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summary
Complexity science has come into the limelight in recent years as the scien-

tific community begins to grapple with higher-order natural phenomena that

cannot be fully explained via the behaviour of components at lower levels

of organization. Network modeling and analysis, being a powerful tool that

can capture the interconnections that embody complex behaviour, has there-

fore been at the forefront of complexity science. In ecology, the network

paradigm is relatively young and there remain limitations in many ecological

network studies, such as modeling only one type of species interaction at

a time, lack of realistic network structure, or non-inclusion of community

dynamics and environmental stochasticity. I introduce bioenergetic network

models that bring together for the first time many of the fundamental

structures and mechanisms of species interactions present in real ecological

communities. I then use these models to address some outstanding questions

that are relevant to understanding ecological networks at the systems level

rather than at the level of subsets of interactions. Firstly, I find that realis-

tic red-shifted environmental noise, and synchrony of species responses to

noise, are associated with increased variability in ecosystem properties, with

implications for predictive ecological modeling which usually assumes white

noise. Next, I look at simultaneous species extinction and invasion, finding

that as their individual impacts increase, their combined impact becomes

decreasingly additive. In addition, the greater the impact of extinction or

invasion, the lesser their reversibility via reintroduction or eradication of

the species in question. For modifications of pairwise species interactions

by third-party species, a phenomenon that has so far been studied one

interaction at a time, I find that the many interaction modifications that

occur concurrently in a community can collectively have systematic effects

on total biomass and species evenness. Finally, examining a higher level

of organization in the form of compartmentalized networks, I find that

the relationship between intercompartment connectivity and the impacts of

species decline depends considerably on network topology and whether the

consumer-resource functional response is prey- or ratio-dependent. Over-
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all, the results vary considerably across model communities with different

parameterizations, underscoring the contingency and context dependence

of nature that scientists and policy makers alike should no longer ignore.

This work hopes to contribute to a growing multidisciplinary understand-

ing, appreciation and management of complex systems that is fundamentally

transforming the modern world and giving us insights on how to live more

harmoniously within our environment.
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1 exposition
1.1 a complex systems approach

to ecology
The twenty-first century has been marked by the advent of a new frontier

in humanity’s scientific enterprise: the so-called complexity science. It arose

from the recognition that many locally interacting agents can give rise

to a system with unexpected macroscopic properties, and that this system

furthermore adapts to changes in its external environment over time and

is often far from equilibrium, its trajectory highly dependent on conditions

early in its history. Consequently, such systems are not amenable to mathe-

matical analysis, and their future possible states are ‘not finitely prestatable’

[7]. Despite their real-world prevalence in the guise of financial markets,

ecosystems, ant colonies and many others, their interesting and potentially

beneficial or destructive behaviours are hardly understood or controllable. In

his seminal monograph in 1997, Prigogine [8] called for scientists to move

on from traditional deterministic approaches and embrace the indeterminism

of complex systems.

I think the next century will be the century of complexity.
Stephen Hawking, San Jose Mercury News (2000)

In ecology, it was realized as early as 1994 that research had (and as of

today, has) been dominated by the approach of studying at most a few species

or interactions at a time [9], inherited from the early days of observation

and description of living organisms. This has partly been wrought by the

difficulty of collecting detailed field data on more than a few selected

components of the system (see §1.3.2), and partly by the popularity of simple

mathematical models for finding analytical solutions of ecological equilibria.

While exact, tidy and easy to interpret, the reductionistic approach does not

encapsulate the complex interactions of nature [9]. Reductionism may be

beginning to take its toll on advancement in ecological research. In a 2014

meta-analysis of more than 18 000 published articles, Low-Décarie et al. [10]
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observed that despite an increasing number of hypotheses being tested per

article in ecology, their explanatory power seemed to be declining. One

possible cause cited was that the simple questions had mostly been answered,

leading ecologists to tackle increasingly complicated questions. Although

correspondingly sophisticated statistical procedures were used to attack such

questions, it is not unreasonable to suppose that even those procedures will

have difficulty explaining and predicting ecological behaviour as long as

only a few components of the system are analyzed for extrapolation to the

system as a whole. A more fundamental shift from reductionistic to holistic

approaches may be needed to bring about the next golden age in ecological

research [11].

1.2 the network paradigm in ecology
Network analysis is a powerful framework that has been applied to complex

nonlinear systems in many disciplines [12], being flexible to the idiosyncrasies

of each. It has been hailed as the tool for addressing the ‘big questions

of contemporary science’ [13]. The versatility of the network approach

for diverse purposes is illustrated, for example, by Schich et al. [14], who
traced the evolution of cultural history via networks of intellectual mobility

reconstructed from birth and death location data of individuals who had

significant impacts on culture.

Solé & Valverde [15] introduced a classification of the structure of many

different types of networks, from the Internet to metabolic maps to food

webs to brain networks, according to three axes: randomness, modularity

and heterogeneity. In this classification, food web structure has moderately

high randomness, low modularity and moderate heterogeneity and lies out-

side the domain of ‘scale-free-like networks’, while ecological mutualistic

networks have low randomness, moderately high modularity and moder-

ate heterogeneity and lie within the domain of ‘scale-free-like networks’.

Proulx et al. [16] reviewed the rising use of network analysis in various

subfields of ecology and evolution and suggested that the time was ripe

for advancing beyond pairwise interactions and building a ‘predictive science

of biological networks’. More specifically to ecology, Bascompte [17] advo-
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cated a network approach to the vital task of understanding how ecological

interactions affect the emergent properties of complex ecosystems under in-

creasing anthropogenic threat, while Brose [18] and Lewinsohn & Cagnolo

[19] highlighted the value of ecological networks for understanding and

predicting the consequences of species loss on ecosystems.

Real ecological networks are highly complex, containing much omnivory

and trophic looping [20]. Many studies of ‘networks’ and ‘food webs’,

however, categorize the nodes into distinct trophic levels, and the inter-

level links only connect adjacent levels. Moreover, such studies usually deal

with a small number (2–3) of trophic levels [21]. It is important to account for

vertical (trophic) diversity, as has been shown in the diversity-functioning

debate [22]; the network approach is powerful in accommodating both

horizontal and vertical (trophic) diversity [23].

Across the multidisciplinary network research landscape, ecological net-

works are becoming recognized for their contribution towards the under-

standing of general laws governing the properties of complex networks. Chiu

& Westveld [24] demonstrated the application of social network analysis to

food webs, while Brummitt et al. [25] drew parallels between power grids

and ecological networks. Even more significantly, analogies between ecolog-

ical and economic networks are getting increasing attention. Simple models

of networks of bank loans have been built to demonstrate shock propa-

gation through network structure, with conceptual comparisons to species

extinctions in ecosystems [26, 27], and the power-law (scale-free) degree1

distribution tendency of both economic and ecological networks has been

found to make them more susceptible to catastrophic collapse [28]. Stability

measures for financial networks are also being developed that have potential

applications to ecology [29].

Ecological network dynamics. Change over time is what really defines the

interesting and important characteristics of ecological communities and com-

plex systems in general, and is integral to any attempt to understand the

impact of perturbation on ecological networks or make predictions for prac-

tical management [16, 30–32]. The study of networks with temporal changes

1The number of nodes (species) to which a given node in the network is connected.
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in information or energy flow between nodes is, however, still an emerging

field in many areas of network science [33–37]. Ecology is no exception;

much research on ecological networks has dealt with static networks, and

there tends to be a disconnect between reductionistic dynamical studies of

trophic modules versus static whole-network studies [38]. The importance of

incorporating dynamics in whole-network studies has been underscored by

the work of Eveleigh et al. [39], who found different outcomes in diversity
cascades caused by outbreak species when realistic non-equilibrium dynamics

were accounted for.

Furthermore, most network-level dynamical ecological studies to date

have dealt exclusively with food webs. Community-level conclusions from

such studies may not hold true in real communities, where multiple non-

predator-prey interaction types co-occur and interact with one another

and with trophic interactions [40]. Forays into dynamical representations

of multiple interaction types are still in their infancy [41]. For example,

Melián et al. [42] incorporated dynamics for plant species in a community
with multiple interaction types but assumed that animal population densities

were constant. Blonder et al. [43] review the methodology for incorporating

temporal dynamics into network analysis, and its application to networks in

ecology and evolution.

1.3 research direction
1.3.1 modeling strategy

The broad aims of this work are to investigate, using theoretical mod-

els, how various interesting ecological phenomena at the mesoscale (species)

level affect community-level behaviour and response to perturbation. I try

to determine the presence or absence of general patterns that apply across

different contexts, which addresses concerns about the predominance of spe-

cific case studies in community ecology with very little general understanding

[44].

Given the long-standing dichotomy between ‘simple mathematical mod-

els’ and ‘large simulation models’ [45], it is essential to justify the simulation

approach this research adopts. Ecological dynamics have traditionally been
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understood via stability analysis of simple deterministic equations of a few

interacting species [46–49], although community matrices of relatively large

networks are increasingly being analyzed to elucidate the influence of net-

work structure on interaction strengths [50] and the influence of both of

these on stability [51]. Mathematical analysis continues to make valuable

contributions to ecological network science, not least when allied with tech-

niques such as model selection [52]. The so-called generalized modeling

has also been promulgated [53, 54], which examines the dynamical stabilities

of a large number of ecological network replicates with different model

structures and parameter values and therefore avoids making simplifying

assumptions. Like the other analytical approaches, however, it is largely

focused on quantifying deterministic equilibrium stability.

Simulation models, used in my study, are another powerful tool for un-

derstanding ecological network behaviour [55], and complement mathemat-

ical analysis [56], especially in nonequilibrium situations and where model

complexity precludes analytical solutions. I depart from the emphasis on

equilibrium stability, whether of traditional local equilibrium points in pop-

ulation dynamics or of the latest ‘structural stability’ of ecological networks

[57], and focus on tackling the confusion of a reality where nonequilibrium

dynamics prevail [58, 59]. Indeed, in the latest overview of the continuing

debate on model simplicity versus complexity, Evans et al. [60] reiterate

that complex, mechanistic models can be better than simple models when

seeking ecological generality, as well as when attempting specific prediction

outside the boundary of current conditions [61, 62], and that the current

preponderance of ecology on simple models may even be stifling ecological

progress [63]. This is not to say that all models should be complex. We

need to harness the complementary powers of both simple and complex

models to give us the best overall understanding [60]. For example, efforts

to isolate small trophic modules from theoretical or empirical food webs

for the prediction of equilibrium responses to perturbations [64–66] should

be matched by efforts that scale back up from modules to the larger eco-

logical networks in which they are embedded [67], in order to capture all

the feedback loops.
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How does the oft-invoked complexity-stability relationship colour the

dichotomy between simple and complex models? The relationship has been

of central interest in ecology since the pioneering work of May [68, 69].

Despite significant advancements [58, 70–72], the issue of when and how

ecological complexity stabilizes or destabilizes an ecosystem remains a hot

topic of research and debate [73–75]. At the same time, deeper understanding

of this relationship has become ever more relevant to scientists and policy

makers hoping to mitigate potentially debilitating effects of anthropogenic

pressures on ecosystems [74, 76]. My prognosis is that more complex ecolog-

ical networks may be more resilient in overall function due to redundancy

and degeneracy [77], but may also be more prone to unexpected endoge-

nous behaviour caused by internal feedback loops and thresholds, making

the complexity-stability relationship ill-defined. The purpose of my thesis,

however, is not to leap into the fray of the complexity-stability debate which

continues to receive ample attention. Instead, the complexity-stability issue

serves here to highlight that simple and complex systems can behave differ-

ently. Although simple models may capture some of the essential features of

the complex system that exists in reality, they may not capture the rare but

potentially important or catastrophic behaviour, or the unprestatable future

states [7, 78] discussed earlier (§1.1). Conversely, and rarely considered in

ecological research, relationships that exist within simple models might well

be nonexistent in more complex systems with large numbers of alternate

pathways.

There are two main system-level simulation approaches to ecology that

are of the level of complexity pertinent to this thesis: those of ecosystem

ecology and community ecology. The ecosystem ecology approach [79–82] is

an established system dynamics modeling methodology used mostly in marine

ecology [83], where trophic flows of energy and nutrients between functional

compartments in a particular system are specified and various indices of

energy flow are calculated. More rarely, both trophic and nontrophic flows

are included [84]. The ecosystem ecology approach has been used extensively

for the analysis of aquatic ecosystems [85–88] and applied to the assessment
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of environmental sustainability [89] and of the effectiveness of marine

protected areas [90].

Aggregated biotic and abiotic compartments and flows, however, are

perhaps not the most optimal design for studying the effects of species-

species transactions. Moreover, the ‘positive effects’ sometimes referred to

in ecosystem ecology mainly concern negative local interactions having net

positive effects on network-level energetics [79, 91, 92], rather than facilita-

tive interspecific interactions. This is where community ecology complements

ecosystem ecology. Simulation modeling in community ecology is best repre-

sented by bioenergetic modeling of consumer-resource dynamics [41, 93–95],

which has recently acquired increased ecological realism via integration with

models of ecological network structure [96] and with facilitative interactions.

The bioenergetic approach, where species interactions are mechanistically

parameterized in terms of energy and metabolism, is equally amenable to

studying the response of complex ecosystems to environmental changes in-

cluding those brought about by climate change (e.g. Gilbert et al. [97]).
Current research in this area is moving towards a more applied flavour even

if the actual modeling remains theoretical, such as a study of how food web

diversity and modularity mediate the effects of hypothetical pollutants [98].

Olesen et al. [99] (p. 37) suggest that networks of species interactions
may be no more than arbitrary structures constructed by scientists that do

not exist in reality, but the authors do not elaborate. Insights into what

this might mean can be found in the paradigm of agent-based modeling

(abm). A strong case for abm is that ecological interactions really take place

between individual organisms rather than between the non-physical aggrega-

tions known as species. To be reasonably realistic, individual-level network

models have to incorporate at least the two main classes of interactions:

between conspecifics and between individuals of different species—perhaps

this is the true ecological network that actually exists. Most existing abm

studies, however, have dealt with only either conspecific [100] or interspe-

cific [101] interactions at the individual level. An additional challenge is that

abm can become very computationally intensive if many species are involved.

Again, the kind of species-level model used in my study treads a reasonable
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compromise between simplicity and complexity, while incorporating both in-

terspecific and intraspecific interactions, the latter in a phenomenological yet

realistically ‘individual’-inspired way via terms such as density dependence

and cannibalism (§2.1).

1.3.2 the data void

But there are also unknown unknowns—the ones
we don’t know we don’t know.

Donald Rumsfeld

A discourse on modeling cannot be complete without some discussion of

empirical data for model validation. Ecology continues to stand apart from

many other sciences as a particularly data-deficient discipline. It is often

impossible to collect comprehensive data on entire communities. Where this

is attempted, data may be insufficient or biased and the model is usually

restricted to one part of a system at one specific locality. Data shortage is

particularly severe in the case of ecological networks, where it is extremely

difficult to detect the presence of all the interspecific interactions, let alone

measure interaction strengths.

Many data sets of food web structure that are regarded as highly resolved

are nevertheless incomplete [102], encompassing only a subset of taxonomic

or ecological functional groups. For example, there is a ‘food web’ data

set of over 1700 species that comprises only plants and herbivores [103],

and a ‘predator-prey network’ data set of high temporal resolution over

millennial time scales that comprises only mammals [104]. Most data sets

also exclude parasites [105, 106], Preston et al. [107] being a rare exception.
The system is often simply too diverse to sample comprehensively. For

example, 156 ‘kinds of organisms’ (species, distinct life history stage of a

species, or group of closely related species) are recorded in the data set

from tropical forest at El Verde Field Station in Puerto Rico [108], but the

actual number of species in tropical rainforests is widely estimated to be

much higher. Large data sets from marine biomes are probably closer to the
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actual number of species of the specific system [109–111], but there remains

the aforementioned problem of imperfect observation of interactions. Wirta

et al. [112] recommended combining multiple data sources, including field

observations, lab experiments and molecular data, to gain better resolution of

ecological networks and reduce bias. This, however, may still be insufficient

for diverse systems due to the sheer number of unobserved species and an

even greater number of their interactions. Besides, the structural properties

of any one or a few comprehensively sampled food webs may not be

representative of food webs in general, especially with so much contingency

of food web structure [113] and other ecosystem characteristics [114].

There is another way in which data are incomplete: all the above

examples have only predator-prey interactions. Any given ecosystem is

an intricate web of co-occuring trophic and nontrophic interactions (see

Chapter 3 for further discussion about combining them in research), but

data on these different types of interactions are rarely collected sym-

patrically. There are abundant trophic and nontrophic interaction data,

such as the Interaction Web DataBase at the National Centre for Eco-

logical Analysis and Synthesis, University of California at Santa Barbara

(http://www.nceas.ucsb.edu/interactionweb), and calls continue for ecolo-

gists to pool their data into collective databases in order to harness the

power of big data [115]. Such data, however, are from different localities

and cannot be aggregated to represent a single system. Empirical datasets

on the network structure of multiple interaction types in the same system

are rare, notable examples being those from an agroecosystem in Britain

[116] and from Chilean rocky shores [117].

When one considers superimposing community dynamics on top of net-

work structure, there arises a further problem, that of interaction strengths.

Reliable specific predictions of complex ecological communities require

highly accurate estimates of the interaction strengths [118], but interaction

strengths are very difficult to measure accurately in the field [119], especially

in terms of rates of energy flux with standardized units of measurement

across species. For example, mutualistic interactions are often quantified as

the number of pollinator visits to flowers, but the relationship of visit fre-
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quency to actual nectar consumption or flower fertilization rate is unclear.

Admittedly, more work is needed to develop the empirical domain of a

research topic that has been dominated by theoretical modeling [120].

Some advances have nevertheless been made in fitting mechanistic dy-

namic models to empirical data of medium-sized networks of 24–50 nodes.

Two studies [121, 122] found that when fitted to data on food web structure,

observed biomass and body sizes, such models reproduced seasonal dynamics

and community patterns (such as size-abundance distribution) relatively well

once dynamical parameters were allometrically scaled. This can be useful

where taxonomically comprehensive time series data for dynamical param-

eterization are scarce [122]. These studies, however, involved only trophic

interactions in specific systems; fitting a limited model to data from a specific

locality may not be the most appropriate paradigm in my study searching

for general patterns in communities with multiple interaction types.

There is a popular culture in science that regards models as useless or

even misleading for the real world unless they are validated by sufficient

quantity and quality of data [123]. More complex models are naturally

more susceptible to this criticism. It is indeed the case that policy and

action informed by predictions from such a model are considered risky

[124]. But I do not think this is the whole story. Even with abundant

and quality data, a model may not make specific real-world predictions

to the required accuracy for practical use, even with sensitivity analysis.

In contrast, whether data are sufficient or not, a suite of models based

on sensible, documented assumptions and comprising a range of plausible

model structures and parameter values [125, 126] can provide valuable general

insights and anticipation about how real systems might behave under given

circumstances—as is the premise of this work. Indeed, this so-called Monte

Carlo approach has been advocated even for predictive purposes, as in the

case of complex climate models which have so far not been subject to

stochastic parameterization [127]. In any case, researchers have advocated

general insights rather than specific prediction of ecosystem responses to

disturbance [128], and suggested that the appreciation of and preparedness

for the variability of the future is as important as, if not more important
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than, prediction [129]. The virtues of the general approach should all the

more be embraced given that the ecosystem-level ‘data vacuum’ [124] cannot

be filled before conservation needs to happen [130, 131].

In summary, my model tries to capture the essential features of the

system by incorporating all the main classes of interaction types and dy-

namics in a succinct way, producing a model that is ‘realistic yet simple’

[132]. Furthermore, it is grounded upon empirical data of network struc-

ture and knowledge of the dynamics of ecological processes, and subject

to Monte Carlo methods. Any model should be based on the foundations

of all available knowledge and data on the system of interest [133]—it

is the synergy across multiple sources of quantitative data and qualitative

knowledge that allows a model to transcend artificial boundaries and tell

us something of which we would otherwise be ignorant. At the same time,

however, the model does not blindly adhere to these data and knowledge,

since they are not necessarily omnipotent representations of reality (recall

the discussion above about incomplete data). Nevertheless, the model serves

as a springboard to explore the endless possibilities of the state space. Pat-

ten [134] cautioned that too much of ecological research has been focused

on empirical approaches for immediate local application, with too little ef-

fort in advancing the foundational science and theory that is important

for deep understanding, especially at the systems level. My study aims to

contribute to addressing this imbalance, in the hope of facilitating future

synergy between empirical and theoretical efforts in the science of ecology

[135] and beyond.

11





2 stochastic bioenergetic
network model

This chapter is a documentation of the network simulation model used

in this dissertation; see §1.3.1 for the philosophy and motivations behind

the model. The architecture of the model involves the construction of a

network of interacting species and the specification of allometrically scaled

bioenergetic equations governing changes in species states over time [93–95].

The combination of structural models with bioenergetic dynamics has been

suggested as a way towards greater ecological realism [96]. My model is

among the first to extend the bioenergetic model to include nontrophic

interaction types alongside trophic interactions (see Kéfi et al. [41]), and
introduces various refinements for greater realism. Overall, it could be said

to apply the principles of pattern-oriented modeling [136] by incorporating

observed patterns in ecological networks that are important to the research

question.

Simulations and analyses were programmed in R [137] and C++ with

Boost libraries for random number generation. In addition, the simulations

for Chapter 6 were executed in parallel using Message Passing Interface

on the Darwin supercomputer at the University of Cambridge. Numerical

integration was performed using the fourth-order Runge-Kutta algorithm

with dt = 0.1.

2.1 network construction
A food web topology is generated using the niche model [138], which

has been found to be one of the most robust so far in emulating the

structure of real food webs using relatively simple rules [96, 139–142] and

continues to be used in the latest research [41]. The model allows for the

variety of complications observed in nature, such as trophic loops (rock-

paper-scissors), omnivory, apparent competition and intraguild predation

[143, 144], although no correction is made for the relative frequencies of

occurrence of these topological ‘motifs’ (see Bascompte & Melián [144] and

Stouffer et al. [145]). There have been various generalizations of the niche

13
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model [139, 142, 146–149]. Here a modified version of the generalization by

Stouffer et al. [146] is combined with that by Warren et al. [148], as
explained below.

Unlike the original niche model, real food webs are not fully interval

[146]. The method of Stouffer et al. [146] introduces an adjustable degree
of diet discontiguity, with their parameter c fixed at 0.8, which closely

matches empirical data [146]. One additional modification is made: if the

upper bound of a predator’s original diet range exceeds the predator’s niche

value, the so-called ∆k (Stouffer et al. p. 19017, last paragraph) number
of species is selected from non-prey species of niche values smaller than

or equal to the aforementioned upper bound rather than the predator’s

niche value. This improvement, particular to my study, avoids the logical

problems associated with reducing the upper bound of the potential range.

More recent generalizations of the niche model [139, 142, 149] have

achieved better fit to data than Stouffer et al. These versions, however,

are less suited to the current application. It is difficult to specify the con-

nectance in the formulation of Allesina et al. [139]. The models of Williams
et al. [142, 149] do not assign parameter values using statistical distributions
that would keep the model sufficiently simple. As my purpose is to con-

struct multiple plausible food webs rather than predict the links of specific

empirical webs as accurately as possible, the method of Stouffer et al. is
adequate, even in the light of more biologically motivated models based

on optimal foraging (see Petchey et al. [150] and skepticisms as to whether
optimal foraging reflects reality [151, 152]). Contrary to Williams et al. [142],
I am not overly concerned by the assumption that species near the centre

of a predator’s diet range are not more likely to be prey than those near

the edges, since unmodeled multidimensional niche space [149, 153]) could

account for that. The one-dimensional niche axis I use does not preclude

the effects of multidimensional niche space.

The inverse niche model of Warren et al. [148] is used to optionally

add parasite species to the food web. This institutes one of the most

fundamental differences between predators and parasites, by ‘letting little

things eat big things’ [105]. The inverse niche model excludes parasite-
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parasite and predator-eats-parasite links, the connectance being defined

as the proportion of possible host-parasite links that are realized [154].

Although predation on parasites is not included as direct links in the

inverse niche model, it is manifested via predators consuming the hosts that

harbour the parasites [148], which has been found to be the most common

form of parasite ingestion in aquatic food webs [155]. Hyperparasitism

and competition among parasites are not incorporated; these are avenues

for future empirical and theoretical work. It has also been suggested that

parasitism may be incorporated into food webs as indirect rather than direct

interactions [156] (see §5.1).

The connectances of the predator-prey and host-parasite subwebs are

set at 0.15 [154, 157]. Connectance in real webs can vary by as much as an

order of magnitude [158]; the value used here is a reasonable starting point

close to the connectances of several large and highly resolved food webs

[158]. The niche algorithms are run repeatedly until a web is produced that

has subwebs of the desired connectances ±0.01 and that satisfies the criteria

that the web must not contain any totally unconnected species, and that no

heterotrophic species should consume only itself, since this is energetically

unsustainable.

In the qualifying web, all nonparasite species having no prey are desig-

nated as basal species [94] flexibly representing autotrophs and detritivores,

which are not distinguished. Species that consume prey could also qualify

as detritivores or autotrophs, such as carnivorous plants, but these are ex-

cluded for simplicity. Model realizations containing only one basal species

are discarded, as direct competition among basal species (see below) cannot

be implemented in these realizations.

Random networks. For comparison with the niche models (Chapter 4 on-

wards), models with random network topology and at least two basal species

were also generated. The species niche values conformed to a uniform dis-

tribution as in the niche model. The consumer-resource links were assigned

in random pairs and directions regardless of niche values, with the condition

that basal species could not be consumers. This implementation also implic-

itly incorporates more trophic loops or parasitism, because a consumer can
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be of smaller body size (niche value) than its resource with a probability

equal to the converse.

Competition. Direct competition interactions, where implemented, were

assigned randomly to 25% of the total number of potential interactions

between all pairs of basal species, rounded up to the nearest whole num-

ber. This procedure changes the overall connectance, but this is permissible

because the previously published connectance values pertain only to their

respective interaction types. The random assignment of competitive interac-

tions gives rise to varying degrees of intransitivity [159], reflecting natural

variability.

Mutualism. For both niche and random networks, mutualistic interactions

are assigned randomly to the predator-prey subweb, excluding species pairs

already allocated to other interaction types, with a connectance of 0.15

of the total number of potential interactions between all pairs of nonpar-

asite species, rounded up to the nearest whole number. This procedure

allows for a wide variety of motifs including plant facilitation, predator

facilitation [160], intraguild mutualism [5, 161, 162], plant-animal mutualism

and three-way mutualism such as that among sea anemones, zooxanthellæ

and anemonefish [163]. It also does not exclude less commonly studied

mutualistic associations in ecological networks, such as herbivore-detritivore

mutualisms e.g. gut microbes. Some of the even more esoteric mutualisms,

however, are not yet implemented, such as vector-parasite mutualism [164];

these are again avenues for future inquiry.

The non-implementation of the nestedness and modularity observed in

bipartite mutualistic networks [165–167] is not considered problematic. This

is because the overall structure of mutualistic interactions in the whole

community is unlikely to be as highly nested or modular as that of many

pollination- or seed dispersal-based bipartite mutualistic subwebs that have

been observed in isolation, when species from the different subwebs interact

with one another in other kinds of mutualism not encompassed by any of

those subwebs, such as habitat provision2 in return for nutrients [163, 168].

2Where habitat provision enhances protection of the occupant from particular predators,
tripartite interaction modification (Chapter 5) is a more appropriate representation.
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Table 2.1. Parameters of ecosystem assembly.

Parameter Value Reference

fraction of species that are parasites 0.33 [154, 173]
c 0.8 [146]
connectance (trophic subweb) 0.15±0.01 [157]
connectance (host-parasite subweb) 0.15±0.01 [154]
connectance (competition subweb) 0.25 this paper
connectance (mutualistic subweb) 0.15 this paper

Furthermore, nestedness may not be a significant predictor of community

persistence [169]. The mutualistic connectance used here is lower than the

value of approximately 0.3 measured from bipartite mutualistic networks

[170]. It makes sense to have a lower connectance for the full ecological

network because its constituent species encompass a broader range of taxa

than any one specialized bipartite network of taxa that rely heavily on

mutualism.

The overall concept of different types of binary interactions used here

was first put forward by Burkholder [171] who listed nine ‘coactions

between weak and strong organisms’ comprising different combinations of

‘+’, ‘−’ and ‘0’ denoting gain, loss, and neither gain nor loss by each of

a pair of interacting species. This concept has been further developed by

Fath & Patten [91] and Fath [92]. My model simplifies it by incorporating

the three ‘elementary particles’ that are arguably the minimum set that

represents the different types of interactions at the most basic level: +−,
−−, ++.

Finally, the complete ecological network (Fig. 2.1) is tested to ensure

that there are no isolated components by computing the number of times

0 appears as an eigenvalue of the Laplacian, which is the number of

components of the graph [172]. If isolated components have been produced,

the network is regenerated until there is none. Network assembly parameters

are summarized in Table 2.1.

Fontaine et al. [174] were among the first to propose combining struc-

tured subwebs of different interaction types; my network takes their concep-
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Figure 2.1. One stochastic realization of the network construction algorithm com-
bining the niche model of predator-prey interactions (columns 1–20), inverse niche
model of host-parasite interactions (columns 21–30), direct competition and mutual-
ism. The first 20 columns represent the same set of species as the 20 rows. Black
boxes below the diagonal dashed line represent trophic loops. Columns with no
predation are defined as basal species. Direct competition interactions are assigned
randomly among basal species. The number of parasite species is set at half that of
nonparasite species. Connectances: 0.15± 0.01 for niche and inverse niche models
and mutualism.

tual framework one step further in that the predator-prey and host-parasite

subwebs are niche models rather than the more rudimentary nested or mod-

ular structures. For computational tractability, the number of species in the

networks used in this dissertation (10–30 species) is only moderately large.

The results nevertheless remain relevant to complex ecosystems—trophic

ecological networks of less than 14 nodes and 40 links have been found

to behave similarly to larger networks due to thermodynamic and other

mechanisms constraining food chain length and trophic complexity [175].
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2.2 multispecies dynamics
Network dynamics are modeled using allometrically scaled bioenergetic

equations [93, 94] with various modifications. The dynamics of a given basal

species i and a given non-basal species j with energy states Ei and Ej

respectively in arbitrary units are described by the equations

dEi

dt
= ri

[
1− Ei

Ki

]
Ei − γi(1− ϵi)fiEi −

∑
k∈consumers

γkψΦk,ifkEk

ξ
(2.1a)

dEj

dt
= γj

(
−1 + ϵj +

∑
k∈resources

ψΦj,k

)
fjEj −

∑
k∈consumers

γkψΦk,jfkEk

ξ
(2.1b)

with time t, maximum consumption rate per unit metabolic rate ψ [94],

assimilation efficiency ξ [93], predator-prey functional responses Φ (see

below), nontrophic functional response f (see below) and ϵ, the species

response to multiplicative environmental stochasticity (§2.3). ψ is assigned

a value of 6 which is between 4 for ectotherm vertebrates and 8 for

invertebrate predators [95]. ξ is assigned a value of 0.65 which is between

0.45 for herbivores and 0.85 for carnivores [95, 125], since the model includes

omnivory. It is assumed that parameter values for predator-prey and host-

parasite relationships are similar.

The traditional intrinsic growth rate r and mortality rate γ are given

versatile interpretations. In this case, r represents both somatic and repro-

ductive growth arising from any net exogenous abiotic input such as detritus,

insolation or inorganic compounds, subtracting egestion and excretion. This

takes the cue from Halnes et al. [147] to embrace detritus in the niche

model, but does it in a more species-oriented way suited to the focus of

this study. The number of parameters for multiple basal species is minimized

by drawing r⃗ from lognormal distributions whose expected values and vari-

ances are equal to η⃗−1/4, accounting for metabolic scaling where metabolism

in plants is defined as photosynthesis instead of respiration [176, 177]. The

lognormal distribution is a sensible choice because it produces positive and
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Table 2.2. Parameters of multispecies dynamics.

Parameter Description Unit Constraints Reference

η species niche value none (0, 1) [138]
ξ assimilation efficiency none [0.45, 0.85] [93, 95, 125]
r net exogenous input rates time−1 (0,∞)

to basal species
K carrying capacity arbitrary (0,∞)

biomass
γ net exogenous output rates time−1 (0,∞)
θ scaling coefficient for none this paper

mutualism and competition
ψ maximum consumption rate none [93, 94]

normalized to metabolic rate
ω resource preference none (0, 1) [95]
h Hill exponent none [1, 2] [94, 125]

‘Exogenous’ refers to all abiotic energy and matter.

mostly moderate values, with allowance for some high values representing

the occasional fast-growing species.

The parameters γ⃗ are coefficients of exogenous output in terms of both

metabolism and mortality. Being related to body size [95, 178, 179], γ⃗ are

assigned the values 0.01η⃗−1/4. There is no lognormal randomization here

because doing so would give some species large mortality rates leading

to rapid extinction; unlike for r, there is no (positive) density dependence

implemented in the model to prevent this. The normalization constant [177]

0.01 is chosen to produce ecologically sensible outputs i.e. to minimize

extinctions and prevent excessive segregation into high-energy basal species

and low-energy non-basal species, while keeping species states mostly within

(0, 1) and producing a long-tailed species biomass distribution at steady

state, as observed in preliminary simulations. Environmental stochasticity is

formulated to act on γ, as γ is a basic population parameter common to

both autotrophic and heterotrophic species.

Negative density dependence is enforced on each basal species, with its

carrying capacity K = η1/4 where 0 < η < 1. This complies with the positive

general relationship of total species biomass to body size [177]. The fact
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that η is not perfectly correlated with trophic position, due to dependence

on the species’ behavioural and life-history traits, is already manifested in

the randomized assignments of diet midpoints and diet ranges in the niche

model.

The predator-prey functional responses are given by the fraction of

consumer i’s maximum consumption rate allocated to resource j [94, 95],

Φi,j =
ωi,jEj

h

0.5h +
∑

k∈resources
ωi,kEk

h
(2.2a)

h ∼ U [1, 2], (2.2b)

where resource preference ω is kept uniform and constant as 1/(no¯ of re-

source species), the half-saturation density, i.e. resource density at which

consumption rate is half the maximal rate [93], is fixed at 0.5 [125], and

the Hill exponent h is drawn from a uniform distribution in the range

[1, 2] giving a continuum between Holling types ii and iii functional re-

sponses [94, 125]. The half-saturation density is kept constant for simplicity;

0.5 is ecologically reasonable in this model because species energies are

initialized on the scale of [0, 1]. Overall, this kind of formulation allows

interaction strength to be modulated as a function of prey preference and

half-saturation density.

Ratio dependence. Most research on community dynamics, particularly bioen-
ergetic modeling of food webs, has assumed prey dependence. Ratio de-

pendence, a form of predator-prey functional response that depends on

the abundances of both predator and prey, was introduced by Arditi &

Ginzburg [180] in 1989. It has long been a matter of controversy [181]

as to whether real communities are prey- or ratio-dependent; the ecologi-

cal community now generally accepts that reality is somewhere in between

[182]. Arditi & Ginzburg [183] review the latest empirical evidence-based

arguments for ratio dependence. Specific studies on ratio dependence have

mostly been restricted to single prey and predator species or aggregated

functional groups [184, 185]. In a theoretical discourse with multiple prey
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and predator species, van den Berg [186] found that ratio dependence ex-

plained the attenuation of energy fluxes of trophic cascades in food webs.

Ratio-dependent functional responses have been highlighted as an important

mechanism to account for in models [185], and as a promising avenue for

future theoretical work [187]. The present study draws comparisons between

exclusively prey-dependent (with no predator interference term) versus ex-

clusively ratio-dependent functional responses, representing the two ends of

the continuum in order to clearly reveal any effects of predator influence.

My ratio-dependent functional response is adapted from Piana et al. [184],

Φi,j =
ωi,j(Ej/Ei)

h

1h +
∑

k∈resources
ωi,k(Ek/Ei)

h
(2.3a)

h ∼ U [1, 2], (2.3b)

where the half-saturation of the prey:predator ratio is given a value of 1

as an ecologically sensible first approximation. If the state of a predator is

zero, the ratio for that predator is assigned a value of 0 to avoid division

by zero. This is also ecologically sensible since it would give Φ = 0.

Nontrophic interactions. The bioenergetics of nontrophic interactions are

very rarely implemented compared to trophic interactions. Here, mutualism

and/or competition act on γ for a given species i, according to

fi =

1 + θcomp
∑

g∈competitors
EiEg

1 + θmut
∑

g∈mutualizers
EiEg

(2.4)

where θ controls the overall strength of mutualism or competition and is

assigned a value of 1 in this study. In my model, mutualism reduces γ

while competition augments γ (Eqns. 2.1); when mutualism and competition

are absent, γ is unchanged. The functional response is linear; this is not

an unreasonable assumption as the real shape of the functional response

of mutualism is not yet generally known [41]. Although the formulation is

more rudimentary than that suggested by Kéfi et al. [41] and assumes that
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a given species benefits or suffers to the same degree with every interactor,

it is a reasonable starting point given that data are unavailable.

Parameter values for community dynamics are summarized in Table 2.2.

My parameterization procedure is somewhat different from that of Brose

et al. [95], who use basal growth rate as a starting point for defining the

time scale and metabolically scaling the other parameters. Nevertheless, my

parameter values are metabolically scaled and ecologically sensible, while

slightly relaxing the metabolic scaling constraints to allow for species with

unusual or extreme natural histories that occasionally occur in real ecosys-

tems. Like Brose et al., in my study the time scale is not defined in absolute
terms; the emphasis is on producing ecologically plausible simulated trajec-

tories and on the simulation duration being long enough to capture the

patterns of density dependence, species interactions and stochasticity, such

that any general results found would be applicable to a wide variety of

ecosystems operating at different time scales.

At the start of the simulation, each species in both niche and random

networks, including basal and parasite species, is assigned an initial state

E0 = η1/4, with the same rationale as for carrying capacity K . Basal species

are therefore at carrying capacity at the start of a simulation; their interac-

tions may nevertheless bring them to equilibrium states different from their

carrying capacities. In plausible extreme cases, we may have r(1−E/E0) < 0

or γ(−1+
∑
ψΦ) > 0 when the population exceeds the carrying capacity or

when resources are abundant, causing mortality to exceed growth or vice

versa. No distinction is made between parasite and nonparasite species when

assigning initial states; contrary to intuition, parasites in an ecosystem can

sometimes have a total biomass equal to or greater than that of nonparasites

[188].

The model has two other simplifications. Firstly, there are real-world

cases where an interaction between two species is both trophic and mutu-

alistic, for example in pollination; considering merely the net effect may

obfuscate some aspects of the dynamics [161]. There is scope for more

research in this area [41]. Secondly, the model does not implement adap-

tive rewiring of network links [189] in a mechanistic way based on optimal
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foraging theory [190–192]. The model, however, does have intrinsic adaptive

rewiring in both trophic and nontrophic interactions, via the dependence of

interaction strength on species energy, although the values of the resource

preference ω are kept fixed over time. It also accounts for the formation

of new links if one interprets the links assigned to a given species at the

beginning as including all the species it could potentially interact with under

all scenarios. This has the merit of not assuming optimal foraging behaviour.

The overall model specification strikes a compromise between simplicity and

complexity, and avoids setting arbitrary and discrete thresholds at which to

change links.

2.3 environmental noise
This section documents the implementation of environmental noise in the

models; see §3.1 for background. Code written by the author can be down-

loaded at https://github.com/linyangchen/noise. The noise term ϵ is based

on a time series N generated using the equations of Cohen et al. [193] given
by

Nt =

T
2∑

i=1

√(
T

2πi

)ϱ

sin

(
2πi

T
t+ Ωi

)
(2.5a)

Ω ∼ U [0, 2π] (2.5b)

where i is the number of cycles (frequency) within the total duration of N ,

T is the length of N , ϱ is the spectral exponent i.e. noise colour, and Ω is

the phase shift. T is set to the length of the network model simulation, in

which case the period of the shortest noise cycle is 2dt and the period of

the longest cycle is equal to the simulation duration. Each sine curve can be

interpreted as representing one environmental variable; summing multiple

sine curves of different phases and periods creates the overall environment

experienced by the species.
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Figure 2.2. Generation of coloured environmental noise of spectral exponent ϱ = 1
using the spectral synthesis method [193] of sine wave summation (Eqn. 2.5a).

The time series of noise terms ϵ is finally produced using spectral mimicry

[194], permutating a Gaussian-distributed random sequence of mean 0 and

specified variance such that it matches the spectral density of N . This gives

a Gaussian-distributed colour noise series for a fair comparison with white

noise cases [195], although it does not necessarily have to be Gaussian

in reality [196]. This mechanistic noise implementation has advantages over

the commonly used phenomenological autoregressive models [193], and does

not underestimate extinction risk in red environments like both 1/f and

autoregressive models [195]. There remains a limitation in the method; as

ϱ ≥ 3, the noise increasingly looks like a smooth sine curve, which is not

realistic (L. Ruokolainen pers. comm.).

The total variance of the noise experienced by each species is fixed at 0.1

(see Sæther et al. [197]), with ϵ constituting all, half or none of this variance.
In the second of these three different treatments, the remaining variance

experienced by each species comprises values independently drawn from

Gaussian distributions with means equal to ϵ⃗ and variance 0.05. In the third

treatment, the variance experienced by each species over time comprises

values independently drawn from Gaussian distributions with mean 0 and

variance 0.1. These procedures produce different degrees of interspecific
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synchrony; partial synchrony represents the environment being either good

or bad for most species in a given time step, but to different extents for

each species.
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3 colour and synchrony of
environmental noise affect
network variability

Abstract. I use stochastic bioenergetic ecological network models to explore
the effects of non-predator-prey interactions, colour of environmental noise,

and the degree of synchronization of environmental noise across species on

the coefficients of variation over time of total ecosystem energy content and

Shannon entropy. In regression trees derived by binary recursive partitioning,

the presence or absence of synchrony gave the greatest difference in the

means of data points for both system energy and Shannon entropy, followed

in turn by white versus coloured noise and pink versus red and black noise.

The effects are present despite the large variation in the Monte Carlo

simulations reflecting the variability of real ecosystems. Non-predator-prey

interactions explained relatively small proportions of the total deviance, and

each had different directionalities of effects depending on the presence of

the other interaction types and on whether energy or entropy was measured.

These results underscore the importance of modeling more realistic colours

of environmental noise in understanding and predicting the dynamics of

ecological communities.

3.1 introduction
God is noisy. Real ecosystems are ‘buffeted by a more or less continual series

of perturbations, and transient behavior may be the norm rather than the

exception in nature’ [198]. In the face of increasing environmental change,

it is important to understand the impact of different types of environmental

variation on populations and communities [199]. Sutherland et al. [200]
identified the question of how environmental stochasticity interacts with

density dependence to influence population dynamics as one of the most

important contemporary questions in ecology. Stochasticity cannot be un-

derstood adequately by linear analysis, because the stochastic system is never

in equilibrium [201]. Indeed, Ruokolainen & Fowler [202] reported that
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analytical solutions did not capture many of the features of the simulation

outputs of stochastic Lotka-Volterra models.

The biggest problem is the real world.
md at Goldman Sachs

The influence of stochasticity on population dynamics was first inves-

tigated in the 1960s and 1970s [196, 203, 204] and have attracted increasing

attention in recent years. Stochasticity has been found to magnify extinc-

tion risk and reduce invasion risk [205, 206], and has been highlighted as

an area for further research in community viability analysis [207]. With

respect to species interactions, Ripa et al. [208] first presented a theory

of the population-level effects of environmental noise in two-species ‘food

webs’. A theoretical study [209] of the effects of noise on the transient

dynamics of two, three and n interacting species with Lotka-Volterra dy-

namics found that noise can enhance stability, but that analysis used random

interaction parameters. Subsequently, Ripa & Ives [210] took an analytical

approach to understanding the effects of environmental synchrony on the

dynamics of populations in a two-species Lotka-Volterra competition model,

and showed that the effects can be large and unexpected as synchrony can

either amplify or dampen cyclic behaviour. Gravel et al. [211] investigated
population-dynamical criteria for species coexistence in a stochastic envi-

ronment, while Gjata et al. [212] used stochastic simulations to study the

effects of indirect interactions resulting from trophic interactions. Vasseur

& Fox [213], using a theoretical four-species ‘diamond’ food web, reported

that noise can stabilize food webs by synchronizing population dynamics.

Wells et al. [32] found that environmental stochasticity, on top of popula-

tion dynamics, affected the structural indices of ecological networks. Most

recently, Novak [187] highlighted nonequilibrium dynamics as one of the

promising avenues for future theoretical work.

Reddened noise is experienced by most natural populations [214–219] and

is exhibited by many other complex systems ranging from stock markets

to protein-dna binding to rhythmic synchronization in music-making [220],
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yet most stochastic studies have assumed white noise. The colour of noise

has been shown to have significant impacts on the dynamics and stability of

single populations [221–228] or simple systems with a few interacting species

[202, 206, 210, 229]; also see review by Ruokolainen et al. [199]. Multispecies
studies include that of Greenman & Benton [206], who reported that au-

toregressive noise caused resonance and threshold effects in a simple system

of three species on three trophic levels. Using a two-species bioenergetic

trophic model, Vasseur [229] showed that the temporal variability of each

species can respond differently to changes in environmental noise colour.

Ruokolainen et al. [230] and Ruokolainen & Fowler [202] constructed

theoretical models showing how various factors affected the extinction risk

of populations in competitive Lotka-Volterra communities exposed to dif-

ferent environmental noise colours. The question remains, however, as to

whether findings from studies of noise in single-species populations or a

few interacting species would hold for networks of many interacting species.

With multiple interacting species, the question also arises as to the

extent to which individual species’ responses to stochasticity are correlated,

or synchronized, with one another. Total interspecific asynchrony has often

been used in studies of competition and niche differentiation [231], but this

setup is unsuitable for predictive models because environmental forcing itself

is one of the synchronizers of population dynamics for many taxa [232–236],

especially among species with similar traits [233, 237]. Niche differentiation

nevertheless gives rise to asynchrony, which can make diverse communities

less variable and more stable in the face of environmental disturbances

[238, 239]; partial synchrony would therefore seem consistent with most real

communities. Very little is known about how the degree of synchrony affects

the dynamics and stability of ecological networks, existing studies being

limited to white noise and either triangular tritrophic food webs [240] or

Lotka-Volterra competitive communities [241].

Nontrophic interactions. Recent studies have investigated the properties of
networks of various non-predator-prey interaction types, one of which is

competition. For example, species coexistence has been reported to depend

on the mean and variance of interaction strengths in competitive networks
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[242]. Competitive networks constructed on game theory principles have

been found to promote diversity [243], which implies that this enables

more species to coexist in equilibrium. In networks of competing species

that cannot be ranked in a strict hierarchy of competitive ability, negative

frequency dependence can arise that promotes diversity [159]. In contrast,

Loreau & de Mazancourt [241] found in a stochastic competition model

that competition was generally destabilizing, but this may have been partly

due to the inherent instabilities of the discrete-time modelling that was

used.

Ecological theory has traditionally been dominated by research into

antagonistic interactions with, until recently, a relative neglect of facilitative

or mutualistic interactions [244]. Although the co-occurrence of negative

and positive interactions was already recognized by Burkholder [171], only

in recent years have researchers begun to more widely acknowledge the

importance of accounting for the mutualistic interactions that pervade real

ecological communities [161]. Mutualism is not only of theoretical interest

but has also been shown to enhance sustainability in systems exploited by

man [245] and has become more prevalent under increasing environmental

stress [246].

Various studies have taken the network approach towards mutualistic

interactions. For example, Suweis et al. [167] analytically and numerically

demonstrated the positive correlation between species abundances and the

nestedness of animal-plant mutualistic networks. Okuyama & Holland [247]

found that the structural attributes of dynamic mutualistic networks give

rise to positive complexity-resilience relationships, while Ramos-Jiliberto

et al. [192] reported that incorporating adaptivity of interactions increased

robustness in dynamic mutualistic networks. Discoveries about mutualistic

networks have also inspired further inquiry into food webs. For example,

Kondoh et al. [248] found that food webs had nested substructures like

in bipartite mutualistic networks, and proposed that nestedness in food

webs hinders coexistence because it increases consumer niche overlap, an

effect opposite to nestedness in mutualistic networks. A comparative study by
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Thébault & Fontaine [249] revealed how dynamic food webs and mutualistic

networks achieve stability via different structural mechanisms.

The aforementioned studies have greatly advanced our understanding of

complexity-stability relationships in ecosystems, but one of their limitations

is that interaction types were considered in isolation [132, 249, 250]; little is

known about the combined effect of all these interaction types. The relative

neglect of non-predator-prey interactions can have profound ramifications

for our understanding of ecosystem function [251]. For example, non-

predator-prey interactions may exacerbate human impact on ecosystems

[252]; not accounting for such interactions in fisheries models has reduced

the capacity of these models to predict stock collapse [82]. Food webs

implicitly include some non-predator-prey interaction in the form of indirect

competition, but competition among basal species and, more strikingly,

facilitation are absent. Conversely, studying non-predator-prey interactions

in isolation can also compromise our ability to make useful predictions. For

example, the dynamics of host-parasite interactions depend not only on

those interactions per se but also on predators and alternative hosts, with

implications for infectious disease control [253].

Several researchers have thus advanced the design of models containing

multiple interaction types. The analytical models of Gross [161], involving

multiple consumer species feeding on a single resource, revealed that in-

traguild mutualism could be an important ingredient for species coexistence

in otherwise competitive environments. Filotas et al. [254] simulated how

spatial processes affect the structure and stability of multiple-interaction-

type networks created with random topology and link strengths. Most

recently, the so-called multiplex network approach [255] has increasingly

been adopted, where different interaction types are partitioned into differ-

ent networks that are interlinked with one another [174, 256, 257].

Some of the most general results so far emerging from networks of

multiple interaction types come from Allesina & Tang [51], whose ana-

lytical models suggested that the addition of mutualistic and competitive

interactions reduce the probability of stability of predator-prey networks.

Stability of equilibrium points, however, is just one part of the story, as
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first highlighted in §1.3.1; the response in nature of a system to perturba-

tions constitute another important line of inquiry. Indeed, some researchers

have advocated that the maintenance of resilience, rather than avoidance of

disturbance, should be the focus for conservation efforts [258, 259].

Host-parasite interactions. The importance of incorporating parasites into

mainstream food webs [260] and potential effects of parasitism on food

web stability [154, 261] have also been highlighted recently, as most studies

have investigated host-parasite networks in isolation [262, 263]. There have

even been calls for including parasites in food webs by ‘default’ [264].

The impacts of parasites on food webs have been found to be diverse,

various interspecific and intraspecific mechanisms having been reported for

both stabilizing and destabilizing effects [105, 156, 265, 266] and for effects

on network structure mainly via changes in diversity and complexity [267].

Parasitism has also been paired with mutualism in a study that explored the

dynamics and equilibria of a theoretical ‘food web module’ comprising a

plant, pollinator and nectar robber [268].

To date, no study has investigated the effects of the colour and syn-

chrony of noise on networks of many species and multiple interaction

types. Most of this kind of work has been on the dynamics of single

populations; even when interspecific interactions are considered, often us-

ing Lotka-Volterra models of predation or competition, the focus is on

population-level rather than ecosystem-level dynamics. In this study, I use

the simulation model documented in Chapter 2 to ask how environmen-

tal stochasticity and synchrony, and non-predator-prey interactions, affect

the variability of ecological networks. The foundations of the model in-

clude empirical data from which network structures have been derived, and

well-established consumer-resource equations with known assumptions. Pre-

liminary simulations using this class of model by Kéfi et al. [41], comprising
food webs with added plant facilitation and predator interference, indi-

cated that nontrophic interactions result in higher diversity at equilibrium,

but their study did not look at environmental stochasticity. I show that

the colour and degree of synchrony of noise have striking effects on the

temporal variability of ecological networks.
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3.2 methods
The models are based on Chapter 2, using the prey-dependent functional

responses. Williams & Purves [149] found no consistent trend across empir-

ical food webs in the distribution of niche values within a given web and

reported that the distributions were often nonuniform. In this chapter, I

therefore modify the original niche model for greater realism by using beta-

distributed (α = 1.5, β = 5) niche values η⃗. Given that η in the niche model is

roughly proportional to body size [269, 270], my values of α and β produce

a distribution that approximates two relationships3: the proportionality of

species diversity to (body size)−1/4 [177], and the lognormal distribution of

body sizes as shown in studies of terrestrial and stream ecosystems [271].

As in the food web, I set η ∼ B(1.5, 5) in the parasite web, since species

having parasitic or parasite-like lifestyles can have macroscopic (e.g. hyenas

and avian brood parasites) as well as microscopic body sizes, and there is

higher diversity at small body sizes as for nonparasitic species.

Independent replicate 15-species models with different combinations of

interaction types were generated. I used eight configurations: f, fc, fm,

fcm, fp, fcp, fmp and fcmp, where f denotes food web (predator-prey),

c competition among basal species, m mutualism and p parasitism. In the

parasitic model configurations, five of the species were parasites; the pro-

portion of parasites takes guidance from Lafferty et al. [154] and Sukhdeo
[173]. Environmental noise was implemented as detailed in §2.3. ϱ was varied

from 0 to 2 in increments of 1, 0 being white noise, and 1 and 2 being

widely regarded as pink and red respectively. For each degree of synchrony

(none, half, full—see §2.3) in each noise colour treatment in each model

configuration, 100 independent network models were generated.

The networks were simulated using the ranges of dynamical parameter

values listed in Table 3.1. Temporal variability of the ecosystem was quantified

in terms of the coefficients of variation (cv) over time [58, 272] of two metrics:

the total system energy and the exponent of the Shannon entropy [273].

3 In later chapters, species niche values are uniform rather than beta distributed, to facilitate
comparison with random-topology models where body size hierarchy no longer applies, and
to avoid making species of lower niche values that go extinct more similar to surviving species.
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Table 3.1. Parameter values of multispecies dynamics.

Parameter Value Reference

η B(1.5, 5) this study
ξ 0.25 [276]
r E(r) = η−1/4 [177]
K E0 this study
γ 0.01η−1/4 [177]
θ 1 this study
ψ 6 [93]
ω 1/(no¯ of resource spp.) [95]
h U[1, 2] [125]

The cv combines the amplitude and frequency of temporal variation in one

convenient index. The total system energy or biomass at each time step

was obtained by summing the species states. The exponent of the Shannon

entropy measures the directly comparable effective number of species [273],

given by exp
(
−
∑S

i=1 pi ln pi

)
where pi is the proportion of system energy

constituted by species i at a given time step and S is the total number

of species. The metrics were measured from time step 10 001 (to exclude

initial transients)4 for a duration of 25 000 divisions. Preliminary simulations

indicated that this time scale of measurement encompassed all the main

features and periodicities of the stochastic behaviour.

The effects of noise colour and synchrony on ecosystem temporal vari-

ability were analyzed using regression trees grown using binary recursive

partitioning using the tree package [275] in R. Regression trees were also

used to examine the effects of dummy variables representing the presence

or absence of each non-predator-prey interaction. The advantages of re-

gression trees over regression models are that the former is nonparametric

and does not assume unimodality and linearity of the response variable.

4 A possible question for future work is how transient dynamics modulate stochasticity and
vice versa, as has been done for single-species plant populations [274].
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3.3 results
The results reported here are from a rerun of the entire simulation study

using a different pseudorandom number generator seed state from Lin &

Sutherland [1] and with noise for basal species implemented in mortality

rate rather than growth rate, which represents a minor advancement in

model design since publication. While the results for non-predator-prey

interactions are slightly different (as would be expected and, as emphasized

by Lin & Sutherland [1], to be interpreted with caution given the very

small effect sizes), those for the effects of noise are qualitatively unchanged,

reaffirming them.

In a small number of simulations, numerical integration produced neg-

ative species states when dE/dt < 0 and |dE/dt| > E. These were due to

the noise terms and the small errors inherent in numerical integration; the

affected simulations were omitted from the analysis. The total sample sizes

for the various model configurations are 894 (f), 894 (fc), 893 (fcm), 897

(fcmp), 896 (fcp), 893 (fm), 895 (fmp) and 895 (fp), of 900 simulations each.

The stopping criterion for growing the regression trees was set as

the point where the within-node deviance became less than 1% of the

root node deviance. The resulting trees are shown in Fig. 3.1 and

numerically summarized in Table 3.2. The split between unsynchronized

and synchronized (half and full) species environmental responses explains

most of the deviance, with considerable differences in the mean values of

the cv of system energy (0.0381 and 0.307 respectively) and exponent of

Shannon entropy (0.0319 and 0.145 respectively). The next most important

factor is noise colour, with white noise giving lower cv than coloured

noise for system energy (0.0463 and 0.437 respectively), and white or pink

giving lower cv than red noise for entropy (0.0884 and 0.258 respectively).

The effects of synchrony were much more pronounced when the noise

was coloured (Fig. 3.3). The non-predator-prey interaction types never

explained more than 1% of the deviance when the dummy variables

representing their presence or absence were analyzed together with the

noise variables.
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Figure 3.1. Regression trees of effects of noise colour and synchrony on cv of system
energy (top) and of exp[Shannon entropy] (bottom). Explanatory variables: envar,
noise synchrony; fpow, colour (denoted by spectral exponent). The categorical
explanatory variable levels partitioned to the left-hand branches are indicated.
Numbers under nodes are mean values of the response variables apportioned to
the respective branches above.

Regression trees using only dummy variables of non-predator-prey

interaction types, with data points pooled across different colours and

degrees of synchrony of noise, are summarized in Fig. 3.2 and Table 3.3.

Mutualism explains most of the deviance in the cv of system energy,

while parasitism explains most of the deviance in the cv of the exponent

of Shannon entropy. Both have stabilizing effects i.e. reduce system

variability. Competition generally explains the smallest proportion of the

deviances.
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Table 3.2. Regression tree nodes and deviances of
effects of noise colour and synchrony on the cv
of total system energy or exp[Shannon entropy].

Tree Node n Deviance Mean cv

energy envar 7157 482 0.218
terminal 2379 17.3 0.0381
fpow 4778 350 0.307
terminal 1586 10.3 0.0463
fpow 3192 178 0.437
terminal 1597 34.7 0.323
terminal 1595 102 0.55

entropy envar 7157 136 0.107
terminal 2379 5.99 0.0319
fpow 4778 109 0.145
fpow 3183 31.4 0.0884
terminal 1586 4.34 0.0366
terminal 1597 18.6 0.14
terminal 1595 47.6 0.258

Tree and node names refer to Fig. 3.1; n, number of data
points.

Regression trees were also grown separately for each noise colour-

synchrony combination (Appendix 3.5.1). The results were similar to the

aforementioned effects pooled across noise colours and degrees of syn-

chrony. Mutualism explained most of the deviance most of the time for

the cv of both energy and entropy, often causing considerable if not

greatest increase in node purity. Where they account for most of the

deviance, mutualism and parasitism both tend to have stabilizing effects,

except in the case of unsynchronized species responses to noise, where

mutualism tends to be destabilizing. The effects of direct basal competi-

tion are again inconsistent and relatively small. The effects of mutualism

and parasitism, where they do not account for most of the deviance, are

also relatively small and inconsistent.
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Figure 3.2. Regression trees of effects of non-predator-prey interactions on cv of
system energy (top) and of exp[Shannon entropy] (bottom), pooled across noise
colours and degrees of synchrony. Explanatory variables: C, direct basal competition;
M, mutualism; P, parasitism. The categorical explanatory variable levels partitioned
to the left-hand branches are indicated (0 and 1 respectively denote absence and
presence of the interaction type). Numbers under nodes are mean values of the
response variables apportioned to the respective branches above.

3.4 discussion
Models with coloured noise, but not white noise, exhibit considerably

larger and longer-term fluctuations when species environments are partially

or fully synchronized. This is most likely due to constructive interference

with density-dependent dynamics within [224] and across populations,

arising from temporal autocorrelation and synchrony of the environment.

These large fluctuations may mimic periodic outbreaks and crashes of
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Table 3.3. Regression tree nodes and deviances of
effects of non-predator-prey interactions on the cv
of total system energy or exp[Shannon entropy].

Tree Node n Deviance Mean cv

energy M 7157 482 0.218
P 3579 281 0.234
C 1788 157 0.243
terminal 894 77 0.242
terminal 894 79.8 0.244
C 1791 124 0.226
terminal 895 65.2 0.232
terminal 896 58.7 0.219
P 3578 200 0.201
C 1786 88.1 0.197
terminal 893 44.3 0.198
terminal 893 43.8 0.196
C 1792 111 0.206
terminal 895 57 0.207
terminal 897 54.3 0.205

entropy P 7157 136 0.107
C 3574 77 0.113
M 1787 36.1 0.11
terminal 894 20.9 0.111
terminal 893 15.2 0.108
M 1787 40.9 0.115
terminal 894 24.3 0.116
terminal 893 16.6 0.114
M 3583 58.6 0.102
C 1791 31.6 0.107
terminal 895 16.6 0.11
terminal 896 15 0.105
C 1792 26.9 0.097
terminal 895 14.7 0.0978
terminal 897 12.2 0.0963

Tree and node names refer to Fig. 3.2; n, number of data
points.

species in real systems,5 something that my white-noise and/or unsyn-

chronized models do not appear to represent adequately. These species

5Or even bubbles and crashes in the economy.
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Figure 3.3. The influence of noise colour and degree of interspecific synchrony
on variability of ecosystem energy and Shannon entropy, in terms of kernel
density distributions of outputs from multiple simulations (n ≈ 900), for model
configuration fcmp. Plots for the other model configurations are qualitatively similar
(Appendix 3.5.2). a, unsynchronized species environments; b, half synchronized; c,
fully synchronized. Violins scaled to constant width.

may be native species, invasive pests or viruses, the latter two of which

would be of direct concern to human welfare and development. It is also

notable that with white noise, synchrony did not destabilize systems more

than the unsynchronized case. This could be because of the weakness

of reinforcing effects due to the absence of temporal autocorrelation in

white noise, whether synchronized or not. Although Lögdberg & Wen-

nergren [228] found that environmental reddening reduced rather than

increased species extinction risk, the focus of their model on the spatial

environment experienced by a single species was different from mine. My
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results generally concur with the findings of Greenman & Benton [224]

for single populations subject to coloured versus white noise. Stochastic

food web models that assume white noise may give the idea that ecosys-

tems are less variable, less prone to large and sudden changes and more

predictable than they really are, with implications for the reliability and

efficiency of ecological and conservation projects that do not conduct

research, monitoring, data collection or management over sufficiently long

time scales.

There was more than a two-fold difference in both measures of

ecosystem variability between simulations with synchronized compared to

unsynchronized noise. These large differences highlight the importance

of accounting for synchrony in ecological modeling and prediction. A

multispecies model that implements stochasticity independently for each

species may underestimate instability and extinction risk, especially if

those models also assume white noise. That synchrony has relatively little

influence on ecosystem variability in white-noise scenarios, but that even

partial synchrony amplifies the effect of coloured noise (or vice versa) in

increasing ecosystem variability, underscores the risks of making multiple

simplifying assumptions in nonlinear ecological modeling in general and

the need to minimize such risks by striking the best possible compromise

between simplicity and realism of models. Modeling noise as realistically as

possible is especially crucial in fields of research such as critical transitions

in complex systems (see Scheffer et al. [277]), where stochasticity plays

a key role in the dynamics before, during and after critical transitions.

I recommend pink noise [216, 218] with partial synchrony as a starting

point for a more realistic representation of environmental stochasticity in

dynamic species interaction models.

In the literature, direct competition among basal species rarely appears

outside exclusively plant-based research. Some studies [278–280] have

taken the leap by combining direct basal-species competition and plant-

herbivore interactions in bitrophic designs, but have not examined the

effects of such competition on a web of many trophic levels and multiple

interaction types, including facilitation. My full webs indicate that the
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effects of direct basal competition depend on whether parasitism or

mutualism, or both, are also present. Competition, being an antagonistic

interaction, may stabilize systems containing facilitation (mutualism) by

dampening the enhanced growth rates brought about by mutualism (see

below), and amplify the variability of systems containing parasitism—

another antagonistic interaction—by depressing species abundances further

and thereby causing larger abundance fluctuations and knock-on effects

through multispecies interactions. Continuing along this line of argument,

the very small effects of competition on systems containing both mutualism

and parasitism could be because the opposing effects of competition in

the presence of either mutualism or parasitism alone balance out each

other when both mutualism and parasitism are present. Although the

‘connectance’ of direct competition (0.25) seems higher than those of

the other interaction types, the absolute number of competition links is

relatively small because of the small number of basal species. We can

expect any effects of direct competition to become clearer with increasing

connectance. I did not, however, increase the connectance further because

it is more important in the systems-oriented approach here to have a

sensible balance between different interaction types. In any case, there

is little basis for comparing the relative effect sizes between different

interaction types.

The finding that mutualism tends to stabilize the system could be

attributed to the tendency of mutualism to dampen predator-prey cycles.

The occurrence of both negative and positive effects of mutualism in

this study, however, indicates that the influence of mutualism could

be highly context dependent. Nevertheless, the results complement the

findings of Mougi & Kondoh [281] who found that when increasing

proportions of randomly selected antagonistic interactions in a model food

web were converted6 to mutualistic interactions, intermediate amounts of

6 A potential limitation with their methodology is that the conversion of antagonistic interac-
tions to mutualistic interactions meant that food web structure could not be kept constant in
their study.
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such mutualistic interactions generally had stabilizing effects in terms of

equilibrium stability based on the Jacobian community matrix.

In my model, the key difference between having and not having

parasite species is the difference in the prevalence of species of smaller

body size gaining energy at the expense of species of larger body size.

This allowed me to examine the effect of this difference while keeping

the other attributes of the parasite species, such as assimilation efficiency,

distribution of niche values and metabolic scaling, statistically similar to

those of the nonparasite species. Nevertheless, the model assumptions

and parameterizations been made with nonparasite species in mind may

not necessarily apply to parasites [105]. More investigation is needed on

how parasites differ topologically and dynamically from nonparasites in

the context of ecological networks [105, 106].

Lafferty et al. [105] reviewed various mechanisms by which parasites

can destabilize or stabilize food webs, notably destabilization via the

inversion of body size structure [282] and lengthening of trophic chains

[154], and stabilization via shared pathogens. All these mechanisms are

represented in my model. My finding that parasitism tends to reduce

ecosystem variability appears to contradict part of the aforementioned

literature, but there is in fact no contradiction because both stabilizing

and destabilizing effects occur in my study depending on each of many

model realizations with contingent network topologies and dynamics. In

addition, the difference of the average result of parasitism from that of

Lin & Sutherland [1] could be partly due to the smaller number of

species used there in nonparasitic configurations, implying that additional

diversity may also have stabilizing effects on average, corroborating current

consensus on the biodiversity-stability relationship.

Overall, the finding that environmental stochasticity has a far greater

role in ecosystem variability than non-predator-prey interactions is not sur-

prising insofar as stochasticity is the source of the variability. Nevertheless,

the parameter values used for both environmental noise specification and

network topology are reasonably realistic in ecological terms, and show

that the effects of noise colour are qualitatively similar across different
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combinations of interaction types. Although one could possibly increase

the effect sizes of non-predator-prey interactions relative to those of

environmental noise by making the former interactions stronger and/or

more abundant, and/or making the environmental noise weaker, doing so

may compromise realism. These results illustrate the importance of incor-

porating stochasticity in ecosystem modeling and prediction, perhaps even

more important but even less explored than incorporating non-predator-

prey interactions in food webs. This study also shows that for either

general understanding or prediction of the dynamics of a specific ecosys-

tem, it is important to model the particular kind of stochasticity present

in that ecosystem. For example, noise in terrestrial ecosystems tends to

be whiter than that in marine ecosystems, and similarly for temperate

versus non-temperate latitudes [219]. Overall, the patterns elucidated in

this study emerged over and above the considerable variation in network

model realizations emulating real-world contingencies across ecosystems.

The implications of this study extend to practical conservation. Fo-

cusing on single charismatic species without also paying attention to

their ecological interactions, or forgetting about cryptic species with dis-

proportionate influence, may be an obvious but not necessarily optimal

approach [116]. A safer way might be to conserve ecosystem structure

and function by protecting a suite of species that represent the widest

possible range of ecological functional groups [283] and species that

serve a given function but have the widest possible range of responses

to different types of stress [284], including responses to environmental

noise. Diversity and asynchrony in species responses to noise means less

extreme overall fluctuations in ecosystem properties and function. Much

research remains to be done to understand how the interactions of a

species make it a better or worse candidate for these ends [285]. The

results so far support the notion that more systems-oriented research

strategies that accommodate stochasticity have an important role to play

in cultivating such understanding and helping us make more judicious

ecological decisions.
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3.5 appendix
3.5.1 effects of non-predator-prey interactions

Regression trees of effects of non-predator-prey interactions on cv of

system energy and exp[Shannon entropy], by noise colours and degrees

of synchrony. Explanatory variables: C, direct basal competition; M, mutu-

alism; P, parasitism. The categorical explanatory variable levels partitioned

to the left-hand branches are indicated (0 and 1 respectively denote

absence and presence of the interaction type). Numbers under nodes

are mean values of the response variables apportioned to the respective

branches above.
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3.5.2 effects of noise colour and synchrony

The influence of noise colour and degree of interspecific synchrony on

variability of ecosystem energy and Shannon entropy, in terms of kernel

density distributions of outputs from multiple simulations (n ≈ 900), for

model configurations other than fcmp (shown in Fig. 3.3 in the main

text). a, unsynchronized species environments; b, half synchronized; c,
fully synchronized. Violins scaled to constant width.
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4 extinction and invasion
do not add up

Abstract. Species extinction and invasion concurrently affect the composition
and properties of ecological communities, yet their effects have largely

been studied separately, and with more focus on species and ecological

functional groups than on the whole-community level. I adopted a dynamic

ecological network approach to compare the effects of simultaneous single-

species primary extinction and invasion to the effects of extinction and

invasion in isolation, using a set of ecosystem metrics. I also investigated

the relationship between the impact and reversibility of extinction or

invasion through reintroduction or eradication respectively. I used Monte

Carlo simulations of bioenergetic ecological network models that combined

trophic and mutualistic interactions, contained either prey-dependent or

ratio-dependent trophic functional responses, and incorporated either white

or pink environmental stochasticity. As the separate extinction or invasion

impact increased, the simultaneous extinction-invasion impact increased

but was decreasingly additive of the two separate impacts, across all

ecosystem metrics. Greater extinction or invasion impact was associated

with lower reversibility for most model types and ecosystem metrics. There

were also systematic differences between models with prey- and ratio-

dependent functional responses. These results highlight the importance of

considering the combined effects of extinction and invasion in ecological

studies, management and restoration.

4.1 introduction
Biodiversity loss is causing changes in ecosystem structure and functioning

on a global scale [286], while biotic invasion has been listed as one of the

most important global change drivers that influence biotic interactions

[287]. Accordingly, there has been extensive research on the impacts

of extinction and invasion on communities, with the ecological network

approach being increasingly used for understanding and predicting impacts

on complex ecosystems [18]. Furthermore, there is increased recognition of
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the importance of incorporating community dynamics in network studies

of extinction and invasion. For example, Curtsdotter et al. [288] found

that the effects of sequential species extinctions differ between static and

dynamic food webs.

Numerous studies have dealt with various aspects of food web structure

and dynamics as causes [289–292] and consequences [125, 293, 294] of

primary and secondary extinctions at different trophic levels. Because

whole-network time-series data are scarce, most such studies are theoretical,

although the models are usually constructed and parameterized using

empirical network topologies and community dynamics. Nevertheless, they

provide community- and ecosystem-level insights that are impractical to

obtain empirically. Such studies, however, have been restricted to trophic

interactions. Some recent studies have used empirical data to investigate

the consequences of extinction on networks of nontrophic interactions

either including [116] or excluding [295] trophic interactions, but these

studies did not incorporate community dynamics.

The effects of invasive species on ecological networks also constitute

an area of increasing research (see Olesen et al. [99] p. 44 for a review).

Empirical research has progressed from early descriptive studies [296] to

recent analyses of long-term data combined with dynamical simulations

[297]. Recent theoretical modeling studies have identified predictors of

invasion success [126, 298] and which measures best predict invasion impacts

on large food webs [30]. In terms of the effects of invasion on nontrophic

networks, most research has been on bipartite mutualistic networks of

pollinators and seed dispersers [299–301] and, as with extinction studies,

largely restricted to network topology without community dynamics [302–

304]. A few studies have examined other kinds of mutualistic [305] or

parasitic networks [306] restricted to particular pairs of taxonomic groups.

Existing network research on the effects of extinction or invasion

has one or more of the following limitations: they do not incorporate

community dynamics, the models contain only one interaction type, the

models are deterministic, or the metrics of perturbation impact pertain

to population- rather than community- or ecosystem-level properties.
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Indeed, responses of ecosystems as a whole to invasions are much less

known than responses of populations or communities [307]. Furthermore,

the vast majority of studies of the impacts of extinction and invasion

on ecological networks have so far examined extinction and invasion

in isolation from each other, or at invasion as a cause of extinction

[308]. There is a lack of studies examining the combined effects of

simultaneous extinction and invasion driven by separate causes [309]. The

importance of examining both processes concurrently is suggested by

Forys & Allen’s [310] empirical study of functional group change caused

by extinctions and invasions, and Jackson & Sax [311] who promulgate the

notion of ‘biodiversity dynamics’ in a changing environment as being the

shifting balance between species loss and gain. Indeed, non-native species

introduced by humans may mitigate the global ‘trophic downgrading’ of

food webs [312, 313].

Reintroduction of extinct species and eradication of invasive species are

increasingly being carried out in restoration ecology; an understanding

of the reversibility of extinction and invasion is therefore crucial to

restoration [314]. Lundberg et al. [315] found in dynamic models of

competitive communities that cascading extinctions could sometimes cause

community changes that preclude reinvasion, although they did not

include trophic and other types of nontrophic interactions and treated

reinvasion as a binary rather than continuous variable. The eradication of

invasive species can also have unexpected ecosystem-level outcomes because

of species interactions (review by Zavaleta et al. [316]). For example,

alien plant removal has been found to have negative impacts on rare

native plants in pollinator networks [317]. The importance of adopting

a network perspective on ecological restoration is increasingly being

recognized [116, 300]. Existing studies are mostly empirical investigations

of specific taxa and habitats (see Kardol & Wardle [314] and references

therein); more recent research has begun to demonstrate the role of

network simulation models. For example, Raymond et al. [318] dynamically
simulated the effects of invasive species eradication in a subantarctic

island’s species interaction network using and comparing different model
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structures, although they used random interaction strengths and did not

metabolically scale parameter values.

As Wardle et al. [309] state about the effects of alien consumers,

‘we have yet to move from a collection of impressive examples to the

development of general principles’. In my study, ‘general principles’ are

sought for the impacts and reversibilities of extinction and invasion

in ecological networks, where extinctions and invasions are driven by

independent processes. I also attempt to address issues recently identified

as high ecological research priorities [200, 307]: the role of rare species in

ecosystem functioning, what kinds of invasive species will affect ecosystem

properties, and how changes in ecosystem properties are related to changes

in community structure.

My strategy entails ensemble simulations to seek universal patterns in

the impacts of extinction and invasion (if any) across multiple contexts.

Empirical studies have limitations such as being snapshots in time, which

do not capture the actual mechanisms of biodiversity loss, or short-term

studies capturing mostly transient effects rather than long-term impacts

[319]. There can also be biogeographical or taxonomical biases, as has

been seen in field studies of the impacts of invasive alien plants [320].

This is where simulation modeling can provide valuable insights.

More specifically, I look at the effects of network connectance and

various extinctor (species going extinct) and invader species traits on the

impacts of primary extinction and invasion, the impact of simultaneous

extinction and invasion, and the reversibility of extinction and invasion

via reintroduction and eradication respectively. The impacts and reversibil-

ities are quantified in terms of changes in several ecosystem metrics

representing community structure, biomass, diversity and periodicity. This

multidimensional approach to quantifying ecological stability gives a more

comprehensive understanding, anticipation and management of effects of

perturbation on ecosystems [321]. In addition, it may be important to ac-

count for real-world environmental fluctuations in models; for example, Joo

et al. [322] found that deterministic models of bacteriophage-mediated bac-
terial invasion did not adequately capture dynamics that involved stochastic
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processes. This is the first study to incorporate positive interactions and

environmental stochasticity into bioenergetic food web modeling to inves-

tigate how extinction, invasion and combined impacts propagate through

noisy dynamics of species interactions to influence properties at the ecosys-

tem level of organization. This may ultimately help determine extinction

and invasion management actions with the best chance of success [323].

4.2 methods
The stochastic model is based on that documented in Chapter 2. Models of

11-species communities were generated with all different combinations of

niche and random trophic network topologies, prey- and ratio-dependent

functional responses and white and pink noise. No parasitism or direct

basal competition was implemented, for comparability across niche and

random network topologies. Trophic and mutualistic connectances were

varied within the range [0.05, 0.3] (similar to Romanuk et al. [126]) using
a Sobol’ low-discrepancy sequence [324] across replicates within each

topology-dynamics-noise configuration. The degree of interspecific syn-

chrony of response to noise was set at half-synchyronized for all models

(see Chapter 3). Dynamical parameter values are listed in Table 3.1.

The starting sample size for each topology-dynamics-noise configura-

tion was 100. Within each of the 100 replicates, four ‘parallel universe’

simulations were set up with the same parameters, initial conditions and

pseudorandom seed states, but with different combinations of extinction

and invasion (Fig. 4.1). For each simulation within a replicate, one ran-

domly selected species was removed prior to the start of the simulations,

to subsequently invade the system in the relevant simulations. Similarly,

another species was randomly selected for future extinction.

For each extinctor and invader, several species traits were quanti-

fied. These, and the trophic and mutualistic connectances, constitute the

explanatory variables (Table 4.1) whose effects on the impacts and re-

versibilities of extinction and invasion were investigated using regression

trees using the tree package in R [275]. The effects of individual ex-

planatory variables on the absolute magnitudes of the response variables
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(except extinction-invasion interaction) were also analyzed separately using

Kendall correlations, or Mann-Whitney U-tests in the case of categorical

variables (extinctor and invader basality). This procedure was then repeated

with [extinction and/or invasion impacts on community structure] as an

explanatory variable, against extinction and/or invasion impacts on the

five other ecosystem metrics.

Time (arbitrary units)

a b c d e

a

d

b

e

c

control

invasion eradication

extinction reintroduction

both

0 2000 4000 6000 8000 10000 12000

Figure 4.1. Simulation experiment design. Each of the four rows symbolizes a single
stochastic simulation of multispecies dynamics. The four simulations had identical
starting model structure, invader and/or extinctor species, parameter values, initial
conditions and noise time series. The diagram as a whole represents one of 100
replicates for each noise colour within each type of dynamics (prey-dependent and
ratio-dependent) within each network topology (niche model and random). The
red segments denote the parts of the time series over which various ecosystem
metrics were calculated. The difference in each metric between pairs of time series
was calculated as indicated by a (impact of invasion), b (impact of extinction), c
(impact of simultaneous invasion and extinction), d (reversibility of invasion, by
invader eradication) and e (reversibility of extinction, by extinctor reintroduction).
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Table 4.1. Abbreviations and description of explanatory variables.

Abbreviation Description

trocon trophic connectance
mutcon mutualistic connectance
invbasalnon is invader a basal species
extbasalnon is extinctor a basal species
invniche invader niche value (trophic level)
extniche extinctor niche value (trophic level)
invsim invader mean interaction similarity

(modified from Romanuk et al. [126] p. 1746 to combine trophic and nontrophic interactions)
extsim extinctor mean interaction similarity (modified from Romanuk et al. [126])
iesim mean interaction similarity of invader and extinctor (modified from Romanuk et al. [126])
ipred no¯ of consumer species of invader
iprey no¯ of resource species of invader
imut no¯ of mutualiser species with invader
epred no¯ of consumer species of extinctor
eprey no¯ of resource species of extinctor
emut no¯ of mutualiser species with extinctor
dominance relative extinctor abundance prior to extinction, when not under extinction pressure

(mean species energy over 20 001 ≤ time t ≤ 40 000 divided by mean total system energy over same period)
ilink total no¯ of network links of invader
elink total no¯ of network links of extinctor
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Extinction, invasion or simultaneous extinction and invasion was en-

forced at time t = 40 001, and reintroduction or eradication at t = 80 001.

A species was made extinct by instantaneously setting its state to zero.

This implementation is the most straightforward in representing different

causes of mortality. Isolated network clusters may occasionally be created

by species removal, but this does not violate ecological laws and the

separate clusters are still resource-limited. If a cluster ended up with

no basal species, it would die out as expected in reality. The state of

an invader at the time of invasion was set at 10% of what its initial

state would be if it were present as a native species at the start of

the simulation, as invasions usually begin with a few individuals; simi-

larly, species previously made extinct were reintroduced at 10% of their

initial states. Invader eradication was similar to extinction, with species

state instantaneously set to zero. Six ecosystem metrics (Table 4.2) were

calculated from time steps 20 001 to 40 000 (before extinction or inva-

sion), 60 001 to 80 000 (after extinction or invasion) and 100 001 to 120 000

(after reintroduction or eradication) to allow for most transients to pass

and to avoid capturing any spurious rate-dependent hysteresis caused by

rapid extinction. Preliminary simulations indicated that this time scale of

measurement encompassed all the main features and periodicities of the

stochastic behaviour.
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Table 4.2. Ecosystem metrics.

Metric Description

cv energy coefficient of variation over time of total biomass of all species
cv entropy coefficient of variation over time of exp[Shannon entropy] of relative species biomasses [273]
average energy average over time of total biomass of all species
average entropy average over time of exp[Shannon entropy] of relative species biomasses [273]
community structure set of all species states at each time step
power spectrum amplitude distribution of frequencies of biomass fluctuation [225] of each species
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Impacts of extinction, invasion and simultaneous extinction and invasion

(hereafter referred to as ‘extinction-invasion impact’) were quantified

by comparing the ecosystem metrics of the perturbed versus control

simulations. Differences between parallel simulations make better measures

of extinction and invasion impacts than measuring the same simulation

before and after perturbation, because in the latter we would not know

whether any changes in the system after extinction or invasion were

actually caused by the perturbation or not.

Differences in the means and coefficients of variation of energy

and entropy were calculated as proportionate change, with the control

simulation as the baseline. The difference in community structure was

quantified as the absolute root mean square deviation of the time series

of a given species between the impacted system and the same time

steps in the control simulation (i.e. as if nothing happened throughout),

calculated species by species, and then summed across all species and

divided by the number of time steps, given by√√√√√ S∑
s=1

∑
t

{(Es,tpost,start − Es,tpre,start)
2, . . . , (Es,tpost,end − Es,tpre,end)

2}

tpre,end − tpre,start + 1
(4.1)

where the subscripts pre and post indicate pre- and post-decline periods,

and start and end refer to the first and last time steps at which the

ecosystem metrics were measured.

The difference in the log power spectrum was quantified as for

community structure. The power spectrum, calculated as one of the

ecosystem metrics using default settings in the spectrum function in R,

is informative about the ‘internal dynamics’ of the system [214, 225, 325].

By revealing the detailed relationship between power and frequency, this

measure paints a picture of stability and periodicity at different time

scales—the system can be stable at one scale and unstable at another [326].

It can be indicative of changes in the interaction between stochasticity and

deterministic density-dependent cycles. The power spectrum was calculated

over 10 000 uniform frequency intervals from 0.000 05 to 0.5 (the Nyquist
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frequency) cycles per time step. An alternative way to measure change in

power spectra is by means of spectral entropy, or Shannon entropy of the

power spectrum [327], but this method loses frequency information—a

spectrum that is a mirror image of another will have identical entropy.

In addition to measuring the extinction-invasion impact per se, I also

developed a measure of the interaction between extinction and invasion,

hereafter referred to as the extinction-invasion interaction. For each

ecosystem metric, the extinction-invasion interaction was calculated as

(extinction-invasion impact)−

[(extinction impact) + (invasion impact)]
(4.2)

from the parallel simulations. The expected impact of simultaneous extinc-

tion and invasion if they were purely additive is [(impact of extinction)+

(impact of invasion)]. If the interaction has a value of 0, extinction and

invasion do not interact (i.e. have purely additive effects). In the case

of changes in community structure and power spectra, which are always

positive, a negative interaction value means that extinction and invasion

mitigate each other’s impact while a positive value means that they re-

inforce each other. In the case of changes in average or coefficient of

variation of energy and entropy, which can take positive or negative

values depending on whether the extinction and/or invasion causes them

to increase or decrease, a negative interaction value simply means that

the interaction between co-occurring extinction and invasion is less than

purely additive, while a positive value indicates the opposite. In the case of

coefficient of variation of energy or entropy, positive may be detrimental

because it indicates that the variablility has increased i.e. stability is lower;

in the case of average energy or entropy, positive may be beneficial as

it indicates that the overall biomass or diversity has increased.

Reversibility of extinction or invasion depends on two factors: the

magnitude of the impact of extinction or invasion, and the extent to which

the system can return to its pre-extinction or pre-invasion characteristics

following reintroduction or eradication respectively. The impact was quan-
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tified as above, while the difference of the post-reintroduction/eradication

ecosystem from the control simulation where no disturbance ever happened

(this difference henceforth referred to as ‘reintroduction or eradication

effect’) was quantified by calculating the differences in the above metrics

after reintroduction/eradication compared to the same time steps in the

control simulation. The ‘relative reversibility’ of extinction or invasion—

relative to the extinction or invasion impact—was then calculated as∣∣∣∣ extinction or invasion impact
(reintroduction or eradication effect) + 10−100

∣∣∣∣. (4.3)

Thus the perturbation is relatively more reversible if after a larger

perturbation the system reverts to its unaffected condition. The addition

of 10−100 avoided division by 0; the value was chosen to be several

orders of magnitude smaller than the smallest non-zero data point. As

reversibility is a non-negative concept, what matters here is the magnitude

but not the sign of the impacts, so the absolute value is taken. To

see how the reintroduction or eradication effect itself is related to the

impact of extinction or invasion, ‘absolute reversibility’ was calculated as

1 minus the sample-normalized absolute values of the reintroduction or

eradication effect, where the smaller the effect, the greater the absolute

reversibility:

1− |reintroduction or eradication effect|
max|reintroduction or eradication effect|

. (4.4)

Finally, the overall distributions of the response variables were com-

pared across topology-dynamics-noise configurations, to probe the relative

extents to which model type matters to model outputs. For the energy-

and entropy-related response variables, which could take on either posi-

tive or negative values, the distributions would also indicate the relative

directionality of the effects in addition to their magnitudes as described

above.
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4.3 results
Replicates were discarded in which noise terms and numerical integration

errors resulted in negative species states. The final sample size of each

topology-dynamics-noise configuration ranged from 72 to 98. Relatively

extreme values of response variables occurred in a small proportion of

replicates because some of the response variables, being proportionate

changes in some quantity, are divided by the original value of the quantity

which sometimes takes on very small fractional values, when populations

are very small. This is ecologically plausible and not abnormal, especially

as species states are in arbitrary units.

The regression trees showed no consistent interaction structure among

the explanatory variables of web connectances and species traits. The

explanatory variable explaining most of the deviance for each topology-

dynamics-noise configuration is listed in Appendix 4.5.1. For extinction

impact and extinction-invasion impact in most topology-dynamics-noise

configurations, extinctor dominance often accounts for most of the de-

viance in changes in power spectra and average entropy. Invader niche

value usually explains most of the deviance of invasion reversibility in

ratio-dependent niche models, across noise colours and ecosystem metrics.

An explanatory variable that explains most of the deviance in a regression

tree is not necessarily highly correlated with the response variable.

Tables of effects of individual explanatory variables on magnitudes of

response variables are found in §3.5 of the online supplement to Lin &

Sutherland [2] at http://dx.doi.org/10.1016/j.baae.2014.07.008. Extinctor

dominance is moderately strongly correlated to extinction impact for

many model types and ecosystem metrics across both white and pink

noise, in addition to explaining most of the deviance in many of the

regression trees. The correlations are mostly positive for all ecosystem

metrics except power spectrum, where the correlations are all negative.

The number of invader predators is usually moderately to moderately

strongly negatively correlated to invasion reversibility for all model types

except prey-dependent niche models, despite not often explaining most
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of the deviance in regression trees. Relationships for other explanatory

and response variables are mostly insignificant in comparison.

Relationships between impacts on community structure and impacts

on the other five community metrics are shown in Fig. 4.2 (tabulated in

Appendix 4.5.2). There are mostly moderately strong positive correlations

between community structure and energy- and entropy-related response

variables, across model types and noise colours (sample sizes: prey-

dependent models, 387; ratio-dependent models, 319). Correlations of

community structure with power spectra are generally not as strong, but

there is a notable difference between the positive correlations for prey-

dependent models and negative correlations for ratio-dependent models

in terms of invasion impact.
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Figure 4.2. Relationships between impacts on community structure and absolute values of impacts on the other ecosystem
metrics, pooled across network topologies and noise colours within each of prey-dependent (black triangles) and ratio-
dependent (red squares) model types. Apparent bimodality of data points is an artifact of arctangent transformation
which facilitates visual comparisons but compresses large values into a small range. Appendix 4.5.2 gives correlations of
untransformed data.
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Figure 4.3. Relationships of separate extinction and invasion impacts to (a) extinction-invasion impact and (b) extinction-
invasion interaction, pooled across model types and noise colours (n = 706), with fitted generalized additive model surface.
Axes: E, extinction impact; I, invasion impact; all arctangent transformed for visual interpretability. Data points coloured
according to relative extinction-invasion impact, for clarity. Occasional bimodality of data points is an artifact of arctangent
transformation that does not affect the statistical analysis. In b, impacts of extinction and invasion are purely additive
when extinction-invasion interaction = 0.
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Table 4.3. Kendall correlations of separate impacts of extinction and invasion to extinction-
invasion impact and to extinction-invasion interaction, pooled across model types and noise
colours.

Extinction-invasion… Ecosystem metric τext pext τinv pinv

impact community structure 0.621 0 0.605 0
cv energy 0.484 0 0.389 0
cv entropy 0.42 0 0.388 0
average energy 0.509 0 0.431 0
average entropy 0.515 0 0.344 0
power spectrum 0.547 0 0.558 0

interaction community structure −0.488 2.75× 10−84 −0.552 3.27× 10−107

cv energy −0.257 1.78× 10−24 −0.17 1.14× 10−11

cv entropy −0.235 8.51× 10−21 −0.282 2.42× 10−29

average energy −0.0705 0.00505 −0.123 9.66× 10−7

average entropy −0.0451 0.0726 −0.204 5.32× 10−16

power spectrum −0.47 3.93× 10−78 −0.471 1.89× 10−78

Subscripts: ext, extinction; inv, invasion. Sample size n = 706, significance level α = 0.00833 after Bonferroni
correction.
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Kendall correlations were calculated for impact of extinction against

extinction-invasion impact and against the extinction-invasion interaction,

and for impact of invasion against those same two variables (n = 706). The

analysis was done on data pooled across all model types and noise colours,

since there was little qualitative difference between them. Increasing impact

of extinction or invasion is strongly associated with increasing extinction-

invasion impact (Fig. 4.3a, Table 4.3). The extinction-invasion interaction,

however, becomes less additive and, as separate positive extinction and

invasion impacts increase, smaller than what it would be if the impacts

of extinction and invasion were purely additive (Fig. 4.3b, Table 4.3).

The relationship between extinction impact and absolute reversibility,

and between invasion impact and absolute reversibility, are shown in Fig.

4.4. Niche and random network topologies and white and pink noise

colours were pooled within each of prey-dependent and ratio-dependent

model types (sample sizes: prey-dependent models, 387; ratio-dependent

models, 319), since there were no qualitative differences in the data between

the pooled categories. All correlations are negative and often weak to

moderately strong. Impacts of extinction and invasion are usually more

strongly correlated with their respective reversibilities for prey-dependent

models than for ratio-dependent models.

Across all topology-dynamics-noise configurations, differences in the

outputs of prey- and ratio-dependent models are generally greater than

those between different network topologies and noise colours, except

for power spectra where niche and random network topologies make

the greatest difference (Fig. 4.5; sample sizes: prey-dependent niche, 194;

prey-dependent random, 193; ratio-dependent niche, 172; ratio-dependent

random, 147). Ratio-dependent models tend to produce less variable

impacts, reversibilities and extinction-invasion interactions, except for

power spectra. As expected, extinction tends to reduce average energy

and entropy while invasion tends to increase them (Fig. 4.5a), and

extinction and invasion tend to cancel out each other’s effects (in a

statistical-distribution context) when combined (comparing Figs. 4.5a and

4.5b). The directionality of energy- and entropy-related impacts, however,
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is less symmetric, the upper tails of the distributions tending to be

longer than the lower tails for both extinction and invasion (upper rows

of Figs. 4.5a and 4.5b). Interestingly, the shapes of distributions are

more similar between extinction impact and invasion impact for a given

model type than they are across model types within either extinction

or invasion (Fig. 4.5a). The extinction-invasion interaction is mostly near

zero (i.e. almost purely additive impacts of extinction and invasion) for

energy and entropy-related ecosystem metrics, but tends to negative and

highly negative for community structure and power spectra respectively,

but this is because of the abundance of high extinction-invasion impacts

for those metrics.
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Figure 4.4 (facing page). Relationship between (a) extinction
impact and absolute reversibility and (b) invasion impact and
absolute reversibility, pooled across network topologies and
noise colours within each of prey-dependent (upper row) and
ratio-dependent (lower row) model types. Kendall τ signifi-
cance level α = 0.00833 after Bonferroni correction. Legend:
triangles/circles, niche/random network topologies; black/red
data points, white/pink noise.
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Figure 4.5 (facing page). Effects of model type on (a) the im-
pacts (upper row of a) and relative reversibilities (lower row
of a) of extinction (dashed lines) and invasion (solid lines)
and (b) the extinction-invasion impact (upper row of b) and
extinction-invasion interaction (lower row of b). Black half-
violins, white noise; red half-violins, pink noise. Model types:
PDn, Prey-Dependent niche model; RDr, Ratio-Dependent
random-network model. Violins scaled to constant width and
connected at medians. The arctangent transformation produces
the artifact of bimodality in some violins, but facilitates visual
comparisons. Statistical analyses used untransformed data.
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4.4 discussion
That more dominant species tend to have greater impacts after extinction

is not surprising, since one would expect the loss of a dominant species

constituting a large proportion of the abundance or biomass to bring

a greater change to community structure, system energy and entropy.

For extinction-invasion impact, the effect of dominance may have been

weakened by the impact of invasion. Interestingly, consistent negative

rather than positive correlations of extinctor dominance with changes in

power spectra were observed. This may be because dominant extinctors

tend to have fewer predators (Appendix 4.5.3a); the extinction of a sparsely

linked dominant species may cause less disruption to the overall profile of

interacting population and noise cycles. The relationship between extinctor

dominance and number of predators was not substantially due to niche

model structure and metabolic scaling (Appendix 4.5.3b). Question 55 of

Sutherland et al. [200] asks, ‘How important are rare species in the

functioning of ecological communities?’ These results suggest that rare

species may not necessarily be more important than common (dominant)

species in the functioning of ecological communities. Rare species may,

however, be more prone to total extinction owing to their rarity, and there

may be cumulative impacts if multiple rare species are lost concurrently.

Where historical data are lacking, it may also be difficult to distinguish

between species that are naturally rare and species that are normally

common but are rare at sampling time because they are in the process

of going extinct.

Strayer [307] suggested that there does not seem to be a general

answer to the question of which invasions will change ecosystem function;

my results support this view that the impact of invasion is highly

context-dependent. Similarly, insights into Question 50 of Sutherland

et al. [200]—‘How relevant are assembly rules in a world of biological

invasion?’—can be gained from my results in that assembly rules, insofar

as the rules relate to the degree of niche overlap of the invasive and

native species, may have limited predictive power in invasion given the
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multitude of counteracting factors. For example, for invasion success per

se, it is widely recognized that greater niche overlap may make it harder

to invade, but a smaller overlap may mean that the invader is less well-

adapted to the ecosystem than the natives and therefore less successful

in invasion [328]. This tradeoff may carry over to the invasion impact

on the ecosystem as a whole, and be further tempered by other factors.

My results support Simberloff’s [323] prognosis that invasive species

management decisions should be considered on a case-by-case basis, and

underscore the importance of multi-pronged strategies synthesizing other

lines of inquiry as disparate as invasive species distribution modeling [329]

and risk and decision analysis [330, 331]. Community ecology and network

dynamics are essential components of any such strategy, as might be

illustrated by a case of unexpected community consequences of a species

introduced for biological control [332].

For both extinction and invasion (and the two combined), larger

changes in community structure can potentially be accompanied by larger

changes in energy- and entropy-related ecosystem metrics, as expected,

although large changes in community structure are more likely to accom-

pany small than large changes in the energy- and entropy-related metrics

given the distribution of points in Fig. 4.2. Nevertheless, the results

imply that if large changes in the variability or magnitude of biomass

or overall species evenness are observed in an ecosystem of interest, it

may be generally expected that there has been a considerable change in

community structure that could potentially translate to changes in various

aspects of ecosystem function and ecosystem services.

The extinction, invasion and extinction-invasion impacts on energy-

and entropy-related ecosystem metrics are similarly likely to be negative

or positive in most cases (Fig. 4.5), suggesting that extinction and invasion

can be both beneficial and detrimental in terms of ecosystem function,

insofar as high carbon storage (system energy) and high diversity (Shannon

entropy) are widely recognized to be of ecological benefit. This outcome

supports shifting attitudes towards invasive species partly brought about

by a more system-oriented world view, with increasing debate on both
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positive and negative impacts at the ecosystem and socioeconomic levels

[333–335]. The upper tails of the distributions of those impacts tend to

be longer than the lower tails; this is attributed not to any ecological

phenomenon but to the measurement of impacts as proportionate change,

which sometimes generates large positive values as explained in §4.3.

In most of the models, the magnitude of the impacts on energy-

and entropy-related metrics is relatively small, partly due to just a single

extinctor or invader. The impacts on community structure and power

spectra, however, take on a wider range of magnitudes, probably because

these metrics deal with more mechanistic aspects of the ecosystem’s

behaviour, which can be affected in many qualitatively different ways,

rather than the total energy and diversity. In cases where separate

impacts of extinction and invasion are high, the extinction-invasion impact

increases but the extinction-invasion interaction becomes increasingly less

than purely additive. This might be attributable to a kind of system-

level ‘density dependence’ arising from the intrinsic resistance of the

system to perturbation, due to reproduction- and mortality-mediated

negative feedback loops acting within and across interacting species.

Such homeostasis, however, may break down with multiple invasions and

extinctions including secondary extinctions, and should not therefore be

taken for granted in the maintenance of ecosystem function.

The difficulty of reversing extinctions or invasions with large impacts

may be discouraging, but is not unexpected news. In the case of extinction,

this may be due to secondary extinction cascades that cannot be reversed

by simply reintroducing one species. In the case of invasion, it may

be due to invasive species having self-reinforcing effects on ecosystem

processes over time [336]. The results suggest that reversal efforts may

sometimes not be worth the difficulty, because of either small extinction

or invasion impact or low reversibility. One, however, needs to consider

reintroduction or eradication on a case-by-case basis, as the desired end

result need not be identical to the original state, and there have been

spectacular success stories in wolf reintroduction [337] and rat eradication

[338]. Further research in simultaneous extinction and invasion and their
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reversibilities will also help in reconciling the sometimes conflicting goals

of endangered species management and invasive species eradication [339].

It has also been reported that complex interactions among multiple

invading species can affect invasion impact and reversibility on native

species [340]; this kind of approach could be extended to account for

network structure and dynamics.

Differences in behaviour between prey- and ratio-dependent models

tend to be more pronounced than differences in topology or even whether

extinction or invasion is involved. If niche models are considered as much

more appropriate than random networks, then perhaps more attention

should correspondingly be paid to whether prey or ratio dependence is

more ecologically appropriate. The proportionate fluctuations of predators

and prey that characterize ratio dependence may be responsible for the

differences from prey-dependent models observed in this study, such as

smaller variability in model behaviour across models of the same type of

dependence. This recalls the long-debated question as to whether prey-

or ratio-dependent models better represent biomass distributions in the

real world, and underscores the need to ‘get it right’ in predictive models

of specific systems.

The median extinction, invasion and extinction-invasion impacts on

power spectra are considerably higher for models with random topology

than those with niche topology (Fig. 4.5). This is possibly because

random networks are less hierarchical and less nested than niche-structured

networks; when one perturbs a niche model, it is more likely that there

are surviving species more similar to the extinctor and/or invader to

maintain the periodicity structure than when one perturbs a random

model. Random networks also translate to more trophic complementarity

(sensu Poisot et al. [341]) in the network overall; this implies that trophic

complementarity is potentially a predictor of the structure of community

periodicity, in addition to the other ecosystem functions studied by Poisot

et al. [341]. Nevertheless, looking at the rest of the ecosystem metrics

other than power spectra, it appears that communities with interaction

topologies that do not conform to the traditional niche model will not
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behave in radically different ways from those that obey niche rules;

indeed, Solé & Valverde [15] regarded food webs in general as having

relatively high randomness.

At the same time as general relationships were found across contingen-

cies of model structure and parameter values,7 the considerable variation

in model behaviour reflects real-world ecological variation and context

dependence of extinction and invasion impacts [307, 342], potentially across

both aquatic and terrestrial ecosystems. Future work along the lines of

this study will provide further insights into how we might influence

ecological network dynamics through selection of species (nodes) to eradi-

cate or reintroduce for increased recovery and resilience sensu Cornelius

et al. [343], perhaps using techniques inspired by control theory [344]

and appreciating that overall network topology may be more important

than individual node degree as a determinant of resilience [345]. Also

worthy of further inquiry is the relatively little known phenomenon of

degeneracy [77], in which species differing in traits can perform similar

functions, potentially mediating the impacts of extinction or invasion in

unexpected ways.

Finally, it may also be mutually beneficial for different disciplines

to understand the similarities and differences between ecological and

other kinds of networks in their responses to perturbations [346] and

to control measures [347–350]. At the same time, it is important to bear

in mind that the time-irreversibility of complex dynamical processes [8]

precludes perfect reversal of disturbances. As ecology matures into a

predictive discipline alongside the other sciences, the systems approach

offers rich prospects for exciting new fundamental research and more

effective environmental management.

7The similar outcome across noise colours does not contradict Chapter 3, because the concern
here is with the impacts of invasion and extinction and not with the ‘day-to-day’ behaviour
of the system per se. Modeling noise correctly for any given system is still important if more
specific predictions are desired.
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4.5 appendix
4.5.1 regression trees

Root predictors that explain the largest proportions of deviances in

extinction and invasion impacts, extinction-invasion interaction and relative

reversibilities, for different model types, noise colours and ecosystem

metrics. See Table 4.1 in main text for key to predictor abbreviations.
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Predictors of extinction impact.

Ecosystem metric Model type Noise Root predictor

community structure prey-dependent niche white dominance
pink extsim

prey-dependent random white extbasalnon
pink dominance

ratio-dependent niche white epred
pink extsim

ratio-dependent random white dominance
pink dominance

cv energy prey-dependent niche white eprey
pink dominance

prey-dependent random white elink
pink extniche

ratio-dependent niche white dominance
pink extbasalnon

ratio-dependent random white elink
pink dominance

cv entropy prey-dependent niche white eprey
pink eprey

prey-dependent random white extniche
pink extniche

ratio-dependent niche white extsim
pink emut

ratio-dependent random white dominance
pink extniche

average energy prey-dependent niche white eprey
pink extniche

prey-dependent random white elink
pink extsim

ratio-dependent niche white extbasalnon
pink dominance

ratio-dependent random white dominance
pink extbasalnon

average entropy prey-dependent niche white dominance
pink dominance

prey-dependent random white dominance
pink dominance

ratio-dependent niche white eprey
pink dominance

ratio-dependent random white dominance
pink dominance

power spectrum prey-dependent niche white dominance
pink dominance

prey-dependent random white dominance
pink dominance

ratio-dependent niche white extniche
pink dominance

ratio-dependent random white dominance
pink dominance
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Predictors of invasion impact.

Ecosystem metric Model type Noise Root predictor

community structure prey-dependent niche white invsim
pink ilink

prey-dependent random white invbasalnon
pink imut

ratio-dependent niche white ipred
pink ipred

ratio-dependent random white ipred
pink invbasalnon

cv energy prey-dependent niche white invniche
pink invsim

prey-dependent random white invniche
pink ilink

ratio-dependent niche white invsim
pink iprey

ratio-dependent random white invsim
pink imut

cv entropy prey-dependent niche white invniche
pink invsim

prey-dependent random white invniche
pink invniche

ratio-dependent niche white ipred
pink iprey

ratio-dependent random white invniche
pink imut

average energy prey-dependent niche white invniche
pink imut

prey-dependent random white imut
pink ipred

ratio-dependent niche white iprey
pink invbasalnon

ratio-dependent random white invbasalnon
pink invbasalnon

average entropy prey-dependent niche white invniche
pink invsim

prey-dependent random white iprey
pink invniche

ratio-dependent niche white invniche
pink iprey

ratio-dependent random white invbasalnon
pink invbasalnon

power spectrum prey-dependent niche white invniche
pink invbasalnon

prey-dependent random white ipred
pink invsim

ratio-dependent niche white ipred
pink invniche

ratio-dependent random white ipred
pink ipred
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Predictors of extinction reversibility.

Ecosystem metric Model type Noise Root predictor

community structure prey-dependent niche white elink
pink eprey

prey-dependent random white dominance
pink extsim

ratio-dependent niche white dominance
pink dominance

ratio-dependent random white dominance
pink extsim

cv energy prey-dependent niche white elink
pink eprey

prey-dependent random white dominance
pink extsim

ratio-dependent niche white extsim
pink elink

ratio-dependent random white dominance
pink extniche

cv entropy prey-dependent niche white elink
pink eprey

prey-dependent random white dominance
pink extsim

ratio-dependent niche white extsim
pink elink

ratio-dependent random white dominance
pink epred

average energy prey-dependent niche white elink
pink eprey

prey-dependent random white elink
pink extsim

ratio-dependent niche white dominance
pink elink

ratio-dependent random white dominance
pink dominance

average entropy prey-dependent niche white elink
pink eprey

prey-dependent random white dominance
pink extsim

ratio-dependent niche white dominance
pink dominance

ratio-dependent random white dominance
pink epred

power spectrum prey-dependent niche white elink
pink eprey

prey-dependent random white elink
pink extsim

ratio-dependent niche white dominance
pink dominance

ratio-dependent random white dominance
pink extsim
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Predictors of invasion reversibility.

Ecosystem metric Model type Noise Root predictor

community structure prey-dependent niche white invsim
pink iprey

prey-dependent random white ilink
pink invsim

ratio-dependent niche white invniche
pink invsim

ratio-dependent random white iprey
pink ipred

cv energy prey-dependent niche white invsim
pink iprey

prey-dependent random white ilink
pink invsim

ratio-dependent niche white invniche
pink invniche

ratio-dependent random white ipred
pink invniche

cv entropy prey-dependent niche white invniche
pink iprey

prey-dependent random white ilink
pink invsim

ratio-dependent niche white invniche
pink invniche

ratio-dependent random white imut
pink iprey

average energy prey-dependent niche white invniche
pink iprey

prey-dependent random white ilink
pink invniche

ratio-dependent niche white invniche
pink invniche

ratio-dependent random white ipred
pink invniche

average entropy prey-dependent niche white invsim
pink iprey

prey-dependent random white ilink
pink invniche

ratio-dependent niche white invniche
pink invniche

ratio-dependent random white ipred
pink invniche

power spectrum prey-dependent niche white invniche
pink iprey

prey-dependent random white ilink
pink imut

ratio-dependent niche white invniche
pink invsim

ratio-dependent random white ipred
pink ilink
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Predictors of extinction-invasion impact.

Ecosystem metric Model type Noise Root predictor

community structure prey-dependent niche white extsim
pink trocon

prey-dependent random white iesim
pink dominance

ratio-dependent niche white trocon
pink ipred

ratio-dependent random white trocon
pink trocon

cv energy prey-dependent niche white eprey
pink extsim

prey-dependent random white trocon
pink extsim

ratio-dependent niche white invsim
pink dominance

ratio-dependent random white invsim
pink imut

cv entropy prey-dependent niche white eprey
pink eprey

prey-dependent random white invsim
pink extsim

ratio-dependent niche white extniche
pink dominance

ratio-dependent random white invsim
pink epred

average energy prey-dependent niche white eprey
pink imut

prey-dependent random white iesim
pink trocon

ratio-dependent niche white extbasalnon
pink dominance

ratio-dependent random white invbasalnon
pink dominance

average entropy prey-dependent niche white dominance
pink dominance

prey-dependent random white dominance
pink dominance

ratio-dependent niche white dominance
pink dominance

ratio-dependent random white dominance
pink dominance

power spectrum prey-dependent niche white dominance
pink dominance

prey-dependent random white dominance
pink dominance

ratio-dependent niche white extniche
pink invniche

ratio-dependent random white dominance
pink dominance
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Predictors of extinction-invasion interaction.

Ecosystem metric Model type Noise Root predictor

community structure prey-dependent niche white ipred
pink extsim

prey-dependent random white trocon
pink extniche

ratio-dependent niche white trocon
pink ipred

ratio-dependent random white dominance
pink epred

cv energy prey-dependent niche white dominance
pink eprey

prey-dependent random white invniche
pink extniche

ratio-dependent niche white ipred
pink dominance

ratio-dependent random white dominance
pink imut

cv entropy prey-dependent niche white dominance
pink eprey

prey-dependent random white invniche
pink extniche

ratio-dependent niche white ipred
pink dominance

ratio-dependent random white dominance
pink invsim

average energy prey-dependent niche white emut
pink epred

prey-dependent random white ilink
pink extsim

ratio-dependent niche white invniche
pink extsim

ratio-dependent random white mutcon
pink invniche

average entropy prey-dependent niche white dominance
pink dominance

prey-dependent random white imut
pink trocon

ratio-dependent niche white imut
pink invniche

ratio-dependent random white mutcon
pink dominance

power spectrum prey-dependent niche white dominance
pink dominance

prey-dependent random white dominance
pink dominance

ratio-dependent niche white emut
pink invniche

ratio-dependent random white dominance
pink dominance
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4.5.2 effects of community structure

Kendall τ correlations between impacts on community structure and

impacts on the other ecosystem metrics. Response variables were converted

to absolute values before statistical testing. Asterisked parentheses *( )*

indicate p < α where α = 0.01 after Bonferroni correction for five

ecosystem metrics.

EXTINCTION IMPACT

Model type Noise cv . energy cv . entropy av . energy av . entropy powspec

prey - dep . niche white *(0.412)* *(0.425)* *(0.538)* *(0.422)* -0.0653

pink *(0.401)* *(0.304)* *(0.489)* *(0.32)* -0.0781

prey -dep . random white *(0.517)* *(0.469)* *(0.607)* *(0.419)* *( -0.191)*

pink *(0.439)* *(0.378)* *(0.564)* *(0.359)* -0.149

ratio - dep . niche white *(0.35)* *(0.26)* *(0.399)* 0.0812 -0.176

pink *(0.271)* 0.111 *(0.447)* 0.171 *( -0.206)*

ratio - dep . random white *(0.585)* *(0.367)* *(0.53)* *(0.347)* *( -0.355)*

pink *(0.247)* 0.159 *(0.5)* 0.182 *( -0.295)*

INVASION IMPACT

Model type Noise cv . energy cv . entropy av . energy av . entropy powspec

prey - dep . niche white *(0.437)* *(0.379)* *(0.424)* *(0.234)* 0.0855

pink *(0.409)* *(0.298)* *(0.453)* *(0.18)* 0.107

prey -dep . random white *(0.533)* *(0.489)* *(0.644)* *(0.495)* 0.0421

pink *(0.461)* *(0.454)* *(0.54)* *(0.408)* 0.0481

ratio - dep . niche white *(0.297)* *(0.189)* *(0.484)* 0.117 *( -0.309)*

pink *(0.211)* 0.127 *(0.367)* 0.028 *( -0.233)*

ratio - dep . random white *(0.569)* *(0.498)* *(0.659)* *(0.423)* *( -0.342)*

pink *(0.495)* *(0.357)* *(0.701)* *(0.55)* *( -0.225)*

EXTINCTION-INVASION IMPACT

Model type Noise cv . energy cv . entropy av . energy av . entropy powspec

prey - dep . niche white *(0.396)* *(0.429)* *(0.462)* *(0.383)* 0.07

pink *(0.309)* *(0.204)* *(0.35)* *(0.226)* 0.0667

prey -dep . random white *(0.389)* *(0.291)* *(0.474)* *(0.272)* 0.00789

pink *(0.305)* *(0.372)* *(0.463)* *(0.364)* -0.105

ratio - dep . niche white *(0.279)* *(0.257)* *(0.22)* 0.145 -0.113

pink 0.133 -0.00728 0.137 0.121 -0.188

ratio - dep . random white *(0.387)* *(0.246)* *(0.336)* 0.0931 -0.129

pink *(0.226)* 0.0544 *(0.341)* 0.0739 -0.0595
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4.5.3 effects of extinctor dominance
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5 collective effect of
interaction modifications

Abstract. Interaction modification (im), where one species modifies the

strength of the density-mediated direct interaction between two other

species, is an important ecological process, but little is known about

the collective effect of multiple im on overall community dynamics. I

use stochastic bioenergetic modeling of ecological networks with differ-

ent network topologies, functional responses and parameter values, to

investigate the effects of im connectance and im strength on ecosystem

properties including the evenness of species abundances and variability of

system biomass. It was found that the maximum system biomass observed

across the model systems increased with im connectance and strength

when the models had nonrandom topology and prey-dependent functional

responses as opposed to random topology and ratio-dependent responses.

The maximum observed species evenness increased with im strength but

decreased with increasing im connectance, when all modifications were

negative. These findings underscore the importance of accounting for

multiple im across the community for understanding complex community

dynamics.

5.1 introduction
Indirect effects are widely recognized as important drivers of the dynamics

of ecological communities, and are a subject of active empirical and

theoretical research [40, 351, 352]. There are two main types of indirect

effects, acting via interaction chains and interaction modifications [353].

In an interaction chain, one species can indirectly affect the population

density of a target species via density-mediated interactions with one

or more intermediary species, such as in exploitative competition and

trophic cascades [354], rather than direct interaction. On the other hand,

an interaction modification [355], also known by the jargonologies of ‘trait-

mediated indirect interaction’ [356], ‘non-consumptive effect’ [357] and

‘rheagogy’ [358], refers fundamentally to one species affecting the target
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species by modulating the latter’s interactions with other species. Both

types of indirect effects have been found in both empirical and theoretical

studies to vary widely in their impacts on the stability and relative species

abundances of ecological communities, depending on the relative strengths

of direct and indirect effects and the quantitative balance between positive

and negative feedback loops in ecological networks [354, 359]. This chapter

focuses on interaction modification (im), which is also a useful implicit

representation of behaviour [352].

The prevalence of im in natural communities has been recognized

in recent years. For example, predator modification of prey grazing has

been shown to be a mechanism accounting for much of the observed

variation in the strength of trophic cascades [360], and im has been

suggested as an alternative way to look at host-parasite interactions,

where the parasite affects the feeding efficiency of the host [156]. Some

mutualisms commonly formalized as pairwise interactions are actually part

of tripartite im, such as bipartite networks of ant-plant mutualisms where

ants mediate plant susceptibility to herbivory, or fish protected from

predation while living amidst and contributing nutrients to sessile marine

organisms [163, 168]. Werner & Peacor [356] reviewed the mechanistic

basis and empirical evidence for the presence of im in both aquatic and

terrestrial ecosystems and found that im were widespread in ecosystems

and often as strong as or stronger than density-mediated effects.

The importance of embracing im in understanding the response of

real-world communities to global change has recently been highlighted

[342], especially since im may play a role in engendering alternative stable

states [355]. Bolker et al. [361] found that most of the early theoretical

work on the effects of im on community dynamics pertained mostly to

the mathematical stability of simple communities and that actual dynamics

depended on details that were rarely measured empirically, such as func-

tional responses. An ecosystem-level understanding also requires a grasp

of the collective effects of the multiple im present in a given community,

but most research has involved analysis of one im in a particular com-

munity (e.g. Hsieh & Perfecto [351]). There is little knowledge on either
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the overall topology and distribution of strengths of im in the entire

community, or how multiple im collectively affect ecosystem properties.

Multiple im present in a community may interact antagonistically with

one another to reduce the total im effect on a given direct interaction,

but little is known about the detailed relationships [40]. There is also

evidence for cascading im, where a species modifies the feeding activities

of another species that, in turn, modifies the density-mediated direct

interaction between yet another two species [362], but its implications at

the ecosystem level are unknown.

Theoretical studies have begun to show that incorporating im can

have a range of ecosystem effects. In models with four trophic levels, the

presence of positive im gave rise to increased efficiency of abiotic nutrient

use [358]. Goudard & Loreau [251] showed that greater connectance or

magnitude of im in interaction web models with three distinct trophic

levels tended to reduce species richness, biomass and production. More

recently, Kamran-Disfani & Golubski [352] found that different kinds

of im-related adaptive behaviour can either facilitate or inhibit the

propagation of disturbances through food webs with three or four distinct

trophic levels and that the effects also depended on food web structure.

Although they examined each behaviour separately, they proposed that

future models should incorporate multiple types of im (representing

both foraging and defence) simultaneously. The incorporation of im in

models of entire ecological communities is still in its infancy; most

bioenergetic models of food webs, which represent the state of the art in

dynamic community modeling, do not incorporate im. Models that have

incorporated im are often simplified in terms of network topology, such

as having a small number of trophic levels with no omnivory or looping

[251, 352].

I investigate the collective effects of different degrees of im on various

ecosystem-level properties of bioenergetic ecological network models with

realistic network structure and metabolically scaled community dynamics.

I compare the responses of models with random and nonrandom network

topologies and also with prey- and ratio-dependent functional responses,
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while incorporating realistic partial synchrony of species responses to pink

environmental noise. A wide range of ecologically plausible parameter

values are explored. This approach aims to clarify how im may influence

the macroscopic properties of complex ecological communities in noisy

real-world environments, with potential implications for their predictive

modeling and management.

5.2 methods
Models were based on the specifications in Chapter 2 and categorized into

four possible configurations of trophic network topology and functional

response: (1) topology based on the niche model of food webs combined

with prey-dependent consumer-resource functional responses, (2) random

topology with prey dependence, (3) niche topology with ratio dependence

and (4) random topology with ratio dependence. All networks comprised

25 species. Parasitism and direct basal competition were omitted for

comparability with random-topology models. Pink environmental noise

with partial synchrony of species responses (§2.3) was used, as this was

considered the most realistic.

The prey-dependent consumer-resource functional response was mod-

ified from Eqn. 2.2a following the im implementation of Goudard &

Loreau [251]) and is given by

Φi,j =
Mi,jωi,jEj

h

0.5h +
∑

k∈resources
Mi,kωi,kEk

h
(5.1)

with resource preference ω and Hill exponent h as before. The additional

term M is defined as

Mi,j =
S∏

k=1

(1 + Ek)
δi,j,k , (5.2)

being the total effect on the interaction between species i and j caused

by all species that modify that interaction, δ being the strength of

interaction modification by a given species k [251]. This formulation of
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im satisfies basic ecological requirements [251], such as increasing with

the modifier species’ biomass, having no effect when the biomass is zero,

and giving the same direction of energy flow regardless of the sign of

the modification. The corresponding ratio-dependent functional response

is given by

Φi,j =
Mi,jωi,j(Ej/Ei)

h

1h +
∑

k∈resources
Mi,kωi,k(Ek/Ei)

h
. (5.3)

Although im, as implemented by Goudard & Loreau [251], can be both

antagonistic and facilitative, it is still important to retain in the model

facilitative interactions that depend directly on the states of the interacting

species, as this is fundamentally different from im [353]. Kéfi et al. [41]
recommended having both of them in dynamical models of ecological

networks.

There is little empirical knowledge of real topologies of im in eco-

logical networks. The topology of im across the network was therefore

assigned randomly; any type of species could influence the interaction

between one or more species pairs of any type, representing all pos-

sible types of adaptive behaviour—foraging, defence or otherwise (see

Dambacher & Ramos-Jiliberto [355] p. 231). Furthermore, a modifier species

can concurrently interact directly with one or both of the species whose

mutual interaction it modifies (see de Roode et al. [363] for an empirical

example). Cannibalistic links were excluded from im.

im connectance is defined in this study as Goudard & Loreau’s ‘non-

trophic connectance’ [251]: the number of realized interaction modifications

divided by the total number of possible interaction modifications, where

number of possible modifications is the total number of species multiplied

by the number of trophic links, minus two per link to account for the

fact that the two species interacting via a given link cannot modify their

own interaction. The im connectance was varied from 0 to 1 [251] in

increments of 0.1, and the calculated number of im links was rounded

to the nearest integer. I examined the effects of magnitude and spread
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of im strengths within each level of im connectance. Two separate sim-

ulation experiments were conducted, one looking at different range sizes

(hereafter ‘spread’) of im strengths around mean 0, the other looking at

different magnitudes of negative im strengths. In the first experiment, δ

was drawn from a uniform distribution of mean 0 and range size from

[−0.1, 0.1] to [−0.5, 0.5] in increments of 0.1 on each side of the mean

(Goudard & Loreau [251] used [−0.2, 0.2]). In the second experiment, δ

was drawn from a uniform distribution of range [−0.5,−0.4] to [−0.1, 0.0]

in increments of 0.1. Positive magnitudes were not used because they

were often found to give ecologically unrealistic behaviour, with species

undergoing ‘runaway’ population growth to extreme values. For both

experiments, a set of 100 control simulations was done with no im.

For each combination of model configuration, im connectance and

im strength, 100 independent model realizations and simulations were

executed. The models were simulated for 20 000 time steps, and time

steps 10 001 to 20 000 were extracted for analysis, having allowed initial

transients to pass and all species to either reach steady state or be close to

steady state. Pilot simulations indicated that the extracted time window

encompassed all the main features and periodicities of the stochastic

behaviour.

Four ecosystem metrics were measured from the community time series

as response variables: the means and standard deviations (sd) of system

energy and entropy over time. Although a measure of the effective

number of species [273], the entropy reduces here to a measure of

species evenness, since the total number of species is constant in this

study. Unlike previous chapters, the coefficients of variation were not

extracted here, because I wished to distinguish between systems with high

mean and variability and those with low mean and low variability, both

of which would result in similar coefficients of variation. In addition to

looking at the energy and entropy metrics individually, I also examined

via the evenness-variability (mean entropy-sd energy) relationship, which

is one way of looking at the diversity-stability relationship. Higher

variability is interpreted as lower stability.
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5.3 results
Simulations were discarded where extreme species behaviour resulted in

computational infinity values caused by high positive im strength (also

responsible for a few very large data points discussed below), and

occasionally where negative species states were produced due to the noise

terms and intrinsic numerical integration errors. The sample size of each

treatment ranged from 97 to 100. Overall, there was little difference

between the control simulations with no im and those with the lowest

connectance and lowest spread and magnitude of im, for all of the

response variables; the control experiment is therefore omitted from the

analysis.
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Niche topo, prey­dep. Random topo, prey­dep. Niche topo, ratio­dep. Random topo, ratio­dep.

Figure 5.1. Effect of im connectance and im spread on maximum observed means (upper row) and sd (lower row) of system
energy. The surface vertex at each connectance-spread setting denotes the mean response of the models with the highest
5% of response values among about 100 independent replicate models with the given connectance and spread. The four
main model configurations are segregated by column.
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Figure 5.2. Effect of im connectance and mean im magnitude on maximum observed means (upper row) and sd (lower row)
of system energy. The surface vertex at each im connectance-mean setting denotes the mean response of the models with
the highest 5% of response values among about 100 independent replicate models with the given im connectance and im
mean. The four main model configurations are segregated by column.
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Collective effect of interaction modifications

In the ‘spread’ experiment where both positive and negative im are

present, the maximum mean energy over time, as observed across all

models, increases dramatically with both im connectance and strength

for niche-topology prey-dependent models (Fig. 5.1, note log-transformed

data), while the other three model configurations exhibit much less change,

if at all. All model configurations show limited influence by all-negative

im (Fig. 5.2). In both experiments, the minimum observed energy changes

much more slowly, if at all (Figs. 5.5, 5.6 in Appendix 5.5.1). The sd of

system energy over time also increases with im connectance and strength

for niche-topology prey-dependent models (Figs. 5.1, 5.2). Ratio-dependent

models also have lower maximum observed mean and sd energy, and are

appreciably less variable in these maxima, across im connectances and

strengths compared to prey-dependent models (Figs. 5.1, 5.2). The mean

and sd of system energy are strongly positively correlated across the

board (Fig. 5.7 in Appendix 5.5.1) as both are caused by high production

rates leading to greater tendencies of cycles of population overshoot and

collapse.
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Figure 5.3. Effect of im connectance and mean im magnitude on maximum (a) and minimum (b) observed mean entropies,
for different model configurations of topology and functional response. The surface vertex at each im connectance-mean
setting denotes the mean response of the models with the highest (a) or lowest (b) 5% of response values among about
100 independent replicate models with the given im connectance and im mean.
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Collective effect of interaction modifications

The maximum observed mean species evenness decreases when all im

in a given system are increasingly negative and of increasing connectance

(Fig. 5.3a). Niche-topology ratio-dependent models have on average the

highest maximum observed mean evenness for any given im connectance

and magnitude. The minimum observed mean evenness shows little or

no systematic change, with niche-topology ratio-dependent models having

on average considerably higher minimum evenness than the other model

configurations (Fig. 5.3b). Models with random topology tend to have lower

evenness than models with niche topology, for the same im connectance

and strength (Fig. 5.3a). The sd of evenness shows little or no change

with increasing im negativity and connectance; this is also the case when

both negative and positive ims are present (all Pearson |ρ| and Kendall

|τ | < 0.1).
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Figure 5.4. Relationships between species evenness and system variability, by model
configuration (columns). Row a, both positive and negative im co-occurring; row b,
only negative im present. Data pooled across im connectances and strength levels.
PD, Prey-Dependent; RD, Ratio-Dependent.
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Evenness-variability relationship. Prey-dependent models exhibit two clus-

ters of data points with opposite relationships, while ratio-dependent

models have single clusters (weak to moderately strong positive Kendall τ ,

most p < 0.05) resembling the lower variability-higher evenness clusters of

the prey-dependent models with the respective niche or random network

topologies (Fig. 5.4). Inspection of simulated species trajectories of prey-

dependent models showed that systems with both very low evenness and

very high variability tended to be characterized by one or two species

having considerably higher energy states than the other species and

continuing to increase monotonically in energy within the measurement

window for the response variables while the other species had reached

steady state. These simulations constituted the minority of the sample and

were not omitted because their behaviour merges gradually with those in

which all species reached steady state, with no thresholds of evenness or

variability. The data clusters with opposite relationships occur regardless

of im settings and therefore appear to be unrelated to im (see Appendix

5.5.2 for plots of unpooled data).

5.4 discussion
The implementation of im by Goudard & Loreau [251] used in this study,

with randomization of interaction modification strengths, is considered

by Golubski & Abrams [40] as an ‘extreme simplification’. The overall

formulation, however, is sufficient for studying the fundamental effects

of im compared with no modification, across contingencies represented

by the randomization of the magnitudes and directions of im strengths.

Olff et al. [82] suggest further types of indirect interactions that could

be examined in future work.

When negative and positive im are equally abundant, they tend to

cancel out one another’s effects on maximum observed entropy and

maximum observed system energy as expected, dampening the effects of

im connectance and strength except for the energy of prey-dependent

models with niche topology (Fig. 5.1). The exceptional behaviour of the

prey-dependent models may be partly because predators at higher trophic
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levels can have many prey species in a system with niche topology, and

can increase to particularly high abundances by collectively depressing

their numerous diet species to low-energy steady states when their

functional responses are only prey-dependent and enhanced by strong

positive im. In this case the negative im do not cancel out the positive im

because the potential population growth due to positive im has no upper

bound while population reduction due to negative im has a lower bound

of zero. In contrast to niche topology and prey dependence, random

topology averages out the number of prey species per predator, and

ratio dependence regulates predator population growth more tightly with

or without im by making the predator and prey populations fluctuate

proportionately (see Arditi & Ginzburg [180]). Nevertheless, caution must

be exercised in comparing prey and ratio dependence in terms of

quantitative absolute values, because the half-saturation parameter value

used in the functional response is different and because of the fundamental

structural differences in the models.

In addition, strong and abundant negative modifications are associated

with lower maximum observed evenness (Fig. 5.3a). This could be due to

negative im weakening the direct interaction strengths between species,

causing their abundances to be less dependent on one another, everything

else being equal. Interestingly, models with random topology have lower

maximum observed evenness (Fig. 5.3a). This may be related to the random

links between the metabolically scaled species rate equations giving rise to

a higher proportion of consumers with smaller niche values (body sizes)

than their resources, giving rise to a higher incidence of deviations from

the smooth energy pyramid. Such a scenario may apply to real systems

in which parasite diversity is on par with host diversity. In contrast,

niche-topology ratio-dependent models have higher maximum observed

evenness on average, and considerably higher minimum observed evenness

on average, than all the other model configurations (Fig. 5.3b). This

could be due to ratio dependence mandating a more even distribution

of energy among predator and prey because of their proportionate

population change, combined with the aforementioned energy-pyramid
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effect. Along with the results for system energy, the results for evenness

lean towards niche topology-ratio dependence as a high evenness-low

variability configuration that may be beneficial in terms of ecosystem

function and robustness.

For all im settings examined, the evenness-variability relationship is

generally higher evenness-higher variability for ratio-dependent models

while prey-dependent models are split into two clusters with opposite

relationships, the high evenness-low variability cluster representing those

systems that have reached steady state and resembling the relationship for

ratio-dependent models (Fig. 5.4). For ratio dependence especially, the

results appear to be in conflict with the current consensus on biodiversity

generally having stabilizing effects on various kinds of stability, including

stability in terms of ecosystem variability [241]. The solution to this

paradox may be that my measure of ‘diversity’ is restricted to the species

evenness component: when species abundances are more evenly distributed,

species are on average at greater liberty to ‘explore’ their dynamical state

spaces, as contrasted with a highly uneven system heavily dominated by

one species that monopolizes most of the resources leaving very little

leeway for the others. Indeed, the latter kind of system simulated in

this study may represent real systems under siege by invasive species

or threatened by increasing activity by the human species. This study

therefore provides fresh insights on the diversity-stability relationship,

given that most studies have considered the number of species but not

their relative abundances.

Notably, my results seem to depart qualitatively from those of Goudard

& Loreau [251] in terms of the maximum observed mean system energy

being positively associated or not associated with im connectance and

spread, depending on functional response (Fig. 5.1), opposing the rela-

tionship found by Goudard & Loreau for equilibrium biomass. Possible

factors include the use of more realistic network topology, functional

responses and stochasticity, and the lack of explicit nutrient limitation, in

my model; further work may shed light on how important these factors

are for building realistic ecological models.
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In reality, im are most likely to be antagonistic to each other [40]

such that multiple positive im are collectively less positive, and negative

im less negative, than their sum, but little is known empirically. My study

assumes, as in Goudard & Loreau [251], that the strengths of multiple im

are independent of one another, such that increasing the im connectance

causes the total im strength to increase additively. This may lead to

overestimation of the effect sizes, but I argue that the findings will be

qualitatively similar. This is because it is likely that the total im strength

would still accumulate in nature with increasing im connectance, only

that it would be less than purely additive. In addition to such ‘density

dependence’ of combined im strength, the variation of im strength over

time i.e. adaptive trait dynamics [364] also needs better understanding.

In conclusion, although individual im have been reported to have

limited impact on food webs [352], I found for a wide range of

parameter values that the multiple im that would be present in a real

ecosystem can have ecosystem-level effects depending on the strengths

and connectance of those modifications, but the effects pertain mostly to

the potential maximum boundary conditions rather than those in which

most of the model ecosystems reside. This suggests that multiple im

in a community tend to cancel out one another’s effects under average

conditions, supporting the view of Golubski & Abrams [40] that models

that lack im may still give ‘adequate predictions’ for more speciose

systems, in which im tend to have smaller net effects. In addition to

elucidating the effects of im, the model behaviours observed in my study

also underscore the importance of modulating the balance between prey-

and ratio-dependent functional responses appropriately. Prey-dependent

models are much more frequently used and, if used in food webs, most

commonly combined with niche topology. In such cases, model behaviour

may exhibit higher productivity and variability and lower evenness than

reality, if the community were actually more ratio-dependent. Finally,

the study of im can also provide insights into the role of ecosystem

engineers, or species that physically modify their environment. One of

the effects of ecosystem engineers is to ‘modulate’ the links between
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other species via the environment [365]; this process is essentially im.

Ecosystem engineering has been investigated only in simple food webs,

and much remains to be discovered about its influence on larger and

more complex ecological networks [365].
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5.5 appendix
5.5.1 supplementary figures
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Figure 5.5. Effect of im connectance and im spread on minimum observed means (upper row) and sd (lower row) of system
energy. The surface vertex at each connectance-spread setting denotes the mean response of the models with the lowest
5% of response values among about 100 independent replicate models with the given connectance and spread.
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Figure 5.6. Effect of im connectance and mean im magnitude on minimum observed means (upper row) and sd (lower row)
of system energy. The surface vertex at each im connectance-mean setting denotes the mean response of the models with
the lowest 5% of response values among about 100 independent replicate models with the given im connectance and im
mean.
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Figure 5.7. Relationships between mean and sd of system energy, by model con-
figuration (columns). Row a, both positive and negative im co-occurring; row b,
only negative im present. Data pooled across im connectances and strength levels.
PD, Prey-Dependent; RD, Ratio-Dependent.

5.5.2 plots of unpooled data

Relationships between species evenness and system variability, plotted

separately for each im connectance and strength level within each model

configuration within each simulation experiment (see §5.2 for methodolog-

ical details). Axes same as Fig. 5.4 in main text. Axis limits are different

(maximized) in each subplot.
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im spread experiment: niche-topology ratio-dependent models
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im magnitude experiment: niche-topology prey-dependent models
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im magnitude experiment: niche-topology ratio-dependent models
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6 species decline
in compartmentalized networks

Abstract. The complex network approach is increasingly used to further

our understanding and management of complex systems in a wide range

of disciplines, including ecology. It has recently been recognized that

networks are often compartmentalized, and that this can have important

implications for their resilience to perturbations. I constructed stochastic

bioenergetic models comprising two compartments each containing trophic

and mutualistic interactions, with varying levels of intercompartment con-

nectivity. After steady state was reached, I simulated species declines in

one compartment and quantified their impacts on the biomass, diversity,

community composition and time series power spectra of both compart-

ments. Intercompartment trophic connectivity (density of feeding links

between the compartments) was positively correlated with the impacts

of species decline on the Shannon diversity of the compartments, but

negatively correlated with the impacts on power spectra of species time

series. Impacts on community composition were positively correlated with

connectivity when the network topology was based on the niche model

of food webs, but negatively correlated when the topology was random.

In contrast with trophic connectivity, the effects of intercompartment

mutualistic connectivity (density of mutualistic links) were much smaller.

The results show that differing intercompartment connectivity in networks

can cause the impacts of species decline to have different magnitudes and

directions depending on network topology and the ecosystem property

being measured. The variability found across replicate simulations also

highlights the context dependence of ecosystem behaviour and suggests

that caution should be exercised when applying conclusions from one

specific system to other systems.

6.1 introduction
In our increasingly interconnected world there is a growing interest in,

and relevance of, the network approach to understanding the complex
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systems that pervade our environment, many of which have hitherto been

studied in a reductionistic way, in disciplines as disparate as neuroscience

and ecology. The scientific community is now appreciating the vulnerability

of human-designed or human-impacted natural networks to catastrophic

tipping points and need for multidisciplinary integrated global systems

science to address such problems [366]. To this end of capturing the

totality of interdependencies that govern the characteristics of real-world

complexity, the study of ‘networks of networks’ has been hailed as the

next frontier of complexity science [367, 368].

Real networks are usually highly compartmentalized [369, 370], ranging

from the World Wide Web [371] to the brain connectome [372], to

metabolic and signalling networks in cells [373, 374] and to ecological

networks of interacting species [375]. Compartmentalization can have

consequences for the behaviour or resilience of networks to perturbation

[376, 377], such as by limiting the extent of cascades [26, 378]. There

has been a corresponding development of network structural complexity

metrics that account for compartments and their nonplanarity [379].

In ecological networks of interacting species, a compartment can be

defined as some group of highly interconnected species that are highly

interconnected with one another but connected relatively sparsely to other

such groups. Pimm & Lawton [380] found little empirical evidence for

compartmentalization in food webs within relatively homogeneous habitats.

Since then, however, with more recent and more highly resolved data sets,

it has been found that many kinds of ecological networks do exhibit

compartmentalized topology, such as food webs [381, 382] and insect-

plant interaction networks [383, 384]. Furthermore, compartmentalization is

generally recognized to enhance stability and persistence in food webs

[48, 290].

In this study, I consider two-compartment networks, each compartment

being a spatially distinct ecological network that contains a different set

of species. Examples include canopy, understorey and soil compartments

in forest, and aquatic-terrestrial systems. Little research has been done on

compartmentalization at this scale, most studies having looked at either
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green or brown webs in isolation [385] or compartmentalization within

what is actually a functional group within a larger ecological network,

for example host-parasitoid communities in forest [262, 386]. Some recent

empirical studies have demonstrated that intercompartment interactions at

the habitat level play important roles in community dynamics. For example,

Giery et al. [387] demonstrated the existence of trophic interactions and

corresponding resource flux between canopy and understorey food webs

in woods. Trophic links between above-ground and below-ground webs

cause dynamic feedbacks [385], while those between elements of a spatial

mosaic of food webs in a floodplain affect the carrying capacity and

recovery of predator populations [388]. Facilitative interactions can also

occur between spatial compartments. For example, waterbodies created by

beavers support insects that, in turn, benefit terrestrial bats [389].

Very few studies have considered the explicit interaction topology of

compartmentalized networks at the ecosystem level. Pocock et al. [116]
found varying effects of species decline on the various subnetworks,

Valiente-Banuet & Verdú [295] reported that anthropogenic impacts can

act synergistically to cause network collapse, while Evans et al. [390]
found that the loss of certain habitats has disproportionate effects on

network integrity. These studies, however, did not investigate the effect

of compartmentalization per se. Furthermore, each compartment in these

studies collated a particular type of interaction of interest, rather than

the actual co-occurrence of interactions of multiple types between all

the closely interacting species in a given subhabitat, and considered only

network topology without dynamics.

The aforementioned studies provide important insights for specific

systems that are likely to be highly context-dependent; there thus re-

mains scope for more general theoretical understanding of the role of

compartmentalization in the dynamics of complex ecological networks, as

most models of ecological networks are not compartmentalized [391]. An

exception is Krause et al. [375], who examined the effects of removing

nodes from compartmentalized food webs constructed from empirical data,

and found that compartmentalization limited the extent of cascades, re-
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sulting in greater stability. They, however, did not incorporate community

dynamics, which can be an important factor in mediating the stability of

the system [32]. Stouffer & Bascompte [290] came to similar conclusions

with compartmentalized food web models that incorporated community

dynamics, but did not incorporate nontrophic interactions or interaction

modifications.

Here, I use holistic models of ecological networks to investigate the

simplest case of compartmentalization, in which two such networks are

connected to each other by varying numbers of trophic and mutualistic

links, or connectivity. I ask how differing levels of intercompartment

trophic and mutualistic connectivity affect the impact and propagation of

species declines in one compartment both on itself and on the other

compartment. I assess the impact using an array of ecosystem metrics

that are indicative of ecosystem health, as well as of broad interest, such

as biomass, diversity and community composition.

6.2 methods
The network models comprised two independently generated (Chapter

2) 15-species compartments linked to each other, making a total of 30

species in the system. In a given model realization, the two compartments

had the same trophic topology, which was either random or based on

the generalized niche model (see Chapter 2), and the niche range was

kept constant at (0, 1) for both compartments. These are not ecologically

unreasonable simplifying assumptions, even though differences between

compartments have sometimes been observed, such as between forest soil

and above-ground food webs [392]. Ratio-dependent consumer-resource

functional responses were used. Interaction modification (Chapter 5) was

confined to within compartments, with connectance 0.1 and modification

strengths drawn from a uniform distribution in [−0.1, 0.1]. Environmental

stochasticity was implemented as pink noise with partial interspecific

synchrony (§2.3).

As there is little empirical information on the actual topology of inter-

compartment links, trophic and mutualistic links were randomly assigned
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between the compartments. The intercompartment trophic and mutualistic

connectivities were both varied from 0.05 to 0.3 in increments of 0.05

in a full factorial design, while the within-compartment trophic and mu-

tualistic connectances were kept constant at 0.3, near the upper limit of

the empirically observed range [158]. Assigning intercompartment links at

random means that species most highly interconnected with one another

(i.e. modules) may not correspond exactly to compartments in a given

model realization. The two main modules in each model were therefore

identified using the community detection algorithm in the igraph package

[393] in R, and models in which the modules did not correspond exactly

to the compartments were discarded.

The directedness of the intercompartment trophic links was decided

as follows: for niche-topology models, the species of higher niche value

in a species pair would be the consumer if both were non-basal species;

for random-topology models, one of the species was randomly assigned

as consumer. If one of the pair was a basal species, it was fed on

by the non-basal species regardless of niche value or network topology.

Basal species pairs were excluded from trophic interactions. Finally, the

Laplacian matrix of the entire network was computed, as in §2.1, to

ensure that there were no isolated components.

The models were simulated to 20 000 time steps to allow initial

transients to pass, and a set of four ecosystem metrics was calculated

using the simulation output from time steps 20 001 to 40 000 after steady

state had been reached. The ecosystem metrics (§4.2) were the average

total system energy over time, average exponent of Shannon entropy

over time, community composition8 and power spectrum. From time step

40 001 onwards, five randomly selected species (hereafter ‘declinees’) in one

compartment (hereafter ‘proximal compartment’, the other compartment

referred to as ‘distal’) were subjected to chronic decline of 0.01 of

the species states at each time step until the end of the simulation at

8This is the ‘community structure’ of previous chapters; the terminology is altered here to
avoid confusion with the term of the same name in network science.
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time step 80 000.9 The decline rate was chosen such that its effect was

considerably greater than that of the environmental noise.

The same ecosystem metrics were recalculated post-decline using time

steps 60 001 to 80 000. The impact of decline on each ecosystem metric

was then calculated as detailed in §4.2, separately for each compartment.

A sample of 128 independent model realizations was generated for each

intercompartment trophic-mutualistic connectivity treatment. Another set

of simulations and analyses was also run as already described, but with

the declinees being non-basal species with the five highest niche values

in the proximal compartment, representing the decline of large animals

or top predators.

Simulations were discarded where negative species states were pro-

duced due to the noise terms and intrinsic numerical integration errors.

In addition, extreme values occasionally occurred in impacts measured as

proportional change, as explained in §4.3, resulting in infinity values via

computer rounding error; these replicates were also taken out of the

analysis. As stated earlier, models in which modules did not correspond

to compartments were discarded. The final sample size for each intercom-

partment trophic-mutualistic connectivity combination ranged from 63 to

128.

Regression trees were constructed to identify the most important de-

terminants of decline impact among the following: compartment topology

(niche or random), niche range of the declinees in a given simulation

(either the full niche range of the community or the top five predators

only), intercompartment trophic and mutualistic connectivities, numbers of

intercompartment trophic and mutualistic links associated with declinees,

the number of declinees that are basal species, and what I term the

average trophic centrality and average mutualistic centrality of declinees.

The last two variables are defined as the average number of trophic and

mutualistic links, respectively, that each declinee has in a given network

realization; they are similar to degree centrality. The trophic centrality

9This implementation is more dynamically realistic than the instantaneous extinctions of pre-
vious chapters, although it is not absolute extinction.
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combines both predator and prey links to capture the essence of energy

flow through the declinees.

The main analysis then focuses on the relationships between inter-

compartment connectivity and decline impacts on the various ecosystem

metrics in the proximal and distal compartments.

6.3 results
The regression trees (Appendix 6.6.1) show that network topology explains

the greatest proportion of the deviance for all ecosystem metrics in both

compartments. There are small correlations (all Kendall |τ | < 0.2, most

p < 0.0125 after Bonferroni correction for four ecosystem metrics) between

intercompartment trophic connectivity and impacts on proximal or distal

compartments (Table 6.1); see below for details for each ecosystem metric.

Correlations for intercompartment mutualistic connectivity are generally

weaker (most |τ | < 0.1; Table 6.1).
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Table 6.1 (facing page). Kendall correlations between inter-
compartment connectivity and decline impacts on ecosystem
metrics.
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Compartment Ecosystem metric Declinee niche range Network topology τtroph ptroph τmut pmut

proximal average energy full niche −0.031 0.00457 −0.0786 6.06× 10−13

random 0.0389 0.000426 −0.0424 0.000121
high niche −0.106 1.57× 10−22 −0.121 1.04× 10−28

random 0.0379 0.000561 −0.0366 0.000852
average entropy full niche 0.1 0 −0.0786 5.95× 10−13

random 0.118 0 −0.0394 0.000356
high niche 0.198 0 −0.0869 1.31× 10−15

random 0.122 0 −0.0495 6.64× 10−6

community composition full niche 0.0926 0 0.0367 0.000785
random −0.0386 0.000464 0.0045 0.683

high niche 0.135 0 0.0543 5.89× 10−7

random −0.0467 2.11× 10−5 0.0281 0.0105
power spectrum full niche −0.119 1.52× 10−27 −0.0587 7.52× 10−8

random −0.162 1.04× 10−48 −0.0182 0.099
high niche −0.105 4.18× 10−22 −0.114 9.99× 10−26

random −0.165 9.31× 10−51 −0.0332 0.00249
distal average energy full niche −0.0705 1.06× 10−10 −0.0368 0.000737

random −0.032 0.00374 −0.00228 0.836
high niche −0.114 1.6 × 10−25 −0.0456 2.74× 10−5

random −0.0157 0.153 0.0112 0.307
average entropy full niche 0.046 2.48× 10−5 −0.0312 0.00427

random −0.0274 0.0129 −0.00451 0.683
high niche 0.0882 4.44× 10−16 −0.00776 0.476

random −0.0124 0.258 −0.000492 0.964
community composition full niche 0.12 0 0.0284 0.00919

random −0.03 0.00644 −0.0212 0.0547
high niche 0.131 0 0.0393 0.000302

random −0.032 0.00353 −0.027 0.0139
power spectrum full niche −0.0674 6.76× 10−10 0.0767 2.12× 10−12

random −0.0996 1.66× 10−19 −0.00258 0.815
high niche 0.00908 0.404 0.176 0

random −0.107 2.95× 10−22 −0.00177 0.872

Compartments—proximal: where declines happen; distal: the other compartment. Declinee niche ranges—full: random

sample of all species in proximal compartment; high: species with five highest niche values. Subscripts: troph, intercompart-

ment trophic connectivity; mut, intercompartment mutualistic connectivity. Significance level α = 0.0125 after Bonferroni

correction for four ecosystem metrics.
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Figure 6.1. Decline impacts on average system energy for increasing intercom-
partment trophic connectivity with intercompartment mutualistic connectivity 0.05.
Results for other mutualistic connectivities are not illustrated as they show a similar
pattern. In each panel, the x-axis is the impact on system energy and the y-axis is
the rank of simulations sorted in increasing order of the impact on system energy
in the proximal compartment, demarcated by the red curve. Impacts on the distal
compartments of the respective simulations are marked by the free ends of the
black horizontal lines away from the red curve. A horizontal line thus measures
the difference between impacts on the proximal and distal compartments of a
given simulated network, and whether the distal impact is smaller (horizontal line
extends leftwards from curve) or greater (opposite direction) than the proximal
impact. Vertical dashed lines mark the value 0 on the x-axis (no impact). Upper
row, niche-topology models; lower row, random-topology models; declinees in each
simulation were species with the five highest niche values. Axis ranges fixed across
all model configurations and intercompartment connectivities.

Niche-topology models undergo greater changes in average system

energy in the proximal compartment than random-topology models, es-

pecially in the niche-topology models where declinees are restricted to

species with the highest niche values (Fig. 6.1). The impact on average en-

tropy in the proximal compartment is relatively highly positively correlated

with intercompartment trophic connectivity for all model configurations

and declinee niche ranges (Table 6.1). Niche-topology models tend to

experience less negative and greater positive impacts in the proximal

compartment as intercompartment trophic connectivity increases, especially

when declinees are restricted to species with the highest niche values
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(Fig. 6.2). Unlike niche-topology models, random-topology models have

mostly negative changes in average entropy in the proximal compartment,

becoming decreasingly negative with increasing intercompartment trophic

connectivity (Fig. 6.2).
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Figure 6.2. Pairwise comparisons between decline impacts on average entropy in
proximal versus distal compartments. Detailed explanation as for Fig. 6.1.

Niche-topology models undergo greater changes in community com-

position in the proximal compartment than random-topology models,

especially niche-topology models where the declinees are restricted to

species with the highest niche values (Fig. 6.3). Impacts on the community

composition of both proximal and distal compartments of niche-topology

models are positively correlated with intercompartment trophic connec-

tivity, while the corresponding impacts for random-topology models are

negatively correlated with intercompartment trophic connectivity (Table

6.1).

For all model configurations and declinee niche ranges, impacts on

the power spectrum of the proximal compartment are relatively highly

negatively correlated with intercompartment trophic connectivity (Table

6.1). For any given model, a large impact in the proximal compartment

is usually combined with a small impact in the distal compartment, while

a model experiencing a small impact in the proximal compartment may
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Figure 6.3. Pairwise comparisons between decline impacts on community composition
in proximal versus distal compartments. Detailed explanation as for Fig. 6.1.

sometimes experience a large impact in the distal compartment (Fig.

6.4). Compared to niche-topology models, random-topology models have

a higher frequency of larger impacts on the power spectra of both

proximal and distal compartments overall (Fig. 6.4). These differences

between niche and random models are similar to those found in Chapter

4 (p. 76, Fig. 4.5a, extreme upper right panel).
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Figure 6.4. Pairwise comparisons between decline impacts on power spectra in
proximal versus distal compartments. Detailed explanation as for Fig. 6.1.
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Finally, there do not generally appear to be meaningful correlations

between impacts in the proximal versus distal compartments, within

each model configuration and intercompartment connectivity setting (most

|τ | < 0.1)—the impact in the distal compartment does not seem to depend

on the impact in the proximal compartment (Figs. 6.1–6.4).

6.4 discussion
For all ecosystem metrics, compartmentalization has weak but systematic

effects on the response of the compartments to species decline, even

with the extensive parameter space of my simulations, although network

topology is a more important driver. Another interesting finding is that,

on average, the impact on the distal compartment usually changes little

with the impact on the proximal compartment for any given model

configuration and intercompartment connectivity, implying that cascading

effects do not propagate far. This may seem to downplay the danger of

cascading effects that have long been of concern for ecological prediction

and conservation, but complacency should not be allowed to set in—the

results of individual simulations (see also Appendix 6.6.2) clearly show

that, depending on the specific suite of parameter values (i.e. context),

the impact on the distal compartment may sometimes be relatively large

even when the impact on the proximal compartment is small, suggesting

a large cascade effect.

Negative impacts on the average system energy of proximal com-

partments of niche-topology models are greater when declinees are all

top predators than when they are randomly distributed in the trophic

spectrum (Appendix 6.6.2). This may be attributed to species of larger

body size having higher population biomass [177], and has implications

for the impact of biodiversity loss in real ecosystems, where top predators

often decline first. More explicitly, lower trophic levels do not appear

to increase appreciably in biomass compensating for top predator loss,

meaning that a ‘topless’ ecosystem may have a diminished quantity as

well as variety of ecological production, functions and socio-economically

valuable services.
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As entropy is a measure of the effective number of species, one would

expect the average entropy of the compartment in which the declines

took place to change more than the other compartment. The results

confirm this. Interestingly, when top predators decline in models with

niche topology, the impact on entropy in the proximal compartment

becomes less negative and more positive on average as intercompartment

trophic connectivity increases (Fig. 6.2). This may be attributable to the

randomly assigned intercompartment links ‘diluting’ the hierarchical niche

topology of the compartment, evening out the energy (biomass) flows

across the community.

In terms of community composition, greater changes occur in niche-

topology models where the declinees are top predators (Appendix 6.6.2),

suggesting that top-down effects and mechanisms such as mesopredator

release [394] are relatively important, at least in communities where top

predators have broader-than-random diets. This again has implications

for real-world scenarios where top predators are more vulnerable. The

opposing behaviours of models with niche and random topologies are

striking. This result underscores the importance of using appropriate

network topology when modeling a given system of interest for ecological

prediction and management.

The slightly lower occurrence of large impacts on power spectra

in either the proximal or distal compartment in models with higher

intercompartment connectivity could be partly because the relatively large

changes in periodicity regime caused by the perturbation in the proximal

compartment are dampened or diluted more by the species in the distal

compartment when the intercompartment connectivity is higher. There is

considerable variation in the magnitude of impacts on power spectra across

simulations, and the impacts in the proximal and distal compartments in

a given simulation can be very different from each other. The higher

frequency of larger impacts in random-topology models suggests that

random topology tends to have lower resilience to perturbations in terms

of the manner in which the community oscillates, as characterized by the

power spectrum. The variability of impacts, also observed in the other
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ecosystem metrics to a lesser extent, is a symptom of context dependency,

and again underscores the difficulty of predicting how perturbations will

propagate from one compartment to another. The details of species

traits and interaction structure mediate the exact pattern of amplitude

and frequency of oscillations. It also reminds us that caution should

be exercised when extrapolating ecological conclusions and management

recommendations for a specific system to other systems that, even if

superficially similar, may differ in important details.

There is considerable scope for future research into network com-

partmentalization in ecology and beyond. Firstly, it remains to be seen

whether the results would change with the number of compartments. A

particularly interesting aspect of this question is that the answer may

depend on how multiple compartments are connected to one another.

The two-compartment case is nevertheless useful for understanding how

perturbation propagates from one compartment to another, especially

when two-compartment systems can occur at some spatial scale in real-

ity, for example aquatic-terrestrial. Secondly, it is possible to combine

compartmentalizations at different scales for more realistic representa-

tions that mimic the nested or fractal structure of nature, somewhat

akin to the ‘super networks’ proposed by Olesen et al. [99]. For exam-
ple, Scotti et al. [100] modeled conspecific individual-individual networks

within species interacting in food webs that are in turn linked to one

another at the landscape level. Their model, however, lacked key inter-

actions such as individual-based interspecific interactions and nontrophic

interactions. Thirdly, the compartmentalized network approach could offer

new insights into the emerging concept of keystone communities [395]

whose removals have disproportionate dynamical impacts on metacommu-

nities. The network approach can accomplish this by enabling important

dynamic species interactions to be captured in ecosystem-level indicators

of metacommunity resilience.

The findings of this study contrast with some other findings about

other kinds of networks. For example, intermediate rather than minimum

or maximum connectivity between power grid networks has been found
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to minimize the risk and size of cascades [378]. This may be due either

to real differences in the processes governing different kinds of networks,

or possibly to my model assumptions such as equal average strengths of

intra- and intercompartment interactions. More mechanistic studies like

these will progressively give us a better idea of the degree of context

dependence of the relationship between compartmentalization and network

robustness to node failure. Furthermore, even deeper insights may be

gained by examining compartmentalization as an effect as well as a cause,

an ecological example being the effect of invasions on the way plant-

pollinator networks are compartmentalized [396]. Finally, pervading the

various proposed avenues for further inquiry is the challenge of acquiring

data on compartmentalization in ecological networks at the large scale

that has recently been efficiently accomplished [397] for compartments in

other kinds of large real-world networks, such as social networks and

the Internet.

6.5 conclusion
My results show that ecological network compartmentalization can mediate

the impacts of species decline in different ways depending on the

ecosystem property of interest, implying that there are no straightforward

rules governing how compartmentalization affects ecosystem stability or

resilience. In addition, the impact in the proximal compartment not

only exists as a direct effect of the decline, but also changes with the

intercompartment connectivity. These phenomena underscore an important

characteristic of the system, that of two-way feedback: perturbations in

one compartment are not only propagated to the other compartment

but also ‘bounced’ back to the originating compartment, sometimes as

a buffering effect. The results also suggest that both network topology

and declinee body size may be important in predicting the impacts of

declines on compartmentalized networks. My simulation configuration of

top predators declining from the niche-topology network is probably the

most frequent real-world scenario among those tested, based on empirical

observations of species loss [398] and food web structure (§2.1). It should
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also be appreciated that overarching all of the above observations is the

context dependence clearly manifested in my results as variation across

individual model simulations—an emergent observation not apparent in

isolated ecological studies of individual systems, of which only those

with ‘positive’ results tend to get published. I recommend that efforts

should continue to face up to the challenge of context dependence in

ecology, because it has implications not only for the understanding of

the complexity of ecological systems, but also for practical management.

There have been calls for combining food web theory and landscape

ecology to understand food webs at the landscape level [399, 400]; my

work takes a step in that direction, incorporating community dynamics

and different types of species interactions.
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6.6 appendix
6.6.1 regression trees

Regression tree for each of four ecosystem metrics, showing how vari-

ous explanatory variables mediate the impact of species decline in the

proximal (a) and distal (b) compartments of simulated ecological networks.

Explanatory variables: topo, network topology; trocon, intercompartment

trophic connectivity; mutcon, intercompartment mutualistic connectivity;

decnicherange, declinee niche range; decbasal, number of basal decli-

nee species; dectrolnk, number of declinee species with intercompartment

trophic links; decmutlnk, number of declinee species with intercompart-

ment mutualistic links; trocen, average trophic centrality of declinees;

mutcen, average mutualistic centrality of declinees. Only the nodes with

the greatest deviances are split, to show the most important explanatory

variables.
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6.6.2 plots from all treatments

In each subpanel, the x-axis is the impact on the ecosystem metric and

the y-axis is the rank of simulations sorted in increasing order of the

impact on the ecosystem metric in the proximal compartment, demarcated

by the thick curve. Impacts on the distal compartments of the respective

simulations are marked by the free ends of the grey horizontal lines away

from the curve. A horizontal line thus measures the difference between

impacts on the proximal and distal compartments of a given simulated

network, and whether the distal impact is smaller (horizontal line extends

leftwards from curve) or greater (opposite direction) than the proximal

impact. Vertical dashed lines mark the value 0 on the x-axis (no impact).

Axis ranges fixed across all model configurations and intercompartment

connectivities within each ecosystem metric.
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7 coda
As ecologists, we are very good at finding linear relationships while

probing one component of a specific system under a specific set of con-

ditions, but when it comes to the totality of interdependent components

under diverse conditions, we hitherto have only a very blurry image.

This thesis, synthesizing a broad range of fundamental mechanisms of

species interaction in ecological network dynamics, has tried taking some

tentative steps towards beginning to clarify that image. There are two

overall revelations: that the structure, dynamics and perturbation of com-

plex ecological networks have effects that are highly context-dependent,

and that various interesting systematic patterns nevertheless emerge above

this context dependence. Where do we go next?

One obvious path is towards application to real-world conservation. A

systems approach can facilitate preventive proactive conservation, because

one is less likely to let problems develop unnoticed in one part of the

system while preoccupied with conserving another part. The public may

be reluctant to implement system-level conservation measures, however, if

such measures do not have direct and obvious benefits to their immediate

component (e.g. charismatic species) of interest [19, 116]. There is also the

challenge of identifying metrics can be easily measured in the field that

are indicative of ecosystem health [401]. Nevertheless, we are increasingly

conscious of the need for ‘system-level conservation ecology’ [38] and

‘conservation of networks’ [402], although some calls for exploiting the

power of systems approaches in conservation still focus on particular

species as the final deliverable [403]. The pioneering steps have been

taken, such as in a field study of the consequences of urbanization on the

structure of bird-plant networks [404], helping to understand demographic

impacts of environmental change. In time, scientific advancements and

changes in public perception will hopefully enable the full potential

of systems strategies to be realized. Meanwhile, given that theoretical

studies constitute a sizeable proportion of systems ecology research owing

to data scarcity, it might be worthwhile considering whether and how
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theoretical modeling outputs could serve as evidence for the evidence-

based conservation paradigm championed by Sutherland et al. [405].
More specific to modeling methodology, some overarching issues remain

to be addressed in future work. It would be interesting to investigate

network topologies that are influenced more by phylogeny, or other drivers,

than by body size; research in this direction has so far considered different

interaction types in isolation [24, 406–409]. Yan & Zhang [410] also looked

at how interactions that do not increase monotonically with population

density affect community persistence, although they did it separately

for predator-prey and bipartite mutualistic dynamic networks under a

deterministic framework and did not subject their model communities

to exogenous perturbation; there is scope here for more realistic, yet

not drastically more complex, models of the type described in my work.

There is also a recent rise of an eco-evolutionary perspective on ecological

networks, ranging from the relationships between species’ taxonomies and

their topological positions and functions in food webs [285], to eco-

evolutionary dynamics and their implications for climate change [411],

and to using networks of interacting computer programmes to mimic and

understand species evolution in ecological networks [412]. Such research

has exciting prospects for not only ecology but also complexity science

at large, as it may extend to more general cases of broad scientific,

cultural and policy interest, such as the evolution of technology. Overall,

a strategy of using a hierarchy of models of varying levels of complexity

to more comprehensively understand the various aspects of the system

[413] may be employed to explore all these avenues.

Zooming out again to see both the details and the bigger picture at the

same time, one might envision a synthesis of general laws allying ecological

networks with complex networks in other disciplines (see §1.2). Knowledge

gleaned from the analysis of big data in other kinds of networks could

provide insights into properties of ecological networks for which data are

scarce. Conversely, ecological networks could potentially provide valuable

insights into combinatorial optimization problems in manmade networks,

analogous to the way that the adaptive spatial network evolution of
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slime molds has been found to help simultaneously optimize transport

networks for minimal cost, maximal efficiency and maximal fault tolerance

[414]. Such insights could even apply to the arts and entertainment.

For example, I would say that motion pictures with complex feedbacks

between multiple players resulting in unexpected nonlinear evolution of

the story line may be more exciting.

Going back to ecology, an interesting and useful research and man-

agement strategy is to look at ecological systems actually interacting

with other systems. In modeling terms, this could take the form of an

ecological network ‘plug-in’ to system dynamics models of the wider

environment. Indeed, linking ecological models with economic, social and

other kinds of models has been suggested as a way to make ecology

more useful to policy makers and practitioners [415]. Various researchers

have pioneered the so-called social-ecological or bio-economic models,

with conceptual models (see Milner-Gulland [416] for an overview) and

simulation models [417, 418] synthesizing ecological system dynamics, hu-

man behaviour and management policies. Complex systems science has

also been applied to the management of actual social-ecological systems

[419, 420]. These efforts, however, have not yet embraced the interaction

complexities of ecological networks.

In the policy arena, this multidisciplinary system dynamics approach

could prove useful for further boosting the effectiveness of horizon

scanning, with the aim of identifying issues of potentially far-reaching

future consequences for the global environment [421, 422]. The value of

horizon scanning lies not only in identifying a specific issue but also

in being able to infer its possible interactions with other components

of the system that could engender unexpected and disproportionate

consequences for seemingly unrelated components and for the system as

a whole. System dynamics and complexity science at large are poised

to tackle this challenge at a point in history that many have hailed

as the ‘Information Revolution’ (drawing inspiration from the Industrial

Revolution). Related fields such as risk analysis [330, 331], and info-gap

decision theory [423] where the lack of data and complexity of processes
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make probability calculations impossible, also stand to gain from the

insights of complexity science.

Such advancements in networks and complex systems are setting the

stage for us to be more proactive with having an oversight and control

of everything to secure the well-being of mankind [366, 424]; recall the

discussion on network control (§4.4). But caution is needed here, for

in trying to suppress unfavourable but relatively small ‘earthquakes’ in

complex networks, we may inadvertently force a buildup of pressure

that triggers big catastrophes, although conversely we might judiciously

encourage small cascades in order to avoid a big one. Rigorous control

measures may also have the side effect of making the world more

tedious, more regimented and less exciting to live in, as well as possibly

reducing its adaptability to unexpected exogenous drivers. We should

use our understanding of complexity to exist harmoniously within nature,

acknowledging the fact that things cannot always be in our favour if

overall resilience is to be sustained. An ecosystem does not try to

maximize one overall goal, because its constituent agents engage in

conflicting selective processes [425]; this, I argue, is what gives rise to

diversity and resilience in the face of change. We are seeing something

unprecedented in the history of life on earth—an especially intelligent

species actually having global oversight rather than solely abiding by

local rules giving rise to self-organisation. Who knows where this will

lead us?
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