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ABSTRACT: Molecules displaying an a-trialkyl-a-tertiary amine motif provide access to an important and versatile area of biologically-rele-
vant chemical space but are challenging to access through existing synthetic methods. Here we report an operationally straightforward, multi-
component protocol for the synthesis of a range of functionally and structurally diverse a-trialkyl-a-tertiary amines, which makes use of three 
readily available components: dialkyl ketones, benzylamines and alkenes. The strategy relies on the of use visible-light-mediated photocatalysis 
with readily available Ir(III) complexes to bring about single-electron reduction of an all-alkyl ketimine species to an a-amino radical interme-
diate; the a-amino radical undergoes Giese-type addition with a variety of alkenes to forge the a-trialkyl-a-tertiary amine center. The mecha-
nism of this process is believed to proceed through an overall redox neutral pathway that involves photocatalytic redox-relay of the imine, gen-
erated from the starting amine-ketone condensation, through to an imine-derived product. This is possible because the presence of a benzylic 
amine component in the intermediate scaffold drives a 1,5-hydrogen atom transfer step after the Giese addition to form a stable benzylic a-
amino radical, which is able to close the photocatalytic cycle. These studies detail the evolution of the reaction platform, an extensive investiga-
tion of the substrate scope and preliminary investigation of some of the mechanistic features of this distinct photocatalytic process. We believe 
this transformation will provide convenient access to previously unexplored a-trialkyl-a-tertiary amine scaffolds that should be of considerable 
interest to practitioners of synthetic and medicinal chemistry in academic and industrial institutions. 

INTRODUCTION 

Molecules displaying an a-tertiary amine (ATA) motif — a ni-
trogen with an a-carbon bearing three C–C bonds — show versatile 
and tunable physicochemical and biological properties, making it an 
important structural unit that is found in a diversity of pharmaceuti-
cal agents and biologically-relevant natural products (Figure 
1A).1,2,3,4 The fully substituted carbon atom adjacent to the nitrogen 
atom impacts on amine basicity5 and lipophilicity, and provides 
three exit vectors through which interactions with a biological recep-
tor can be tuned. Furthermore, when coupled with the capacity to 
add up to two further substituents to the nitrogen atom, the presence 
of an a-tertiary amine can substantially impact the topology of mol-
ecules. 

Topological complexity in pharmaceutical candidates has been 
shown to lead to a decrease in attrition of lead compounds and one 
way of achieving this is to increase the fraction of C(sp3) atoms in a 
molecule.6 In the context of the ATA scaffold, the incorporation of 
three functionalized a-alkyl substituents represents a particularly at-
tractive class of C(sp3)-rich amine scaffold. A number of compounds 
bearing a-trialkyl-ATA motifs are showing great promise as treat-
ments across a range of disease areas (Figure 1B). The a-trialkyl-
ATA feature is particularly prevalent in compounds acting on the 
nervous system. For example, b-hydroxy a-trialkyl-ATAs have been 
fundamental in the development of S1P receptor modulators, such 
as fingolimod (Gilenya), for the treatment of multiple sclerosis,2a-b 

with further studies suggesting that the ATA motif is thought to play 
a crucial role in the mechanism of action;2c fingolimod has indica-
tions in a number of other disease areas.2d The a-trialkyl-ATA Elayta 
is in phase II trials for the treatment of Alzheimer’s disease.2e-f A num-
ber of kinase inhibitors, such CCT1289304a and PF-06843195,4b 

contain the a-trialkyl-ATA motif and have been utilized as candi-
dates for the treatment of cancer. Despite the apparent importance 
of the a-trialkyl-ATA motif, they remain under represented struc-
tural features in pharmaceutical candidates, most likely because ef-
fective methods for their assembly remain limited. Therefore, the 
development of strategies for the streamlined synthesis of function-
alized C(sp3)-rich complex a-trialkyl-ATAs has been recognized as 
an important challenge in organic synthesis.7  

The assembly of ATAs, in their broadest sense, is challenging be-
cause reactions to connect classical synthons arising from discon-
necting around the a-center are usually hampered by steric effects in 
one of the components. Nevertheless, a number of innovative strat-
egies have been developed to circumvent these challenges and de-
liver the ATA structure1. Methodologies which forge the a-tertiary 
center through formation of a C–N bond can be achieved through a 
number of different reaction types. For example, nucleophilic ami-
nation via Ritter-type reactions and metal-catalyzed hydroamina-
tions constitute important approaches for the synthesis of ATAs.1,8,9 

Alternative C–N bond-forming methods that employ nitrogen as 
the electrophile have also shown great utility upon reaction with 
suitable carbon nucleophiles; nitrenes and metallonitrenoids can 
form C–N bonds on reaction with tertiary C(sp3)–H bonds in satu-
rated hydrocarbons.10,11 Molecular rearrangements,1a,12 in particular 
the Curtius reaction, have been utilized to great effect in converting 
readily available functional groups into a-trialkyl-ATAs within com-
plex frameworks.  
 



 

 
Figure 1. Pharmaceuticals displaying a-trialkyl-ATA motifs.  
Disconnection at the C–C bond offers, arguably, the most effec-

tive approach to form the a-tertiary center.1a,13,14 A cornerstone of 
such strategies is 1,2-addition of carbon-centered nucleophiles to 
ketimines. The most commonly adopted variation of this approach 
involves organometallic addition to N-activated ketimine deriva-
tives. Ellman pioneered the use of a tert-butanesulfinamide auxiliary 
to activate the ketimine species and control the stereochemistry of 
the organometallic addition.15 Whilst undeniably a powerful 
method, there are surprisingly few examples of the addition of an or-
ganometallic to dialkyl ketimines as a means to make a-trialkyl-ATA 
derivatives, likely due to sterically compromised reactivity and com-
petitive a-deprotonation brought about by the basic nature of the 
nucleophile.16 Recently, Dixon reported an indirect method for or-
ganometallic additions to dialkyl ketimine derivatives.15h Although 
tailored intermediates were required, the multi-step, one-pot trans-
formation demonstrates a good substrate scope in a-trialkyl-ATAs. 

An important contemporary strategy for the synthesis of ATAs 
has recently emerged that involves the reactions of a-amino radicals 
generated via visible-light-mediated photoredox catalysis (Figure 
2A).17 The a-amino radical is nucleophilic and represents the um-
polung of the imine and, hence, affords an alternative C–C bond dis-
connection for the a-trialkyl-ATA motif that obviates the problems 
encountered using basic organometallics. There are two main ap-
proaches for generation of such radicals, in this context: direct a-hy-
drogen atom transfer (HAT) of primary amines and single-electron 
reduction of ketimines. Rovis, Schoenebeck and co-workers demon-
strated a HAT-mediated a-alkylation of N-primary a-secondary 

amines using electron deficient alkenes. Enabled by a reversible re-
action between the amine and CO2, in situ carbamate formation low-
ers the bond dissociation energy of the a-C–H bond and engages a 
radical cation, which together facilitate an efficient HAT process.18 
In 2020, Cresswell and co-workers reported the direct coupling of a 
wide range of N-primary a-secondary amines with alkenes, this time 
employing a photocatalytically-generated azide radical as the elec-
trophilic HAT reagent to enable a-amino radical formation.19 
 In the regime involving photocatalyst-mediated single-electron 
reduction of ketimines to a-amino radicals, the range of existing 
methods is more restricted. While aryl-substituted ketimines (on C 
and N) have been utilized in visible-light-mediated reductive cou-
pling reactions,20 all-alkyl ketimines have proven to be incompatible 
with this type of transformation to form a-trialkyl-ATAs owing to 
their very low reduction potentials,21 which precludes a-amino radi-
cal formation. However, the modularity provided by an activation 
mode based on single-electron reduction of an in situ-generated 
ketiminium makes the successful realization of this process an im-
portant challenge for the synthesis of a-trialkyl-ATAs. 
 Here we report the development of an operationally straightfor-
ward and modular synthesis of a range of functionally and structur-
ally diverse a-trialkyl-ATAs (Figure 2B). Visible-light-mediated 
photocatalytic single-electron reduction of a dialkyl-imine, gener-
ated in situ from a ketone and primary amine, forms an a-amino rad-
ical, which can engage a range of alkenes through Giese addition. 
The carefully designed process permits a redox-relay pathway 
through imine intermediates that leads to a redox neutral reaction 
without the need for any external reagents. The reaction’s broad sub-
strate scope provides convenient access to previously unexplored a-
trialkyl-ATA scaffolds that should be of considerable interest to 
practitioners of synthetic and medicinal chemistry in academic and 
industrial institutions. 
RESULTS & DISCUSSION  

In 2018, our group reported a multicomponent alkene hydroam-
inoalkylation of olefins that leveraged photocatalytic single-electron 
reduction of alkyl iminium ions, derived from aliphatic aldehydes 
and benzylic secondary amines, to form a-amino radicals (Figure 
3A).22 Key to the success of this strategy was the alignment of a num-
ber of design features that enabled the orchestration of a complex 
mechanism: Hantzsch ester (HEH) quenches the  excited state of 
the Ir(III)-photocatalyst to form a highly reducing [Ir(II)]– species, 
which promoted single-electron reduction of an alkyl iminium ion to 
form an a-amino radical; the a-amino radical undergoes Giese addi-
tion to an electron deficient alkene. The resulting radical underwent 
fast, thermodynamically driven 1,5-HAT to form a benzylic a-amino 
radical, which was ultimately reduced to form the product. While 
this alkene hydroaminoalkylation exhibited a broad substrate scope, 
it carried a number of limitations that could preclude its wider appli-
cation: firstly, only highly activated or electron deficient alkenes 
were competent acceptors for the a-amino radical addition; sec-
ondly, the Hantzsch ester, while a critical enabling component, com-
plicates the reaction from a mechanistic standpoint as well as being 
a poorly atom economic reagent considering it formally transfers a 
only single hydrogen atom; finally, condensation of ketones and sec-
ondary amines was prohibitively slow under the reaction conditions, 
meaning that a-trialkyl-ATAs were not directly accessible using this 
process.  
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Figure 2. (A) Photoredox catalysis for the synthesis of a-trialkyl-ATAs. (B) Redox neutral photocatalytic strategy for the synthesis of a-trialkyl-ATAs. 

Subsequent work from our group addressed some of these limi-
tations,23,24 but failed to provide a platform for a general intermolec-
ular alkene hydroaminoalkylation to a-trialkyl-ATAs (Figure 3B-
C). For example, an intramolecular variant of the original process ac-
commodated cyclic ketones in combination with a range of homoal-
lylic secondary amines to generate N-heterospirocycles (Figure 
3B).23 However, we believe the successful deployment of ketones, in 
this case, arises from the irreversible process-terminating HAT step 
to the exocyclic primary radical, which drives the equilibria of the 
discrete steps towards product formation. Importantly, this work re-
vealed that the use of more reducing photocatalysts could change the 
nature of the quenching cycle, directly engaging the iminium species 
through single-electron reduction rather than being reduced by 
HEH (as in Figure 3A). As part of our total syntheses of (−)‐
FR901483 and (+)‐TAN1251C,24 we also showed that cyclic ketones 
could be utilized in a modified intermolecular alkene hydroaminoal-
kylation reaction (Figure 3C). There, the use of a primary amine cir-
cumvented the condensation problems associated with ketiminium 
formation, but the radical addition step required the use of a highly 
activated acceptor. Non-benzylic primary amines could be used be-
cause addition to the Karady-Beckwith alkene25 generates a capdo-
dative radical that cannot undergo the 1,5-HAT back on the amine 
framework, as required in our original work. 22 
 Taken together, it was clear that the requirements of our previ-
ous alkene hydroaminoalkylation protocols (Figure 3) would pre-
clude the sought-after process for a modular synthesis of a-trialkyl-
ATAs and so we set out to redesign an activation platform that could 
draw from readily available ketone, amine and alkene feedstocks. 
Our previous work had highlighted three factors that would be im-
portant in a new design plan: (1) the use of a photocatalyst with a 
more reducing excited state may provide a pathway by which HEH 
could be removed from the reaction components; (2) the use of a 
primary amine would likely address problems associated with 
ketimine formation; and (3) the primary amine component would 

still require a benzylic substituent to drive the 1,5-HAT step de-
signed to translocate the radical from the acceptor framework to the 
amine scaffold. While this latter feature was crucial in our original 
work, we speculated that it could function as a lynchpin mechanistic 
step for unlocking the desired modular a-trialkyl-ATA synthesis. 

 
Figure 3. Previous work on alkene hydroaminoalkylation.  
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Figure 4. Strategy and reaction design for multicomponent photocatalytic a-trialkyl-ATA synthesis.27, 28  

 Guided by these factors, we proposed a mechanistic blueprint 
that begins with condensation of a representative benzylamine (1a) 
and ketone (2a), which was expected to deliver imine 6a. The reduc-
tion potential of all-alkyl ketimines, however, is predicted to be in the 
region of –3.0 V (vs. SCE in MeCN21; for comparison, the reduction 
potential of elemental Li is –3.05 V vs SHE26), placing it out of reach 
of most convenient reducing photocatalysts. Instead, we anticipated 
that protonation of 6a to form ketiminium int-Ia would significantly 
lower the reduction potential and bring it into the range of the more 
reducing Ir(III)-photocatalysts such as Ir(dMeppy)3 
(E1/2[Ir(IV)/Ir(III)*] = –1.86 V vs SCE in CH2Cl2

23), which we had 
shown was capable of effecting the single-electron reduction process 
in the intramolecular alkene hydroaminoalkylation (Figure 3B). Sin-
gle-electron reduction of int-Ia affords a-amino radical int-IIa, 
which would engage the acrylate 3a via Giese addition29 to form rad-
ical int-IIIa. As demonstrated in our original work (Figure 3A), int-
IIIa would be expected to undergo rapid 1,5-HAT, translocating the 
radical from the acrylate framework to form benzylic a-amino radi-
cal int-IVa. At this point, we envisioned that the oxidized form of the 
photocatalyst, [Ir(dMeppy)3]+ would take part in single-electron 
transfer from the benzylic a-amino radical, returning the photocata-
lyst to its ground state form and concurrently oxidizing int-IVa to 
the new ketiminium species int-Va. This step is distinct from our 
previous work, wherein a benzylic a-amino radical is reduced to the 
amine product, and formulates an important feature of this new de-
sign: starting material-derived ketimine 6a is processed through to 
product aldimine 4a, which represents a photocatalytic imine redox-
relay process that renders the transformation redox neutral and ob-
viates the need for any terminal reducing agents. 

Guided by this design plan, our studies began with a series of re-
actions reaction involving irradiation (with a 40 W blue Kessil lamp) 
of a dichloromethane solution of imine 6a (formed in situ by mixing 
benzylamine 1a, ketone 2a and 4 Å molecular sieves in advance of 

irradiation) and tert-butyl acrylate 3a in the presence of 1mol% of 
Ir(dMeppy)3 and a small range of acid additives (Table 1A, entries 
1-3), according to our mechanistic hypothesis. The benzaldimine-
derived a-trialkyl-ATA 4a was obtained in all cases alongside amine 
1a and ketone 2a, however, the highest assay yield was observed in a 
reaction with no acid additive (Table 1A, entry 4). While this result 
was surprising, given our mechanistic hypothesis requiring imine 
protonation, we proceeded to further optimize the conditions. The 
facile hydrolysis of the benzaldimine motif in product 4a, coupled 
with isolation issues, lead us consider the use of alternative benzyla-
mines that would deliver a more stable product. We reasoned that 
use of benzhydrylamine 1b as the amine component would afford 
more stable benzophenone imine products (4b). Accordingly, we 
found that more consistent assay yields were obtained when using 
amine 1b and the products were readily isolable after chromato-
graphic purification (Table 1A, entry 5). Assessment of other pho-
tocatalysts confirmed our hypothesis that more reducing systems 
delivered a more efficient process, although it should be noted that 
the use of slightly less reducing (but commercially available) iridium 
complex Ir(ppy)3 is also effective, delivering 4b in a slightly lower 
but comparable yield (Table 1, entry 6). A control reaction in the 
absence of photocatalyst gave no product (Table 1A, entry 7; see SI 
for full details regarding control studies). Finally, we were pleased to 
find that pre-condensation to form the imine was not essential and a 
multicomponent reaction combining amine 1b, ketone 2a, alkene 
3a, photocatalyst and molecular sieves at the start of the process pro-
ceeded at no detriment to the yield of 4b, substantially increasing the 
efficiency of the process (Table 1B).   
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Entry Amine Photocatalyst Acid Yield 4a 

1 1a Ir(dMeppy)3 F3CCO2H 43% 

2 1a Ir(dMeppy)3 EtCO2H 13% 

3 1a Ir(dMeppy)3 TBSOTf 54% 

4 1a Ir(dMeppy)3 – 80% 

5 1b Ir(dMeppy)3 – 85% 

6 1b Ir(ppy)3 – 75% 

7 1b – – 0 

 
Table 1. (A) Selected optimization for stepwise, one-pot alkene hy-
droaminoalkyltion to a-trialkyl-ATAs. Yields were determined by 1H 
NMR using 1,1,2,2-tetrachloroethane as an internal standard. (B) Opti-
mized reaction conditions for direct multicomponent transformation. 
Yield is quoted for isolated product. 

With optimal conditions in hand, the scope of the alkene hydroami-
noalkylation protocol to form a-trialkyl-ATAs was investigated 
(Figure 5). The scope in the ketone component was first investi-
gated and we were pleased to observe that a functionally and struc-
turally rich suite of cyclic ketones were successful substrates in the 
reaction (Figure 5A).  Five to seven membered ring ketones were 
competent substrates in the reaction, although compared to cyclo-
hexanone the reaction of cyclopentanone and cycloheptanone gave 
lower yields of product (4c-e). A range of functionalized 6-mem-
bered ring ketones, incorporating O, S and N-heteroatoms gave ac-
cess to versatile a-trialkyl-ATA scaffolds in good yields (4b, 4f-j).  
Compared to the lower yielding cyclopentanone example, the corre-
sponding 3-pyrrolidinone gave satisfactory yields of the 5-mem-
bered ring heterocyclic amine product (4k). Conversely, the prod-
uct (4l) of the reaction using the corresponding N-Cbz azetidinone 
was obtained in a low yield, which we conjecture results from more 
challenging condensation and tautomerization processes in the 
strained heterocycle. Acyclic ketones were also good substrates, alt-
hough it was found that pre-condensation with the less bulky ben-
zylamine 1a gave superior results and allowed for a broader scope in 
this subclass of substrates (Figure 5B). Furthermore, we also found 
that cleavage of the aldimine motif to the primary amine led to the 
more straightforward isolation of these products (5m-x) in higher 
yields. Accordingly, following this modified protocol revealed that a 
selection of linear and a-branched ketones bearing a variety of func-
tionality could be converted to the a-trialkyl-ATA products; a ke-
tone containing a distal ester group cyclized on isolation to the cor-
responding lactam (5v). Whilst reactions with acetone and 3-penta-
none gave good assay yields of product (5m and 5w), isolation 
proved challenging. It is thought that this is due to partial spontane-
ous lactamization of the free amine onto the tert-butyl ester of the 

acrylate framework, which had not been observed in other sub-
strates. Notably, no intramolecular addition was observed onto the 
internal alkene in the case when 6-methylhept-5-en-2-one was em-
ployed to form 5u, even in the absence of tert-butyl acrylate. The ste-
rically encumbered tropinone scaffold also worked well under these 
conditions and provided 5x as a single diastereomer. Tri-substiuted 
ketones were found to be poor substrates in the transformation. We 
attribute this to a combination of three factors; condensation ham-
pered by steric hindrance, a challenging giese addition forging vici-
nal quaternary centres and 1,3-allylic strain limiting enamine for-
mation (vide infra).  

Next the scope of the a-trialkyl-ATA synthesis protocol was ex-
plored with respect to the alkene component (Figure 6); a wide 
range of alkenes delivered a-trialkyl-ATAs with good yields. The 
classical Giese addition electron-deficient alkene acceptors, phenyl 
vinyl sulfone, methyl vinyl ketone and even di-substituted cyclopen-
tenone and benzyl methacrylate could be employed to give the de-
sired products (Figure 6A, 7a,b,e,f) in excellent yields. Vinyl pinacol 
borane gave access to the borylated product in good yield (7d), 
providing a useful handle for further diversification.30 Electron-defi-
cient alkynes were also found to be competent coupling partners, 
giving access to the trans- alkene product exclusively (7c). The dis-
covery that the use of benzhydrylamine as the amine component led 
to superior yields in the hydroaminoalkylation reaction further 
strengthened our plan to exhibit a broad scope with respect to the 
alkene; 1,5-HAT of the radical formed following addition of the a-
amino radical to the alkene would, if benzhydrylamine was used, lead 
to the formation of the highly stabilized open shell species that we 
reasoned would provide an increased thermodynamic driving force 
for the forward reaction in preference to b-scission or further addi-
tions to an alkene. We were pleased to observed that when styrene 
was tested under this new reaction regime, a good yield of the 
phenethyl-substituted a-trialkyl-ATA was obtained (Figure 6B, 7g). 
In contrast, the same reaction using benzylamine delivered approxi-
mately 15% yield of product accompanied by an intractable mixture 
of oligomerization products. By extending irradiation time and in-
creasing the number of equivalents of acceptor from 1.5 to 3 equiva-
lents, the use of benzhydrylamine 1b led to a range of styrenes being 
successfully engaged as coupling partners (7h-m). A clear electronic 
trend was observed in the yields of these reactions, with electron rich 
styrenes giving lower yields and electron deficient styrenes leading 
to higher yields. Furthermore, 2-, 3- and 4-vinyl pyridines were em-
ployed in modest to good yields (7n-r), without the need for exter-
nal acceptor activation.31  

While the benzyl/benzhydryl amine component of the reaction 
originated as a design feature to drive a more challenging Giese-ad-
dition with a broad range of alkenes, we wondered if we could exploit 
variation of this reaction component to incorporate an additional di-
mension of modularity into the reaction products. As such, we eval-
uated a selection of benzylamines in the reaction with 4-oxotetrahy-
dropyran (2a) and tert-butylacrylate (3a) (Figure 6C). To enable 
facile isolation of the reaction products with the benzylamine moiety 
intact, the aldimine products were reduced to the corresponding sec-
ondary amine by treatment with sodium borohydride in methanol. 
The process was tolerant towards a range of substituents as well as 
amenable to the use of heteroaromatic benzylamines and gave their 
corresponding secondary amines in synthetically useful yields (8a-
f). 
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Figure 5. Scope of the photocatalytic a-tertiary amine synthesis in the ketone component. (A) Cyclic ketones. (B) Acyclic ketones. a Reaction using 3 
Å MS. b Assay yield of aldimine product by 1H NMR, taken with reference to 1,1,2,2-tetrachloroethane as an internal standard. c  Reaction with 20 mol% 
TFA added.

To demonstrate the utility of the photocatalytic a-trialkyl-ATA syn-
thesis, we targeted the preparation of a selection of molecules rele-
vant to the treatment of disease (Figure 7). Fingolimod (Gilenya, 9) 
is an important multiple sclerosis treatment and the figurehead of a 
broad class of S1P receptor modulators bearing the a-trialkyl-ATA 
motif,32 and has also been identified as a potential new lead for heart 
failure therapeutics.2d The new intermolecular alkene hydroamino-
alkylation procedure enables disconnection of fingolimod back to 
the commercial starting materials benzhydrylamine (1b), ketone 2x 
and 4-octylstyrene (3r). Treatment of these reagents with the stand-
ard photocatalytic reaction conditions for 48 h, followed by an acidic 
aqueous workup delivered fingolimod in 17% yield (Figure 7A). Alt-
hough the yield of this transformation is modest, it is notable for its 
practical simplicity and amenability towards the synthesis of ana-
logues of fingolimod which, through our new procedure, are directly 
accessible in a single synthetic step. 
 It was also recognized that the use of orthogonally functional-
ized (hetero)aromatic alkene acceptors could deliver N-primary a-

trialkyl-ATAs primed for cyclization via C–N bond formation, ena-
bling rapid access to a class of N-aryl a-trialkyl-spiroheterocyclic-
ATAs, which are under-represented as scaffolds in pharmaceutical 
candidates, most likely due to a lack of tractable methods for their 
synthesis. In this regard, a range of heterocyclic ketones were suc-
cessfully employed in the alkene hydroaminoalkylation reaction 
with benzhydrylamine and either 2-bromostyrene (3s) or 2-fluoro-
3-vinylpyridine (3t) to give a-trialkyl-ATAs 10a-e (Figure 7B). Cy-
clization of a-trialkyl-ATAs 10a-b (derived from 2-bromostyrene) 
was accomplished using a palladium-mediated intramolecular Buch-
wald-Hartwig C–N bond formation, affording 1,2,3,4-tetrahydro-
quinolines (THQ’s) 11a-b displaying the a-trialkyl-ATA motif em-
bedded within its framework. The generic THQ-pharmacophore is 
well established in a variety of contexts in medicinal chemistry, how-
ever, those displaying an a-trialkyl-ATA motif are scarce and so ex-
pedient access to new derivatives is desirable.33  
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Figure 6. (A) Scope of reaction in electron deficient acceptors. Reactions for 18 h unless stated. (B) Scope of reaction with styrenes. (3 equivalents of 
alkene used, reactions for 48 h) (C) Scope of reaction in benzylamine component. aFor optimal conversion the ketone and amine were stirred at 80 °C 
for 3 h before being subjected to the photocatalysis conditions. bReaction for 24 h.

Similarly, cyclization of a-trialkyl-ATAs 10c-e by exploiting C–N 
bond-forming SNAr ring closure onto the pendant 2-fluoropyridine 
motif is able to generate a new heterospirocyclic framework; stirring 
amines 10c-e at 120 °C in DMF in the presence of Hünig’s base af-
forded 1,2,3,4-tetrahydronaphthyridines (THN’s) 11c-e in satisfac-
tory yields. Although less thoroughly explored, the THN motif has 
also found application in medicinal chemistry, in particular as an ar-
ginine mimetic.34 THN’s 11c-e are low molecular weight, polar-
structures, with three-dimensionality imparted by the a-tertiary 
amine motif, and orthogonal amine functionalities available for frag-
ment growing, placing them in highly attractive but unexplored lead-
like chemical space.35 Notably, the THN motif contains similar polar 
functionality to classical kinase hinge-binding small molecules, such 
as 7-deazapurines, while offering tunable substituents (via the a-tri-
alkyl-ATA motif) which project towards the hydrophobic pocket of 
interest in these proteins.36 In addition to the medicinal value of our 
products, Schiff bases have been utilized as ligands for many transi-
tion metals, with the resultant complexes having broad scoping ap-
plications due to their promising catalytic, biological and chemo-
therapeutic activities.37 We suggest that the a-tertiary imine prod-
ucts generated by our transformation could serve as interesting scaf-

folds for future ligand design, with the redox neutral process ena-
bling rapid access to a range of structurally diverse and sterically hin-
dered imines challenging to access via classical methods. 

To probe the likely pathway of this photocatalytic alkene hy-
droaminoalkylation protocol, a series of preliminary mechanistic ex-
periments were carried out. The standard reaction was performed 
with ketone 2a, alkene 3a and a-deuterobenzhydrylamine (d1-1b) 
as the amine component. The corresponding imine product d1-4a 
was obtained with essentially quantitative deuterium incorporation 
at the position next to the ester functionality, strongly supporting the 
operation of a 1,5-HAT step (Figure 8A). To probe to the interme-
diacy of an a-amino radical, imine 13 was prepared via the conden-
sation of 3-butenylamine 12 and ketone 2a and submitted to the 
standard reaction conditions (Figure 8B); heterospirocycle 14 was 
formed in moderate yield, which presumably arises from intramolec-
ular 5-exo-trig ring closure of an a-amino radical intermediate onto 
the pendant alkene, followed by a HAT process to the resulting pri-
mary exocyclic radical.23 It was presumed that the hydrogen atom re-
quired for this final HAT step originates from either imine 13 or ex-
cess ketone 2a. Therefore, we tested a reaction in the presence of 1,4-
cyclohexadiene (1,4-CHD) as an exogenous HAT source, which 
showed a significant increase in the assay yield of 14.  
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Figure 7. Applications of photocatalytic a-trialkyl-ATA synthesis. (A) One-step synthesis of fingolimod. (B) Synthesis of cyclic N-(hetero)aryl-a-
trialkyl-ATA scaffolds, which are under-represented in medicinal chemistry.

Next, the role of the photocatalyst was investigated. Stern-
Volmer quenching studies performed,38 independently, on solutions 
of benzhydryl amine 1b, ketone 2a, alkene 3a, ‘starting’ imine 6b and 
‘product’ imine 4b in the presence of Ir(dMeppy)3 revealed that 
imine 6b, whose structure was confirmed by X-ray diffraction of a 
single crystal (Figure 8C), is an effective quencher of the excited  
state of Ir(dMeppy)3 (Figure 8D).39 While product imine 4b is a 
more effective quencher, this process is presumably reversible and is 
evidently unproductive on account of the fact that no derivatives of 
4b were observed over the course of our studies. When considering 
that the reduction potentials of all-alkyl imines, such as 6b, have 
been reported to be lower than –3.0 V vs. SCE in MeCN21 its 
quenching of the  excited state photocatalyst was surprising consid-
ering that the redox potential (E1/2 [Ir(IV)/Ir(III*)]) of 
[Ir(dMeppy)3]* is –1.86 V vs. SCE in CH2Cl2.23 Our mechanistic hy-
pothesis exploited a protonation event that would convert imine 6a 
to the iminium int-Ia (Figure 4), which would have a substantially 
more accessible reduction potential (reduction potential for related 
iminium int-Ib computed to be –1.2 V).20a,28 The results of the Stern-
Volmer quenching study, however, raised the question of the source 
of this proton, given our optimization experiments had shown that 
the reaction performed more effectively in the absence of either 
strong or weak Brønsted acid additives (Table 1, entries 1-4). It was 
deemed possible that the 4 Å molecular sieves that were present in 
the reaction could act either as a Lewis acid or a source of protons 
resulting from their interaction with water. However, when the 
imine was isolated (by Dean-Stark condensation and without con-
tact with 4 Å molecular sieves, followed by crystallization) and sub-
jected to the reaction in the absence of 4 Å molecular sieves, the re-
action still produced 80% of 4b (Figure 8E, entry 2).  

This led us to consider where else in the reaction mechanism a pro-
ton could be generated, even in catalytic or trace quantities. On 
closer examination of the 1H NMR spectrum (in CD2Cl2) of starting 
imine 6b, we noticed that there was approximately 4% of the 
enamine tautomer present in the solution. Single-electron oxidation 
of enamines has frequently been reported in a variety of photocata-
lytic transformations;40 moreover, enamines have been reported to 
have oxidation potentials as low as +0.32 V (vs SCE in MeCN),41 
which should be accessible to [Ir(dMeppy)3]* (calculated E1/2 
[Ir(III*)/Ir(II)] = +0.33 V vs. SCE in MeCN41). Therefore, we 
deemed it possible that the observed low concentration of enamine 
15 may be responsible for reductively quenching the  excited state of 
the photocatalyst (Figure 9). As a result, enamine 15 would be con-
verted into its corresponding radical cation (int-VIb), which will 
dramatically decrease the pKa of the N–H bond.43 If imine 6b is pro-
tonated by the enamine radical cation int-VIb, then the single-elec-
tron reduction would be feasible with either [Ir(dMeppy)3]– (result-
ing from the reductive quenching step; calculated E1/2 
[Ir(III)/Ir(II)] = –1.96 V vs. SCE in MeCN42) or 
[Ir(dMeppy)3]*.28,44 Therefore, our current mechanistic hypothesis 
involves initiation by single-electron oxidation of the enamine 15 
(by the  excited state of the photocatalyst [Ir(dMeppy)3]*), to its 
radical cation int-VIb, the now-acidic N–H bond of which permits 
protonation of imine 6b to form ketiminium int-Ib. Int-Ib can now 
be reduced by [Ir(dMeppy)3]– (formed from enamine oxidation) to 
the a-amino radical int-IIb and also reforms the ground state Ir(III) 
photocatalyst. Giese addition between the alkene 3a and a-amino 
radical int-IIb and subsequent 1,5-HAT generates the diphenyl-sub-
stituted a-amino-radical int-IVb. 
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Figure 8. Mechanistic investigations. a Reaction with isolated imine 
6b (see C)  
This radical can then be oxidized by [Ir(dMeppy)3]*, not just closing 
the photocatalytic cycle by regenerating the reducing species 
[Ir(dMeppy)3]– but also forming product-like ketiminium ion int-
Vb, which undergoes proton transfer with the starting imine 6b to 
render the process catalytic in proton and complete the redox-relay 
transformation. Unfortunately, test reactions to probe this pathway 
were inconclusive. For example, while a reaction using 2-adaman-
tanone–chosen as it cannot form its corresponding enamine–
worked, it only generated a small amount of a-trialkyl-ATA product 
(Figure 8E, entry 3). At this point, we cannot rule out other path-
ways and a discussion of alternative mechanistic possibilities, such as 
energy transfer, are provided in the supporting information. Further 

studies into this complex mechanism are ongoing and will reported 
in due course. 

CONCLUSION 

In summary we have designed a flexible, multicomponent strategy 
for the synthesis of a-trialkyl-a-tertiary amines from readily availa-
ble precursors. This protocol allows for the rapid preparation of a 
wide variety of functionally and structurally diverse a-trialkyl-a-ter-
tiary amines, thus offering immediate access to a motif that is other-
wise challenging to assemble in such a modular fashion.7 In addition 
to an extensive substrate scope in each component, the utility of the 
process has been further demonstrated through the straightforward 
synthesis of a range of N-aryl spiroheterocyclic a-trialkyl-a-tertiary 
amine scaffolds that are underexplored and offers access to new 
pharmaceutically-relevant chemical space. The mechanism of the 
process involves an imine redox-relay pathway that ensures a redox 
neutral transformation. Key to the success of the process, we believe, 
is an initiation step involving single-electron oxidation of an enamine 
intermediate to a (NH)-enamine radical cation, through which 
imine protonation and hence activation takes place and enables re-
duction of the resulting ketiminium ion to the a-amino radical. 
Overall, we believe that the flexibility and simplicity of the newly de-
veloped protocol will make this procedure of interest to chemists in 
both industrial and academic environments, and in particular to 
practitioners of medical chemistry where this transformation pro-
vides access to a class of underexplored amine scaffolds.45 
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Figure 9. Revised mechanistic hypothesis
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