63 Chandrasekhar 1960

instability arises in magnetised fluids undergoing Keplerian orbital motion.

Fig. 2.20 shows the r − r and r −ϕ Reynolds and Maxwell stresses for

an accretion disc with a vertical magnetic field. Contrary to predictions 64 64 Chandrasekhar 1960

not all of the Reynolds stresses vanish in the zero-field limit. This is

because the linear system supports short-term growing modes but, while

they only grow in the short-time limit, our numerical methods are not

sensitive to that e�ect at this order. In principle, at higher order, this

phenomenon should become evident and so this may be interpreted as an

artefact associated with our expanding to low order in |R∇Ω| > 1. Despite

this, it has been proposed that other non-magnetic processes can destabilise

these modes even in the long term and so we feel it is appropriate to at least

consider them 65. The Maxwell stresses by contrast do vanish as B → 0. 65 cf. Luschgy & PagÃĺs (2008)

This is to be expected because they are proportional to B2. Additionally,

the θ-ϕ stresses vanish for all B because the system is symmetric under

reversing both θ and ϕ, and similarly the r-θ stresses vanish because the

system is symmetric under the simultaneous reversal of r and θ .

As the magnetic field increases the r −ϕ Reynolds stress changes sign.

This indicates the onset of MRI modes, which have the opposite sign to

the zero-field correlations. This e�ect saturates when 3A ≈ Ωh, where h is

the scale height of the disc. We find that the total r −ϕ stress saturates at

roughly 10−2(hΩ)2, which lies between those typically found in simulations

and those inferred from observations 66. Note that at the saturation point 66 Starling et al. 2004; King et al. 2007

the Maxwell and Reynolds stresses are comparable, and beyond this point

the Maxwell stress increases while the Reynolds stress falls o�.

Above the saturation point the Reynolds stresses drop o� as the mag-

netic field quenches the turbulence. This is precisely what is expected for

the MRI 67. The Maxwell stresses, however, continue to grow, again in 67 Balbus & Hawley 1991

line with expectations. Some care is required to interpret these results

because they were computed for a fixed background field and that field

may or may not be stable under the action of the turbulence it generates 68. 68 Pessah et al. 2006

Furthermore there are challenges with the α-disk prescription which make

the specific stress components more di�cult to interpret 69. Nevertheless 69 Pessah et al. 2008

it is encouraging that what we see matches well with both observations

and simulations.
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Figure 2.20: The r − r (top) and r −ϕ (bot-
tom) are shown as a function of B for a Kep-
lerian disc. Reynolds (velocity) stresses are
in red and the Maxwell (magnetic) stresses
are in blue. Note that it is the negative r − r
Maxwell stress which is shown to make
the comparison with the Reynolds stresses
clearer. The magnetic field is taken parallel
to ẑ . The system is taken to be stably strat-
ified in the vertical direction with |N | = Ω
and hence L0 = h = R. All quantities are
given in units of the mixing length and Ω.
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2.8 Discussion and Outlook

We have derived a turbulent closure model which incorporates shear,

rotation and magnetism as well as a three-dimensional spectrum of fluctu-

ations. We have also presented a new perturbative approach to incorporate

time-dependence in the evolution equations. This model, which is imple-

mented in an open source numerical software package, fully reproduces

many known phenomena such as the MRI, baroclinic instability, rotational

quenching and more classic shear instabilities.

Using this model we have determined the asymptotic behaviour of a

wide variety of correlation functions and transport coe�cients under a

wide range of circumstances, many of which do not appear in the literature.

We have further explored the behaviour of turbulent transport coe�cients

in intermediate regimes where no single phenomenon dominates, such

as in the critical MRI. In these cases the behaviour is generally complex

and does not separate easily into components associated with the di�erent

pieces of input physics.

The closure formalism developed here fills a new niche in the landscape

of solutions to turbulent transport, covering enough phenomena to be

useful to understand those operating in stars, planets and accretion discs,

while being rapid enough to be incorporated into stellar evolution codes

on nuclear timescales.

In the future we hope to provide further refinements and comparisons

with direct numerical simulations as well as experiments. In addition, it

would be interesting to explore the results of this model to higher order

in the shear and, even at this order, there are many results which deserve

more analysis than we have given here.



3 The Magnitude of Convective

Di�erential Rotation

I have slept out under the stars in Africa

for too many years not to know that they

sound and resound in the sky...

I had acquired also the dialect of the stars...

Sir Laurens Jan van der Post

Abstract

Di�erential rotation is central to a great many mysteries in stars. Astero-

seismic data show that the internal rotation profiles of red giants as well

as the Sun are strongly di�erential in the convection zone, while simula-

tions of rapidly rotating stars show relatively mild shear. We analyse the

vorticity equation from an order-of-magnitude and scaling perspective

to derive the scaling of di�erential rotation in both slowly-rotating and

rapidly-rotating convection zones. We also calculate the meridional cir-

culation rate and baroclinicity, and examine the magnetic field strength

in the rapidly rotating limit. These results are in good agreement with

simulations and observations. Our findings are valid generally across stars

and fluid planets and not limited to the Sun, though may be violated when

tidal e�ects or externally imposed strong magnetic fields are present.
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3.1 Introduction

Di�erential rotation is one of the key complications in the study of stars.

It involves breaking symmetries, structure formation and both heat and

momentum transport. Importantly the origin of magnetic fields 1, the 1 Miesch & Toomre 2009

transport of angular momentum 2 and the transport of material 3 are all 2 Cantiello et al. 2014
3 Chaboyer & Zahn 1992

critically influenced by its scale and geometry.

Over several decades helioseismology has permitted studies of the ro-

tation profile of the solar convection zone 4. With time the data have 4 Christensen-Dalsgaard & Schou 1988

become more precise and detailed, providing information on the time-

variability of the rotation profile 5 as well as that of its gradients 6. Similarly 5 Antia & Basu 2001
6 Antia et al. 2008

related quantities such as the meridional circulation 7 have now been well- 7 Rajaguru & Antia 2015

characterised. The overall picture that has emerged is one in which the

di�erential rotation is of order |∇Ω| ≈ Ω/R, with similar scale in both the

cylindrical radial and vertical directions. This di�erential rotation reflects a

shear which is large relative to the meridional circulation yet small relative

to the characteristic scales of solar convection. These observations present

a challenge: what phenomenon sets the scale of di�erential rotation in the

solar convection zone?

Complementing the depth of solar observations, asteroseismic observa-

tions have begun to produce information on the rotation profiles of other

convecting stars. Limits on the rotation profiles for several red giants are

now known, and tell a remarkably similar picture. Detailed examination

of Kepler-56 suggests that its convection zone exhibits some di�erential

rotation, of order 8 |∇Ω| . 4Ω/R. This is in line with results from studies 8 Klion & Quataert 2017

on a wider range of red giants which did not attempt to localise the di�er-

ence rotation but find |∇Ω| typically of order 9 Ω/R. Similar results have 9 Deheuvels et al. 2015

also been found for solar-like stars 10. 10 Schunker et al. 2016; Nielsen et al. 2017

In contrast to these observational successes, the theoretical study of

di�erential rotation has historically struggled to reproduce observed ro-

tation profiles. The earliest expectations were of solid body rotation 11. 11 Stewartson 1966

Because turbulence and the microscopic viscosity together serve to dis-

sipate energy, fluid bodies without any forcing are expected to come to

rigid-body rotational equilibrium. The characteristic time-scale for this is

the rotation period, as this is the only such scale for rotationally-driven

kinetic turbulence. This is extremely rapid in the context of stellar and

planetary lifetimes and so should preclude di�erential rotation. That this is

not observed is evidence that stars host processes which inject energy into

di�erential rotation. For instance in convecting bodies turbulence may be
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strongly isotropic12. Such anisotropy drives di�erential rotation and, if 12 There may also be a meridional circu-
lation which pumps angular momentum.
Indeed this is thought to be the dominant
mechanism of angular momentum trans-
port in radiative stars. As we shall show this
is never the case in convective bodies.

the turbulence is powered by heating rather than by the shear itself, can

maintain it indefinitely 13.

13 Unno 1957; Kippenhahn 1963In addition to the expectation of solid-body rotation there was also the

expectation of cylindrical rotation. This was due to the Taylor-Proudman

theorem, which states that the the rotation profile of an e�ciently con-

vecting14 region ought at least to have translational symmetry along the 14 i.e. isentropic

rotation axis 15. This symmetry physically arises from a balance between 15 Hough 1897

the Coriolis and centrifugal e�ects, and so is very di�erent in origin from

the solid body expectation. Despite this clean result, observations indicate

that the Sun obeys no such constraint 16. The theorem neglects a variety of 16 Di Mauro et al. 1998; Gough & Thomp-
son 1991

e�ects ranging from viscosity and turbulent stresses to MHD phenomena.

Additionally convection zones are not perfectly isentropic, which results

in the so-called thermal wind correction to the Taylor-Proudman state.

One goal of this work is to determine which e�ects serve to break the

Taylor-Proudman state and under what circumstances.

More recently, and in part owing to dramatic improvements in observa-

tional capabilities, di�erential rotation has garnered substantial theoretical

attention. Some argue that thermal wind balance and entropy gradients

dominate the solar rotation profile 17, while others have called this into 17 Miesch et al. 2006; Balbus & Schaan 2012;
Balbus et al. 2012

question 18. Observations suggest that this is a significant e�ect, though 18 Brun & Toomre 2002; Brun et al. 2010

there remain significant uncertainties 19. Other models suggest that tur- 19 Caccin et al. 1976; Rast et al. 2008; Teplit-
skaya et al. 2015

bulent anisotropy is the most relevant factor 20, and more complex models 20 Ruediger 1989; Kitchatinov & Ruediger
1995; Kitchatinov 2013with various parameterisations have also been proposed 21. 21 Tuominen & Ruediger 1989; Tuominen
et al. 1994; Brun & Rempel 2009; Kissin &
Thompson 2015

Numerical investigations of these questions have proven more successful

in reproducing details of the solar rotation profile 22, though they face a 22 Thompson et al. 2003; Miesch & Toomre
2009

di�erent set of challenges 23. In particular, because it is not clear whether 23 Käpylä 2011

di�erential rotation is a secular phenomenon developing in stars over long

periods of time24 or if it is determined on short time-scales. In order 24 This is generally thought to be the case
in radiative stars. See e.g. Maeder & Zahn
(1998).to investigate the former case one must make significant simplifying as-

sumptions about the nature of angular momentum transport so as to make

the problem tractable with one-dimensional stellar evolution codes. Such

simulations have proven helpful in identifying whether specific analytic

or semi-analytic prescriptions for angular momentum transport are su�-

cient 25 and have had some success in reproducing the stellar period–radius 25 Cantiello et al. 2014

relations, but do not currently reproduce the observed di�erential rotation

profile in the Sun.

On the other hand if the rotation profile is set by physics acting on

short time-scales then three-dimensional hydrodynamics simulations are
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possible, though global simulations remain challenging owing to the wide

range of Mach numbers simultaneously present in stellar convection. A

further challenge is that these simulations are su�ciently time-consuming

that it is not currently possible to explore large parameter spaces and

map out the dependence of di�erential rotation on key parameters such

as angular momentum and luminosity. Nevertheless, the results which

have been found in this way are intriguing. For instance, red giants are

found in both simulation and asteroseismic inference to exhibit significant

di�erential rotation, including cases where the angular velocity changes

sign 26. There is also some evidence suggesting that baroclinicity at the 26 Brun & Palacios 2009; Klion & Quataert
2017

tachocline plays a role 27. 27 Brun & Rempel 2009

Here we aim to understand the magnitude of di�erential rotation in the

convection zones of stars, gaseous planets and accretion disks. That is, we

aim to determine the approximate magnitude and scaling of |∇Ω| in these

systems. It is important to emphasise that our arguments are purely

from an order-of-magnitude perspective. In particular, we generally

assume that dimensionless geometric factors are of order unity rather

than being very small. We believe that this is likely in most cases, as the

alternative is significant coincidence in the geometries of various fields that

are determined by a variety of fundamentally dissimilar physical processes.

Thus, for instance, we are agnostic on the question of whether baroclinic

pumping or turbulent stresses play a greater role in the slow-rotation

limit28 because we find that they exhibit identical scaling and are related 28 This has been a long-standing question.
See Miesch et al. (2006) for a discussion of
its status.by a dimensionless factor of order unity.

We begin in Section 3.2 with a discussion of our assumptions. In Sec-

tion 3.3 we examine the vorticity equation and derive the form which we

use in all subsequent analysis. We then consider in turn magnetic fields29, 29 Section 3.4

the condition of thermal equilibrium30, and the thermal wind contribu- 30 Section 3.5

tion31, deriving helpful expressions relating the magnitudes of di�erent 31 Section 3.6

e�ects. Finally in Section 3.7 we introduce a perturbative paradigm which

helps to organise the remainder of the calculation.

Subsequent sections of the paper focus on our key results. In Section 3.8

we derive the di�erential rotation in slowly rotating convection zones and

find that

|∇Ω| ≈ ΩR−1.

In Section 3.10 we derive the same in rapidly rotating convection zones
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and find that

|∇Ω| ≈ Ω1/7|N |6/7R−1

when the system is ionised and hence magnetised and

|∇Ω| ≈ Ω1/3|N |2/3R−1

otherwise. In both cases N is the Brunt-Väisälä frequency. In Section 3.12

we then discuss how the limit of rapid rotation transitions into a Keplerian

state and find that the sub-Keplerian scaling of the rapid rotation limit

necessarily becomes Keplerian once the scaling of e�ective gravity is taken

into account. Taken together our results provide a unified theory of the

magnitude of convective di�erential rotation which covers the full range

from accretion discs to gas planets to the most massive stars.

The remainder of the paper is dedicated to comparisons with obser-

vations and simulations32. We find good agreement with data from the 32 Section 3.13

Sun, Jupiter and Red Giants. We likewise find good agreement with

three-dimensional hydrodynamic and magnetohydrodynamic simulations

of rotating convecting stars and planets even for extreme rotation rates.

We conclude with a discussion of the limitations of our analysis33 and a 33 Section 3.14

summary of our results34. 34 Section 3.15

3.2 Assumptions

For simplicity we make a few assumptions.

1. Dimensionless factors arising from geometry are of order unity unless

required to be otherwise.

2. All external perturbing forces such as tides or external heating are

negligible in the regions of interest.

3. The material is non-degenerate and compressible 35.

35 More specifically, we require that the en-
tropy may be written in the form a1 lnp −
a2 ln ρ and the sound speed be related to
the pressure by c2s = a3P/ρ for some a1,2,3
of order unity. So for instance gases un-
dergoing ionization or with a significant
radiation component are still acceptable,
but degenerate material with pressure and
temperature decoupled is not.

4. All microscopic36 di�usivities are vanishingly small, such that:

36 i.e. non-turbulent

- Convection is e�cient 37.

37 That is, the entropy gradient is much
smaller than either the logarithmic pres-
sure gradient or the logarithmic density
gradient and an adiabatic law may be as-
sumed except where the entropy gradient
is the quantity of interest.

- Convection is well-developed 38.

38 That is, the Reynolds and Rayleigh num-
bers are much larger than critical.

- Magnetohydrodynamical processes are ideal.

- Turbulent and/or advective processes are responsible for all macro-

scopic transport of heat, momentum and magnetism.

5. The system is axisymmetric in a time-averaged sense.

6. Convection is subsonic or, if supersonic, only mildly so.
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7. The system is chemically homogeneous.

These assumptions are reasonable for the vast majority of systems and are

generally not hard constraints. That is, small violations of them do not

undermine our analysis. For instance the assumption that convection be

subsonic is relied on implicitly in the relation 3c ≈ h|N |, where h is the

pressure scale height and |N | is the Brunt-Väisälä frequency, in accordance

with Böhm-Vitense (1992) and others. From a scaling perspective it is not

a problem if convection is several-times supersonic, so long as this is just a

proportionality constant independent of factors such as the rotation rate.

Similarly the assumption of axisymmetry is meant not in every instant

but rather in a time-averaged sense. Thus for instance turbulence and

dynamo cycles may produce temporary deviations from axisymmetry,

but the long-run average behaviour must be axisymmetric. This is a

much weaker condition which notably does not run afoul of Cowling’s

theorem 39. 39 Cowling 1933; Parker 1955

In Section 3.14 we discuss the limitations of our analysis in greater

detail once it is complete. It is, however, worth discussing our treatment

of geometric factors further at this stage. Broadly speaking there are

two kinds of geometric factors which arise in this analysis, namely those

associated with solutions to di�erential equations and those associated with

the terms in those equations. We are highly concerned with the latter

but pay less attention to the former. For instance a non-rotating self-

gravitating system with no external or fossil magnetic fields is spherically

symmetric and so even though the convective stresses do not vanish the

angular momentum they transport does. Hence in the slowly-rotating

regime there is a geometric factor associated with rotation breaking this

symmetry. It relates the stress that transports angular momentum to that

which does not. We pay significant attention to such terms. Similarly we

pay considerable attention in our study of rapidly-rotating systems to the

fact that the Taylor-Proudman term couples the the azimuthal component

of the vorticity to the projection of the di�erential rotation along the

rotation axis but not to its projection along other axes. On the other hand

we pay little attention to the geometric factors which result from precisely

solving di�erential equations. In doing so we are, more or less, assuming

that the boundary conditions imposed on the system are relatively generic,

subject to whatever symmetries the system has. A consequence of this is

that we generally avoid assuming that individual e�ects are tuned to be

irrelevant in the solution unless their scaling properties make them so.
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3.3 Vorticity

Here we derive the laws governing the evolution of angular momentum

in axisymmetric systems, paying particular attention to the distinction

between meridional and longitudinal contributions. We then argue that

these systems are likely to be in a quasi-steady state and describe this steady

state in the special case of a non-rotating system.

We begin by defining the vorticity of a fluid as

ω ≡ ∇ × 3, (3.1)

where 3 is the velocity. Using equation (1.24) we see that in the absence

of external forcing40, the vorticity evolves according to 40 e.g. tides

∂ω

∂t
= ω · ∇3 −ω∇ · 3 − 3 · ∇ω +

1
ρ2
∇ρ ×∇p +∇×

(
1
ρ
∇ · T

)
+∇×

(
FB
ρ

)
,

(3.2)

where FB is the force due to the magnetic field, ρ is the density, p is

the pressure and T is the total fluid stress excluding magnetic e�ects. In

particular Ti j is the flux along the unit vector ei of momentum along the

direction e j .

The vorticity is the angular velocity of the fluid about a point, and so is

closely related to the di�erential rotation. More explicitly, the connection

between vorticity and di�erential rotation can be written in the limit

where rotation dominates the flow as

ω = Ω + R∇× (Ωeϕ ),

where Ω is the local angular velocity about the z axis and R is the cylindrical

radial coordinate. We do not impose this limit, but it is worth keeping in

mind as it gives an intuitive connection between vorticity and the force of

rotation. In particular, it suggests that we should look to the meridional

components of the vorticity for evidence of di�erential rotation.

We are interested in axisymmetric systems, where there is a natural

distinction between the meridional and longitudinal components of the

flow. To make this explicit we write the meridional flow as

u(R, z) ≡ 3(R, z) − Ω(R, z)Reϕ .
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Then

ω · ∇3 = ω · ∇u +ω · ∇(ΩReϕ )
= ω · ∇u − eRΩωϕ + eϕω · ∇(ΩR),

3 · ∇ω = u · ∇ω + ΩReϕ · ∇ω

= u · ∇ω − ΩωϕeR + ΩωReϕ ,

and

ω∇ · 3 = ω∇ ·u +ω∇ ·
�
eϕΩR

�

= ω∇ ·u.

Putting this together we find

ω · ∇3 −ω∇ · 3 − 3 · ∇ω

= ω · ∇u −u · ∇ω −ω∇ ·u

+ eϕω · ∇(ΩR) − eϕΩωR .

Combining this with equation (3.2) we find

∂ω

∂t
= ω · ∇u −ω∇ ·u −u · ∇ω + eϕω · ∇(ΩR) − eϕΩωR

+
1
ρ2
∇ρ ×∇p +∇×

(
1
ρ
∇ · T

)
+∇×

(
FB
ρ

)
. (3.3)

The first line of this equation describes kinematic e�ects associated with

the geometry and the rotation. This includes the meridional circulation.

The second line describes the e�ects of thermal wind, turbulent stresses

and magnetic stresses respectively.

Time

Formation Equilibrium

Figure 3.1: The ring-down of a system
from an initial state with extreme and un-
structured di�erential rotation to a steady
state is shown schematically versus time.
The final state need not obey solid-body
rotation, but unlike the initial state it is not
dependent on the details of the initial con-
ditions and so is generally more structured.

We now argue that astrophysical systems are likely to be near angular

momentum equilibrium because the timescale over which shear turbulence

transports momentum is quite short. This means both that the transient

di�erential rotation associated with the formation of the system rings

down rapidly to a more structured state (Fig. 3.1) but also that the secular

evolution of the vorticity owing to nuclear evolution and wind losses

may be neglected. To do this we first note that the di�usivity of shear

turbulence over the whole system is of order

ν ≈ R2|∇3|,

where R is the radius of the star. This is because the shear time-scale is set

by |∇3| and its associated length-scale is set by the distance over which it
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persists. The di�usive timescale associated with a shear is therefore

τdi� ≈
R2

ν
≈ |∇3|−1.

When the star forms the di�erential rotation is likely at least of order ΩR−1,

because this is the scale expected for a collapsing gas cloud. As a result

|∇3| & Ω−1

and hence the transient highly-di�erential state rings down on a timescale

τdi� . Ω−1.

In practice this is an upper bound on the time-scale, because convective

turbulence contributes as well. In systems which are rotating fast enough

for di�erential rotation to be of interest, the rotation period is much shorter

than the time-scale over which the system evolves, and so the system is

likely to be in an instantaneous momentum equilibrium. So the secular

evolution of the vorticity may be neglected in equation (3.3).

The only case of which we are aware in which this argument fails is in

accretion discs, where the di�usivity is suppressed by the stability of non-

magnetised Keplerian fluids, resulting in significantly less relative angular

momentum transport and hence much longer equilibration time-scales. In

this case, however, transients must ring–down on time-scales of order Ω−1

because non-Keplerian motion results in the fluid centrifugally adjusting

its orbit on this time-scale. So once more we find that transient e�ects in

the di�erential rotation decay quickly.

This is not the end of the story, however. Equation (3.3) supports linear

oscillatory motions, such as Alfvén waves and sound waves, as well as

non-linear instabilities such as those associated with the dynamo 41 and 41 Käpylä 2011

convection 42. We take these instabilities to have been averaged over, 42 Böhm-Vitense 1958

such that their root-mean-square e�ects appear in the stress tensor T, and

therefore neglect them wherever they appear in the vorticity equation.

We also specifically neglect gravity waves because these damp rapidly in

convection zones 43. 43 Fuller et al. 2014

Setting the time derivative in equation (3.3) to zero we find

0 = ω · ∇u −ω∇ ·u −u · ∇ω + eϕω · ∇(ΩR) − eϕΩωR

+
1
ρ2
∇ρ ×∇p +∇×

(
1
ρ
∇ · T

)
+∇×

(
FB
ρ

)
. (3.4)
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Furthermore, in steady state conservation of mass requires

∇ · (ρu) = 0

so

∇ ·u = −u · ∇ ln ρ. (3.5)

Inserting this into equation (3.4) we find

0 = ω · ∇u +ωu · ∇ ln ρ −u · ∇ω + eϕω · ∇(ΩR) − eϕΩωR

+
1
ρ2
∇ρ ×∇p +∇×

(
1
ρ
∇ · T

)
+∇×

(
FB
ρ

)
. (3.6)

At this stage it is useful to separate equation (3.6) into its meridional

and eϕ components. To do this we denote the projection of a vector into

the meridional plane by the subscriptm. In this notation then

u ≡ 3m .

Thus

0 = ωm · ∇u +ωmu · ∇ ln ρ +u · ∇ωm

+

[
∇×

(
1
ρ
∇ · T

)]

m
+

[
∇×

(
FB
ρ

)]

m

(3.7)

and

0 = R−1ωϕuR +ωϕu · ∇ ln ρ +u · ∇ωϕ +ω · ∇(ΩR) − ΩωR

+ ρ−2eϕ · ∇ρ ×∇p + eϕ · ∇ ×

(
1
ρ
∇ · T

)
+ eϕ · ∇ ×

(
FB
ρ

)
. (3.8)

3.4 Magnetic Fields

The appearance of the magnetic field in the vorticity equation means that

to close this equation we must address the source of magnetism. There

are typically three sources of magnetic fields in the astrophysical context:

fossil fields, turbulent dynamos, and externally imposed fields.

A fossil field is one present at the time of formation of the body. In

convection zones the dynamo phenomenon processes magnetic fields on a

variety of geometry-dependent time-scales. In the Sun these range from

the convective turnover time, which is of order 106s, up to several thousand
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years. The longest of these time-scales is set by a variety of e�ects including

the microscopic conductivity and the ratio of the convective time-scale to

the rotation period. In any event this processing is quite rapid compared to

the lifetime of the star, and so it appears that it may be neglected. Despite

this it is possible for a fossil field to persist throughout the lifetime of the

system if the convection zone is in contact with a magnetised radiative zone

with little turbulence, as is the case for some white dwarfs and potentially

in the Sun 44. In this case the field may slowly leak out from the radiative 44 Gough & McIntyre 1998; Gough 2017;
Quentin & Tout 2018

zone over long time-scales. Consequently we cannot generically neglect

fossil fields.

Externally imposed magnetic fields are less common but nevertheless of

astrophysical interest. For instance, in a star-pulsar binary system the star

may be subject to significant magnetic fields which influence convection

near the surface. From the perspective of a scaling analysis there is little

di�erence between a fossil field and an externally imposed field. Both may

break symmetries, including axisymmetry, and in both cases there is no a

priori relationship between the magnitude of the field and other properties

of the body. This means that these cases may be analysed together.

Such an analysis will wait for future work. For now we consider

the many cases in which the fields are generated by turbulent dynamo

processes. In such cases the field obeys the same symmetry, on average,

as the turbulence which drives it, so its contribution vanishes in highly

symmetric situations just as does the contribution of the turbulence. As

a result the explicit contribution of the magnetic force may be absorbed

into the turbulent stress, with the caveat that we must then account for

this in determining the magnitude of that term. To that end we note that

the magnetic force may be written as

FB = −∇ ·ΠB,

where ΠB is given by equation (1.22) as

ΠB,i j ≡ −
1
4π

(
BiBj − B

2δi j
)
.

So the contribution to the stress tensor is just −ΠB. This scales proportional

to ρ32A, where

3A ≡
B√
4πρ

is the Alfvén speed. Hence what we must determine is how 3A compares

with the characteristic velocity scale of the stress. For this there are two
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regimes of interest, namely that of slow rotation and that of rapid rotation,

which we discuss respectively in sections 3.8 and 3.10.

3.5 Thermal Equilibrium

Equations (3.7) and (3.8) involve the meridional circulation and the baro-

clinicity. In order to relate these we must close the system of equations

with a study of heat transport. This analysis has all been conducted in equi-

librium thus far so we do so through the equation of thermal equilibrium45, 45 This is just equation (1.18) in steady state
with ϵ = 0, so that there is no heat gener-
ation. This is applicable in the bulk of the
star or planet.

which reads

ρcpTu · ∇s +∇ · F = 0, (3.9)

where ρ is the density, cp is the specific heat at constant pressure, T is the

temperature, s is the dimensionless entropy given by equation (1.2) and

F = ρcpTD · ∇s (3.10)

is the convective flux with di�usivity tensor D. This tensor depends on the

entropy gradient and so equation (3.10) is non-linear in s. For an ideal gas

with homogeneous chemistry p ∝ ρT so equation (3.9) may be written as

pu · ∇s +∇ · (pD · ∇s) = 0. (3.11)

In the non-rotating limit this possesses barotropic solutions with ∇s and

∇p both radial. Outside of this limit that is generally not true, both be-

cause ∇p is distorted by the centrifugal e�ect 46 and because D becomes 46 Eddington 1929

anisotropic 47. 47 Kitchatinov 2013

To proceedwe define ep to be the unit vector along the pressure gradient

and eq ≡ eϕ × ep to be a unit vector perpendicular to ep in the meridional

plane. We likewise denote components of vectors by the subscripts p and q

to mean the components along these unit vectors. It is also useful to define

ξ ≡
eϕ ·

�
∇ lnp ×∇s

�

|∇ lnp||∇s | , (3.12)

which measures the extent to which the pressure and entropy gradients

are misaligned. When ∇p and ∇s are nearly aligned, ξ measures the small

angle between them. When they are further misaligned it approaches ±1.

For convenience we also define

ξ̄ ≡
√
1 − ξ 2.



THE MAGNITUDE OF CONVECTIVE DIFFERENTIAL ROTATION 95

With these definitions,

∇s = |∇s | (ep ξ̄ + eqξ ) (3.13)

and

u = epup + equq .

Hence equation (3.11) becomes

up ξ̄ +uqξ = −
∇ · (pD · ∇s)

p|∇s | . (3.14)

It is now useful to relate ξ to the baroclinicity. This is given by

λ ≡
|∇ lnp ×∇ ln ρ|
|∇ lnp||∇ ln ρ| , (3.15)

which is directly proportional to the thermal wind term in equation (3.8).

When ∇p and ∇ρ are nearly aligned, λ measures the small angle between

them. When they are further misaligned λ approaches unity. In analogy

with ξ̄ we also define

λ̄ ≡
√
1 − λ2.

λξ

̙P

̙s

̙ρ

u F

Figure 3.2: The vectors and angles which
arise in analysing equation (3.9) are shown
together. Note that the entropy gradient is
on the opposite side of the pressure gradient
from the density gradient. This is required
by equation (1.2).

Equations (3.15) and (3.12) are related by equation (1.2), such that

λ =
|∇ lnp × 1

γ ∇s |
|∇ lnp||∇ ln ρ|

=
|∇s |

γ |∇ ln ρ|ξ .

Recalling equation (1.2), the squared Brunt-Väisälä frequency is

N 2 = −γ−1д · ∇s

= −
1
γ ρ
∇p · ∇s

= −
p

γρ
|∇ lnp||∇s |ξ̄ , (3.16)

where there is a convectively unstable gradient. Thus

λ =
−ρN 2

p|∇ ln ρ||∇ lnp|
ξ

ξ̄
.

When ∇p and ∇ρ are aligned, |∇ ln ρ| = γ−1|∇ lnp| because convection

enforces a near-adiabatic relation. When they are not the density gradient

along the pressure gradient remains adiabatic because convective motions
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are primarily along the pressure gradient48, so we instead find 48 This is because the pressure gradient is
the source of the convective restoring force.
See e.g. Fig. 16 of Chapter 2.

|∇ ln ρ| = 1
γ λ̄

|∇ lnp|, (3.17)

so

λ

λ̄
= −

γ ρN 2

p|∇ lnp|2
ξ

ξ̄
.

Noting that

|∇ lnp| = h−1, (3.18)

where

h =
p

ρд
(3.19)

is the pressure scale height 49, we find 49 Equation (3.19) arises from hydrostatic
equilibrium. In systems with circulation
currents, stresses, and di�erential rotation
there are deviations from this, but these
are only large when the rotation is nearly
Keplerian, and so we may ignore such cor-
rections except in that regime.

λ

λ̄
= −

γh2N 2ρ

p

ξ

ξ̄
.

Making use of cs =
√
γp/ρ and 50 3c ≈ h|N | we find 50 Böhm-Vitense 1958

λ

λ̄
= γ 3
32c

c2s

ξ

ξ̄
. (3.20)

Thus λ and ξ are just related by a function of the convective Mach number

M ≡ 3c/cs.

Combining equation (3.20) with equations (3.5) and (3.17), we find

0 = ∇ · (ρu)
= u · ∇ ln ρ +∇ ·u.

We may evaluate the first term as

u · ∇ ln ρ = (upep +uqeq) · ∇ ln ρ
= h(up∇ lnp +uqeϕ ×∇ lnp) · ∇ ln ρ
= |∇ ln ρ|(λuq +up λ̄)

= (hγ )−1
(
λ

λ̄
uq +up

)
. (3.21)

The second may be expanded as

∇ ·u = ∇ ·
�
epup + equq

�

= ep · ∇up + eq · ∇uq +up∇ · ep +uq∇ · eq .
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Because ep is parallel to the gravitational field its variation is set by the

overall scale and symmetry of the system, rather than local thermodynamic

properties. The unit vector eq is then determined as a linear function of ep
and so varies over the same scales. Thus we expect that∇ ·ep ≈ ∇ ·eq ≈ 1/r ,

where r is the spherical radial scale and comes in due to the large-scale

structure of the system.

On the other hand up and uq generally vary more rapidly than this

because equation (3.14) shows that the velocity is related to the local

condition of thermal equilibrium. As a result we expect that the variation

of up and uq is due to the variation of local thermodynamic properties

as well as global e�ects having to do with the scale and symmetry of the

system. Along the pressure gradient then

|ep · ∇ lnup | ≈ |ep · ∇ lnuq | ≈ |∇ lnp| + r−1 = h−1 + r−1,

where once more r arises due to the large-scale structure of the system.

Perpendicular to the pressure gradient only the density varies, so

|eq · ∇ lnup | ≈ |eq · ∇ lnuq | ≈ |eq · ∇ ln ρ| + r−1 ≈ λ

γ λ̄h
+ r−1.

In general the pressure scale height is somewhat less than the radius, so

|∇ ·u | ≈ h−1|up | +
(
λ

γ λ̄h
+ r−1

)
|uq |,

where we have neglected the signs of terms and just written down their

magnitudes. Incorporating this with equation (3.21) and dropping factors

of order unity we find

|∇ · (ρu)| = 0 ≈
1
h

(
|up | +

(
h

r
+
λ

λ̄

)
|uq |

)
,

where once more we have just written down the scaling of each term

and have neglected potential signs, terms of order unity and geometric

factors. Because we assume minimal geometric tuning it must be that

motion along ep balances that along eq in this equation, so

|up | ≈
(
h

r
+
λ

λ̄

)
|uq |. (3.22)

Inserting equation (3.22) into equation (3.14) we find

|uq |ξ
[
1 +

ξ̄

ξ

(
h

r
+
λ

λ̄

)]
≈

|∇ · (pD · ∇s)|
p|∇s | .
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Inserting equation (3.20) and dropping factors of order unity we find

|uq |ξ
[
1 +

ξ̄h

ξr
+M2

]
≈

|∇ · (pD · ∇s)|
p|∇s | .

Examining equation (3.22) and using h < r and51 λ < λ̄ we see that 51 This follows because were it not the case
∇p and ∇ρ would need to be at an angle of
order unity relative to one another, which
can only be the case near breakup rotational
velocities.

uq > up . Hence we may write the magnitude

u ≈ uq ≈
|∇ · (pD · ∇s)|

p|∇s | [
ξ (1 +M2) + ξ̄h/r

] . (3.23)

Equation (4.12) relates the magnitude of the meridional circulation

to the conditions of thermal equilibrium, which in turn we related to

the baroclinicity by the di�usivity tensor. This does not intrinsically

mean that thermal equilibrium drives the circulation, just that thermal

equilibrium demands that this equation be satisfied. Thus, for instance,

if the vorticity equation is sti�er in the meridional circulation than the

momentum equation it could be that the momentum equation drives

a circulation, in which case the causation runs from left-to-right and

the circulation determines the baroclinicity 52. Likewise in the reverse 52 Miesch & Toomre 2009; Brun & Rempel
2009

case baroclinicity drives and determines the circulation 53. In fact both 53 Eddington 1929; Osaki 1982; Maeder &
Zahn 1998possibilities appear to occur depending on the context. An interesting result

from recent simulations is that in the slow-rotation limit these two e�ects

actually scale with rotation in a similar manner 54 with the momentum 54 Miesch & Toomre 2009

imbalance generally providing a somewhat stronger impetus. This may be

why rather di�erent approaches have historically had comparable success

at explaining the observations.

3.6 Thermal Wind

We now turn to the thermal wind term appearing in equations (3.8),

namely ρ−2(∇p ×∇ρ)ϕ . Noting that ∇p and ∇ρ lie in the meridional plane

we find

|ρ−2(∇p ×∇ρ)ϕ | = p

ρ
|∇ lnp ×∇ ln ρ|.

Inserting equation (3.15) yields

|ρ−2(∇p ×∇ρ)ϕ | = p

ρ
|∇ lnp||∇ ln ρ|λ.

Equation (3.17) then gives

|ρ−2(∇p ×∇ρ)ϕ | = p

ρ
|∇ lnp|2 λ

γ λ̄
.
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Recalling equations (3.18) and (3.19) we find

|ρ−2(∇p ×∇ρ)ϕ | = д

h

λ

γ λ̄
.

Neglecting factors of order unity such as γ we finally obtain

|ρ−2(∇p ×∇ρ)ϕ | ≈ д

h

λ

λ̄
. (3.24)

Hence the thermal wind term is purely determined by the baroclinicity.

3.7 Sti�ness

We now introduce a concept which will be helpful in determining the

magnitudes of terms in our equations, namely the sti�ness of a solution.

The sti�ness indicates how strongly the solution of a di�erential equation

responds to perturbations in its parameters, In this section we construct a

basic framework for calculating this quantity.

Suppose we have a series of di�erential equations of the form

Fi
��
ϕ j

	�
= 0,

where each F is a possibly-nonlinear yet local functional of each ϕ, and

where some ϕ j may be derivatives of other ϕ j′ . If we perturb this system

of equations by modifying one ϕk then

Fi
��
ϕ j

	�
= dFi =

δFi
δϕk

dϕk ,

where δ indicates the functional derivative 55 If we require a solution to 55 We could equally well perform this anal-
ysis using partial derivatives by discretising
space and projecting our functions onto
that discretisation, but such notation is con-
siderably more cumbersome and obscures
the analysis.

the system of equations then the other variables must be perturbed such

that dFi = 0, so

∑
j,k

δFi
δϕ j

dϕ j =
δFi
δϕk

dϕk .

So long as the number of variables exceeds the number of equations by

one this linear system may be inverted to find

dϕ j = −
∑
i

J −1ji
δFi
δϕk

dϕk = −J
−1 ·qdϕk , (3.25)

where

Ji j ≡
δFi
δϕ j
∀j , k (3.26)
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and

q ≡
δFi
δϕk

. (3.27)

In keeping with our general neglect of geometric factors we now ignore

the spatial dependence of q as well as of J and its inverse. We further

specialise to the case of three equations, namely the heat equation and the

meridional and azimuthal components of the vorticity equation. Because

we have related the two components of the velocity in equation (3.22)

and evaluated their derivatives, u and its derivatives are determined for

our purposes just by the scalar u. Likewise we parameterise the entropy

gradient simply by ξ because |∇s | must vary proportional to the total

flux and we have evaluated the action of derivatives on this object 56.

56 Specifically, derivatives are broken into
a contribution from the simultaneous vari-
ation of pressure and density, which con-
tribute a factor of h−1 multiplied by the
projection of the derivative direction on to
those gradients, and a contribution from
the geometry, which produces a factor of
r−1.

Where we must be more cautious is with the rotation. We have not

determined the di�erential rotation, indeed that is our goal, so we treat Ω

and R∇Ω separately. We thus have four variables and three equations as

desired. Slightly more carefully, note that there are two components of

the meridional vorticity equation, but there are also two components of

R∇Ω, and so the count remains correct.

While in principle any variable could be taken to be the perturbing

one, Ω is the natural choice. There is a continuum of solutions for systems

at various rotation rates, and our concern is with how ξ , u and of course

R∇Ω vary with Ω.

In practice using equation (5.34) we estimate the functional derivatives

rather than compute them precisely, and as noted we are neglecting the

spatial dependence of J , so we treat J as a regular matrix. When there

are three equations this may be written as

J −1i j =
1

det(J )ϵilkJlpJkmϵpmj ,

where ϵi jk is the Levi-Civita symbol. Hence

dϕi
dϕ j
= −

1
det(J )ϵilkϵpmjJlpJkmq j .

3.8 Slow Rotation

In the special case of a non-rotating body with no fossil field, every term in

the vorticity equation vanishes. This follows from symmetry, as the only

preferred direction is radial, which implies that the system is spherically

symmetric. All vector fields of interest must therefore be radial. Every term

in the vorticity equation results from the curl of a vector field, and the curl
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of a radial field with spherical symmetry is zero and consequently every

term in equation (3.6) vanishes. This provides a useful starting point for

perturbation theory in the slow-rotation limit. Note that here slow is with

respect to the Brunt-Väisälä frequency |N |, so we assume that Ω � |N |.

3.8.1 Magnetic Field

When the rotation is slow relative to the convective turnover time, the field

approaches equipartition with the turbulent flow 57 and the Alfvén speed 57 Roberts & Glatzmaier 2000; Sreenivasan
& Jones 2006

3A is comparable to the convection speed. This is what is typically found in

simulations 58 even up to rotation rates comparable to the turnover time 59. 58 Hotta et al. 2015; Augustson et al. 2011
59 Augustson et al. 2013

So in this regime the magnetic term scales with the turbulent term, and we

only need to retain one of these terms in the angular momentum balance

to capture the scaling. Because there are situations in which the magnetic

term is sub-dominant, such as weakly ionised fluids, we choose to retain

the turbulent term. With this equations (3.7) and (3.8) become

0 = ωm · ∇u +ωmu · ∇ ln ρ +u · ∇ωm

+

[
∇×

(
1
ρ
∇ · T

)]

m

(3.28)

and

0 = R−1ωϕuR +ωϕu · ∇ ln ρ +u · ∇ωϕ +ω · ∇(ΩR) − ΩωR

+ ρ−2eϕ · ∇p ×∇ρ + eϕ · ∇ ×

(
1
ρ
∇ · T

)
. (3.29)

3.8.2 Stress

When there is symmetry breaking the solution is generally quite compli-

cated, but it may be understood by examining the scaling of each term

in equations (3.7) and (3.8). We have already discussed the magnetic and

meridional flow terms, so we turn to the contributions from the convective

stress. When the rotation is slow the turbulence is primarily convective,

with characteristic length scale h and characteristic time scale |N |−1. So 60 60 Böhm-Vitense 1958

T ≈ ρh2|N |2,

where T is the typical magnitude of entries in T.
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In the non-rotating limit T , 0, and by symmetry must be of the form

T ≈
*....
,

Tr r 0 0

0 Tθθ 0

0 0 Tϕϕ

+////
-

,

where we have written this tensor in spherical coordinates and the diagonal

terms are of the same order of magnitude 61. In this limit we know that 61 Gough 1978

∇×

(
1
ρ
∇ · T

)
= 0.

That is, the angular momentum transported by turbulence is protected by

spherical symmetry. Hence we find

∇×

(
1
ρ
∇ · T

)
= ∇×

(
1
ρ
∇ · T

)
− ∇ ×

(
1
ρ
∇ · T

) �����Ω=0
.

When there is rotation this symmetry is broken and T is perturbed as62 62 See Chapter 2 and Kitchatinov (2013).

T ≈

*......
,

Tr r ,0
(
1 + Ω2

|N |2
)

Ω2

|N |2
Ω
|N |

Ω2

|N |2 Tθθ ,0
(
1 + Ω2

|N |2
)

Ω
|N |

Ω
|N |

Ω2

|N |2 Tϕϕ,0
(
1 + Ω2

|N |2
)

+//////
-

,

where we have neglected dimensionless factors of order unity which

multiply the various factors of Ω/|N |. The first order perturbations arise
in the rϕ, ϕr , ϕθ and θϕ components because the Coriolis e�ect couples

motion along other directions to motion along eϕ , while the perturbations

to the remaining components are second order because a second application

of the Coriolis e�ect is required to couple motion along two directions

neither of which is eϕ . Finally, the perturbations on the diagonal are

second order, both because of the centrifugal e�ect and because it takes

two applications of the Coriolis e�ect to couple motion in a direction to

itself.

To proceed further we must know which stress components appear in

which parts of the vorticity equation. In spherical coordinates we write

T =
*....
,

Tr r Trθ Trϕ

Tθr Tθθ Tθϕ

Tϕr Tϕθ Tϕϕ

+////
-

,

where Ti j refers to momentum along e j being transported along ei . The

stress terms appearing in equation (3.2) are then63 63 This calculation was performed with
Mathematica (Inc., 2016).
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∇×

(
1
ρ
∇ · T

)
r
=

1
r2ρ2

�
ρ∂θTrϕ + Trϕ (cot(θ )ρ − ∂θ ρ)

+ cot(θ )ρ∂θTθϕ − Tθϕ (cot(θ )∂θ ρ + ρ)
−r∂θ ρ∂rTϕr + 2ρ∂θTϕr + rρ∂r ∂θTϕr

+r cot(θ )ρ∂rTϕr − 2∂θ ρTϕr + 2 cot(θ )ρTϕr

−∂θ ρ∂θTϕθ + ρ∂2θTϕθ + 2 cot(θ )ρ∂θTϕθ

− cot(θ )∂θ ρTϕθ − ρTϕθ
�
,

∇×

(
1
ρ
∇ · T

)
θ
=

1
rρ2

�
∂r ρ

�
Trϕ + cot(θ )(Tθϕ + Tϕθ )

+r∂rTϕr + 2Tϕr + ∂θTϕθ
�

−ρ
�
∂rTrϕ + cot(θ )∂r

�
Tθϕ + ∂rTϕθ

�

+3∂rTϕr + r∂2r Tϕr + ∂r ∂θTϕθ
)]

and

∇×

(
1
ρ
∇ · T

)
ϕ
=

1
r2ρ2

[
ρ

(
−2∂θTr r − ∂2θTrθ

− cot(θ )∂θTrθ + ∂θTθθ + ∂θTϕϕ

+r
(
−∂r ∂θTr r + ∂rTrθ + 3∂rTθr + r∂2r Tθr

+∂r ∂θTθθ + cot(θ )∂r
�
Tθθ − ∂rTϕϕ

���

+ ∂θ ρ
�
r∂rTr r + 2Tr r + ∂θTrθ − Tθθ − Tϕϕ

�

+Trθ
(
−r∂r ρ + cot(θ )∂θ ρ + csc2(θ )ρ

)
−r∂r ρ (r∂rTθr + 2Tθr + ∂θTθθ

+ cot(θ )(Tθθ − Tϕϕ )
��
.

Inspection of these equations reveals that only the o�-diagonal components

of T contribute to the r and θ components of the vorticity equation, while all

but the rϕ, θr , ϕr , and rθ components of T contribute to the ϕ component

of the vorticity equation. As before we take radial gradients to produce

factors of h−1 and latitudinal ones to produce factors of r−1 + h−1λ/λ̄.

Because λ is small and h < r , terms with fewer latitudinal derivatives are

dominant. In equation (3.30) there are several terms involving just one

latitudinal derivative which are perturbed at first order, so these are the

most important. In equation (3.31) there is a term involving no latitudinal

derivatives which is perturbed at first order, so that is the dominant term.

In equation (3.32) there is one term which is perturbed at leading order64 64 In this case the leading order is quadratic.

and which has only radial derivatives, so that is the important term. Hence
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we find that

∇×

(
1
ρ
∇ · T

)
r
≈

1
ρh2

(
h

r
+
λ

λ̄

)
T
Ω

|N | , (3.30)

∇×

(
1
ρ
∇ · T

)
θ
≈

1
ρh2

T
Ω

|N | (3.31)

and

∇×

(
1
ρ
∇ · T

)
ϕ
≈

1
ρh2

T
Ω2

|N |2 . (3.32)

Di�erential rotation likewise breaks spherical symmetry. The rϕ, ϕr ,

θϕ and ϕθ components of T break this symmetry at first order because they

directly couple to the shear, while the remaining terms break the symmetry

at second order both by coupling to the shear twice and by coupling once to

the shear and once to the rotation itself. To see this note that the di�erential

rotation acts in the plane of eϕ and the shear direction, so if motions along

er , eθ and eϕ are not correlated initially then motions between er and eθ

cannot be coupled at first order by the di�erential rotation. Thus either the

Coriolis e�ect is needed to couple these components or else a higher order

perturbation is needed. For the same reason the di�erential rotation cannot

perturb the diagonal components of T to first order, and two applications

are needed to turnmotion along, say, er into motion along another axis and

back into motion along er . Another way to understand this is to note that

the mapping 3ϕ → −3ϕ also maps Ω → −Ω and ∇Ω → −∇Ω, which may

be undone by then letting ϕ → −ϕ. This spatial transformation negates the

components of T which involve the direction eϕ an odd number of times

but not those involving it an even number of times65, and so the latter 65 One might ask why this transformation
is not also undone by letting z → −z. The
reason is that while 3 is a vector, Ω is a
pseudovector generated by a cross-product
with eϕ , so its component along the ez
axis is left invariant upon reflection about
that axis.

must be even functions of Ω. It follows that they must be at least quadratic

in Ω and hence only terms of the form Ω|R∇Ω| and |R∇Ω|2 are allowed at

leading order. This is in agreement with the model of Kitchatinov et al.

(1994).

Based on these symmetry arguments we write the leading order term

in the di�erential rotation

∇×

(
1
ρ
∇ · T

)
r
≈

1
ρh2

(
h

r
+
λ

λ̄

)
T
R∇Ω

|N | , (3.33)

∇×

(
1
ρ
∇ · T

)
θ
≈

1
ρh2

T
|R∇Ω|
|N |
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and

∇×

(
1
ρ
∇ · T

)
ϕ
≈

1
ρh2

T
Ω|R∇Ω|
|N |2 .

A similar argument produces the couplings to the meridional circulation,

which is rather symmetric with respect to the meridional plane and hence

∇×

(
1
ρ
∇ · T

)
r
≈

1
ρh2

(
h

r
+
λ

λ̄

)
T
|∇u |
|N |

(
Ω

|N | +
|R∇Ω|
|N |

)
,

∇×

(
1
ρ
∇ · T

)
θ
≈

1
ρh2

T
|∇u |
|N |

(
Ω

|N | +
|R∇Ω|
|N |

)

and

∇×

(
1
ρ
∇ · T

)
ϕ
≈

1
ρh2

T
|∇u |
|N | . (3.34)

That is,u only couples to the stress via the perturbed terms in themeridional

vorticity equation whereas it couples directly in the azimuthal component.

Note that the couplings in equations (3.30) and (3.31) are the leading

order contributions to the Λ-e�ect66, while those in equations (3.33)-(3.34) 66 For a discussion of this e�ect see Chap-
ter 2.

produce an e�ective turbulent viscosity with magnitude |N |−1T 67. These 67 Ruediger 1989; Kitchatinov 2013

expansions are consistent with standard closure models such as those used

by Gough (2012) and Lesa�re et al. (2013), as well as with simulations of

slowly rotation convection 68. 68 Käpylä et al. 2011

There is one further e�ect which may contribute to the stress at leading

order, namely baroclinicity69. This e�ect lies inside the meridional plane 69 See Chapter 2 and Ruediger (1989).

and hence is invariant with respect to the mapping ϕ → −ϕ. It follows that

it only contributes at leading order to components of T which incorporate

the direction eϕ an even number of times. As a result

∇×

(
1
ρ
∇ · T

)
ϕ
≈

1
ρh2

Tξ .

In order to couple ξ into the remaining components of the vorticity

equation we need other e�ects to break this symmetry. Hence

∇×

(
1
ρ
∇ · T

)
r
≈

1
ρh2

(
h

r
+
λ

λ̄

)
Tξ

( |∇u|
|N | +

Ω

|N | +
|R∇Ω|
|N |

)

and

∇×

(
1
ρ
∇ · T

)
θ
≈

1
ρh2

Tξ
( |∇u |
|N | +

Ω

|N | +
|R∇Ω|
|N |

)
.
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Putting it all together we find

∇×

(
1
ρ
∇ · T

)
r
≈

(
h

r
+
λ

λ̄

)
|N |(Ω + |R∇Ω|)

+ |N |2
(
ξ +

u

h|N | +
Ω

|N | +
|R∇Ω|
|N |

)2
,

∇×

(
1
ρ
∇ · T

)
θ
≈ |N |(Ω + |R∇Ω|)

+ |N |2
(
ξ +

u

h|N | +
Ω

|N | +
|R∇Ω|
|N |

)2
and

∇×

(
1
ρ
∇ · T

)
ϕ
≈ |N |2

(
ξ +

u

h
+

Ω2

|N |2 +
Ω|R∇Ω|
|N |2

)
,

where we have used the fact70 that |∇u| ≈ u/h and where we have added 70 See Section 3.5.

additional terms at higher order to permit a more compact representation.

These are not necessarily present, though there is no symmetry which

prohibits them.

3.9 Advective Terms

We now evaluate the various terms directly involving either u or ω. We

begin with the meridional vorticity equation. The first term is ωm · ∇u.

Expanding equation (4.10) and projecting into the meridional plane we

find

ωm = er

(
2 cosθΩ + sinθ

∂Ω

∂θ

)
− eθ sinθ

(
2Ω + r

∂Ω

∂r

)
. (3.35)

Expanding u in the basis formed by the pressure gradient and the perpen-

dicular unit vector in the meridional plane we obtain

u = upep +uqeq .

When the system is slowly rotating, ep ≈ er and eq ≈ eθ , with corrections

to both of order λ. Neglecting such corrections we find

ωm · ∇u ≈ er [∂rur (2 cosθΩ + sinθ∂θΩ)
− sinθ∂ruθ (2Ω + r∂rΩ)]
+
1
r
eθ [(∂θur −uθ ) (2 cosθΩ + sinθ∂θΩ)

−
sinθ
r

(2Ω + r∂rΩ) (ur + ∂θuθ )
]
.
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Making the approximation that radial derivatives of u produce factors of

h−1 while latitudinal derivatives produce factors of r−1 and taking h � r

we find

|ωm · ∇u | ≈ 1
h
[Ωur + Ωuθ +ur |R∇Ω| +uθ |R∇Ω|] ,

where we have estimated ∂θΩ and r∂rΩ by |R∇Ω|. Equation (3.22) then

tells us that u ≈ uθ � ur so

|ωm · ∇u | ≈ u

h
[Ω + |R∇Ω|] .

The relative corrections to this are at least of order h/r , λ and Ω/|N |.
Because the non-rotating system is spherically symmetric λ must be at

least of order Ω/|N |, hence this expansion is accurate to leading order in

both h/r and Ω/|N |.
We next turn to the term ωmu · ∇ ln ρ. The magnitude of this is just

|ωmu · ∇ ln ρ| = |ωm ||u · ∇ ln ρ|.

The first term we may find using equation (3.35) to be

|ωm | =
√
4Ω2 + |R∇× (Ωeϕ )|2 + 4Ω · R∇× (Ωeϕ ).

Approximating the radical by the sum of the square roots of its parts, which

is of the same order of magnitude in the absence of significant geometric

coincidence, and neglecting factors of order unity we find

|ωm | = |R∇Ω| + Ω. (3.36)

The remaining term we have already computed in equation (3.21) and

found to be

|u · ∇ ln ρ| ≈ 1
hγ

(
up +uq

λ

λ̄

)
.

Inserting equation (3.22) and dropping factors of order unity we find

|u · ∇ ln ρ| ≈ u

h

(
h

r
+
λ

λ̄

)
,

hence

�
ωmu · ∇ ln ρ

�
≈
u

h
(|R∇Ω| + Ω)

(
h

r
+
λ

λ̄

)
as desired.
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Finally we examine the term u · ∇ωm . Again using ep ≈ er and eq ≈ eθ

we find

u · ∇ωm ≈ er [ur (2 cosθ∂rΩ + sinθ∂r ∂θΩ)
+
uθ
r

(
3 cosθ∂θΩ + sinθ

(
∂2θΩ + r∂rΩ

))]

− eθ
[
ur sinθ

(
3∂rΩ + r∂2r Ω

)
+
uθ
r

(r cosθ∂rΩ + sinθ (∂θΩ + r∂r ∂θΩ))
]
.

Making the same approximations as in equation (3.36) we find

|u · ∇ωm | ≈ u

h
[Ω + |R∇Ω|] .

We now turn to the azimuthal vorticity equation. The first term is

R−1ωϕuR . Expanding the azimuthal vorticity we find

ωϕ = ∂ruθ + r
−1uθ − r

−1∂θur . (3.37)

Noting that uθ ≈ uq ≈ u we may approximate the first term by u/h. This

is larger than the remaining terms, so

ωϕ ≈
u

h
.

Hence

R−1ωϕuR ≈
uRu

hR

Averaged over latitudes uR projects comparably onto both uq and up , so

uR ≈ u hence

|R−1ωϕuR | ≈ u2

hR
.

The next term is ω · ∇(ΩR). Using equation (3.35) we find

ω · ∇(ΩR) = −Ω sinθ (r cosθ∂rΩ − ∂θΩ sinθ ) .

Neglecting the geometric factors this is just

|ω · ∇(ΩR)| ≈ Ω|R∇Ω|

as desired.

The next term is u · ∇ωϕ . Expanding the vorticity as in equation (3.37)
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we find

u · ∇ωϕ ≈
eϕ

r2

[
uθ

(
∂θuθ − ∂

2
θur + r∂r ∂θuθ

)
+ur

(
∂θur −uθ + r

(
∂ruθ − ∂r ∂θur + r∂

2
ruθ

))]
.

This contains a term involving two radial derivatives and uθ ≈ uq ≈ u so

that term dominates the expression. Hence we write

|u · ∇ωϕ | ≈ u2

h2
.

The next term is ΩωR . Writing the vorticity in cylindrical coordinates

we see that

ω = eR (−R∂zΩ) + ez (2Ω + R∂rΩ) + eϕ (∂zur − ∂ruz ).

Hence,

|ΩωR | = |RΩ∂zΩ| ≈ Ω|R∇Ω|.

The final term is ωϕu · ∇ ln ρ. The first factor is given in spherical polar

coordinates as

ωϕ = ∂ruθ + r
−1uθ − r

−1∂θur .

Noting that uθ ≈ uq ≈ u we may approximate the first term by u/h. This

is larger than the remaining terms, so

ωϕ ≈
u

h
.

The remaining piece of this term we have already computed in equa-

tion (3.21), so

|ωϕu · ∇ ln ρ| ≈ u2

h2
|N |2

(
h

r
+
λ

λ̄

)
.

We have only incurred errors of order h/r and λ/λ̄ in computing this

term because we have approximated uθ by u, so the expansion is accurate

to leading order in both factors. These results as well as those from earlier

sections are summarised in Table 3.1.

3.9.1 Baroclinicity

To proceed further we must determine the baroclinicity. To do so we

note that the di�usivity tensor is of the form 71 71 Rüdiger et al. 2005b; Lesa�re et al. 2013
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Term Magnitude
Meridional (3.28)

ωm · ∇mu
u
h (Ω + |R∇Ω|)

ωmu · ∇ ln ρ u
h (Ω + |R∇Ω|)

(
h
r +

λ
λ̄

)(
∇×

(
1
ρ∇ · T

))
m

|N |(Ω + |R∇Ω|) + |N |2 (
ξ + u

h |N | +
Ω
|N | +

|R∇Ω|
|N |

)2
Azimuthal (3.29)
ω · ∇(ΩR) Ω|R∇Ω|
ΩωR Ω|R∇Ω|
ωϕu · ∇ ln ρ u2

h2

(
h
r +

λ
λ̄

)
ρ−2(∇p ×∇ρ)ϕ д

h
λ
λ̄(

∇×
(
1
ρ∇ · T

))
ϕ

|N |2
(
ξ + u

h |N | +
Ω2

|N |2 +
Ω|R∇Ω|
|N |2

)

Table 3.1: The magnitudes of the terms
in equations (3.28) and (3.29) are sum-
marised here. Factors of order unity have
been dropped for simplicity. We have also
dropped terms which we have argued are
never relevant.

D ≈ h2|N |−1 *.
,

|N |2 Ω2

Ω2 |N |2
+/
-
, (3.38)

where we have neglected multiplicative factors of order unity, the first

column and row reflect ep and the second of each reflects eq . We have

omitted the components of the di�usivity associated with eϕ because

axisymmetry means that both the entropy gradient and the derivative of

the flux vanish in that direction. There is a second-order contribution

of the form Ω|R∇Ω|/|N |2, analogous to that in T, but we shall argue that

|R∇Ω| is no greater than Ω and so absorb that contribution into the Ω2

terms. Similarly there is a contribution from the baroclinicity proportional

to ξ , but we shall show that this is at most of order Ω2/|N |2 and so we may

likewise absorb it into the Ω2 terms.

Inserting equations (3.13) and (3.38) into equation (3.11) and neglecting

the meridional circulation we find

∇ · (pD · ∇s) = ∇ · [
h2p|∇s | (ep (

Dpp ξ̄ +Dpqξ
)

+eq
(
Dqpξ̄ +Dqqξ

))]

= ∇ ·
[
p|∇s |ep (|N |2ξ̄ + Ω2ξ ) + eq(Ω2ξ̄ + |N |2ξ )] . (3.39)

This vanishes with ξ = 0, ξ̄ = 1 when Ω = 0, so in that limit

∇ · (pD · ∇s) = ∇ ·
[
h2

|N |p|∇s |ep |N |2
]
= 0.

Subtracting this from equation (3.39) we find

∇ · (pD · ∇s) = ∇·
[
h2

|N |p|∇s |ep (|N |2(ξ̄ − 1) + Ω2ξ )

+eq(Ω2ξ̄ + |N |2ξ )] .
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Because it is the rotation that breaks spherical symmetry and allows ξ , 0,

we expect ξ to be small in this limit so we may write

ξ̄ − 1 ≈ −
1
2
ξ 2.

Hence,

∇ · (pD · ∇s) = ∇·
[
h2

|N |p|∇s |ep
(
−
1
2
ξ 2|N |2 + Ω2ξ

)
+eq(Ω2ξ̄ + |N |2ξ )] .

Retaining only the leading-order terms we find

∇ · (pD · ∇s) = ∇ ·
[
h2

|N |p|∇s |eq(Ω
2ξ̄ + |N |2ξ )

]
. (3.40)

Without invoking geometric fine-tuning, this may be made to vanish if

|ξ | ≈ Ω2

|N |2 . (3.41)

Because this is small our earlier expansion around ξ = 0 is justified.

3.9.2 Circulation

We now argue using the methods of Section 3.7 that the solution to

equation (3.40) typically involves both a circulation and baroclinicity of

comparable order, rather than just one or the other as equation (3.41)

suggests. This is because equation (3.6) is comparably sti� in both the

baroclinicity and the circulation.

To begin let H be the left-hand side of equation (3.9), Vm be the

first component of the right-hand side of equation (3.28) andVϕ be the

right-hand side of equation (3.29). We perturb in Ω, so let

ϕ1 ≡ ξ ,

ϕ2 ≡ u,

ϕ3 ≡ |R∇Ω|

and

ϕ4 ≡ Ω.

We consider the two components of the di�erential rotation together

because in this limit none of the dominant terms preferentially couple to

one or the other.
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We now evaluate J and q in the slowly rotating limit. Turning first to

the heat equation we see that Ω does not actually enter except via D, where

we have argued that it is perturbed to leading order as Ω2/|N |2. Using
equations (3.10) and (3.11) and assuming derivatives produce factors of

h−1, we find that

δH

δΩ
≈

Ω

|N |2h
−1F .

The perturbation owing to ξ may be seen from equations (3.14) and (3.40),

from which we find

δH

δξ
≈ p|∇s |u +h−1F .

Inserting equation (3.16) and neglecting correctings owing to ξ̄ we obtain

δH

δξ
≈ p|N |2u

д
+h−1F .

Recalling equation (3.19)

δH

δξ
≈ ρh|N |2u +h−1F .

Finally using 3c ≈ h|N | and 72 F ≈ ρ33c we find 72 Böhm-Vitense 1992

δH

δξ
≈ h−1F

(
1 +

u

3c

)
≈ h−1F .

We additionally have

δH

δu
≈ p|∇s | + F

3c
≈

F

h3c

because D is perturbed by the circulation current. Note that this happens

at leading order because the current lies in the meridional plane. Finally,

the di�erential rotation perturbs the heat transport at second order, or

equivalently at first order by coupling to the rotation 73, so 73 This matter is discussed in the context of
the stress in Section 3.8.2, and the consid-
erations for the di�usivity are precisely the
same.

δH

δ (R∂zΩ) ≈
ΩF

|N |3c

and

δH

δ (R∂RΩ) ≈
ΩF

|N |3c .

We next examine the azimuthal vorticity equation. Using Table 3.1
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and equation (3.24) we find

δVϕ

δξ
≈ |N |2,

δVϕ

δu
≈

u

h2

(
h

r
+
λ

λ̄

)
+h−1|N | ≈ h−1|N |,

δVϕ

δ |R∇Ω| ≈ Ω

and

δVϕ

δΩ
≈ |R∇Ω| + Ω ≈ Ω.

Likewise using Table 3.1 we find for the meridional component

δVm

δξ
≈ |N |2ξ + u

h
|N | + Ω|N | + |R∇Ω||N | ≈ Ω|N |,

δVm

δu
≈ h−1

(
ξ |N | + Ω + |R∇Ω| +h−1u) ≈ h−1Ω,

δVm

δ |R∇Ω|) ≈ |N | + u

h
+

(|R∇Ω| +h−1u + Ω + ξ |N |) ≈ |N |

and

δVm

δΩ
≈ |N | + u

h
+

(|R∇Ω| +h−1u + Ω + ξ |N |) ≈ |N |.

Note that in both cases we have assumed |R∇Ω| . Ω and taken equa-

tions (3.42) and (3.41) to bound u and ξ respectively.

Using equations (3.26) and (3.27) as well as Table 3.1 we find

J ≈

*....
,

h−1F F
h3c

ΩF
|N |3c

|N |2 h−1|N | Ω

Ω|N | h−1Ω |N |

+////
-

and

q ≈
*....
,

Ω
|N |2h

−1F

|N |
|N |

+////
-

.

We do not actually need to calculate the inverse of J to estimate

the magnitude of the solution. In particular we have only computed the

magnitudes, not the signs, of its components, and so we do not have enough

information to calculate the inverse. Rather we proceed more along the

lines of Gaussian elimination. First though, we rescale our variables such
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that

dϕ1 → dϕ1,

dϕ2 → h−1|N |−1dϕ2,
dϕ3 → |N |−1dϕ3,
dϕ4 → |N |−1dϕ4,
H → hF−1H ,

Vm → |N |−2Vm ,

Vϕ → |N |−2Vϕ

Then

J ≈

*....
,

1 1 Ω
|N |

1 1 Ω
|N |

Ω
|N |

Ω
|N | 1

+////
-

and

q ≈
*....
,

Ω
|N |
Ω
|N |
1

+////
-

.

From this form we see that the meridional component of the vorticity

equation is essentially decoupled from the meridional circulation and the

baroclinicity, and is chiefly determined by the rotation and di�erential

rotation balancing against one another. On the other hand, the azimuthal

component of the vorticity equation and the heat equation are both quite

sti� in the baroclinicity and the circulation, and notably are equally sti�

in each. Hence unless there is significant geometric tuning, such that the

heat and vorticity equations both support a solution with one of ξ or u

vanishing, we expect that

|N |dξ ≈ h−1du ≈
Ω

|N |dΩ,

and so we generally expect ξ ≈ Ω2/|N |2 and74 u ≈ Ω2h/|N |. Furthermore

74 It is interesting to note that there is an-
other permitted scaling: the circulation ve-
locity and baroclinicity may be made to be
of the same arbitrarily large order. In that
case they straightforwardly produce ther-
mal equilibrium and come to dominate the
vorticity equation. This scenario is not,
however, physical, because it requires that
the circulation current be one of the two
largest e�ects, and hence nothing other
than the baroclinicity may drive it in this
scenario. The baroclinicity, though, arises
as a result of the circulation in this case, and
so cannot drive it. As a result this scenario
is not physical. This is actually reflective of
a more general result: because the system
is dissipative the largest terms in each equa-
tion must be driven and in some way tap
the heat flux through the system. Thus, for
instance, it is fine for the Λ-e�ect to drive
di�erential rotation because it draws en-
ergy from the convective turbulence, but
the reverse would not be sustainable.

we have found that |R∇Ω| ≈ Ω, though we leave a full discussion of this for

the next subsection.
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Returning to equation (3.40), we see that

|∇ · (pD · ∇s)| ≈ ∇ ·
[
h2

|N |p|∇s |eq(Ω
2ξ̄ + |N |2ξ )

]

≈ ∇ ·

[
h2

|N |p|∇s |eq(Ω
2
(
1 −

ξ 2

2

)
+ |N |2ξ )

]

≈ ∇ ·

[
h2

|N |p|∇s |eqΩ
2

]
.

Expanding the divergence yields

|N ||∇ · (pD · ∇s)|
h2p|∇s |Ω2ξ̄

≈ ∇ · eq + eq · ∇ ln
[
h2

|N |p|∇s |eqΩ
2ξ̄

]
.

The divergence of the unit vector is of order r−1 because this is the scale

over which the e�ective gravitational field varies. The gradient of the

logarithmic function is dominated by the thermodynamic terms in the

logarithm and so as argued in Section 3.5 produces a factor of order

h−1
(
ep + eq(h/r + λ/λ̄)) , where the scale r arises owing to geometric

factors and λ/λ̄ measures the extent to which the direction perpendicular

to the pressure gradient overlaps with the density gradient. Hence

|∇ · (pD · ∇s)| ≈ h

|N |p|∇s |Ω
2ξ̄

(
h

r
+
λ

λ̄

)
.

Inserting this into equation (4.12) we find

u ≈
h

|N |
(
h

r
+
λ

λ̄

)
Ω2ξ̄

ξ (1 +M2) + ξ̄h/r
.

Using equation (3.20) this may be written as

u ≈ h|N |
(
h

r
+
λ

λ̄

)
M2(Ω2/|N |2)

(λ/λ̄)(1 +M2) +M2h/r

≈ h|N |
(
1 +

rλ

hλ̄

) (
Ω2

|N |2
)

*.
,

1
1 + λr

λ̄h

�
1 +M−2

� +/
-

= qh|N |,

where

q ≈

(
Ω2

|N |2
) (

1 +
rλ

hλ̄

)
*.
,

1
1 + λr

λ̄h

�
1 +M−2

� +/
-
.

Recalling equation (3.20) and that ξ ≈ Ω2/|N |2 we find

λr

λ̄
h ≈ γM2 Ω2

|N |2 .

Hence to leading order in75 Ω, 75 We shall later find that the meridional
circulation is a small component of the vor-
ticity balance, and this approximation only
ever results in an overestimation, so this
does not alter our subsequent arguments.
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q ≈
Ω2

|N |2 .

Thus we find

u ≈ h|N | Ω
2

|N |2 . (3.42)

3.9.3 Results

Term Magnitude
Meridional (3.28)

ωm · ∇mu
Ω2

|N | (Ω + |R∇Ω|)
ωmu · ∇ ln ρ Ω2

|N | (Ω + |R∇Ω|)
(
h
r +

λ
λ̄

)(
∇×

(
1
ρ∇ · T

))
m

|N |2 (
Ω
|N | +

|R∇Ω|
|N |

)
Azimuthal (3.29)
ω · ∇(ΩR) Ω|R∇Ω|
ΩωR Ω|R∇Ω|
ωϕu · ∇ ln ρ Ω4|N |−2 (

h
r +

λ
λ̄

)
ρ−2(∇p ×∇ρ)ϕ д

h
λ
λ̄(

∇×
(
1
ρ∇ · T

))
ϕ

|N |2
(
ξ + Ω2

|N |2 +
Ω|R∇Ω|
|N |2

)

Table 3.2: The magnitudes of the terms
in equations (3.28) and (3.29) are sum-
marised here. Factors of order unity have
been dropped for simplicity. We have also
dropped terms which we have argued are
never relevant.

Our results thus far are summarised in Table 3.2, where we have inserted

our results for u into the expressions in Table 3.1. Putting it all together

and dropping sub-dominant terms these equations may be written in terms

of the magnitudes of their terms as

0 = |N |2
(
Ω

|N | +
|R∇Ω|
|N |

)
(3.43)

and

0 = (Ω + |R∇Ω|)2 + д
h

λ

λ̄
+ |N |2

(
ξ +

Ω2

|N |2 +
Ω|R∇Ω|
|N |2

)
. (3.44)

In this case we do not need to go through the formalism of Section 3.7,

though we have employed it in getting this far, because equation (3.43)

and (3.41) immediately indicate that |R∇Ω| ≈ Ω. Equation (3.44) is satisfied

with this solution, so as promised we find that

|∇Ω| ≈ Ω

R
. (3.45)

This justifies our earlier assumption that |R∇Ω| is no greater than Ω in

scaling. Note that we found this too in our analysis of the circulation

velocity, though there the result was not so evident from the form of the
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vorticity equation.

To summarise, we have found that in a slowly rotating axisymmetric

convection zone with no fossil magnetic field

|∇Ω| ≈ Ω

R
.

This is consistent with the solar rotation profile 76 as well as the profiles 76 Rajaguru & Antia 2015

of other slowly-rotating systems 77. Physically this results from a balance 77 Brun & Palacios 2009; Käpylä et al. 2011

between turbulent viscosity and the Λ-e�ect in both equations, in agree-

ment with arguments by 78. This means that in slowly rotating convection 78 Ruediger 1989

zones thermal wind balance is unlikely to be the dominant source of dif-

ferential rotation. It does not, however, mean that it is not significant or

even dominant in the Sun, because in the bulk of the convection zone

Ω/|N | varies from 0.1 up to 1, only that in the regions where |N | is larger
it ought to be less important than other terms. This is in good agreement

with the work of Balbus et al. (2012), who find that thermal wind balance

produces a good match to the solar rotation profile in the bulk of the solar

convection zone but that near the surface, where |N | rises rapidly, the fit
worsens. Of course the fit also worsens towards the tachocline, where

Ω/|N | � 1, but in that case there may be significant boundary e�ects

coupling the rotation profile and potentially the magnetic field to that in

the interior of the Sun and so it is not worth reading too extensively into

that disagreement.

Furthermore though it was not our aim we have found that

ur ≈
h

r
uθ ,

uθ ≈ u ≈ h|N |
(
Ω2

|N |2
)

and

λ .M

(
Ω2

|N |2
)
≈

Ω2h

д
.

The velocity field is in agreement with both the Sun 79 and simulations 80, 79 Rajaguru & Antia 2015
80 Brun & Palacios 2009

and as we shall discuss later the baroclinicity λ is in agreement with (albeit

uncertain) measurements of the solar pole-equator temperature di�er-

ence 81. 81 Teplitskaya et al. 2015
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3.10 Rapid Rotation

In this section we examine the case of rapid rotation, here meant with

respect to the Brunt-Väisälä frequency. It is important to be careful,

however, because the relationship between the Brunt-Väisälä frequency

and various convective quantities is altered in the limit of rapid rotation, so

to be clear we take |N | to be the actually realised Brunt-Väisälä frequency

and |N |0 to bewhat the Brunt-Väisälä frequencywould bewere the rotation

slow and all else held constant. In this notation, the rapid rotation limit is the

one in which Ω � |N |0. We are not, however, interested in arbitrarily large

rotation. In particular the systemmust remain primarily pressure supported,

and so we also require that Ω �
√
д/r . Note that the combination of these

two limits is only sensible because unlike in radiative zones, in convection

zones |N | may be significantly less than
√
дr−1.

3.10.1 Magnetic Fields

In the limit of rapid rotation the case of magnetism is more complex than

in that of slow rotation. In this work we primarily follow the analysis

of Christensen & Aubert (2006), who argue for a balance between the

convective heat flux and ohmic dissipation. Our aim is to cast their results

into our notation and framework.

We begin by considering a convecting region of thickness D, ranging

from r = ri on the inner edge to r = ro on the outer one. In this region let

RQ ≡
αдF

4πriroρcpΩ3D2 , (3.46)

where α is the thermal expansion coe�cient. This is the quantity Chris-

tensen & Aubert (2006) defines in their equation (19) and call Ra∗Q . Fur-

thermore we approximate the turbulent kinetic energy density as

K ≈ 32c . (3.47)

This is the quantity Christensen & Aubert (2006) refer to as Ro. With

these we may write the scaling 82 82 See equations (11) and (32) of Chris-
tensen & Aubert (2006).

3A =
B√
4πρ

≈ ΩD

√
fohmVs

RQ

K
,

where fohm is a dimensionless factor of order unity and Vs is the volume

in which a dynamo is active. For simplicity we neglect the dimensionless
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factor fohm because it is of order unity. We also take D ≈ h and write

Vs ≈ 4πr2h,

Hence

3A ≈ Ωh

√
4πr2h

RQ

K
.

Inserting equation (3.47) we find

3A ≈

√
4πr2h

(Ωh)3RQ
3c

.

Nowmaking use of equation (3.46) noting that for an ideal gas the thermal

expansion coe�cient α = T −1 we find

3A ≈

√
hдF

ρcpT 3c
.

For an ideal gas

p =
2
5
ρcpT

so using equation (3.19) we find

cpT =
5
2
hд,

hence

3A ≈

√
2F
5ρ3c

, (3.48)

This is in very good agreement with the extensive suite of simulations they

performed over a wide range of parameter space, and gives good agreement

with a wide variety of observed stars 83 as well as with observations of 83 Christensen et al. 2009

Jupiter Christensen & Aubert (2006). It is also in good agreement with

the findings of Augustson et al. (2016a). There is more significant error

when compared with the observed surface field of Saturn, but there there

is reason to believe that the observed field does not reflect that in the

interior 84. 84 Stevenson 1982

It is tempting to insert the relation for the non-rotating convective

flux 85 85 Böhm-Vitense 1992

F ≈ ρ33c
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into equation (3.48) and thereby find that

3A ≈ 3c,

which is the equipartition result. This is incorrect, however, because in

rapidly rotating and magnetised convection the convective motions are

arrested by the Coriolis e�ect while the magnetic dynamics are not. This

means that, as Ω rises, an increasing fraction of the convective flux is

carried magnetically. Hence significantly super-equipartition fields are

possible in this case, in agreement with what is seen in simulations 86. 86 Roberts & Glatzmaier 2000; Sreenivasan
& Jones 2006; Brun et al. 2005

To be more careful we turn to empirical fits to simulations, which show

that at constant heat flux87 87 See equation (30) of Christensen &
Aubert (2006).

3c ∝ Ω−0.23.

This is in quite good agreement with closure models and scaling argu-

ments for rapidly rotating turbulence. For instance at fixed Brunt-Väisälä

frequency |N |,

3c ≈ h|N |3/2Ω−1/2 (3.49)

88. If the magnetic di�usivity is vanishing the growth of the dynamo 88 Showman et al. 2011

is limited only by the fact that above equipartition the field begins to

quench convection 89. Hence we expect 3A ≈ h|N |. Using equations (3.48) 89 Moreno-Insertis & Spruit 1989

and (3.49) we find at fixed heat flux and density that90 90 Equation (3.49) was derived for non-
magnetic circumstances, so it is worth con-
sidering whether or not its use here is jus-
tified. The key to this is that the magnetic
field has scale set by |N |. Hence it is always
significant in the equations of motion at a
level comparable to the buoyant term. Im-
portantly this remains true even as Ω → ∞
and so does not alter the scaling of the ve-
locity with Ω. This justifies using the scal-
ing derived in its absence, and numerical
experiments done with the formalism in
Chapter 2 confirm this, though we have
not investigated these circumstances sys-
tematically.

|N | ≈ 3−1/2
c ∝ Ω1/4|N |−3/4,

or

|N | ∝ Ω1/7.

From this we see that

3c ∝ Ω−2/7,

hence by equation (3.48) we find

3A

3c
≈

(
Ω

|N |0
)3/7

,

where we have non-dimensionalised the equation using |N |0, which is

what the Brunt-Väisälä frequency would be were the system non-rotating.

We may similarly non-dimensionalise the other relations we have found
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and obtain

|N | ≈ |N |0
(
Ω

|N |0
)1/7

, (3.50)

3c ≈ h|N |0
(
Ω

|N |0
)−2/7

, (3.51)

and

3A ≈ h|N |0
(
Ω

|N |0
)1/7

≈ h|N |. (3.52)

The net result then is that in the limit of rapid rotation we expect

magnetic fields to be in super-equipartition. In this limit equations (3.7)

and (3.8) become

0 = ωm · ∇mu +ωmu · ∇ ln ρ +
[
∇×

(
1
ρ
∇ · T

)]

m

and

0 = ω · ∇(ΩR) − ΩωR +ωϕu · ∇ ln ρ + ρ−2eϕ · ∇p ×∇ρ

+ eϕ · ∇ ×

(
1
ρ
∇ · T

)
,

with the bulk magnetic field explicitly eliminated and the fluctuating

magnetic field still included in the stress.

3.10.2 Stress

In this limit the turbulence is dominated by the convective dynamo so

long as |R∇Ω| < |N |, which we verify to be the case further on. Following

equation (3.52) we take the magnetic field to be superequipartition and

write

T ≈ ρ32A ≈ ρh
2|N |20

(
Ω

|N |0
)2/7

.

This time the stress is not symmetry protected because the rotation is rapid

and the o�-diagonal components of T are of the same order as those on

the diagonal91. Hence in the absence of shear and baroclinicity we write 91 See Chapter 2 and Kitchatinov (2013).

∇×

(
1
ρ
∇ · T

)
r
≈

(
h

r
+
λ

λ̄

)
|N |20

(
Ω

|N |0
)2/7

(3.53)

∇×

(
1
ρ
∇ · T

)
θ
≈ |N |20

(
Ω

|N |0
)2/7

(3.54)
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and

∇×

(
1
ρ
∇ · T

)
ϕ
≈ |N |20

(
Ω

|N |0
)2/7

, (3.55)

where we have followed the prescription in Section 3.8 to evaluate the

derivatives.

Similarly the MHD turbulence couples viscously to the di�erential ro-

tation and any meridional shear. Because there is no symmetry protection,

this produces a coupling generically at first order. The relevant di�usivity is

just the stress divided by its characteristic time-scale |N | = |N |0(Ω/|N |0)1/7,

hence

∇×

(
1
ρ
∇ · T

)
r
≈

(
h

r
+
λ

λ̄

)
|N |0|R∇Ω|

(
Ω

|N |0
)1/7

(3.56)

∇×

(
1
ρ
∇ · T

)
θ
≈ |N |0|R∇Ω|

(
Ω

|N |0
)1/7

(3.57)

and

∇×

(
1
ρ
∇ · T

)
ϕ
≈ |N |0|R∇Ω|

(
Ω

|N |0
)1/7

. (3.58)

There is likewise a coupling to the meridional circulation of the form

∇×

(
1
ρ
∇ · T

)
r
≈

(
h

r
+
λ

λ̄

)
|N |0|∇u |

(
Ω

|N |0
)1/7

(3.59)

∇×

(
1
ρ
∇ · T

)
θ
≈ |N |0|∇u|

(
Ω

|N |0
)1/7

(3.60)

and

∇×

(
1
ρ
∇ · T

)
ϕ
≈ |N |0|∇u|

(
Ω

|N |0
)1/7

, (3.61)

where |∇u| is the magnitude of the tensor formed of derivatives of the

velocity components.

Finally we must consider the contribution of baroclinicity to the stress.

In this case there is nothing additional to add: the baroclinicity ξ is at most

of order unity, and its presence breaks no additional symmetries, so it con-

tributes a term at most of the same order as those in equations (3.53), (3.54)

and (3.55). Combining this with equations (3.53), (3.56) and (3.59) and
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letting |∇u| ≈ u/h we find

∇×

(
1
ρ
∇ · T

)
r
≈ |N |2

(
1 + ξ +

|R∇Ω|
|N | +

u

h|N |
)
,

where we have reverted to using |N | rather than |N |0 for compactness.

Likewise equations (3.54), (3.57) and (3.60) give

∇×

(
1
ρ
∇ · T

)
θ
≈ |N |2

(
1 + ξ +

|R∇Ω|
|N | +

u

h|N |
)
,

and finally equations (3.55), (3.58) and (3.61) produce

∇×

(
1
ρ
∇ · T

)
ϕ
≈ |N |2

(
1 + ξ +

|R∇Ω|
|N | +

u

h|N |
)
.

3.10.3 Advective Terms

We now evaluate the terms which depend on 3 and its derivatives but

which are not a part of the stress. None of our analysis in determining the

terms involving u in the meridional vorticity equation depended on the

rotation being slow, so those are given by

ωm · ∇mu ≈
u

h
(Ω + |R∇Ω|),

ωmu · ∇ ln ρ ≈
u

h
(Ω + |R∇Ω|)

(
h

r
+
λ

λ̄

)

and

ωϕu · ∇ ln ρ ≈
u2

h2

(
h

r
+
λ

λ̄

)
,

where all we have done is followed our analysis in the slowly-rotating limit

up until the point where we would have substituted hΩ2/|N |2 for u.
The only remaining terms we must evaluate are the terms coupling to

rotation in the azimuthal equation as well as the magnetic term in that

equation. The only di�erence in the rotational terms from our previous

analysis is that it now matters that these only couple the rotation to the ez
component of the di�erential rotation92, so 92 This is important because, as we shall see,

these terms are crucial in setting the scale
of the di�erential rotation and so di�erent
components scale di�erently with Ω.ω · ∇(ΩR) ≈ RΩ|∂zΩ|

and

ΩωR ≈ RΩ|∂zΩ|.

The magnetic term may be found by way of equation (3.52) and by taking
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the angle between the density gradient and the magnetic field to be order

unity. In fact doing so we see that this contributes the same as the regular

stress terms in equations (3.53), (3.54) and (3.55) and so what we assume

about it does not actually matter.

3.10.4 Baroclinicity

In addition to its contribution to the stress tensor, the baroclinicity ξ enters

into the vorticity balance both in relation to the scale of the meridional

circulation and by means of the thermal wind term. In order to proceed,

therefore, we must estimate ξ . In fact we will not go quite so far, but will

simply provide bounds on various terms which depend on ξ .

The circulation speed is given by equation (4.12) as

u ≈
|∇ · (pD · ∇s)|

p|∇s | [
ξ (1 +M2) + ξ̄h/r

] .

This may be bounded by noting that

|D · ∇s | ≤ D|∇s |,

where once more we use D to denote the typical magnitude of the com-

ponents of D (e.g. an l2-norm). Taking the divergence to produce a factor

of h−1, which is produces the largest possible e�ect93, we find 93 A more conservative choice would be
r−1, if the deviation were a result of the
large-scale geometry of the system.

|∇ · (pD · ∇s)| ≤ h−1pD|∇s |.

Hence

u ≤
D/h

ξ (1 +M2) + ξ̄h/r

≤
D/h

ξ + ξ̄h/r
.

If both ξ and ξ̄ are of order unity then

u . h−1D.

If a significant fraction of order unity of the heat flux is transported turbu-

lently then

pD|∇s | ≈ F ,
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so

u .
F

hp|∇s | .

Inserting equation (3.48) this becomes

u .
ρ3c3

2
A

hp|∇s | .

With equation (3.16) this becomes

u .
ρд3c3

2
A

hp|N |2 .

Inserting equation (3.19) we find

u .
3c3

2
A

h2|N |2 .

Using equations (3.50) and (3.52) we find

u . 3c.

Next we argue that the thermal wind term is always irrelevant in this

limit. Starting with equation (3.24), we have

|ρ−2(∇p ×∇ρ)ϕ | ≈ д

h

λ

λ̄
.

Taking ξ to be at most of order unity and ξ̄ to be at least of order unity 94 94 This just precludes tuning to have ∇p ⊥
∇s , and is in keeping with our assumption
that the geometry of the solution is not
fine-tuned.

we find from equation (3.20) that

λ

λ̄
≈ γ
32c

c2s

ξ

ξ̄
. γ
32c

c2s
.

Hence

|ρ−2(∇p ×∇ρ)ϕ | . γ д3
2
c

hc2s
.

For an ideal gas c2s = γp/ρ so

|ρ−2(∇p ×∇ρ)ϕ | = ρд32c
hp

.

Using equation (3.19) we find

|ρ−2(∇p ×∇ρ)ϕ | = 3
2
c

h2
.
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By equation (3.51) we have

3c ≈ h|N |0
(
Ω

|N |0
)−2/7

,

so

|ρ−2(∇p ×∇ρ)ϕ | = |N |20
(
Ω

|N |0
)−4/7

.

This is less than the stress terms we have already found95 and so may be 95 e.g. equations (3.53), (3.54) and (3.55)

neglected. Likewise we may ignore the magnetic term because it just

contributes the same amount as the unit contribution to the stress.

3.10.5 Results

Term Magnitude
Meridional (3.7)

ωm · ∇mu
u
h (Ω + |R∇Ω|)

ωmu · ∇ ln ρ u
h (Ω + |R∇Ω|)

(
h
r +

λ
λ̄

)(
∇×

(
1
ρ∇ · T

))
m

|N |2 (
1 + ξ + u

h |N | +
|R∇Ω|
|N |

)
Azimuthal (3.8)
ω · ∇(ΩR) RΩ|∂zΩ|
ΩωR RΩ|∂zΩ|
ωϕu · ∇ ln ρ u2

h2

(
h
r +

λ
λ̄

)(
∇×

(
1
ρ∇ · T

))
ϕ

|N |2 (
1 + ξ + u

h |N | +
|R∇Ω|
|N |

)

Table 3.3: The magnitudes of the terms in
equations (3.7) and (3.8) are summarised
here. Factors of order unity have been
dropped for simplicity. We have also
dropped terms which we have argued are
never relevant.

Our results thus far are summarised in Table 3.3. Note that we have

dropped the thermal wind term and the explicit magnetic term, the former

because it is strictly smaller than many other terms and the latter because

it scales in the same manner as the stress terms which have already been

included.

To proceed we must solve equations (3.9), (3.7) and (3.8) for u, ξ and

R∇Ω. We do this using themethods of Section 3.7 in a calculation similar to

that used to determine the circulation velocity in the slowly-rotating case.

To begin let H be the left-hand side of equation (3.9), Vm,1 be the first

component of the right-hand side of equation (3.7), Vm,2 be the second

component of the same andVϕ be the right-hand side of equation (3.8).
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We perturb in Ω, so let

ϕ1 ≡ ξ ,

ϕ2 ≡ u,

ϕ3 ≡ R∂zΩ,

ϕ4 ≡ R∂RΩ,

and

ϕ5 ≡ Ω.

We consider the two components of the di�erential rotation separately

because in this limit there are dominant terms which only couple to one

or the other.

We now evaluate J and q in the rapidly rotating limit. Turning first to

the heat equation we see that Ω does not actually enter except via D. Using

equations (3.10) and (3.11) and neglecting the possibility of geometric

tuning we find

D ≈
F

p|∇s | .

Inserting equation (3.16) and assuming that ξ̄ is of order unity produces

D ≈
дF

p|N |2 .

Recalling equations (3.48) and (3.52) we see that

D ≈
p

ρд
3c ≈ h3c.

Now using equation (3.51) we see that

D ≈ h2|N |0
(
Ω

|N |0
)−2/7

.

From this it follows that with F held fixed D is perturbed at leading order

as Ω−2/7. There are additional terms associated with the geometry of D

but, because we are not working in a highly symmetric limit like the

non-rotating one, we need only focus on the overall magnitude. Taking

derivatives to produce factors of h−1, we find that

δH

δΩ
≈

2
7Ω

h−1F ,

where we have dropped the minus sign because we only care about the
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magnitude of this term. The perturbation owing to ξ is as before, and we

find

δH

δξ
≈ p|∇s |u + F ≈ F

(
1 +

u

h3c

)
≈ h−1F .

We additionally have

δH

δu
≈ p|∇s | + F

3c
≈

F

h3c

because D is perturbed by the circulation current. Note that this happens

at leading order because we are no longer perturbing away from a spheri-

cally symmetric state. Finally, the di�erential rotation perturbs the heat

transport at first order, so

δH

δ (R∂zΩ) ≈
F

3c

and

δH

δ (R∂RΩ) ≈
F

3c
.

We next examine the azimuthal vorticity equation. Using Table 3.3 we

find

δVϕ

δξ
≈ |N |2,

δVϕ

δu
≈ h−1|N |,

δVϕ

δ (R∂zΩ) ≈ |N | + Ω ≈ Ω,

δVϕ

δ (R∂RΩ) ≈ |N |,

and

δVϕ

δΩ
≈ R∂zΩ +

2
7Ω

|N |2.
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Likewise using Table 3.3 we find for the two meridional components

δVm,1

δξ
≈ |N |2,

δVm,1

δu
≈ h−1|N |,

δVm,1

δ (R∂zΩ) ≈
u

h
+ |N | ≈ |N |,

δVm,1

δ (R∂RΩ) ≈
u

h
+ |N | ≈ |N |,

δVm,1

δΩ
≈
u

h
+
2|N |2
7Ω

,

δVm,2

δξ
≈ |N |2,

δVm,2

δu
≈ h−1|N |,

δVm,2

δ (R∂zΩ) ≈
u

h
+ |N | ≈ |N |,

δVm,2

δ (R∂RΩ) ≈
u

h
+ |N | ≈ |N |,

and

δVm,2

δΩ
≈
u

h
+
2|N |2
7Ω

.

Putting it all together with equations (3.26) and (3.27) we find

J ≈

*........
,

h−1F F
h3c

F
3c

F
3c

|N |2 h−1|N | Ω |N |
|N |2 h−1|N | |N | |N |
|N |2 h−1|N | |N | |N |

+////////
-

and

q ≈

*........
,

2
7Ωh

−1F

R∂zΩ +
2|N |2
7Ω

u
h +

2|N |2
7Ω

u
h +

2|N |2
7Ω

+////////
-

.

We do not actually need to calculate the inverse of J to estimate

the magnitude of the solution. In particular we have only computed the

magnitudes, not the signs, of its components, and so we do not have enough

information to calculate the inverse. Rather we proceed more along the

lines of Gaussian elimination. First though, we rescale our variables such
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that

dϕ1 → dϕ1,

dϕ2 → |N |−1dϕ2,
dϕ3 → |N |−1dϕ3,
dϕ4 → |N |−1dϕ4,
dϕ5 → Ω−1dϕ5,

H → hF−1H ,

Vm,1 → |N |−2Vm,1,

Vm,2 → |N |−2Vm,2,

Vϕ → |N |−2Vϕ

Then

J ≈

*........
,

1 1 1 1

1 1 Ω
|N | 1

1 1 1 1

1 1 1 1

+////////
-

and

q ≈

*........
,

2
7

R∂z lnΩ + 2
7

u
hΩ +

2
7

u
hΩ +

2
7

+////////
-

.

Because u . 3c < 3A ≈ h|N | � hΩ we may write

q ≈

*........
,

2
7

R∂z lnΩ + 2
7

2
7
2
7

+////////
-

.

Because J is equally sti� in ϕ1, ϕ2 and ϕ4 and because q1 ≈ q2 ≈ q4 ≈ 2/7,

we expect dϕ1 ≈ dϕ2 ≈ dϕ4 ≈ 2/7. The remaining equation is of the form

dϕ1 +dϕ2 +
Ω

|N |dϕ3 +dϕ4 ≈
(
2
7
+ R∂z lnΩ

)
d lnΩ

≈

(
2
7
+
|N |
Ω
ϕ3

)
d lnΩ.

Now suppose that |N |ϕ3/Ω increases with Ω. Then the right-hand side

is dominated by this term. None of dϕ1, dϕ2 or dϕ4 are large enough to
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satisfy this equation so this must be done by the term involving dϕ3. Hence

d lnϕ3 ≈
|N |2
Ω2 d lnΩ.

This implies that ϕ3 ∝ Ω−2 as Ω → ∞, which contradicts our assumption.

It follows that the right-hand side asymptotes to (2/7)d lnΩ. Because we

have assumed that the solution is not fine-tuned and because dϕ1, dϕ2 and

dϕ4 are all of this order we conclude that each term on the left-hand side

contributes comparably. Hence

dϕ3 ≈
|N |
Ω

dΩ.

The net result is that

dϕ1

d lnΩ
≈ 1,

dϕ2

d lnΩ
≈ 1,

dϕ3

d lnΩ
≈

|N |
Ω

,

and

dϕ4

d lnΩ
≈ 1.

In more physical terms,

dξ

d lnΩ
≈ 1,

du

d lnΩ
≈ h|N |,

d(R∂zΩ)
d lnΩ

≈
|N |2
Ω

,

and

d(R∂RΩ)
d lnΩ

≈ |N |.

In order words, ξ is of order unity, and u is of order h|N |, R∂RΩ is of order

|N |, and R∂zΩ is of order |N |2/Ω. Inserting equation (3.50) we find

R∂zΩ ≈ |N |0
(
Ω

|N |0
)−5/7

, (3.62)

R∂RΩ ≈ |N |0
(
Ω

|N |0
)1/7

,

u ≈ h|N |0
(
Ω

|N |0
)1/7
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and

ξ ≈ 1.

Or in terms of |R∇Ω|,

|R∇Ω| ≈ |N |0
(
Ω

|N |0
)1/7

. (3.63)

This is in good agreement with three-dimensional simulations of rapidly

rotating solar-type stars 96, though it is in disagreement with at least 96 Brown et al. 2007; Matt et al. 2011;
Käpylä et al. 2011

some two-dimensional simulations 97. In particular, we obtain di�er- 97 Sun & Schubert 1995

ential rotation which increases sub-linearly with Ω and which asymp-

totically approaches a Taylor-Proudman balance 98. This arises because 98 Brun & Palacios 2009

inertial/advective terms come to balance the turbulent viscosity, but these

preferentially couple to shear in the ez direction and hence the system

comes to preferentially shear orthogonal to this.

As a final note, if the system were not magnetised or were non-ionised

the analysis would proceed in the same manner but instead of equa-

tion (3.48) we would have 99 99 Gough 1978

F ≈ ρ33c .

With equation (3.49) we find

F ≈ ρh3|N |9/2Ω−3/2.

Hence at fixed flux

|N | = |N |0
(
Ω

|N |0
)1/3

. (3.64)

None of the rest of the analysis is altered, and so we instead find

R∂zΩ ≈ |N |0
(
Ω

|N |0
)−1/3

(3.65)

R∂RΩ ≈ |N |0
(
Ω

|N |0
)1/3

u ≈ h|N |0
(
Ω

|N |0
)1/3

and

ξ ≈ 1.
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Or in terms of |R∇Ω|,

|R∇Ω| ≈ |N |0
(
Ω

|N |0
)1/3

. (3.66)

3.11 Inverse Cascade

In our analysis we have assumed that solutions to the governing equations

contain no geometric factors which di�er significantly from order unity.

In e�ect we have assumed that any structures which form are in some

fashion generic and do not depend specifically on Ω/|N |, though they may

depend on the regime in which the system lies. While this assumption is

usually quite good, there is an important known exception in the case of

rapidly-rotating two-dimensional turbulence 100. This phenomenon, first 100 Sukoriansky et al. 2006

noted by Rhines (1973), is known as the inverse cascade or Rhines cascade,

and results from the Coriolis e�ect preferentially scattering waves into

large-scale modes. This produces feedback between small-scale convective

motions and the overall geometry of the solution.

The reason that two-dimensional turbulence is of interest for our pur-

poses is that stars and planets exhibit significant density stratification. This

makes turbulence e�ectively two-dimensional by preventing strong cor-

relations between regions with significant vertical separation.

The net result of the Rhines cascade has been found, both analytically

and numerically 101, to result in the formation of alternating bands of 101 Danilov & Gurarie 2002

di�erential rotation. In particular, the number of jets is seen to scale as 102 102 See equation 22 of Verhoeven & Stell-
mach (2014).

n ≈

√
Ωh

w
, (3.67)

where we have used d = h as the relevant vertical length-scale and w is the

characteristic velocity scale of the system, given by 3c when the primary

means of energy transport is convective103. This has been seen in a broad 103 When the jets are driven more by sur-
face temperature variations this is instead
the jet velocity, but we are not interested in
such cases here because they only change
the rotational structure in a boundary layer,
not in the bulk of the system.

array of simulations 104 and agrees well with observations of the four gas

104 Gastine et al. 2013; Verhoeven & Stell-
mach 2014

giant planets in the solar system 105.

105 Ingersoll & Pollard 1982; Galperin et al.
2001

From the perspective of our analysis this interesting geometric e�ect

changes little unless n > R/h. This is because the jets introduce a correction

only into the latitudinal derivatives, all of which have turned out to be

irrelevant because h is typically considerably less than R. That is, the jets

are only relevant locally if they cause the horizontal scale of convection

cells to be significantly less than their vertical scale. Substituting w = 3c
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into equation (3.67) and using 3c ≈ h|N | we find

n ≈

√
Ω

|N | .

Hence for n > R/h it must be that

Ω

|N | >
R2

h2
. (3.68)

When inequality (3.68) is satisfied the latitudinal derivatives of the stress

are enhanced above the radial derivatives by a factor of nh/R and thereby

become dominant. In the meridional vorticity equation (3.7) the balance

is chiefly between the asymmetric stress and the viscous term. Both are

enhanced by this factor because both couple to the turbulent motions and

so we expect to see no change in the resulting di�erential rotation. Because

that equation sets R∂RΩ, we therefore expect this to be unchanged by these

geometric considerations.

By contrast in the azimuthal vorticity equation the balance is primarily

between the asymmetric components of the stress and the coupling of

rotation to vorticity. The former is enhanced by the presence of jets while

the latter is not, so we expect to see enhanced di�erential rotation. Because

this equation sets R∂zΩ, we expect that

R∂zΩ → nh∂zΩ ≈
h

R

√
Ω

|N | (R∂zΩ)0,

where (R∂zΩ)0 is the di�erential rotation along ez we would expect in the

absence of the Rhines cascade. In non-magnetised systems we combine

this with equation (3.65) to find

R∂zΩ ≈
h

R
|N |0.

In the magnetised limit we instead use equation (3.62) to find

R∂zΩ ≈
h

R
|N |0

(
Ω

|N |0
)−2/7

.

The overall e�ect of the Rhines cascade on our results is then somewhat

underwhelming. The cascade is only relevant when Ω > |N |R2/h2, which

in practice makes it only relevant for a small population of extremely rapid

rotators106. Furthermore the cascade does not modify the scaling of R∂RΩ. 106 In the bulk of a polytropic self-
gravitating body h is of order 0.1 − 0.2 of
R, so this requires Ω at least 10− 100 times
greater than |N |. This limit is readily seen
in planets but is quite di�cult to achieve in
stars.

Because this dominates the overall di�erential rotation, the Rhines cascade

also does not modify the scaling of |R∇Ω|. Hence the only real e�ect is to

slow the transition to the limit of shellular rotation, making the very small
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vertical di�erential rotation slightly larger yet still never dominant.

3.12 Breakup Rotation

Stable systems cannot rotate faster than the Keplerian velocity

ΩK ≡

√
д

R

without invoking pressure profiles that increase outwards. As a system

approaches this velocity it nears the state of an accretion disk, where

R∂zΩ = 0

and

R∂RΩ = −
3
2
Ω.

The derivation of this state is straightforward so we do not dwell on it.

What we are interested in, however, is how this limit is approached.

To see why this is not simply an extension of the rapidly rotating limit,

note that in both the magnetised and the hydrodynamic limits we found

that |R∇Ω| increases sub-linearly in that limit, such that

|R∇ lnΩ|→ 0

as Ω/|N | → ∞. This is incompatible with the Keplerian limit and so

something di�erent must happen in between the two limits.

The first important point is that the window of rotation rates we con-

sidered in Section 3.10 is not infinite. In particular, we considered

|N | � Ω �

√
д

R
= ΩK ,

so the window has width

Ωmax

Ωmin
=

√
д

R|N |2 .

For Ω > Ωmax certain terms which could be ignored becauseh � r become

significant, though this does not explain the di�erence between our results

and the Keplerian limit because those terms do not scale su�ciently quickly

with Ω as to produce |R∇Ω| ∝ Ω.

The second point to note is that as the rotation rate increases so does

|N |. To incorporate both the hydrodynamic and the magnetised limits
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discussed in the previous section we write

|N | = |N |0
(
Ω

|N |0
)α

for some α > 0. Using equation (3.16)107 we may relate this to the entropy 107 Once more we assume that ξ̄ is of order
unity.

gradient and find that

|∇s | = |N |20
дξ̄

(
Ω

|N |0
)2α

. (3.69)

In the simple case of an ideal gas with aligned pressure and density gradients

this may be related to the temperature gradient using equation (1.2), so

|∇s | = |∇ lnp −γ∇ ln ρ|
= |(1 −γ )∇ lnp +γ∇ lnT |

=
1
h

[
1 −γ +γ

d lnT
d lnp

]

=
γ

h
[∇−∇a] ,

where ∇a and ∇ are the adiabatic and actual logarithmic temperature

gradients respectively. But∇ is bounded above by the radiative temperature

gradient ∇R, so

|∇s | ≤ γ

h
[∇R −∇a] . (3.70)

Combining equations (3.69) and (3.70) we find

|N |20
(
Ω

|N |0
)2α
≤
γдξ̄

h
[∇R −∇a] .

Using equation (3.19) and recalling that c2s = γp/ρ we see that

|N |20
(
Ω

|N |0
)2α
≤ ξ̄

(
γд

cs

)2
[∇R −∇a] .

To proceed note that д in this equation is the e�ective108 gravity, such that 108 i.e. centrifugally-corrected

д = д0 − eRΩ
2R (3.71)

where д0 is the actual acceleration of the gravitational interaction. Hence

on the equator, where д0 ∝ eR ,

д = д0

(
1 −

Ω2R

д0

)
.
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So

ξ̄

(
γд0
cs|N |0

)2 (
1 −

Ω2R

д0

) (
Ω

|N |0
)−2α

[∇R −∇a] ≥ 1.

As Ω increases this breaks down because the left-hand side vanishes, both

as Ω−2α and as a result of the centrifugal term. In other words at some

point the system must become radiative. Of course this is only a problem

in regions near the equator, but it may have significant consequences for

the transport of angular momentum and hence may su�ce to explain the

discrepancy between the Keplerian and sub-Keplerian regimes.

Finally, and perhaps most importantly, in approaching the Keplerian

limit we face a breakdown of the steady state assumption. To understand

this consider a system spinning with ΩK � Ω � |N |0. Because Ω � |N |0
the rotation rate is nearly uniform in relative terms. Furthermore because

ΩK decreases with increasing R the outermost parts of the system are those

with Ω closest to the Keplerian rate.

Suppose we now inject angular momentum into the system in small

doses and wait for it to come to equilibrium. After each injection and

equilibration the system has a new Ω, which is still nearly uniform in

relative terms. Eventually the outermost regions reach ΩK . They cannot

rotate faster than ΩK because doing so would push them out to larger

radii, and with fixed specific angular momentum they will reach a radius

at which Ω = ΩK .

It follows that further injection of angular momentum creates a region

near the surface where Ω(R) = ΩK (R). This is the region in which

R > RK =
д

Ω2 ,

where now Ω is the rotation rate for R < RK . However this solution

does not represent an equilibrium. This is because the Keplerian region is

rotating slower than the interior, with an angular velocity gradient that

exceeds that which equations (3.7) and (3.8) support. We have found that

angular momentum is transported in this limit so as to reduce |R∇ lnΩ|,
so angular momentum is carried out from the interior into the Keplerian

region. In essence a decretion disk is formed.

As angular momentum flows into the disk Ω decreases, RK moves

outward and the disk spreads away from the central body. Should this flow

continue indefinitely the system will reach an equilibrium in which RK

equals the radius of the body, but at this point the majority of the system

is no longer Keplerian and the results from Section 3.10 apply. Upon
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injecting more angular momentum the process repeats, but eventually the

system will have too much angular momentum to remain bound and must

lose mass to infinity. In this case the assumption that the system remains

in equilibrium is violated and there is no reason to expect our equilibrium

solution to continuously connect to the Keplerian one.

3.13 Tests

To test our results we turn to simulations and observations. Fig. 3.4 shows

our scaling relations for non-magnetised (left, equations (3.45) and (3.63))

and magnetised (right, equations (3.45) and (3.66)) rotating convection

as a function of Ω/|N |. Observations are shown with solid shapes and

simulations are shown as open shapes. Data for the Sun and Jupiter are

shown as lines. Details of how the data were processed are included at the

end of this Chapter in Section 3.16.

The first point to note is that there is significant disagreement between

di�erent simulation suites and di�erent kinds of observations. Much of this

may be attributed to di�erences in which quantities were reported, and

indeed there is somewhat better agreement among data of the same type.

For instance reports of surface latitudinal variation from both simulation

and observation generally agree with one another and with the analytic

results, and likewise for reports of core–envelope di�erential rotation, but

neither group agrees well with the other. The exceptions to this are reports

of equatorial–mean di�erential rotation, which agree on the general trend

of the data but exhibit many outliers. Some of this is due to the fact

that this data was most often extracted digitally from figures rather than

from data tables. Fig. 3.5 shows the same comparison as Fig. 3.4 but with

these points excluded and there is evidently more consistency amongst

datasets determined from data tables than amongst those extracted from

figures. Furthermore Fig. 3.5 shows considerably better agreement with

our scaling relations, suggesting that the data extraction is indeed partly

to blame for the discrepancies in Fig. 3.4.

The rapidly-rotating non-magnetised scaling exhibits mild tension with

Juno upper bounds on core di�erential rotation in Jupiter, though it is

in better agreement with Juno measurements of the shallow di�erential

rotation than the magnetised scaling. This is in agreement with previous

work 109 and the finding that the transition between shallow and deep dif- 109 Kirk & Stevenson 1987; Liu et al. 2008

ferential rotation in Jupiter are associated with a large change in electrical

conductivity 110. 110 Guillot et al. 2018

There are unfortunately very few observed systems at extreme rotation
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Figure 3.4: (Left) The di�erential rotation given by equations (3.45) and (3.66) as functions of Ω/|N |0 and normalised by Ω. (Right) The
di�erential rotation given by equations (3.45) and (3.63) as functions of Ω/|N |0 and normalised by Ω. (Both) The proportionality constant
was taken to be unity and the transition between slow and rapid rotation was taken to be at Ω = |N |. Observations are shown with solid
shapes and simulations are shown as open shapes. Data for the Sun and Jupiter are shown as lines. The surface–centre distinction in Jupiter is
made at a depth of 3000km, beyond which point Guillot et al. (2018) report only upper bounds on the shear. Triangles are used to show
latitudinal di�erential rotation at the surface of an object. Circles are used to show the di�erence between the mean rotation and that at the
equator on the surface. Diamonds are used to show the di�erential rotation inferred from the energy in rotational motion in the globally
co-rotating frame. Squares are used to show di�erential rotation inferred from core–envelope rotation ratios. Simulations are shown in the
panel appropriate to their conditions (i.e. magnetised or not). Note that in some cases data (marked with *) were extracted digitally from
figures, and these cases produced the majority of anomalously low points, suggesting that the uncertainties in this process are significant. Full
details of how the data were processed are included in Appendix 3.16. Data were taken from the following works: Brown et al. (2007); Brun
& Palacios (2009); Brun et al. (2005); Augustson et al. (2016b); Brun et al. (2017); Rogers (2015); Gilman (1977, 1979); Mabuchi et al. (2015);
Käpylä et al. (2011); Bonanno et al. (2014); Guerrero et al. (2013); Gastine et al. (2014); Soderlund et al. (2013); Kaspi et al. (2009); Aurnou
et al. (2007); Klion & Quataert (2017); Donati et al. (2008); Nielsen et al. (2017); Reiners & Schmitt (2003); Frasca et al. (2011); Deheuvels et al.
(2012, 2015); Kaspi et al. (2018); Guillot et al. (2018); Antia et al. (2008) .
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Figure 3.5: (Left) The di�erential rotation given by equations (3.45) and (3.66) as functions of Ω/|N |0 and normalised by Ω. (Right) The
di�erential rotation given by equations (3.45) and (3.63) as functions of Ω/|N |0 and normalised by Ω. (Both) The proportionality constant
was taken to be unity and the transition between slow and rapid rotation was taken to be at Ω = |N |. Observations are shown with solid shapes
and simulations are shown as open shapes. Data for the Sun and Jupiter are shown as lines. The surface–centre distinction in Jupiter is made at
a depth of 3000km, beyond which point Guillot et al. (2018) report only upper bounds on the shear. Triangles are used to show latitudinal
di�erential rotation at the surface of an object. Circles are used to show the di�erence between the mean rotation and that at the equator on the
surface. Diamonds are used to show the di�erential rotation inferred from the energy in rotational motion in the globally co-rotating frame.
Squares are used to show di�erential rotation inferred from core–envelope rotation ratios. Simulations are shown in the panel appropriate to
their conditions (i.e. magnetised or not). Full details of how the data were processed are included in Appendix 3.16. Data were taken from
the following works: Brun & Palacios (2009); Brun et al. (2005); Augustson et al. (2016b); Brun et al. (2017); Rogers (2015); Mabuchi et al.
(2015); Käpylä et al. (2011); Bonanno et al. (2014); Guerrero et al. (2013); Klion & Quataert (2017); Donati et al. (2008); Nielsen et al. (2017);
Reiners & Schmitt (2003); Frasca et al. (2011); Deheuvels et al. (2012, 2015); Kaspi et al. (2018); Guillot et al. (2018); Antia et al. (2008) .
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rates other than Jupiter. To understand this note that

Ω2

|N |20
<

д

R|N |20
because the system must be stable against rotational breakup. Next recall

that

|N |0 ≈ 3c ,0
h

,

where 3c ,0 ≈ (F/ρ)1/3 is the convection speed which would be required

were the system non-rotating and non-magnetised. Hence

|N |0 ≈
(
F

ρh3

)1/3
.

Because central convection zones maximise ρh3, we let h ≈ R to find

|N |0 &
(

F

ρR3

)1/3
≈

( F
M

)1/3
.

Hence

Ω2

|N |20
<

д

R|N |20
<

(
G3M5

F 2R9

)1/3

≈

(
G3M5

L2R5

)1/3

.

Because R and L both increase with mass for main-sequence stars, and

L2R5 does so more rapidly111 than M5, this bound is loosest at low masses. 111 See scaling relations in Böhm-Vitense
(1992).

Hence the objects with the potential for the most extreme rotation are also

those which are most di�cult to observe.

There are likewise few simulations at these extreme rotation rates be-

cause the dominant wave-vectors become quite large and so the required

resolution becomes di�cult to resolve. Advances are likely to continue in

this direction, but for the moment the strongest constraints on di�erential

rotation in rapidly rotating systems come from Jupiter.

Both the Sun and Jupiter exhibit asymptotically fixed di�erential rota-

tion 112 as Ω/|N |→ 0. In the Sun this occurs near the transition between 112 Antia et al. 2008; Kaspi et al. 2018

slow and rapid convection and so may be regarded as being reflective of

slowly rotating systems more generally. In Jupiter, however, it occurs

well above the knee, when Ω ≈ 3 × 102|N |. In this case the near-fixed

di�erential rotation is actually reflective of di�erential rotation in the bulk,
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where the rotation isosurfaces are nearly cylindrical. In e�ect each region

on the surface couples primarily to its neighbours in latitude and to the

Taylor-Proudman cylinder on which it sits. These cylinders rotate accord-

ing to a balance set in the bulk of the planet because that is where most of

the mass and interaction area lies. This sets a decidedly non-generic lower

boundary condition which damps the surface di�erential rotation that our

analysis predicts would otherwise emerge.

The plateau in Jupiter’s di�erential rotation may also be seen as high-

lighting that di�erential rotation cannot vary wildly from point to point

within a system because of geometric considerations. Hence when we

refer to |N |0 within a given system we are really speaking of the typical

|N |0 in the bulk of the convection zone, rather than at any specific location.

An interesting systematic trend is that asteroseismic measurements

of di�erential rotation in red giants, which make up most of the filled

squares in Figs. 3.4 and 3.5, generally lie a factor of several above any other

observations made at comparable rotation rates. This may be understood

by noting that the quantity we have calculated is

|R∇Ω|
Ω
= |R∇ lnΩ|.

Assuming that there is little geometric tuning, the di�erence between the

rotation rate in the core and that in the envelope rotation ratio is therefore

of order

∆Ω

Ω
≈

∫ Rsurface

Rcore

|∇ lnΩ|dR.

We have argued that |∇ lnΩ| ≈ kR−1 for some function k(Ω/|N |), so
∆Ω

Ω
≈ k ln

Rsurface
Rcore

.

For objects with large envelopes and small cores the logarithm may pro-

duce a factor of several, and that is indeed what we see in the data. Our

underprediction may therefore be attributed simply to the large amount

of room in which giant stars may develop di�erential rotation.

Looking at more minor trends, the solar data suggests that the transition

point between slow and rapid rotation is closer to Ω ≈ 0.2|N |, rather than
Ω ≈ |N | as we have assumed. This is in agreement with closure models113 113 See Chapter 2 as well as Küker & Rüdi-

ger (2005).
and some simulations such as those of Brown et al. (2007). Additionally

these simulations and data suggest that the asymptotic di�erential rotation

is closer to 0.3Ω/R rather than Ω/R, in agreement with the calculations

of 114. On the other hand the simulations of Gastine et al. (2014) and the 114 Küker & Rüdiger 2005
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observations of Deheuvels et al. (2015) both argue for a knee at mildly

stronger rotation. Furthermore the latter and observations by Nielsen et al.

(2017) suggest somewhat stronger asymptotic di�erential rotation than

what is found in the Sun. This is rather strange because they were looking

primarily at solar-like stars, though the error bars are so large that their

results are consistent with what is seen in the Sun. More broadly, these

di�erences are all at the same level as the uncertainties associated with

standardising these very disparate sources of data and so are unlikely to be

indicative of the scaling of the di�erential rotation.

In summary, both scaling relations are in reasonable agreement with

both observations and simulations. This is particularly the case when one

examines a single suite of simulations. It is then clear which regime the

system is in (i.e. magnetic or not) and there are no systematic di�erences

in which quantities are reported. For instance the slope we have found

of −2/3 for the non-magnetised case is in good agreement with fits per-

formed on individual sets of simulations 115. The magnetised scaling is a 115 Brown et al. 2007

better match to observation overall, though there are indications in the

data that Jupiter actually switches from the hydrodynamic regime to the

magnetised one 116 at a depth of around 3000 km. 116 Kaspi et al. 2018

3.14 Limitations

To reiterate from Section 3.2, we have made the following assumptions.

1. Dimensionless factors arising from geometry are of order unity unless

required to be otherwise.

2. All external perturbing forces such as tides or external heating are

negligible in the regions of interest.

3. The material is compressible and non-degenerate.

4. All microscopic (i.e. non-turbulent) di�usivities are vanishingly small,

such that:

- convection is e�cient;

- convection is well-developed;

- magnetohydrodynamical processes are ideal;

- and turbulent and/or advective processes are responsible for all macro-

scopic transport of heat, momentum and magnetism.

5. The system is axisymmetric.

6. Convection is subsonic or, if supersonic, only mildly so.
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7. The system is chemically homogeneous.

We now consider each of these assumptions and explain how they limit

our results.

We have already discussed the first of these extensively at various points,

but it is worth emphasising that the plateau in Jupiter’s di�erential rotation

profile near the surface is evidence of the limitations imposed by our neglect

of geometry. Our analysis provides a local prediction for what is actually a

globally-determined phenomenon, and so really is only suitable to relate,

for instance, the mean Ω/|N | in a convection zone to the mean |R∇Ω|,
rather than to calculate anything at any specific point in a system. With

appropriate consideration of boundary conditions this may be remedied,

but such an analysis rapidly becomes quite complex to perform generally,

even as an order of magnitude exercise, and so we are content to leave this

for the future.

The next assumption is that perturbing forces such as tides or external

heating may be neglected. In single systems this is correct, but in binary

or planetary systems it may fail. In order for tides to be relevant the

angular momentum transport they induce must be at least of order the

steady state flux which is transported by the various terms which balance

in the vorticity equation. Likewise in order for heating to be relevant it

must be at least of order that owing to the rotational perturbations to the

equation of thermal equilibrium. In either case these are large but not

insurmountable barriers. In hot Jupiter systems heating owing either to

tides or to insolation may even exceed the heat flux from the centre 117. 117 Jermyn et al. 2017

Likewise in a slowly-rotating close binary system the non-equilibrium

tidal potential could easily be the dominant mode of angular momentum

transport. It is more di�cult to arrange for this to be the case in rapidly

rotating systems, but such scenarios likely exist.

Our third assumption really enters the analysis only insofar as it allows

us to use an ideal gas-type equation of state. In particular, in several places

we have used the fact that the pressure depends on both temperature and

density. Removing the dependence on temperature changes the structure

of these arguments significantly and so we have simply ignored such cases.

This means that our analysis cannot be applied robustly to compact objects,

rocky or otherwise solid bodies, or to degenerate planetary cores. In

such systems though the microscopic viscosity may be quite large and

convection may not be fully developed, and so we would need to exclude

them anyway.

The fourth assumption is principally one of convenience: by neglecting
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microscopic di�usivities we achieve significant simplifications of the equa-

tions of thermal and vorticity equilibrium. Indeed the true momentum

di�usivity in systems for which the third assumption holds is genuinely ex-

pected to be extremely small 118. On the other hand the thermal di�usivity 118 Spitzer 1956

may not be small, and near the tachocline this assumption definitely fails.

Nevertheless, for systems in which a convecting region is large enough to

matter for the rotation of the system we expect it to also be large enough

that the tachocline does not dominate its dynamics. In e�ect this is an

extension of the assumption that geometry, and hence boundary e�ects,

are not too important.

Related to this, there is one place in which the microscopic thermal

di�usivity cannot be neglected, namely near breakup rotation. As we have

mentioned, the scaling laws we have derived do not hold all the way to the

breakup velocity. We have shown that this is because a system which does

not reconfigure to follow Keplerian rotation cannot continue to convect as

the rotation approaches the breakup rate. The way in which convection is

disrupted, however, is by reducing the e�ective gravity such that a radiative

temperature gradient may be convectively stable. This requires that there

be a finite radiative gradient, and so requires that the di�usivity not vanish.

It may be arbitrarily small because reducing the di�usivity just shifts the

rotation rate at which convection ceases closer to the breakup rate, but

for any non-zero di�usivity there is a rotation rate at which convection

fails. This may seem a pedantic technical point, but it is important to note

because it precludes smoothly connecting the rapidly-rotating convecting

solution to that of a Keplerian disk. Notably this points to one of the key

open problems in understanding heat transport in W UMa119 systems 120, 119 i.e. low-mass contact binary
120 Li et al. 2004

namely that there must be regions in which convection fails because the

e�ective gravity vanishes.

Along similar lines, in Jupiter the microscopic conductivity changes

dramatically at the depths at which ionization occurs. This is responsible

for the transition from hydrodynamic to magnetohydrodynamic scaling.

This is captured in our analysis by a change in the turbulence closure

equations, and so is explicitly handled, but even so there is a transition

region in which neither analysis is quite right. Similar to the tachocline, we

require that this region not be too important. However Jupiter’s geometry

is such that its surface layers strain this assumption.

The fifth assumption, that of axisymmetry, is a strong one. It is respon-

sible for a myriad of simplifications in our equations, and in particular

controls the orders of various perturbations which are protected by this
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symmetry. As a result any phenomena which break this symmetry may

introduce new modes of heat and momentum transport which disagree

with our calculations by an amount which is proportional to the sym-

metry breaking. This is a concern for systems which exhibit tides or

non-axisymmetric external heating. In many cases these e�ects are ei-

ther very low in amplitude, as in a long-period binary, or very high in

frequency, as in a short-period binary. In the former case they may be

neglected owing to their amplitude, while in the latter they may produce

no leading order e�ect because they are not well-matched frequency-wise

to the turbulence. This was first noted by Goldreich & Keeley (1977) in

the context of tides, where at high frequencies relative to |N | convection
only couples weakly to the tidal potential. Nevertheless there are cases in

which axisymmetry strongly fails, such as in W UMa systems 121, and so 121 Li et al. 2004

this assumption is worth considering carefully when applying our results.

We have already discussed the assumption that convection is subsonic

and so merely note that this assumption would only result in incorrect

scaling relations if the Mach number were to exceed unity by a factor

which depended strongly on Ω/|N |. That is, if the Mach number exceeds

unity by a factor of a few which is set by thermodynamic considerations

our analysis is unchanged, but if the Mach number can increase without

bound as Ω → 0 or ∞ we have a problem because then we cannot bound

the convection speed by thermodynamic considerations. In fact we have

shown that this is not the case, because the convection speed is largely

independent of Ω as Ω → 0 and decreases for fixed |N | as Ω → ∞. This
assumption is therefore not one which we expect to be violated in any

significant way.

Finally we must consider chemistry. We have assumed everywhere

that the system is chemically homogeneous. This is actually quite straight-

forward because convection rapidly mixes chemical composition and so

we do not expect to find substantial violation of this assumption unless,

for instance, material is being injected into a convection zone at a rate

comparable to the convective mass flux. This is a rather exotic scenario

though, and with a few notable exceptions122 does not reflect a system 122 e.g. hot bottom burning in Asymptotic
Giant Branch stars

which is undergoing evolution on secular/nuclear time-scales, so we su�er

no great loss by excluding it.

3.15 Discussion and Outlook

In this work we studied di�erential rotation in both slowly and rapidly

rotating convection zones in both the hydrodynamic and magnetohydro-
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dynamic limits. We have found that when the system is rotating slowly

|∇Ω| ≈ ΩR−1.

When it is rotating rapidly and is magnetised we found that

|∇Ω| ≈ Ω1/7|N |6/7
0 R−1,

and when non-magnetised

|∇Ω| ≈ Ω1/3|N |2/3
0 R−1.

In the last two equations |N |0 is the Brunt-Väisälä frequency which would

arise if the system were not rotating. This is related to the actual Brunt-

Väisälä frequency |N | by

|N | = |N |0
(
Ω

|N |0
)1/7

and

|N | = |N |0
(
Ω

|N |0
)1/3

for non-magnetised systems. In addition we have explored the scaling

of the meridional circulation u and baroclinicity ξ , and found that these

increase as Ω2 before reaching plateaus at u ≈ Ω2h/|N | and ξ ≈ 1.

In the slow-rotation limit we did not find any preference for di�erent

shear directions which scaled with the rotation rate. There the angular

momentum balance is chiefly between the turbulent viscosity and the

Λ-e�ect, with all other terms scaling more slowly with angular velocity.

By contrast in the rapid-rotation limit the shear is preferentially in the

cylindrical radial direction, and that preference is enforced by a factor

of Ω/|N |. Thus the Taylor-Proudman theorem becomes increasingly

relevant. This is because the term which couples the shear in the direction

along the rotation axis scales more strongly with Ω than any other in the

azimuthal vorticity equation, followed by the turbulent stress terms, and

so these are the e�ects which balance asymptotically. In the meridional

vorticity equation the former term does not appear, and so the radial

di�erential equation balances the stress and ends up asymptotically larger.

An important consequence of this is that a great many details of a

convecting system are irrelevant to the question of the magnitude of its

di�erential rotation. All that matters to leading order is the bulk ratio

Ω/|N |0, which is readily computed from observable parameters such as the
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rotation rate, surface temperature and mean density. This allows a wide

range of systems to be approximately characterised with minimal data,

and should help to support future studies of momentum and magnetic flux

transport in convection zones.
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3.16 Data Processing

We now detail the way in which data were processed to produce Fig. 3.4.

The two variables of interest in each case are |R∇Ω|/Ω and Ω/|N |0. All
scripts used in this data processing shall be made available at github.com/

adamjermyn/DifferentialRotation2018.

3.16.1 Solar Data

Helioseismic inversions were obtained from Antia (2016), corresponding

to that appearing in Antia et al. (2008). This includes Ω as a function

of position throughout the convective envelope as well as in the upper

portions of the radiative envelope. This profile was then supersampled

onto a grid running from 0.5R� to R� in the radial direction with 100

points uniformly spaced and from 0 to π in the latitude with 70 points

uniformly spaced. By applying a di�erentiating gaussian filter with width

equal to five grid points in each of the radial and latitudinal directions we

computed R∇Ω/Ω from this profile. We then averaged the square of this

over latitude, weighted by sinθ , and took the square root of the result to

produce a measure of the mean di�erential rotation at each radial slice.

The radial profile of |N | was obtained from a model computed by

G. Houdek and D. O. Gough, which is the same model used by Chaplin

et al. (2005) in their study of the power spectral density of solar p modes.

This was used to compute Ω/|N | everywhere in the solar convection zone.

We then averaged Ω2/|N |2 over latitudes again weighting by sinθ and

computed the square root to determine the mean Ω/|N | in each radial slice.

This was then plotted alongside our measure of the di�erential rotation in

each radial slice.

3.16.2 Jupiter Data

The profile of di�erential rotation in the surface layers of Jupiter was

taken to be that in Kaspi et al. (2018). This yields the variation of the

characteristic zonal flow rate with depth but does not provide the shear

itself. To compute this we first note that roughly 30 per-cent of Jupiter’s

latitudes are covered in bands with velocities of order 100km s−1, while the

remaining latitudes contain bands with velocities of order 123 25km s−1. 123 Kaspi et al. 2018

The former are also approximately twice as wide per band as the latter.

There are approximately 15 bands in total, and so we define the typical

github.com/adamjermyn/DifferentialRotation2018
github.com/adamjermyn/DifferentialRotation2018
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shear at the surface as

|R∇Ω| ≈ 15
πRJ

(
0.3 × 25km s−1 +

1
2
× 0.7 × 100km s−1

)
,

where RJ ≈ 7 × 109cm is the radius of Jupiter. We then assume that the

band velocities scale with depth as found by Kaspi et al. (2018) while the

mean rotation period remains 124 9.92hr. 124 Kaspi et al. 2018

For regions deeper than 3000km we bound the band velocity above by

the inferred 125 6m s−1 and use the band structure above to compute the 125 Guillot et al. 2018

shear. Furthermore we treat the number of bands as varying linearly in

radial coordinate between 1 near the centre of the planet and 15 at the

surface. This is an approximation of the cylindrical nature of Jupiter’s

di�erential rotation.

All that remains is to compute |N |0. To do this we recall that

|N |0 ≈ h−1
(
F

ρ

)1/3
.

Jupiter has 126 F ≈ 5000erg cm−2 s−1. We take h to be approximately equal 126 Liu et al. 2008

to the depth at any given point in the planet. Using equation (3.19) and

matching the ratio of p/ρ against the profile in Guillot et al. (2004) we

find that at 3000km, ρ ≈ 0.4g cm−3. With this we find that at a depth of

3000km, |N |0 ≈ 8 × 10−8s−1. Because Jupiter is approximately adiabatic in

its convection zone and neglecting changes in radius we may write

h =
p

ρд
∝ ργ−1 ∝ ρ2/3,

hence

|N |0 ∝ ρ−1 ∝ h−3/2.

This may be used to find |N |0 everywhere. We truncate the model where

h ≈ 40km, which is the approximate scale height at the cloud deck, ob-

tained using a temperature of 127 300K and solar composition. The precise 127 Sei� et al. 1998

choice of truncation point is not relevant so long as it is not too far from

the convective-radiative transition.

3.16.3 Reiners Observations

Data were taken from Table 5 of Reiners & Schmitt (2003). The re-

ported di�erential rotation is in the form of the coe�cient α defined in

equation (6.5) and we treat it as we have previously. The rotation rate is

reported as 3 sin i, where 3 is the surface rotation velocity. Inclinations are
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also reported, so we use these to compute 3 and propagate errors using the

formula

dµ =

√√√∑
j

(
∂µ

∂x j

)2
dx2j ,

where µ is a function of interest and x j are variables on which it depends.

This amounts to assuming that errors are uncorrelated and small relative

to the scale over which higher-order derivatives are relevant.

To proceed further we need an estimate of the radius of each star. We

obtain this from stellar scaling relations, noting that

R ∝ M0.7

and

L ∝ M3.7

128. Hence T ∝ L1/4R−1/2 ∝ M0.58. Using this we may compute M 128 Demircan & Kahraman 1991

from the provided temperatures. We then let |N |0 be the mean |N | in the

solar convection zone (spatially averaged), scaled to each star as (T/T�)4/3

because

|N |0 ≈ h−1
(
F

ρ

)1/3
∝ T 4/3h−1ρ−1/3.

We neglect the variation of ρ because it enters to a much lower power than

that of T . We further neglect the variation of h because it is just of order

the depth of the convection zone, which we expect to be comparable to

within a factor of a few across the stars in the sample. Providing better

estimates of its depth requires more detail about each object, including

ages and compositional information, and so we do not attempt to capture

this detail. Given R and |N |0 we may calculate first Ω = 3/R and thereby

compute Ω/|N |0.

3.16.4 Deheuvels Observations

Data were taken from Deheuvels et al. (2012) and Deheuvels et al. (2015).

The reported di�erential rotation is in the form of the di�erence between

the core and envelope rotation rates divided by the envelope rotation rate,

which we take to equal |R∇Ω|/Ω.
The rotation rate is provided in the text and we estimate |N | for the red
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giants as

|N |0 ≈ h−1
(
F

ρ

)1/3
,

taking ρ to be the mean density of the star and h ≈ R. Given the extent of

convection zones in these systems both are reasonably approximations.

3.16.5 Donati Observations

Data were taken from Donati et al. (2008). The reported di�erential

rotation rate is the surface equator-pole di�erence in Ω normalised against

that of the equator. Because this spans 1.5 radians we divide by 1.5 to

place it in the same units as ∂θΩ/Ω. We take this as to be approximately

|R∇Ω|/Ω.
The paper reports the Rossby number, defined as |N |0/Ω, so we let

Ω

|N |0 ≈ Ro−1.

3.16.6 Frasca Observations

Data were taken from Frasca et al. (2011). The reported di�erential

rotation is in the form of the coe�cient α defined in equation (6.5) and

we treat it as we have previously. The rotation rate is reported as 3 sin i,

where 3 is the surface rotation velocity. The inclination is also reported,

so we use it to compute 3. As with the observations of Reiners & Schmitt

(2003) we take |N |0 ∝ T 4/3, where in this case T is reported at the surface.

With this we may calculate first Ω = 3/R and thereby compute Ω/|N |0.

3.16.7 Bonanno Observations

Data were taken from Bonanno et al. (2014). The reported di�erential

rotation is in the form of a latotitudinal variation dΩ in the rotation rate.

We normalise this against the mean rotation rate. We take this as to be

approximately |R∇Ω|/Ω. As with the observations of Reiners & Schmitt

(2003) we take |N |0 ∝ T 4/3, where in this case T is reported at the surface.

3.16.8 Nielson Observations

Data were taken from Table 1 of Nielsen et al. (2017). The reported

di�erential rotation is in the form of the di�erence between the core and

envelope rotation rates divided by the envelope rotation rate, which we

take to equal |R∇Ω|/Ω. We then let |N |0 be the mean |N | in the solar
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convection zone because these stars are all very similar to the Sun in mass

and radius. From this we compute Ω/|N |0.

3.16.9 Klion Observations

Data were taken from the text of Klion & Quataert (2017) with |R∇Ω|/Ω
taken from the best-fitting power law to be 1. The rotation rate is provided

in the text and we estimate |N | for the red giant as before with

|N |0 ≈ h−1
(
F

ρ

)1/3
,

taking ρ to be the mean density of the star and h ≈ R.

3.16.10 Brown 2008 Simulations

The data are from the simulations in Brown et al. (2007). These were

extracted with automated graphic data extraction software which uses the

positions of points on a figure along with calibration of the figure axes to

determine the underlying data. This provided the surface di�erence of

the rotation between the equator and the line of 60 degrees of colatitude.

We normalise this against the mean rotation rate and take it as measuring

|R∇Ω|/Ω. We compute Ω/|N |0 using |N |0 as being that from the Sun

averaged spatially over the convection zone, as these are simulations of

solar-type stars.

3.16.11 Brun 2005 Simulations

The data are from the simulations in Brun et al. (2005). The di�erential

rotation is reported as the mass-weighted average of the squared di�er-

ence between the rotation rate and the mean rotation rate. We therefore

compute

|R∇Ω| ≈
√
〈�Ω − Ω̄�2〉,

where 〈...〉 denote the mass-weighted average and Ω̄ is the mean rotation

rate.

The Rossby number actually realised in the flow is also reported. This

is defined in that work as

Ro =
3c

2ΩR
,

In these hydrodynamic simulations we may use F ≈ ρ33c to find that 3c is

approximately invariant with respect to Ω and hence 3c ≈ h|N |0. Taking
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h ≈ R because the depth is comparable to the radius we find

Ω

|N |0 ≈ 2Ro−1.

3.16.12 Brun 2009 Simulations

The data are from the simulations in Brun & Palacios (2009). The di�er-

ential rotation is reported as the mass-weighted average of the squared

di�erence between the rotation rate and the mean rotation rate. We

therefore compute

|R∇Ω| ≈
√
〈�Ω − Ω̄�2〉,

where 〈...〉 denote the mass-weighted average and Ω̄ is the mean rotation

rate.

The Rossby number actually realised in the flow is also reported. This

is defined in that work as

Ro =
ωϕ,convective

2Ω
,

where ωϕ,convective ≈ 3c/h is the root-mean-squared vorticity of the con-

vective flow. Thus we find

Ω

|N |0 ≈ 2Ro−1.

3.16.13 Augustson 2016 Simulations

The data are from the simulations in Augustson et al. (2016b). The dif-

ferential rotation is reported as the mass-weighted average of the squared

di�erence between the rotation rate and the mean rotation rate. We

therefore compute

|R∇Ω| ≈
√
〈�Ω − Ω̄�2〉,

where 〈...〉 denote the mass-weighted average and Ω̄ is the mean rotation

rate.

The Rossby number actually realised in the flow is also reported. This

is defined in that work as

Ro =
ωϕ,convective

2Ω
,

where ωϕ,convective ≈ 3c/h is the root-mean-squared vorticity of the con-
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vective flow. Thus we find

Ω

|N |0 ≈ 2Ro−1.

3.16.14 Brun 2017 Simulations

The data are from the simulations in Brun et al. (2017). The di�erential

rotation is reported as the surface di�erence in rotation rate between the

equator and the line of 60 degrees of colatitude. We normalise this against

the mean rotation rate and take it as measuring |R∇Ω|/Ω.
The Rossby number actually realised in the flow is also reported. This

is defined in that work as

Ro =
3c

2ΩR
,

In these hydrodynamic simulations we may use F ≈ ρ33c to find that 3c is

approximately invariant with respect to Ω and hence 3c ≈ h|N |0. Taking
h ≈ R because the depth is comparable to the radius we find

Ω

|N |0 ≈ 2Ro−1.

3.16.15 Gastine Simulations

The data are from the simulations in Gastine et al. (2014). These were

extracted with automated graphic data extraction software, providing the

quantity

α ≡
Ω − Ω̄

Ω̄
, (3.72)

where Ω̄ is the rotation rate of the framewith zero total angularmomentum

and Ω is evaluated at the surface of the simulated star on the equator. We

treat α as measuring |R∇Ω|/Ω and in that way determine the di�erential

rotation.

To measure the rotation we note that α is provided as a function of the

convective Rossby number, which is defined in that work as |N |/Ω. We

then use the scaling in equation (3.64) to compute Ω/|N |0.

3.16.16 Aurnou Simulations

The data from the simulations by Aurnou et al. (2007) appear in the

second summary figure in Gastine et al. (2014). These were extracted with
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automated graphic data extraction software, providing the quantity

α ≡
Ω − Ω̄

Ω̄
, (3.73)

where Ω̄ is the rotation rate of the framewith zero total angularmomentum

and Ω is evaluated at the surface of the simulated star on the equator. We

treat α as measuring |R∇Ω|/Ω and in that way determine the di�erential

rotation.

To measure the rotation we note that α is provided as a function of the

convective Rossby number, which is defined in that work as |N |/Ω. We

then use the scaling in equation (3.64) to compute Ω/|N |0.

3.16.17 Soderlund Simulations

The data from the simulations by Soderlund et al. (2013) appear in the

second summary figure in Gastine et al. (2014). These were extracted with

automated graphic data extraction software, providing the quantity

α ≡
Ω − Ω̄

Ω̄
, (3.74)

where Ω̄ is the rotation rate of the framewith zero total angularmomentum

and Ω is evaluated at the surface of the simulated star on the equator. We

treat α as measuring |R∇Ω|/Ω and in that way determine the di�erential

rotation.

To measure the rotation we note that α is provided as a function of the

convective Rossby number, which is defined in that work as |N |/Ω. We

then use the scaling in equation (3.64) to compute Ω/|N |0.

3.16.18 Kaspi Simulations

The data from the simulations by Kaspi et al. (2009) appear in the sec-

ond summary figure in Gastine et al. (2014). These were extracted with

automated graphic data extraction software, providing the quantity

α ≡
Ω − Ω̄

Ω̄
, (3.75)

where Ω̄ is the rotation rate of the framewith zero total angularmomentum

and Ω is evaluated at the surface of the simulated star on the equator. We

treat α as measuring |R∇Ω|/Ω and in that way determine the di�erential

rotation.

To measure the rotation we note that α is provided as a function of the

convective Rossby number, which in that work is |N |/Ω. We then use the
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scaling in equation (3.64) to compute Ω/|N |0.

3.16.19 Rogers Simulations

Data were taken from the table in Rogers (2015). The text surrounding

the table provides 3c for the two extremal convective forcing functions

and so we linearly interpolate as

3c = [2.9 + (q − 1.5) ∗ (4.5 − 2.9)] km s−1,

where q ≡ Q̄/cv is the convective forcing. We take the scale height to be

the size of their convection zone, which is 0.3R�. For slow rotation we

use |N | ≈ 3c/h, while for fast convection we use equation (3.64) to find

|N |3/2Ω−1/2 ≈ h−13c,

so

|N |0 ≈ h−13c.

In both cases we find the same result, because in slow rotation |N | ≈ |N |0.
The output of the simulation is the ratio of the core rotation rate to the

envelope rotation rate, which we take to be |R∇Ω|/Ω.

3.16.20 Mabuchi Simulations

Data were taken from Table 1 of Mabuchi et al. (2015). The reported

di�erential rotation is in the form of α as defined in equation (6.5). The

Rossby number actually realised in the flow is also reported. This is defined

in that work as

Ro =
π 3c
Ωd

,

where d is the radial extent of the convection zone.

In the hydrodynamic simulations we may use F ≈ ρ33c to find that 3c is

approximately invariant with respect to Ω and hence 3c ≈ h|N |0. Taking
d ≈ h we find

Ω

|N |0 ≈ πRo
−1.

In the magnetohydrodynamic simulations we instead use the convective

Rossby number Roc , which is approximately π |N |/Ω, in combination with
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the scaling in equation (3.50) to find

Ω

|N |0 ≈
(
πRo−1c

)7/6
.

3.16.21 Käpylä Simulations

Data were taken from Table 1 of Käpylä et al. (2011). The reported di�er-

ential rotation rate is the surface equator-pole di�erence in Ω normalised

against that of the equator. Because this spans 1.5 radians we divide by 1.5

to place it in the same units as ∂θΩ/Ω. We take this as to be approximately

|R∇Ω|/Ω.
The paper reports the Rossby number actually realised in the flow,

defined as in the simulations by Mabuchi et al. (2015), so as before we

simply let

Ω

|N |0 ≈ πRo
−1.

3.16.22 Guerrero Simulations

Data were taken from Table 1 of Guerrero et al. (2013). The reported

di�erential rotation rate is the surface equator-pole di�erence in Ω nor-

malised against that of the equator. Because this spans 1.5 radians we

divide by 1.5 to place it in the same units as ∂θΩ/Ω. We take this as to be

approximately |R∇Ω|/Ω.
The paper reports the Rossby number actually realised in the flow,

defined as 2|N |0/Ω, so we simply let

Ω

|N |0 ≈ 2Ro−1.

3.16.23 Gilman Simulations

These simulations were reported in Gilman (1977) and Gilman (1979) and

appear in the second summary figure in Gastine et al. (2014). These were

extracted with automated graphic data extraction software, providing the

quantity

α ≡
Ω − Ω̄

Ω̄
, (3.76)

where Ω̄ is the rotation rate of the framewith zero total angularmomentum

and Ω is evaluated at the surface of the simulated star on the equator. We

treat α as measuring |R∇Ω|/Ω and in that way determine the di�erential

rotation.
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To measure the rotation we note that α is provided as a function of the

convective Rossby number, which in that work is |N |/Ω. We then use the

scaling in equation (3.64) to compute Ω/|N |0.





4 Rotational Mixing in Massive Stars

Your assumptions are your windows on

the world. Scrub them o� every once in a

while, or the light won’t come in.

Isaac Asimov

Abstract

Convection in the cores of massive stars becomes anisotropic when they

rotate. This anisotropy leads to a misalignment of the thermal gradient

and the thermal flux, which in turn results in baroclinicity and circulation

currents in the upper radiative zone. We show that this induces a much

stronger meridional flow in the radiative zone than previously thought.

This drives significantly enhanced mixing, though this mixing does not

necessarily reach the surface. The extra mixing takes on a similar form

to convective overshooting, and may help explain the large overshoot

distances inferred from observations. This has significant consequences

for the evolution of these stars by enhancing core-envelope mixing.
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4.1 Introduction

The problem of meridional mixing in the radiative zones of rotating

stars has been studied for nearly a century 1. The understanding that has 1 Eddington 1929; Maeder & Zahn 1998

emerged is based on the famed von Zeipel theorem 2, which states that in 2 Zeipel 1924

a radiative zone there is no way to satisfy the equations of hydrostatic and

thermal equilibriumwithout allowing the pressure and temperature to vary

separately. Hence in rotating stars thermodynamic quantities are not solely

determined by the pressure; they exhibit baroclinicity. This baroclinicity

drives a circulation current that mixes material in the meridional plane.

The scale of this current is proportional to the heat flux, to the reciprocal

of the entropy gradient and to Ω2R/д, where Ω is the angular velocity

and д and R are the typical gravity and cylindrical radial coordinate in the

radiative zone. The interpretation of this e�ect, either as due to transient

damping or a genuinely driven flow, has led to some controversy 3 but it 3 Busse 1981

is generally agreed that the mixing itself occurs 4. 4 Osaki 1982

Underlying the standard analysis of this mixing is the assumption that

baroclinicity is set locally in the radiative zone by the requirements of

thermal and hydrostatic equilibrium. A key result of this work is that

this is not true in stars with central convection zones5. In such stars 5 These are those with masses above 1.2M�

rotation distorts convective motions, which sets a baroclinic boundary

condition at the base of the radiative zone. This boundary condition is

often more significant than the locally-generated baroclinicity and so

results in enhanced circulation. This scenario has not been adequately

studied and constitutes a novel driver for meridional flows in the radiative

zones of massive rotating stars.

A related scenario that has been studied extensively is that of circulation

driven by mechanical pumping in the convection zone. For instance (Ga-

raud & Brummell, 2008; Garaud & Acevedo Arreguin, 2009) examined the

transmission of mechanical forcing across the tachocline and (Garaud &

Bodenheimer, 2010) extended this to stars with multiple convection zones,

where there may be interesting interactions between the zones mediated

by the intervening radiative zone. A key insight of these studies which

also holds for our scenario is that the circulation cannot be transmitted and

propagated without significant mechanical stresses in the radiative zone.

Such stresses have also been considered as drivers of circulation (Zahn,

1992; Maeder & Zahn, 1998) and so must be taken into account in any

analysis of these phenomena.

The possibility of enhanced mixing in these systems is particularly rele-
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vant in light of the recent discovery of gravitational waves from merging

binary black holes 6. This has led to increased interest in formation mech- 6 Abbott et al. 2016

anisms for massive stellar cores the subsequent evolution of which can

produce massive black holes. Many such mechanisms are quite sensitive

to the magnitude of rotational mixing, particularly in the most massive

stars 7, and so understanding this phenomenon in more depth is extremely 7 Marchant, Pablo et al. 2016

important.

In Section 4.2 we review the derivation of the meridional velocity

by Eddington (1929), Sweet (1950) and Zeipel (1924). Briefly, the cen-

trifugal e�ect distorts isobars, causing a flux anisotropy which violates

thermal equilibrium8. Thermal equilibrium is then restored by inducing 8 Fig. 4.1, top panel

baroclinicity9 and hence introducing a circulation current10. 9 Fig. 4.1, middle panel
10 Fig. 4.1, bottom panel

In Section 4.4 we argue that turbulent anisotropy in the convection

zone makes the zone baroclinic. This arises because the Coriolis e�ect

couples di�erent components of the velocity and so produces heat transport

at an angle to the entropy gradient, as shown in Fig. 4.2. We show

in Section 4.5 that this e�ect is much greater than that caused by the

centrifugal acceleration. As in the case of radiative zones this results in a

circulation current, which we characterise in Section 4.6. Notably this is

significantly enhanced relative to what would occur in a radiative zone

because the radial entropy gradient is much smaller in convection zones.

A further consequence of turbulent anisotropy is that the heat flux in

the zone is highly aspherical11. This is important in massive stars with 11 This is related to the baroclinicity be-
cause the convective flux depends strongly
on the entropy gradient.convective cores because this flux perturbation produces baroclinicity at

the base of the radiative zone. In Section 4.7 we argue that this baroclinic

boundary condition serves to drive additional mixing in the radiative zone.

This mixing is often orders of magnitude greater than what the Eddington–

Sweet calculation alone provides. We then comment on the prospects for

similar mechanisms in stars of lower mass.

In Section 4.9 we argue that these circulation currents are actually the

source of the extra mixing normally attributed to convective overshooting.

Finally we discuss the physical interpretation of the circulation in light of

historical di�culties with the Eddington–Sweet circulation.

4.2 Origins of Meridional Flow

The meridional velocity arises from the impossibility of thermal and hy-

drostatic equilibrium when the pressure gradient is misaligned with the

thermal flux. In the case considered by Eddington (1929) and von Zeipel 12 12 Zeipel 1924

this arises because of a bending of the isobars owing to O(Ω2) centrifugal
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Temperature

Gas

Heat

Pressure

Ω
Figure 4.1: Centrifugal e�ects distort iso-
bars. Variation in the magnitude of the
pressure gradient along isobars leads to a
flux anisotropy (top panel). This pushes the
system out of thermal equilibrium, and a
new equilibrium is established with baro-
clinicity (i.e. mismatched entropy and pres-
sure surfaces, middle panel) and circulation
currents (bottom panel). The length of the
arrows is not meaningful. Likewise the ge-
ometry of the gas circulation is only meant
schematically.
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Hot (High Entropy)

Cold (Low Entropy)

Hot (High Entropy)

Cold (Low Entropy)

Figure 4.2: Non-rotating convection (left,
blue arrows) transports heat along the en-
tropy gradient. Rotating convection (right,
blue arrows) is distorted by the Coriolis
force (white arrows) and so transports heat
at an angle relative to the entropy gradient.

e�ects. We now review this derivation.

To begin note that, in the absence of di�erential rotation, there exists

an e�ective potential satisfying

∇2Φ = 4πGρ − 2Ω2. (4.1)

With hydrostatic equilibrium we also have

∇p = −ρ∇Φ (4.2)

This means that

∇×

(
1
ρ
∇p

)
= −∇ ×∇Φ = 0

and so

∇ρ ×∇p = 0, (4.3)

hence isobars and isochors coincide. From equation (4.2) it follows that

these coincide with surfaces of constant Φ and so p and ρ may be written

solely as functions of Φ.

The energy balance in stars is given by equation (1.18) as

cpρT
∂s

∂t
=
∂Fi
∂xi
+ ρε − ρcpTui

∂s

∂xi
,

where F is the di�usive flux, ε is the specific rate of energy generation

from nuclear processes, s is the dimensionless entropy, ρ is the density, T is

the temperature, ui is the velocity and summation is over repeated indices.
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In the case of radiation we may write the di�usive flux as

Fi = −ρcpχ
∂T

∂xi
(4.4)

where χ is the thermal di�usivity and cp is the specific heat at constant

pressure. In steady state ∂ts vanishes and with no nuclear burning we may

set ε = 0 so that
∂Fi
∂xi
− ρcpTui

∂s

∂xi
= 0. (4.5)

Now suppose that there is no meridional flow, u = 0. We have then

∂Fi
∂xi
= 0. (4.6)

So from equation (4.4)

∂

∂xi

(
ρcpχ

∂T

∂xi

)
= 0. (4.7)

All these quantities are thermodynamic variables which may be written

as functions of p and ρ using the equation of state. Because p and ρ are

functions only of Φ equation (4.7) may be written as

∂

∂xi

(
q(Φ) ∂Φ
∂xi

)
= 0,

where q is a function only of potential. Expanding the divergence yields

dq

dΦ
|∇Φ|2 + q(Φ)∇2Φ = 0

and hence

|∇Φ|2 = −q(Φ)∇
2Φ

dq/dΦ
. (4.8)

The right-hand side may be evaluated with equation (4.1) to find a function

only of Φ. The left-hand side, by contrast, may be written as

|∇Φ|2 = ���д − Ω
2Rer

���
2
,

where R is the distance from the rotation axis, er is the cylindrical ra-

dial unit vector and д is the acceleration due to gravity. This generally

varies along isobars because the direction of д changes while that of the

centrifugal acceleration does not, and the magnitude of the centrifugal

acceleration varies while, to leading order, that of gravity does not. As a

result equation (4.8) cannot be satisfied simultaneously with equation (4.3).

This is the original Eddington–Sweet argument for radiative zones 13. 13 Zeipel 1924

From this it follows that there must at a minimum be either a meridional
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flow or di�erential rotation or both. The original Eddington–Sweet

argument does not address the possibility of di�erential rotation as an

alternative and so just concludes that a meridional flow arises with scale set

by equation (4.5). In the next section we address this point and demonstrate

that in fact both a meridional flow and di�erential rotation generally arise,

with this equation setting the scale of the flow.

4.3 Di�erential Rotation

The derivation of the Eddington–Sweet circulation relies on it being im-

possible to satisfy equation (4.7) when the system is perfectly barotropic.

One might think from the structure of the argument that this is just a

mathematical di�culty rather than a physical one. After all, valid solutions

could exist if one introduces an arbitrarily small di�erential rotation, in-

troducing baroclinicity and allowing the cross-product in equation (4.3)

to be non-zero.

While this is mathematically a valid concern, it runs up against phys-

ical di�culties because what matters is how rapidly the di�usivity and

other thermodynamic variables may vary along an isobar. Suppose that

equation (4.7) fails to be satisfied by a dimensionless amount of order ϵ .

Di�erential rotation may arise and introduce baroclinicity, or misalign-

ment of isobars and isotherms. If the angle of misalignment is of order

λ � 1, logarithmic derivatives of the di�usivity along isobars must be

at least of order ϵ/λ in order to satisfy equation (4.7). These derivatives

ought to be of order unity so we must have λ ≈ ϵ or λ > ϵ .

There is then a degeneracy between di�erential rotation and the merid-

ional circulation as far as the condition of thermal equilibrium is concerned.

In Chapter 3 we used the vorticity equation to break this degeneracy and

demonstrate that both e�ects are generically of the same order in con-

vection zones. We now repeat that analysis for radiative zones14. For

14 A similar and in many ways more de-
tailed analysis was done by Caleo et al.
(2015), but they neglect turbulent stresses,
which we find to be crucial to the angular
momentum balance. Caleo & Balbus (2016)
studied linear modes in the solar radiative
zone and found them to be asymptotically
stable, though many such modes grow sig-
nificantly in the short run. This is con-
sistent with the findings of Galperin et al.
(2007), who show that such modes which
are not asymptotically unstable nevertheless
generate turbulence for arbitrarily small
shears, scaling in the manner predicted
by Canuto & Hartke (1986) and Zahn
(1993). This has been verified in simula-
tions (Prat, V. et al., 2016) and is what we
assume here.

simplicity we neglect magnetic fields15 Hence equation (3.3) becomes

15 When such fields are present they may
serve an important role in suppressing cir-
culations and di�erential rotation, though
there is usually no dynamo in radiative
zones so such a field may need to be pri-
mordial in origin.

∂ω

∂t
=ω · ∇u −ω∇ ·u −u · ∇ω + eϕω · ∇(ΩR) − eϕΩωR

+
1
ρ2
∇ρ ×∇p +∇×

(
1
ρ
∇ · T

)
. (4.9)

where as before ω is the vorticity and u is the meridional velocity.

Suppose that di�erential rotation arises which satisfies equation (4.7)

with no meridional flow. So u = 0 and

ω = ez
1
R

∂(ΩR2)
∂R

− eRR
∂Ω

∂z
.
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This rotation must then also satisfy equation (3.3). In steady state this

reduces to

0 = eϕez · ∇(Ω2R) + 1
ρ2
∇ρ ×∇p +∇×

(
∇ · T
ρ

)
. (4.10)

We refer to the first term as advective because it is related to the advection

of angular momentum. The second is the thermal wind term 16 and the 16 Balbus et al. 2012

third reflects the turbulent stress.

Because equation (4.10) is a vector equation it contains three scalar

equations,

0 = ez · ∇(Ω2R) + 1
rρ2

(
∂ρ

∂r

∂p

∂θ
−
∂p

∂r

∂ρ

∂θ

)
+ eϕ · ∇ ×

(
∇ · T
ρ

)
, (4.11)

0 = eR · ∇ ×

(
∇ · T
ρ

)

and

0 = ez · ∇ ×

(
∇ · T
ρ

)
,

where r is the spherical radial coordinate. Given p and ρ satisfying equation

(4.7) it is possible to solve for Ω with the first of these equations because

ω is just a function of Ω. The remaining two equations must then be

satisfied by that solution. Because they depend on the turbulent flux there

is no reason to expect them to be satisfied by a rotation profile arrived at

independently. As a result the vorticity equation is unlikely to be satisfied

without a meridional flow.

From this we conclude that satisfying both the vorticity equation and

thermal equilibrium requires a meridional flow. Now suppose that dif-

ferential rotation permits baroclinicity of order λ. If λ � ϵ then thermal

equilibrium relies on the meridional flow. If λ � ϵ then thermal equilib-

rium could be satisfied without suhc a circulation. Because the flow appears

in the vorticity equation at first order multiplied by the rotation, and the

di�erential rotation also appears at first order multiplied by the rotation,

the flow must be at least as large as the di�erential rotation, possibly larger

if turbulent stresses dominate. In this case then the flow is at least of order

λ and hence also su�ces to satisfy thermal equilibrium. This means that,

no matter what, there is a meridional flow which is at least of order ϵ .

To be more precise note that because the system is axisymmetric the
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thermal wind term has magnitude

1
ρ2

�
eϕ · ∇p ×∇ρ

�
=

1
ρ2

|∇p ×∇ρ|

=
λ

ρ2γ
|∇p||∇ρ|,

where we have used the definition λ as the small angle between the density

and pressure gradients. Taking both derivatives to produce factors of order

h−1 we find

1
ρ2

|∇p ×∇ρ| ≈ λp

h2ρ2γ
.

Using p = ρдh and neglecting γ because it is of order unity yields

�
eϕ · (∇p ×∇ρ)

�
≈ λ

д

h
.

There are now two cases to consider. First suppose that in radiative

zones the stress term in equation (4.11) balances the thermal wind term.

Then as shown in Chapter 3

�����
eϕ · ∇ ×

(
∇ · T
ρ

) �����
≈

T
ρh2
≈
д

h
λ,

where we have approximated derivatives by factors of h−1 and where

T = |T| = max(Ti j ). Using equation (4.9) we may now calculate the

circulation implied by the vorticity equation. Because the meridional

circulation enters the meridional components of the vorticity equation in

the form of gradients multiplied by Ω, we have

u ≈
1

hρΩ
T ≈ λ

д

Ω
. (4.12)

In essence we are balancing terms like ω · ∇u and ω∇ ·u with the stress

induced by the di�erential rotation and using17 |ω| ≈ Ω. The rate at which 17 See Chapter 3 for a more detailed discus-
sion of the geometry and magnitudes of
these terms.heat is deposited per unit volume by this flow is of order

Q = ρcpTu |∇s | ≈ ρcpT u
h
, (4.13)

because, in radiative zones, the entropy gradient is on the order of h−1.

Noting that cp is of order kB and so p ≈ ρcpT for an ideal gas, we find

Q ≈ λp
д

hΩ
.
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The flux anisotropy is

∆F ≈ ϵF .

This deposits heat at a rate

∆Q = ∇ · ∆F ≈ ϵ
F

h
,

wherewe have used the fact that the characteristic scale of the flux anisotropy

is the pressure scale height. So

Q

∆Q
≈
λ

ϵ

( дp
ΩF

)
>

дp

ΩF
=
p
√
дh

F

( д

Ω2h

)1/2
�

p

F

√
дh,

when λ ≥ ϵ and Ω2 � д/h. Noting that

√
дh =

√
p

ρ
= cs
√
γ ,

where cs is the adiabatic sound speed, and that the heat flux in a radiative

zone is bounded above by18 csp, we find thatQ > ∆Q . The heat transported

18 To see this note that F = 16σ |∇T 4 |/3κρ .
If the medium is optically thick over a scale
height then κρh > 1, so F < 16σh|∇T 4 | =
4acT 4h |∇ lnT |. The onset of convection
occurs when |∇ lnT | > (2/5)|∇ lnp | =
2/5h, so F < 8acT 4/5. Noting that ra-
diation pressure is given by p = aT 4/3,
F/p < (24/5)c(prad/p). The sound speed

is cs =
√
γp/ρ = c

√
γp/ρc2, so F/pcs .

(prad/p)
√
p/ρc2. The first factor is at most

unity by definition and the second is much
less than unity (for non-relativistic gases)
or of order unity (for relativistic gases), so
the bound holds.

in this way is therefore greater than the initial flux disturbance. As a result

this flow does more to relieve the violation of thermal equilibrium than the

di�erential rotation and so, in practice, a much milder di�erential rotation

develops, with the circulation on the order of the baroclinicity.

A similar outcome can be seen in the case where the advective19 term

19 e.g. Taylor-Proudman
balances the thermal wind term. Recall that the advective term is

ez · ∇(Ω2R) ≈ Ω2|R∇ lnΩ|,

where we have assumed that the di�erential rotation is not strongly pref-

erentially along eR . In this case

|R∇ lnΩ| ≈ λ д

hΩ2 . (4.14)

Noting that λ ≥ Ω2r/д we find20 20 We showed that λ receives a contribution
from the centrifugal term of order Ω2r/д,
but there may be additional contributions
from other e�ects such as flux anisotropies.
For the purposes of this argument though
it su�ces to have a lower bound.

|R∇ lnΩ| ≥ r

h
≈ 1, (4.15)

where we have approximated r/h as unity because this is the case in the

bulk of the star. Now note 21 that the turbulent viscosity for vertical shear 21 Maeder 1997

is of order

ν ≈ αK
S2

N 2 , (4.16)

where α is a dimensionless constant of order unity, S is the shear, N 2 ≈ д/h
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is the square of the Brunt-Väisälä and

K =
k

ρcp

is the thermal di�usivity with k the thermal conductivity. In order for this

prescription to apply we require that

N 2

c ′S2

(νmicro

K

)
< 1, (4.17)

where νmicro is the microscopic viscosity and c ′ is a constant which has been

variously estimated as lying between 10−2 and 1 22. We shall later verify 22 Kulenthirarajah & Garaud 2018

that this holds in most cases of interest. Even when it does not a comparable

di�usivity may be provided by turbulence in the non-stratified direction 23. 23 Zahn 1993

In Chapter 2 we found no minimum shear threshold for this to be active,

though that analysis neglected the microscopic viscosity which Caleo &

Balbus (2016) have argued plays an important stabilising role in the linear

regime even when quite small. Following equation (36) of Menou et al.

(2004) we find that so long as the colatitude θ is such that sin2 θ is small

compared with the reciprocal of the left-hand side of equation (4.17) this

e�ect is active. Furthermore it is active if the specific angular momentum

decreases outward. Hence even when equation (4.17) is not precisely

satisfied equation (4.16) likely still applies in much of the star.

Taking α = 1 and noting that

T ≈ ρDS

we find

ρ−1T ≈
kh

ρcpд
S3.

In a system with di�erential rotation

S ≈ |R∇Ω| (4.18)

so

ρ−1T ≈
kh

ρcpд
Ω3|R∇ lnΩ|3.

Using equations (4.14) and the first equality of (4.12) wemay now calculate

the circulation implied by the vorticity equation. So we have

u ≈
1

hρΩ
T ≈ λ3

k

ρcpд

д3

h3Ω4 .



172 TURBULENCE AND TRANSPORT IN STARS AND PLANETS

Noting that F = |k∇T | and |∇T | ≈ T/h we find

u ≈ λ3
F

ρcpT

д2

h2Ω4 ,

Noting again that λ & Ω2r/д,

u & λ
F

ρcpT

д

hΩ2

( r
h

)2
.

Because the star is spinning below breakup,
√
д/h is greater than Ω, and

we have r > h, so when λ ≥ ϵ

u > λ
F

ρcpT
≥ ϵ

F

ρcpT
. (4.19)

The heat deposited by this flow is again (4.13) of order

Q = ρcpTu |∇s | ≈ ρcpT u
h
,

because, in radiative zones, the entropy gradient is on the order of h−1.

With equation (4.19) we find

Q > ϵ
F

h
≈ ∆F .

Once more the heat transported by the circulation is greater than the

initial flux disturbance, so we expect a much milder di�erential rotation

to develop, with the circulation on the order of the baroclinicity.

We now determine the conditions under which inequality (4.17) gives

rise to a vertical instability. Using equation (4.18) this may be written as

N 2

|R∇Ω|2
(νmicro

K

)
< c ′.

Near the cores of stars, which is where we shall ultimately be interested in

this expression, the viscosity is predominantly radiative24, so that 25 24 Higher up in the atmosphere the particle
viscosity dominates, but there h/r is small
and equation (4.15) indicates that the shear
is large, so we do not expect that limit to
violate equation (4.17).
25 Jeans. 1926

νmicro ≈
KcpT

4c2
,

where c ≈ 3 × 1010cm s−1 is the speed of light. Hence the condition is that

N 2

|R∇Ω|2
(
cpT

4c2

)
< c ′.

We now need a better estimate of the di�erential rotation than that pro-

vided by equation (4.15). Near the cores of these stars, where equa-

tion (4.17) is hardest to satisfy because N 2 and T are largest, we shall

later show that λ ≈ Ω2/|N |2core, with an upper bound of order unity,
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where |N |2core is the average Brunt-Väisälä frequency in the convection

zone. Hence with equation (4.14) we find

min(|N |core/Ω, 1)2N 2h

д

(
cpT

4c2

)
< c ′.

Noting that д/h ≈ N 2 we find

min
(
1,

|N |2core
Ω2

) (
cpT

4c2

)
< c ′.

Noting that cpT ≈ c2s , we obtain

min
(
1,

|N |2core
Ω2

) (
c2s
4c2

)
< c ′,

or

min
(
1,

|N |core
Ω

) (cs
c

)
< 2c ′,

In the cores of massive stars such as those we consider in Section 4.7,

cs ≈ 37cm2 s−2 and we take R ≈ 0.2R� ≈ 1010cm so

min
(
1,

|N |core
Ω

)
< 2 × 103c ′.

Using 2 × 103c ′ > 1 this reduces to

Ω >
|N |core

2 × 103c ′
.

In the stars of interest |N |core ≈ 10−8s−1, so even with the pessimistic

estimate c ′ ≈ 10−2 the cuto� frequency is around 10−9s−1, which accom-

modates the vast majority of stars. Away from the core we shall show

that the flux anisotropy drops o� so the shear falls to that given by equa-

tion (4.15). As this occurs h falls, equation (4.15) becomes a tighter bound,

NT falls and the criterion becomes looser, so we do not expect this to

represent a significant limitation, though there could be stars for which

equation (4.17) fails at some intermediate point. Such objects are poten-

tially of interest, though even when the criterion is not precisely satisfied

horizontal turbulence of comparable magnitude may still be active in a

region in the vicinity of the poles. This means that at a minimum tur-

bulence is present in many stars, even those which rotate quite slowly,

though the latitudinal extent of the circulation may be restricted in the

slowest-rotating stars.

It is useful to note that this argument may be recast in the language
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of Garaud & Bodenheimer (2010) by writing their parameter

σ ≡
|N |
Ω

√
ν

K
=

S

Ω

√
α .

We have found that S & Ω so

σ &
√
α ,

which is of order unity. Hence we are in the rather special limit where

the decay scale for the circulation is of order R and yet the flow is not

mechanically constrained, which we see from the fact that the heat flow

of the mechanically forced circulation exceeds that of the thermally forced

one.

4.4 Anisotropic Convection

We now turn to the convection zone. When viewed on large length-scales

convective turbulence acts to di�use heat. The e�ective di�usivity tensor

is of the form

Di j ≈ 〈δxiδuj 〉.

Physically this just means that material located at δx relative to the centre

of an eddy is transported along with velocity δu.

In the presence of an entropy gradient, this di�usivity gives rise to a

heat flux

Fi = −cpρTDi j
∂s

∂x j
. (4.20)

Crucially, the convective viscosity is not isotropic 26. This is because the 26 Lesa�re et al. 2013; Gough 1978; Unno
1957

Coriolis acceleration of a fluid parcel owing to its velocity u is

ac = 2u × Ω, (4.21)

where Ω is the angular velocity of rotation. Because this expression con-

tains a cross product, the Coriolis e�ect generically leads to a coupling

between di�erent components of the velocity, and hence between dif-

ferent components of the position and velocity of the eddy. In rotating

systems this means that the heat flux is not aligned parallel to the entropy

gradient 27, and it is this e�ect that drives baroclinicity. 27 Kichatinov&Rudiger 1993; Lesa�re et al.
2013

A subtlety in this argument is that while equation (4.21) produces

an acceleration, for certain modes that acceleration may be matched by

non-azimuthal perturbations in the pressure balance28. This matching 28 This may be seen from equation (2.16),
which is the dispersion relation for rotating
convection.is complete for modes with wave-vector k in the azimuthal direction
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and motion in the meridional plane 29 but decreases monotonically and 29 Cowling 1951

eventually vanishes away from k ∝ eϕ . Hence while the net e�ect of

rotation is not quite that in equation (4.21), that relation serves to give

both its scaling and symmetry-breaking properties.

θ 

r

Ω φ

vr

First Order 
(Cross with Ω) vφ

Second Order 
(Cross with Ω) 

vθ 

Coordinates

Unperturbed

Figure 4.3: The radial motion 3r of a con-
vective eddy is shown unperturbed. The
Coriolis force acting on this creates an az-
imuthal component 3θ at first order. Act-
ing on this the Coriolis force creates a lati-
tudinal component 3θ at second order. So
two applications of the Coriolis e�ect are
required to generate motion along eθ from
motion along er .

In spherical coordinates the di�usivity tensor may be written as

D = D0D′ = D0

*....
,

1 ϵθr ϵϕr

ϵrθ c1 ϵϕθ

ϵrϕ ϵθϕ c2

+////
-

, (4.22)

where D0 is a scalar function 30. When Ω = 0 this tensor is diagonal

30 Gough 2012

because of spherical symmetry. The terms on the diagonal do not vanish

when Ω = 0, so we let c1 and c2 be constants of order unity. Perturbing

away from this limit we argue that all components involving the azimuthal

direction are linear in Ω because a single application of the Coriolis ef-

fect su�ces to correlate meridional motion with azimuthal motion. By

contrast ϵrθ and ϵθr are quadratic in Ω at leading order because it takes

two applications of this e�ect to correlate one component of meridional

motion with another, as shown in Fig. 4.4. This form is in agreement with

the works of Kitchatinov (2013) as well as Chapter 2 and Lesa�re et al.

(2013), each of which have been verified with data from 3D simulations of

rotating convection.

To see how this drives baroclinicity we first calculate the corrections that

the convective anisotropy introduces in the equation of thermal equilib-

rium. For this we assume that there is no meridional flow in the convection

zone. We then introduce a meridional flow in the convection zone and

demonstrate that it does not change the overall magnitude of the baroclin-

icity.

Inserting equation (4.22) and equation (4.20) into equation (4.6) we

find

∇ · (D′ · ∇s) +∇ ln (ρTD0) · (D′ · ∇s) = 0. (4.23)

Taking the system to be axisymmetric, we may write the function D0 as

D0 = D0,0(p,T ) + Ω2D0,1(p,T ,θ ) + O(Ω3).

The dependence of D0,1 on θ and the independence of D0,0 on the same

reflects the symmetry of the problem: only contributions coupling to the

rotation may depend on latitude because in the absence of rotation latitude
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is an arbitrary coordinate. In addition, we write

∇s = er sr + eθ sθ ,

where sθ is O(Ω2), and

∇ ln(ρTD0) = er tr + eθ tθ ,

where tθ is O(Ω2). In both cases we have used axisymmetry, so that

∂/∂ϕ = 0. Inserting these into equation (4.23) gives

0 = (∇ + trer + tθeθ ) · [er (sr + ϵθr sθ ) + eθ (srϵrθ + sθc1)] . (4.24)

Expanding equation (4.24) then gives us

0 =
1
r2
∂

∂r

(
r2 (sr + ϵθr sθ )

)
+

1
r sinθ

∂

∂θ
(sinθ (srϵrθ + sθc1))

+ tr (sr + ϵθr sθ ) + tθ (srϵrθ + sθc1).

We now drop terms which we know to be of order Ω3 and higher so that

0 =
1
r2
∂

∂r

(
r2sr

)
+

1
r sinθ

∂

∂θ
(sinθ (srϵrθ + sθc1)) + tr sr .

As before terms which couple to latitude must be at least second order in

Ω. This includes derivatives in θ of terms which themselves are non-zero

for Ω = 0. This allows us to neglect the term ϵrθ ∂θ sr but does not allow

any such simplification for the remaining terms because those which are

O(Ω2) do not necessarily become of higher order when di�erentiated with

respect to latitude. Thus we have

0 =
1
r2
∂

∂r

(
r2sr

)
+
1
r

(
sr
∂ϵrθ
∂θ
+ c1
∂sθ
∂θ

)
+
cotθ
r

(srϵrθ + sθc1) + tr sr .

Reorganising terms we write

0 =
∂ϵrθ
∂θ
+
c1
sr

∂sθ
∂θ
+ cotθ

(
ϵrθ +

sθc1
sr

)
+ 2 + rtr +

∂ ln sr
∂ ln r

.

Now ϵrθ , ∂θϵrθ , sθ and ∂θ sθ vanish when Ω = 0 because these terms

can only be non-zero when spherical symmetry is broken. So

0 =
∂ϵrθ
∂θ
+
c1
sr

∂sθ
∂θ
+ cotθ

(
ϵrθ +

sθc1
sr

)
+ ∆

(
rtr + 2 +

∂ ln sr
∂ ln r

)
, (4.25)

where ∆ refers to the di�erence between the expression evaluated in the
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rotating and non-rotating cases. Hence the term in parentheses is at least

of order Ω2.

Because the fourth term in equation (4.25) does not contain an explicit

dependence on θ it maywell vanish in a barotropic setting if the other terms

all vanish as well. However if the other terms do not vanish then either

their explicit dependence on θ must cancel among them, in which case it

must be that sθ is non-zero, or else they must introduce a θ dependence

into the fourth term. In either case the system becomes baroclinic, and

by the same argument as in the Eddington–Sweet case and Section 4.3

this comes along with a circulation current of the order of the implied

baroclinicity. This is in good agreement with our analysis the previous

chapter but with additional geometric detail, which will be useful to study

how these e�ects propagate through the star.

We have argued that ϵrθ is O(Ω2). The only relevant time-scale to

non-dimensionalise this is the Brunt-Väisälä frequency |N |, so up to a

dimensionless factor of order unity we expect

ϵrθ ≈
Ω2

|N |2 (4.26)

and
∂ϵrθ
∂θ
≈

Ω2

|N |2 , (4.27)

which is in good agreementwith the results of Kichatinov&Rudiger (1993)

and Chapter 2. This may also be seen by noting that these quantities are

locally determined and are perturbed to second order, so the magnitude of

each is just its characteristic scale (unity in the case of ϵrθ , D0 in the case

of ∆D0) multiplied by the dimensionless parameter Ω2/|N |2.
The quantities tr , sθ and sr and their derivatives, by contrast, are pri-

marily determined non-locally by the perturbing terms throughout the

atmosphere. To find them we must integrate outward from the centre

of the star, where they all vanish by symmetry. We approximate these

integrals by the integral of the magnitude of the perturbation from the

centre to the point of interest. That is, each of these quantities acquires

a perturabtion of order Ω2/|N |2 from the local perturbations to the con-

vective flux (driven by ∆D0 and ϵrθ ). The relevant radial length scale

is the pressure scale height h so radial derivatives of these quantities are

characterised by

�����
d

dr
∆(rtr )

�����
≈

d

dr

�����
sθ
sr

�����
≈

�����
d

dr
∆
∂ ln sr
∂ ln r

�����
≈
1
h

(
Ω

|N |
)2

.



178 TURBULENCE AND TRANSPORT IN STARS AND PLANETS

Integrating up from the centre of the core where p = pc then gives

∆(rtr ) ≈ sθ
sr
≈ ∆
∂ ln sr
∂ ln r

≈ α , (4.28)

where

α ≡

∫ lnpc

lnp

Ω(P)2
|N |(P)2 d lnP

and P is the pressure. We use this as a proxy for the radial coordinate

because even in highly baroclinic regions the pressure gradient is predom-

inantly radial.

Now let λ be the small angle between ∇p and ∇ρ as in equation (3.15).

Noting that in a nearly-adiabatic region

|∇ ln ρ| ≈ γ−1|∇ lnp|,

where γ is the adiabatic index, we find that for small angles

λ ≡ sin−1
( |∇p ×∇ρ|
|∇p||∇ρ|

)
≈

�
∇ lnp ×∇ ln ρ

�

|∇ lnp||∇ ln ρ|
≈ γ

�
∇ lnp ×∇ ln ρ

�

|∇ lnp|2 .

Using the fact that ∇p and ∇ρ both lie in the meridional plane we find

λ ≈ γ

�
eϕ ·

�
∇ lnp ×∇ ln ρ

��

|∇ lnp|2
≈ γ

�
eϕ ·

�(h∇ lnp) × (h∇ ln ρ)��
,

where as usual h is the pressure scale height. If we approximate the pressure

gradient as radial then

λ ≈
�
eϕ ·

�
−er × (h∇ ln ρ)��

≈
h

r
|∂θ ln ρ|.

Recalling equation (1.2) we find

λ ≈ γh|sθ |.

This parametrises the baroclinicity. Because it is of order unity we neglect

the factor of γ and use equation (4.28) to find

λ ≈ h|srα |. (4.29)
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This is our leading order estimate of the baroclinicity in the convection

zone.

4.5 Centrifugal E�ects

In addition to anisotropic turbulence there is another source of baroclinic-

ity, namely the centrifugal acceleration. This is given by

aΩ ≡ Ω2ReR .

Because this acceleration does not depend on the meridional velocity of the

fluid it may be absorbed into the gravitational acceleration. This produces

a modified e�ective gravity31 31 This is the same modification which ap-
pears in equation (3.71).

дe� = д +aΩ

which, in the hydrostatic limit, satisfies

∇p = −ρдe� .

Hence the centrifugal acceleration serves to disort isobars by an amount

of order ρ∆(∇Φ) ≈ ρΩ2R. If the density did not adjust as well this would

influence λ as

∆λ ≈ h∆(∇ lnp) ≈ h

p
ρΩ2R =

Ω2R

д
.

However in reality the density gradient adjusts as well and it is instead

the entropy gradient which is perturbed by the requirement of thermal

equilibrium 32. The corresponding perturbation to the baroclinicity is 32 Eddington 1929

therefore multiplied by a factor of hsr , so

∆λ ≈
Ω2R

д
hsr ,

which is much less than hsrα because N 2 � д/R. Thus the total baroclin-

icity is well approximated by equation (4.29).

4.6 Meridional Circulation in the Convection Zone

Having considered both relevant e�ects in convection zones, we now

examine the consequences for the circulation in those regions33. We 33 This is not our focus and we have per-
formed a local treatment in Chapter 3, but
it is useful for our later study of circulation
in radiative zones to understand how the
circulation acts to damp the flux anisotropy
which generates it.

know that it is not possible for rotating radiative zones to avoid circulation

currents because they cannot satisfy the condition of thermal equilibrium

without becoming baroclinic, and once baroclinic a flow is generically

driven with magnitude set by the baroclinicity. The same is true for
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convection zones, and so there is a meridional flow. Incorporating such a

flow34 and recalling the assumption of axisymmetry, this equation becomes 34 This is done by starting the deriva-
tion with equation (4.5) rather than equa-
tion (4.6) and propagating the e�ects
through to equation (4.25).0 = −

r

D0sr
(ur sr +uθ sθ ) + ∆

(
rtr + 2 +

∂ ln sr
∂ ln r

)
+
∂ϵrθ
∂θ
+
c1
sr

∂sθ
∂θ
+ cotθ

(
ϵrθ +

sθc1
sr

)
. (4.30)

Now noting that sθ is O(Ω2) and uθ is at least O(Ω) we may drop their

product and find

r

D0
ur =

∂ϵrθ
∂θ
+
c1
sr

∂sθ
∂θ
+ cotθ

(
ϵrθ +

sθc1
sr

)
+ ∆

(
rtr + 2 +

∂ ln sr
∂ ln r

)
,

from which we see that the magnitude of the flow is set by the typical

magnitude of the remaining terms, so we expect

ur ≈
D0

r
α ′, (4.31)

where equations (4.26), (4.27) and (4.28) give

α ′ ≡
Ω2

|N |2 + α . (4.32)

This is similar to the result of Roxburgh (1991), except that the denomina-

tor of the perturbing parameter here is correctly identified as |N |2 rather
than д/r .

In steady state conservation of mass gives ∇ · (ρu) = 0, so

r

sinθ
∂(uθ sinθ )
∂θ

= −
∂(r2ur )
∂r

−ur r
2 ∂ ln ρ
∂r

,

where we have dropped ∂θ ln ρ because it is higher-order in Ω than ∂r ln ρ.

We can evaluate the derivatives approximately by noting that D0, and

hence ur , has characteristic scale h as does ρ. This is because all of these

owe their spatial dependence primarily to the variation of thermodynamic

quantities, which ultimately all vary with the same spatial scale as p. This

produces the scaling relation

uθ ≈ ur
r

h
, (4.33)

and thence

uθ ≈
D0

h
α ′. (4.34)
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From simple mixing length theory of convection

D0 ≈
1
3
h3c,

where 3c is the convective velocity 35 Inserting this into equations (4.31) 35 Gough 1978

and (4.34) we find

ur ≈
1
3
3c
h

r
α ′ (4.35)

and

uθ ≈
1
3
3cα
′. (4.36)

As argued in Chapter 3, the actual baroclinicity is reduced by virtue

of our including the meridional circulation. We have argued that what is

left over after this is accounted for is of the same order as what we began

with, but to be careful about the distinction in what follows when we

discuss baroclinicity we are talking about that which would exist in

the absence of a meridional circulation. That is, we are using it as a

proxy for the anisotropy of the flux distribution, which is the quantity

which sets the magnitude of the circulation.

The flow given by equations (4.35) and (4.36) generally acts to damp

the flux anisotropy because it is driven by this e�ect. The term that appears

in equation (4.30) associated with this flow is

Qflow ≡
r

D0sr
(ur sr +uθ sθ )

=
r

D0

(
ur +uθ

sθ
sr

)
.

Inserting equations (4.31) and (4.34) we find

Qflow ≈ α
′ + α ′

r

h

sθ
sr
,

and with equation (4.28) we arrive at

Qflow ≈ α
′ + α ′α

r

h
.

Because both α and α ′ are quadratic in the rotation we drop the second

term and find

Qflow ≈ α
′.

Because the terms in equation (4.30) are those which contribute to α
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and α ′, and because this must act to damp the baroclinicity36, we find 36 This is because the work which powers
the flow comes from the baroclinicity, or
equivalently the flux anisotropy, and so
thermodynamically the only option is for
the flow to damp it.

dα
d lnp

= Qflow −
d

d lnp



∫ lnpc

lnp

Ω2

|N |2 d ln


= α ′ −
Ω2

|N |2 .

Because the term proportional to α ′ is responsible for damping α ′, the

coe�cient may matter, so we write

dα
d lnp

= y ′α ′ −
Ω2

|N |2 ,

where y ′ is a dimensionless factor of order unity. With equation (4.32)

this becomes
dα
d lnp

= yα −
Ω2

|N |2 ,

where y is a further dimensionless factor of order unity. Applying the

boundary condition α(pc) = 0, which must be true because all latitudinal

derivatives vanish at the origin, we find

α = py
∫ pc

p

Ω(P)2
|N |(P)2

dP
P1+y .

The e�ect of the damping is then just to change howweweight the average

of the perturbation rather than to change the fundamental scalings.

As a final consideration, equations (4.26) and (4.27) do not hold for

arbitrarily large Ω. In particular, we have shown37 in Chapter 2 that the 37 as have Lesa�re et al. (2013); Kitchatinov
(2013).

convective anisotropy saturates for Ω large relative to |N |. So we use the

prescription

ϵ = ϵmaxmin
(
1,

Ω2

|N |2
)
, (4.37)

where38 ϵmax ≈ 0.2, and hence find that 38 See Chapter 2.

α ≈ py
∫ pc

p
ϵmaxmin

(
1,

Ω(P)2
|N |(P)2

)
dP

P1+y .

As a test of this model, Fig. 4.4 shows the radial and latitudinal veloc-

ities, (4.35) and (4.36), in the solar convection zone compared with the

circulation velocity inferred from helioseismic observations (Rajaguru &

Antia, 2015). The solar model envelope, computed by G. Houdek and

D. O. Gough, is the model used by Chaplin et al. (2005) in their study

of the power spectral density of solar p-modes. We fitted the parameter

y so as to minimise the root mean square error in the logarithm of the

velocity components. This produced y = 0.2, in agreement with the gen-
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eral magnitude we expect. The variation in the radial component of the

flow is well modelled by equation (4.35) except near the surface, where

the sharp density gradient means that inertial e�ects become increasingly

important relative to thermal considerations. It is therefore worth noting

that equation (4.35) is really a lower bound on the radial velocity set by

the condition of thermal equilibrium: greater velocities are, of course,

permitted. The overall magnitude and trend in the θ component of the

flow is reasonably captured by equation (4.36), but the details are not. In

particular, the dips in the observed uθ are due to cell boundaries in the

meridional flow structure, and these geometric features are not captured by

our simplified analysis. Furthermore we generally predict velocities which

are larger than what is observed in deeper regions. This could be a result

of geometric or magnetic e�ects near the tachocline or else could indicate

that we ought to have used a more precise prescription in equation (4.37).

A further test is provided by the simulations of Brun & Palacios (2009),

who find that in simulations of slowly rotating39 convecting giant stars 39 Ω < |N |
of order 5 to 10 per–cent of the kinetic energy resides in the meridional

circulation, such that the circulation velocity is of order 30 per-cent of

the convective velocity. This is in good agreement with equations (4.35)

and (4.36).

4.7 E�ects in Massive Stars

In massive stars it is typical to have a convective core and a radiative

envelope. If the convection is anisotropic then the core is baroclinic and a

meridional flow is present. Here we argue that this produces baroclinicity

in the radiative zone, which ultimately drives a circulation current there40. 40 This follows the standard Eddington–
Sweet argument once we establish the mag-
nitude of the baroclinicity.We then examine the decay of this circulation into the radiative zone and

examine how these e�ects scale in stellar models.
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Figure 4.4: The root mean square merid-
ional velocity taken over latitudinal slices
of the data is shown (red) for radial (top)
and angular (bottom) components fromRa-
jaguru & Antia (2015). In blue are the pre-
dicted velocities using Ω� ≈ 2.5 × 10−6Hz.
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4.7.1 Transmitting Baroclinicity

To analyse the transmission of baroclinicity we begin by noting that in

radiative zones

hsr = h
∂s

∂r

= h

[
∂ lnp
∂r
−γ
∂ ln ρ
∂r

]

= h

[
(1 −γ )∂ lnp

∂r
+γ
∂ lnT
∂r

]

= γ − 1 −γ
d lnT
d lnp

,

where we have taken the meanmolecular weight µ to be constant andmade

use of equation (1.2) as well as the ideal gas law p = ρkBT/µ. In radiative

zones d lnT/d lnp is generally small compared to the adiabatic gradient,

so hsr ≈ γ − 1 is of order unity. Thus according to equation (4.29)

λ ≈ α . (4.38)

At the tachocline, the boundary of the convection zone, we expect

α ≈ p
y
tachocline

∫ pc

ptachocline
ϵmaxmin

(
1,

Ω(P)2
|N |(P)2

)
dP

P1+y ,

because α accumulates perturbations to the entropy gradient41. In this 41 It is important to note that it is α , not
α ′, which matters in radiative zones. This
is because the additional factor of Ω2/|N |2
which arises through convective anisotropy
vanishes in radiative zones.

way e�ects which would be small in the radiative zone, which is di�cult

to perturb because |N | tends to be quite large there, are enhanced because

they accumulate in the convection zone, where |N | is small, and are then

transmitted to the radiative zone at the tachocline.

To more precisely examine this transmission we write the heat flux as

F = er F0(r ) +A(r )er cosθ + B(r )eθ sinθ , (4.39)

where

F0 =
L

4πr2

is the unperturbed flux of the star, L its luminosity andA and B are of order

αF0 at the tachocline. There is no cosθ term along eθ because eθ · F must

vanish for θ = 0 and θ = π , and we neglect higher-order harmonics for

simplicity. Within the radiative zone and in the absence of a meridional

flow, the thermal flux obeys equation (4.4), which may be written as

F = −k∇T , (4.40)
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where the thermal conductivity

k ≡ ρcp χ

depends solely on the temperature, pressure and opacity. Hence

∇T = −
1
k
[er F0(r ) +A(r )er cosθ + B(r )eθ sinθ ] . (4.41)

It follows that when α is small

∂θT

r∂rT
≈

B sinθ
F0

,

which is of order α . Thus the heat flux transmits baroclinicity from the con-

vection zone into the radiative zone to an extent given by equation (4.38).

Note that the mechanical transmission of currents across the tachocline

has been studied in great detail byGaraud&Bodenheimer (2010) and in the

context of that work these stars are in a limit of e�cient transmission, being

neither mechanically nor thermally constrained42. Hence it is possible that 42 Garaud & Bodenheimer (2010) define
σ = (|N |/Ω)√ν/K , where ν is the (e�ec-
tive) viscosity and K is the thermal di�usiv-
ity. Recalling the formalism of Canuto &
Hartke (1986) we see that ν/K ≈ S2/|N |2,
where S is the shear. Hence σ ≈ S/Ω.
Given order unity di�erential rotation in
the convection zone, which is what re-
sults from the balance of the α and Λ ef-
fects (Kitchatinov, 2013), S ≈ Ω so σ ≈ 1.
In this limit Garaud & Bodenheimer (2010)
find the mechanical damping scale to be of
order R, meaning that the flow is not ther-
mally constrained, and turbulence makes
the e�ective viscosity in the radiative zone
large enough that the velocity bound of
ν/R does not provide a mechanical con-
straint. This simultaneous limit only exists
when h is of order R, which is the case in
the cores of massive stars. See Appendix 4.3
for further details.

mechanical pumping plays a significant role as well.

4.7.2 Decay Profile

Within the radiative zone the flux perturbation generally decays. We now

aim to determine the scale over which this occurs. In equilibrium and in

the absence of any meridional flow or heat generation, the flux obeys the

conservation law

∇ · F = 0

and, by equation (4.40),

∇× F = −k∇×∇T −∇k ×∇T = ∇ lnk × F . (4.42)

From

∇ · F = 0

and equation (4.39) we obtain

∂A

∂r
+
2
r
(A+ B) = 0 (4.43)



ROTATIONAL MIXING IN MASSIVE STARS 187

and from equation (4.42)

∂B

∂r
+
1
r
(B −A) = ∂ lnk

∂r
B −

2
π

∫ π

0

∂ lnk
∂θ

[
F0 +

1
r
A(r ) cosθ

]
sinθdθ(4.44)

=
∂ lnk
∂r

B −
2F0
πr

∫ π

0

∂ lnk
∂θ

sinθdθ .

Because we have assumed a chemically homogeneous star we can relate k

in the limit of small α to the derivatives of k in temperature and pressure.

That is,

∂ lnk
∂θ

≈
∂ lnk
∂ lnT

∂ lnT
∂θ
+
∂ lnk
∂ lnp

∂ lnp
∂θ

, (4.45)

where the thermodynamic derivatives of k are taken with respect to the

unperturbed state and so are independent of θ . The pressure only acquires

a dependence on θ through the centrifugal force, so

∂ lnp
∂θ

≈
Ω2R

д
≈

Ω2r

д
sinθ . (4.46)

The temperature depends on θ through equation (4.41) so

∂ lnT
∂θ

= −
rB(r )
kT

sinθ . (4.47)

Inserting equations (4.45), (4.46) and (4.47) into equation (4.48) we find

∂B

∂r
+
1
r
(B −A) = ∂ lnk

∂r
B −

F0
r

(
−
rB

kT

∂ lnk
∂ lnT

+
Ω2r

д

∂ lnk
∂ lnp

)
.

From equation (4.41) we find

F0
kT
≈ |∇ lnT | ≈ −d lnp

dr

d lnT
d lnp

=
1
h

d lnT
d lnp

.

So

∂B

∂r
+
1
r
(B −A) =

(
∂ lnk
∂r
−
1
h

d lnT
d lnp

∂ lnk
∂ lnT

)
B − F0

Ω2r

д

∂ lnk
∂ lnp

.

The final term in this equation is important near the surface, where it is

necessary to reproduce the usual Eddington–Sweet circulation. However

deeper in the star it may be neglected because there B/F0 ≈ α � Ω2r/д

and logarithmic derivatives of k with respect to each of pressure and

temperature are of order unity. Hence we find

∂B

∂r
+
1
r
(B −A) =

(
∂ lnk
∂r
−
1
h

d lnT
d lnp

∂ lnk
∂ lnT

)
B,
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which may be written as

∂B

∂r
+
1
r
(B −A) ≈ −b

h
B, (4.48)

where

b ≡
d lnk
d lnp

+
d lnT
d lnp

∂ lnk
∂ lnT

.

Combining equations (4.43) and (4.48) we find

∂

∂r
*.
,

A

B

+/
-
=

*.
,

− 2
r − 2

r

+ 1
r − 1

r −
b
h

+/
-

*.
,

A

B

+/
-
.

Treating b and r as constants, the eigenvalues of this system are

λ± = −
1
r



3
2
+
br

2h
±
1
2

√
b2r2

h2
− 2b

r

h
− 7


.

In and around the cores of stars r is typically smaller than h, and b is of

order unity, so for simplicity we neglect terms involving b and find that

the slowest-decaying mode is

λ− ≈ −
3
2r
− i

√
7
2
,

so

<(λ) ≈ − 3
2r

.

Taking only this mode, because it is the one that persists for the largest

distance, we find that

d lnA
d ln r

=
d lnB
d ln r

= <(λ).

Hence

A(r )
A(rc) ≈

B(r )
B(rc) ≈

(
p

ptachocline

)β
,

where rc is the radius of the convective core and

β ≡ −h< (λ−) ≈ 3h
2r

. (4.49)

Thus the baroclinicity is of order

α ≈ α(rc)
(

p

ptachocline

)β
.
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This generally prevents solutions which do not involve O(α) meridional

flows for the same reason as outlined in section 4.2.

The standard Eddington–Sweet derivation for baroclinic radiative zones

finds that the radial circulation velocity is of order that required to balance

the flux anisotropy. That is 43, 43 Eddington 1929

ρcpTur sr ≈ ∇ · F .

Noting that hsr is of order unity we find

ur ≈
h∇ · F

ρcpT
.

The length-scale associated with the flux anisotropy is r , because that is

the latitudinal scale, and the flux scale of the anisotropy is set by αF , so

ur ≈ α
hF

rρcpT
.

Using equation (4.33) we find

u ≈ α
F

ρcpT
. (4.50)

In an e�cient convection zone the luminosity equals the convective lu-

minosity. This is well approximated by the power flux of a fluid moving

with the convection speed, so

L ≈ 4πr2ρu3c ,

where uc is the convection speed, the heat flux outside of the core may be

related to that at the boundary of the core by

F ≈ ρcu
3
c,core

(rc
r

)2
.

and so

ur
uc,core

≈

(
ρc
ρ

) (
uc,core
cs

)2 (rc
r

)2 (
p

ptachocline

)β
α(rc), (4.51)

where cs is the sound speed and

α(rc) = pytachocline
∫ pc

ptachocline
ϵmaxmin

(
1,

Ω(P)2
|N |(P)2

)
dP

P1+y .

It is worth noting that the ratio p/ptachocline scales exponentially in the

radial coordinate while the flow speed scales as a power law in this ratio.

The latter scaling persists even after accounting for the additional heat flux
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transported by the meridional flow. To see this note that the rate at which

α changes with r is proportional to the flux transported latitudinally by the

meridional flow because this flow damps α . This flux scales as α because the

flow transports material radially at a rate which scales as α and the radial

gradient is largely independent of α . This means that dα/dr ≈ −(h/r2)α ,
which produces a power-law in p, which merely modifies the exponent β .

The modification is approximately

β → β +
h

r
,

applied to equation (4.49), so that

β ≈
5h
2r

. (4.52)

As one final simplification, it is worth noting that when the exponent β

is unity equation (4.50) may be written as

ur ≈

(
F

pc

)
αcore.

This form has the disadvantage of not generalising should the exponent dif-

fer from one and of lacking the clear dimensionless ratios of equation (4.51),

but has the advantage that the origin of the flow is clear: rotationally-driven

ansiotropy forces a meridional flow to carry a portion of the flux, with the

speed set by the energy density, which is proportional to p.

4.7.3 Scaling in Stellar Models

To understand these e�ects quantitatively we define

τ ≡
h

ur

as the analogue of the local Eddington–Sweet time. Noting that h is

approximately the distance z = R − r to the surface of the star we see

that τ is an estimate of the time needed to bring material to the surface.

Fig. 4.5 shows this time as a function of mass coordinate for three di�erent

stellar models made with the Cambridge STARS code (Eggleton, 1971;

Pols et al., 1995). These calculations were made with a surface rotation of

urot = 3× 106 cm s−1 and we assume that the mixing rate cannot fall below

that of the Eddington circulation. For simplicity we took β = 3/2 though

in practice this parameter varies with r .

A few implications are clear from this figure. First, rotating massive stars

mix near the core much more rapidly than would normally be expected
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Figure 4.5: The analogue of the
Eddington–Sweet time τ = z/ur is
shown as a function of mass m for three
stellar models on the main sequence
with masses of 2M� , 10M� and 20M� .
For each model results from both the
Eddington–Sweet mechanism and the
mechanism presented in this paper are
shown. These calculations were made with
β = 3/2 and rigid rotation with a surface
velocity of urot = 3 × 106 cm s−1. The
bottom panel shows the same timescales τ
normalised to the main-sequence lifetime
τMS, with the mass normalised to the total
mass of the star M .
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without accounting for convective anisotropy, which increases the e�ective

core mass and acts very much like convective overshooting (Prather &

Demarque, 1974), a topic we explore in more detail in Section 4.9. This

enhancement arises because |N | in the core is generally much smaller than√
д/R, and so the convective boundary condition drives baroclinicity much

more than the simple Eddington–Sweet mechanism. Secondly, this e�ect

damps strongly as we approach the surface and is eventually overtaken

by the Eddington circulation, so there would not necessarily be strong

observable chemical signatures of the enhanced mixing except by virtue

of making material more readily available to other mixing processes.

To understand how e�ectively this mechanism transports material

through the star we now examine the travel time from the tachocline

to a point at radius r , given by

τ ′ ≡

∫ r

rc

dr

ur
.

This is shown in Figure 4.6. In each of the stellar models in Fig. 4.5 τ ′ is

less than the lifetime of the star almost everywhere and so, at least at this

rotation rate, a significant amount of material ought to reach the core. By

contrast, the time

τ ′′ ≡ −

∫ r

rsurface

dr

ur
.

to mix to the surface exceeds the main-sequence lifetime in most of the

star. Hence at least at this rotation rate the amount of material mixed from

the core to the surface from this region ought to be minimal. For more

rapidly rotating stars this e�ect is stronger and considerably more material

may reach the surface from the core.

A similar story may be seen in Fig. 4.7, which shows the radial velocity

of the circulation as a function of position in the star. The results are

for the same stellar models as in Fig. 4.5 and, once more, the Eddington

curves only contain the Eddington–Sweet circulation while the Anisotropy

curves contain both e�ects. Because the anisotropy-induced circulation

declines towards the surface it is clear from this where the Eddington–

Sweet mechanism becomes dominant. In the top panel, which was made

with a surface velocity of urot = 30 km s−1 , this point is typically around

a mass fraction of 0.9. By contrast in the bottom panel, which was made

with a surface velocity of urot = 300 km s−1 , the transition occurs between

0.5 and 0.7. This is because the anisotropy-driven circulation saturates

at much lower rotation rates and so does not scale with rotation in this
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Figure 4.6: The time τ ′ required for mate-
rial to flow to the core (top) and the time
τ ′′ required for material to flow to the sur-
face (bottom) are shown as functions of
mass fractionm/M for three stellar mod-
els on the main sequence with masses of
2M� , 10M� and 20M� . Both times are
normalised to the main-sequence lifetime
τMS. For each model the velocity ur is
assumed to be the sum of that owing to
the Eddington–Sweet mechanism and that
owing to the mechanism presented in this
paper. These calculations were made with
β = 3/2 and rigid rotation with a surface
velocity of urot = 3 × 106 cm s−1, corre-
sponding respectively to 4× 10−3, 2× 10−3
and 10−3 of the surface breakup rate for the
three stars.
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Figure 4.7: The radial velocity ur is
shown as a function of mass fractionm/M
for three stellar models on the main se-
quence with masses of 2M� , 10M� and
20M� . For each model results from both
the Eddington–Sweet mechanism and the
mechanism presented in this paper are
shown. These calculations were made with
β = 3/2 and for simplicity assume rigid
rotation. The top panel has surface veloc-
ity of urot = 3 × 106 cm s−1, correspond-
ing respectively to 4 × 10−3, 2 × 10−3 and
10−3 of the surface breakup velocity for
the three stars. The bottom panel has
urot = 3 × 107 cm s−1, corresponding re-
spectively to 0.4, 0.2 and 0.1 of the breakup
velocity.
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regime while the Eddington–Sweet mechanism scales quadratically with

rotation rate.

It is worth noting that a similar e�ect is possible in stars of lower mass,

where the anisotropy in the outer convection zone induces baroclinicity in

the radiative core. This e�ect is more strongly damped because the char-

acteristic damping scale is h, which is much shorter at an outer radiative–

convective boundary than at a core convective–radiative boundary. Equiv-

alently, the damping goes as ptachocline/p in this case, and ptachocline may be

quite small relative to the core pressure. In addition the velocity damps

towards the core because the temperature increases, making it easier to dis-

sipate the flux accumulation. Finally, the anisotropy for a given rotation is

smaller because the relevant |N | is greater. Still, in the Sun h ≈ R�/10 near

the tachocline, so this likely causes some mixing between the convection

zone and the material a few tenths of a solar radius below it.

4.8 Chemical Composition Gradients

In the convection zones of massive stars chemical composition gradients

are generally wiped out by turbulent mixing. So there are significant

composition gradients only in the radiative zones of these bodies.

Because the circulation in radiative zones is driven by the same criterion

of thermal equilibrium as the Eddington–Sweet circulation such gradients

act on it in the same manner as they do that mechanism. The only place

where there might be a di�erence in how composition gradients impact

the mechanism we have introduced is in the transmission of baroclinicity

from the convection zone to the radiative zone. However this transmission

is achieved by the core emitting an aspherical heat flux and this is not

at all changed by the chemistry in the vicinity of the core. Hence the

e�ect of composition ought to be the same in both mechanisms. This

has been examined in detail by Meynet & Maeder (2000), who provide

a prescription for correcting the circulation velocity and find that such

corrections are typically of order unity. This is therefore what we expect.

4.9 Convective Overshooting

The fact that these circulations drive extra mixing in radiative zones close

to convective cores suggests that this may be the source of extra mixing

which is commonly, though probably erroneously, called convective over-

shooting 44. Such extra mixing naturally prolongs the main-sequence 44 Prather & Demarque 1974

lifetime as required to match a number of evolved binary systems 45 and 45 Schroder et al. 1997; Farmer et al. 2015;
Eggleton & Yakut 2017
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so is of significant interest for the purposes of stellar modelling.

Convective overshooting is often incorporated in stellar models by

modelling a region beyond the convection zone as isentropic and well-

mixed46. This region has width 46 This is known as a penetrative overshoot
model.

lov = αovh, (4.53)

where αov is a dimensionless parameter47 48. A long-standing problem 47 Confusingly, this is also called fov by
some authors.
48 Schroder et al. 1997with this prescription is that the overshoot distance αovh required to match

observations is often much larger than what calculations of the sti�ness of

the radiative-convective boundary suggest 49. What appears more likely is 49 Saslaw & Schwarzschild 1965

that the physical overshooting is small as predicted by sti�ness calculations

but that there is additional mixing caused by the baroclinic mechanism

developed in the previous section.

The most immediate comparison with observations that can be made

to test this hypothesis is to calculate αov from our model. To do so we

calculate lov such that in the lifetime of the star the material within this

distance of the tachocline is well-mixed with that at the tachocline. This

is just the statement that

lov
ur
≈ τMS,

or

lov ≈ urτMS,

where τMS is the main-sequence lifetime of the star. This is not quite

right, however, because vertical chemical mixing is less e�cient than the

circulation velocity alone suggests. Using the correction of Maeder &

Zahn (1998)50 we find 50 The correction is that the vertical dif-
fusivity, rather than being hur , is Dv =
(1/30)(rur )2/(Dh), where Dh is the hor-
izontal di�usivity. Taking Dh ≈ uθ r =
r (r/h)ur yields Dv = (1/30)hur and
hence the overall correction is a factor of
1/30.

lov ≈
1
30

uτMS.

Inserting equation (4.51) we find

lov ≈
uc,core
30

τMS

(
ρc
ρ

) (
uc,core
cs

)2 (rc
r

)2 (
p

ptachocline

)β
αcore.

In massive stars with even mild rotation, Ω > |N | everywhere in the core
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so

αcore = ptachocline

∫ pc

ptachocline
min

(
ϵmax,

Ω(P)2
|N |(P)2

)
dP

P2

= ϵmaxptachocline

∫ pc

ptachocline

dP

P2

≈ ϵmax,

because ptachocline � pc. Hence

lov ≈
ϵmax

30
uc,coreτMS

(
ρc
ρ

) (
uc,core
cs

)2 (rc
r

)2 (
p

ptachocline

)β
≈
ϵmax

30
uc,coreτMS

(
uc,core
cs,core

)2 (rc
r

)2 (
p

ptachocline

)β−1
,

where we have used the fact that p ∝ ρc2s . Noting that near the tachocline

r ≈ rc

and

p ≈ ptachoclinee
−∆r/h ,

where ∆r is the distance to the tachocline, we find that

lov ≈
ϵmax

30
uc,coreτMS

(
uc,core
cs,core

)2
e−lov(β−1)/h .

Inserting equation (4.53) we find

αov ≈
ϵmax

30
uc,core
h

τMS

(
uc,core
cs,core

)2
e−αov(β−1)

and making use of equation (4.52)

αov ≈
ϵmax

30
uc,core
h

τMS

(
uc,core
cs,core

)2
e−αov(5h/2r−1). (4.54)

This may be solved in terms of the LambertW function or else numerically.

Fig. 4.8 shows αov as a function of stellar mass for a fine grid of stellar

models made with the Cambridge STARS code 51. ϵmax was taken to 51 Eggleton 1971; Pols et al. 1995

be 0.2 as suggested by various turbulence closure schemes 52,53. The 52 Kitchatinov 2013
53 See Chapter 2.

stellar lifetime was computed with the main–sequence fit of Eggleton et al.

(1989). The variation of αov with mass suggests that it rises rapidly with

mass in the window between 1 and 2M� and then asymptotically shortly

thereafter αov ≈ 0.25. This behaviour is in very good agreement with the

findings of Ribas et al. (2000), 54 and Stancli�e et al. (2015), while yielding 54 Moravveji et al. 2016
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a slight overestimate relative to those of Claret & Torres (2017), who find

an asymptote of αov ≈ 0.2.
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Figure 4.8: The convective overshoot pa-
rameter αov is shown as a function of stellar
mass, computed with equation (4.54) and
ϵmax ≈ 0.2 as various turbulence closure
schemes suggest. See e.g. Chapter 2.

An alternate way to parametrise convective overshooting is as an addi-

tional di�usivity in the radiative zone of the form

Dovershoot = Dconvectivee
−2∆r/(fovh) (4.55)

55, where fov is the exponential overshoot parameter, ∆r is the distance to 55 Herwig et al. 1997; Paxton et al. 2011

the radiative-convective boundary and

Dconvective ≡ uc,coreh. (4.56)

There are two ways to compare this prescription with our calculations.

First, we may note from a practical perspective that the fov and αov pre-

scriptions agree with one another, and so the fact that our calculated αov
are consistent with those inferred from observations implies consistency

with the fov prescription. Secondly, we can calculate an e�ective fov from

our model. Because we predict di�erent spatial behaviour from that of

equation (4.55) there is no unique way to do this and di�erent prescriptions

yield di�erent results. Indeed to self-consistently map from mixing via

circulation currents to an exponential convective overshoot model requires

a detailed comparison of stellar models with each prescription which we
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leave for future work. Nevertheless one straightforward way to perform

this mapping is to insist that one scale-height from the convective-radiative

boundary, the e�ective di�usivity owing to the meridional circulation

Dmerid ≈ uh (4.57)

equals the overshoot di�usivity. Following the same procedure as before

to calculate u and incorporating the correction to chemical mixing we

find

Dmerid ≈
ϵmax

30
uc,coreh

(
uc,core
cs,core

)2 (rc
r

)2 (
p

ptachocline

)β−1
.

With equation (4.56) this becomes

Dmerid
Dconvective

≈
ϵmax

30

(
uc,core
cs,core

)2 (rc
r

)2 (
p

ptachocline

)β−1
.

Setting this equal to one and letting Dmerid = Dovershoot we obtain

e−2∆r/(fovh) ≈ ϵmax

30

(
uc,core
cs,core

)2 (rc
r

)2 (
p

ptachocline

)β−1
.

Noting that near the tachocline r ≈ rc and

p ≈ ptachoclinee
−∆r/h ,

we find

e−2∆r/(fovh) ≈ ϵmax

30
e−(β−1)∆r/h

(
uc,core
cs,core

)2
.

Hence
[
2
fov
− (β − 1)

]
∆r

h
= ln

30
ϵmax

− 2 ln
uc,core
cs,core

.

Letting ∆r = h we find

2
fov
− (β − 1) = ln

30
ϵmax

− 2 ln
uc,core
cs,core

.

Once more inserting equation (4.52) and taking r ≈ rc we find

2
fov
−

(
5h
2rc
− 1

)
= ln

30
ϵmax

− 2 ln
uc,core
cs,core

. (4.58)

Fig. 4.9 shows fov as a function of stellar mass with the same stellar models

and parameters as were used for Fig. 4.8. The results qualitatively capture

the inferred dependence on stellar mass, but we overestimate fov by a factor
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of approximately 56 2. This is not surprising given the ad-hoc nature of our 56 Stancli�e et al. 2015; Moravveji et al.
2016

matching between equations (4.55) and (4.57) but it is encouraging that

the overall magnitude is approximately correct and that the dependence

on mass reproduces what is observed.
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Figure 4.9: The convective overshoot pa-
rameter fov is shown as a function of stellar
mass, computed with equation (4.58). The
input stellar models were the same as those
in Figure 4.8.

As a check of these calculations, Fig. 4.10 shows the spatial dependence

of both the circulation di�usivity and the convective overshoot di�usiv-

ity for the three stellar models considered for Fig. 4.5. The latter was

calculated with the exponential parametrisation and fov = 0.09, which is

representative from Fig. 4.9. Note that, in each case, the crossover occurs

roughly one scale-height from the edge of the convective core, in keeping

with our matching to the exponential parametrisation. This both confirms

the results of equation (4.58) and Fig. 4.9 and demonstrates the nature of

the matching procedure we have used to infer fov.

4.10 Implementation in Stellar Models

While we have not yet implemented these enhanced circulation currents in

stellar models, there are a variety of ways in which this could be done. As

a rough approximation one could set the convective overshoot parameters

according to equations (4.54) and (4.58). This is only an approximation

because the circulation currents exhibit a di�erent spatial dependence from

that of convective overshooting, but it is straightforward to do.
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Figure 4.10: The e�ective circulation
chemical di�usivity D = hur /30 and con-
vective overshoot di�usivity are shown as
functions of mass fractionm/M for three
stellar models on the main sequence with
masses of 2M� , 10M� and 20M� . The cir-
culation di�usivity was calculated with β =
3/2 and only includes that owing to con-
vective anisotropy and not the Eddington–
Sweet mechanism. The overshoot di�usiv-
ity was modelled with an exponential with
fov = 0.09. These calculations were assum-
ing rigid rotation and a surface velocity of
urot = 30 km s−1.
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A more complete accounting of this mechanism would require tracking

the parameter α ′ in convection zones and α in radiative zones. This may

be done either by directly computing these parameters according to the

prescriptions in section 4.4 or by expanding the basic equations of stellar

structure to incorporate the first several spherical harmonics. Of particular

importance are the harmonics in the heat flux F as well as those in density.

In addition a turbulence closure model57 is needed to calculate D in the 57 such as that presented in Chapter 2

convection zone, because this mechanism ultimately relies on convective

anisotropy.

4.11 Interpretation

There are two further matters which are worth emphasizing. First, none

of what we argue here is in contradiction of the Eddington–Sweet circula-

tion calculations: we are simply extending them to account for convective

anisotropy, incorporating its e�ects on stellar structure. Secondly, the ori-

gin of the velocity field we posit lies in turbulence and so the objection that

an inviscid fluid cannot support such circulation currents is not applicable.

This last point, particularly in the context of work of Busse (1981), has

become something of an interpretational question because the Eddington–

Sweet time is also the time-scale over which baroclinic transients decay 58. 58 Osaki 1982

This leads to the suggestion that the resulting circulation is actually just a

transient phenomenon.

There are two ways in which this transient argument fails in the context

of anisotropic convection. The first is that the turbulent transport of heat is

not guaranteed to restore the star to an equilibrium and so the circulation

time may be better understood as a transient turnover time. As we have

shown in Chapter 2, turbulent transport coe�cients depend non-linearly

on several variables and gradients. There appears to be no proof that the

net e�ect is to equilibrate the system. So there is no reason to suspect that

the anisotropy which drives heat transport away from equilibrium decays

at any point. It would be highly surprising if a phenomenon with so many

degrees of freedom and based on inherent instabilities in fluid transport

processes proved itself linearly stable. Also, despite the success of mixing

length theories, turbulence supports long-range correlations. Thus the

convection zone can have large-scale turbulent structures which manifest

as a circulation current. So convection may pump baroclinic instabilities

and cause mixing indefinitely. This pumping e�ect can pervade radiative

zones just as well as convective zones, even though its origin lies in the

latter.
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Furthermore there are no angular momentum barriers to the circulation

we are proposing and this is a key di�erence from the original Eddington–

Sweet phenomenon. In convection zones, when Ω < |N |, the circulation
velocity is less than the convective speed and hence is slower than the

maximum which would be permitted by turbulent angular momentum

transport. In radiative zones we have argued that shear turbulence su�ces

to satisfy the momentum balance required by the circulation. Thus, our

results are consistent with angular momentum conservation and rely on

motions of orders which are already allowed in convection cells. When

Ω > |N | the situation becomes more complicated but the same basic e�ect

is likely to occur. Furthermore, even if there were no turbulence allowing

this process, it could occur and give rise to an angular momentum flux.

Similarly, even though radiative zones are stably stratified, a flow along the

pressure gradient may occur if there is a driving heat accumulation because

this can establish a new equilibrium position for fluid parcels and draw on

the stratification to propel them upward under the e�ect of buoyancy.

However there may be magnetic barriers to mixing. There is strong

di�erential rotation near the solar tachocline so it seems likely that there are

also strong toroidal magnetic fields present in this region. These fields may

work to inhibit transverse motion. At the same time though they serve to

increase the turbulent anisotropy, which may partially act to counter this

inhibiting e�ect. The net e�ect of magnetic fields in determining the solar

meridional flow cannot be too significant because the predicted meridional

velocities match observations even in the tachocline. This suggests that

our non-magnetic scaling analysis may su�ce, though we cannot say for

certain that magnetic fields are generally irrelevant.

Thus we arrive at the conclusion that such circulations are physical and

do not decay, even over long time-scales. This strong conclusion relies on

the aforementioned properties of the convection zone and turbulence and

does not straightforwardly extend to all drivers of circulation in radiative

zones.

4.12 Dicsussion and Outlook

We have demonstrated that the meridional flow rate in the radiative zones

of massive rotating stars in many cases is set by anisotropy in the central

convection zone. This enhances mixing in massive stars as well as core-

envelope angular momentum coupling in all stars with a radiative zone

overlying a convection zone. These e�ects may aid in the formation of

massive binary black hole pairs 59 through enhancedmixing at long periods. 59 Marchant, Pablo et al. 2016
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More generally, such mixing would lead to stronger core-envelope mixing

thus leading to massive stars growing larger burnt-out cores and living

longer owing to mixing of fuel into the core. This mechanism mimics

convective overshooting, and we have argued that it su�ces to explain the

anomalous overshoot distances which have been inferred from observations.

In addition, such baroclinicity-driven mixing is likely to occur in stars

with outer convection zones and inner radiative zones, though with more

limited e�ect. This represents a fundamentally new phenomenon in stellar

mixing and we expect it to have wide-reaching consequences for stellar

evolution.



5 Tidal heating of Hot Jupiters

There is grandeur in this view of life...

from so simple a beginning endless forms

most beautiful and most wonderful have

been, and are being, evolved.

Charles Darwin

Abstract

We study the interaction between stellar irradiation and tidal heating in

gaseous planets with short orbital periods. We show that many tidal models

provide thermal feedback, producing interior radiative zones and leading to

enhanced g-mode dissipation with a wide spectrum of resonances. These

resonances are tuned by the thermal feedback, and so represent a novel

form of thermomechanical feedback, coupling vibrational modes to the

very slow thermal evolution of the planet. Stellar irradiation traps the

heat produced by these modes at depth with high e�ciency, leading to

entropy increase in the central convective region, as well as expansion

of the planet’s radius su�cient to match observed swelling. We find that

thermally driven winds play an essential role in this process by making the

thermal structure of the atmosphere spherically symmetric within a few

scale heights of the photosphere. We characterise the relationship between

the swelling factor, the orbital period and the host star and determine the

timescale for swelling. We show that these g-modes su�ce to produce

bloating on the order of the radius of the planet over Gyr timescales when

combined with significant insolation and we provide analytic relations for

the relative magnitudes of tidal heating and insolation.
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5.1 Introduction

In recent data from Kepler and ground-based followups there is evidence

for a large population of hot Jupiters which are substantially inflated relative

to their degenerate radii 1. The radii and periods of known members of 1 Hellier et al. 2012; Weiss et al. 2013; Hart-
man et al. 2012

this population as well as of the broader Jupiter-sized population are shown

in Fig. 5.1 2. There is an apparent split in the observed population around 2 Rein 2012

periods of 10 d, such that planets with longer periods are generally not

inflated while those with shorter periods are often substantially inflated.

Importantly, planets at or above 2RJ must be inflated relative to their

degenerate radii, otherwise their implied masses would make them stars 3,4. 3 Stevenson 1991
4 Jupiter has approximately the maximum
radius for an unheated gas giant.In order to achieve this level of expansion, the central convection zone

must be heated considerably relative to what would be expected as a result

of the residual heat of formation 5, and there is evidence of planets re- 5 Lopez & Fortney 2016

inflating after cooling down 6. Complicating this is the thermodynamic 6 Hartman et al. 2016

requirement that heat flows only from hot to cold, not in the reverse

fashion. This, combined with the expectation that temperature increases

towards the core of the planet, means that any change in temperature at

depth must be due to heat generated at or deeper than the point of interest.

100 101 102

P / d

0.5

1.0

1.5

2.0

R
/R

J

Figure 5.1: Known population of short-
period planets with radii near that of
Jupiter.

A variety of mechanisms have been suggested to generate deep heating,
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with ohmic processes (Batygin, Stevenson & Bodenheimer, 2011; Spiegel

& Burrows, 2013) and tidal dissipation 7 among the more popular models. 7 Socrates 2013; Miller et al. 2009

Because heat cannot flow from the surface of the planet into its core,

the stellar flux is often neglected. However, somewhat surprisingly, the

observed radii correlate strongly with the incident stellar flux, so that this

flux may play a role in the inflation process 8. Confounding this analysis 8 Lopez & Fortney 2016

is the fact that stellar flux is not independent of orbital period. So a theory

of hot Jupiter inflation must handle the distinct e�ects of orbital period

and incident flux, particularly when dealing with tidal heating.

We investigate the e�ects of stellar flux on the structure of an internally

heated hot Jupiter, making few assumptions about the nature or profile of

the heating and considering the e�ects of wind redistribution. We show

that the stellar flux acts to modulate the rate at which heat escapes from

the planet. We then investigate the feedback that this heating produces on

the thermal structure of the planet and show that a wide variety of realistic

heating profiles gives rise to interior radiative zones. These zones migrate

within the planet on thermal timescales, giving a broad and dynamically

tuned spectrum of g-mode resonances which dissipate heat tidally in the

planet. We then show that these modes su�ce to produce the observed

bloating. Finally we predict the relation between stellar flux, orbital period

and planetary radius.

The new thermomechanical feedback mechanism we propose, shown

schematically in Fig. 5.2, underscores the importance of considering plan-

ets as dynamical objects with complex behaviours coupling wildly di�erent

timescales. Vibrational e�ects with periods ranging from seconds to days

can have a tremendous impact on thermal evolution over millions of years,

and that thermal evolution in turn feeds back into the vibrational modes,

creating a dynamically tuned spectrum which can ultimately determine

the large-scale structure of the planet.

5.2 Isotropic Planetary Structure

We discuss the structure of a planet isotropically illuminated by flux Fe

from its host star. Fig. 5.3 shows the orbital configuration of the planet-star

system and Fig. 5.4 shows the thermodynamic structure of the planet with

the relevant variables defined schematically. For the deep interior

of the planet we adopt the analytic brown dwarf structure of Stevenson
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Figure 5.2: Schematic of the proposed
thermomechanical feedback mechanism.
The upper convective layer (blue), radiative
layer (beige), and inner convective layer
(yellow) are shown as concentric shells.
The boundaries of the radiative layer are
moving inward at di�erent rates, allowing
the zone to resize. Profiles of g-modes
(dark blue) are shown along the equator
and schematically depicted at other lati-
tudes.

aorbit

Star Planet

R

�orbit

Figure 5.3: Orbital configuration of the
planet and its host star.
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(1991):

ψ ≡
kBT

EF
= 8 × 10−6µ2/3

e
*
,

ρ

g cm−3
+
-

−2/3 (T
K

)
, (5.1)

R0 = 2.8 × 109 cm
(
M

M�

)−1/3
µ−5/3
e ,

r = R0

(
1 +ψ +

ψ 2

1 +ψ

)
, (5.2)

p = 1013 erg cm−3µ−5/3
e

*
,

ρ

g cm−3
+
-

5/3 (
r

R0

)
, (5.3)

and

∇a ≡
∂ lnT
∂ lnp

�����s
=
2
5
,

where ψ is the electron degeneracy parameter, R0 is the degenerate radius,

r is the radial coordinate, EF is the Fermi energy, M is the mass of the

planet and ∇a is the adiabatic temperature gradient9. These relations

9 This prescription is most suitable for ob-
jects above ten times the mass of Jupiter.
Nearer to the mass of Jupiter it somewhat
over-predicts radii by as much as a factor of
three. There are known corrections which
account for this, as discussed by Stevenson
(1991), but these unecessarily complicate
our analysis so we neglect them. In our
later expressions the net result of these cor-
rections is to change R, defined later on,
for lower-mass objects by a factor of sev-
eral, but none of our conclusions are altered
by this.

e�ectively parametrise a γ = 5/3 adiabatic atmosphere, accounting for

electron degeneracy at high pressures. We assume solar composition in

this paper, so that the mean molecular weight of electrons µe ≈ 1.15. In

addition, we take R to be the radius of the planet. For convenience, we
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define the parameters

R ≡ R/R0, (5.4)

and

M ≡ M/MJ,

where MJ = 1.838 × 1030g is the mass of Jupiter. We expect the gas line

opacity to dominate in hot atmospheres, so we use this as fiducial and

define 10 10 Stevenson 1991

κ0 ≡ 10−2 cm2 g−1.

We connect the top of the convection zone to the photosphere with a

radiative zone at transition pressure pt. The photospheric temperature is

given by

Tph =
( F
σ

)1/4
,

where F is the total flux leaving the planet’s atmosphere and σ is the Stefan-

Boltzmann constant. This flux may be divided into two components, as

F = Fi + Fe,

where Fi is the heat arriving from the planet’s interior and Fe is the heat ar-

riving from the host star. When Fe is large relative to the flux which would

escape through the planet’s natural cooling the photospheric temperature

is determined entirely by Fe, such that

Tph =
( Fe
σ

)1/4
. (5.5)

The escaping flux Fi from the planet’s core is just the flux which escapes

from the convection zone. This may be generated by gravitational con-

traction, radioactive decay or by a decrease in the interior entropy; here

we generally assume the last of these to be the dominant source of interior

flux.

The radiative gradient is given by

∇r =
3κpL

64πGMσT 4 ,

where L is the luminosity driving the gradient. At the convective-radiative

boundary we have

∇a = ∇r =
3κptLi

64πGMσT 4
t
, (5.6)



TIDAL HEATING OF HOT JUPITERS 211

where

Li = 4πR2Fi.

If we take κ to be a power law in both p and T of the form

κ = κ0T
apb

then

∇a =
3κ0p1+bt Li

64πGMσT 4−a
t

.

Above the transition we have

∇r = ∇a

(
p

pt

)1+b (
T

Tt

)a−4
=
d lnT
d lnp

.

Integrating from the photosphere to the transition yields

1 −
(Tph
Tt

)4−a
=
4 − a
1 +b

∇a *
,
1 −

(pph
pt

)1+b
+
-
.

The photosphere pressure is generally much lower than the transition

pressure so
Tph

Tt
=

(
1 −

4 − a
1 +b

∇a

) 1
4−a

,

which has a solution if and only if

1 −
4 − a
1 +b

∇a ≥ 0. (5.7)

If b > −1 and a > 4 or b < −1 and a < 4 or b > 3−2a
5 and a < 4 this

is satisfied. There are other conditions under which it is satisfied, but

these are the most relevant common cases. The exponents are generally

of order unity and the result is raised to a small power so Tph ≈ Tt. This

agrees with other analyses 11, which have found that in Jupiter-like planets, 11 Ginzburg & Sari 2015

Tph < Tt < 1.5Tph. The precise temperature ratio depends on the nature

of the opacity function, so we simply take Tt = 21/4Tph (the Eddington

closed grey body) as representative. If this holds and the flux from the star

is dominant then

Fi =
16σд∇aT 4

t
3κpt

=

(
32д∇a
3κpt

)
Fe. (5.8)

Eliminating µe between equations 5.1 and 5.3, we may write pt in terms

of Tt at r ≈ R and R0, such that

pt = 1013 erg cm−3
(
R

R0

) (Tt
K

)5/2 (
ψ

8 × 10−6

)−5/2
. (5.9)
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From equation (5.2) and the definition of R0 (equation (5.4)) we find

ψ =
1
4

*.
,

R

R0
− 2 +

√(
R

R0

)2
+ 4

(
R

R0

)
− 4+/

-
=
1
4

(
R − 2 +

√
R2 + 4R − 4

)
,

where we have taken the positive root because ψ > 0 and R > R0. Note

that this is always of order unity, so to good approximation the majority of

the variation in pt comes from the R and Tt dependence in equation (5.9).

If the convective-radiative transition occurs at a shallow point in the

atmosphere the corresponding column density is just

Σt ≈
pt
д
= 4 × 109 g cm−2R3M−5/3

(Tt
K

)5/2 (
ψ

8 × 10−4

)−5/2
,

again withM = M/MJ. Eliminating Tt in favour of Fe and using T� =

5777K we find

Σt ≈ 2 × 106 g cm−2R3M−5/3
(
Fe
F�

)5/8
ψ−5/2.

Inserting this result into equation (5.8) we obtain

Fi
Fe
=
32д∇a
3κpt

= 2 × 10−4M5/3
(
Fe
F�

)−5/8 (
κ

κ0

)−1 ψ 5/2

R3 .

As one final manipulation, we wish to put our equations in terms of the

stellar luminosity and orbital radius. The stellar luminosity is related to

the external flux Fe by

4πR2Fe =
πR2L?

4πa2orbit
, (5.10)

where L is the stellar luminosity, aorbit is the orbital radius of the planet.

The factor of πR2 on the right-hand side is just the cross-section of the

planet as seen from the star, while the factor of 4πR2 on the left-hand side

reflects the definition of Fe as an average over the surface of the planet. So

Fe =
L

16πa2orbit
.

Comparing with the Sun we find

Fe
F�
=
1
4

(
L?
L�

) (
aorbit
R�

)−2
. (5.11)
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Thus

Fi
Fe
= 5 × 10−4M5/3

(
L?
L�

)−5/8 (
aorbit
R�

)5/4 (
κ

κ0

)−1 ψ 5/2

R3 . (5.12)

Importantly, the exponent on the luminosity is greater than −1. This

means that while the ratio of escaping to incident flux decreases with

increasing stellar flux, the total escaping flux increases. This conclusion

is dependent primarily on how strongly the ratio Tt/Tph varies with Fe,

which in turn depends on the form of the opacity. In particular, it does not

generally hold at extremely high temperatures where the gas line opacity

ceases to dominate and Kramers-like rules take over. For brown dwarfs

and hot Jupiters, however, this variation is small and should not pose a

problem. It is also useful to compute the transition column density

Σt ≈
pt
д
= 8 × 105 g cm−2R3M−5/3

(
L?
L�

)5/8 (
aorbit
R�

)−5/4
ψ−5/2. (5.13)

This is small enough that the shallow approximation is not bad.

5.3 Angular Temperature Distribution

The planets under consideration are generally highly insolated. This can

lead to significant temperature di�erences between the day and night sides,

particularly if the planet is tidally locked. In this section we show that

winds su�ce to make the thermal structure of the atmosphere spherically

symmetric at depth even when there is a large temperature di�erence at

the photosphere12. This allows us to treat the structure of the planet as 12 This result is are derived from simplified
arguments by Jermyn (2015).

spherically symmetric where tidal e�ects are most prominent.

Consider a wind driven from one side of the planet to the other along

isobars with characteristic velocity13 3. Suppose further that the character 13 When this wind is azimuthal it is a man-
ifestation of di�erential rotation.

of this wind changes in the vertical direction over distances of order the

pressure scale height h and that it changes in the horizontal direction over

distances of order the planet’s radius. The specific force due to shear in the

vertical direction is

F v = νv
∂3

∂r
,

where νv is the viscosity for a circumferential flow shearing in the vertical

direction. The corresponding power dissipated is

Pv =
∂3

∂r
· F v = νv

(
∂3

∂r

)2
.
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Likewise, the force due to shear in the horizontal direction is

Fh = νh
∂3

∂ξ
,

where νh is the viscosity for a circumferential flow shearing in the other

circumferential direction and ξ is a coordinate along the flow. The corre-

sponding power dissipated is

Ph =
∂3

∂ξ
· Fh = νv

(
∂3

∂ξ

)2
.

The total power dissipated is then

P = Pv + Ph ≈ 3
2

[ νv
h2
+
νh
r2

]
,

where we have approximated the velocity derivatives with the velocity

magnitude and the relevant scale heights, the pressure scale height h in

the vertical direction and the radius r in the horizontal. We have also

simplified the viscosity from a rank-4 tensor to two scalars, so this relation

ought only to be interpreted as an order of magnitude of the power.

To determine 3, we now match this power to the work which the

wind may extract as a heat engine. We are interested in cases where the

temperature di�erence between the two sides is large so the e�ciency of

the heat engine is of order unity even if di�usive losses make it irreversible.

We may neglect di�usive losses because we have taken the microscopic

thermal di�usivity to be small on the relevant scales. So we may write the

specific rate of work as

W = cp3 · ∇T ≈ cp3
∆T

πr
,

where equation (1.19) gives

cp =
5
2

(
kB
µmp

)
for a monatomic ideal gas. This is simply the specific heat which is trans-

ported from one side of the planet to the other. In our case

∆T ≡ Tday −Tnight

and

T ≡
1
2

(
Tday +Tnight

)
,
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so T refers to the average temperature while ∆T refers to the temperature

di�erence. By definition, ∆T/T ≤ 2. In the most extreme case this gives

W ≈ cp3
∆T

πr
≈
cpTv

πr

(∆T
T

)
≈

5c2sv
2γπr

,

where as usual

cs =

√
γkBT

µmp

is the adiabatic sound speed. Equating the rate of work and power gives

c2s =
2γ
5
πr 3

[ νv
h2
+
νh
r2

]
. (5.14)

To proceed further we must examine the forms of νv and νh. The nature

of the viscosity di�ers between stably stratified and buoyantly unstable

zones, so we must determine which of these are relevant and treat them

separately.

We begin with radiative zones. In a stably stratified region the two

viscosities di�er because of Richardson stabilisation14, an e�ect which lim- 14 See Chapter 2 for more discussion on this
e�ect.

its the scale of turbulence in the vertical direction by means of a buoyant

restoring force (Galperin, Sukoriansky & Anderson, 2007). A straightfor-

ward prescription for the viscosities in this context is

νh ≈ 3r (5.15)

νv ≈ 3
2
(

α + νh
дh(∇a −∇)

)
,

where α is the microscopic thermal di�usivity 15. Generally we expect α to 15 Mathis et al. 2004

be small compared to νh because horizontal radiative transfer is ine�cient.,

so we may neglect α and write

νv = 3
2
(

νh
дh(∇a −∇)

)
=

33r

дh(∇a −∇) .

By the Schwarzschild criterion ∇ < ∇a in a stably stratified zone16. In 16 Böhm-Vitense 1958

general we expect radiative transport to be e�cient far from the zone

boundaries, so we take ∇ � ∇a in most of such a zone. Using this we

write

νv =
v3r

дh∇a
.

Now making use of equation (3.19) we find

дh =
дp

дρ
=

p

ρ
= γ−1c2s , (5.16)
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hence

ν3 =
33rγ

c2s ∇a
. (5.17)

Inserting equations (5.15) and (5.17) into equation (5.14) gives

c2s =
2γ
5
πr 3

[
33rγ

c2s h2∇a
+
3

r

]
.

This may be rearranged to

5
2πγ

=
γ

∇a

(
3

cs

)4 ( r
h

)2
+

(
3

cs

)2
.

Solving gives (
3

cs

)2
=
∇ah

2

2γr2


−1 ±

√
1 +

10r2

π∇ah2


.

The positive branch is the one of interest, because we have implicitly taken

3 > 0 in writing it as a magnitude. In the upper regions of the planet’s

atmosphere r � h so
3

cs
≈
h

r

√
5

2πγ
.

Using equation (5.16) the rate at which heat is transported may be written

as

ε =W ≈
5c2s 3
2πγr

≈
c3s h

r2

(
5

2πγ

)3/2
≈
γc5s
дr2

(
5

2πγ

)3/2
.

The region of interest is shallow so дr2 ≈ GM and

ε ≈
γc5s
GM

(
5

2πγ

)3/2
.

The depth, as measured by column density Σi, over which the winds

make the flux distribution spherically symmetric is

Σi =
Fe
ε
≈

GMσT 4
ph

γc5s

(
2πγ
5

)3/2
.

Evaluating the sound speed at the photosphere gives

Σi ≈ 3 × 103 g cm−2M
( T

103K

)3/2
,

wheremp is the proton mass. For comparison, the photosphere is at a depth

of

Σph ≈ κ
−1 = 102 g cm−2

(
κ

κ0

)−1
.

Thus the temperature distribution becomes spherically symmetric in a

region deeper than the photosphere but shallower than the convective
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transition. So we need not worry about the viscosity in convection zones.

This remains valid as long as the planet rotates slowly relative to v/R,

such that the characteristic scale of circumferential motion remains R and

is not reduced by Coriolis e�ects. At short periods, where this condition is

most in danger, the anisotropy is very large, such that v ≈ hcs/r , and the

surface temperature should be quite high because of insolation, such that

cs ≈ 3 × 105 cm s−1. In this regime, the rotational period of a Jupiter-radius

planet must be at least 30 d with h/r ≈ 10−2 or 3 d with l/r ≈ 10−1 for

the Coriolis e�ect to be negligible. Even at the shortest known periods of

just under a day, the correction term is not too great and does not alter

the conclusion that the temperature distribution becomes spherical above

the convection zone, so we continue to use this approximation with the

knowledge that it becomes worse as the period diminishes.

5.4 Heated Thermal Structure

In this section we work on timescales long compared to the adjustment

of radiative or convective zones to thermal perturbations but short com-

pared to the characteristic thermal timescale of the planet. This is the

instantaneous equilibrium approximation17. This separation of scales exists 17 Despite its name, this is still a fundamen-
tally non-equilibrium system.

because the thermal timescale of the planet is set by the thermal content

of the core, whereas the radiative and convection regions of interest are

shallow zones with much less mass and at much lower temperatures.

The equations governing the luminosity of the planet as a function of

mass coordinate are

∂L

∂m
= ϵ(m) − cp ∂s

∂t
, (5.18)

L(0) = 0

and

L(M) = Li,

where ϵ(m) is the specific energy generation by tides, radioactive decay and
ohmic processes and the mass coordinatem corresponds to the spherical

shell containing massm. Note that mechanical expansion and contraction

can generate energy, but in this coordinate system that generation provides

no net contribution because it does not alter the specific entropy.

Thermodynamic consistency imposes the condition that heat travels

from hot regions to cool ones. Assuming that T increases towards the
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core of the planet, this means that L(m) ≥ 0 everywhere. In a convective

atmosphere the thermal gradient is almost independent of the luminosity.

This follows because the luminosity is determined by the superadiabaticity

of the thermal gradient, rather than by the gradient. When convection

is e�cient, the convective zone is nearly isentropic so 18 L ∝ (∇−∇a)3/2 18 Kippenhahn & Weigert 1990

and the atmosphere achieves significant scaling of luminosity with only

small changes to ∇. As a result, the conditions on L cannot generally

be satisfied. This means that radiative zones are generically needed as

interfaces between convective regions. More formally, we work in the

limit of perfectly e�cient convection, such that

T (p)p−∇a = const.

We also make the assumption that the convective turnover time for any

region of interest is much shorter than the time-scale over which thermal

quantities change, such that convection may be assumed to enforce an

instantaneous adiabatic law.

Now suppose that we perturb a planet by injecting luminosity ∆L

somewhere below the radiative-convective boundary. For ∆L � Li, we

may solve equation (5.18) by simply reducing the luminosity escaping

from deeper regions of the planet. That is, Li goes unchanged but the

luminosity in regions deeper than the injection depth is reduced by ∆L.

In the limit of very e�cient convection (or large opacity), this adjustment

holds until ∆L ≈ Li. For ∆L > Li the adjustment still occurs, with the deep

luminosity falling to the radiative luminosity at the adiabatic gradient,

the minimum needed to maintain convection. The di�erence is that in

this case there is an excess of luminosity reaching the convective-radiative

transition and this must be accounted for. At the boundary we must have

∇a = ∇r =
3κptLi

64πGMσT 4
t
, (5.19)

which must remain satisfied when we perturb Li so

∆ lnpt − 4∆ lnTt + ∆ lnκ + ∆ lnLi = 0. (5.20)

If the transition temperature is similar to the photospheric temperature

and if the radius does not change substantially owing to the perturbation

∆ lnL = ∆ ln(Li + Le) = 4∆ lnTt. Because Fe � Fi and Le is fixed

4∆ lnTt ≈
∆Li
Le
� 1.
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So we may neglect the change in Tt and find

∆ lnpt + ∆ lnκ + ∆ lnLi = 0. (5.21)

We generally expect that, at fixed temperature, κ rises as p rises. As a result,

pt must fall to satisfy this relation, so either the entropy of the central

adiabat must rise or the adiabatic law must be broken somewhere in the

planet. The central entropy cannot rise unless either heat is being added at

the core or the photosphere is hotter than the core, because heat cannot be

forced to move up the temperature gradient. Neither of these are generally

the case so the adiabatic law must be broken. As a result the planet must

form an interior radiative zone.

1

2 3

Radiative
Atmosphere

Convection Zones

Radiative Zone

Perturbed

Initial

Figure 5.5: Perturbed (red) and unper-
turbed (black) pressure-temperature pro-
files.

To characterise these radiative zones, let p1 be the transition pressure

between the surface radiative zone and the new convection zone, p2 the

transition pressure between this zone and the interior radiative zone and

p3 the transition pressure between this zone and the central adiabat. The

perturbed and unperturbed pressure-temperature structures are shown in

Fig. 5.5. Let Tj , mj , κj and Lj be the corresponding temperature, mass

coordinate, opacity and luminosity at each transition. The new convection

zone is adiabatic, so
T 1/∇a
1
p1

=
T 1/∇a
2
p2

.

Assuming thatm ≈ M , the condition (5.19) for transition between radiative
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and convective zones gives

p1κ1L1T
−4
1 = p2κ2L2T

−4
2 = p3κ3L3T

−4
3 .

Finally, recalling that the central adiabat is fixed and that the new adiabat

contains a point at the fixed temperature Tt, we find

T 1/∇a
2
p2

=
T 1/∇a
3
p3

(
pt,i
pt,f

)
, (5.22)

where the subscripts i and f refer to the initial unperturbed and final per-

turbed system respectively. Equation (5.22) thus expresses the entropy

di�erence between the two adiabats. Note that with these subscript defi-

nitions,

Li,f ≡ L1. (5.23)

Again with κ ∝ T apb we may write equations (5.20) – (5.23) as a system

of linear equations in the logarithms of temperature and pressure. Solving

this system yields

ln
T1
T2
=
∇a

w
ln

L1
L2

, (5.24)

ln
T2
T3
=
∇a

w
ln

Li,fL2

Li,iL3
, (5.25)

ln
p1
p2
=

1
w

ln
L1
L2

, (5.26)

and

ln
p2
p3
=

1
w

ln
Li,fL2

Li,iL3
+

1
1 +b

ln
Li,f
Li,i

, (5.27)

where

w ≡ (4 − a)∇a − (1 +b).

The transition temperature T1 ≡ Tt is known from the unperturbed state

so with equations (5.24) and (5.25) we may determine the remaining

temperatures. Likewise the unperturbed transition pressure pt,i is known

from the unperturbed state. The perturbed transition pressure p1 is related

to the unperturbed by equation (5.21) so, with equations (5.26) and (5.27)

we may determine the remaining pressures.

In equilibrium, the luminosities are related by

L1 = L2 +

∫ m1

m2

ϵ(m)dm



TIDAL HEATING OF HOT JUPITERS 221

and

L2 = L3 +

∫ m2

m3

ϵ(m)dm.

With these we can compute the luminosity ratios. A consequence of

equation (5.26) is that the new convective zone is maintained by heat

generation in between p1 and p2, or equivalently between m1 and m2,

because this is what allows for L1 , L2.

The minimum luminosity required for convection may be calculated

from equation (5.19) as

Lmin = Li
∇a

∇r
.

Both sides of this equation are functions of pressure. We generally ex-

pect that ∇r rises quickly towards the interior of the planet as convection

becomes more e�cient so Lmin is a small fraction of Li. This is actually

guaranteed by equation (5.7) so we expect that Lmin is suppressed relative

to Li by a power-law in p and may calculate

L3 =

∫ m3

0
ϵ(m)dm + Li ∇a

∇r(pinject) , (5.28)

where pinject is the pressure inside which minimal luminosity is injected.

5.5 Expansion

The expansion associated with changing the temperature profile of the

planet is given by

∆V =

∫ M

0
∆

(
ρ−1

)
dm. (5.29)

In the limit where ∆R/R is small, ∆p/p is small at fixedm, so

∆
(
ρ−1

)
≈
∂T

∂ρ

�����p
∆

(
T −1

)
≈ ρ−1

∆T

T
≈ ρ−1∆ lnT .

Substituting this into equation (5.29) we find

∆V ≈

∫ M

0
ρ−1∆ lnTdm ≈

∫ R

0
4πr2∆ lnTdr ,

where the coordinate r refers to the unheated system. The integration

proceeds up to R as an approximation, once more in the limit where ∆R/R

is small. When this is the case and when the majority of the heating occurs

near the surface at r ≈ R this may be approximated by

∆R ≈

∫ R

R−δR
∆ lnTdr . (5.30)
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Now we may approximate ∆ lnT as ln(T2/T1). The pressure depth over

which this approximation (rather than ∆ lnT ≈ 0) is valid is ∆ lnp ≈

ln(p1/pt,i). This corresponds to a physical depth of h ln(p1/pt,i), because h
is the characteristic scale of the thermal properties of the planet and hence

sets the scale of the radiative zone which forms. So we may approximate

equation (5.30) in terms of the heating parameters by

∆R ≈ h ln
p1
pt,i

ln
T2
T1

.

With equation (5.21) we find

∆R = −
h∇a

(1 +b) (w) ln
Li,f
Li,i

ln
L1
L2

.

For very deep zones, the relevant scale height is that near the base of

the zone rather than the top, because the majority of the contribution to

the integral comes from this region. This may be taken into account by

noting that the scale height at the base of the radiative zone is given by

equation (3.19) as

h =
kBT3
µmpд

. (5.31)

Inserting equation (5.24) and equation (5.25) we have

h =
kBT1
µmpд

*.
,

L2i,f
Li,iL3

+/
-

−
∇a
w

.

Making use of T1 ≈ Tph, equations (5.5) and (5.10) give us

h =
kB
µmpд

*
,

L?

4πσa2orbit
+
-

1/4
*.
,

L2i,f
Li,iL3

+/
-

−
∇a
w

≈ 0.2RJ
(
L?
L�

) 1
4
(
M?

M�

)− 1
6 (τorbit

10d

)− 4
3

(5.32)

×

(
M

MJ

)−1 (
R

RJ

)2 *.
,

L2i,f
Li,iL3

+/
-

−
∇a
w

,

where τ is the orbital period. The expansion is therefore

∆R ≈
0.2RJ∇a
(1 +b)w

(
L?
L�

)1/4 (
M?

M�

)−1/6 (τorbit
10d

)−4/3 (
M

MJ

)−1

×

(
R

RJ

)2 *.
,

L2i,f
Li,iL3

+/
-

−
∇a
w

ln
Li,f
Li,i

ln
L2
L1

.

(5.33)
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A factor of a few from the luminosity term is therefore su�cient to sub-

stantially inflate the planet at short orbital periods.

5.6 G-Modes

The existence of internal radiative zones raises the possibility that g-modes

may contribute to tidal heating. This is particularly interesting because,

if g-mode dissipation is the dominant form of tidal heating ϵ is actually a

function of the thermal structure of the planet. That is because g-modes

predominantly resonate in radiative zones. What this amounts to is a form

of feedback between the thermal and mechanical structures of the planet.

5.6.1 Dynamical Tide

In principle there are two sources of dynamical tides, namely gravitational

and thermal. We expect that thermal tides do not couple to the g-modes

considered here. There are two reasons for this. First, the thermal tide is

significant only in the upper layers of the atmosphere where insolation

is significant. In particular, the tide damps as 19 e−κΣ. The internal ra- 19 Arras & Socrates 2010

diative zone begins at a comparable column density to the unperturbed

radiative-convective transition. Equation (5.13) gives κ0Σt ≈ 5 × 102, so

the damping is on the order of exp(−5 × 102), which su�ces to make this

e�ect negligible. Secondly, the thermal tide relies on timescale for redis-

tributing heat being large relative to the orbital time. We have shown that

the temperature distribution becomes spherical very near the photosphere

and well above the convection zone, even for a tidally locked planet. This

means that it will not reach even the upper convection zone. As a result

we restrict our analysis to gravitational tides.

We take the Cowling approximation, so that the self-gravity of the tidal

bulge is neglected 20. We further take displacements to be small enough 20 Savonije & Papaloizou 1983

that the non-linear term in the Navier-Stokes equation may be neglected.

Due to their frequencies being small relative to the acoustic frequency,

g-modes may be treated them in the anelastic limit in which

∇ · (ρu) = 0,

where ρ is the unperturbed density field and u is the mode velocity. This

treatment may be accomplished done by separating the perturbing tidal

potential into a hydrostatic equilibrium tide and a dynamical tide 21. The 21 Zahn 1975

associated radial displacements ξ eq and ξ dyn obey the relations 22 22 Goodman & Dickson 1998
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ξ eq = −
δΦ

dΦ/dr
(5.34)

and

∂2

∂r2
(r2ξ dyn) + ∂

∂r

(
d ln ρ
dr

r2ξ dyn
)
+ l(l + 1)

(
N 2

ω2 − 1
)
ξ dyn (5.35)

= l(l + 1)ξ eq − ∂
2

∂r2

(
r2ξ eq

)
,

where l is the latitudinal quantum number, ω is the frequency, Φ is the

unperturbed planetary gravitational potential, δΦ is the perturbing tidal

potential due to the star and N is the Brunt-Väisälä frequency, with N 2

positive in the radiative zone and negative in the surrounding convective

regions. To analyse this equation we first solve the homogeneous version,

with the right hand side set to zero, and then compute the overlap between

the resulting modes and the forcing term given by the right-hand side.

5.6.2 Mode Profile

The homogeneous part of equation (5.35) is

∂2

∂r2
(r2ξ dyn) + ∂

∂r

(
d ln ρ
dr

r2ξ dyn
)
+ l(l + 1)

(
N 2

ω2 − 1
)
ξ dyn = 0.

Defining

ξ ≡ r2ξ dyn

we find
∂2ξ

∂r2
+
∂

∂r

(
d ln ρ
dr

ξ

)
+
l(l + 1)
r2

(
N 2

ω2 − 1
)
ξ = 0. (5.36)

We now wish to perform a change of variables which will eliminate the

first order derivative of ξ . To do this, we note that

∂2

∂r2
=

(
∂y

∂r

)2
∂2

∂y2
+
∂2y

∂r2
∂

∂y
.

This may be written as

∂2

∂r2
=

(
∂y

∂r

)2
∂2

∂y2
+
∂r

∂y

∂2y

∂r2
∂

∂r
.

Using this, we pick

y =

∫
ρ−1dr ,

which gives
∂2

∂r2
= ρ−2

∂2

∂y2
−
d ln ρ
dr

∂

∂r
.
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With this substitution, equation (5.36) becomes

ρ−2
∂2ξ

∂y2
+
d2 ln ρ
dr2

ξ +
l(l + 1)
r2

(
N 2

ω2 − 1
)
ξ = 0. (5.37)

Qualitatively we expect N to peak near the centre of the radiative zone

and fall to zero at the edges. To fit this, we pick a quadratic form in our

new coordinate y, such that

N 2 = N 2
0

*
,
1 −

(
y −y0
δy

)2
+
-
,

where r0 is the radial coordinate of the centre of the radiative zone and

2δy is the width of the zone in y. This form is useful because it will enable

us to case equation (5.37) in the form of a quantum harmonic oscillator,

which has known solutions with convenient properties. Defining

χ ≡
N0

ω

and

x ≡
y −y0
δy

,

the di�erential equation equation (5.37) becomes

1
ρ2δy2

∂2ξ

∂x2
+
d2 ln ρ
dr2

ξ +
l(l + 1)
r2

(
χ2 − x2χ2 − 1

)
ξ = 0.

We now define

q ≡ 1 −
d2 ln ρ
dr2

r2

l(l + 1) ,

such that
ρ2

δy2
∂2ξ

∂x2
+
l(l + 1)
r2

(
χ2 − x2χ2 − q

)
ξ = 0. (5.38)

Note that q is positive and large because

−r2
d2 ln ρ
dr2

≈
r2

h2
� 1.

This follows because ρ has characteristic scale h and because h � r except

near the core of the planet.

It is now worth noting that the physical width of the zone in r is

lr ≈ ρδy.

This holds because for a thin zone with lr . h, ρ does not change too

much across it23. In thick zones there would be deviations from this which 23 This does not mean that we may neglect
derivatives of ρ where they appear explic-
itly in our equations. Such instances de-
pend on the context in which such deriva-
tives occur. Hence, for instance, we cannot
neglect the second derivative of ρ in com-
puting q.
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we neglect. Along similar lines we treat q and r as constant over the zone

because the former varies with radial scale h and the latter with radial scale

r , both of which are of order or larger than lr .

For convenience we now define

β ≡ l(l + 1)
(
lr
r

)2
.

Because we treat r as approximately constant over the zone this is constant

as well. With this, equation (5.38) becomes

∂2ξ

∂x2
+ β

(
χ2 − x2χ2 − q

)
ξ = 0.

This may also be written as

(
χ2 − q

)
ξ =

(
χ2x2 − β−1

∂2

∂x2

)
ξ

which is the same as the equation for a quantum harmonic oscillator with

energy χ2 − q, mass —h2β/2, and zero-point energy χ/
√
β . Because we

have argued that β and q are approximately constant over the radiative zone

this identification may be used to compute the eigenvalues and associated

eigenfunctions. It follows that the eigenvalues are quantised in the form

χ2 − q =
2χ√
β

(
1
2
+n

)
,n = 0, 1, 2, . . . .

The sign of χ does not enter into equation (5.37) so wemay take whichever

branch of the solutions to this equation that we choose. Taking the positive

we see that

χn =
1 + 2n +

√
1 + 4(βq +n +n2)
2
√
β

,n = 0, 1, 2, . . . .

These correspond to periods and frequencies of

Tn = 2π
1 + 2n +

√
1 + 4(βq +n +n2)
2N0

√
β

,n = 0, 1, 2, . . .

and

ωn =
2N0

√
β

1 + 2n +
√
1 + 4(βq +n +n2)

,n = 0, 1, 2, . . . . (5.39)

The radial profiles of the solutions are the product of an exponential with
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an Hermite polynomial. For l = 2, the dominant tidal mode, these are

ψn,m(r ,θ ,ϕ) ≈
√
2χn

√
β√

2nn!r3
√
π

e−2χn
√
βx2/2

×Hn *
,
x

√
2χn

√
β+

-
Y2m(θ ,ϕ),

whereYlm are the spherical harmonics, n ∈ {0, 1, 2, ...} andm ∈ {−2, 1, 0, 1, 2}.
The modes are normalised so that∫

all space
d3r |ψn,m |2 = 1,

and we take ρ and r as constants throughout the radiative zone to com-

pute this normalisation. This is consistent with approximations we make

elsewhere.

5.6.3 Overlap Integral

In order to compute the tidal forcing Fn,m(ω), we must say something

about the origin of the tidal potential. There are two potential sources,

rotational asynchronisation and orbital eccentricity. In the former, the

tidal forcing occurs at a frequency ωrotation − Ωorbit, while in the latter

it occurs at a frequency of Ωorbit. In both cases, working in the frame

corotating with the planet’s orbit,

δΦ ∝
GM?r

2

a3orbit

,

and further involves a sum of l = 2 spherical harmonics. Beyond this the

two cases di�er significantly because the eccentricity case has δΦ ∝ e while

the asynchronous case has no such factor. To capture both cases, we write

δΦ = Π
GM?r

2

a3orbit

∑
m′

Y2m′(θ ,ϕ)km′ cos(ωt −ϕm′),

where ϕm′ are phase factors, the factors km′ capture the magnitudes of the

various harmonics and sum in quadrature to unity and Π is a dimensionless

factor of order unity in the asynchronous case and of order e in the

eccentric case. From this form and equation (5.34) we may write the

equilibrium tide as

ξ eq = Π
M?r

4

ma3orbit

∑
m′

Y2m′(θ ,ϕ)km′ cos(ωt −ϕm′).
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The driving term associated with this equilibrium tide is the right-hand

side of equation (5.35), given by

d(ξ ) = l(l + 1)ξ eq − ∂
2

∂r2
(r2ξ eq) = −24ξ eq.

In computing the overlap of this with the eigenmodes of the homogeneous

equation, we may treat factors of r as constant, because the radiative zone

ought to be thin on the scale of the planetary radius. As a result, the

projection is

〈ψ2,m′ |d〉 = −24
∫

ψ2,m′(r )ξ eq(r )d3r

≈ −24Π
M?r

6

ma3orbit

km′

∫ lr

−lr
ψ2,m′(r ′)dr ′

= −24Π
M?r

6lr

ma3orbit

km′

∫ ∞

−∞

ψ2,m′(x)dx

= −24Π
M?r

9/2lr sn

ma3orbit

√
2nn!
√
π

km′

∫ ∞

−∞

e−s
2
nx

2/2Hn(snx)dx

= −24Π
M?r

9/2lr

ma3orbit

√
2nn!
√
π

km′

∫ ∞

−∞

e−w
2/2Hn(w)dw ,

where we have centred the integral on r0, the radial coordinate corre-

sponding to y0, and defined

sn ≡

√
2χn

√
β .

We have also extended the integration bounds to infinity to make the

computation easier because the exponential suppression in x makes the

precise bounds irrelevant. Note that changing variables from r ′ to x is

formally quite complicated, though in the approximation where ρ changes

little over the course of the zone it just produces a prefactor of lr .

The integral may now be evaluated with the generating function of

the Hermite polynomials,

e2wt−t 2 =

∞∑
n=0

Hn(w)t
n

n!
,
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so ∫ ∞

−∞

e−w
2/2Hn (w)dw = dn

dtn

∫ ∞

−∞

e2wt−t 2−w2/2dw ���t=0

=
√
2π

dn

dtn

(
et

2 ) ���t=0

=
n!
√
2π

2Γ
�
1 + n

2
� (1 + (−1)n) .

As a result,

〈ψ2,m′ |d〉 ≈ −24Π M?r
9/2lrπ

1/4

ma3orbitΓ
�
1 + n

2
�km′

√
n!
2n−1

, (5.40)

for evenn and vanishes for oddn. There is complete degeneracy in both the

dissipation and oscillation overm′, so we may form a linear combination

of spherical harmonics which precisely matches the forcing term. This

amounts to summing the right hand side of equation (5.40) in quadrature

overm′ and taking the square root, which gives

〈ψ2|d〉 ≈ 24Π
M?r

9/2lrπ
1/4

ma3orbitΓ
�
1 + n

2
�
√

n!
2n−1

. (5.41)

This expression gives the amplitude of the resonance. From this stage we

take it as given that l = 2 and drop the label on ψ .

5.6.4 Dissipation

The square of the displacement, which is proportional to the dissipation,

has maxima at a distance of order ±a from the centre of the radiative zone

so, even if the dampening were uniform, we would expect the dissipation

to be greatest near the edges of the zone. In practice, convective turbulence

increases the dissipation just outside the zone and this assertion is even

stronger. To evaluate the strength of this e�ect we turn to various linear

dissipationmechanisms. Both radiative and viscous damping are potentially

relevant. For each of these we may calculate a quality factor Q , giving the

number of undriven cycles required for an e-fold reduction in strength.

These combine as

Q =
1

1
Qrad
+ 1

Qturb

.

We begin with radiative damping at finite opacity. The quality factor

of mode n is of order 24 24 Press 1986

Qn ≈ ωnτn ≈
3
4π

(
ωnλn
c

) ( p

aT 4

)
(κρλn) ,
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where c is the speed of light and τn , ωn and λn are the lifetime, frequency

and wavelength corresponding to mode n. The wavelength is given by

λn ≈
2lr
n + 1

which just comes from the fact that mode n has n + 1 nodes over the zone

width of 2lr . Thus

Qn ≈
3
4π

( p

aT 4

) 4ωnκρl
2
r

c(n + 1)2 .

Let

mz ≡ 2lr ρ,

an approximate zone mass. We find

Qn ≈
3
4π

( p

aT 4

) 2ωnmzκlr

c(n + 1)2 .

From equation (5.31) we know that the scale height h is proportional to T ,

so (
h

r

)4 ( p

aT 4

)
≈

pk4B

m4
pд4r4a

.

We are interested in regions which are su�ciently shallow so that д is

nearly constant and so

p ≈
д(M −m)
4πr2

,

and(
h

r

)4 ( p

aT 4

)
≈ *

,

k4B

am4
p

+
-

(
M −m

4πr6д3

)

= *
,

k4B

4πaG3m4
p

+
-

M −m

m3 ≈ 4.6 × 105M2
J (M −m)m−3

so that

Qn ≈ 1.1 × 105
(
1 −

m

M

)
M−2

(M
m

)3 2ωnmzκlr

c(n + 1)2
( r
h

)4
. (5.42)

The radiative zone is stably stratified so we expect turbulent damping

to be limited to the evanescent part of the mode which leaks into the

neighbouring convective zones. The Navier-Stokes equation with a simple

viscosity term is
∂3

∂t
+ 3 · ∇3 = д −

∇p

ρ
+ ν∇23.

We now neglect the non-linear term because we are interested in under-

standing the linear growth and decay of modes and expect the absolute
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velocities involved to be small. Without the nonlinear term

∂3

∂t
= д −

∇p

ρ
+ ν∇23.

The balance between gravity and the pressure gradient is what gives us

g-modes, so we may write the balance as

∂3

∂t
= ωn3 + ν∇

23.

Now let

3′ ≡ eiωn t 3

so that
∂3′

∂t
= ν∇23′.

The kinetic energy density

K =
1
2
3∗ · 3 =

1
2
3′∗ · 3′,

where 3∗ is the complex conjugate of 3, and evolves as

∂tK =
1
2
ν3′∗ · ∇23′ +

1
2
ν3′ · ∇†23′∗,

where ∇† is the adjunct gradient operator. When the spatial derivatives

are greatest in the radial direction the Laplacian just produces a factor of

(2π/λn)2 so
∂tK =

(
2π
λn

)2
νK .

Integrating this equation over the whole planet we find

d

dt

∫ M

0
Kdm =

∫ M

0

∂K

∂t
dm

=

∫ M

0

(
2π
λn

)2
νKdm

=

(
2π
λn

)2 ∫ M

0
νKdm.

The viscosity ν is only significant in the convection zones on either side

of the radiative zone, where turbulent viscosity dominates. The kinetic

energy density K is only significant inside the radiative zone and within a

few wavelengths of the zone edges on either side. The damping integral is

dominated by the region in which neither is small, so

d

dt

∫ M

0
Kdm ≈

(
2π
λn

)2
λn

lr + λn
ν

∫
Radiative Zone

Kdm,
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where ν is evaluated in the convecting regions and 2(lr + λn) is roughly the
radial extent of the region where the kinetic energy density is significant.

Similarly ∫
Radiative Zone

Kdm ≈mzK ,

where K on the right hand side is the average kinetic energy density in

the zone. Then
d

dt
(mzK) ≈

(
2π
λn

)2
λn
lr
νmzK .

Becausemz is constant we find that

d lnK
dt

≈

(
2π
λn

)2
λn
lr
ν

and the damping timescale is

τturb =
λnlr

4π 2ν

with related quality factor

Qn ≈ ωnτturb =
ωnλnlr

4π 2ν
.

The turbulent di�usivity is of order 3ch when the convective turnover

is on a timescale shorter than the forcing frequency ω. It is ω rather than

ωn that matters here because the oscillation physically takes place at the

driving frequency, not the mode period. The relevant turbulent frequency

for motion over length-scale lt is

ωturb(lt) = 3c(lt)lt
.

Taking 3c to be given by a Kolmogorov spectrum, we find

ωturb(lt) = 3c(h)h

(
lt
h

)−2/3
.

It follows that the relevant di�usive motions are on a scale

lt
h
= min


1,

(
3c(h)
hω

)3/2

and corresponding di�usivity is

ν = 3chmin

1,

(
3c(h)
hω

)2
.

This is just the result of Goldreich & Keeley (1977) and yields a quality
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factor

Qn ≈
ωnλnlr

4π 23ch
max


1,

(
3c(h)
hω

)−2
.

High-frequency driving leads to a high quality factor and Qn scales as ω2
n

because λn ∝ ωn . This is a weaker scaling than the radiative Q , which goes

as ω3
n ∝ (n + 1)−3. Thus at large n the convective mechanism dominates.

We are often interested in the lowest n because this mode is the least

suppressed by overlap factors. The convective flux of interest is generally

Fi, which equation (5.12) shows is on the order of 10−5Fe. The external

flux is typically about 10−2F�, so the relevant convective flux is on the

order of 5 × 103 erg cm−2 s−1. For a density of 10−1 g cm−3 the convection

speed is then

vc ≈

(
Fi
ρ

)1/3
≈ 30 cm s−1.

So for a scale height of 109 cm, vc/h ≈ 3 × 10−8Hz. We show later that

we are interested in frequencies on the order of 10−6Hz. This means that

the factor [hω/vc(h)]2 accounting for the eddy time is of order 105, so

the convective quality factor is Q1 ≈ 300. By comparison, the fiducial

radiative quality factor with the same assumptions is Q1 ≈ 1. Thus we

expect radiative damping to dominate by a reasonable margin unless the

fluxes involved are many orders of magnitude larger or the frequencies

are several orders of magnitude smaller.

5.6.5 Boundaries

We have shown that, when g-modes dominate the dissipation, ε is signifi-

cant primarily near the edges of the radiative zone. It is also straightforward

to show that the dissipation is spherically symmetric because the squared

mode profiles are even. So ε is an even function, the integral of which is

dominated by the regions just outside the zone boundaries. Suppose that

the total luminosity produced by tides is Lt and that a fraction f of this is

produced inside the radiative zone. In steady-state

L2 − L3 = f Lt

and

L1 − L2 =
1
2
(1 − f )Lt.

Using equation (5.28) we find

L3 = Li
∇a

∇r(pinject) +
1
2
(1 − f )Lt.
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If the heating is large relative to Li and f is small then we expect

L3 ≈
1
2
(1 − f )Lt (5.43)

so

L1
L2
≈ 2 (5.44)

and

L2
L3
≈ 1. (5.45)

Using equations (5.24) through (5.27) we find

ln
T1
T2
=
∇a

w
ln 2,

ln
T2
T3
=
∇a

w
ln

Lt
Li,i

,

ln
p1
p2
=

1
w

ln 2

and

ln
p2
p3
=

(
1
w
+

1
1 +b

)
ln

Lt
Li,i

.

With equations (5.43) and (5.44) equation (5.33) yields

∆R

RJ
≈ − 0.1

∇a

(1 +b) (w)
(
L?
L�

)1/4 (
M?

M�

)−1/6 (τorbit
10d

)−4/3

×

(
M

MJ

)−1 (
R

RJ

)2 (2Li,f
Li,i

) −∇a
w

ln
Li,f
Li,i

.

(5.46)

Recall from equation (5.39) that the resonant frequencies are

ωn =
2N0

√
β

1 + 2n +
√
1 + 4(βq +n +n2)

=
2N0

√
β

(1 + 2n)
(
1 +

√
1 + 4βq

(1+2n)2
)

=
2N0

√
β

(1 + 2n)
(
1 +

√
1 + 4(lr /h)2

(1+2n)2
) .

The right hand side has two characteristic regimes, one in which lr/h is

large and one in which it is small or of order unity. In the former case,

ωn ∝ h, while in the latter ωn ∝ lr . Both h and lr increase with p3/p2, so

the resonant frequency goes up as the zone width increases. This means
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that the resonance shifts up in frequency as the luminosity increases. That

is,
dω0

dLt
> 0.

So an increase in luminosity tends to tune the system towards resonance

if it is being driven above resonance and pushes it away from resonance

otherwise. The net result is that there is thermomechanical feedback which

tends to bias systems towards resonance, particularly when their resonant

frequency is below the driving frequency.

5.6.6 Power Production

Each mode may be treated as a separate damped and forced harmonic

oscillator. Let ξn be the amplitude for mode n. Then

ω2
nξn +

ωn

Qn
ξ̇n + ξ̈n = ω

2〈ψ |d〉eiωt .

We may solve this di�erential equation in steady-state and fix the reference

phase to find

ξn =
ω2〈ψ |d〉eiωt

ω2
n −ω2 + iωnωQ

−1
n

.

The power dissipated is

Pn = ρ<
(
ξ̇ ∗ne

iωtω2〈ψ |d〉)
= ρ<

�
−iξ ∗ne

iωt �
ω3〈ψ |d〉

= ρ=
�
ξ ∗ne

iωt �
ω3〈ψ |d〉

= ρ=

(
1

ω2
n −ω2 − iωnωQ

−1
n

)
ω5|〈ψ |d〉|2

=
ωnωQ

−1
n

(ω2
n −ω2)2 + (ωnωQ

−1
n )2 ρω

5|〈ψ |d〉|2.

With equation (5.41) this becomes

Pn =
ωnω

6Q−1n
(ω2

n −ω2)2 + (ωnωQ
−1
n )2q

=
ω3

Qnω
−1
n ω

(
ω2
n

ω2 − 1
)2
+ω−1ωnQ

−1
n

q,

where

q ≡ 576Π2ρ
M2

?r
9l2r π

1/2

m2a6orbit

*.
,

n!

2n−1Γ
�
1 + n

2
�2

+/
-
.

If the tides are driven by the rotational energy of the planet then ω

is the planet’s rotation frequency. In many cases however the tides are

driven by either orbital eccentricity, in which case the forcing frequency
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is just the orbital frequency 25. In this more generally interesting case, the 25 Arras & Socrates 2010

driving frequency is

ω = Ωorbit =
2π
τorbit

≈ 7 × 10−6Hz
(τorbit
10 d

)−1
.

To compare, the highest resonant frequency occurs when n = 0 and is

ω0 =
2N0

√
β

1 +
√
1 + 4βq

,

equation (5.39). Because βq ≈ 1,

ω0 ≈
N0

√
β

1 +
√
5
≈

N0lr
R

,

for l = 2. Now N0 is the peak Brunt-Väisälä frequency in the radiative

zone where the temperature gradient is substantially subadiabatic, so

N 2
0 ≈ ∇a

д

h
.

This gives

ω0 ≈
lr
√
∇a

R

√
д

h
.

Now lr ≈ h ln(p1/pt,i) so

ω0 ≈
√
∇a ln

p1
pt,i

√
дh

R2

=
1
√
γ

(cs
R

)
ln

p1
pt,i

≈ 2 × 10−5Hz
( T

1 × 103K

)1/2 (
R

RJ

)−1
ln

p1
pt,i

.

This is quite close to the orbital frequency so we expect that resonances

are not uncommon. Note also that it is somewhat greater than the orbital

frequency, so there will generally bemodes with frequencies lower than the

orbital frequencywhich are pulled upward towards it by thermomechanical

feedback.

The precise shape and spacing of the resonances depends on our ansatz

for the Brunt-Väisälä frequency in the radiative zone and so it is not

useful to make predictions which depend on our chosen form. If we

instead average over resonances, we note that the forcing integral falls

exponentially in n while the resonances fall o� as a power law in n so that

the n = 0 resonance always dominates on average. Individual systems far

from the n = 0 resonance may exhibit significant dissipation by virtue of

sitting directly on a higher resonance but we expect this to be rare. So we
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assume that ω and ωn are of the same order and write the net power

P =
∑
i

Pi

≈ P0

≈ 2 × 103Q−10 Π2ρ
Ω3
orbitM

2
?r

9l2r

m2a6orbit

(
ω0

Ωorbit

)
.

This may be converted to a flux as

Ft =
P

4πr2
≈ 2 × 102Q−10 Π2ρ

Ω3
orbitM

2
?r

7l2r

m2a6orbit

(
ω0

Ωorbit

)
.

5.7 Equilibrium Radius

To first order, suppose that lr ≈ h. The tidal flux is then given by

Ft ≈ 2 × 102Q−10 Π2ρ
Ω3
orbitM

2
?r

7h2

m2a6orbit

(
ω0

Ωorbit

)
.

Inserting equation (5.42) yields

Ft ≈ 2 × 10−3Π2ρ
Ω3
orbitmM

2r3h5M2
?c

2ω0mzκM3a6orbit

(
ω0

Ωorbit

) (
1 −

m

M

)−1
.

If the radiative zone is shallow but dominates the mass above its base then

m ≈ M . In addition,

M −m ≈ 4πr2ρlr ≈ 4πr2ρh

so

Ft ≈ 2 × 10−3Π2ρ
r3h5Ω2

orbitMπ 1/2c

8πr2ρ2h2κa6orbit

(
M?

MJ

)2
≈ 2 × 103Π2ρ

rh5Ω2
orbitMc

8π (ρh)2κa6orbit

(
M?

M�

)2
.

Noting that

Σt ≈ hρ

we find

Ft ≈ 8 × 101Π2
rh4Ω2

orbitMc

Σtκa
6
orbit

(
M?

M�

)2
.
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Recalling equation (5.13) and neglecting the logarithmic correction to Σt

owing to the motion of the zone boundary we write

Ft ≈5 × 10−5F�Π2
(τorbit
10 d

)− 31
6

(
M?

M�

) 5
12

(
R0
RJ

)

× R−2M8/3
(
L?
L�

)− 5
8

ψ
5
2

(
κ

κ0

)−1 (
h

r

)4
. (5.47)

With the fiducial values and h ≈ 0.2r this flux produces an expansion at a

rate

dR

dt
≈

Ft
ρcpT

≈
F

pt
≈ 3 × 10−5 cm s−1Π2,

which is su�cient to produce expansion of order RJ over million-year

timescales.

As discussed in section 5.5 the expansion eventually increases the escap-

ing flux to match the generated flux, so the expansion does not continue

forever. The relevant dimensionless parameter for this equilibrium is the

ratio Ft to Fi,i, which is the unperturbed Fi. Recall from equation (5.12)

that

Fi ≈ 5 × 10−4FeM5/3
(
L?
L�

)−5/8 (
aorbit
R�

)5/4 (
κ

κ0

)−1 ψ 5/2

R3 .

Inserting equation (5.11) yields

Fi ≈ 1.6 × 10−4F�M5/3
(
L?
L�

)3/8 (
aorbit
R�

)−3/4 (
κ

κ0

)−1 ψ 5/2

R3

≈ 3 × 10−6F�M5/3
(
L?
L�

)3/8 (τorbit
10 d

)−1/2

×

(
M?

M�

)−1/4 (
κ

κ0

)−1 ψ 5/2

R3 .

Thus

2Ft
Fi,i
≈ 3 × 107Π2MR−2

(
L?
L�

)−1 (
R0
RJ

)
×

(τorbit
10 d

)−14/3 (
M?

M�

)2/3 (
h

R

)4
.

Inserting equation (5.32) we get

2Ft
Fi,i
≈ 5 × 104Π2M−3R2

(
R0
RJ

)5 (τorbit
10 d

)−10 *.
,

L2i,f
Li,iL3

+/
-

−7∇a
w

.

If the expansion is small then the luminosity ratios may be replaced by flux

ratios. If tidal heating is significant, the perturbed flux escaping from the
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interior of the planet Fi,f ≈ Ft, so

2Ft
Fi,i
≈ 5 × 104Π2M−3R2

(
R0
RJ

)5 (τorbit
10 d

)−10 *.
,

F 2i,f
Fi,iF3

+/
-

−7∇a
w

.

Using equations (5.44) and (5.45) we find

2Ft
Fi,i
≈ 5 × 104Π2M−3R2

(
R0
RJ

)5 (τorbit
10 d

)−10 (
2Fi,t
Fi,i

) −7∇a
w

. (5.48)

Note that R and R must be the equilibrium radii here, not pre-expansion

radii. Note that the absolute magnitude of the opacity does not enter our

final expression. This cancellation is due to the assumption of e�cient

convection.

The quantity

f ≡ −
7∇a
w

is of key importance to the nature of the solution. If f < 1 then the

solution is stable, meaning that a system initially perturbed away from this

equilibrium solution returns to it over time. What this means physically

is that an increase in the generated flux increases the temperature at the

base of the radiative zone enough that the flux which escapes increases

by more, leading to a negative feedback loop. If f > 1 then the solution

is unstable, meaning that an increase in the generated flux increases the

temperature in the radiative zone by less than what is required to allow that

additional flux to escape, leading to a positive feedback loop. If a system

has f > 1 then either the initial perturbation has the radiative zone deep

enough that the runaway process keeps increasing the flux until some of

our assumptions break down or the initial perturbation has the radiative

zone shallow enough that the runaway process prevents it from migrating

inward causing it to stay where it initially forms. If the prefactor on the

right side of equation (5.48) exceeds unity then the unstable branch is

always the relevant one because the initial perturbation must yield a ratio

of at least unity in order to cause a radiative zone to form. If the prefactor

is less than one then any radiative zone formed simply stays where the

initial perturbation produces it.

Despite the uncertainties in the precise numbers involved, our results

are fairly robust because the right-hand side of equation (5.48) scales as

τ−10orbit, and this scaling only becomes stronger once f is taken into account.

For orbital periods shorter than of about 10 d, with some uncertainty, the

flux generated may exceed the flux escaping from the centre of the planet.
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When the tidal flux dominates the expansion is given by equation (5.46)

and may be approximated by

∆R

RJ
≈0.1

∇a

(1 +b) (w)
(
L?
L�

)1/4 (
M?

M�

)−1/6 (τorbit
10d

)−4/3

×

(
M

MJ

)−1 (
R

RJ

)2 (2Fi,f
Fi,i

) −∇a
w

ln
Fi,f
Fi,i

.

Neglecting the logarithmic dependence, this may be combined with equa-

tion (5.48) to give

∆R

RJ
≈0.1

∇a

(1 +b) (w)
(
L?
L�

)1/4 (
M?

M�

)−1/6 (τorbit
10d

)−( 43+ 10f
7(1−f )

)

×

(
M

MJ

)−1 (
R

RJ

)2
*
,
5 × 104Π2M−3R2

(
R0
RJ

)5
+
-

f
7(1−f )

.

Even though the dependence on the flux ratio is small, the ratio itself

can be quite large, particularly at smaller periods. Many cases, such as

a = 0,b = 2 or a = 1,b = 1, have f > 1 and so orbital periods of order

30 dΠ1/5 su�ce to cause expansion of order R0. It is di�cult to say more

because many of our approximations break down at this point. If f < 1,

as can be achieved for example with a = 4,b = 2, ∆R/R ∝ τ−64/3
orbit , orbital

periods of order 20 dΠ3/16 su�ce to produce unit expansion. This is

consistent with most of the known cases of highly inflated Jupiter-mass

planets, assuming Π ≈ e ≈ 0.1. For low-mass planets, the lower surface

gravity makes larger expansion more feasible. This has been recently

observed 26. Stronger claims are di�cult to make analytically because 26 Bakos et al. 2016

the dependence of the flux ratio on the specifics of the opacity are quite

severe and the detailed compositions of the atmospheres of exoplanets at

intermediate depths remain largely unknown. Precision studies of this

thermomechanical feedback will likely require numerical tools in all but

the simplest cases.

At su�ciently low masses, large flux ratios become impossible to attain

given the factor ofM−3 in equation (5.48). At this point further expansion

is impossible. Likewise at large enough radii the central adiabat disappears

so that much of this analysis becomes invalid. We do not expect this to be

a limiting factor, however. At short periods Roche lobe overflow becomes

a substantial barrier. Substantial changes in the opacity may also occur,

particularly if the Kramer regime becomes relevant, and this may invalidate

much of the analysis too. In addition at large radii the neglected factors of

R in converting from luminosities to fluxes become relevant and these act

to limit the expansion.
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5.8 Energetic Timescales

If the tides are eccentricity-driven, it is important to consider the timescale

over which the orbit circularises. It su�ces to the level of accuracy of

interest to note that the energy which may be extracted from an orbit of

eccentricity e < 1 is of order e232orbitM . The circularisation timescale is

therefore

τcirc ≈
e232orbitM

P
≈

(τorbit
10d

)5/2
2 × 1012 yr,

where we have taken Π ≈ e and used our fiducial values for all parameters

other than h/r , which we have taken to be 0.2. From this it is clear

that most systems of interest can be eccentricity-driven for billion-year

timescales, even if they require shorter periods than the fiducial.

If the tides are driven by the planet’s rotation they generally have many

orders of magnitude less energy to draw from, and so are not sustained

on the timescales of interest. They may still produce bloating, but not for

long enough to be easily observable.

5.9 Comparison

For comparison with other mechanisms it is useful to compute the Love

number associated with these g-modes. The Love number is defined in

terms of the power and perturbing tidal potential as

=[kml (ω)] = 8πGP
(2l + 1)r |δΦ|2ω

27. Summing in quadrature over allm and using l = 2 and equation (5.47) 27 Ogilvie 2014

we find

=(k) ≈3 × 10−6
(τorbit
10d

)−17/6 (
M?

M�

)−11/12

× R−3M8/3
(
L?
L�

)−5/8
ψ 5/2

(
κ

κ0

)−1 (
h

0.2r

)4
.

For comparison, inertial waves result in a frequency-averaged value of

=(k) ≈ 5
R3Ω2

GM

(Rc
R

)5
≈ 8 × 10−9

(
M

MJ

)−1 (
R

RJ

)3 (τorbit
10d

)−2 ( Rc
0.1R

)5
28, where Rc is the core radius. Likewise viscoelastic dissipation in a solid 28 Ogilvie 2013

core potentially yields =(k) ≈ 10−6, scaling with the elastic properties of

the core 29 and once more averaging over frequency. These mechanisms 29 Remus et al. 2012; Guenel et al. 2014
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are therefore of comparable order, depending on precisely which fiducial

value is chosen. The reason the g-mode mechanism inflates planets more

readily despite having comparable or somewhat less power dissipation is

that it heats primarily near the surface where the radius is more easily

perturbed.

5.10 Discussion and Outlook

We have characterised the response of heavily insolated Jupiter-like planets

to tidal heating for a wide range of tidal heating models. A necessary

condition for significant bloating of these planets is deep heating. We find

that tidal heating, either directly through tide–core interactions or indi-

rectly through resonance-sensitive migration of radiative zones induced

by g-modes, is of the right order of magnitude to induce the observed

bloating if it is su�ciently deep. We have further shown that nearly ev-

ery tidal heating model results in deep heating so long as the atmosphere

is su�ciently irradiated. This explains the observation of substantially

bloated hot Jupiters with a physically reasonable orbital period cuto� for

such e�ects. The migration of interior radiative zones provides a natural

explanation for the matching of tidal frequency with orbital frequency

despite the observed wide range of orbital frequencies of hot Jupiters.

This entire analysis hinges on there being a luminosity perturbation

to start. This luminosity then produces a self-sustaining interior radiative

zone which dissipates substantially more heat. The initial perturbation

may come from non-linear instabilities and so may provide an indirect

probe of these e�ects. It may also come from planetary migration. If a

planet migrates inward and if opacity falls as a result, the incident flux can

temporarily force the creation of a radiative zone while the convection

zone adjusts to the reduced flux it must carry. The g-mode hysteresis

described in this paper may then prevent the zone from disappearing,

even if its location shifts to better match resonance. Inflated planets may

therefore carry a record of their migration histories.

Finally, the thermomechanical feedback mechanism we propose high-

lights the importance of considering dynamical e�ects across many time-

scales. Feedback is possible both from short timescales to long, as in tidal

heating, and from long timescales to short, as in the dynamical tuning

of g-modes. By their very nature couplings across so many scales are

di�cult to track down and so there may be many more which have yet to

be discovered.



6 Stellar Photospheric Abundances as

a Probe of Disks and Planets

And why that cerulean color? The blue

comes partly from the sea, partly from the

sky... We can explain the wan blueness of

this little world because we know it well...

the only home we’ve ever known.

Carl Sagan

Abstract

The composition of planets varies wildly. This is thought to be a result

of chemical processing in protoplanetary disks. Despite significant ad-

vances, observing the chemistry of these and other circumstellar disks

remains a challenge. We present a new probe of disk chemistry, appro-

priate whenever the central star accretes from the disk. Our theoretical

framework (CAM) relates the photospheric composition of the central star

to its bulk composition and the chemistry of the accreting material. This

allows the abundance pattern of the circumstellar material to be calculated

from measured stellar abundances, photospheric temperatures and rotation

rates. Our method especially useful in B to mid-F type stars, which have

radiative envelopes and hence less bulk-photosphere mixing. We apply it

to several such stars, including ones hosting protoplanetary disk, debris

disks, and even evaporating planets. We also discuss a potential explanation

for the λBoö phenomenon which arises naturally from this analysis.
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6.1 Introduction

Accretion onto a star can have many origins. It may come from a pro-

toplanetary disk, in which case its chemistry may be influenced by the

formation of young planets. It may come from a debris disk or an evapo-

rating planet, in which case its chemistry is almost entirely dictated by the

aftermath of planetary formation and evolution. It may even come from

the interstellar medium or earlier ejecta from the star itself. In each of

these cases the elemental composition of the accreting material is a tracer

of interesting chemical processes occuring around the star. Unfortunately

this is di�cult to investigate directly, particualrly for solids1, elements of 1 This is because solid grains tend to have
smaller radiative cross-sections than the
equivalent amount of gaseous material.low abundance, or elements whose major carrier species do not have easily

observable energy transitions.

λBoötis objects provide a classic example of accretion-contaminated

stars. These are early-type2 stars with photospheres that are depleted in 2 mid-F to B

refractory elements3 by a factor of up to a few hundred4. The depletion 3 These are those with a condensation tem-
perature Tc > 300K, constituting inter-
and circumstellar dust.
4 For reference these are roughly 2% (Gray
& Corbally, 1998) of stars in the relevant
spectral classes. In principal a similar phe-
nomenon could occur in earlier spectral
types (e.g. earlier than B8), but the lack of
metal lines in such objects precludes their
characterisation in practice.

specifically in refractory elements is crucial to this phenomenon5 and

5 Other types of chemically peculiar early-
type stars, such as Ap and Am, can be
produced by mechanisms intrinsic to the
star (Michaud, 1970) and do not show this
correlation of abundances with condensa-
tion temperature.

suggests that the λBoö anomaly occurs because the star preferentially

accretes gas over dust 6,7. In particular many such stars, with varying levels

6 Venn & Lambert 1990
7 Gas is composed of volatile elements,
which are those with Tc < 300K, while
dust is composed of refractories.

of depletion, are well-explained by one protoplanetary disk mechanism

which excludes dust from the inner disk before it gets close enough to

sublimate and accrete 8. Many if not all λBoö stars are, then, lighthouses of

8 Kama et al. 2015

ongoing, recent, or extensive accretion of material with a gas-to-dust ratio

di�erent from the canonical9 ∆g/d = 100. While λBoö stars are of interest

9 This is the mass ratio of gas to dust in the
Galactic interstellar medium as well as that
for a solar-composition mixture cooled to a
few hundred kelvin. See e.g. Snow &Witt
(1996).

to us, we consider more generally any main-sequence star accreting from

a circumstellar material reservoir, including protoplanetary and debris disk

hosts as well as stars with evaporating or disrupted planets.

We present the Contamination by Accretion Method10, which pro-

10 CAM

vides a theoretical means for relating the photospheric composition of

an accreting star to the composition of circumstellar material11. This
11 A similar method has been developed for
white dwarf systems. See e.g. Fontaine &
Michaud (1979). The mixing physics there
is considerably di�erent from that in proto-
stars and main-sequence stars, particularly
in that gravitational settling is often the
dominant form of mixing, so little of that
methodology is relevant to this work.

method incorporates analytic descriptions of the main mixing mechanisms

in stars12, including rotational, shear, thermohaline, and convective mixing

12 We again exclude compact stellar rem-
nants.

as well as molecular di�usion. We neglect gravitational settling because this

is important primarily for white dwarf systems which we do not consider

here (Paquette et al., 1986; Koester, 2009). The key observable we predict

is the stellar photospheric composition, (X/H)obs. This is a mixture of the

stellar bulk composition, which we assume is a known reference value such

as solar 13, and the accreted material. The origin of the accreting material 13 Asplund et al. 2009

does not matter for our purposes, though of particular interest are systems
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in which the material originates in a circumstellar disk an outflowing plan-

etary atmosphere, or indeed an entire disrupted planet. These scenarios

typically yield accretion rates from 10−14 to 10−7M� yr−1, and may have

abundance patterns very di�erent from, or identical to, the bulk of the

star. Measuring the composition of the accreted mass fraction provides a

new view on planet-forming and planetary material, complementary to

observations explicitly targeting the circumstellar component.

For a given stellar mass, rotation rate, and mass accretion rate, we show

how to calculate the mass fraction, fph, of freshly accreted14 material in 14 as opposed to stellar bulk

the photosphere. We then derive the composition of the recently accreted

materials from this mass fraction. Even if the accretion rate is not known

our method constrains a combination of that and the composition of

accreting material, which is still useful in many cases. We then discuss

how to apply CAM to stars hosting protoplanetary and debris disks, and

evaporating planets, and discuss specific examples. The method works

best on stars with masses of at least 1.4M� because they have radiative

envelopes, as shown in Fig. 6.1, such that accreted material is mixed down

via slow non-convective processes 15. For extremely high accretion rates, 15 Charbonneau 1991; Charbonneau &
Michaud 1991; Turcotte & Charbonneau
1993; Turcotte 2002our method is also applicable to lower-mass stars where convection rapidly

mixes accreted material with the bulk.

6.2 Theory

6.2.1 Overview

The picture we consider is one of a star accreting material at a steady

rate Ṁ from a circumstellar disc. If their compositions are di�erent, the

accreting material modifies the composition of the star as it accumulates. If

the composition of the accreting material is constant during a given time

period then to describe the radial composition profile as a function of time

it su�ces to track the fraction f of material at each point in the star which

comes from accretion.

To make this task more straightforward we assume that the composi-

tion of the star is uniform along surfaces of constant column density16 Σ. 16 These surfaces coincide with isobars in
the case where the gravitational accelera-
tion is uniform.This is equivalent to assuming that material which is accreted spreads out

uniformly around the star in the angular direction on a timescale which is

small compared to the vertical mixing time17. The reason to prefer column 17 This is not precisely true, but it should
su�ce for the level of precision available in
both theory and observations. This is the
case for two reasons. First, the mixing time
increases rapidly with depth, so in most of
the star it is the case that the vertical mixing
time is long compared with the horizontal
one. Secondly, the observable quantities
of interest are, to leading order, linear in
the amount of accreted material, and so
if there is an angular distribution what is
observed is an average over the star, which
is precisely what this assumption provides.

density over other measures is that it is a Lagrangian coordinate and so

naturally incorporates the boundary conditions set by accretion.

The quantity we are after then is f (Σ, t), where t is the time since
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0.08-0.4 M⊙  

Fully Convective

0.4-1.4 M⊙  
Convective outside

>1.4 M⊙  
Radiative outside

Figure 6.1: The internal structure of low-
mass (M < 0.4M�), intermediate-mass
(0.4M� < M < 1.4M�) and high-mass
(M > 1.4M�) stars are shown schemati-
cally with a focus on their mixing proper-
ties. Low-mass stars are fully convective,
intermediate-mass ones like the Sun de-
velop an outer convective layer, and high-
mass ones lose this layer.

Ṁacc

Accretion onto star

Fractional abundance 
of accreted material

1

0.5

R
z ⌘ R � r

0

f(⌃)

⌃
⌃00

F

Accretion mass flux

Figure 6.2: Illustration of the accretion
contamination model provided by Mihkel
Kama. The radial coordinate z runs inside-
out, opposite to r and the surface density
Σ. The radial profile of f , the local fraction
of accreted material, is given by Eq. 6.21.
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the accretion began. As a further simplification we define r (Σ) to be

the mean radius associated with the corresponding surface of constant Σ.

This allows us to work interchangeably with r and Σ without needing to

impose spherical symmetry, which would disallow several mixing processes

considered in Section 6.4. The model setup is visualized in Fig. 6.2.

With these assumptions, the accreted material di�uses through the star

according to
Df

Dt
= −

1
ρ

∂F

∂z
, (6.1)

where ρ is the density and

z ≡ R − r ,

where R is the surface radius of the star. Here18 18 Note that ρ appears multiplying D rather
than f because the di�usion in this case
takes place in mass coordinates, rather than
spatial ones. Equivalently note that if we
consider it to be ρf that di�uses then
we must account for the Boltzmann fac-
tor which maintains the background den-
sity gradient. This factor cancels the term
f ∂z ρ , leaving only ρ∂z f .

F = ρD
∂ f

∂z
(6.2)

is the flux of accreted material and D is the spatially-varying e�ective

di�usivity due to a variety of processes, including microscopic di�usivity,

rotational mixing, convection and thermohaline mixing.

Because material is accreting the total derivative left-hand side of equa-

tion (6.1) is written according to equation (1.13) as

Df

Dt
=
∂ f

∂t
+
∂z

∂t

∂ f

∂z
,

where the partial derivative of z is taken a constant Σ. This may equivalently

be written as
Df

Dt
=
∂ f

∂t
+
∂Σ

∂t

∂ f

∂Σ
, (6.3)

where the partial derivative of Σ is taken at constant z. Defining

Σ̇ ≡
∂Σ

∂t

and inserting equation (6.3) into equation (6.1) we find

∂ f

∂t
+ Σ̇
∂ f

∂Σ
= −

1
ρ

∂F

∂z
.

Now using the definition of the column density we see that

∂Σ

∂z
= ρ

so
∂ f

∂t
+ Σ̇
∂ f

∂Σ
= −
∂F

∂Σ
.
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Using equation (6.2) to eliminate the ∂ f /∂Σ we find

∂ f

∂t
− Σ̇

F

ρ2D
= −
∂F

∂Σ
, (6.4)

where ρ is the density and Σ̇ ≡ ∂Σ/∂t |z is the column density accretion

rate, given in terms of the mass accretion rate by

Σ̇ =
Ṁ

4πR2
.

As noted by Charbonneau (1991), a full treatment of this system re-

quires solving an unwieldy initial value problem. In the case where the

accreting material makes up a small fraction of the star the geometry is

particularly straightforward; there is a single source at the stellar surface

and its interior is limitless for the purposes of the accretion19. It is possible 19 Even in heavily accreting protoplanetary
disks, M?/Ṁacc ∼ 107 years. Typical disk
lifetimes are somewhat shorter than this, of
order 105yr, so the total mass which may
be accreted is only a small fraction of the
mass of the star.

then to approximate the mixing as the above authors and later Turcotte

(2002) did by a one-zone model, in which one tracks material entering

and leaving a specific region of interest. As we will find, however, the

di�usivity and density change quite rapidly with depth and so this is not

su�cient for our purposes. Rather we will retain the spatial degree of

freedom and make a somewhat less restrictive set of assumptions.

We begin by treating the system as being in instantaneous equilibrium

so that
∂ f

∂t
�

�����
Σ̇

F

ρ2D

�����
,

�����
∂F

∂Σ

�����
.

This is motivated by the fact that in many cases the dominant e�ect of

equation (6.4) is to transport material without changing f locally. This is

obviously only an approximation but as we shall show it holds quite well in

the systems of interest. With this approximation, equation (6.4) becomes

Σ̇
F

ρ2D
=
∂F

∂Σ
,

which is solved by

F = AΣ̇eα Σ̇,

where A is a constant of integration,

α(Σref , Σ) ≡
∫ Σ

Σref

dΣ′

ρ2D
(6.5)

and Σref is an arbitrary reference depth. Note that we assume that the

thermal and pressure structure of the system is decoupled from the mixing

fraction, such that this is time-independent. Inserting this into equa-
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tion (6.2) gives
∂ f

∂Σ
= −

AΣ̇

ρ2D
eα Σ̇ = −AΣ̇

dα

dΣ
eα Σ̇.

Integrating yields∫ Σ

0

dα

dΣ
eα Σ̇dΣ =

1
Σ̇

[
eα (Σref ,Σ)Σ̇ − eα (Σref ,0)Σ̇

]

and hence

f (Σ) = f (0) −A [
eα (Σ)Σ̇ − eα (0)Σ̇

]
,

where we have dropped the reference column density argument for clarity.

The material at Σ = 0 is what was just accreted, so f (0) = 1, hence

f (Σ) = 1 −A
[
eα (Σ)Σ̇ − eα (0)Σ̇

]
. (6.6)

Equation (6.6) hides a complication, namely that there is nothing pre-

venting f from becoming negative at some Σ. Indeed the integrand is

monotonically increasing and F0 is positive by definition, so this is a distinct

possibility. To prevent this the integration must halt at the depth Σ0 at

which f (Σ0) = 0, for here the instantaneous equilibrium approximation is

clearly incorrect. This depth parametrises the extent to which material has

mixed into the star. For Σ > Σ0 we let f (Σ) ≈ 0, as the solution must be

monotonic in depth and yet cannot become negative.

The cuto� depth may be used to eliminate A. With this, equation (6.6)

becomes

f (Σ) = 1 −
eα (Σ) − eα (0)

eα (Σ0) − eα (0)
. (6.7)

This defines a family of solutions, one for each possible value of Σ0. We can

relate these solutions to the time evolution by means of mass conservation.

Let the total accreted column density be

Σacc ≈

∫ t

0

Ṁacc

4πr2
dt ,

where this is approximate because we have neglected the variation in r

with depth. This column density must equal the integrated column density

of accreted material, so

Σacc =

∫ t

0
Σ̇dt ≈

∫ Σ0

0
f (Σ)dΣ. (6.8)

This defines Σacc as a function of Σ0. Because this is a monotonic relation

it may be inverted to define Σ0 as a function of Σacc and to thereby define

f as a function of time.
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6.3 Mixing Depth

In this section we are searching for a solution to equation (6.8), so

Σacc =

∫ Σ0

0
f (Σ)dΣ.

Inserting equation (6.7) we find

Σacc =

∫ Σ0

0
1 −

e Σ̇α (Σ) − e Σ̇α (0)

e Σ̇α (Σ0) − e Σ̇α (0)
dΣ.

For notational convenience let

γ (Σ) ≡ α(Σ)Σ̇. (6.9)

Then

Σacc =

∫ Σ0

0
1 −

eγ (Σ) − eγ (0)

eγ (Σ0) − eγ (0)
dΣ.

Di�erentiating with respect to Σ0 yields

dΣacc
dΣ0

=
d

dΣ0

∫ Σ0

0
1 −

eγ (Σ) − eγ (0)

eγ (Σ0) − eγ (0)
dΣ

=

∫ Σ0

0

d

dΣ0

[
1 −

eγ (Σ) − eγ (0)

eγ (Σ0) − eγ (0)

]
dΣ,

where we have made use of the fact that the integrand vanishes at Σ0.

Evaluating the derivative inside the integral we find

dΣacc
dΣ0

= −

∫ Σ0

0

d

dΣ0

[
eγ (Σ) − eγ (0)

eγ (Σ0) − eγ (0)

]
dΣ

=

∫ Σ0

0

dγ (Σ0)
dΣ0

eγ (Σ0)

eγ (Σ0) − eγ (0)

[
eγ (Σ) − eγ (0)

eγ (Σ0) − eγ (0)

]
dΣ.

Noting that the first two factors inside the integral do not depend on Σ

we may commute them with the integral to find

dΣacc
dΣ0

=
dγ (Σ0)
dΣ0

eγ (Σ0)

eγ (Σ0) − eγ (0)

∫ Σ0

0

eγ (Σ) − eγ (0)

eγ (Σ0) − eγ (0)
dΣ

=
dγ (Σ0)
dΣ0

eγ (Σ0)

eγ (Σ0) − eγ (0)
[Σ0 − Σacc]

=
dγ (Σ0)
dΣ0

1
1 − eγ (0)−γ (Σ0)

[Σ0 − Σacc] .

Because ρ and D are positive quantities, α is monotonic and hence either

asymptotes to a finite value or else diverges. Because Σ̇ is also positive,

γ does the same. In the event that γ diverges we may set eγ (0)−γ (Σ0) to

zero. Likewise we will argue later that under all cases of interest where γ
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asymptotes, it does so to a value much greater than γ (0), and so we may

make the same approximation. Thus we write in both cases

dΣacc
dΣ0

≈
dγ (Σ0)
dΣ0

[Σ0 − Σacc] ,

which may also be written as

dΣacc
dΣ0

≈
dγ

dΣ

����Σ0
[Σ0 − Σacc] . (6.10)

From this we see that it is not the asymptotic behaviour of γ that we care

about, but rather that of

dγ

dΣ
=

Σ̇

ρ2D
.

Noting that ρ is monotonic in Σ, and taking D to be monotonic in ρ, we

find that this either goes to zero, diverges, or approaches a non-zero finite

asymptote.

In the event that dγ/dΣ→ ∞ as Σ→ ∞, the solution to equation (6.10)

asymptotically approach a scenario in which

Σ0 − Σacc ≈
dΣ

dγ

����Σ0
→ 0.

This is because the prefactor of Σacc on the right-hand side of equa-

tion (6.10) is negative and so causes the solution to damp towards this

point. Thus in this situation

Σacc ≈ Σ0 (6.11)

and

f (Σ < Σ0) ≈ 1. (6.12)

Indeed this solution holds approximately even when dγ/dΣ tends to a

non-zero finite asymptote, because in that case the solution tends to

Σacc = Σ0 −
dΣ

dγ

����Σ0
≈ Σ0,

again with f (Σ < Σ0) ≈ 1.

In the opposite limit, where dγ/dΣ→ 0 as Σ→ ∞, Σ0 increases much

more rapidly than Σacc. Equation (6.10) may then be approximated as

dΣacc
dΣ0

≈
dγ

dΣ

����Σ0
Σ0. (6.13)
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This yields a lower bound on Σacc of

Σacc >
1
2
dγ

dΣ

����Σ0
Σ20,

where we have simply used the derivative evaluated at Σ0, which is the

minimum value it takes over the interval from 0 to Σ0.

To derive more than a lower bound we need to know more about

the structure of γ . Under the assumptions of hydrostatic equilibrium and

spherical symmetry,

dp

dr
= −ρд.

Inserting the ideal gas law as per equation (1.1) we find

d

dr

[
ρT

kB
µmp

]
= −ρд,

where µ is the mean molecular weight. In the outer regions of the star T ,

д and µ are approximately constant20 so 20 See Paczyński (1969) for a more detailed
discussion of these approximations.

d ln ρ
dr

= −
µmpд

kBT
.

As such we let

h ≡
kBT

µд

be the scale height for both pressure and density and write

ρ = ρ0 exp(z/h),

which yields

Σ =

∫ z

−∞

ρdz ′ = hρ = hρ0e
−z/h . (6.14)

Combining this with equations (6.5) and (6.9) we find

dγ

dΣ
=

Σ̇

ρ2D
=
h2

D

Σ̇

Σ2
.

As a result equation (6.13) may be written as

dΣacc
dΣ0

=
h2

D

Σ̇

Σ0
. (6.15)

In all of the cases discussed in Section 6.4, D is a power-law in Σ of the

form21 21 The combined di�usivity is a sum of the
di�usivities of all applicable processes. This
is generally not a power-law but is well-
approximated by one in most cases because
one process is usually dominant over all
others. Even should this approximation fail
the power-law approximation is primarily
a convenience rather than a limit essential
to the calculation.

D = D0Σ
β . (6.16)
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Note that the asymptotic behaviour of dγ/dΣ changes at β = −2, and

below this point the limit in which it diverges is applicable. Thus taking

β > −2 and inserting this into equation (6.15) we find

dΣacc
dΣ0

=
h2

D0
Σ̇Σ−1−β .

Integrating and using Σacc(Σ0 = 0) = 0 yields

Σacc =
h2Σ̇Σ

−β
0

(−β)D0

=
h2Σ̇

|β |D(Σ0) , (6.17)

so long as β < 0.

The resulting profile for f depends on depth. Assuming that γ −

γ (Σ0) � 1 and neglecting eγ (0) as discussed, we find that

f (Σ) ≈ γ (Σ0) −γ . (6.18)

At shallower depths f ≈ 1. Thus we may write

f (Σ) ≈ min (1,γ (Σ0) −γ ) .

In the event that D is a power-law we can evaluate γ to find

f (Σ) ≈ min
(
1,

h2Σ̇

ΣD(Σ) −
h2Σ̇

Σ0D(Σ0)
)
,

where we have let Σ0 → ∞ and dropped multiplicative factors depending

only on β . Note that for −1 < β < 0, γ (Σ0) and hence (Σ0D(Σ0))−1 vanishes
asymptotically and so at long times we may neglect this term and find the

time-independent result that

f (Σ) ≈ min
(
1,

h2Σ̇

ΣD(Σ)
)
.

For −2 < β ≤ −1, γ (Σ0) grows without bound even though its derivative

asymptotes to zero. In this case there is still a time-dependence to the

profile even at long times. When β = −1, a case which is both physically

relevant and mathematically convenient,

f (Σ, t) ≈ 1 −
(
Σ

Σ0

)h2 Σ̇/D0

and

Σacc =
h2Σ̇

D0
Σ0,



254 TURBULENCE AND TRANSPORT IN STARS AND PLANETS

hence

Σ0 =
D0

h2
t .

Letting

tmix(Σ) ≡ h2

D0
Σ

we find

f (Σ, t) ≈ 1 −
(
tmix(Σ)

t

)h2 Σ̇/D0

,

which in a series expansion yields

f (Σ, t) ≈ h2Σ̇

D0
ln

t

tmix
=

h2Σ̇

D(Σ)Σ ln
t

tmix
. (6.19)

This form is valid so long as it yields f < 1, at which point the appropriate

approximation is f = 1. For further decreases in β the time-dependence

becomes stronger, but in all cases we have considered thus far we find a

number well-approximated by

f (Σ) ≈ min
(
1,

h2Σ̇

ΣD(Σ)
)
,

which is at most wrong by logarithmic factors in time.

The only case not yet considered is β > 0, in which dγ/dΣ goes to zero

rapidly as Σ→ ∞. In this limit material is brought so rapidly into the star

that it is no longer valid to treat the centre as being infinitely far away

from the surface. That is, the interior boundary condition matters in this

limit. This does not occur in any of the physical cases considered, and so

we need not consider it further.

In all cases note that we have found Σ0 > Σacc, which must be the case

because f ≤ 1 everywhere. As a result, however, once we have waited a

long time relative to the time required to accrete material corresponding

to some depth Σ, we can be assured that Σ0 exceeds this depth. This justifies

our assumption that Σ0 is large relative to photospheric depths, as even

10−15M� yr−1 accreted for 30yr su�ces to produce Σacc well in excess of

the typical photospheric depths of 0.1g cm−2.

Finally, earlier in this section we claimed that the asymptotic value

of γ (Σ0) − γ (0) is, in the cases of interest, generically large when finite.

We now justify this claim. First suppose that D is a power-law in Σ as

in equation (6.16). When β > −1, γ (0) → −∞ while γ (Σ0) → goes to a

constant as Σ0 → ∞, so γ (Σ0) − γ (0) → ∞. When β < −1, γ (0) is finite
but γ (Σ0) ∝ Σ

−1−β
0 → ∞, so once more γ (Σ0) − γ (0) → ∞. This covers

all mixing mechanisms we have considered in this paper. Note that even
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if we regularise the integrals which have β > −1 22, the regularisation 22 This would be accomplished by cutting
o� the integration at some shallow point,
which could be physically motivated if the
accretion has a significant radial compo-
nent or otherwise mixes immediately to
some non-trivial depth.

point must be shallower than the photosphere 23, where the densities are

23 Otherwise there is no point in the calcu-
lation because the observed f will be unity.

extremely small, and so γ still ought to vary substantially. As a result we

expect that γ may be taken to have a large dynamic range between the

point at which material enters the system and the deepest regions.

Suppose though that we are interested in a case where this argument

fails, as there are pathological cases in which it does, such as the limit of

vanishing Σ̇ with a regularised integral. We would then have γ (0) close to
the asymptotic value of γ (Σ0). Then expanding equation (6.7) we find

f ≈
γ (Σ0) −γ (Σ)
γ (Σ0) −γ (0) .

which is enhanced relative to equation (6.21) by a factor of (γ (Σ0)−γ (0))−1.
This means that we ought to infer Σ0 be smaller by the same factor for a

fixed accreted mass, and also means that the profile of f near the surface

becomes independent of Σ̇, which only enters multiplicatively in γ . This is

physically what happens when the accretion rate is low and the dynamic

di�usivity increases rapidly inwards, as then material is then whisked away

on a timescale which is much faster than the rate at which it accumulates,

so the di�usivity at the point where it arrives is the limiting factor. This

scenario is somewhat artificial, in that all mechanisms we have examined

lack the regularising cuto� and hence do not exhibit such behaviour, but it

is useful to keep in mind in the event that such a cuto� becomes physically

interesting. This usually occurs at higher accretion rates, where the radial

velocity is significant, but there could be cases we have not considered in

which it becomes relevant.

In summary, there are two relevant limits: either dα/dΣ asymptotes to

zero as Σ→ ∞ or it does not. In the former case we find that

t ≈
h2

D(Σ0) (6.20)

(see equation 6.11). where h is evaluated at Σ0. This may be interpreted

physically as the material di�using to the column density at which the

di�usion timescale matches the accretion time, which is a generic feature

of di�usion problems with a localised source and dynamic di�usivity

increasing away from the source. The associated material fraction is well-

approximated by

f (Σ) ≈ min
(
1,

h2Σ̇

DΣ

)
. (6.21)

While the case where dα/dΣ remains non-zero does not arise physically

with any of the transport processes we consider here 24, it is still worth 24 See Section 6.4.
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examining for completeness. In this case we find (see equation (6.17)) that

Σacc ≈ Σ0, (6.22)

with

f (Σ) ≈ 1.

This is because the dynamic di�usivity is decreasing inward, and somaterial

just piles up at the surface. At the interface between the two cases there is

more complex behaviour (e.g. when α diverges slowly), but the qualitative

picture is well-captured by equations (6.20) and (6.22).

6.3.1 Steady State

To validate the assumption that mixing processes may be treated as being

in a quasi-steady state (i.e. an instantaneous equilibrium) we di�erentiate

equations (6.12) and (6.18) in time. The former is trivial, and yields zero

everywhere except near Σ0, where the steady-state approximation must

break regardless because this is the location of the di�usion front. The

latter is nearly zero when f ≈ 1 and elsewhere yields

d f

dt
=
dγ (Σ0)
dt

,

where we have used the fact that only Σ0 depends on time to evaluate this

derivative. Now

dγ (Σ0)
dt

=
dγ

dΣ

�����Σ0
dΣ0
dt

=
dγ

dΣ

�����Σ0
dΣ0
dΣacc

dΣacc
dt

= Σ̇
dγ

dΣ

�����Σ0
dΣ0
dΣacc

.

Inserting equation (6.10) we find

dγ (Σ0)
dt

≈
Σ̇

Σ0 − Σacc
.

We are working in the limit where dγ/dΣ→ 0, so Σ0 � Σacc, and hence

d f

dt
=
dγ (Σ0)
dt

≈
Σ̇

Σ0
.

In order to neglect this it must be smaller than the term dF/dΣ on the right-

hand side of equation (6.4). In other words, we need the dimensionless
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ratio

λ ≡
d f /dt
dF/dΣ

to be small. Evaluating this yields

λ =

(
Σ̇

Σ0

) (
dF

dΣ

)−1
=

(
Σ̇

Σ0

) (
d

dΣ

[
−ρ2D

∂ f

∂Σ

])−1
≈

(
Σ̇

Σ0

) (
d

dΣ

[
ρ2D

dγ

dΣ
eγ−γ (Σ0)

])−1
=

(
Σ̇

Σ0

) (
d

dΣ

[
Σ̇eγ−γ (Σ0)

])−1
=

(
Σ̇

Σ0

) (
Σ̇
dγ

dΣ
eγ−γ (Σ0)

)−1
=

(
Σ̇

Σ0

) (
Σ̇2

ρ2D
eγ−γ (Σ0)

)−1
=

(
ρ2D

Σ̇Σ0

) (
eγ−γ (Σ0)

)−1
.

Noting that eγ−γ (Σ0) ≈ 1 in this regime, we find

λ ≈
ρ2D

Σ̇Σ0

≈
Σ2D

h2Σ̇Σ0
,

where we have made use of equation (6.14) in the last line. Combining

this with equation (6.17) we find

λ ≈ |β |−1 Σ2

ΣaccΣ0
≈

Σ2

ΣaccΣ0
,

where we have dropped β because it is of order unity. Thus λ is small in

the regime where

Σ �
√
Σ0Σacc.

This is as expected: the approximation is a good one certainly up to Σacc

and for much of the region beyond that, but breaks down as we approach

Σ0, which is the location of the di�usion front.

In summary, the region near the surface of the star is the one of most

interest, and in all cases considered above we have found that for Σ � Σacc

the quasi-steady state approximation holds as desired.
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6.3.2 Time Dependence

If the accretion suddenly halts the system continues to mix, but now Σ̇ = 0

and the boundary condition on f (0) is replaced with a condition on the

surface flux, namely that

F (0) = 0,

subject to the equation
∂ f

∂t
= −
∂F

∂Σ
.

Once more taking the instantaneous equilibrium approximation we find

that F is a constant, in this case zero, such that

∂ f

∂Σ
= 0,

and hence f is a constant as well. The boundary between the region in

which the old solution applies and that in which the new one applies sits at

the depth Σb, such that

f (Σb)− = f (Σb)+, (6.23)

where the subscripts − and + refer respectively to the region at greater

depth than Σb and that at shallower depth. Along with conservation of mass

this yields a time evolution relation, namely that the amount of accreted

material in the region which has adapted to the new surface condition is

Σacc+ =

∫ Σb

0
f (Σ)dΣ = Σacc −

∫ t

0
F (Σb)−dt , (6.24)

where time is now measured since the accretion ended. This gives

f (Σ < Σb) = 1 −
1

Σacc

∫ t

0
F (Σb)−dt , (6.25)

As we only ever find ourselves in the case given by equation (6.21),

we combine this with equation (6.23) to find that at depths for which

Σ̇h2/D(Σb)Σb < 1,

Σ̇h2

D(Σb)Σb = 1 −
1

Σacc

∫ t

0
F (Σb)−dt ,

where Σ̇ is the accretion rate prior to it halting. Assuming that ρ ∝ h and

that D obeys a power-law in Σ we find

Σb ≈ Σacc
h2

D(Σb)(tacc − t) ,

where tacc is the time over which the system accreted. Letting Σb = Σ0
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and using equation (6.20) we find

Σb ≈ Σacc
tacc

tacc − t
. (6.26)

Thus we see that the timescale over which the photospheric composition

returns to its pre-accretion state is essentially the timescale over which

the accretion occured in the first place. This behaviour may be seen in

Fig. 6.3, which shows the evolution of the accreted fraction with time

for three stars which di�er only in the behaviour of the di�usivity. More

specifically, we have taken

D = D0Σ
β ,

and varied β between the three stars. What is shown is the solution to

equations (6.7), (6.20), (6.23), (6.24), and (6.25). In both cases accretion is

turned on at t = 0 and o� at t = 102. In the first case, with β = −0.5 > −1,

the star rapidly mixes material to incresing depths, and when the accretion

is turned o� the material disperses into the star in a timescale comparable

to the accretion time. In the second case, with β = −1, the marginal25 25 e.g. logarithmic in the small-f regime

scaling of f with time that we found previously is apparent. Finally in

the second case, with β = −1.5 < −1, the di�usion front progresses much

more slowly. In each case when the accretion is turned o� the surface

rapidly relaxes to match the peak accreted fraction, which it then tracks as

the material slowly disperses. In particular, the phenomenology is precisely

what we have described in equation (6.26), with the timescale for dispersal

is being set by the depth to which the material had reached, which in

turn is set by the timescale over which material was accreted. The notable

exception to this is if D0 changes after the accretion halts, in which case

the new timescale is

t ′ = t
D0

D ′0
. (6.27)

6.4 Mixing Processes

In the stars of interest there are five basic mixing processes which could

play a role:

1. Molecular Di�usion

2. Rotational Mixing

3. Shear Mixing

4. Thermohaline mixing
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Figure 6.3: The accreted fraction f is
shown as a function of mass coordinate,
defined to be zero at the surface, and time
for three stars with di�erent power-law dif-
fusivities (β = −0.5, β = −1, and β = −1.5
respectively from top to bottom). These
models were computed using the instan-
taneous equilibrium assumption for both
Σ < Σb and Σ > Σb. In both cases the units
are arbitrary, and were chosen such that
h = D0 = 1 and Σ̇ = 0.1. Accretion begins
at time t = 0 and ends at t = 102. In both
cases the timescale for mixing away from
the surface after accretion ends is set by the
depth to which the material had reached,
which in turn is set by the timescale over
which material was accreted.
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5. Convection

In all but the last of these we assume the fluid to be stably stratified, as

convection dominates all of these processes when it occurs. We neglect

gravitational settling because, as we shall show, the time-scales over which

the above processes act are of order hours to days whereas those for gravi-

tational settling are of order months to years even in white dwarf atmo-

spheres 26. 26 Fontaine & Michaud 1979

To first order these e�ects contribute additively to the di�usivity, and

so each may be considered independent of the others. In this section we

examine each of these in turn. We then compare their relative magnitudes

as a function of the stellar parameters and discuss the extent to which they

ought to contribute to mixing in accreting A-type stars.

6.4.1 Molecular Di�usion

Molecular di�usion, also known as microscopic di�usion, is the process

whereby random thermal motions of particles in a fluid mixmaterial within

the fluid. We discussed this in Section 1.4.1, where we used the expression

D ≈ 5.2 × 10−15
�
lnΛ

�−1 (T
K

)5/2 (
ρ

g/cm3

)−1
cm2s−1 (6.28)

27, where 27 Spitzer 1956

lnΛ =



−17.4 + 1.5 lnT − 0.5 ln ρ T < 1.1 × 105K

−12.7 + lnT − 0.5 ln ρ T > 1.1 × 105K

and T and ρ are measured in C.G.S.K. units when they appear in a log-

arithm. For simplicity we take lnΛ = −10 and ignore both thermal and

magnetic corrections to this factor. Inserting this into equation (6.28) and

rescaling with a representative temperature and density we find

D ≈ 5 × 10−5
( T

104K

)5/2 (
ρ

0.1g/cm3

)−1
cm2s−1.

When this mode of mixing dominates the di�usivity is a power-law with

β = −1 (see Appendix 6.3).

6.4.2 Rotational Mixing

Rotational mixing is a result of the Eddington-Sweet circulation. Because

we are primarily interested in phenomenon in the surface layers of radia-

tive stars28 and because the e�ects discussed in Chapter 4 decay rapidly 28 This is never the dominant process in
convective stars.

towards the surface of the star we neglect these and just retain the standard
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Eddington-Sweet circulation. While this manifests as a meridional flow,

near the surface it has radial scale z and velocity

u ≈

(
F?
p

)
Ω2R

д

29, where Ω is the angular velocity, F? is the heat flux and p is the pressure. 29 Eddington 1929

The radial velocity is o�set from this by a factor of h/R, so the e�ective

radial di�usivity is

D ≈ urh ≈ h

(
h

R

) (
F?
p

)
Ω2R

д
=

( z

R2

) (
F?
p

)
u2rot
д

, (6.29)

where urot is the rotation speed at the surface, which is typically of order

tens to hundreds of kilometres per second. This prescription is quite similar

to that found by Chaboyer & Zahn (1992) in a more detailed analysis.

Equation (6.29) gives rise to β = −1. The abundances are thus enhanced

over what we expect for β > −1 by a factor of30 ln(D0t/h2), and so varies 30 See equation (6.19) and the preceding
discussion.

logarithmically in time rather than asymptoting to a fixed value. For the

purposes of our calculations below we neglect this logarithmic factor, but

simply note that it could cause the real abundances to exceed those that we

predict by a factor of several when this is the dominant mixing mechanism.

6.4.3 Shear Mixing

Shear mixing is due to di�erential rotation or other shears present in

the star. Non-rotational shears may come from meridional circulations,

but in that case they cannot produce more mixing than the circulation

itself because they have the same fundamental length- and time-scales as

the circulation 31. Thus we need only consider shears due to di�erential 31 Maeder 2009

rotation.

There are two main sources of di�erential rotation in these systems,

namely the angular momentum brought to the surface of the star by the

infalling material and the long-term buildup of angular momentum due to

meridional circulations. While in systems with very strong accretion the

former may be severe, in most cases the accretion magnetically truncates

outside the star 32. When this occurs the infalling material is brought 32 Littlefair 2014

into corotation and so does not create a surface shear. Rather the angular

momentum is transported via the magnetic field, which may spread it

through a large volume of the star. As such we neglect the shears due to

accreting material.

Along similar lines, the long-term buildup of angular momentum is

expected to be quite large in some cases 33, but astereoseismic measure- 33 Zahn 1992; Meynet & Maeder 2000; Lau
et al. 2011
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ments appear to run counter to this prediction 34. There have also been 34 Cantiello et al. 2014; Keen et al. 2015;
Deheuvels et al. 2015; Eggenberger et al.
2017suggestions that more exotic angular momentum transport mechanisms

are at work near the surfaces of stars (see e.g. Kumar et al., 1999). Given the

uncertainties involved in this physics we neglect this e�ect in our analysis,

but note that it could change our results should there be strong shears in

the stars of interest.

6.4.4 Thermohaline Mixing

When the accreting material is metal-poor mixing due to an unstable

molecular weight gradient ought not to occur. This is because such a

situation leads to a stable molecular weight gradient, which is the opposite

of what is needed for the molecular gradient mixing mechanism. One

might worry that a stable weight gradient would hinder other mixing

mechanisms, but this e�ect should not be significant. While the e�ect of

accreting metal-poor material on the spectrum of the star may be profound,

its impact on the molecular weight gradient is small, especially if the ratio

of hydrogen to helium in the accreting material matches that in the star.

As such we are justified in neglecting all e�ects associated with molecular

weight gradients for such scenarios.

By contrast when the accreting material is metal-rich relative to the

star it causes an unstable molecular weight gradient. This may either be

a di�usively unstable gradient, resulting in convection, or one unstable

to double-di�usive processes, resulting in semi-convection or fingering.

The former occurs when 35 35 Traxler et al. 2011

d ln µ
d lnp

<
d lnT
d lnp

−
γ − 1
γ

,

where as usual γ is the adiabatic index and µ is the molecular weight. In

radiative zones the right-hand side is negative and of order a few tenths.

Hence a large molecular weight gradient is required, particularly if it is to

be sustained over a significant region of the star, and so even if it occurs

we expect the region over which it does to be small enough that its e�ects

may be neglected36. By contrast the doubly-di�usive instability merely 36 This may fail if the accretion rate is high
enough, but in such cases we shall generally
find that the entire photosphere is replaced
by accreted material.

requires that 37

37 Traxler et al. 2011d ln µ
d lnp

< 0. (6.30)

This is a much weaker condition which is readily realised, so we shall focus

on it to the exclusion of µ-induced convection.

The result of a gradient satisfying equation (6.30) is turbulence with an
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e�ective di�usivity of the form

D ≈ CK
�����
d ln µ
d lnp

�����

38, where µ is the molecular weight, C ≈ 103 is a constant39 and 38 Ulrich 1972
39 It is worth noting that there is con-
siderable uncertainty in the constant C .
Reported values inferred from observa-
tions include 658 (Charbonnel & Zahn,
2007), 667 (Charbonnel & Lagarde, 2010)
and approximately unity (Kippenhahn
et al., 1980). Numerical as well as more
theoretically-motivated studies show sim-
ilar disagreement, with values including
2 (Cantiello & Langer, 2010), of order
10 (Traxler et al., 2011), 658 (Ulrich, 1972)
and 1294 (Brown et al., 2013). Some of this
variation is owing to di�erences in the pre-
cise conventions used to define C , includ-
ing di�erent means of accounting for the
microscopic thermal and material di�usivi-
ties (Brown et al., 2013). This may explain
discrepancies of factors of several between
studies. Nevertheless, comparative studies
which standardise around consistent defi-
nitions indeed find considerable disagree-
ment in the literature (Traxler et al., 2011).
We use C = 103 for this study because
it provides good agreement with observa-
tions, but this remains a significant source
of uncertainty.

K =
4acT 3

3ρ2κcp
.

Using
d f

dz
=

F0
ρD

we find that

d ln µ
d lnp

=
d

d lnp
ln [µ?(1 − f ) + f µacc]

=
µacc − µ?

µ?(1 − f ) + f µacc

d f

d lnp

=
µacc − µ?

µ?(1 − f ) + f µacc
h
d f

dz

=
µacc − µ?

µ?(1 − f ) + f µacc

hF0
ρD

.

Thus

D ≈

√
hF0CK

ρ

�����
µacc − µ?

µ?(1 − f ) + f µacc

�����
. (6.31)

This scales like ρ−3/2, so β = −3/2 and hence the dynamic di�usivity

actually decreases with depth. As a result this mechanism is rapid in the

photosphere and becomes slow deeper down. As in the case of rotational

mixing, because β ≤ −1 there is a logarithmic enhancement in abundances

as a function of time which we neglect for the purposes of our abundance

calculations because it is generally small.

Because this mechanism depends on f and F0 in principle it should

be incorporated by solving the di�erential equations defining F and Σ

anew. Instead of this we simply solve equation (6.12) consistently with

equation (6.31). This amounts to making a local calculation of the mixing

near the photosphere. Because the photospheric abundance is primarily

set by mixing processes near the photosphere this ought to be a good

approximation, even if its naive extrapolation into the interior is more

problematic.

In the opposite case, in which a star accretes material which is much

lighter than the bulk composition, the material gradient acts to suppress

certain kinds of turbulent mixing, most notably convection. However

surface convection zones are somewhat superadiabatic, so we are justified
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in generally ignoring this e�ect.

6.4.5 Convective Mixing

Convection transports heat by means of bulk turbulent mixing of material.

As usual we approximate the associated di�usivity via Mixing Length

Theory as

D ≈ h3c (6.32)

40, where h is as defined in equation (3.19) and 3c is the convection speed. 40 Böhm-Vitense 1958

When convection is e�cient (i.e. nearly adiabatic) the latter may be

approximated as

3c ≈

(
F?
ρ

)1/3
(6.33)

41, where F? is the heat flux. At the photosphere proper this is not a 41 Böhm-Vitense 1992

good approximation, as a significant fraction of the flux there is carried by

radiation, but below this point the approximation typically becomes very

good42. Furthermore because there may be other dynamical processes 42 The error in this approximation falls ex-
ponentially in optical depth at low depths
before hitting a (typically low) floor set by
the radiative di�usivity.

which mix material at the photosphere itself as the accreting material hits

the star we suspect that this approximation does not result in our neglecting

an important bottleneck to mixing.

Combining equations (6.32) and (6.33) we find

D ≈ h

(
F?
ρ

)1/3
.

This may also be written as

D ≈ hcs

(
F?

ρc3s

)1/3
.

Noting that p ≈ ρc2s we find that

D ≈ hcs

(
F?
pcs

)1/3
.

We are interested in the di�usivity at the photosphere, which is given by

equation (6.36) as

p ≈ дκ−1,

so

D ≈ hcs

(
F?κ

дcs

)1/3
.
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The sound speed is proportional to T 1/2, the scale height to T/д, and the

flux to T 4, so neglecting the e�ects of molecular weight variations

D ≈ h�cs,�

(
F�κ�
д�cs,�

)1/3 (
T

T�

)8/3 (
д

д�

)−4/3 (
κ

κ�

)1/3
.

Making use of L ∝ M3.5 and 43 R ∝ M we find that T 4 ∝ M3/2 and hence 43 Böhm-Vitense 1992

T 8/3 ∝ M . Similarly we find that д ∝ M−1, and hence

D ≈ h�cs,�

(
F�κ�
д�cs,�

)1/3 (
M

M�

)7/3 (
κ

κ�

)1/3
.

Using κ� ≈ 10cm2/g we find

D ≈ 7 × 1013cm2g−1
(
M

M�

)7/3 (
κ

10cm2g−1

)1/3
. (6.34)

6.5 Application to observations

Sources of accretion onto stars include protoplanetary disks, debris disks,

and evaporating or tidally disrupted planets or planetesimals. Intermediate-

mass stars develop radiative envelopes fairly quickly, either on the Henyey

track or immediately o� the Hayashi track 44. This allows the CAM frame- 44 Palla 2012

work to be applied to very young, disk-hosting early-type stars as well as

main-sequence ones. Using known stellar parameters and the equations

presented in the previous sections, one can calculate the fraction fph of

accreted material in the stellar photosphere as a function of time and deter-

mine its composition. We detail the required equations and discuss various

source types below.

We denote the observed fractional abundance of element X in the stellar

photosphere with (X/H)obs, and use analogous notation for the reference

stellar composition45 and recently accreted material46. The normalization 45 “bulk”
46 “acc”

with hydrogen (H) is arbitrary and just the most common convention.

The fraction of accreted material f (r ) is not a directly-observable quantity.
Rather, what is observed is the composition of the photosphere, (X/H)obs.

For a given element X measured by a transition at wavelength λ, the

inferred composition is

(
X
H

)
obs
=

∫ R
0 ρe−τλ (z)

[
f (z) �X

H
�
acc + (1 − f (z)) �X

H
�
bulk

]
dz∫ R

0 ρe−τλ (z)dz
,

where, τλ(z) is the optical depth at z for light of wavelength λ, (X/H)acc
is the concentration of X in the accreted material, and (X/H)bulk is the
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Figure 6.4: The photospheric abundance of accreted material is shown in colour for main sequence stars as a function of stellar mass (horizontal)
and rotation speed (vertical). Four accretion rates are shown: 10−13M�/yr (top-left), 10−11M�/yr (top-right), 10−8M�/yr (bottom-left) and
10−5M�/yr (bottom-right). Each star is placed on the panel which most closely matches its measured or predicted accretion rate. Stars with
no such data are placed on the bottom-right panel and shown with open circles. Contours correspond to factor of 100 increments. Regions
with f < 10−6 are shown in white. Note the sudden change around 1.4M� , corresponding to the onset of a surface convection zone which
greatly enhances photospheric mixing. The accretion rate for HD 245815 is due to Donehew & Brittain (2011).
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Embedded protostar 
with giant planet

Protoplanetary disk 
with giant planet

Debris disk with gas

Evaporating planet

Chronic depletion

Ṁ ~ 10-5 M⊙ yr-1

Ṁ ~ 10-8 M⊙ yr-1

Ṁ ~ 10-11 M⊙ yr-1

Ṁ ~ 10-13 M⊙ yr-1

No longer accreting

Dust disk Gas 
envelope

Figure 6.5: Evolutionary phases where an
early-type star may display surface abun-
dance anomalies due to ongoing or recent
accretion. Red material on the star indi-
cates accreted material, while blue indicates
primordial composition. Planet-induced
radial dust depletion can provide selective
accretion in the disk phase. Chronic de-
pletion refers to hypothetical signatures
which remain for & 100Myr after accre-
tion ceases. This figure was provided by
Mihkel Kama.
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concentration of X in the stellar material. That is, the composition which

is measured is a transmittance-weighted average over the star.

A reasonable approximation to this average is to identify the depth zph

of the photosphere for a given spectral feature. This depth is given by the

implicit equation

τλ(zph) =
∫ zph

−∞

κλ(ρ(z),p(z))ρdz ≈ 1, (6.35)

where κλ(ρ,p) is the opacity of material at pressure p and density ρ at

wavelength λ. This expression in turn may be approximated as

τλ(zph) =
∫ zph

−∞

κλ(ρ(z),p(z))ρdz

≈

∫ Σ(zph)

0
κλ(ρ(z),p(z))dΣ

≈

∫ p(zph)

0
κλ(ρ(z),p(z))д−1dp

≈ κλ(ρph,pph)pphд−1,

where we have made use of dΣ = ρdz and p ≈ Σд−1 near the photosphere.

As T is nearly constant throughout the photosphere, the equation of state

determines ρ from p and so equation (6.35) may be written simply as

κλ(pph)pphд−1 ≈ 1.

To leading order the dependence on λ may be dropped and κ may be

approximated by the Rosseland mean opacity, resulting in

κ(pph)pphд−1 ≈ 1. (6.36)

The solution to this equation yields a photospheric pressure, which may

be converted to a depth using the equation of hydrostatic equilibrium

dp = −ρдdz. The photospheric fraction fph is then given by equation

(6.21), which may be approximated as

fph ≈ min *
,
1,

Ṁh

4πR2ρphDph

+
-
.

Note that we have used the form for cases in which ρ2D increases with

depth, as this is the only one relevant for themixingmechanisms considered

in the previous section. A further approximation makes use of h � R to

write

Mph ≈ 4πR2hρph,
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where Mph is the mass of the photosphere, which typically varies from

10−12M� for Sun-like stars to 10−10M� in more massive stars. As such,

fph ≈ min *
,
1,

Ṁ

Mph
*
,

h2

Dph
+
-

+
-
. (6.37)

For contexth is typically of order 107cm andDph varies between 102cm2 s−1

when molecular di�usion dominates and 1014cm2 s−1 for stars with surface

convection zones. Finally, this fraction is related to the observed abundance

of element X by the relation(
X
H

)
obs
= f ph

(
X
H

)
acc
+ (1 − fph)

(
X
H

)
bulk

. (6.38)

The accreted fraction of the photosphere asymptotes rapidly to a con-

stant except in the case where rotational mixing dominates, in which case

there is a logarithmic correction in time. Fig. 6.4 shows the fractional abun-

dance of accreted material in the photosphere, neglecting the logarithmic

correction, for main sequence stars as a function of mass and rotation speed

for accretion rates Ṁacc = 10−5, 10−8, 10−11, and 10−13M�/yr. These rates

represent accretion from the envelope of a protostar, a protoplanetary disk,

a gas-rich debris disk, and an evaporating planet, respectively. Various

evolutionary stages where a star may show surface abundance anomalies

due to accretion are shown along with the relevant order-of-magnitude

accretion rate in Fig. 6.5. We also include chronic (long-lived) deple-

tion, which may occur if the total mass fraction accreted from material

with an abundance anomaly is su�cient that a residual signature remains

even after complete mixing, or if the mixing happens on a long timescale

(tmix & 100Myr).

The abundance of X in the mass reservoir providing the accretion is(
X
H

)
acc
=

1
f

(
X
H

)
obs
−
1 − f

f

(
X
H

)
bulk

(6.39)

Aside from calculating f , we need to assume a reference point for the bulk

stellar abundances. Reasonable choices include the composition of the Sun
47 or an average of nearby early-type stars 48. In the current work, we 47 Lodders 2003; Asplund et al. 2009

48 Fossati et al. 2011; Martin et al. 2017
favour the former for accuracy and precision, but the latter choice may

be a better reference because it was obtained using spectroscopic methods

nearly identical to those used in studies of protoplanetary disk hosting

early-type stars (e.g. Acke & Waelkens, 2004; Folsom et al., 2012) and in

our own ongoing observational e�orts.

We now consider four source types where we can obtain new insight
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on the accreting material:

1. Protoplanetary disks (e.g. HD 163296, HD 100546)

2. Debris disks (e.g. HD 141569 A, HD 21997)

3. Evaporating planets (e.g. HD 195689/KELT-9)

4. λBoötis stars

We accompany each of the example stars with a figure; Figs. 6.6, 6.7,

6.8, 6.9, and 6.10 respectively. Input and calculated parameter values are

summarized in Table 6.1. The figures show the newly accreted photo-

spheric mass fraction, fph, calculated from Eq. 6.3749. As a comparison 49 solid black lines

with this theoretical calculation, fph can also be estimated from observa-

tions using the measured stellar rotation rate, vrot, and the measured or

predicted accretion rate50, Ṁacc. Observed vrot values are shown for each 50 intersection of red horizontal and blue
vertical lines

star, while Ṁacc is either observational, or predicted from models or theory.

Where available, e.g. for HD 100546 (Fig. 6.7), the observed (Fe/H)obs is

used to calculate a lower limit51 on fph, which corresponds to the fraction of 51 purple diagonal line

the photosphere that needs to be replaced with pure H in order to decrease

(Fe/H) to the observed level. If (Fe/H)obs is super-solar, e.g. for HD 163296,

we obtain instead an upper limit52 on fph under the assumption that the 52 purple vertical line

accretion flow contains only Fe. An analogous reasoning would apply

to any other element, here we use iron because it is easy to determine

and indicative of a depletion of dust from the accreted material. Specific

elemental signatures may be di�erent in specific cases, depending on the

origin of the accreted material.
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Figure 6.6: HD 163296 hosts a full pro-
toplanetary disk. We show the theoret-
ical accreted photospheric mass fraction
fph from accreting hydrogen-rich mate-
rial (solid black lines) or accreting pure Fe
(dotted), fph from the observed accretion
and rotation rate (intersection of horizontal
red and vertical blue bars, to be compared
with the solid black lines), and an upper
limit from the observed super-solar (Fe/H)
of the star (vertical purple line, to be com-
pared with the dotted black lines). The ±σ
and ±2σ contours for logvrot are shown
in red while those for log Ṁacc are shown
in blue.
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Figure 6.7: HD 100546 hosts a transitional
protoplanetary disk. We show the theo-
retical accreted photospheric mass fraction
fph from accreting hydrogen-rich mate-
rial (solid black lines) or accreting pure Fe
(dotted, not relevant in this source), fph
from the observed accretion and rotation
rate (intersection of horizontal red and ver-
tical blue bars, to be compared with the
solid black lines), and a lower limit from
the observed low (Fe/H) of the star (diag-
onal purple line, to be compared with the
solid black lines and the red and blue bars).
The ±σ and ±2σ contours for logvrot are
shown in red while those for log Ṁacc are
shown in blue.



STELLAR PHOTOSPHERIC ABUNDANCES AS A PROBE OF DISKS AND PLANETS 273

Star Type log
�Fe
H

�
obs vrot Age Ṁacc log tph log f log f�

km s−1
�

(Myr)
�
M� yr−1

�
(s) (Pred.) (Pred. Heavy)

HD 163296 A3 −4.39+0.15
−0.15 122.0 ± 3.0 7.56+2.17

−2.17 −7.49+0.3
−0.14 3.9 −0.33 −4.70

HD 100546 A0 −5.67+0.08
−0.08 64.9 ± 2.2 7.02+1.49

−1.49 −7.04+0.15
−0.13 3.5 +0.00 −4.45

HD 141569 B9.5 −5.25+0.32
−0.32 222.0 ± 7.0 9.0+4.5

−4.5 −7.65+0.47
−0.33 3.7 −0.92 −4.76

HD 21997 A3 -4.47? 69.7? 30.0 −10.4† 4.3 −2.40 −5.98
HD 195689 A0 −4.53+0.20

−0.20 111.4 ± 1.3 300.0 −13.0+2.0
−2.0

† 3.6 −5.98 −7.52
Star Notes
HD 163296 Folsom et al. (2012); Fairlamb et al. (2015)
HD 100546 Folsom et al. (2012); Fairlamb et al. (2015); Kama et al. (2016)
HD 141569 Folsom et al. (2012); Fairlamb et al. (2015)
HD 21997 Vigan et al. (2012); Kral et al. (2016, 2017); Netopil (2017); Kral (2017)
HD 195689 Gaudi et al. (2017)

Table 6.1: Stars chosen to demonstrate the
application of CAM to study the composition
of accreting material. tph is h2/D eval-
uated at the photosphere. The predicted
log f was calculated using equation (6.21),
with molecular weight gradients incorpo-
rated in the heavy case on the assumption of
Fe accretion. ? – (Fe/H)obs for HD 21997
was determined photometrically and no er-
rorbar was reported. Likewise no errorbar
was reported for vrot for this star. † – Ac-
cretion rates predicted from models. Ref-
erences are shown in the lower half of the
table.

6.5.1 Protoplanetary disks

Because our method allows us to link the chemistry of the photospheres

of early-type stars to that of their circumstellar material it is particularly

powerful when applied to protoplanetary disk hosts. In particular there are

three immediate applications which can likely be achieved with exisitng

data. First, we can measure the mass ratio of gas to dust in these systems by

determining how refractory-depleted, or enhanced, the accreting material

is relative to the bulk of the star. Secondly, we can determine the fraction of

each element locked in dust and other refractory particles by determining

the variation of this depletion across di�erent species. Finally in the subset

of these stars which are young and still accreting at high rates we can

determine whether or not they have developed a radiative envelope53. We 53 Early-type stars are expected to be con-
vective initially before becoming radiative
as they move onto the main-sequence.now discuss each of these in turn.

1. Gas-to-dust mass ratio in the inner disk:

For young54 early-type stars there is a known correlation between the 54 1-10Myr old

presence of dust-depleted gaps in protoplanetary disks and a depletion

of refractory elements in the stellar photosphere 55. If the photosphere 55 Kama et al. 2015

is entirely replaced by accreted material this depletion corresponds to

∆g/d values as high as 56 1000. Applying our formalism we can compute 56 Kama et al. 2015

fph and find that it is somewhat less than one in several systems. As

a result we expect to find some ∆g/d values much larger than before.

This is in better agreement with the dust depletions directly determined

from spatially resolved continuum observations 57. 57 e.g. van der Marel et al. (2015, 2016),
though that data is limited by the fact that
the gas surface density is measured indi-
rectly via CO

For instance HD 16329658 and HD 10054659 host a full and a tran-

58 Fig. 6.6
59 Fig. 6.7

sitional disk and we predict fph,HD 163296 = 0.47 and fph,HD 100546 =
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1.0 respectively. These high theoretical60 fph,HD 163296 = 0.47 and 60 See Table 6.1.

fph,HD 100546 = 1.0 confirm that the photospheric abundance pattern

closely follows the abundance pattern of the accreting material. For

the latter the calculations in Kama et al. (2015) are correct, while that

study underestimates the gas-to-dust ratio of the former by a factor of

(0.47)−1 ≈ 2.

A peculiarity of HD 163296 is that it is actually enhanced in several re-

fractory elements relative to solar 61. This means that either its bulk com- 61 Folsom et al. 2012

position di�ers from the solar reference or else (Fe/H)acc & (Fe/H)�.
The former is possible but it would be odd for the system to be enhanced

specifically in refractory elements through a means other than accretion.

The latter therefore seems more likely, and implies that the relevant

features to examine in Fig. 6.6 are the theoretical fph from pure-Fe

accretion62 and the upper limit on fph from the observed photospheric 62 dotted black lines

abundance (Fe/H)obs. An enhancement of refractories is consistent with

disk models which suggest the disk material around HD 163296 is

gas-poor63. In other words, this system is preferentially accreting dust. 63 ∆g/d ≈ 20, Boneberg et al. (2016)

The analysis of HD 100546 is more straightforward because the

observed abundance of refractory elements is low64 Following our pre- 64 For instance (Fe/H)obs = −5.67 (Kama
et al., 2016), well below solar.

dictions for H-rich accretion in Fig. 6.765 and the observed rotation and 65 solid black lines

accretion rate constraints66 gives fph = 1.0 and (Fe/H)acc = (Fe/H)obs. 66 red and blue bars

The observed iron abundance is a factor of 10 below solar and so gives

∆g/d = 1000, consistent with the structure of the inner dust cavity in

gas-dust disk models 67. 67 Bruderer et al. 2012; Kama et al. 2016

2. The refractory vs volatile fraction of elements:

As we have discussed, the most refractory elements68 are typically 68 i.e. those with the greatest condensation
temperature

depleted by a factor of several in the photospheres of stars with a transi-

tional disk 69. Equation (6.39) allows us to infer the abundances of these 69 Kama et al. 2015

elements in the accretion stream from those in the photosphere. We

have argued that the accretion stream is depleted because it preferen-

tially contains gas rather than dust. Hence its composition is reflective

of the fraction of each species which is in dust versus the gas phase.

By comparing the depletion factors of di�erent elements we expect to

be able to determine these fractions both for various species and for

various kinds of disks, which may perform di�erent kinds of chemical

processing and thereby result in di�erent refractory fractions.

Preliminary data indicate that this approach is viable. Transitional

disks have extended radial zones where the surface density of large

particles is reduced by up to several orders of magnitude. Furthermore
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while the most volatile elements, such as C and O, have similar photo-

spheric abundances for all disk-hosting early-type stars regardless of

the disk structure 70, elements of intermediate sublimation temperature 70 Kama et al. 2015

may be sensitive to the structure of the disk and the kinds of chemical

processing it performs. One such element which we shall address in the

future is sulfur, which is predominantly refractory in primitive solar

system meteorites, but whose refractory fraction in protoplanetary disks

has not yet been observationally determined.

3. Identification of convective envelopes:

A tantalising possibility is that it may be possible to probe the evolution

of young early-type stars. It is usually possible to measure the photo-

spheric abundances 71 of and accretion rates onto these stars 72. When 71 Acke & Waelkens 2004; Folsom et al.
2012
72 Mendigutía et al. 2011; Fairlamb et al.
2015

the accreting material has a composition significantly di�erent from the

bulk stellar material these two pieces of information su�ce to constrain

the di�usivity in the outer portions of the star. This is important in stars

with masses above 1.4M� which are expected to be fully convective

when young and become radiative in their outer layers as they move on

to the main-sequence. Because the development of a radiative zone en-

tails a dramatic reduction in di�usivity near the photosphere the change

to a radiative envelope ought to be detectable even in highly uncertain

measurements. Hence it may be possible to place strong constraints on

the ages of certain stars, which is otherwise quite di�cult to do 73. 73 Tout et al. 1999; Soderblom et al. 2014

To understand this quantitatively, recall that the fraction of accreted

material in the photosphere is given by equation (6.37) as

fph ≈
Ṁ

Mph
*
,

h2

Dph
+
-
.

For a species where the stellar and accreted material have very di�erent

abundances this fraction is readily measured and closely related to any

depletion/enhancement by equation (6.38). Inserting equation (6.34)

we find

fph ≈ 10s
Ṁ

Mph

(
M

M�

)5/12 (
κ

10cm2g−1

)−1/3
. (6.40)

The upshot of this being so much less than any of the mechanisms active

in radiative stars is that it provides a robust means of determining which

stars have formed their radiative envelopes and which ones are still fully

convective.

If fph can be measured or bounded and is found to be much greater
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than Eq. (6.40) suggests – such as would be inferred if a significant

depletion of refractories is found – mixing must be much less e�cient

than convection and so the upper regions of the star must be radiative.

Similarly if fph is found to be consistent with this equation then this

strongly suggests a convection zone. Central to the determination either

way is that the accreting material must be known to have a di�erent

composition from the bulk stellar material. This could be inferred

from observations of the accretion disk. For example a disk might be

seen to have dust depletion in its inner regions. If such a disk were

seen around a star with a high abundance of refractory elements that

would be good evidence that the recent accretion contained a significant

dust component and hence was very di�erent from the stellar bulk in

composition.

The power of this test in the face of the typically order of magnitude

uncertainty in the accretion rates and up to a factor of two in abun-

dances comes from the massive di�erence in mixing e�ciency between

radiative mechanisms and bulk turbulent convection.
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Figure 6.8: HD 141569 hosts a hybrid disk.
We show the theoretical accreted photo-
spheric mass fraction fph from accreting
hydrogen-rich material (solid black lines)
or accreting pure Fe (dotted, not relevant
in this source), fph from the observed ac-
cretion and rotation rate (intersection of
horizontal red and vertical blue bars, to be
compared with the solid black lines), and a
lower limit from the observed low (Fe/H)
of the star (diagonal purple line, to be com-
pared with the solid black lines and the red
and blue bars). The ±σ and ±2σ contours
for logvrot are shown in red while those
for log (Ṁacc) are shown in blue.

6.5.2 Debris disks

Debris disks are generally depleted in gas, characterised by a gas-to-dust

mass ratio ∆g/d . 1. Because of this the dust dynamics are decoupled from

those of the gas. Recently it has been found that large amounts of carbon

and oxygen can be present in these disks in the gas phase, either in the

form of CO molecules, or neutral or ionized C or O atoms. Such disks
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logṀ(M¯ yr−1)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

lo
gv

ro
t(

k
m

s−
1
)

-6
.0

-4
.0

-2
.0

0.
0

-8
.0 -6

.0

-4
.0

HD21997
Figure 6.9: HD 21997 hosts a hybrid disk.
The high vrot, and the accretion rate pre-
dicted by the Kral et al. (2016, 2017) model,
Ṁacc ∼ 10−11M� yr−1, yields fph = 4 ×
10−3. We show the theoretical accreted
photospheric mass fraction fph from accret-
ing hydrogen-rich material (solid black
lines) or accreting pure Fe (dotted), fph
from the model-predicted accretion and
observed rotation rate (intersection of hori-
zontal red and vertical blue bars). Note that
no uncertainties are given for vrot because
none were reported from observations, and
likewise none are given for Ṁacc because
none were given in the predicted rates. If
the accreted material is largely C and O,
the stellar photospheric abundances of these
elements may be dominated by outgassed
debris disk material.

with gas are found around early-type74 stars and fall into two categories, 74 A, F

namely gas-poor and gas-rich75. In the gas-poor disks the C and O gas 75 Both poor and rich are relative terms,
because all debris disks are gas-poor relative
to, say, protostellar or protoplanetary disks.mass can be explained with outgassing of CO and H2O from exocomets,

such as β Pic, HD 181327, and Fomalhaut. By contast the gas-rich debris

disks76 such as HD 141569 A and HD 21997 may be primordial, gas-rich 76 i.e. “hybrid” disks

disks in a late stage of dissipation 77. For our purposes a key di�erence 77 Moór et al. 2011; Péricaud et al. 2017;
Marino et al. 2016; Kral et al. 2017; Hughes
et al. 2017; Matrà et al. 2017a,b; Moór et al.
2017

between the two types is that the hybrid disks are likely still dominated

by H2, while in the outgassing disks C, O, and H are likely comparable in

number density because the hydrogen comes from H2O photodissociation

and the C/O ratio is not far from unity.

Models of exocometary gas production and viscous disk evolution pre-

dict the accretion rate of C- and O-rich gas onto the host starsto be in

the range of 10−13 to 10−11M� yr−1 78. Using these and observed rates 78 Kral et al. (2016, 2017) and private com-
munication

where available we can calculate the fraction fph of the photosphere com-

posed of accreted material. For instance HD 141569 A hosts a hybrid disk

and is observed to be heavily accreting. As shown in Fig. 6.8 we predict

fph = 0.12 despite this star being a rapid rotator79. In comparison, the 79 At such velocities rotational mixing dom-
inates and is expected to be very e�ective.

observed photospheric iron abundance gives a lower limit of fobs ≥ 0.9.

Because the errorbars on Ṁacc are so large80, the theoretical and observa- 80 The error in our prediction of fph is dom-
inated by that in the accretion rate because
that is much less certain than any of the
other system parameters.

tionally constrained f are consistent and suggest that a large fraction of

the photosphere is composed of freshly accreted, refractory-poor material.

This implies that the bulk of the measured accretion is indeed composed

of hydrogen and other volatile elements, indicating that at least the inner

disk is relatively gas-rich. This conclusion is supported by the fact that a

large-scale CO gas disk has been resolved with ALMA 81. 81 Flaherty et al. 2016; White et al. 2016
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By contrast the hybrid-disk system HD 21997 has no reported detec-

tion of accretion onto the star. Unfortunately a precise, spectroscopic

(Fe/H)obs was not immediately available from the literature. We use an

Ṁacc value from the Kral et al. (2016) model to obtain fph = 4 × 10−3,

shown in Fig. 6.9,. The disk in this system is thought to be gas-rich, with

a large amount of primordial hydrogen remaining. The photospheric

abundances of the star o�er a way to distinguish such a primordial origin

of the gas from the cometary outgassing scenario. In the latter case the

volatile elements C and O would be accreted in large quantities with

barely any hydrogen, while in the primordial case the accretion would be

hydrogen-dominated. Hence measuring the stellar C and O abundances

may di�erentiate between the two scenarios. Because we expect the ac-

creted mass fraction of this system to be quite small this test may prove

challenging, but it may prove viable should a similar system be found with

either slower rotation or faster accretion.
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Figure 6.10: HD 195689 hosts the hottest
known Hot Jupiter, with Teq = 4600K
(KELT-9b, Gaudi et al., 2017). We show
the theoretical accreted photospheric mass
fraction fph from accreting hydrogen-rich
material (solid black lines) or accreting
pure Fe (dotted), and fph from the model-
predicted accretion and observed rotation
rate (intersection of horizontal red and ver-
tical blue bars). The ±σ and ±2σ contours
for logvrot are shown in red while those
for log (Ṁacc) are shown in blue.

6.5.3 Evaporating or disrupted planets

The environment near a star poses several dangers to planets. First, heavy

ultra-violet82 irradiation can gradually cause the planet to evaporate. Sec- 82 UV

ondly, at su�ciently close distances the planet may undergo Roche lobe

overflow or, depending on the circumstances, more violent tidal disruption.

In either case some or most of the planetary material will accrete onto the

star, where it may potentially be observed as photospheric contamination.

This possibility was first suggested by Jura (2015) for early-type stars as a

way to explain why stars without any apparent circumstellar mass reservoir
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display the λBoö abundance anomaly.

Some fraction of the UV flux onto a planet is turned into heat and

dissipated radiatively along with the bulk of the incident stellar flux. The

rest serves to drive a wind which escapes the planet 83. At high UV flux84 83 Murray-Clay et al. 2009
84 FUV > F0, where F0 = 450 erg cm−2 s−1

the mass-loss rate is given by

ṀUV ≈ 4 × 1012
(
FUV

F0

)1/2 [g
s

]
. (6.41)

The best candidate for this mechanism found thus far is HD 195689b85. 85 Also known as KELT-9b, this was
the first planet found around a B9/A0
star (Gaudi et al., 2017).Using Eq. 6.41 and adopting LUV ≈ 10−3 L� for the UV-luminosity of the

host star, we find ṀUV = 5.7× 1012 g s−1 or 10−13M� yr−1. In Fig. 6.10 we

show the photospheric mass fraction of accreted material for this accretion

rate with an assumed relative uncertainty of 102 in both directions. Taking

the mean over log Ṁ , we find fph = 10−6. For the highest potential plane-

tary evaporation rate,Macc = 10−11M� yr−1, we find fph ≈ 3× 10−5. If the

the accreting material is similar to solar in composition this is too-small a

signal to detect with current instruments. On the other hand if the material

is very di�erent from solar it may lead to a detectable enhancement in the

stellar photospheric abundances of certain elements.

HD 195689b86 and HD 185603b87 are the only Hot Jupiter planets 86 i.e. MASCARA-2b
87 i.e. KELT-20b

known to-date to orbit main sequence A0 stars 88. As the KELT and 88 Talens, G. J. J. et al. 2018; Lund et al.
2017

MASCARA programs continue more such heavily irradiated exoplanets

will likely be found. Applying our method to their host stars may provide

new information on the mass loss rate and elemental abundance ratios

of such planets. In particular, it may be feasible to obtain a completely

independent measurement of the C/O ratio in the atmosphere of giant

planets89. 89 The C/O ratio is noteworthy as a poten-
tial tracer of planetary migration. This is
because its distribution in protoplanetary
disks is heavily influenced by the conden-
sation properties of a variety of ices which
freeze out of the gas at di�erent distances
from the host star. The inflation mecha-
nism discussed in Chapter 5 predicts that
hot Jupiters which form in regions where
tidal heating is important are more likely to
be inflated than thosewhich formed further
out because the former are more likely to
form and maintain interior radiative zones.
Hence better measurements of the C/O ra-
tio may serve as a test of that mechanism.

Earth-like or Super-Earth planets can also undergo disruption or evapo-

ration. Such accretionmay produce a detectable signal despite the relatively

small amount of mass involved because the accreted material would consist

mostly of refractory elements, which generally less abundant than volatiles

in stars. For instance accreting a 1M⊕ planet over 1Myr yields an average

accretion rate Ṁacc = 10−12M� yr−1. This could produce a factor of several

relative enhancement of the abundances of some refractory elements, and

such a signature would remain visible in the photosphere for 0.1 to 1Myr.

It is important to emphasise that we are talking about accretion of

material onto the surface of a star and its subsequent mixing into the bulk,

rather than a purely bulk e�ect. The latter has been studied in various

contexts but generally produces somewhat smaller signals because the bulk
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of the star heavily dilutes the planetary material. For instance it has been

suggested that elemental abundances in solar-like stars with planets are

modified by a large fraction of refractories being locked in rocky planets

or by the accretion of entire giant planets 90. Other studies suggest a 90 e.g. Meléndez et al. (2009); Ramírez et al.
(2009); Wilson et al. (2018).

relation between the overall metallicity of the system and the masses of its

planets 91. Our method, by contrast, focuses on a snapshot in time of the 91 Buchhave et al. 2014

composition of material currently or recently (≤ 1Myr) lost from a planet

and accreted onto its host star.

6.5.4 λ Boötis Stars

As discussed previously, roughly ∼ 2% of B to mid-F type stars exhibit

significant photospheric depletion of refractory elements 92. This is known 92 Paunzen & Gray 1997; Paunzen et al.
2001; Paunzen 2001; Murphy et al. 2015

as the λBoö phenomenon. A natural explanation for this abundance pattern

is that it arises in stars which accrete material which has been processed in

a disk. This processing can separate volatiles from refractories, so that if

the accreting material is mainly formed of gas it is depleted in refractories

and trasnfers that signature to the star.

The challenge for an explanation based on current disk accretion is that

only some stars with the λBoö phenomenon are found to have disks. These

tend to be young93 stars with protoplanetary disks, but the phenomenon 93 ∼ 0.1 to 10Myr

has been observed in stars as old as 1Gyr, which is on the order of their

main-sequence lifetimes 94. Some older systems have been found to host 94 Murphy & Paunzen 2017

debris disks 95, but the fraction of confirmed debris disks was found to be 95 Draper et al. 2016

statistically indistinguishable from that in non-λBoö sources 96. Hence if 96 Gray et al. 2017

the phenomenon in old systems is a result of accretion from a disk then

additional considerations are needed to explain why only some stars with

disks are refractory-depleted.

Among protoplanetary disk hosts the λBoö phenomenon is most often

seen in stars of types B to mid-F97. Despite this the refractory element 97 In this window & 30 per-cent exhibit re-
fractory depletion (Folsom et al., 2012).

depletion does not correlate with stellar age 98. This suggests two impor- 98 Iliev & Barzova 1995

tant conclusions. First, most young λBoö stars can indeed be explained

by temporary selective accretion of gas rather than dust 99, rather than 99 Venn & Lambert 1990

by some longer-term process. Indeed it has been shown that in young

stars the λBoö phenomenon is a result of the star hosting a dust-depleted

“transitional” disk 100. Secondly, a small fraction of λBoö stars appear to 100 Kama et al. 2015

survive to old age with a long-lasting or chronic depletion. A possible

explanation is that the transitional disk phase for such λBoö stars was

early and long-lasting enough for the dust-poor material to compose a

significant fraction of the total mass of the star.
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Two alternative explanations emerge in the context of this work. First,

it is possible that the transitional disk phase lasted for a substantial fraction

of the age of the star but did not result in the accretion of a substantial

fraction of its mass. In that case the accretion signatures would still be

apparent in its photosphere according to equation (6.26) even though the

accretion might have ceased long ago. Secondly, and potentially in better

agreement with the fraction of stars observed to have such accretion, it is

possible that the transitional disk phase was both short relative to the age of

the star and provided comparatively little material, but that the di�usivity

in the star fell significantly towards the end of the accretion period. In

that case equation (6.27) indicates that the time over which the accreted

material should be observable in the photosphere ought to be enhanced

by a factor of Dold/Dnew.

Under this second story, long-term accretion results in material mixing

to significant depths, as Σ0 may become quite large. At such depths the

dominant mechanism for mixing would be rotational mixing101. If the 101 e.g. meridional flows

star magnetically breaks 102 from a rotation rate of Ωold to one of Ωnew 102 When the star is young it could well
have both winds and a fossil magnetic field.

towards the end of the accretion period then the timescale over which the

accreted material ought to be observable is of order

tobs ≈ tacc

(
Ωold
Ωnew

)2
.

This possibility is particularly interesting because during the accretion

process the disk may transfer significant quantities of angular momentum

to the star, even bringing it to near breakupwith relatively modest amounts

of material103, and so it is quite natural for the star to spin up during the 103 On the order of 0.05M� (Matrozis et al.,
2017) would su�ce.

transitional disk phase and spins down shortly afterwards. If the spin-down

occurs on the same time-scale as the accretion or faster and if the spin-

down is significant then the historical accretion could remain observable

for considerably longer than would otherwise be expected. This is likely

not long enough for the prototypical λBoö but with either a somewhat

longer accretion phase or a more severe spin-down may explain at least

some of the observed systems.

6.6 Discussion and Outlook

We have presented a new means for relating the observed photospheric

composition of a star to its bulk composition and that of the accreting

material. This is done via equations (6.37), (6.38), and (6.39). Where the

stellar parameters and the accretion rate are observationally constrained,
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we find very good agreement between the observed photospheric com-

position and our theoretical predictions. For instance in we predict that

the photospheres of HD 163296, HD 100546, and HD 141569 A are pri-

marily composed of accreted material. This is confirmed for the first by its

slightly super-solar (Fe/H)obs, which is consistent with its accretion from a

somewhat gas-poor disk. The latter two have dust-poor disks with radial

gaps, so we predict that the accreting material ought to have sub-solar

(Fe/H)obs and indeed this is what is seen from their photospheres.

In systems with less data we can make predictions but cannot test them

without further information. We predict that HD 21997, which hosts a

debris disk, and HD 195689104, which is thought to host an evaporating 104 KELT-9

hot Jupiter, should exhibit mild photospheric contamination from these

sources. The signal we predict for these systems is quite small, but debris

disks and planets often have chemistries very di�erent from solar and so

may yield detectable signals in spite of this.

Our method also enables more robust statistical inferences to be drawn

for many systems. In particular, preliminary work suggests that it allows

us to refine estimates of the mass ratio of gas to dust and the refractory

fractions of di�erent elements. Furthermore by providing accretion rate

estimates in systems for which this is not measured our method enables us

to probe accretion physics in a much wider array of systems, which may

enable broader studies of circumstellar disk structure and composition in

the future.
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When we try to pick out anything by

itself we find that it is bound fast by a

thousand invisible cords that cannot be

broken, to everything in the Universe.

John Muir

Stars and planets exhibit rich behaviours which emerge from a vast array

of scales. The scattering of individual photons has as much consequence

for their evolution as do the tendencies of turbulence and the glacially-

slow burning of light elements into nuclear ash. In this dissertation I have

built up from small scales to large and in so doing constructed e�ective

descriptions of the relevant physics for several examples. This was done out

of necessity, but also makes each phenomenon feel ordinary and detached

from its origins. I nowwish to climb back down the ladder of scales, not for

any practical purpose but simply to better appreciate the distance between

the fundamental rules and infinitesimal constitutents and the variety of

phenomena they produce.

In Chapter 3 I investigated the di�erential rotation of convecting stars

and planets. This phenomenon may be seen in sunspots moving at di�erent

rates, or inferred from the subtle harmonies of asteroseismology. In either

case the e�ect is at a large scale, but has its origin on much smaller scales.

Convecting bodies lie poised on the edge of an instability. With even

a slightly shallower entropy gradient they would largely be still, their

particles moving randomly and slowly di�using over the eons. This is not

the case. Matter heats more rapidly than it can cool via radiation, so it

expands and rises. Cooler material contracts and falls in its place. This

provides a mechanical shortcut to transport heat.

When such objects rotate slowly, the mechanical shortcut does more

than carry heat. Because angular momentum is conserved, rising material

finds itself rotating more slowly than the surrounding medium and pushes

against it1. The same occurs for falling material but in reverse. In this way 1 This is just the Coriolis e�ect.
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rotating convection develops a directional preference, which causes it to

pump momentum.

Countering this pump is the mixing convection entails. Turbulence

is messy and chaotic and cannot be so cleanly separated into rising and

falling plumes. Hence there is mixing, which serves to equalise momenta

and counter shears2. This balances the pumping, and in that balance the 2 Such mixing is the source of the turbulent
viscosity.

body is sheared in proportion to the rotation.

It is worth noting that the phenomenon which pumps momentum is

fundamentally disimilar from that which works to counter shears. The

latter is purely local3, while the former has a global element to it because it 3 Local in this context means that it is deter-
mined without reference to the large-scale
structure of the body, for instance by con-
sidering only structures smaller than a scale
height h.

depends on the relation between angular momentum and linear velocity.

The structure that emerges is therefore a compromise between the local

and the global.

A similar result arises when these bodies rotate quickly, except that here

inertia4 becomes more important than momentum mixing. The intertial 4 i.e. the Taylor-Proudman term ω ·
∇(ΩR)

term arises because as a fluid element participates in the rotation it turns,

and this turning requires changing its angular momentum about its centre.

As a result it is really a global e�ect, tied to the radius of the planet and the

overall rotation. The reason this term is more important than momentum

mixing in this limit is that it scales proportional to the angular momentum

without bound while the latter cannot exceed the scale of the underlying

turbulene. This results in a new balance, with relative shear decaying as

inertia grows ever more important.

A further consequence of rapid rotation is that convection is suppressed.

This is because a rising fluid element is rapidly pushed aside by its more

rapidly moving neighbours. When the fluid is ionized magnetism o�ers

an escape; energy may be transported more readily by magnetic fields5, 5 More formally super-equipartition fields
allow the energy transported to signifi-
cantly exceed the kinetic energy in the
flow.

which are not subject to the same constraints as the fluid itself. The result

is even slower convection and even less shear.

Stepping further down in scale, the unimaginably numerous particles

which make up stars and planets neither know nor care about angular

momentum. Their existence, at least over short time-scales, is largley

unaltered by convection or turbulence or rotation or shear. These large-

scale phenomena change the behaviour of any one particle only on average,

and then only by a tiny amount relative to its thermal motion. Yet as I

showed in Chapter 4 such small changes set the lifetime of many stars.

There through a similar set of arguments I found that rotation and the

pumping of heat in the cores of massive stars conspire to set their envelopes

in motion. Local convective motions in the core determine the thermal
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structure of the envelope and hence the motion of nuclei all across the star.

Over millions of years some of these nuclei which would not otherwise

have entered the core do so and fuse, thereby sustaining the star for longer

than it would otherwise have lasted. In this way the whole star is a�ected

by the workings of seemingly isolated phenomena in a few small regions.

Turning to planets, in Chapter 5 I investigated Jupiter-like bodies

orbiting very near to their host stars. Over billions of years these planets

cool6, which gradually reduces the average energy of their constituent 6 Interestingly the rate of cooling is set by
the opacity of the outer layers of the planet.
In this way the details of photon scattering
in a medium in a small region dictate the
long-term evolution of the entire planet.

particles and causes them to shrink7. Before they were observed, therefore,

7 This is a consequence of the virial theo-
rem.

the expectation was that only a small fraction, namely those which had

not yet had time to cool, should be particularly large. It was therefore

surprising and fascinating when so many were observed to be dramatically

inflated.

The question of how this inflation comes about is fundamentally not

about energy. The incident stellar flux is often well in excess of what is

required to inflate a planet. Rather the question is about free energy, or

equivalently entropy. The di�culty is that the incident stellar flux cannot

directly cause inflation because it is at a much lower temperature than

the bulk of the planet8. It follows that the inflation must be a result of 8 This is a direct consequence of the second
law of thermodynamics, which itself is re-
markable because the stellar flux is energy
which is accessible to the constituents of
the planet and it is purely the statistics of
their motion which preclude its use.

heat being generated inside the planet at or below the depths which are

inflated.

One way to generate heat within a planet is through viscous dissipa-

tion. This process acts at the aptly named dissipative scale9 λ by virtue 9 See Chapter 1.

of molecular di�usion turning structured motion into random thermal

motion. However, were it only this e�ect acting, the dissipation could not

matter because molecular di�usion is only e�ective over very short length-

scales. Hence turbulence must play a role, folding large-scale shears over

themselves repeatedly until their energy reaches a length-scale at which

di�usion can act10. 10 In this way turbulence is like a conveyor
belt, carrying energy from the scales at
which it originates to those at which it may
be processed into heat.

So turbulence combined with di�usion may generate heat from shears,

but this begs the question: from whence does the shear come? Tides

present one option. Because one side of the planet is further from its

host star than the other they experience di�erent gravitational fields. The

di�erence is very slight, but su�ces to periodically push and pull at material

in the planet as it proceeds in its orbit. This excites waves which, under the

right circumstances11, resonate and grow. Such waves produce su�cient 11 e.g. in the presence of a radiative zone

shearing that the planet heats and inflates, in some cases by a factor of

several. Furthermore these waves influence the thermal structure of the

planet so as to maintain the conditions which allow them to resonate.
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Hence waves with periods of hours interact with turbulent and di�usive

processes to tune the planet over billions of years to be more receptive to

their kind, and in doing so cause it to inflate. This phenomenon spans not

only scales of space and time but also di�erent kinds of motion, including

random12, structured13 and turbulent. 12 i.e. thermal
13 e.g. waves

The final scenario I have investigated is of a somewhat di�erent sort.

In Chapter 6 I developed a connection between the chemistry of nascent

stellar systems and mixing on the surfaces of young stars. This connection

does not influence the lifetimes or structure or evolution of these systems

in any significant manner. Rather it influences what we can learn from

them. By accumulating in a thin layer near the surface of a star a very

small amount accreting material influences its light14 much more strongly 14 specifically the spectrum of its light

than if it mixed e�ciently. In this way these stars become beacons which

amplify the signal of the chemistry that surrounds them.

These examples serve to illustrate that stars and planets are laboratories

of unusual and complex physics15, and are potentially home to many more 15 This was put well by Sterl Phinney, who
once told me that “The wonderful thing
about astronomy is that you can pick your
favourite physics and findwhere in the Uni-
verse it happens.”

such strange phenomena. A theme which appears again and again is that

the characteristic scale on which a phenomenon acts may be dramatically

altered by feedback and interactions. This presents a challenge, but also

means that the resulting behaviours are incredibly rich and subtle. The

complexity of these bodies is that which makes them numinous.
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