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Summary: 
 

The Mycobacterium abscessus species complex (MABSC) consists of three subspecies, M. 

a. abscessus, M. a. massiliense and M. a. bolletii. All three of these subspecies are capable 

of causing opportunistic pulmonary and skin and soft tissue infections in 

immunocompromised individuals. Infections caused by the MABSC are particularly serious in 

people with underlying lung conditions such as Cystic Fibrosis (CF) as these organisms are 

highly antibiotic resistant and the currently available treatment is toxic. This has resulted in 

treatment of MABSC infections failing in up to 50% of cases. Given the increasing 

prevalence globally of infections caused by the MABSC, particularly in individuals with CF, 

there is increased urgency to improve the treatment available for MABSC infections. The 

overall aim of this project was to use genomic analyses to increase our understanding of how 

the MABSC has evolved to become an opportunistic pathogen, which in turn could potentially 

uncover promising targets for the development of novel antibiotics. 

 

Genomic analysis of the MABSC has already shown that lineages of the MABSC are capable 

of indirect person to person transmission and the extent to which transmission contributed to 

the increasing prevalence of MABSC in people with CF became evident when the MABSC 

global population structure was determined. This showed that 70% of the MABSC isolates 

from people with CF were attributed to lineages made up of densely clustered isolates, 

where acquisition via indirect person-to-person transmission, as opposed to from the 

environment, was more likely.  

 

This thesis used population genomic approaches to i) investigate the genetic factors that 

drove the emergence of the most prevalent MABSC lineages, ii) look for evidence of 

convergence after the clonal expansion of these lineages to understand how the MABSC 

was continuing to adapt and spread amongst people with CF and iii) to examine the within 

host evolution of these pathogens to uncover how these environmental organisms were 

adapting to the CF lung. This thesis also used whole genome sequencing to explore the 



  

 

 

 

largest known outbreak of MABSC infections, a post-surgical wound infection epidemic in 

Brazil.  

 

Through this research the emergence of the most prevalent MABSC lineages were found to 

be driven by increased opportunity, probably due to the increased number of people with CF 

surviving longer, as opposed to the acquisition of a common genetic determinant. Not 

enough signal was detected after the clonal expansion of the most prevalent MABSC 

lineages to come to strong conclusions about genetic factors driving their continuing 

expansion, but strong evidence of convergent evolution was detected between MABSC 

isolates evolving over time within the host. The MABSC was shown to be potentially using a 

similar central regulatory network in response to environmental cues from the phagosome to 

that of M. tuberculosis. The investigation into the epidemic of post-surgical wound infections 

in Brazil showed that a single M. a. massiliense lineage was introduced into Brazil just prior 

to the initial outbreak and that this lineage subsequently spread, through several waves of 

transmission, to multiple cities in geographically distant areas of Brazil. This highlighted how 

the MABSC was capable of long distance transmission and emphasized the potential of the 

MABSC as a nosocomial pathogen capable of causing large scale outbreaks.  
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Abstract 
 

The Mycobacterium abscessus species complex (MABSC) consists of three subspecies, M. 

a. abscessus, M. a. massiliense and M. a. bolletii. All three of these subspecies are capable 

of causing opportunistic pulmonary and skin and soft tissue infections in 

immunocompromised individuals. Infections caused by the MABSC are particularly serious in 

people with underlying lung conditions such as Cystic Fibrosis (CF) as these organisms are 

highly antibiotic resistant and the currently available treatment is toxic. This has resulted in 

treatment of MABSC infections failing in up to 50% of cases. Given the increasing 

prevalence globally of infections caused by the MABSC, particularly in individuals with CF, 

there is increased urgency to improve the treatment available for MABSC infections. The 

overall aim of this project was to use genomic analyses to increase our understanding of how 

the MABSC has evolved to become an opportunistic pathogen, which in turn could potentially 

uncover promising targets for the development of novel antibiotics. 

 

Genomic analysis of the MABSC has already shown that lineages of the MABSC are capable 

of indirect person to person transmission and the extent to which transmission contributed to 

the increasing prevalence of MABSC in people with CF became evident when the MABSC 

global population structure was determined. This showed that 70% of the MABSC isolates 

from people with CF were attributed to lineages made up of densely clustered isolates, 

where acquisition via indirect person-to-person transmission, as opposed to from the 

environment, was more likely.  

 

This thesis used population genomic approaches to i) investigate the genetic factors that 

drove the emergence of the most prevalent MABSC lineages, ii) look for evidence of 

convergence after the clonal expansion of these lineages to understand how the MABSC 

was continuing to adapt and spread amongst people with CF and iii) to examine the within 

host evolution of these pathogens to uncover how these environmental organisms were 

adapting to the CF lung. This thesis also used whole genome sequencing to explore the 

largest known outbreak of MABSC infections, a post-surgical wound infection epidemic in 

Brazil.  

 

Through this research the emergence of the most prevalent MABSC lineages were found to 

be driven by increased opportunity, probably due to the increased number of people with CF 

surviving longer, as opposed to the acquisition of a common genetic determinant. Not 

enough signal was detected after the clonal expansion of the most prevalent MABSC 
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lineages to come to strong conclusions about genetic factors driving their continuing 

expansion, but strong evidence of convergent evolution was detected between MABSC 

isolates evolving over time within the host. The MABSC was shown to be potentially using a 

similar central regulatory network in response to environmental cues from the phagosome to 

that of M. tuberculosis. The investigation into the epidemic of post-surgical wound infections 

in Brazil showed that a single M. a. massiliense lineage was introduced into Brazil just prior 

to the initial outbreak and that this lineage subsequently spread, through several waves of 

transmission, to multiple cities in geographically distant areas of Brazil. This highlighted how 

the MABSC was capable of long distance transmission and emphasized the potential of the 

MABSC as a nosocomial pathogen capable of causing large scale outbreaks.  
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1.1 Cystic Fibrosis 

1.1.1 A brief history of Cystic Fibrosis 

“‘Woe to that child who tastes salty when kissed on the forehead. He is bewitched and soon 

must die” (as quoted in (1)). An Irish proverb dating back to the late fifteenth century hints 

that there was an awareness of Cystic Fibrosis (CF) long before the first descriptions of the 

condition were published in the 1930s.  ‘Fibrocystic disease of the pancreas’ and ‘cystic 

fibromatosis with bronchiectasis’ were the terms first used to distinguish the combined 

observations of abnormal pancreatic function, malnutrition, poor growth and chronic lung 

infections from digestive conditions such as coeliac disease and to suggest a single disease 

entity was responsible for the co-occurrence of these symptoms (2, 3).   

 

The start of the antibiotic era in the 1940s was the first medical intervention that enabled a 

significant number of people with CF to survive beyond infancy as they began to be treated 

with first generation antibiotics penicillin, terramycin and aeruomycin (4, 5). In the same 

decade a heatwave in New York led to the discovery of abnormally high salt concentrations 

in the sweat of people with CF, which both suggested that ion imbalances were associated 

with CF and was the foundation of the now commonly used diagnosis technique the ‘sweat 

test’ (6). The 1940s was also the decade in which CF was first proposed to be a genetic 

disorder that was inherited in an autosomal recessive manner, although it wouldn’t be until 

the late 1980s that the gene responsible, the Cystic Fibrosis Transmembrane Conductance 

Regulator (CFTR), was identified on chromosome 7 at position q31.2 (7-10). By this time, 

epithelial dysfunction and specifically chloride ions being unable to cross the epithelial cell 

membrane had been identified as the basic defect in CF (11-13). This was confirmed in the 

1990s when CFTR was found to function as a chloride ion channel, bringing together the 

previous six decades of research (11-13). 

 

The functional 1480 amino acid CFTR gene encodes a chloride ion channel, expressed on 

the surface of epithelial cells, consisting of two membrane spanning domains, made up of six 

transmembrane helices, two nuclear binding domains, nuclear binding domain 1 (NBD-1) 

and nuclear binding domain 2 (NBD-2), and a regulatory region (9, 14, 15). To date nearly 

2000 CFTR mutations affecting the synthesis (Del1078T), trafficking (DelF508), gating 

(G551D), conductance (R117H) and the amount of functional protein that reaches the 

epithelial membrane (A455E) have been described, although not all have been proven to 

cause CF (16, 17). The distribution of epithelial cells across many parts of the body means 
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the loss or dysfunction of CFTR has a wide range of implications, with symptoms affecting 

the pancreas, liver, sweat glands, sinuses, intestines, male fertility tract and lungs. 

 

There are approximately 100,000 CF sufferers worldwide, the majority of whom are of 

Caucasian ethnicity, where CF is the most common genetically inherited disorder (18, 19). 

The reason for the increased CF allele prevalence in Caucasians has yet to be conclusively 

proven, with the most convincing hypotheses suggesting that a heterozygous CFTR 

phenotype provided a selective advantage against infectious diseases. These have been 

hypothesized to be either typhoid fever, because Salmonella typhi has been shown to bind to 

CFTR, or Cholera, as being heterozygous for CFTR has been suggested to reduce 

gastrointestinal fluid loss (20, 21). For similar reasons, CFTR heterozygosity has also been 

proposed to have been potentially beneficial to people with lactose intolerance associated 

diarrhea (22). However, Poolman and Galvani, argue that Mycobacterium tuberculosis is the 

infectious agent with the strongest correlation between clinical and molecular evidence of 

CFTR heterozygosity providing a selective advantage against the disease and a historical 

event, the 17th century Tuberculosis pandemic, that could have provided the selective 

pressure to increase the CF allele frequency in the Caucasian population (23). Lubinsky 

(2012) expanded this hypothesis further suggesting that a combination of the incidence of 

tuberculosis and hypertension in the population as well as vitamin D deficiency, temperature 

and altitude explain the variation in the CF allele frequency globally (24).  

 

Currently in the UK there are approximately 10,460 people living with CF, with a person born 

with CF approximately 1 in 2,500 births (25). A combination of improved nutrition, the 

availability of antibiotics, novel and more efficient delivery mechanisms for these antibiotics, 

intensive physiotherapy and an effective mucolytic to aid mucus clearance in the lungs as 

well as stringent cross-infection prevention protocols has resulted in a dramatically increased 

life expectancy for people with CF (26) (Figure 1).  
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Figure 1: Increasing median survival age of people with Cystic Fibrosis 

Since the first pathological description of CF in 1938 the median survival age for people with CF 
has increased from not surviving beyond infancy to 47 (25). The introduction of several 
treatments has contributed to this increased median survival age, however as more people with 
CF survive longer they are exposed to an increasing array of opportunistic pathogens. Figure 
reproduced with permission from the Cystic Fibrosis Trust.   

 
 
However, despite great hope for gene therapy and the gradual introduction of drugs targeting 

specific CFTR mutations (27-29), there is still no cure for CF and it is still a life limiting 

condition, with a median survival age of 47 in the UK (25).The biggest contributor to this 

limited life expectancy, estimated to be responsible for 80% to 95% of morbidity and mortality 

associated with CF, is the loss of lung function caused by chronic lung infections (19, 30, 31).   

 

1.1.2 Lung Pathophysiology in Cystic Fibrosis 

In the lungs, the loss of the CFTR from the membrane of the airway epithelial cells results in 

an imbalance of chloride (Cl-) and sodium (Na+) ions passing across the airway epithelial 

membrane (Figure 2) (26). This results in i) an osmotic pressure that draws water into the 

epithelial cells causing the dehydration of the airway surface liquid (ASL), ii) the lowering of 

the pH of the ASL and iii) the destabilization of mucins. Together these features give rise to 

the thick and sticky sputum characteristic of CF lungs (Figure 2) (26). The nature of this 

sputum causes one of the key innate defense mechanisms of the lungs, mucociliary 
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clearance, to become ineffective as the cilia are unable to beat and therefore cannot clear 

invading inhaled microorganisms (26). The inability to clear microorganisms is compounded 

by the ASL in people with CF being rich in DNA, amino acids and iron which provide a 

source of nutrients to the colonizing microorganisms (32).  

 

As well as the loss of the CFTR ion channel causing significant changes to the ASL which 

are beneficial to invading microorganisms, the loss of the CFTR channel itself also impairs 

the host immune response (32). The CFTR ion channel has also been shown to be capable 

of binding pathogenic microorganisms such as Pseudomonas aeruginosa, causing them to 

be engulfed into the epithelial cell and lysed (32). It is also the channel by which antioxidants, 

such as glutathione (GTH) and thiocyanate (SCN-), are introduced into the airway, and 

consequently the host is unable to fully control the oxidative stress response in the airways, 

resulting in more significant lung damage (32). The levels of nitric oxide synthase and nitric 

oxide are also reduced by the loss of CFTR which consequently leads to neutrophil killing 

being less effective (32). Glycolipids on the surface of the airway epithelial cells also become 

acylated due to the loss/dysfunction of CFTR, increasing bacterial adherence to the airway 

epithelial surface, and thus increasing the chance of an infection taking hold (31).The effect 

of the loss or dysfunction of CFTR on the lung microenvironment, as described above, shows 

why people with CF are so susceptible to acquiring lung infections.  
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Figure 2:  Pathophysiology of the Cystic Fibrosis Lung 

In the normal lung airway (A), with a functioning CFTR, the balance of ions crossing the 
epithelial membrane is such that the airway surface liquid (ASL) is at the right level of hydration 
and acidity for optimum mucociliary clearance. The antioxidants Thiocyanate (SCN-), and 
glutathione (GSH) are also secreted through CFTR in the healthy lung. The loss of CFTR (B), 
causes an imbalance of ions across the epithelial membrane, with CFTR no longer negatively 
regulating the ENaC channel, leading to the creation of an osmotic pressure drawing water into 
the cells and dehydrating the ASL. The ASL in CF lungs is therefore thick and sticky which 
causes mucocillary clearance to be ineffective. The innate immune response is also affected 
with the pH of CF ASL reduced and antioxidants secreted through CFTR no longer secreted.    

 

 

Studies have shown that, whilst a person with CF is born with the same lung anatomy as that 

of an unaffected individual, on average within the first year of life they acquire a lung infection 

(32). A cycle of infection then begins, which causes chronic lung inflammation and eventually 

leads to bronchiectasis and a fatal decline in lung function (33). The causal agents of these 

infections include bacteria, fungal and viral pathogens, however, whilst the CF lung is a 

polymicrobial environment, a few species commonly cause the majority of infections in 
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people with CF (34). Although, as people with CF live longer and novel treatments are 

developed the epidemiology of CF lung infections is changing (35, 36).  

 

1.1.3 Traditional Cystic Fibrosis Pathogens 

The most common CF pathogens globally are Pseudomonas aeruginosa, Staphylococcus 

aureus and Haemophilus influenzae (Figure 3A) (19). The epidemiology of the CF lung 

infections changes with age. Commonly, the first infectious agents isolated from the patients 

with CF are Haemophilus influenzae and Staphylococcus aureus, but as people with CF get 

older, Pseudomonas aeruginosa becomes the most prevalent cause of infection (Figure 3B) 

(19). Other pathogens that cause a significant disease burden in CF include the organisms of 

the Burkholderia cepacia complex, the fungal pathogen Aspergillus fumigatus, Ralstonia 

species, and Pandoraea species (37, 38). 

 

As well as the CF lung being a hospitable environment for these pathogens, the pathogens 

themselves have adapted to thrive in this environment, making the infections harder to treat. 

CF pathogens have been shown to adapt to the CF lung by acquiring resistance to 

antibiotics, switching from synthesizing amino acids to using the abundance of amino acids 

in CF sputum, incurring pathoadaptive mutations in genes that enhance their ability to form 

biofilms and thus protect themselves from both antibiotics and the host’s immune system and 

by acquiring a hypermutator phenotype (39-42). Many of these adaptations, whilst making 

the pathogens less virulent, contribute to the difficulty in eradicating the infection and 

consequently the slow decline in lung function and eventual death. 
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Initially, the vast majority of people with CF were believed to acquire pathogens from the 

environment, with evidence of transmission generally only observed between sibling pairs 

(43, 44). However, an outbreak at a CF holiday camp caused by the Burkholderia cepacia 

complex proved conclusively that transmission of pathogens between people with CF did 

occur (45). Subsequently, further transmissible lineages of CF pathogens have emerged, 

with epidemic lineages of Pseudomonas aeruginosa (e.g. Liverpool epidemic strain, 

Australian epidemic strains, Manchester epidemic strain) and further transmissible 

Burkholderia cepacia complex lineages (e.g. ET12) observed (46-50). Transmissible 

 
Figure 3: Prevalence of traditional CF pathogens 

The top panel shows the changes in prevalence of CF pathogens between 1988 and 2014 and 
the bottom panels shows the prevalence of CF pathogens by age. These graphs show the 
emergence of novel pathogens infecting people with CF, including Stenotrophomonas 
maltophilia, Methicillin Resistant Staphylococcus aureus (MRSA) and Achromoboacter spp. 
Both these graphs are based upon data collected by the United States CF patient registry, with 
the figure originally published by Bhagirath et al. 2016 (19).  
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lineages of CF pathogens are commonly responsible for the highest proportion of infections 

with that species and in some cases have been shown to have increased virulence and be 

associated with rapid clinical decline and increased mortality (48, 51). The introduction of 

strict infection control protocols has reduced transmission between people with CF, although 

person to person transmission has not been eradicated. Furthermore, as segregation of CF 

patients in hospitals is usually only applied if a particular pathogen has been proven to be 

transmissible, unexpected direct or indirect person to person transmission involving other 

species can occur.  

 

Despite the adaptation of CF pathogens to the CF lung, the median life expectancy of people 

with CF has improved (see above). However, the increasing number of people with CF living 

longer combined with new treatments opening up novel niches within the CF lung has 

resulted in more opportunistic pathogens having the opportunity to come into contact with the 

CF lung and consequently further opportunistic pathogens are emerging as a serious threat 

to people with CF (52).  

1.1.4 Emerging Cystic Fibrosis Pathogens 

Over the past decade the epidemiology of the CF lung has changed. Whilst the traditional CF 

pathogens are still responsible for a large proportion of lung infections in people with CF, 

other pathogens, some well-known and some rare, are emerging that pose new treatment 

challenges. These include methicillin resistant Staphylococcus aureus (MRSA), which has 

increased in prevalence most evidently in US CF centers, pathogens more commonly 

associated with nosocomial infections such as Stenotrophomonas maltophilia and the 

relatively rare opportunistic pathogens Achromobacter xylosoxidans and Non-tuberculous 

mycobacteria (NTM) (Figure 4) (38).  
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Figure 4: Pathogens increasing in prevalence in the CF community 

Prevalence graphs showing the increasing prevalence of four emerging CF pathogens in four 
countries. Nontuberculous Mycobacteria (NTM) refers to all pathogenic mycobacteria that do 
not form part of the M. tuberculosis complex, including the Mycobacterium abscessus species 
complex (MABSC). Figure originally published by Parkins and Floto 2015 (38).  

 

 

Several factors could be responsible for this changing epidemiology. For example, better 

species identification techniques have shed light on pathogens that may have originally gone 

unrecognized as causing a significant burden of infection in CF (38). Also, the increased life 

expectancy of people with CF results in them being exposed to more pathogens with their 

lungs in a more vulnerable condition for longer. Finally, novel treatments, whilst having an 

overall beneficial impact on disease outcome, can have negative consequences. This final 

factor has been hypothesized to be a reason for why the prevalence of NTMs has increased 

in the CF community as the use of long-term inhaled azithromycin therapy increases 

clearance of P. aeruginosa but potentially inhibits the innate immune system’s ability to 

phagocytose NTMs (52). Amongst the NTMs is the Mycobacterium abscessus species 

complex (MABSC); a group of highly antibiotic resistant organisms, which are now isolated 
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from between 6.6% and 32.7% of people with CF and where the chance of treatment failure 

is as high as 50% (53-55).  

 

Consequently, novel antibiotics and novel drug targets are urgently needed to treat the 

organisms of the MABSC. In order to develop these a greater understanding of how this 

group of organisms has evolved and adapted to become significant CF pathogens, as well as 

an increasingly common nosocomial pathogens associated with both pulmonary and skin 

and soft tissue infections (SSTIs), is required. This is the focus of this thesis. 

1.2 The Mycobacterium abscessus species complex 

1.2.1 Taxonomy 

The genus Mycobacterium is part of the family Mycobacteriaceae, suborder 

Corynebacteriaceae, order Actinomycetales and phylum Actinobacteria (56). The phylogeny 

of the Mycobacterium genus broadly splits into two clades, one consists of rapidly growing 

mycobacteria (RGM), which are defined as those that produce colonies in 7 days and 

includes organisms such as the relatively rare human pathogens Mycobacterium fortuitum 

and Mycobacterium smegmatis, the other consists of slow growing mycobacteria (SGM), 

including the majority of the most notorious pathogens encompassed within this genus, such 

as Mycobacterium tuberculosis, Mycobacterium ulcerans, Mycobacterium leprae and the 

Mycobacterium avium complex (MAC) (Figure 5) (57, 58). NTM are all Mycobacteria that are 

not part of the Mycobacterium tuberculosis complex or Mycobacterium leprae. Amongst the 

rapidly growing NTMs and closely related to M. chelonae and M. immunogenum is the 

MABSC ( 

Figure 5).  

 

The MABSC consists of three subspecies, Mycobacterium abscessus subspecies abscessus 

(M. a. abscessus), Mycobacterium abscessus subspecies bolletii (M. a. bolletii) and 

Mycobacterium abscessus subspecies massiliense (M. a. massiliense) (59). This 

classification has undergone several changes and is still debated amongst the scientific 

community. The differing antibiotic susceptibilities of the subspecies means their 

classification is of great clinical significance.  
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Figure 5: Phylogeny of the Mycobacterium genus 

Multi locus sequence typing (MLST) maximum likelihood phylogeny of housekeeping genes 
rpoB, sod, 16s rRNA and hsp65. The partial sequences of housekeeping genes, 16s rRNA, 
hsp65, rpoB and sod that were used by Devulder et al. (2005) were used to query all the 
sequences used by Tortoli et al. (2017) in the most recent Mycobacterium genus phylogeny (57, 
58). The partial sequences were extracted for the 144 sequences using nucleotide BLAST 
(version 2.7.0) and aligned using MUSCLE (v. 3.8.31) (60). A maximum likelihood phylogeny 
was inferred from the alignment of genes using RAxML (v. 8.2.8) (61). 100 bootstrap replicates 
were performed. 
 

 

The first report in the literature of these organisms was in 1953, when atypical acid-fast 

staining bacilli were recovered from a deep knee abscess of a 63 year old women and 

subsequently classified as Mycobacterium abscessus sp. nov (62). In 1972 M. abscessus 

was re-classified as a subspecies of M. chelonae on the basis of overlapping biochemical 
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and phenotypic characteristics (63). It was reinstated as its own species in 1992 on the basis 

of DNA-DNA hybridization (DDH), which showed it shared less than 70% relatedness, the 

species cutoff, to M. chelonae, its ability to grow in the presence of 5% sodium chloride 

(NaCL) and inability to utilize citrate as a sole carbon source (64). The first reports of M. 

massiliense and M. bolletii occurred in 2004 and 2006 respectively, although M. massiliense 

was not acknowledged as a novel species officially until 2006 (65-67). On the basis of 16s 

rRNA and rpoB sequence similarity both species were shown to be closely related to M. 

abscessus, but it was not until 2009 that it was suggested that M. massiliense, M. bolletii and 

M. abscessus, indistinguishable with biochemical and phenotypic tests, were genetically 

related enough to form a single species (68).  Initially, this was proposed to consist of two 

subspecies: M. a. abscessus and M. a. massiliense (which encompassed all isolates 

previously classified as M. massiliense and M. bolletii) (68). However, this was subsequently 

changed from M. a. massiliense to M. a. bolletii to follow classification rules (69).  

 

Evidence from whole genome sequencing (WGS) very quickly emerged which contradicted 

this classification. Phylogenetic analysis showed that isolates from M. abscessus, M. bolletii 

and M. massiliense formed three monophyletic clades, significantly diverged from one 

another (70-73). Average Nucleotide Identity (ANI) analysis showed that representatives 

from the three species were above the species cutoff boundary of 95-96% ANI (74-76), but 

equally different from each other, suggesting that a subspecies relationship was appropriate 

and agreeing with previous DDH analysis (58, 68, 71, 73). Furthermore, the differing 

susceptibility to macrolide antibiotics, due to the presence and absence of a full length 

erythromycin ribosomal methyltransferase (erm(41)) gene encoded by the two species,  M. 

bolletii and M. massiliense, combined into subspecies M. a. bolletii by Leão et al. (2011), 

makes it essential that these subspecies are distinguished from one another (69, 77). This 

taxonomic change to show that MABSC consists of three subspecies has recently been 

proposed (59). Although, there is now debate within the scientific community as to whether 

this should be upgraded to a species level separation (58, 78). For the purpose of this thesis, 

Tortoli et al’s (2016) description of the MABSC, where the MABSC consists of three 

subspecies, will be used. 

1.2.2 Physiology 

M. a. abscessus, M. a. bolletii and M. a. massiliense are Gram positive, acid-fast staining, 

non-motile, non-spore forming, rod shaped, obligately aerobic bacilli (67). The M. a. 

abscessus type strain ATCC19977, when grown on egg medium, produces after 7 days 

intermediary rough-smooth, white-grayish, non-photochromogenic rods 1.0-2.5µm in length, 
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0.5µm wide and has the ability to grow at 28℃ and 37℃ but not at 42℃ (62, 64).  The M. a. 

bolletii type strain BD, originally isolated from a bronchial aspirate, grows in 2-5 days at 

temperatures between 24℃ and 37℃, producing non-pigmented colonies on 5% sheep blood 

agar, Middlebrook 7H10 agar and egg-based Löwenstein-Jensen (LJ) slants (66). Optimal 

growth occurs at 30℃ (66). Similarly to M. a. bolletii, the M. a. massiliense type strain 

CIP108297, originally isolated in Marseille from both the sputum and bronchoalveolar fluid of 

a patient with hemoptoic pneumonia, grows in 2-4 days on 5% sheep blood agar, 

Middlebrook 7H10 agar and egg-based LJ slants at temperatures between 24℃ and 37℃, 

but optimally at 30℃ (67). When grown on 5% sheep blood agar it produces non-

photochromogenic colonies, with intermediary smooth-rough morphotypes, similar to those 

described for M. a. abscessus ATCC19977 (64, 67).  

 

The physiological characteristics that are shared by all the subspecies of the MABSC include 

the inability to use glucose, fructose, citrate or oxalate as a sole carbon source, as well as 

the inability to synthesize Tween 80 hydrolase and nitrate reductase (68). All the MABSC 

subspecies are able to synthesize arylsulfatase but unable to uptake iron from an inorganic 

iron containing reagent (68). The MABSC along with M. chelonae can be differentiated from 

the M. fortuitum complex by this inability to reduce nitrate and uptake iron, whilst the MABSC 

can be differentiated from M. chelonae by its tolerance to 5% NaCl in LJ medium (although 

Adekambi et al. 2006 in their initial description of M. bolletii sp nov. state that it does not grow 

in these conditions (66)), its tolerance to 0.2% picrate and inability to use citrate as a sole 

carbon source.  

 

The increased availability, affordability and resolution provided by genotypic and WGS 

species identification techniques means that phenotypic species identification techniques are 

becoming much less frequently used. There have been a large number of recent publications 

proposing techniques, such as Matrix-assisted laser desorption ionization-time of flight mass 

spectrometry (MALDI-TOF), multilocus sequence typing (MLST), variable number tandem 

repeats (VNTR) and PCR based assays, for both identifying isolates belonging to the 

MABSC and distinguishing between the subspecies, however no gold standard MABSC 

identification has been settled upon by the scientific community. This has knock on 

consequences for the diagnosis and subsequent treatment plans for those who acquire a 

MABSC infection (79, 80).  
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1.2.3 Genetics 

WGSs of the type strains of the three MABSC subspecies, M. a. abscessus ATCC19977, M. 

a. bolletii BD and M. a. massiliense CIP108297, provided the first insight into the general 

characteristics of MABSC genomes (71, 81, 82). MABSC organisms encode one circular 

chromosome, consisting of approximately 5Mbp. Similarly to all species in the actinobacteria 

genus the genomes of the MABSC have a high GC content of, on average, 64%. 

Interestingly, whilst M. a. abscesuss ATCC19977 has been found to encode a single 

ribosomal RNA operon, which is more typical of SGM as opposed to RGM, M. a. bolletii BD 

was reported, on the basis of coverage, to encode two (81-83). The number of ribosomal 

RNA operons encoded by M. a. massiliense CIP108297, was not discussed in the 

publication of the WGS. The genomes of the three MABSC type strains, M. a. abscesuss 

ATCC19977, M. a. bolletii BD and M. a. massiliense CIP108297 were annotated with 4,920, 

4,923 and 4,828 CDSs1 respectively, with pangenome analysis suggesting the MABSC has a 

core genome ranging between 3,354 and 3,947 CDSs (72, 84).  

 

The contribution of mobile genetic elements to the genetic make-up of the MABSC type 

strains was not extensively investigated in the original publications, with the M. a. abscessus 

ATCC19977 genome the only type strain in which the mobile elements were discussed 

significantly (82). Five insertion sequences, three prophage like elements and a possible 

integrated plasmid, which encoded one copy of the insertion sequence, ISMAB1, were 

detected within the M. a. abscessus ATCC19977 chromosome (82, 85). A non-chromosomal 

based mobile genetic element in the form of an 18kb mercury resistance plasmid, pMAB23, 

with high similarity to pMM23 from M. marinum was also found to be encoded by the M. a. 

abscessus type strain. However, as more MABSC genomes have been sequenced the 

extent of the diversity present within the species complex has begun to become apparent 

and the possible contribution of evolutionary processes, such as gene gain and loss, the 

acquisition of mobile genetic elements, recombination and the transfer of plasmids, to the 

emergence of the MABSC as a more prevalent opportunistic pathogen has become of 

increasing interest (84, 86, 87). 

 

Comparative genomic analyses of collections of MABSC isolates have begun to investigate 

the diversity of the MABSC. The first MABSC pangenome studies, which used 40 and 14 

MABSC genomes respectively, found that the MABSC had an open pangenome, suggesting 

                                                
1 The WGS of M. a. bolletii BD and M. a. massiliense CIP108297 were reannotated in this study, with Prokka predicting these 
genomes to encode 4,903 CDSs and 4,821 respectively. 
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that there is further MABSC diversity to explore (72, 84). One explanation proposed for this 

high level of diversity has been the high number of phage that have been observed to have 

been gained and lost during the evolution of the species complex (88). As more MABSC 

WGS have been published there have also been several reports suggesting that MABSC 

genomes have a high level of plasticity and that large scale rearrangements and 

recombination events have occurred during their evolution (84, 89). However, few studies 

have attempted to characterize the level of recombination in the MABSC (86, 90).  Sapriel et 

al’s (2016) analysis, which was performed using housekeeping genes, showed that there 

was a high level of admixing between MABSC lineages and suggested that the MABSC was 

potentially using distributive conjugative transfer as a mechanism for diversification (86). 

They also observed that these highly admixed strains were more commonly associated with 

causing lung infections in people with CF (86). Similarly, Tan et al. (2017), using a WGS 

approach, found that recombination was potentially playing a more significant role in the 

evolution of the MABSC, and estimate that it has contributed to the diversification of the three 

subspecies to a greater extent than SNPs, as well as suggesting that both intra and inter-

species recombination events had occurred (90). 

 

MABSC phylogenetic analysis has also emphasized the level of diversity amongst the 

MABSC complex, however, it also showed that specific lineages of the MABSC appear to be 

more commonly isolated from people with CF as well as from MABSC nosocomial infections, 

which suggests that the genetic makeup of these particular lineages may enable them to be 

better able to cause infection in humans (Figure 6) (73, 89, 91). The genetic makeup of these 

more prevalent lineages has not been thoroughly investigated and there has been no attempt 

to examine whether convergence has occurred between the expanded lineages responsible 

for a significant proportion of MABSC infections from genetically distinct backgrounds. By 

investigating this it may be possible to identify genes beneficial to MABSC when infecting the 

human host and thus increase our understanding of the pathogenesis of these organisms. 
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Figure 6: MABSC global population structure 

Midpoint rooted maximum likelihood phylogenetic tree, constructed using RAxML. The MABSC 
global population structure shows that there is extensive genetic diversity with the MABSC but 
that there are also three dominant circulating clones. Phylogenetic tree constructed by myself, 
figure courtesy of by Andres Floto and published in (73). 
 

1.2.4 Ecology 

NTMs are environmental organisms found in water and soil worldwide (70, 92, 93). The 

environment has long been believed to be the main source of human infections caused by 

NTMs, although this has been debated since evidence of indirect person-to-person 

transmission of NTMs has been uncovered (70, 92, 93). It is notoriously difficult to isolate 
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NTMs from the environment and there are only a few examples of the causal agent of an 

human NTM infection being found in the environment (94-96).   

 

MABSC isolates have most commonly been found in water as opposed to soil, although this 

may be due to soil culture being more susceptible to contamination thus making the isolation 

of NTM from soil more challenging (93). Isolates of MABSC have been recovered from both 

natural water systems, such as rivers, lakes and potentially even the ocean (as the long held 

belief that the salinity of oceans meant NTMs were not able to survive in this habitat was 

challenged by the isolation of several NTM species, including MABSC isolates, from wounds 

suffered during the Indian Ocean Tsunami of 2004), as well as man-made water systems, 

aided by the MABSC tolerance to chlorine, such as tap water, showers and hot tubs (97-

100).  

 

The ecological niches the MABSC can inhabit, particularly its presence in hospital tap water 

and on showerheads, places these microorganisms in habitats were they could come in 

contact with susceptible hosts (98, 100, 101). Furthermore, there is evidence that the 

MABSC grows within amoebae in its natural environment, which could unintentionally be 

preparing these organisms for life as intracellular pathogens, as amoebae are believed to 

reflect the macrophage environment, a theory that has also been proposed for Legionella 

pneumophila (65, 102). Additionally, the MABSC is able to form biofilms on pipe surfaces 

and on shower heads which suggested, and it has since been observed, that it would be 

capable of forming biofilms within the CF lung, a process that has been used by many CF 

pathogens, and provides protection against the host’s innate defense mechanisms and 

antibiotics (95, 103, 104).  

 

Thus, the MABSC both inhabits environments that leave it perfectly positioned to cause 

opportunistic infections and already has innate features, evolved to aide the organism's 

survival in its natural environment, that could be beneficial to its survival in a human host.   
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1.3 The Mycobacterium abscessus species complex - the 
opportunistic pathogens 

1.3.1 Epidemiology 

The organisms of the MABSC are capable of causing pulmonary infections as well as SSTIs. 

Since the first report on NTM prevalence in the CF community in 1984, where the prevalence 

rate was estimated to be 1.3%, there has been a dramatic increase in prevalence with 

estimates as high as 32.7% having been reported in some CF populations (54, 105).  

However, the relative increase in isolation frequency has been greatest for the organisms 

that make up the MABSC (53, 106-109). 

  

On the basis of the three largest NTM-positive culture prevalence studies conducted to date, 

with sample sizes of 986, 1216 and 1582 respectively, the prevalence rate is likely to be 

between 6.6 and 13.7% (53, 107, 108). However, prevalence estimates of NTM positive 

cultures isolated from CF sputum vary both by geography and the age range of the sampled 

population. Geographical prevalence differences as great as estimates of 0% and 28% and 

age group prevalence differences of 10% for children and 32.7% for adults respectively, have 

been observed (54, 110). The organisms of the MABSC are the most common NTMs 

isolated from CF sputum in Europe and Israel, whilst they are the second most common, 

after MAC, in North America (53, 111, 112).   

 

This increase in NTM prevalence in CF and specifically the increase in the prevalence of the 

MABSC is not believed to be due to an increase in surveillance and/or improved detection of 

NTMs as firstly, multiple studies have shown that the prevalence is increasing annually whilst 

no change in surveillance frequency or identification techniques occurred (52), secondly, the 

relative frequency of the MABSC has increased in multiple countries (53, 106-109) and finally 

the increase in prevalence has also been reflected in an increase in NTM infections in non-

immunocompromised individuals (113-116). However, the reasons for the increase in 

prevalence are unclear with increased environmental exposure, the increased use of 

antibiotics that create novel niches in the CF lung, the use of inhaled antibiotics which impair 

host immunity, or person to person transmission of NTM increasing its spread, all possibly 

contributing (52, 70, 73, 100, 109, 117-119).  

 

Although less serious than MABSC pulmonary infections, particularly those in association 

with CF, the MABSC is also capable of causing SSTIs (120). Rare cases of ear infections, 
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ocular, central nervous system infections and bacteremia caused by the MABSC have also 

been reported (121-123). The global prevalence of extrapulmonary MABSC infections has 

not been thoroughly investigated, although reports on the burden of NTM extrapulmonary 

infections are beginning to be published and in several studies the MABSC has been found 

to be the most common cause of extrapulmonary NTM infections (124, 125). 

 

MABSC SSTIs are generally acquired through wounds coming into direct contact with 

contaminated objects, for example tattoo needles or surgical instruments, or from a 

contaminated environmental source, such as spa water (126-128). Reports of MABSC 

wound infections after cosmetic surgery are becoming more frequent, particularly as medical 

tourism becomes more common (129).  

 

Outbreaks of MABSC SSTIs have been reported, however, these are fairly rare events and 

generally only occur on a small scale and are usually acquired from a point source (127, 

128). However, an exception to this is the large number post-surgical wound infections 

caused by the MABSC that have been seen in Brazil, where over 2000 cases have been 

recorded since 2004 (68). Molecular analysis of isolates obtained from Brazil has suggested 

that a single glutaraldehyde (GTA) tolerant lineage of M. a. massiliense is responsible (130, 

131). Interestingly, phylogenetic analyses have suggested this lineage is closely related to 

lineages of the MABSC that have been associated with pulmonary infections outbreaks in CF 

centers, although the genetic distance between the Brazilian isolates in these studies did 

pose the question as to whether a single lineage was responsible for the upsurge in cases in 

Brazil (89, 91, 130). 

 

The differing prevalence’s of the three subspecies of the MABSC have not been thoroughly 

investigated, however, a study, investigating the global population structure of the MABSC in 

CF, using the largest collection of MABSC isolates to date suggests that M. a. abscessus 

and M. a. massiliense are responsible for the majority of the disease burden in CF, with far 

fewer M. a. bolletii isolates present in the collection (73). Whether this difference is due to 

differing environmental reservoirs, with M. a. abscessus and M. a. massiliense present in 

more human accessible environments, or differences in pathogenic potential is unclear. 

1.3.2 Diagnosis 

The increasing prevalence of NTM pulmonary infections led to the development of specific 

diagnosis guidelines. The fulfillment of clinical, radiological and microbiological criteria are 

required to diagnose a pulmonary infection, as a single positive culture indicating the 
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presence of an NTM is not necessarily indicative of infection. The current guidelines 

formulated by the American Thoracic Society (ATS) and Infectious Diseases Society of 

America (IDSA) require two clinical and radiological criteria to be met as well as one of 

several microbiological criteria (132). Firstly, the presentation of pulmonary symptoms with 

nodular or cavitary opacities on a chest radiograph, or a high-resolution CT scan showing 

multifocal bronchiectasis with multiple small nodules and secondly the exclusion of other 

diagnoses that could explain these symptoms must be satisfied (132). Microbiologically, one 

of the following has to be satisfied: two or more expectorated sputum samples must culture 

the same NTM species, an NTM positive culture should be cultured from a bronchoscopic 

lavage or wash or a transbronchial or other lung biopsy with mycobacterial histopathological 

features and positive culture of NTM combined with a sputum sample or bronchial wash that 

is culture positive for an NTM (132). For diagnosis of NTM pulmonary disease in a person 

with CF, the additional clinical criteria of worsening respiratory symptoms and/or declining 

pulmonary function tests that do not improve when the patient is treated with antibiotics 

specifically targeting conventional CF pathogens has been recommended (113). 

 

It is critical to identify the NTM species responsible due to their differing antibiotic 

susceptibilities and in the case of the MASBC identification this is required down to the 

subspecies level for the same reason, although the continual taxonomic changes applied to 

the MABSC, as discussed above, have led to much confusion as to how to identify the 

MABSC subspecies. Antibiotic susceptibility testing is also recommended although there is 

often a discrepancy between in vitro and in vivo antibiotic activities (113).  Therefore, even 

with successful identification of an MABSC pulmonary infection and the responsible 

subspecies, the current treatments available are often inadequate and the chance of 

successfully treating an MABSC infection remains widely regarded as unpredictable (133).   

1.3.3 Treatment 

The recommended treatment for a MABSC infection is with a macrolide, such as 

clarithromycin or azithromycin, and/or an aminoglycoside, such as amikacin, in combination 

with one or two parenterals, usually either imipenem, cefoxitin or tigecycline (113, 132, 134). 

The toxicity of many of these antibiotics often results in changes to treatment plans (55). In 

general the initial stage of treatment consists of 2-4 months of intensive treatment with an 

oral macrolide and intravenous antibiotics (cefoxitin, imipenem, tigecycline) followed by a 

continuation phase of treatment involving an oral macrolide, inhaled amikacin in combination 

with two to three additional antibiotics, either minocycline, clofazimine, moxifloxacin or 
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linezolid (113). Surgical excision of the infected tissue is also often required for a successful 

cure (55, 135).  

 

Treatment outcomes have been shown to vary based on many factors including the 

subspecies involved, whether surgical resection of the infection site has been carried out, 

although this is not always possible, the severity of the disease and any underlying lung 

conditions and how well a patient can tolerate the currently available antibiotics (55, 136, 

137). In fact, the lack of certainty in the outcome of treatment for MABSC pulmonary 

infections has led to an MABSC infection being seen as a contra-indication for lung 

transplant, currently the only cure for CF,  in some CF centers, although this is under review 

(138-140). 

 

The subspecies responsible for the infection can impact on the outcome due the differences 

in their innate resistance to Macrolide antibiotics. Macrolides are a key antibiotic used to treat 

MABSC infections, however, the presence of a full length erm(41) gene in M. a. abscessus 

and M. a. bolletii results in these subspecies having inducible macrolide resistance, unlike M. 

a. massiliense, and this believed to result in a better prognosis for patients infected with M. a. 

massiliense (77, 141). However, M. a. abscessus and M. a. bolletii isolates can become 

susceptible if they encode a cysteine amino acid (AA) at position 28 of the erm(41) gene as 

opposed to threonine at that position (142). Resistance to macrolides can also be acquired in 

all the MABSC subspecies by mutations in the 23s rRNA gene at positions A2048C and  

A2048G (142-146). This highlights the necessity for drug susceptibility testing as macrolides 

are the most effective drug against MABSC infections and there is currently no alternative 

with equivalent efficacy (133). 

 

In the first study into the outcome of MABSC treatment in 1993, cure was achieved in just 8% 

of patients, with the majority of these patients also having surgical excision, whilst infection 

was fatal for 15% of patients, however this was carried out before the introduction of 

treatment with clarithromycin (135). More recent studies have highlighted the toxic nature of 

the treatment. Jarand et al. reported on the use of 16 different antibiotics in 42 different 

combinations and found that the majority of patients had to stop treatment with one drug, 

usually cefoxitin or amikacin, due to adverse side effects (55). Furthermore the fatality rate, 

given that this study was reporting outcomes of cases between 2001-2008, remained 

unchanged, at 15%, to that reported by Griffith et al. in 1993, whilst 50% of participants either 

remained culture positive or experienced a relapse (55). Further studies have reported 

similar rates of adverse reaction to the current treatment at 44% and rates of treatment 
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failure, either recurrence or death, in between 11% and 42% of participants and in some 

cases as high as 50% (136, 137, 147). There have also been reports of poor compliance to 

the recommended treatment guidelines (110, 148). 

 

Whilst the toxicity of many of the antibiotics and compliance to those recommended are 

limiting factors in the treatment of MABSC infections, the main contributor to the limited 

treatment available and the poor outcomes associated with the MABSC is its highly antibiotic 

resistant nature, with the organisms of the MABSC widely regarded as the most antibiotic 

resistant NTM. 

1.3.4 Antibiotic Resistance  

The MABSC has innate, inducible and acquired antibiotic resistance mechanisms which 

result in this group of organisms being resistant to the majority of currently available 

antibiotics, including all the antibiotics used to treat Mycobacterium tuberculosis (149). The 

cell wall, characteristic of the Mycobacterium genus, provides a physical barrier to both 

antibiotics and biocides, preventing many classes of antibiotics, such as β-lactams, reaching 

their targets (149). The impermeability of the cell wall can be overcome however by porins 

which allow some antibiotics to enter the cytoplasm. However, once an antibiotic reaches the 

cytoplasm antibiotic resistance genes are expressed, which can upregulate efflux pumps 

resulting in the removal of the antibiotic from the cell or could be target modifying or antibiotic 

degrading enzymes (149). 

 

Many antibiotic modifying or inactivating enzymes and target modifying enzymes are 

expressed by the MABSC (82). For example, the expression of the antibiotic modifying 

enzymes aminoglycoside 2-N-acetyltransferase and rifampicin ADP-ribosyltransferase could 

be responsible for the resistance of MABSC to aminoglycosides and rifampicin respectively, 

although in the case rifampicin this has yet to be confirmed (82). Macrolide resistance, as 

discussed previously, can be induced due to the presence of the erm(41) gene, a target 

modifying enzyme, which methylates the target site of macrolides on the 23S rRNA protein 

preventing the antibiotic from binding (77, 150). A whiB7 family gene, MAB_3508c, is also 

encoded by M. a. abscessus ATCC19977, and similarly to its orthologs in M. tuberculosis 

and M. smegmatis, has been shown to control a regulon that is responsible for inducing 

resistance against multiple antibiotics (151, 152).  

 

The MABSC is innately resistant to the first line M. tuberculosis drug ethambutol due to 

naturally occurring variants (I303Q and L304M) in the embB gene within the embCAB operon 



1. Introduction 

 

 

25 

which causes innate resistance as opposed to the accumulation of these variants after 

exposure to non-lethal levels in M. tuberculosis (153). Intrinsic resistance to fluoroquinolones 

in the MABSC is also due to naturally occurring variants in the DNA gyrase subunits gyrA 

(Ala-83) and gyrB (Arg-447 and Asn-464), with these variants also present and responsible 

for the intrinsic resistance in the MAC, M. marinum and M. chelonae (154).  

 

Resistance to antibiotics has also been shown to be acquired by the MABSC after exposure 

to non-lethal levels of antibiotics. Both macrolide and aminoglycoside resistance can be 

acquired by mutations in the 23s rRNA (A2058G, A2058C, A2058T, A2059T, A2059C) and 

16s rRNA (A1408G, T1406A, C1409A, G1491T) genes respectively (143, 155, 156).  

 

To begin to combat the poor outcomes associated with MABSC infections, due to both these 

organisms’ vast armory of defense mechanisms against currently available antibiotics and 

the toxicity of the antibiotics, a greater understanding of how the MABSC causes disease is 

needed. 

1.4 Pathophysiology of the Mycobacterium abscessus species 
complex 

1.4.1 Pathogenesis 

The pathogenesis of the MABSC is poorly understood and much of what is believed to occur 

is based on what is known about the pathogenesis of M. tuberculosis. Pulmonary infections 

caused by the MABSC are either acquired by the inhalation or ingestion of contaminated 

aerosols, dust particles or water, whilst SSTIs are generally acquired through direct contact 

with a contaminated object (157). Similarly to M. tuberculosis, the organisms of the MABSC 

are intracellular pathogens and replicate within macrophages, although they are also capable 

of extracellular replication (158).  

 

The MABSC is able to survive and replicate within macrophages through the blocking of 

phagosome and lysosome fusion, although the genes and pathways responsible are unclear 

(159). In some cases this is followed by the MABSC escaping the macrophage, although 

similarly exactly what genetic factors enable the bacterium to escape the phagosome have 

not been deciphered (158). These bacteria are subsequently able to infect more 

macrophages and can be released into the environment to potentially infect further 

individuals (158, 160). In other cases, the host responds to a MABSC infected macrophage 
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with the recruitment of lymphocytes and neutrophils to the site of the infected macrophage, 

resulting in the formation of a granuloma, an attempt by the host to contain the infection 

(158). This results in a chronic infection, with the bacterium entering a non-replicative state. 

A change in the host's immune status triggers the bacterium to begin replicating again and 

subsequently escape the granuloma and cause an acute infection (158).   

 

The virulence factors enabling the survival and growth of MABSC in the CF lung have not 

been fully elucidated. Identifying the genes either essential to or involved in the pathogenicity 

of the MABSC would increase our understanding of how the MABSC is able to cause 

infection as well as potentially uncover novel drug targets.  

1.4.2 Virulence factors 

The first MASBC virulence factor to be thoroughly investigated was the distinct fate of 

MABSC isolates depending on whether they displayed a rough or smooth colony morphology 

(160). The differing morphotypes occur due to the disruption of genes involved in 

glycopeptidolipid (GPLs) synthesis and transport (MAB_4097c-MAB_4117c, MAB_0934-

MAB_0939, MAB_4633, MAB_4437, MAB_4454c, and MAB_4459c) which results in the loss 

of GPLs from the cell surface (161, 162). The loss of GPLs expose the immunogenic lipids in 

the mycobacterium cell wall, which causes a greater pro-inflammatory cytokine response 

(163-165). Isolates with a rough morphotype have been shown to be better able to survive 

and grow intracellularly (166). Contrastingly, isolates displaying a smooth morphology, whilst 

being better able to form biofilms, are more likely to be controlled and cleared by 

macrophages (163, 167, 168). Spontaneous reversion from one morphotype to the other has 

been observed which suggests that both morphologies can be present at some point during 

an individual's infection (168). 

 

As shown by the immunogenic nature of the rough MABSC morphotype, the cell wall, like in 

all pathogenic mycobacteria, is a key virulence factor in the MABSC. All mycobacterial cell 

walls consist of a plasma membrane, a core structure of peptidoglycan, arabinogalactan and 

mycolic acids, and an outer layer of glycolipids, polysaccharides, lipoglycans and proteins 

(169, 170). Further cell wall associated transport systems and lipids that have been shown to 

be involved in the pathogenesis of the MABSC, including the only two ESX type VII secretion 

systems encoded by the MABSC, ESX-3 and ESX-4 and hadC, a gene which functions in 

mycolic acid metabolism (171-173).  

 



1. Introduction 

 

 

27 

The WGS of M. a. abscessus ATCC19977 showed that M. a. abscessus encoded virulence 

factors typical of both mycobacterial pathogens and CF pathogens (82). Genes known to be 

associated with the virulence of other mycobacterial pathogens included phospholipase C, 

mgtC, mammalian cell entry (mce) genes, PE and PPE family genes, ESAT-6 family genes 

and lpqH like proteins. Mce genes have been linked with giving mycobacteria the ability to 

gain entry to mammalian cells and import host lipids for use as a carbon source, whilst PE 

and PPE genes, ESAT-6 family genes and lpqH family genes have been linked with roles in 

host pathogen interactions (174-177). Genes with functions that have been linked to the 

adaptation of other CF pathogens to the CF lung were also encoded. These included the 

phenylacetic acid degradation pathway, which has been shown to be essential for B. cepacia 

to be able to cause chronic infection (178), as well as genes associated with homogentisate 

catabolism (82). Homogentisate is a precursor in the production of the brown pigment 

pyomelanin, which has been linked, potentially by aiding iron acquisition, to the adaptation of 

P. aeruginosa to the CF lung (179).  

 

RNA-seq analysis has suggested that in response to pressures known to be exerted within 

the CF environment, such as nutrient starvation, oxidative stresses and hypoxia, the MABSC 

changes the expression of pathways with similar functions to pathways known to have been 

involved in the adaptation of other pathogens, including M. tuberculosis and P. aeruginosa 

(180, 181). These pathways included the pyruvate dehydrogenase complex, fatty acid 

metabolism genes and the DosS/R regulon (180, 181). This suggested that the MABSC 

could be adapting to the host via routes that have been used by other intracellular pathogens 

(181). Similarly genes found to be differentially expressed by M. a. abscessus ATCC19977 

when the organism was grown on synthetic CF medium (SCFM) showed that the MABSC 

upregulates pathways, such as those involved in amino acid metabolism, which have been 

shown to be used by other CF pathogens when adapting to the CF lung environment (181).  

 

The detection of parallel evolution occurring as organisms evolve over time within patients 

has long been used to identify genes associated with the adaptation of the pathogens to their 

host. This method has been particularly commonly used to understand the adaption of CF 

pathogens to the CF lung. Through such analyses it has been shown that over time certain 

CF pathogens acquire mutations that cause a reduction in virulence as they adapt to cause 

chronic infection (40). The acquisition of hypermutator phenotypes has also been observed 

through this method (39, 182). This approach has been applied on a small scale to the 

MABSC with parallel evolution observed in the response regulator PhoR of the PhoPR two 

component system (TCS), as well as cell wall associated genes (183).  



1. Introduction 

 

 

28 

 

The detection of essential MABSC virulence factors has been and still is hampered by the 

difficulty in isolating the MABSC from the environment and thus it has not yet been possible 

to compare environmental and clinical MABSC isolates. However, the availability of larger 

WGS datasets means that it is now possible to examine virulence determinants with the 

benefit of their context in the genetic diversity displayed by disease causing MABSC lineages 

as opposed to examining virulence determinants encoded by a single reference genome, for 

which it unknown whether it present in the majority of disease causing MABSC lineages.  

1.4.3 Transmission 

A key change in the understanding of MABSC infections and a key driver in the potentially 

increasing prevalence of these infections, particularly with regards to people with CF, was 

the uncovering of evidence that indirect person-to-person transmission of MABSC isolates 

was possible (70, 119). However, our understanding of how MABSC has adapted to become 

transmissible is still very limited. 

 

The first suggestion that person-to-person transmission of MABSC was feasible between 

people with CF was after an outbreak of M. a. massiliense in Seattle (119). The isolates from 

the five patients were indistinguishable via PFGE and epidemiological data showed the five 

patients overlapped in various hospital settings, suggesting contamination of the hospital 

environment by the index case, who began being treated in the clinic already infected with M. 

a. massiliense, resulting in indirect transmission to the subsequent cases (119).  

 

A second outbreak, also involving a M. a. massiliense, occurred in Papworth hospital in the 

UK (70). 31 patients attending a CF clinic at Papworth hospital became infected with M. a. 

massiliense (70). WGS of the isolates recovered from these patients showed that there was 

greater genetic diversity within an individual patient than with other patients isolates, whilst 

phylogenetic analysis showed that the last common ancestor (LCA) of one patient's isolates 

was within the diversity of isolates from another patient, and furthermore isolates were found 

to be resistant to antibiotics that the patient they were recovered from had not been exposed 

to (70). The hospital environment was investigated and no environmental source for this 

lineage was found (70). Epidemiological information showed there were overlapping hospital 

stays between patients, whilst no interaction between patients had occurred outside the 

hospital (70). Taken together all these factors left indirect person-to-person transmission as 

the most probable explanation.  
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However, indirect person-to-person transmission of the MABSC remains a contested idea 

within the scientific community, with investigations in other hospitals not revealing evidence 

of transmission and sibling pairs, who have often been found to be infected with the same 

lineage of other CF pathogens, have been found to harbour distinct MABSC lineages (111, 

184, 185).  On the other hand, person-to-person transmission of the pathogen Legionella 

pneumophila, for which evidence first arose through WGS analysis and which was also 

contested amongst the scientific community, has recently been witnessed (186, 187).  

 

Further evidence that transmission was potentially a significant contributor to the population 

dynamics of the MABSC infections in CF was uncovered after phylogenetic analysis of over 

1000 MABSC isolates from around the world (73). This revealed the presence of three 

lineages, two within M. a. abscessus and one within M. a. massiliense that were responsible 

for over 50% of infection in CF and suggested that these lineages, which had potentially 

adapted to gain a selective advantage in the CF lung, were circulating globally amongst the 

CF community (73). The global distribution of these lineages could either be explained by 

these lineages being widely distributed in the environment, although their estimated recent 

emergence doesn’t fit with this scenario, or the spread of these lineages via transmission 

(73).  

 

Therefore, there is evidence to suggest that indirect person-to-person transmission is a 

significant factor in the emergence of the MABSC as a key CF pathogen, however, as of yet 

there has been no investigation into how these particular lineages of the MABSC have 

adapted to become transmissible. 

 

1.5 Whole Genome Sequencing 

1.5.1 Brief history of whole genome sequencing 

Just 12 years after Watson and Crick discovered the structure of DNA in 1953, the first 

nucleotide sequence, that of an alanine tRNA from Saccharomyces cerevisiae, was 

sequenced (188, 189). In the 1960s sequencing of nucleotide sequences was reliant on 

RNAase enzymes and fractionation, with several short sequences successfully determined 

during the 1960s and early 1970s via these methods. However, it was in the 1970s that two 

techniques, Sanger sequencing and Maxam Gilbert sequencing, were developed that 

enabled the sequencing of longer nucleotide sequences and subsequently the sequencing of 

whole genomes (190, 191). Due to its greater efficiency and the fact it didn’t require the use 
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of toxic chemicals, Sanger sequencing became the most commonly used sequencing 

method. 

 

Sanger sequencing was developed by Frederick Sanger in 1977 (191). Sanger’s method, 

also known as chain terminator sequencing, used labelled dideoxynucleotide triphosphates 

(ddNTPs) to terminate the extension of a DNA strand. In its early guise, four separate tubes 

were required each containing the template DNA, a DNA polymerase, a primer and 

deoxynucleotide triphosphates (dNTPs). ddNTPs representative of each base are added to 

individual tubes, with the DNA polymerase extending the primers till the addition of a ddNTP. 

After the newly synthesised strands were denatured from their templates, the DNA fragments 

from each tube were separated by fragment size using gel electrophoresis, with a lane 

representing each base. The DNA fragment bands were then visualised using 

autoradiography and the sequence read off. The introduction of fluorescent dye ddNTPs and 

capillary gel electrophoresis in later models, massively increased the efficiency and 

automation of Sanger sequencing (192).  

 

The robustness and accuracy of Sanger sequencing meant it was the main sequencing 

method for many years until the development of next generation technologies which enabled 

the sequencing process to be massively parallelized. The first next generation sequencing 

(NGS) platform to be commercially produced was based upon the pyrosequencing method 

(193, 194). Pyrosequencing determines the sequence of a DNA fragment by utilising the 

inorganic pyrophosphate that is released upon the addition of a nucleotide by DNA 

polymerase as it extends a DNA strand. Through two further reactions the released 

pyrophosphate is turned into ATP which in turn acts as a cofactor for the oxidation of luciferin 

into oxyluciferin by luciferase, which results in light being emitted with the addition of  base. 

The strength of the signal represents the number of bases added. By washing dNTPs 

representing each base over the plate separately, the sequence can be determined.  

 

Life science technologies (which was subsequently purchased by Roche) developed the 454 

sequencing platform which parallelized this method through the creation of a pyrosequencing 

assay whereby single stranded DNA fragments are ligated to individual beads before 

undergoing water-in-oil emulsion PCR, to coat the beads in clonal single stranded DNA 

fragments (195). The beads are then washed across a picolitre plate with a single bead filling 

a well. Pyrosequencing is then performed but with multiple sequences able to be sequenced 

in parallel. This was the method used to sequence one of the first human genomes (196). 
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However, the NGS technology originally developed by Solexa but purchased by Illumina has 

since become the most commonly used sequencing technology. 

 

Illumina sequencing uses a sequencing by synthesis approach with reversible terminator 

chemistry (197). Single stranded DNA (ssDNA) fragments (~200-300bp) with adapters, 

indices and polymerase binding sites annealed to either end are washed across a flow cell 

with a lawn of oligonucleotides complementary to the adaptors attached. The DNA fragments 

bind their complementary oligonucleotides, DNA polymerase synthesizes a complementary 

strand and the original strands are washed away. This is to ensure the template strands used 

in the following steps are in the right orientation. These new strands now undergo bridge 

amplification to create clonal clusters. Clonal clusters are required so that the light emitted 

upon excitation of the fluorophore by a laser is of a great enough strength to be detected. 

The sequences representing the forward strand are washed away and sequencing by 

synthesis begins with the binding of the DNA polymerase to the read 1 primer binding site. 

Illumina sequencing uses modified fluorescently labelled dNTPs with reversible terminators. 

This allows the timing of the incorporation of each nucleotide to be controlled. The modified 

dNTPs are washed across the flow cell and the complementary base is added to the strand 

by the DNA polymerase, a laser allows the base to be imaged and the fluorophore is then 

washed away and the reversible terminator removed to allow the addition of the next base. 

This process is repeated for the desired number of cycles which corresponds to the read 

length. The sequencing product is then washed away. A DNA polymerase then binds the 

index 1 primer binding site and sequence by synthesis is performed. This enables samples to 

be multiplexed, with up to 96 bacterial genomes able to be sequenced in a single lane of a 

flow cell, thus dramatically increasing the cost effectiveness of the sequencing process. The 

index product is then washed away. The unannealed ends of the DNA strands are then 

bound to their complementary oligonucleotides attached to the floor of the flow cell. The 

primer binding site for the DNA polymerase to determine the sequence of the read two index 

is incorporated within the adapter, the DNA polymerase binds and sequencing by synthesis 

determines read 2’s index. The position of the cluster on the flow cell enables the illumina 

software to determine that this is the pair to the first sequence, as both pairs are sequenced 

in the same position. Bridge amplification is then performed again but afterwards the reverse 

strands of the original DNA fragment are washed away. This regenerates the clonal clusters. 

The final step is the sequencing by synthesis of the reverse strand using the forward strand 

as the template. By following this method paired end reads are generated. Paired end 

sequencing can be beneficial in resolving repetitive regions in genomes and for de novo 

assembly. However, it is also possible to do single end sequencing on the illumina platforms.  
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Whilst illumina sequencing is still the most cost effective and commonly used technologies 

globally, a third wave of sequencing technology, third generation sequencing, is now widely 

available and implemented. Single molecule real time (SMRT) sequencing is currently the 

most prominent of the third generation technologies. SMRT sequencing uses a DNA 

polymerase immobilized within a zeromode wave-guide (ZWG) of which there are hundreds 

in a single SMRT cell (198). The DNA polymerase binds to one of the hairpin adapters 

ligated to a double stranded DNA fragment of interest (198). Fluorescently labelled bases are 

then added to the SMRT cell and a video records the wavelength of light emitted as each 

base is added by the polymerase (198). As this method records the time taken between the 

addition of bases, referred to as the interpulse duration ratio, base modifications can also be 

detected through this method, enabling the researcher to investigate the methylome of the 

organism of interest (198). SMRT sequencing is also a long read technology, producing 

reads of 10-15kb in length, whilst the majority of NGS technologies are short read (including 

Illumina sequencing). Consequently, this platform is also useful for producing high quality 

reference genomes. Further third generation technologies such as the Oxford nanopore 

MinION and GridION platforms are also becoming more commonly used (199, 200). These 

technologies, as well as being long read, can sequence small genomes tin under an hour 

and have the potential to bring the ability to sequence DNA into any setting around the world 

or indeed into space (201, 202).  

1.5.2 Microbiology in the genomics era 

The first WGSs of bacteria, those of Haemophilus influenzae and Mycoplasma genitalium, 

were published in 1995 (203, 204). Since then, bacterial genomics has moved from 

comparisons between a few sequences, to exploring the population structure of species 

using thousands of isolates to tracking outbreaks using WGS in real time (201). Whilst the 

advancements in sequencing technology (discussed previously) since these first bacterial 

genomes were sequenced using Sanger sequencing have enabled these large datasets to 

be collected, a similar evolution in the tools and techniques available to investigate bacterial 

genomes has been required to take advantage of this new data.  

 

The first bacterial genomic studies, along with aiding taxonomic classification, uncovered the 

virulence associated genes in notorious pathogens and emphasized the array of adaptive 

mechanisms, such as gene degradation, acquisition of mobile elements and recombination 

that bacteria use as they evolve to become best suited to an environment (83, 205, 206). The 

increase in the number of genomes available has led to the development of population 



1. Introduction 

 

 

33 

genomic approaches with the first pangenome analysis published in 2005 and the first WGS 

SNP based population structure in 2008 (207). The application of WGS in epidemiological 

studies has rapidly increased, with both local and long distance transmission events able to 

be resolved (208, 209). It is now possible to use Bayesian analysis to determine the mutation 

rate of a population and use this to infer the date of emergence of epidemic lineages and 

temporally track their spread (210). Tools to perform bacterial genome wide association 

studies (GWAS) have been developed and used to identify virulence and antibiotic 

resistance determinants in, amongst others, Campylobacter jejuni and Streptococcus 

pneumoniae (211-213).  

 

It is now possible, through RNA-sequencing and SMRT sequencing, to examine genome-

wide variation beyond changes to DNA. Through such analyses it has been possible to 

examine how changes in regulation and the methylome on a population level have 

contributed to the emergence of novel epidemic lineages, whilst these approaches also allow 

investigation into the regulatory responses of a bacterium to the environment within the host 

or after exposure to antibiotics (181, 214). 

 

Thus, there is an ever increasing tool box available to investigate bacterial WGS datasets 

and it is with these tools that this thesis aims to investigate how the MABSC has evolved to 

become an increasingly prominent CF and nosocomial pathogen.  
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1.6 Thesis aims 

The MABSC has emerged as a serious threat to people with CF as well as an increasingly 

common nosocomial pathogen causing both pulmonary and SSTIs. The poor treatment 

outcomes mean that novel treatments are desperately needed. The broad aim of this thesis 

is to increase our understanding of how the MABSC is adapting to become a human 

pathogen, through which targets for novel antibiotics may be discovered. This aim is 

addressed more specifically through the following questions: 

 

1) What genetic changes drove the emergence of the MABSC lineages most commonly 

isolated from people with CF? 

 

2) What genetic changes are driving the continuing expansion of the most prevalent 

MABSC lineages? 

 

3) How is the MABSC adapting to the CF lung environment? 

 

4) What can be learnt through whole genome sequencing of the largest known outbreak 

involving the MABSC - the epidemic of postsurgical wound infections in Brazil 
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2. Exploring the genetic determinants that drove the 
emergence of the three most prevalent Mycobacterium 
abscessus species complex lineages in the Cystic Fibrosis 
community  

 

Statement of contribution: This project was designed and supervised by Julian Parkhill and 

Andres Floto. I performed all the bioinformatic analyses reported in this chapter. Dr. Sony 

Malhotra performed and interpreted the protein structure analysis performed in this study. 

Daniela Rodriguez-Rincon performed and interpreted the results of the virulence assays 

reported in this chapter, as well as extracting the DNA required for further sequencing. All the 

authors contributed to the interpretation of the results. 
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2.1 Introduction 

The Mycobacterium abscessus species complex (MABSC) has emerged as a prominent 

threat to people with underlying lung conditions such as Cystic Fibrosis (CF). MABSC 

infections are the most common cause of non-tuberculous mycobacteria (NTM) lung 

infections in Europe and Israel, whilst they are the second behind Mycobacterium avium 

complex (MAC) infections in the USA (53, 111, 112). The increase in prevalence of MABSC 

infections concurrently in multiple locations suggests that the increase is genuine as opposed 

to being due to improved surveillance or NTM identification techniques (53, 106-109). It has 

also brought to attention the poor treatment available for MABSC infections, with the current 

MABSC treatment failing, due to either resistance or toxicity, in up to 50% of cases (55, 136, 

137, 147). Furthermore, in some CF centres MABSC infections are seen as a 

contraindication to lung transplant, currently the only cure for CF, due to the high likelihood of 

re-infection (138). Consequently, with MABSC infections becoming more common worldwide, 

novel treatments are desperately needed. 

 

With the number of MABSC infections increasing globally, a large dataset of over 1000 

isolates from nine different countries, obtained mainly from people with CF, was sequenced 

in order to investigate the diversity of disease causing MABSC isolates (73). This dataset 

was supplemented by 29 publicly available WGS isolated from a further five countries. The 

resultant phylogeny revealed the presence of three large expanded lineages, two within M. a. 

abscessus and one within M. a. massiliense, as well as smaller clades of significantly 

densely clustered isolates and isolates from genetically distinct backgrounds (Figure 6) (73). 

Bayesian analysis showed that the three largest lineages, referred to as dominant circulating 

clones (DCCs), DCC1, DCC2 and DCC3, had emerged recently, in 1980, 1963 and 1972 

respectively (73). The presence of isolates from different CF centres and different countries 

within each of the DCCs as well as many of the significantly clustered lineages showed that 

these lineages were widely disseminated (73). The pairwise SNP distance between the 

majority of isolates within these lineages was less than 20 SNPs and given that within 

individual patients the within host diversity ranged from 20 to 38 SNPs it suggested that the 

clustered lineages were spreading amongst the CF community via transmission (70, 73).  

 

With 74% of the sequenced isolates falling within one of these densely clustered clades, it is 

evident that particular lineages are causing the majority of MABSC infections in people with 

CF and that transmission as opposed to environmental acquisition is the main route of 

infection (73). All of which is contrary to what had been observed in previous analyses which 
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had shown that people with MABSC infections tended to be infected with isolates from 

genetically distinct backgrounds indicative of acquisition from independent environmental 

sources (111, 184, 185). Why these recently emerged and widely disseminated lineages are 

responsible for the majority of infections in the CF community has begun to be investigated. 

 

Correlating clinical metadata with the population structure showed that the clustered lineages 

were more commonly associated with a poor outcome, caused chronic infections more often 

and were more commonly resistant to aminoglycoside and macrolide antibiotics due to point 

mutations in either the 23s rRNA and 16s rRNA genes (73). Molecular phenotyping assays 

showed that the clustered lineages had significantly increased phagocytic uptake and 

survived for longer within macrophages and furthermore infection of severe combined 

immunodeficient (SCID) mice with clustered lineages led to significantly greater bacterial 

burden and granulomatous inflammation than infection of SCID mice with unclustered 

lineages (73). These results suggested that the clustered lineages were potentially 

dominating in the CF community due to having greater pathogenic potential, either due to 

increased virulence and/or transmissibility, than the unclustered lineages. 

 

Whilst the molecular characteristics that explain why these lineages are thriving in the CF 

community have been described, the genetic determinants that are responsible for the 

success of the lineages in the CF community have not yet been investigated. Therefore, the 

aim of this project was to investigate the genetic changes that had occurred on the branches 

immediately before the clonal expansion of the clustered lineages, with specific focus on the 

three largest lineages, the DCCs. These changes may represent genes or variants that may 

have predisposed these lineages to be successful in the human host, or they may represent 

changes that occurred as the lineages started adapting to the CF lung environment, and 

were subsequently fixed before the major expansion of each lineage. 
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2.2. Methods 

2.2.1 Mapping, variant calling and phylogenetic analysis 

The 526 isolates2 that make up the single isolate per patient MABSC dataset described in 

section 7.1.2.1 and 29 publicly available isolates were mapped to the M. a. abscessus 

ATCC19977 using BWA-MEM (v. 0.7.12) with the parameters described in section 7.3 (215). 

Variants were called using Samtools (v.1.2.1) and Bcftools (v.1.2.1) with the parameters 

described in section 7.3 (216). The variant sites were extracted from the alignment using 

SNP-sites (v.2.3.2) and a maximum likelihood phylogenetic tree was inferred from these sites 

using RAxML (v.v.8.2.8) with the parameters described in section 7.4 (61, 217).  

 

In order to analyze the genetic changes occurring on the branches leading to the last 

common ancestors (LCA) of the DCCs, the SNPs were mapped back onto the phylogeny 

using the ACCTRAN parsimony algorithm applied via an in house script (developed by 

Simon Harris, see section 7.5 for further details) (218). 

2.2.2 De novo assembly and annotation 

De novo assemblies for the 526 isolates were constructed using Velvet (v.2.2.5) and Velvet 

optimizer (v.1.2) and annotated using the Prokka pipeline (219, 220). Further details about 

these methods are provided in section 7.6 and 7.7 respectively.  

2.2.3 dN/dS analysis 

To identify whether a change in selection pressure had occurred on the branches leading to 

the LCA of each of the DCCs, which could be indicative of adaptation to a novel 

environment, the ratio of nonsynonymous SNPs per nonsynonymous site to synonymous 

SNPs per synonymous sites (dN/dS) was calculated for each branch of the phylogeny using 

the Nei-Gojobori method and applied via an inhouse script (221). To examine how the dN/dS 

was changing over time, the dN/dS for each branch was plotted against time, using the 

number of synonymous SNPs accumulated on the branch as a proxy for time.  

2.2.4 SNP density analysis 

Due to the low number of SNPs accumulated by each gene on the branches leading to the 

DCCs, the dN/dS per gene could not be calculated. Therefore, in order to detect genes that 

                                                
2 Two isolates were originally mislabeled as belonging to different patients, after this analysis was performed these isolates 
were found to be from the same patient. 
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could have potentially predisposed the DCCs to thrive in the CF lung environment, SNP 

density analysis was performed to identify genes that had acquired a significantly different 

number of nonsynonymous SNPs on the branch leading to the LCA of the DCCs in 

comparison to the number accumulated on the branches representing the evolution of 

isolates that do not form part of any DCCs. 

 

This was achieved by comparing, for each DCC, the number of nonsynonymous SNPs 

acquired by a gene on the branch leading to the DCC’s LCA to the number of 

nonsynonymous SNPs acquired by the gene on all the branches representing the evolution 

of isolates that are not part of any of the DCCs. The number of nonsynonymous SNPs 

acquired by the gene on all the branches evolving independently of the DCCs was corrected 

for differing branch lengths, and thus the differing probability of the gene gaining a 

nonsynonymous SNP, by multiplying this number by the ratio of nonsynonymous SNP 

positions on the branch leading to the DCC to the number of nonsynonymous SNP positions 

on the branches evolving independently of the DCCs. A "2 test was then performed to 

determine the genes that had acquired a significantly different number of nonsynonymous 

SNPs on the branch leading to the LCA of a DCC. P-values were corrected for multiple 

testing using the Holm method, with a p-value less than 0.05 seen as significant (222). 

2.2.5 Pangenome analysis  

To investigate whether the DCCs had gained an advantage over other MABSC lineages due 

to differences in their gene content and specifically whether the DCCs had gained the same 

genes or genes with similar functions, pangenome analysis was performed.  

 

The MABSC pangenome was determined using Roary (<v.3.11.2), with a blastp percent 

identity threshold of 90% (223). In order to reduce the chance of including CDSs disrupted 

due to occurring over contig breaks or constructed using reads with low level contamination, 

only assemblies with less than 100 contigs and genome size less than 5.7Mbps were used 

as the input for Roary. This resulted in a final pangenome dataset of 512 assemblies 

(marked in appendix table 5.1). Initially, genes present in all isolates that made up a DCC 

and not present in isolates not associated with a DCC were investigated. However, this failed 

to identify accessory genes present in a large proportion of each DCC and therefore this 

criteria was adjusted to a gene of interest having to be: i) present in 90% of a DCC lineage 

and ii) not present in more than 10% of isolates that are not part of a DCC. 



2. Emergence of the DCCs 

 

 

41 

2.2.6 Candidate follow up analyses: 

The Prokka annotations of the candidate genes were enhanced by searches against the 

Pfam (v.3.1.0) and InterPro (v.68) protein databases (224, 225). Functional understanding 

was also aided by assigning the candidate genes to their Clusters of Orthologous Groups 

(COGs). The genes encoded by M. a. abscessus ATCC19977 had previously been assigned 

to COG groups (162). The candidate genes identified through pangneome analysis were 

assigned to COGs, where possible, using EggNOG-mapper (v. 4.5.1) (226). PHASTER was 

used to identify if phage associated genes were amongst the candidates genes identified 

(227, 228). Where appropriate the Restriction Enzyme database (REBASE) was used to 

predict the methyltransferase type and the motif it potentially modified (229).  

2.2.6.1 Reciprocal Blast to detect orthologous genes: 

To enhance the functional understanding of the candidate genes the orthologous genes 

shared between MABSC isolates and M. tuberculosis H37Rv were identified. The orthologs 

between the M. a. abscessus ATCC19977 reference genome and M. tuberculosis H37Rv 

have been previously determined (230). A reciprocal blast approach, described in section 

7.10,  was used to determine the orthologous genes shared between the MABSC 

pangenome and M. tuberculosis H37Rv.  

2.2.6.2 Functional enrichment and pathway analysis: 

In order to investigate whether the DCCs were preadapted to the CF lung environment 

through changes in the same functional areas or through changes in the same pathways, 

gene ontology term (GO-term) enrichment and pathway analysis was performed. GO-terms 

had previously assigned to the CDSs encoded by the M. a. abscessus ATCC19977 

reference genome (231). InterProScan was used to assign GO-terms to the 18,386 genes 

that were identified to be present in between 1-95% of the 512 MABSC isolates used in the 

pangenome analysis. The R package TopGO (v.2.20), was used to determine whether the 

candidates associated with the emergence of each of the DCCs were functionally enriched 

with particular GO-terms in either the molecular function (MF), biological processes (BP) or 

cellular component (CC) ontologies (232) using the parameters described in section 7.9. 

Pathway analysis was carried using the Blast2GO (v.4.1.9) interface as described in section 

7.9 (233).  
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2.2.7 Follow up analysis on a methyltransferase potentially contributing to the 
success of the M. a. massiliense dominant circulating clone, DCC3 

The pangenome analysis revealed the presence of a mobile element encoding a 

methyltransferase (dpnM) in all DCC3 isolates and just three isolates not associated with a 

DCC. To identify whether the mobile element encoding dpnM was present in isolates that 

were not included in the pangenome analysis, the raw reads of all the isolates used in this 

study were mapped to a reference of the mobile element extracted from M. a. bolletii, 

RHS37, using BWA-MEM following the methods described in section 7.3. The mobile 

element was identified as present if a depth of coverage of at least four reads on each strand 

was observed. 

 

To investigate whether the presence of this mobile element had provided an advantage to 

the DCC3 lineage structural, molecular phenotyping and further bioinformatic analyses were 

carried out. 

2.2.7.1 Structural modelling of dpnM 

The following work was performed by Dr. Sony Malhotra. The protein sequence of the dpnM 

was compared against the RCSB PDB (Protein data bank) and found ID-2dpm chain A of 

Streptococcus pneumoniae to be a suitable template for modelling dpnM. BATON and 

FUGUEALI were used to align dpnM to the Streptococcus pneumoniae template, the 

modelling was then performed using MODELLER (234, 235).  

2.2.7.2 Deletion of the mobile element encoding dpnM 

The mobile element encoding dpnM was deleted from the DCC3 isolate BIR1049 using a 

modified mutagenesis by recombineering protocol for M. abscessus (236). This work was 

carried out by Daniela Rodriguez-Rincon. For full details of the method see Daniela 

Rodriguez-Rincon’s PhD thesis (University of Cambridge, March 2018). 

2.2.7.3 Complementation vectors  

To confirm the phenotypic effect of the deletion of dpnM and the three mutations, D184A, 

Y187L and F42S, known to impact the function of proteins with structural homology to dpnM, 

four complementation vectors were constructed using the integrative vector pMV306-xylE as 

a backbone (237, 238). This work was carried out by Daniela Rodriguez-Rincon and for full 

details of the method see Daniela Rodriguez-Rincon’s PhD thesis (University of Cambridge, 

March 2018). 
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2.2.7.4 Macrophage cell culture and phagocytic uptake and intracellular survival 
assays 

To determine whether dpnM was playing a role in the increased phagocytic uptake or 

increased intracellular survival phenotypes associated with the clustered MABSC lineages 

Daniela Rodriguez-Rincon performed the assays described by Bryant et al. (2016) (73). 

2.2.7.5  DNA extraction for single molecule real time (SMRT) sequencing 

The following work was performed by Daniela Rodriguez-Rincon. Mycobacterial genomic 

DNA was extracted using a combination of bead beating and QIAmp mini kit (QIAGEN, UK) 

for the eight samples recorded in Table 1. DNA fragments above 10 kb, the optimal size for 

SMRT sequencing, were confirmed using a 0.9% agarose gel. For full details of the DNA 

extraction method see Daniela Rodriguez-Rincon’s PhD thesis (University of Cambridge, 

March 2018). 

 

Table 1: Isolates selected for SMRT sequencing to determine the motif recognized by 
dpnM 

Isolate Taxonomic position dpnM 

BIR1049 DCC3 present 

SMRL154 DCC3 outlier absent 

DEN538 M. a. massiliense Present 

AUS856 M. a. massiliense absent 

RHS37 M. a. bolletii present 

DEN515 M. a. bolletii absent 

BIR1049 knock out DCC3 absent 

BIR1049 complemented WT DCC3 present 
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2.2.7.6 SMRT sequencing and assembly: 

The Pacific Biosciences RSII instrument was used to perform SMRT sequencing on 8 

isolates. One SMRT-cell was used per isolate. Post sequencing analysis was performed 

using the SMRT-analysis.2.3.0 pipeline available via the SMRT-portal (239). The sequencing 

reads were assembled using HGAP v3 (240). This involves three steps. Firstly, pre-assembly 

which aims to produce long and accurate sequences. This is followed by the assembly of 

these high quality sequences into a draft genome and finally, the correction of the draft 

assembly by the PacBio RS_Resequencing protocol and Quiver (v1) (239). The approximate 

genome size parameter was set to 5Mbp (approximately the size of the reference genome M. 

a. abscessus ATCC19977) and the target coverage was set to 25.  

 

2.2.7.7 Modification and motif analysis: 

RS_Modification_and_Motif_Analysis.1 was run using the SMRT analysis software v2.3.0 

embedded in the SMRT-portal (239). Briefly, this protocol uses SFilter to remove short reads 

and sequencing adapters. The filtered reads are then mapped to the assembly produced by 

HGAP using BlasR v1 (241). Kinetic analysis is then applied to the alignment of the reads to 

the reference enabling the identification of the modified bases by detecting bases where the 

interpulse duration ratio (IPDR) was significantly different from that of the in silico control 

(242). The modified motifs recognized by the methylases present in the genome were then 

identified using Motif Finder v1, with a minimum modification quality (MODQV) threshold of 

30.   
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2.3 Results 

2.3.1 No change in selection pressure on the branches leading to the LCA of the three 
DCCs 

The MABSC global populations structure showed the presence of three large expanded 

lineages (the DCCs) consisting of isolates from multiple countries which suggested that there 

were epidemic lineages of MABSC circulating globally in the CF community (Figure 7) (73). 

 

 

 
Figure 7: MABSC global population structure 

Midpoint rooted Maximum likelihood phylogenetic tree of 555 MABSC isolates. This shows the 
clear differentiation of the three subspecies, M. a. abscessus, M. a. bolletii and M. a. massiliense 
that make up the MABSC. The recently expanded DCCs originally described by Bryant et al 
(2016) are marked in blue (DCC1), pink (DCC2) and purple (DCC3) respectively (73).  
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A change in selection pressure on the branches leading to the LCA of the DCCs would 

suggest that the lineages had adapted to a novel environment. Plotting the dN/dS values 

determined for each branch of the global population phylogeny against time, showed that on 

branches representing short time scales a wide range (0-7.52) of dN/dS values were 

observed (Figure 8). The vast majority of branches with high dN/dS values were at the tip of 

the tree, including many of the branches occurring after the clonal expansion of the three 

DCCs (points marked in blue (DCC1), pink (DCC2) and purple (DCC3) respectively in Figure 

8). The small number of SNPs observed on these branches suggested that these were likely 

to be random fluctuations in dN/dS as opposed to a genuine signal of selection. Whilst the 

high dN/dS values at the tips of the tree were likely to have been effected by the fact that not 

enough time may have passed for purifying selection to have occurred. 

 

Contrastingly, over longer time scales the dN/dS values converged to a value of 

approximately 0.1 (Figure 8), showing that the branches deeper within the phylogeny (grey 

points on Figure 8) or those leading to genetically diverse MABSC isolates (black points) 

were under strong purifying selection. The dN/dS values for the branches leading to DCC1, 

DCC2 and DCC3, 0.11, 0.11, and 0.12 respectively, fit with this trend, and indicated that no 

change in selection pressure had occurred on these branches (Figure 8 (inset)). This 

suggested that on the branches leading to the DCCs the majority of variants were 

accumulated when the lineages were evolving within their natural habitat, to which they were 

already adapted, and thus the majority of variants being accumulated were subject to 

purifying selection. However, amongst these variants there could be nonsynonymous 

variants, although not enough to cause a shift in dN/dS ratio, that potentially provided an 

advantage to the DCC lineages in the environment of the human host. 
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Figure 8: No change in selection pressure on the branches leading to LCA of the DCCs 

dN/dS for each branch in the MABSC global population phylogeny plotted against the number 
of synonymous SNPs, which is used as a proxy for time. The branches leading to the LCA of  
DCC1 (blue), DCC2 (pink) and DCC3 (purple) are under strong purifying selection, with values 
of 0.11, 0.11 and 0.12 respectively. 
 

 

To try and identify the genes containing these variants, the breakdown of synonymous and 

nonsynonymous SNPs per gene was determined. However, the low number of SNPs 

accumulated per gene on the branches leading to each of the DCCs meant that it was not 

possible to perform per gene dN/dS (appendix table 1.1). Therefore, SNP density analysis 

was used to try and detect genes that had accumulated a significantly different number of 

nonsynonymous SNPs on the branches leading to the LCA of the DCCs in comparison to the 

number accumulated by the gene during the evolution of isolates that did not form part of the 

DCCs.  
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2.3.2 SNP density analysis highlights functional areas where the DCCs may have 
undergone early adaptation to the CF lung environment 

2.3.2.1 No evidence for changes in the same gene in the three DCCs before expansion 

On the branches leading to the LCA of DCC1, DCC2 and DCC3, 23, 6 and 61 genes 

respectively were found to have accumulated a significantly different number of 

nonsynonymous SNPs (Figure 9, appendix tables 1.2, 1.3, 1.4). No gene accumulated a 

significantly different number of nonsynonymous SNPs on the branches leading to the LCA 

of multiple DCCs, which suggested that if the DCCs were preadapted for success in the 

human host, a single gene was not responsible. However, it did not rule out that genes with 

similar functions or participating in the same pathways had accumulated a significantly 

different SNP density on the branches leading to the LCA of multiple DCCs. 

 

2.3.2.2 Genes assigned metabolism COGs are the most common amongst DCC1 
candidates 

Categorizing the 23 candidates identified as potentially associated with predisposing DCC1 

to be more successful at causing infection in the human host into COGs, showed that genes 

with metabolism-associated functions were the most common, with 15/24 (65%) of the 

candidate genes assigned to metabolism-associated COGs. The most well represented 

COGS were amino acid transport and metabolism, and energy production and conversion, 

with four genes each. This was followed by three genes assigned to secondary metabolites 

biosynthesis, transport and catabolism, two genes assigned to the transport and metabolism 

COG and one gene assigned to carbohydrate transport and metabolism and nucleotide 

transport and metabolism respectively. The COGS not associated with metabolism that were 

also represented were transcription, with two genes and defense mechanisms with one 

gene. This suggested that DCC1 had potentially acquired advantageous changes in 

metabolic pathways in comparison to less prevalent MABSC lineages. Metabolic flexibility 

and adaptation is known to be key to the pathogenesis of M. tuberculosis and six of the 

genes annotated to metabolism associated COGs were found to be orthologous to genes in 

M. tuberculosis H37Rv (Figure 9, Appendix table 1.2) (243). 
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Figure 9: Genes with similar functions accumulated a significantly different number of 
nonsynonymous SNPs on the branches leading to the LCA of the DCCs   

Manhattan plots showing the genes, colored by COG function, that gained a significantly 
different number of  nonsynonymous SNPs on the branches leading to the LCA of A) DCC1 and 
B) DCC2 and C) DCC3. The black line marks the 0.05 significance threshold. The size of  
the points represent the number of nonsynonymous SNPs. 
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2.3.2.3 Changes to branched chain amino acid transport, biosynthesis and catabolism 
associated genes are prominent on the branch leading to the LCA of DCC1 

MAB_0895 and MAB_0897 were found to be orthologous to Rv2495c (bkdC/pdhC) and 

Rv2497c (bkdA/pdhA) respectively (230). These genes form part of the branched chain 

alpha-keto acid dehydrogenase (BCKADH) complex, encoded by the pdhABC operon (244).  

This enzyme complex catabolizes the deaminated derivatives of branched chain amino acids 

(BCAA) into metabolites which are fed into the TCA cycle. Several genes encoded in close 

proximity to BCKADH enzyme complex genes also accumulated a significantly different 

number of nonsynonymous SNPs on the branch leading to the LCA of DCC1. These 

included MAB_0894c, annotated as a dihydrolipoamide dehydrogenase (lpdA), which could 

be encoding a key component of the BCKADH complex as well as two further enzyme 

complexes essential for virulence in M. tuberculosis (244). However, MAB_0894c was not 

found to be orthologous to lpdA in M. tuberculosis H37Rv (230). The presence of a further 

eight genes (MAB_0898-MAB_0918c) on the candidate list which are encoded in close 

proximity to the BCKADH complex genes in the M. a. abscessus ATCC19977 reference 

genome as well as the functions of these genes, which included a beta-ketoadipyl-CoA 

thiolase (MAB_0902) and Enoyl-CoA hydratase (MAB_0903) suggested that these genes 

could be involved in catalyzing reactions involving the products of the reactions carried out 

by the BCKADH complex and which result in the breakdown of BCAA intermediates into 

acetyl-CoA or succinyl-CoA which are subsequently fed into the TCA cycle (244).   

 

Interestingly, the ATP-binding component of a BCAA ABC transporter operon, MAB_2622c, 

also accumulated a significantly different number of nonsynonymous SNPs on the branch 

leading to the LCA of DCC1. MAB_2622c (livF) forms the final gene in the livJHMGF operon. 

This operon has been shown to be important in the virulence of Streptococcus pneumoniae, 

whilst BCAA transport has also been shown to be important in the virulence of 

Staphylococcus aureus (245, 246). The ortholog to an enzyme involved in the biosynthesis of 

isoleucine, Rv1559 (ilvA), in M. tuberculosis H37Rv, MAB_2691, was also amongst the 

candidates. Rv1559, along with all the genes involved in the biosynthesis of BCAA, has been 

shown to be essential to the pathogenesis of M. tuberculosis H37Rv (247). Therefore there 

was evidence that changes had occurred in genes linked to the acquisition, biosynthesis and 

catabolism of BCAA on the branch leading to the LCA of DCC1.  

 

Two further amino acid transport and metabolism associated genes were also found to have 

accumulated a significantly different number of nonsynonymous SNPs on the branch leading 

to DCC1 (Figure 9, appendix table 1.2). These included MAB_2699c, annotated as a 
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histidinol-phosphate aminotransferase (hisC), which was found to orthologous to Rv1600 

(230). Histidine biosynthesis is essential for M. tuberculosis H37Rv survival within the host, 

whilst the histidine biosynthesis pathway has been shown to be up regulated by M. a. 

abscessus ATCC19977 in response to antibiotic exposure (181, 247).  

2.3.2.4 Regulatory changes implicated in the emergence of DCC2 

Six genes accumulated a significantly different number of nonsynonymous SNPs on the 

branch leading to the LCA of DCC2 (Figure 9, appendix table 1.3), three of which were 

annotated as regulators. The functions of the remaining three candidates were associated 

with lipid transport and metabolism, secondary metabolite biosynthesis, transport and 

catabolism with the function of the last being unclear.  

 

The three regulators were all members of different regulatory families, with MAB_3565, a 

tetR family regulator, MAB_3582, a gntR family regulator and MAB_4754, an araC type 

family regulator (appendix table 1.3). The flanking genes of the regulators were examined in 

an attempt to predict which genes were under the control of the regulators (appendix table 

1.5, 1.6, 1.7). MAB_3565 was flanked downstream by an alpha/hydrolase domain containing 

protein followed by MmpS and MmpL proteins. MmpL and MmpS play a role in transportation 

of lipids which form key constituents of the mycobacterial cell wall, which is in itself a key 

virulence factor in Mycobacterial pathogens (248). Upstream the functions of the genes were 

less clear, but they potentially have metabolism related functions, with a kynurenine 

formamidase/cyclase-like protein and thioesterase domain containing protein. MAB_3582 

was flanked downstream by a thioesterase domain containing protein, followed by a secA 

gene and an AMP dependent ligase. SecA (MAB_3580) was found to be orthologous to 

secA1 in M. tuberculosis H37Rv, which functions in protein transport, however, it does not 

have a known link to virulence in M. tuberculosis H37Rv, unlike its paralog secA2 (249). 

Upstream MAB_3582 was flanked by a ribosome hibernation promoting factor, which was 

orthologous to Rv3421 and a hypothetical protein orthologous to Rv2342 (230). MAB_4754 

was flanked downstream by an acyl transferase domain encoding gene, a gene encoding 

DUF222 as well as an HD domain encoding gene. Upstream a beta lactamase domain family 

protein was encoded followed by FAD domain encoding monooxygenase, a tetR family 

regulator and a acyl transferase domain encoding gene.   

 

The non-regulatory candidates associated with the emergence of DCC2 included 

MAB_4353, a conserved hypothetical protein which was predicted to be a thioesterase family 

protein by Pfam and InterPro and was assigned to the secondary metabolite biosynthesis, 
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transport and catabolism COG (Figure 9, appendix table 1.3). This gene was found to be 

orthologous to Rv1532c, a conserved hypothetical protein encoded by M. tuberculosis 

H37Rv (230). A possible lipid metabolism associated gene, MAB_0827 and MAB_0162c, a 

gene of unknown function also accumulated a significantly different number of 

nonsynonymous SNPs on the branch leading to DCC2. 

2.3.2.5 Metabolism COGs were the most common amongst the candidates associated 
with the preadaptation of DCC3 

On the branch leading to the LCA of DCC3, 61 genes were found to have accumulated a 

significantly different number of nonsynonymous SNPs (Figure 9, appendix table 1.4).  

Figure 10 shows the distribution of candidate genes to each COG. Annotating the candidate 

genes with COG functions showed that 51% (31/61) of the candidates were associated with 

metabolism COGs, which suggested that DCC3 had, similarly to DCC1, been predisposed to 

be successful in the human host through changes in metabolic pathways. However, 

contrastingly to DCC1, genes associated with lipid transport and metabolism as opposed to 

amino acid transport and metabolism were the most commonly observed amongst candidate 

genes, with 29% of the candidates assigned to this COG (Figure 10). Transcription was the 

next most common COG with seven, whilst all the other COGs represented had less than 

five genes assigned (Figure 10).   

2.3.2.6 A large proportion of the genes with significantly different SNP density on the 
branch leading to the LCA of DCC3 occurred in a known polymorphic region in 
MABSC genomes 

A large cluster of the genes identified as possibly associated with the emergence of DCC3 as 

one of the most prevalent MABSC lineages consisted of a series of genes with nearly 

consecutive locus tags (MAB_2038-MAB_2101) (appendix table 1.4). The final three genes 

in this sequence, MAB_2099, MAB_2100 and MAB_2101, were annotated as a hypothetical 

cell division protein, a putative plasmid replication initiator protein and a recombinase.  

 

Previously, this region of M. a. abscessus ATCC19977 has been hypothesised to encode a 

possible integrated plasmid and has been shown to contain the insertion sequence ISMAB1 

(82, 85). The CDSs encoded within ISMAB1 (MAB_2086c-MAB_2088) were not found to 

have accumulated a significantly different number of nonsynonymous SNPs. However, 13 

CDSs almost directly downstream of ISMAB1 (MAB_2070_MAB_2083), which were shown 

to have been spontaneously deleted in M. abscessus 390S in comparison to M. abscessus 

390R, were found to have accumulated a significantly different number of nonsynonymous 
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SNPs (85). This suggested that many of the candidates associated with the emergence of 

DCC3 were encoded in a known polymorphic region of MABSC genomes (85).  

 

 
 

Figure 10: Distribution of COGs assigned to the SNP density candidates for each DCC 

Breakdown of the number of candidate genes assigned to each COG category for DCC1, 
DCC2 and DCC3 respectively. For DCC1 the most common functions were amino acid 
transport and metabolism and energy production and conversion. For DCC2 transcription was 
the common function and for DCC3 lipid transport and metabolism was the most common. 

 

2.3.2.7 Changes in fatty acid metabolism-associated genes prior to the emergence of 
DCC3 

The CDSs encoded by the polymorphic region and in the flanking regions included multiple 

moaC domain containing genes, an enoyl-CoA dehydratase, long-chain and medium chain 

fatty-acid-CoA ligases, an acid-CoA ligase, multiple acyl-CoA dehydrogenases, the alpha 

and beta subunits of an acetyl/propionyl carboxylase (MAB_2066/MAB_2067), a short chain 

dehydrogenase, multiple monooxygenases and a cytochrome p450 enzyme (Figure 9, 

appendix table 1.4). Homologs of enzymes with these functions are known to participate in 

the beta oxidation of fatty acids (83, 250). Beta oxidation of fatty acids is essential for M. 
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tuberculosis to be able to persist in the phagosome and the sequencing of the first genome 

of M. tuberculosis (H37Rv) showed that genes with roles in fatty acid degradation were over 

represented (83). Fatty acid degradation pathways have also been observed to be important 

in other CF pathogens, such as P. aeruginosa (251). 

2.3.2.8 Changes in SNP density in orthologs of M. tuberculosis genes on the branch 
leading to DCC3 

Amongst the candidate genes that were not encoded in close proximity to each other in the 

genome were five genes predicted to be orthologous to genes in M. tuberculosis H37Rv 

(Appendix table 1.4). Two of these genes, MAB_2004, a UDP-N-acetylmuramoylalanine-D-

glutamate ligase, and MAB_2005, annotated as FtsW, a cell division protein, were 

orthologous to Rv2155c and Rv2154c respectively. In M. tuberculosis these enzymes 

catalyze steps in the biosynthesis of the M. tuberculosis H37Rv cell wall (252). MAB_1984, a 

phospholipid acyltransferase, which was assigned to lipid transport and metabolism COG, 

was found to be orthologous to Rv2182c and MAB_1919, a conserved hypothetical protein 

with an alpha/beta hydrolase domain, was found to be orthologous to Rv2223c and Rv2235c 

(230). A major facilitator superfamily (MFS) protein, MAB_4615, also accumulated a 

significant difference in SNP density on the branch leading to the LCA of DCC3. MAB_4615 

was found to be orthologous to Rv2265c, a conserved integral membrane protein (230).  

 

Through this analysis genes which had acquired a significantly different SNP density on the 

branches leading to the DCCs were identified and evidence was uncovered of functional 

areas, such as the metabolism of BCAA, regulatory changes and fatty acid metabolism, in 

which each of the DCCs had potentially undergone changes that could have resulted in them 

being better able to survive and thrive in the human host.  

2.3.2.9 No functional areas were statistically significantly enriched in multiple DCCs 

To investigate whether the DCCs were enriched in the same functional areas GO-term 

enrichment analysis was performed using TopGO. GO-terms had been previously assigned 

to each of the genes encoded by M. a. abscessus ATCC19977 reference genome (231). At 

least one GO-term was assigned to 4,030 of the 4,920 CDS encoded by the M. a. abscessus 

ATCC19977 reference genome (appendix table 1.8). At least one MF GO-term was assigned 

to 3,535 CDSs, 3,557 CDSs were assigned at least one BP GO-term and 2,642 CDSs were 

assigned at least one CC GO-term. No GO-terms were found to be enriched amongst the 

candidates identified through SNP density analysis as associated with the emergence of 
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each of the DCCs after the p-values had been corrected for multiple testing (Table 2, 

appendix tables 1.9-1.17).  

 

Table 2: Summary of the GO-term enrichment analysis for the SNP density candidates 

Ontology 
No. of candidates 

assigned GO-
term 

No. of 
GO-terms 

investigated 

No. significant GO-terms 

P-values 
not corrected 

P-values 
corrected 

Molecular 

Function 

DCC1 (n=23) 22 774 1 0 

DCC2 (n=6) 5 774 2 0 

DCC3 (n=61) 51 774 8 0 

Biological 

processes 

DCC1 (n=23) 22 1254 1 0 

DCC2 (n=6) 5 1254 0 0 

DCC3 (n=61) 49 1255 2 0 

Cellular 

component 

DCC1 (n=23) 14 190 0 0 

DCC2 (n=6) 3 190 0 0 

DCC3 (n=61) 35 190 0 0 

 

 

Blast2GO was used to map the candidates identified through the SNP density analysis to 

KEGG pathways. Eight (34%) of the 23 candidates identified for DCC1, one of the six 

candidates identified for DCC2 and 16 (29%) of the 61 identified for DCC3 mapped to a 

combination of 61 different pathways (appendix table 1.18). Figure 11 shows that when the 

pathways were grouped into general functional categories, the distribution of functions was 

similar to that found when clustering the candidates by COG functions, with a high proportion 

of amino acid metabolism pathways identified amongst the DCC1 candidates and lipid 

metabolism pathways found to be one of the most common groups amongst the DCC3 

candidates. However, it was not possible to draw conclusions from this analysis due the 

small number of candidate genes assigned to KEGG pathways and the fact that the majority 

of the candidates were mapped to multiple pathways which meant it was unclear which 

pathway the gene was participating in. 
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Figure 11: KEGG pathway analysis highlights similar functional areas to the COG 
analysis 

Summary of the KEGG pathways that the SNP density candidate genes potentially participate 
in. 8/23 candidates for DCC1, 1/6 candidates for DCC2 and 16/61 candidates were mapped to 
a total of 61 pathways. Amino acid metabolism and lipid metabolism pathways are prominent 
in DCC1. Lipid metabolism pathways are prominent in DCC2 and lipid metabolism, amino acid 
metabolism and Xenobiotics biodegradation and metabolism are prominent in DCC3. 
 

 

 

SNP density analysis highlighted changes that had occurred in the core genome that could 

have potentially preadapted the DCCs to be successful in the CF lung environment. Next, the 

MABSC pangenome was examined in order to investigate whether the acquisition of 

particular accessory genes had also contributed to the emergence of the DCCs.  

 

2.3.3 The MABSC has an open pangenome: 

A pangenome consisting of 35,994 gene clusters was identified by Roary from the 512 

MABSC genomes analysed, with the total number of genes in the pangenome reduced to 

35,678 when clusters with poor QC were removed (Table 3, appendix table 1.19). Table 3 

summaries the number of core, soft-core, shell and cloud genes in the MABSC pangenome. 

The 316 gene clusters which failed QC were all cloud genes (Table 3)  
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Table 3: Summary of the MABSC pangenome 

Number of isolates All genes Genes with poor QC removed 

Core (>99%) 3,584 3,584 

Soft core (95-99%) 271 271 

Shell (15-95%) 2,010 2,010 

Cloud (0-15%) 30,129 29,813 

Total 35,994 35,678 

 

 

Plotting the frequency of the 35,678 genes in each genome (Figure 12A), the total number of 

genes in the pangenome with the addition of each genome (Figure 12B) and the number of 

new genes introduced with the addition of each genome (Figure 12C) suggested that the 

MABSC has an open pangenome, with a large proportion of the genes present in only a few 

isolates, the number of genes in the pangenome continuing to increase and new genes still 

being observed even with the addition of the 512th genome. Previous analyses of the 

MABSC pangenome, albeit with smaller datasets, have also concluded that the MABSC to 

have an open pangenome (72, 84).  

 

 

 

 



2. Emergence of the DCCs 

 

 

58 

 
Figure 12: The MABSC has an open pangenome 

Summary of the MABSC pangenome determined by Roary. A) Bar plot showing the frequency 
of each gene in the pangenome. B) Boxplots showing the number of genes in the pangenome 
as each genome is added. C) Boxplots showing the number of new genes observed with the 
addition of each genome. 

 

 

An open pangenome is commonly observed in environmental bacteria, with the pangenomes 

of other environmental organisms, including those that can also cause opportunistic 

infections, also having been found to encode similarly open pangenomes (253). Furthermore, 

pangenome analysis has been able to shed light on the emergence of epidemic lineages of 

pathogenic bacteria, particularly if the emergence has been driven by the acquisition, via 

horizontal gene transfer (HGT), of genetic material (254). Consequently, the MABSC 

pangenome was analysed to investigate whether the three DCCs had acquired genes just 

prior to their clonal expansion that could have potentially given these lineages an advantage 

within the CF lung environment and particularly whether it was through the acquisition of the 

same genetic material that the three DCCs had been able to expand and become the most 

prevalent lineages in the CF community. 
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2.3.4 No evidence that the acquisition of the same gene or mobile element has driven 
the emergence of all three DCCs 

Initially, the aim was to identify if any genes were present in all the DCC isolates and no 

isolates that were not part of the DCCs. Unique genes and genes encoded by isolates from 

differing DCCs were identified within the MABSC pangenome. DCC1 encoded 1,928 genes 

which were unique to the lineage along with 91 genes which were also encoded by isolates 

that formed part of other DCC lineages. DCC2 encoded 1,551 unique genes along with 73 

genes also encoded by isolates from other DCCs and DCC3 encoded 501 unique genes and 

a further 26 genes that were also encoded by isolates from other DCCs. However, whilst 

genes encoded by all the DCCs and no other isolates not associated with the DCCs were 

observed, as well as genes uniquely encoded by two of the three DCCs, the vast majority of 

these genes were encoded by only a small proportion of isolates from each DCC (Figure 13).   

 

The four genes encoded by at least one representative from each of the DCCs were 

annotated with potential virulence and antibiotic resistance associated functions, including an 

enhanced intracellular survival protein and an enzyme involved in cysteine biosynthesis 

(appendix table 1.20) (255-257). However, the low proportion of isolates from each of the 

DCCs encoding the four shared genes showed that the acquisition of these genes occurred 

after the LCA of the DCCs, and that these genes were potentially contributing to the ongoing 

expansion of the DCCs as opposed to providing the initial advantage that led to the clonal 

expansion of these lineages in the CF community (Figure 13).  

 

A similar pattern was seen between the 62 genes unique to DCC1 and DCC2 isolates, the 25 

genes unique to DCC1 and DCC3 isolates and the seven genes shared between DCC2 and 

DCC3 (Figure 13). On average only two DCC1 and DCC2 isolates each encoded one of the 

unique genes shared between DCC1 and DCC2, an average of two DCC1 and five DCC3 

isolates encoded the genes shared by these lineages and an average of eight DCC2 and five 

DCC3 isolates encoded the shared genes between these lineages.  

 



2. Emergence of the DCCs 

 

 

60 

 
 

Figure 13: Genes unique to DCC lineages only shared by a small proportion of each 
DCC 

Concentric circle plot with the outer circle representing DCC1, middle circle representing DCC2 
and inner circle representing DCC3. Each point represents one of the 98 genes which are 
unique to DCC isolates and either present in a representative of all the DCCs (pink), 
representatives of DCC1 and DCC2 (green), representatives of DCC1 and DCC3 or 
representatives of DCC2 and DCC3. The size and color of the points indicate the number of 
isolates from each DCC which encode the gene. 

 

The lack of shared genes by all DCC isolates suggested that the lineages were not 

predisposed to be more successful than other MABSC lineages in the CF environment 

through the acquisition of the same genes prior to their clonal expansion. 

2.3.5 The majority of genes unique to individual DCC lineages were acquired after their 
LCA 

The majority of genes found to be unique to individual DCCs were only encoded by a small 

proportion of each DCC’s isolates (Table 4). Only in DCC1 were genes uniquely present in 

all the isolates of a single DCC detected, with 17 genes found to be uniquely encoded by all 

105 DCC1 isolates. The consecutive nature of the locus tags and the fact that the same 

proportion of isolates gained the genes, suggested that these 17 genes represented the 

acquisition of two mobile elements; the first consisted of 10 genes (10208_3#20_03213-

10208_3#20_03222), two of which encoded a resolvase and integrase respectively, and the 

second consisted of six genes (10208_3#20_03260-10208_3#20_03265). The final gene 

appeared to have been acquired independently.  
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Table 4: The proportion of each DCC that encoded the genes unique to each DCC 

DCC DCC1 (n=105) DCC2 (n=63) DCC3 (n=48) 

No. of gene unique to DCC isolates 2,019 1,624 537 

No. of genes present in 

n% of the DCC isolates 

with genes also 

present in other DCC 

isolates included but 

no genes present in 

non-DCC isolates 

included 

 

 

 

 

 

100% 17 0 0 

90%-99% 2 31 0 

80%-89% 5 0 0 

70%-79% 3 1 0 

60%-69% 0 91 1 

50%-59% 2 13 34 

40%-49% 2 6 25 

30%-39% 2 5 1 

20%-29% 5 7 4 

10%-19% 61 151 14 

0-9% 1,920 1,319 458 

 

 

No genes were present in all DCC2 isolates, however, 31 genes were present in 90-99% of 

the 63 DCC2 isolates (Table 4). Similarly to the DCC1 unique genes, many of them 

appeared to have been acquired together within three potential mobile elements. One 

consisted of three genes (10071_6#72_02556-10071_6#72_02559), the second consisted of 

22 genes (10071_6#72_03928-10071_6#72_03957) and the third consisted of five genes 

(10071_6#72_03980-10071_6#72_03988). Given the close proximity in the genome of the 

second and third mobile elements it was possible that these were acquired together. 

Contrastingly, no genes uniquely encoded by DCC3 were present in greater than 69% of 

DCC3 isolates, which suggested that prior to the LCA of the DCC3 lineage, no acquisition of 

novel genetic material unique to the lineage had occurred.  

 

The limited evidence of there being unique genes encoded by all the isolates which made up 

each of the DCC lineages and the lack of evidence of shared genes between a large 

proportion of all the DCC isolates suggested that the criteria applied to detect candidate 

genes acquired prior to the LCA of each DCC was too stringent. Consequently, in order to 

focus in on genes acquired by the majority of each of the DCC lineages (or that were 

acquired before the LCA and subsequently lost in some DCC members) whilst still selecting 
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for genes predominantly only present in DCC lineages, the selection criteria was relaxed to 

incorporate genes present in at least 90% of a DCC lineage isolates but not present in more 

than 10% of isolates not associated with a DCC. 

2.3.6 Acquisition of gene clusters characterizes the early ancestral lineages of the 
DCCs 

Adjusting the criteria for identifying the genes which potentially provided the initial advantage 

that drove the DCCs to become the most prevalent in the CF community, resulted in genes 

present in a large proportion of each of the DCCs individually being uncovered, as well as  

genes present in a large proportion of more than one DCC.  

 

In total, 183, 217 and 119 genes were identified as potentially associated with the 

emergence of DCC1, DCC2 and DCC3 as the most prevalent MABSC lineages in the CF 

community (appendix table 1.21, 1.22, 1.23). No isolates that were not part of a DCC lineage 

shared exactly the same accessory genome, following this criteria, as any of the DCC 

lineages, suggesting that whilst some of the accessory gene content in each DCC lineage 

overlapped with both other DCCs as well as non-DCC isolates, at the point of the LCA of 

each DCC lineage, each had a unique combination of genes that could have contributed to 

the initial advantage these lineages had over other MABSC lineages in the CF lung 

environment (Figure 14). The basal lineage to DCC3, however, was shown to encode nearly 

all the candidates identified as present in a significant proportion of DCC3 isolates, with only 

18 of the 119  DCC3 candidates not encoded by the basal lineage (Figure 14). 
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Figure 14: Each DCC encodes a unique array of genes potentially associated with 
virulence 

The MABSC global population structure with the metadata representing the genes present in 
at least 90% of a DCCs isolates and less than 10% of isolates that do not form part of a DCC 
across the MABSC global population. Whilst there is overlapping gene content between DCC 
and non-DCC lineages, no other lineages encoded the same combination of accessory genes 
as each of the DCCs. 
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Within each candidate list, by using the Prokka predicted CDSs from the de novo assembly 

of a representative isolate from each DCC, many of the candidate genes were found to be 

encoded by consecutive locus tags3 as well as in similar proportions of isolates (appendix 

table 1.21, 1.22, 1.23). Table 5 summarizes the number of candidate genes identified as 

associated with the emergence of each DCC and the number that were acquired with 

neighboring genes. The fact that many of the genes within each of the candidate lists were 

found to be encoded with neighboring genes, suggested that they were potentially acquired 

together, which in turn could imply that they function together.  

 

 

Table 5: Summary of the number of genes in the DCCs accessory genomes acquired 
in clusters  

 DCC1 DCC2 DCC3 

Total number of genes 183 217 119 

Total number of mobile 

elements (number of genes 

encoded by mobile elements) 

11 (n=169, 92%) 19 (n=207, 95%) 14 (n=101, 85%) 

Number of genes acquired 

independently 
14 10 18 

 

 

2.3.7 Overlapping accessory gene content with possible virulence functions between 
pairs of DCC lineages 

Adjusting the criteria to select for genes present in 90% of a DCC lineage and less than 10% 

of isolates that did not form part of a DCC did not reveal any genes present in a significant 

proportion of all the DCC isolates. One gene, an efflux pump, was identified which was 

encoded by greater than 90% of DCC2 and DCC3 isolates and a single DCC1 isolate (Figure 

16, 17). This was the only gene present in all the DCCs and was found in greater than 90% 

of two of the DCC lineages. However, there were examples of genes present in a large 

proportion of two of the DCCs but not present in the third. 

                                                
3 Empirical judgement was used to decide how many missing locus tags it was reasonable to allow – this ranged from 1-2 
missing loci in a sequence of consecutive locus tags.  
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2.3.7.1 Ubiquinone biosynthesis associated operon present in both DCC1 and DCC2 

Over 90% of DCC1 and DCC2 isolates each acquired an operon that encoded a lysR family 

regulator, followed by an L-carnitine dehydratase, a flavin protein decarboxylase (ubiX) and a 

3-octaprenyl-4-hydroxybenzoate carboxylase (ubiD) (Figure 15,16). UbiX and UbiD catalyze 

the step in the biosynthesis of ubiquinone (coenzyme-Q) which results in the conversion of 3-

octaprenyl-4-hydroxybenzoate to 3-octaprenylphenol (258). In E.coli ubiquinone biosynthesis 

has been shown to be involved in aerobic respiration, adaptation to oxidative stress and 

gene regulation (258).  

 

A further four genes were also present in over 90% of both DCC1 and DCC2 isolates, with 

two encoded by consecutive locus tags (10208_3#20_00377-10208_3#20_00378). The 

functions of these genes were unclear, although 10208_3#20_00377 was found by Pfam to 

potentially be a transmembrane protein. 

 

2.3.7.2 mce genes and oxidative stress related genes present in large proportion of 
DCC2 and small proportion of DCC1 isolates 

There were also two, or potentially one given their presence in similar proportions of isolates, 

clusters of genes acquired by over 90% of DCC2 isolates and 3 DCC1 isolates (Figure 16). 

This suggested this region had possibly recombined with a sublineage of DCC1 and could 

have contributed to both the emergence of DCC2 and the ongoing spread and adaptation of 

DCC1 (Figure 14). 

 

Encoded within the first cluster (10071_6#72_00250-10071_6#72_00272) were four mce 

genes, two of which were orthologous to mce genes, Rv1970 and Rv1971, in M. tuberculosis 

H37Rv (Figure 16) (230). Mce operons usually consist of two yrbE genes with homology to 

ABC transporter permeases, followed by six mce genes which share homology to substrate 

binding proteins (259). Disruption of mce operons in M. tuberculosis have been shown to 

cause changes to the virulence of the organism (259). However, given that a complete mce 

operon was not encoded within this cluster of consecutive locus tags, it was unclear what 

function these mce genes were performing, although orphan mce genes have been reported 

(260). The partial mce operon, along with several hypothetical proteins and other putatively 

cell wall associated genes, were flanked by a recombinase (10071_6#72_00251) and a 

possible transposase (10071_6#72_00266). 



2. Emergence of the DCCs 

 

 

66 

 
 

Figure 15: The DCC1 accessory genome includes genes involved in branched chain 
amino acid transport, biosynthesis and metabolism 

Concentric circle plot showing genes present in at least 90% DCC1 isolates (outer circle) and 
less than 10% of isolates not associated with DCCs (inner most circle). Regions where 
clusters of genes are associated with DCC1. The functions of many of these genes have 
been linked with the adaptation of other pathogens to the human host. Colored points are 
genes or clusters of genes with potentially beneficial functions. Grey points represent genes 
where deciphering the function of the gene was not possible. The size of the point represents 
the proportion of isolates encoding the gene. 
 
  

Amongst the genes in the second cluster (10071_6#72_00289-10071_00316) were genes 

with similarity to an alkanesulfonates transport system (10071_6#72_00290-

10071_6#72_00293) (261), although the gene order in the E. coli ssuEADCB operon was not 

mirrored here (appendix table 1.21). The alkanesulfonate transport system is a mechanism 

by which organisms cope with cysteine and sulphate starvation by enabling the use of 

aliphatic sulfonates as a source of sulfur (261). 
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Multiple AhpC/TSA family proteins and sigma factors were encoded within both clusters. 

AhpC/TSA subunit C encoding proteins include many antioxidants including the ahpC gene 

of M. tuberculosis, which is critical for enabling the survival of M. tuberculosis in the oxidative 

environment of the macrophage (262, 263). Sigma factors also play a role in Mycobacterial 

pathogens response to stress by causing specific regulatory changes (264). Pfam and 

InterPro also annotated 10071_6#72_00312 as a stress induced transcriptional regulator.  It 

should be noted, however, that genes with functions potentially associated with energy 

metabolism (cytochrome c biogenesis) as well as lipid metabolism and cell wall biosynthesis 

were also encoded within this cluster.  

 

 
 

Figure 16: The LCA of DCC2 was enriched with genes associated with metabolism and 
transport across the membrane 

Genes present in at least 90% DCC2 isolates and less than 10% of isolates not associated 
with DCCs (inner most ring). Overlap between the candidates for DCC2 and the other DCCs 
was evident. Candidates identified included metabolism associated genes, antioxidants, 
sigma factors and efflux pumps. 
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2.3.7.3 DNA degradation operon present in DCC1 and DCC3 

A subset (10208_3#20_03268-10208_3#20_03272) of a large cluster of genes 

(10208_3#20_03269-10208_3#20_03276) present in over 90% of DCC1 isolates were also 

present in a subset of seven DCC3 isolates (Figure 15, appendix table 1.21 and table 1.23). 

These genes encode the DNA degradation (dnd) locus, which has previously been described 

in the M. a. abscessus ATCC19977 reference genome (82). A dnd phenotype could enable 

these lineages to take advantage of the DNA rich CF sputum as a nutrient source as well as 

potentially providing resistance to oxidizing agents, as has been observed in Salmonella 

enterica (265). 

 

 

 
 

Figure 17: The LCA of DCC3 was enriched with genes associated with the membrane 

Genes present in 90% DCC3 isolates and less than 10% of isolates not associated with the 
DCC lineages.  Amongst the genes acquired by DCC3 was a gene involved in efflux, the 
same toxin encoding element as was present in DCC2, a complete mce operon and a mobile 
element encoding a methyltransferase. 
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2.3.7.4 Admixing of phage associated genes between DCC2 and DCC3 

Three of the clusters of genes identified as present in 90% of DCC2 isolates had gene 

content indicative of phage, although only one (10071_6#72_03926-10071_6#72_03988) 

produced a hit against the PHASTER database. The 82 genes encoded by these three gene 

clusters included 59 (72%) genes for which the annotation could not be determined. 

However, within each of these three clusters a subset of genes were also found to be 

present in a proportion of DCC3 isolates (appendix table 1.22).  

 

Within one of the clusters (10071_6#72_04228-10071_6#72_04239), the subset of genes 

(10071_6#72_04236-10071_6#72_04239) that were also present in a large proportion of 

DCC3 isolates included a gene (10071_6#72_04238) which was predicted by Pfam and 

InterPro to encode a toxin domain of the sort found in polymorphic toxin systems (Figure 16,  

17) (266). The machinery characteristically encoded with the toxin encoding genes in order 

for the toxin to be exported was not present within the gene cluster or up or down stream of 

the cluster and thus it was more likely to form part of a toxin/antitoxin system (266). 

 

2.3.8 Functional similarity between the gene clusters unique to each DCC 

2.3.8.1 Genes with metabolism and transport functions prominent in DCC1 gene 
clusters  

DCC1 encoded 178 genes not present in any other DCC isolates and only present in less 

than 10% of isolates that were not part of the DCC lineages (appendix table 1.21). Amongst 

these were several clusters of genes which could have provided an advantage to the lineage 

in establishing itself as a prevalent MABSC lineage in the CF community. 

 

DCC1 encoded a cluster of genes potentially involved beta oxidation of fatty acids 

(10208_3#20_01853-10208_3#20_01862). One of the genes within this cluster, 

10208_3#20_01855, was orthologous to M. tuberculosis H37Rv gene Rv2790c (lpt1), which 

was annotated as a lipid-transfer protein (230). As previously mentioned, beta oxidation of 

fatty acids is a key mechanism by which M. tuberculosis remodels its metabolism to cope 

with the different carbon sources available in the host. 

 

Interestingly, one of the largest clusters of genes (10208_3#20_03451-10208_3#20_03481) 

included genes that were identified through SNP density analysis to have acquired a 

significantly different number of nonsynonymous SNPs on the branch leading to the LCA, 
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such as the BCKAHD enzyme complex (244). Also amongst this cluster was the 

homogentisate metabolism operon and the phenylacetic degradation pathway (Figure 15). 

These systems, which are not typically encoded by mycobacteria, have been previously 

described within the M. a. abscessus ATCC19977 reference genome (82). Homogentisate 

catabolism has been linked with the adaptation of P. aeruginosa to the CF lung, whilst 

phenylacetic acid degradation has been associated with the adaptation of Burkholderia 

cepacia to the lung (179, 267).  

 

A further large cluster of genes (10208_3#20_04114 - 10208_3#20_04195), included a 

complete transposon, encoding genes with energy metabolism associated functions, 

followed by genes associated with arsenic transport and the genes that encode the 

phosphate transport operon, pstSCAB (Figure 15). Two of the four genes which make up this 

transporter, pstS and pstC were orthologous to the corresponding genes in the M. 

tuberculosis H37Rv pstSCAB operon, Rv0928 and Rv0929. This operon plays a key role in 

phosphate homeostasis and as phosphate is an essential nutrient for cellular functions, it is 

key to survival within the host (268, 269).  

2.3.8.2 DCC2 accessory genome encoded fatty acid metabolism and transport related 
genes 

120 genes were present in only DCC2 isolates and less than 10% of isolates not part of DCC 

lineages. Similarly to DCC1, this included a cluster (10071_6#72_03465-

10071_6#72_03485) of genes with functions that would fit with their participation in the beta 

oxidation of fatty acids (Figure 16). A cluster of genes (10071_7#72_05035-10071_7#72-

05045) potentially involved in energy and respiration metabolism were also encoded.  

 

Several genes with functions associated with transport across the cell membrane were 

present within the candidates associated with the emergence of DCC2. These included two 

(10071_6#72_05050-10071_6#62_05051) mycobacterium smegmatis porin (mspA) genes. 

Porins have been associated with the resistance displayed by M. chelonae to aldehyde 

based disinfectants (270). A MFS protein (10071_6#72_03057) was also present on the 

candidate list. MFS proteins have been linked with drug efflux and transport of essential 

nutrients and metal ions (271).  
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2.3.8.3 DCC3 acquired a complete mce operon and a mobile element encoding a 
methyltransferase 

101 genes were encoded by over 90% of DCC3 isolates and less than 10% of isolates not 

associated with a DCC and no other DCC isolates. Amongst these genes were a complete 

mce operon. Mce operons gained their name due to the loss of the first gene in the sequence 

(mceA) of six preventing transformed E.coli from being taken up by macrophages and HELA 

cells (259, 272). M. tuberculosis encodes four mce operons which have been shown to be 

differentially expressed in different growth stages and have been linked with its pathogenicity 

(272, 273). Interestingly, none of the mce related genes within this cluster were found to be 

orthologous to genes in M. tuberculosis H37Rv (Appendix table 1.23).  

 

A cluster of genes (10208_3#26-01553-10208_3#26-01558) which consisted of an integrase 

followed by a recombinase, a resolvase, an N6 adenine specific S-adenosyl-L-methionine 

dependent methyltransferase (dpnM), a DGQHR domain encoding gene and a ribonucleotide 

reductase (rnr), was also identified amongst the candidates associated with the emergence 

of DCC3. Methyltransferases, by modifying a specific DNA base within a conserved motif, 

can cause changes in regulation which can have consequences on the pathogenic potential 

of organisms (214, 274). Ribonucleotide reductases perform the essential step converting 

the four ribonucleotide triphosphates into their corresponding deoxyribonucleotide 

triphosphates (275). It was also interesting to note that similarly to DCC2, an mspA porin 

gene was present on the candidate list for DCC3, although only one as opposed to two.  

 

To see if the evidence of functional overlap, for example the presence of multiple genes 

associated with the beta oxidation of fatty acids in DCC1 and DCC2 or the porins encoded by 

DCC2 and DCC3, was statistically significant, GO-term enrichment and pathway analysis 

was carried out. A combination of TopGO and Blast2GO, was used to determine whether the 

DCCs were enriched with the same functions in comparison to other MABSC lineages or 

whether changes had occurred in the same or connected pathways. 

2.3.9 Accessory genomes of the DCCs not statistically significantly enriched with the 
same GO-terms 

InterProScan was used to annotate the 18,386 genes which were present in 1-95% of the 

512 MABSC isolates used in the pangenome analysis with GO-terms. However, only 4,137 

(22%) of these genes were assigned a GO-term and only 558 (202 BP GO-terms, 20 CC 

GO-terms, 336 MF GO-terms) unique GO-terms were identified (Appendix table 1.24). 

Furthermore, only 77 of the 183 candidates identified for DCC1, 24 of the 217 candidates 
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identified for DCC2 and 35 of the 119 DCC3 candidates were assigned at least one GO-

term.  

 

Despite the fact that not all the genes were assigned a GO-term, which meant that if any 

functional enrichment was identified it would not represent the complete functional picture of 

the DCCs, a test to see if any of the DCCs were statistically significantly enriched with 

particular GO-terms was carried out using the Fisher’s exact test, applied via TopGO. 

However, the DCCs were not found to be statistically significantly enriched (p-value 0.01) 

with any GO-terms from either the MF, BP or CC ontologies (Appendix tables 1.25-1.33). 

 

Blast2GO (v.4.1.9) was used to map the candidate genes for each DCC to the KEGG 

pathway database. Of the 183 genes which characterized the early ancestral lineages of 

DCC1, 10 (5%) were assigned to a total of 24 KEGG pathways. 20 (5%) of the 217 genes 

associated with the emergence of DCC2 were mapped to 21 KEGG pathways and four (3%) 

of the 119 genes associated with the emergence of DCC3 were assigned to seven KEGG 

pathways (Figure 18). In total, the 34 candidate genes where an enzyme code was able to 

be assigned were mapped to 39 pathways (appendix table 1.34).  
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Figure 18: Incomplete functional picture gained from KEGG pathway analysis 

Blast2GO assigned 5% of the candidate identified for DCC1 and DCC2 and 3% of the 
candidates for DCC3 to KEGG Pathways. The 10 DCC1 candidates were assigned to 9 
functional areas, with amino acid metabolism pathways the most common. The 24 DCC2 
candidates were assigned to 10 functional areas, with nucleotide and carbohydrate metabolism 
the most common. The 3 DCC3 candidates were assigned to 5 functional areas, with xenobiotic 
biodegradation and metabolism, nucleotide metabolism and metabolism of other amino acids 
being the most common. Each DCC acquired candidates potentially functioning in amino acid 
metabolism pathways and xenobiotic biodegradation and metabolism pathways. 

 

 

Pathways involved in amino acid metabolism and xenobiotics biodegradation and 

metabolism were the most common, with eight pathways within each of these categories 

having at least one candidate gene mapping to them (Figure 18). Lipid (7) and Carbohydrate 

(5) metabolism pathways also accounted for a large proportion of the pathways detected. 

Candidate genes from all the DCCs mapped to pathways involved in amino acid metabolism, 

nucleotide metabolism, lipid metabolism, Xenobiotics biodegradation and metabolism, and 

metabolism of cofactors and vitamins. Only candidates from DCC1 and DCC2 mapped to 

carbohydrate metabolism and energy metabolism pathways. A single candidate for DCC1 

mapped to a pathway involved in the metabolism of terpenoids and polyketides and a single 

candidate from DCC2 mapped to a pathway associated with biosynthesis of other secondary 

metabolites. Whilst this could suggest that the early ancestral lineages of each of the DCCs 

had undergone gene content changes in pathways involved in similar functions, the low 

number of candidates mapped to a pathways and the number of candidates which were 
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mapped to multiple pathways made it impossible to confidently draw any conclusions from 

KEGG pathway analysis (Figure 18, Appendix table 1.34).  

 

Through the pangenome analysis it was evident that each of the DCCs had acquired 

potential virulence factors either just before or just after their LCA, some of which were also 

present in other DCC isolates as well as other lineages which had either not increased in 

prevalence within the CF community or not to such an extent. This suggested that it was the 

unique combination of virulence factors acquired by each of the DCCs that potentially gave 

these lineages an advantage over other MABSC lineages in the CF lung environment, with 

advantages in metabolic flexibility and transport across the membrane functional areas in 

which the DCCs had potentially been better adapted to survive in the human host.  

 

To begin to further investigate the candidates identified through these analyses, the 

methyltransferase encoding mobile element present in the DCC3 lineage (see section 

2.3.7.3) was selected for further analysis due to its presence in the DCC responsible for the 

Papworth and Seattle CF center outbreaks as well as the epidemic of SSTIs in Brazil, and 

the fact that it was present in only three isolates that were not part of DCCs.  

 

2.3.10 Preliminary functional validation of the methyltransferase encoding mobile 
element 

The sequence of the mobile element encoded by a representative of the DCC3 lineage, 

BIR1049, was selected as a reference for the raw reads of all the global population and 

publicly available MABSC isolates used in this study to be mapped to. This confirmed the 

presence of the mobile element in all 57 DCC3 isolates and just three further MABSC global 

population isolates, two M. a. massiliense isolates, AUS791 and DEN538, and one M. a. 

bolletii isolate, RHS37 (Figure 19).  
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Figure 19: dpnM is encoded by all DCC3 isolates and three further MABSC isolates 

The MABSC global population structure with the metadata column representing the isolates 
which encoded a methyltransferase, dpnM. All DCC3 isolates were found to encode dpnM, 
along with two further M. a. massiliense isolates and an M. a. bolletii, none of which belonged 
to recently expanded lineages. The presence of the dpnM was determined by mapping all the 
MABSC isolates to a representative sequence of the MABSC, encoded by DCC3 isolate 
BIR1049. 

 

 

Nucleotide blast comparisons between the sequence of the mobile element encoded by 

BIR1049 and the outliers showed that the mobile element was inserted in the same position 

in all the isolates and bookended by two 42 base pair direct repeats, suggesting that the 

mobile element had been introduced into the genomes via site specific recombination (Figure 

20). This also showed that the rnr gene present in the gene cluster was not part of the 

element as it was encoded outside the direct repeats. Thus, the mobile element encoded an 
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integrase, a resolvase4, dpnM, and a hypothetical protein with a DGQHR domain (Table 6). A 

comparison of this hypothetical protein against the NCBI RefSeq database identified regions 

of homology with the dndB family domain as well as a possible YraN endonuclease domain. 

 

 
Figure 20: dpnM encoding mobile element inserted between direct repeats  

Blastn comparisons, produced using EasyFig(276), which A) shows the insertion of the mobile 
element in comparison to the most closely related isolate where was not present and B) shows 
the high sequence identity between the inserted element found in  M. a. massiliense (DEN538) 
and M. a. bolletii (RHS37)  isolates and the representative DCC3 isolate (BIR1049).  
 

 

Comparing the protein sequence of dpnM against the REBASE database indicated that it 

was likely to be recognizing a GATC motif and modifying the amino group at the C-6 position 

on the adenine (Table 6). This comparison also highlighted two conserved motifs within the 

active site of dpnM: the FXGXG motif within the AdoMet binding site and the DPPY motif, 

present within the catalytic domain (277). Mutations affecting the aspartate and tyrosine sites 

of the DPPY motif and the phenylalanine site of the FXGXG motif have been shown to result 

in the loss of function of the methyltransferase (237, 238).  

                                                
4 The resolvase gene encoded by the mobile element in BIR1049 (121632_2#22_011822-011823), DEN538, AUS791 was 
represented by two genes in the annotations of these isolates due to a frameshift caused by the deletion (GAGgGTG) of a 
guanine base in codon 60 of CDS 12163_2#22_01182 (BIR1049 example) 
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In order to determine the structure of dpnM and investigate its catalytic nature, structural 

modelling of dpnM was carried out by Dr Sony Malhorta. 

2.3.10.1 Structural analysis of dpnM 

Using PDB ID-2dpm chain A of Streptococcus pneumoniae as a template (Figure 21Ai), Dr 

Sony Malhotra confirmed the presence of the two conserved motifs, FXGXG and DPPY, in 

the ado-met binding site and catalytic domain respectively (Figure 21Aii). Mutations in these 

motifs, F42S in FXGXG, D184A and Y187L in DPPY, have previously been shown to have 

inactivating effects (237, 238). These mutations were introduced into the model to investigate 

their impact on the function of dpnM. 

 

Dr Sony Malhorta predicted that F42S would have an inactivating effect due S42 disrupting 

the π-π interactions between F42, the adenine ring of SAM and F168 (Figure 21B.i and 

Figure 21B.ii). D184A was also predicted to have an inactivating effect. This was because 

the D184A mutation was predicted to disrupt the electrostatic interactions formed between 

D184, the nitrogen of the amino group and K19 (Figure 21C.i and Figure 21C.ii). 

Contrastingly, Y187L was predicted to have a destabilizing as opposed to inactivating effect. 

This was because the H-bond interactions with A265 were retained when Y187 was replaced 

with L187 but the stacking with the aromatic ring of the flipped target adenine base was lost. 
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Table 6: Annotations of the CDSs encoded by the mobile element present in all DCC3 lineage isolates 
Locus tag Prokka Pfam Interpro NCBI REBASE 

12163_2#22_01181 Integrase fusion protein no-hits No hits 

refseq: C-terminal catalytic domain 

of integrase from bacterial phages 

and conjugate transposons 

NA 

12163_2#22_011823 

Site-specific recombinase, 

DNA-invertase hin, N-

terminal domain 

Resolvase N-

terminal domain 

and HTH DNA 

binding domain 

Resolvase N-terminal 

domain and HTH DNA 

binding domain 

Swissprot: invertase/resolvase 

subfamily Serine recombinase 

family 

NA 

12163_2#22_011833 
Putative resolvase, N-

terminal domain 
NA NA NA NA 

12163_2#22_01184 

(dpnM) 

dpnIIA, DNA adenine 

methylase 

D12 N6 adenine-

specific DNA 

methyltransferase 

D12 N6 adenine-specific 

DNA methyltransferase 

Swissprot: DNA-adenine specific 

methyltransferase (N6-adenine 

specific) 

Recognition site: GATC 

Conserved domains: 

FXGXG and DPPY 

12163_2#22_01185 
DGQHR domain containing 

protein 

DNA sulphur 

modification 

associated - 

conserved 

DGQHR domain 

DGQHR containing 

domain, similar to DNA 

sulphur modification 

protein DndB 

refseq: DGQHR domain, 

uncharacterized conserved 

domain. Some proteins have been 

found to be part of DNA 

phosphorothioation systems, YraN 

domain: predicted endonuclease 

NA 
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Figure 21: Structural modelling of dpnM 

A.i) Structural model of the methyltransferase determined using PDB ID-2dpm chain A of 
Streptococcus pneumoniae. A.ii) The binding pocket of the methyltransferase when S-adenosyl-
L-methionine (SAM) is bound. The conserved amino acids F42 of the FXGXG and D184 of 
DPPY motifs are indicated by the yellow arrows. B.i) Structural modelling of the interaction 
between F42 and SAM (yellow arrow) and B.ii) the effect of the inactivating mutation F42S (red 
arrow). C.i) Structural modelling of the interaction between D184 and SAM (yellow) with C.ii) 
showing the effect of the D184A inactivating mutation. Figures curtesy of Dr Sony Malhotra.  
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2.3.10.2 dpnM recognizes and modifies an RGATC motif: 

Next, in order to confirm that the motif modified by the dpnM was GATC and to examine the 

methylome of the DCC3 lineage, SMRT sequencing was undertaken on the isolates 

recorded in Table 15. Modification and motif analysis showed that all the wild type (WT) 

isolates which encoded dpnM were predicted to encode a modified adenine bases within a 

GATC motif (Table 7). Although, the specificity of the bases flanking the motif differed 

between DEN538 (RGATCC) and RHS37 and BIR1049 (both BRGATCC). No other motifs 

were modified by all the isolates encoding dpnM. The modification of this motif by dpnM was 

further supported by the absence of this modified motif in the BIR1049 knock out (KO), as 

well as its absence in the WT isolates which did not encode dpnM, although this could not be 

conrfirmed for SMRL154 as it was not successfully sequenced (Table 7). The motif could 

also not be confirmed through complementation, with a modified RGATCC motif not detected 

after SMRT sequencing of the BIR1049Δinsertion:dpnM strain (Table 7). 

 

The proportion of the motifs encoded by each of the genomes that were modified differed. 

47% of the 4,879 BRGATCC motifs encoded by BIR1049 were modified, 73% of the 5,653 

RGATCC encoded by DEN538 were modified and 62% of the 5,005 BRGATCC encoded by 

RHS37 were modified (Table 7), suggesting the BRGATCC motif was likely to be an 

overprediction by the software, and that RGATCC is the true recognition motif in all of the 

genomes.  

 

In order to identify whether the modification of the RGATCC motif causes changes in gene 

expression that could be linked to virulence and thus clarify whether the insertion of the 

dpnM played a role in the preadaptation of DCC3, the genomic positions of the modified 

motifs need to be identified and correlated with the results of differential expression analysis 

after RNA sequencing of the BIR1049 WT, BIR1049Δinsertion and BIR1049Δinsertion:dpnM. 

This work is in progress. 

 

It was also interesting to note that as well as the modified GATC motif, two pairs of non-

palindromic, bipartite asymmetric modified motifs were detected in the BIR1049 WT and 

BIR1049 knockout strains, which suggested other methyltransferases were encoded by 

BIR1049 (Table 7). This suggested that the methylome of BIR1049 and potentially that of the 

DCC3 lineage was unique when compared to that of the four other lineages tested. Further 

modified motifs were also detected in the genetically distinct isolates that encoded dpnM, 

                                                
5 SMRL154 failed SMRT sequencing 
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with an asymmetric, bipartite modified motif identified in DEN538 and two non-palindromic 

modified motifs identified in RHS37. Contrastingly, in the isolates selected for SMRT 

sequencing which didn’t encode dpnM, no modified bases were detected, which suggested 

that no methyltransferases were present in these genomes. 

 

2.3.10.3 dpnM is potentially playing a role in intracellular survival 

The three DCCs and other densely clustered although less expanded MABSC lineages were 

found to be more successful at infecting human-derived macrophages and surviving within 

these cells in comparison to MABSC lineages from genetically distinct backgrounds (73). To 

investigate whether dpnM was contributing to these phenotypes, Daniela Rodriguez-Rincon 

performed the original assays described by Bryant et al (2016) on the following isolates: 

BIR1049wt, BIR1049Δinsertion, BIR1049Δinsertion:dpnM, BIR1049Δinsertion:dpnM(D184A), 

BIR1049Δinsertion:dpnM(Y187L) and BIR1049Δinsertion:dpnM(F42S).  

 

No significant differences in phagocytic uptake were observed by Daniela Rodriguez-Rincon 

between the BIR1049 strains (Figure 22A), however, BIR1049Δinsertion was found to be 

unable to survive within monocyte derived human macrophages, which suggested that dpnM 

could be playing a role in intracellular survival (Figure 22B). The complemented strains 

BIR1049Δinsertion:dpnM and BIR1049Δinsertion:dpnM(Y187L) restored intracellular survival 

whereas the strains complemented with versions of dpnM predicted to have inactivating 

mutations, BIR1049Δinsertion:dpnM(D184A) and BIR1049Δinsertion:dpnM(F42S), failed to 

restore intracellular survival. As well as providing further evidence that dpnM could be 

playing a role in intracellular survival, these results also confirm Dr Sony Malhotra’s 

predictions of the impact of these mutation based on the structural modelling of dpnM (Figure 

21). Whilst these results suggest that dpnM is playing a role in intracellular survival, these 

results are preliminary as thus far these findings have been unable to be confirmed. 
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Table 7: Summary of the modified motifs detected in the seven isolates that underwent SMRT sequencing  

Isolate 
Mobile element  

dpnM 
Predicted motif Partner motif 

Modification 
type 

% motifs 
modified in 

genome 

# of motifs 
detected 

# of motifs 
in Genome 

Mean 
modification QV 

Mean Motif 
Coverage 

M. a. massiliense 

BIR1049 
present 

GAGNNNNNNGTTG CAACNNNNNNCTC m6a 70.90 441 622 44.56 28.62 

CAACNNNNNNCTC GAGNNNNNNGTTG m6a 66.08 411 622 44.19 28.43 

GAACNNNNNNTCC GGANNNNNNGTTC m6a 68.93 579 840 44.21 28.71 

GGANNNNNNGTTC GAACNNNNNNTCC m6a 53.10 446 840 42.51 29.68 

BRGATCC NA m6a 46.94 2290 4879 44.03 29.61 

M. a. massiliense 

BIR1049 Knockout 
absent 

GAACNNNNNNTCC GGANNNNNNGTTC m6A 98.21 824 839 72.56 47.03 

GGANNNNNNGTTC GAACNNNNNNTCC m6A 91.06 764 839 66.64 47.76 

CAACNNNNNNCTC GAGNNNNNNGTTG m6A 97.44 609 625 73.37 46.57 

GAGNNNNNNGTTG CAACNNNNNNCTC m6A 95.84 599 625 71.55 47.03 

BIR1049 

Complemented Wild 

type 

present 

GAACNNNNNNTCC GGANNNNNNGTTC m6A 90.70 761 839 57.86 33.07 

GGANNNNNNGTTC GAACNNNNNNTCC m6A 83.67 702 839 55.47 34.07 

GAGNNNNNNGTTG CAACNNNNNNCTC m6A 89.08 555 623 58.53 33.35 

CAACNNNNNNCTC GAGNNNNNNGTTG m6A 88.28 550 623 57.8 33.09 

M. a. massiliense 

SMRL154 
absent NA NA NA NA NA NA NA NA 

M. a. massiliense 

DEN538 
present 

GGANNNNNTCC GGANNNNNTCC m6A 98.50 2563 2602 117.08 79.5 

RGATCC NA m6A 72.58 4103 5653 88.2 79.52 

M. a. massiliense 

AUS856 
absent NA NA NA NA NA NA NA NA 

M. a. bolletii RHS37 present 

GARCCAG NA m6A 98.83 1691 1711 117.36 74.66 

GCCCGAG NA m6A 96.24 1638 1702 106.59 75.55 

BRGATCC NA m6A 62.44 3125 5005 72.4 75.43 

M. a. bolletii 

DEN515 
absent NA NA NA NA NA NA NA NA 
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Figure 22: dpnM is potentially playing a role in intracellular survival 

A) No significant difference in phagocytic uptake was observed between the BIR1049 strains 

with a functioning dpnM (M. a. massiliense BIR1049wt, BIR1049Δinsertion:dpnM, 

BIR1049Δinsertion:dpnM(Y187L)) and without a functioning dpnM (BIR1049Δinsertion), 

BIR1049Δinsertion:dpnM(D184A) BIR1049Δinsertion:dpnM(F42S)). B)  Significant differences 

(*** p <0.001) in intracellular survival were observed between the three strains, BIR1049wt, 

BIR1049Δinsertion:dpnM and BIR1049Δinsertions:dpnM(Y187L), that encoded a functioning or 

destabilized dpnM compared to the three strains where dpnM was not present. Figures adapted 

from those provided by Daniela Rodriguez-Rincon 

 

2.4 Discussion 

The rapid emergence, global spread and greater virulence of clustered MABSC lineages led 

to the hypothesis that these lineages could have been preadapted to the CF lung 

environment (73). The research in this chapter aimed to investigate this hypothesis by 

examining the genetic changes that occurred on the branches leading to the LCA of the three 

largest clustered lineages, the DCCs (Figure 7). The genetic changes that occurred on these 

branches could indicate either changes that pre-adapted these lineages to the CF lung 

environment or changes that were rapidly fixed in the lineages after their initial invasion of 

the CF lung niche, but before their clonal expansion. By identifying these changes it may be 

possible to gain a greater understanding of what has driven the emergence of the more 

prevalent MABSC lineages as well as increase our understanding of MABSC virulence 

factors.  The results of this chapter showed that no single genetic factor was responsible for 

the emergence of the DCCs, which suggests that the DCCs have expanded in the CF 
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community due to increased opportunity. However, the functions of the genes identified as 

enriched in the LCA of the DCCs did provide evidence as to why it was these lineages that 

have expanded and highlighted functional areas that could contribute to the virulence of the 

MABSC. 

 

A clear indication that prior to their clonal expansion the DCCs had undergone rapid adaption 

to a new environment would have been if the SNPs on the branches leading to the LCA of 

the DCCs were under positive selection. However, this was not observed, with the branches 

leading to the LCA of the DCCs all under strong purifying selection (Figure 8). In fact the 

dN/dS values on the branches leading to the LCA of the DCCs were very similar to those 

observed between other mycobacterial species as well as other species within the 

actinobacteria phylum (278). This suggested that prior to their LCA, the DCCs were evolving 

under the selective constraints applied by an environment to which they were already 

adapted. Contrastingly, over shorter time scales, including many of the branches 

representing the evolution of the DCC lineages after their LCAs, the dN/dS values increased 

(Figure 8). Whilst this could indicate that strong positive selection was occurring after the 

LCAs of the DCCs, it could also represent the fact that comparisons between closely related 

isolates can result in high dN/dS values because purifying selection has not had time to 

occur (279). 

 

The results of the dN/dS analysis suggested that if adaptation had occurred prior to the 

clonal expansion of the DCCs, it was through other evolutionary processes such as more 

subtle changes in the selection pressure acting upon core genes or changes in gene content. 

Through both SNP density and pangenome analysis genes potentially associated with 

emergence of the DCCs were identified. Each of the candidate lists generated consisted of 

many candidate genes encoded by consecutive locus tags (Appendix table 1.1, 1.2, 1.3, 

1.21, 1.22, 1.23). In the case of the SNP density analysis, as shown in Figure 9A and C, 

there were two peaks representing the consecutive locus tags amongst the candidates list for 

DCC1 and DCC3. Given that recombination was not removed from the phylogeny these 

clustered SNPs could be indicative of a recombination event. The high number of 

synonymous SNPs also acquired by the genes that were found to have gained a significantly 

different number of nonsynonymous SNPs (Appendix table 1.1) also suggests that these 

regions could have been acquired via recombination, as nonsynonymous SNPs in 

recombinant regions often have had time to be purified in the donor organism (280). 

Similarly, the pangenome candidate lists consisted of multiple clusters of genes with 

consecutive locus tags, suggesting they had been acquired together (Figure 15, 16, 17). The 
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genes that bookended some of these clusters, such as recombinases and integrases, 

supported the idea that these were mobile elements (appendix table 1.21, 1.22, 1.23). The 

fact that some of the candidates could have been acquired via recombination does not rule 

out their potential role in predisposing the DCCs to be successful in the human host and the 

functions of some of the candidates overlapped with functional areas associated with 

adaptation to the human host in other pathogens. 

 

No candidates were identified through SNP density or pangenome analysis that were 

associated with the emergence of all three DCCs which suggested that the acquisition of a 

single gene or mobile element or a significantly different SNP density in the same gene had 

not contributed to the emergence of all three lineages. Whilst there are examples of the 

emergence of distinct epidemic lineages being driven by the acquisition of the same gene 

content changes and SNPs, such as the emergence of two distinct epidemic lineages of 

Clostridium difficile (281), there are also examples of epidemic lineages emerging from 

distinct genetic backgrounds with no shared genetic cause to explain their emergence, such 

as the most common disease-associated Legionella pneumophila strain types (187).  

 

There was evidence, however, of overlapping accessory gene content between two of the 

three DCCs, which suggests that the acquisition of the same genetic material had potentially 

contributed to the emergence of the DCCs. Both DCC1 and DCC2 acquired an operon 

encoding genes that catalyze a step in ubiquinone biosynthesis (Figure 15, Figure 16). UbiD 

and UbiX catalyze the breakdown of 3-octaprenyl-4-hydroxybenzoate (OHB) to 3-

octaprenylphenol (OPP) (258). Ubiquinone is a plasma membrane associated molecule 

which acts as an electron carrier between the electron donor, which can be NADH 

dehydrogenase, succinate dehydrogenase or lactate dehydrogenase, and the acceptor, 

which can be cytochrome oxidases or reductases (282). Thus both DCC1 and DCC2 

acquired a gene cluster associated with respiratory metabolism. Ubiquinone has also been 

hypothesized to play a role in oxidative stress, potentially protecting organisms including M. 

tuberculosis, P. aeruginosa and Salmonella typhimurium, from the increased levels of 

reactive oxygen species (ROS) induced through the degradation of long chain fatty acids 

(283). Therefore, it is possible the presence of this gene cluster could potentially be 

contributing to the ability of  DCC1 and DCC2 to survive longer within macrophages.   

 

Over 90% of DCC2 and DCC3 isolates as well as one DCC1 isolate encoded a possible drug 

efflux pump (Figure 16, 17). The significantly densely clustered MABSC lineages were found 

to be more antibiotic resistant than unclustered lineages, however, the genetic determinants 
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for these, SNPs in the 23s rRNA and 16s rRNA genes, have been identified (73). However, 

multidrug resistance efflux pumps are known to perform roles not associated with resistance, 

such as exporting biocides and toxic metals which could be how this efflux pump could be 

contributing to the success of the DCC lineages (271). 

 

Other examples of overlapping gene content between the DCCs were observed, although 

these examples consisted of genes present in over 90% of one DCC and a small proportion 

of another DCC (Figures 15, 16, 17). This suggests that gene content is being exchanged 

between the DCCs at different stages during their evolution, and that acquisition of one of 

these circulating mobile elements acquired by a DCC prior to its expansion, could potentially 

be contributing to the continuing expansion of a different DCC lineage or contributing to the 

expansion of a less prevalent lineage. 

 

Whilst there were multiple examples of these clusters, a couple stood out. A cluster of genes 

present in over 90% of DCC2 isolates and only three DCC1 isolates consisted of multiple 

antioxidant aphC/TSA family genes as well sigma factors, which suggested this gene cluster 

could be enabling DCC2 to survive under greater oxidative stress as well as quickly respond 

to environmental cues (Figure 16). However, the lack of clear operons within this cluster 

coupled with the presence of genes with putative metabolism functions and with roles in 

cytochrome c biogenesis (Appendix table 1.22) makes the interpretation of the function of 

this subset of genes within the gene cluster uncertain. Also within this cluster, but within a 

clear operon, was a alkanesulfonate transport system, which could be helping the DCC to 

overcome sulfate starvation within the host (261). A gene cluster present in over 90% of 

DCC1 isolates and seven DCC3 isolates included the dnd (Figure 15). The presence of this 

operon could potentially be providing an advantage to these lineages by enabling them to 

take advantage of the high concentration of DNA in CF sputum as a nutrient source (82).  

 

The majority of the candidates identified through the pangenome analysis were acquired by 

only a large proportion of one of the DCCs and there was no overlap between the candidates 

identified through the SNP density analysis. However, there was evidence to suggest that 

some of the candidates were participating in similar functions which could suggest that the 

emergence of the DCC lineages as the most prevalent, whilst not driven by exactly the same 

changes, were potentially driven by changes affecting the same functional areas (Figure 15, 

16, 17).  
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Gene clusters in DCC1 and DCC2 identified through pangenome analysis and the cluster of 

candidates identified on the branch leading to the LCA of DCC3 through SNP density 

analysis  all had functions with links to the beta oxidation of fatty acids (Figure 15, Figure 16, 

Figure 9, Appendix tables 1.21, 1.22,  1.4). Multiple pathogens, including M. tuberculosis and 

P. aeruginosa, switch to the degradation of fatty acids as a carbon source within the host 

(251, 284). Therefore, acquisition of gene content possibly involved in this process suggests 

that the DCCs may have acquired advantages in this metabolic process over other MABSC 

lineages. The presence of changes in genes related to this process in all three DCCs 

suggests it could be the key change that resulted in the increased pathogenic potential of 

these lineages. However, as is the case for M. tuberculosis, it is possible that the MABSC 

encodes multiple homologs of beta oxidation enzymes, which could be why the DCCs were 

not found to be statistically significantly enriched with fatty acid metabolism functions (83).  

 

Another area of functional overlap included the presence of two mspA porin genes in DCC2 

and one mspA gene amongst the candidates for DCC3. The msp porin family is the main 

route by which hydrophilic nutrients are transported across the hydrophobic mycobacterial 

cell wall (285). Msp porins have been linked both to the resistance to aldehyde disinfectants 

in M. chelonae and M. smegmatis and interestingly the number of msp’s encoded by an 

organism has been linked to intracellular persistence, with the deletion of mspA and mspC in 

M. smegmatis leading to enhanced intracellular survival (286, 287). The role of porins in 

MABSC organisms has not been investigated and therefore it is unknown whether porins are 

participating in either resistance to aldehyde disinfectants or possibly contributing to 

enhanced intracellular survival and thus what role these are potentially playing in the 

emergence of DCC2 and DCC3.  

 

Enrichment analysis was undertaken to investigate whether the DCCs were statistically 

significantly enriched with different functions in comparison to the less expanded lineages. 

For the candidates identified through both SNP density and pangenome analysis no 

functional enrichment was detected. With regards to the SNP density analysis, this result 

likely reflected a lack of power as a relatively small number of candidates were identified for 

each of the DCCs (Table 2). However, in the case of the pangenome analysis, whilst the lack 

of enrichment could be true, the analysis was also affected by the lack of functional 

information available for this species. InterProScan was only able to assign GO-terms to 22% 

of the pangenome candidates present in 1-95% of isolates that are not part of the DCC 

lineages and to only 77/183, 24/217 and 35/119 of the candidates identified for DCC1, DCC2 

and DCC3. Consequently, only a limited picture of the functionality of both the candidates 
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and the genes encoded in the accessory genome of the non-DCC candidates was captured 

and this could be affecting the results.  

 

For both the SNP density and pangenome analysis, KEGG pathway analysis produced very 

few and inconclusive results. Although, in the case of the SNP density analysis the 

proportions of the groups of pathways detected did mirror the proportion of COG functions 

assigned to the candidate genes, which did suggest that pathways performing functions in 

the expected areas were being identified (Figure 11). However, given that only a few 

candidates from each candidate list were mapped to KEGG pathways and that candidates 

were often mapped to multiple pathways the results are unclear. Blast2GO identifies the 

potential pathway a gene is functioning in through using InterProScan to assign the gene to a 

GO-term, with the GO-term, where possible, assigned an enzyme code and the pathways 

the enzyme functions in then retrieved from the KEGG pathway database. Therefore, with 

limited GO-term information and the GO-terms identified not all assigned an enzyme code, 

missing information hampered this analysis.  

 

Whilst the candidates highlighted through SNP density and pangenome analysis contained 

genes with potential functional overlap, there were also candidates encoded by only one of 

the DCC lineages which could potentially provide an advantage to survival in the host and 

that possibly contributed to the lineage becoming one of the most prevalent in the CF 

community. On the branch leading to the LCA of DCC1 genes playing a role in 

homogentisate metabolism and the degradation of phenylacetic acid were identified through 

pangenome analysis and have both been linked to the virulence potential of the CF 

pathogens, P. aeruginosa and B. cepacia respectively, and have previously been described 

in the reference genome of M. a. abscessus ATCC19977 by Ripoll et al. (2009) (82, 179, 

267). However, the transport, biosynthesis and metabolism of BCAAs (Figure 15, Appendix 

table 1.2, 1.21), has not previously been linked with the adaptation of the MABSC to the CF 

lung.  

 

The cluster of genes associated with the BCKADH complex, was identified through both 

pangenome and SNP density analysis (Appendix table 1.2, 1.21). This could be due to the 

reference to which all the isolates were mapped, M. a. abscessus ATCC19977, being within 

DCC1 and thus either this cluster of genes is encoded by all MABSC and the pangenome 

software Roary split the genes due to either differing flanking genes or the protein sequence 

identity being less than the selected cutoff for clustering orthologous genes, which in this 
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analysis was 90% (223). If this was the case, it suggests that potentially the variants of these 

genes encoded by the early ancestral lineages of DCC1 were advantageous.  

 

Figure 23 shows the BCAA that are metabolized by the BCKADH enzyme complex, and the 

pathway through which the products of the complex are funneled into the Krebs cycle to 

provide energy for the organism (244). Genes associated with the transport (MAB_2622c) 

and biosynthesis of BCAA (MAB_2691), the BCKADH complex enzymes (MAB_0894 -

MAB_0897) and potentially genes (MAB_0898-MAB_0918c) which catalyze the breakdown 

of the products into reactants that are fed into the TCA cycle were all encoded within the 

SNP density and pangenome candidates identified for DCC1. All these processes have been 

linked to virulence in other pathogens. Firstly, BCAA transport has been linked to virulence in 

Streptococcus pneumonia, Staphylococcus aureus, Francisella tularensis and Legionella 

pneumophila (245, 246, 288). Secondly, BCAA biosynthesis mutants in M. tuberculosis 

display attenuated virulence in mice (289). Finally, the disruption of genes involved in 

catabolism of BCAA in M. tuberculosis, including the disruption of bkdC, have been shown to 

result in the lethal buildup of the toxic BCAA intermediates (244). This suggests that the use 

of BCAA by the DCC1 lineage may be an area worthy of further investigation, and that 

potentially pathways involved in the transport, biosynthesis and catabolism of BCAA are 

linked to the pathogenesis of M. abscessus. 
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Figure 23: Metabolism of branched chain amino acids potentially playing a role in the 
emergence of DCC1 

Through both SNP density and pangenome analysis genes associated with the biosynthesis, 

transport and metabolism of branched chain amino acids (BCAA) were identified (blue and 

bold), which suggested that DCC1 may have been better able to use the abundance of amino 

acids in the CF sputum as a source of energy. * a candidate was annotated as 

dihydrolipoamide dehydrogenase (lpd), however, unlike the genes of the BCKADH complex, it 

was not found to be orthologous to lpdC in M. tuberculosis H37Rv. Figure adapted from 

Venugopal et al. 2011 (244). 

 

 

Further genes with links to virulence amongst the candidates identified as potentially 

predisposing DCC1 to become the most prevalent included a gene involved in histidine 

biosynthesis, which is essential for M. tuberculosis survival in the host, and the pstSCAB 

operon, which enables the organism to scavenge phosphate from the host in order to be able 

to keep performing key cellular functions (181, 247, 268, 269). These observations suggest 

that as well as shared gene content with potential roles in virulence with DCC2 and DCC3 

and acquiring gene content with similar functions to that acquired by the other DCCs, LCA of 

DCC1 had also evolved a unique array of gene content changes and variants in genes with 

potential roles in virulence and survival within the host.  
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Contrastingly, the majority of the pangenome candidates identified for DCC2 for which it was 

possible through sequence homology and literature searches to predict a function were 

either present in multiple DCCs or functionally overlapped with gene content from other 

DCCs, and thus have been discussed previously. However, DCC2 did stand out due to the 

relatively small number of candidates identified through the SNP density analysis, with just 

six identified. However, the lack of candidates could be due to the fact that three of the six 

candidates which did incur a significant difference in SNP density were regulators and the 

subsequent changes in regulation could be as significant phenotypically as changes in SNP 

density in multiple genes with non-regulatory functions (Figure 9). Without experimental 

analysis it was not possible to determine which genes were under the control of these 

regulators, particularly as they didn’t clearly form part of an operon. However, one of the 

regulators, a tetR family regulator, MAB_3565, was encoded in close proximity to an mmpS 

gene and mmpL gene. mmpS and mmpL genes are involved in the transport lipids which 

form part of the highly specialized Mycobacterial cell wall (248). To my knowledge, the 

functions of these mmpS (MAB_3565c) and mmpL (MAB_3562c) gene have not been 

investigated for M. a. abscessus ATCC19977, nor were either genes found to be orthologs to 

any of the mmpS or mmpL genes encoded by M. tuberculosis H37Rv (230). However, given, 

the cell wall is a critical virulence determinant in all pathogenic Mycobacteria, if this regulator 

is playing a role in the regulation of these genes, then it could potentially be a critical change 

that was associated with the emergence of this lineage as one of the most prevalent in the 

CF community. 

 

Similarly to DCC1, there was evidence that DCC3 had, in addition to the overlapping gene 

content with DCC1 and DCC2 respectively and changes in similar pathways to both other 

DCCs, acquired further unique virulence determinants. Most interestingly, the candidate list  

included, in contrast to the partial mce operons present within the candidates for DCC1 and 

DCC2, a complete mce operon (Figure 17). Mce operons encode two yrbE genes, which 

have similarity to membrane spanning proteins, and six mce genes. The first mce gene in the 

sequence enables the organism to invade mammalian cells, however the function of the 

remaining five is unclear, but there is evidence that they are a combination of membrane 

associated and exported proteins (272). The deletion of the mce1, mce2 and mce3 operons 

in M. tuberculosis have been shown to result in attenuated virulence (272). The mce4 operon 

enables the import of host cholesterol, a key mechanism by which M. tuberculosis is able to 

persist within the host (290). In terms of gene content the mce operon encoded by over 90% 

of the DCC3 isolates was most similar to mce1 from M. tuberculosis H37Rv, with a tetR 
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regulator, followed by a putative fatty acid degradation gene, two yrbE genes and six mce 

genes (177). However, the gene orientation differed and none of the genes were found to be 

orthologous to the genes within the mce1 operon encoded by M. tuberculosis. However, this 

could be due to the criteria used to detect orthologous genes using reciprocal blast. Without 

experimental analysis, it is not possible to determine the function this mce operon is 

performing, however, the rich history of mce operons playing a role in the pathogenesis of 

other pathogenic mycobacteria suggests it could have played a role in the emergence of the 

DCC3 lineage. 

 

Intriguingly, the vast majority of the pangenome candidates (92%) identified for DCC3 were 

also encoded by the basal lineage to DCC3, with just 18 candidates not encoded by this 

lineage. However, the basal lineage was found to be one of the significantly densely 

clustered lineages with increased pathogenic potential in (73). Thus the candidates identified 

as possibly linked to the emergence of DCC3 could have also contributed to the emergence 

of this lineage. The extent to which these two lineages have expanded, however, differs 

considerably, and DCC3 was also responsible for the outbreaks in CF centers in Papworth in 

the UK and Seattle in the US as well as an epidemic of SSTIs in Brazil (70, 119, 130). This 

could suggest that the 18 candidates not encoded by the basal lineage are responsible for 

the greater prevalence of the DCC3 lineage. 

 

A mobile element encoding a methyltransferase (dpnM) was amongst these 18 candidate 

genes (Figure 17). The methylome of a bacterial genome can now be detected through 

SMRT sequencing and this has led to an increased awareness of the impact that a change in 

methylation pattern can have upon an organism's regulatory circuits and in some cases 

pathogenicity (214). Thus it was hypothesized that potentially the presence of this 

methyltransferase could have caused a change in the methylome that led to changes in the 

regulation of virulence related genes.  

 

As well as the machinery to enable its mobility, the mobile element encoded dpnM and a 

hypothetical protein with a conserved DGQHR domain. This hypothetical protein was found 

to have the most convincing sequence similarity to the dndB sulfur modification protein 

(Table 6). However, there was also weak sequence similarity to a YraN endonuclease family 

protein, and the DGQHR conserved domain has been observed within a type I restriction 

endonuclease encoded by Campylobacter jejuni (291, 292). This is significant because if this 

second gene is an endonuclease it is likely that the mobile element encodes a restriction 

modification (RM) system and that protection of host DNA against digestion by the restriction 
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enzyme would be the main function of dpnM. RM systems protect the host from foreign DNA 

by recognizing their corresponding methyltransferases unmodified motif in invading DNA and 

proceeding to cleave the DNA (293). However, the base modifications carried out by 

methyltransferases that are part of RM systems have also been linked to changes in the 

transcriptome (293). 

 

Preliminary functional validation of dpnM has begun to shed light on its potential role in the 

emergence of DCC3. Although, as the KOs generated were of the complete mobile element, 

whether the hypothetical protein is an endonuclease remains under investigation. Structural 

analysis, performed by Dr Sony Malhotra, showed that the methyltransferase was 

homologous to the dpn family of methyltransferases (Figure 21Ai). The introduction of known 

inactivating mutations resulted in two of the mutations, one in the conserved ado-met binding 

motif (FXGXG, F42S) and one catalytic domain (DPPY, D184A) being predicted and 

confirmed to be inactivating and one of the mutations in the catalytic domain (Y187L) 

predicted and confirmed to be destabilizing (Figure 21 Bi, ii, Ci, ii). This confirmed that the 

methyltransferase was SAM dependent and, as the presence of the conserved motifs 

FXGXG and DPPY implied, that the methyltransferase modified the amino group at the sixth 

position of an adenine (N
6
-adenine) (237, 277).  

 

Through SMRT sequencing it was confirmed that dpnM modifies adenine bases at the N
6 

position and that the motif recognized by dpnM was either BRGATCC or RGATCC (Table 7). 

These motifs contained the shorter motif, GATC, that REBASE predicted the dpnM to be 

modifying. The presence of the IUPAC notations B (either C,G or T) and R (purines), 

indicated that either the methyltransferase was recognizing an ambiguous base, or that 

motiffinder was being over-specific and extending the potential motif beyond the true 

recognition site, a known issue with this program.  Furthermore, only 47%, 62% and 73% of 

the predicted motifs encoded by BIR1049, DEN538 and RHS37 respectively were detected 

as modified and generally, according to Pacific biosciences, 100% of the predicted motifs 

encoded by a prokaryote should be modified (294). The fact that several of the attempts to 

sequence these isolates required a clean-up step before SMRT sequencing was successfully 

achieved potentially suggests that the quality or amount of the DNA remaining after this step 

was not adequate enough to produce high enough coverage to detect all the base 

modifications. The correlation between the percentage of motifs modified in the genome and 

the average motif coverage (Table 7) suggests that this could be the case. It remains unclear 

why BIR1049Δinsertion:dpnM failed to restore the BIR1049wt methylome. The 

complementation plasmid was detected within the de novo assembly inferred from the SMRT 
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sequencing reads. Therefore perhaps the quality of the SMRT sequencing or potentially the 

loss of function of dpnM on the complementation plasmid could be associated with the failure 

to reproduce the phenotype. This remains under investigation. 

 

SMRT sequencing also detected the presence of two non-palindromic bipartite modified 

motifs in the BIR1049wt and BIR1049Δinsertion sequences, which suggested that further 

methyltransferases were influencing the methylome of the DCC3 lineage. However, further 

investigation into the methyltransferase genes responsible for this signal was beyond the 

scope of this analysis.  

 

Most significantly, Daniela Rodriguez-Rincon showed that dpnM was potentially playing a 

role in the increased intracellular survival associated with the clustered MABSC lineages 

(Figure 22B) (73). However, the fact that these results were unable to be replicated means 

that these results are preliminary. Work is ongoing to investigate why it has not been 

possible to replicate these results. Further work is also in progress to perform differential 

expression analysis on the BIR1049wt, BIR1049Δinsertion and BIR1049Δinsertion:dpnM 

isolates, in order identify the genes whose regulation is impacted by dpnM. This will be 

achieved by correlating the regulatory changes detected with the positions of the modified 

motifs predicted through SMRT sequencing in the genomes. The functions of the genes 

under the control of dpnM should then identify in what way it could potentially be contributing 

to the increased intracellular survival phenotype associated with the DCC3 lineage. 

 

The preliminary functional validation of one of the candidates identified through these 

analyses suggested that genes which potentially predisposed the DCCs to become the most 

prevalent in the CF community had been successfully identified through these methods. 

However, there are areas in which these methods are limited or could be improved. Firstly, 

the observation that the MABSC infecting population was dominated by significantly densely 

clustered lineages with increased pathogenic potential was achieved by comparing all 

significantly densely clustered isolates to those from genetically distinct backgrounds, not 

comparing the three DCCs to all isolates that were not part of a DCC (73). This was not done 

initially for the analyses reported here because the extent of the expansion of the DCCs in 

comparison to the other densely clustered lineages suggested that these lineages were 

preadapted in such a way that the signal would be evident even in comparison to other 

lineages with increased pathogenic potential. Therefore, it is possible that candidates 

associated with all or a large proportion of significantly densely clustered lineages are being 
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missed. In the future this analysis should be expanded to compare all the densely clustered 

lineages against the isolates from genetically distinct backgrounds. 

 

Whilst the SNP density analysis did highlight some potentially interesting candidates, two 

possible limitations should be noted. Firstly, the inability to remove recombination from a 

phylogeny with such deep branches meant that variants acquired through recombination, as 

opposed to through the independent acquisition of multiple nonsynonymous SNPs, could 

have been detected. Secondly, the majority of the candidates identified through the SNP 

density analysis, were based on the accumulation of very few nonsynonymous SNPs by the 

gene, both on the branch leading to the LCA of the DCC and on the branches evolving 

independently to the DCCs. Consequently, a Fisher's exact test as opposed to a !2
 test 

might have been more appropriate. However, the way in which the data was generated 

meant it was not possible, in the time remaining, to apply the Fisher’s exact test. Pangenome 

analysis comes with known challenges, such as splitting paralogs correctly and correctly 

selecting a cutoff for the percent identity expected from the same gene present in genetically 

distinct lineages. Further analysis is needed to decipher if these issues are affecting these 

results. Despite these weaknesses, areas of interest for future research where highlighted 

through this analysis and preliminary functional validation has begun to explain the way in 

which one of the candidates identified could have provided an advantage that contributed to 

the emergence of the DCC3 lineage.  

 

2.5 Conclusions and future directions: 

Through SNP based and pangenome analyses the aim of this research was to investigate 

whether the same genetic or functional factors drove the emergence of the three most 

prevalent MABSC lineages in the CF community. The results showed that there was no 

single factor that drove the emergence of all three DCCs. Although, there was evidence that 

the three DCCs had potentially undergone changes in the same functional area, with all three 

DCCs found to have potentially acquired changes in the genes associated with the beta 

oxidation of fatty acids in their evolutionary history just prior their LCAs. Whilst the remaining 

candidates did include examples of the same gene content encoded by two of the three 

DCCs and the DCCs evolving in similar functional areas, the bigger picture suggested the 

three DCC lineages had emerged independently from genetically distinct backgrounds. 

However, the candidates identified for each DCC did include multiple genes that could have 

played a role in adapting each DCC lineage to be successful within the host, with the 

preliminary functional follow up analysis on one of the candidates showing that it was 
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possibly associated with increasing intracellular survival. Given the limited evidence of either 

SNP based, gene content or functional convergence between the three DCC lineages, it 

seems unlikely that there is a single genetic state of M .abscessus that is preadapted to the 

human host. Thus, each of the three DCC lineages have evolved to encode a unique 

combination of virulence determinants that provided an advantage in the CF lung, resulting in 

their emergence as the most prevalent lineages in the CF community. The fact that this has 

happened independently on different genetic backgrounds using different gene combinations 

suggests that the drive for this emergence is a change in the host niche, rather than the 

pathogen, and the obvious candidate for this is the increased numbers of CF patients 

surviving for much longer, significantly increasing the available niche for the DCCs to expand 

into. 

 

Significantly more work is required to understand whether the same genetic or functional 

factors drove the emergence of the DCC lineages as well as the smaller significantly densely 

clustered lineages responsible for the majority of MABSC infections in the CF community. 

The analysis needs to be performed comparing all the significantly densely clustered 

lineages to the genetically distinct lineages. Experimental and bioinformatics analysis on the 

most promising candidates, such as the role of the beta oxidation of fatty acid pathways in all 

the DCCs, the use of BCAA by DCC1 and the ubiquinone biosynthesis operon encoded by 

DCC1 and DCC2 is required, as is further analysis into the role dpnM is playing in DCC3. As 

novel tools are developed it may be possible to address this question in a different way and 

come to more clear conclusions that will enhance the understanding of both how the most 

prevalent lineages of the MABSC have emerged as well as highlight the key areas in which 

the MABSC is adapting to become a more efficient opportunistic pathogens. 
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3. Genetic changes driving the continuing expansion of the 

recently emerged and more virulent Mycobacterium 
abscessus species complex lineages 

 

Statement of contribution: I performed all the bioinformatics analysis reported in this chapter. 

The project was developed and supervised by Julian Parkhill and Andres Floto. Julian 

Parkhill, Andres Floto, Simon Harris and Josephine Bryant contributed to the interpretation of 

the results.  
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3.1 Introduction 

The MABSC global population structure showed that the majority of MABSC infections in the 

CF community were caused by a few lineages which had emerged recently and spread 

widely (73). Molecular phenotyping showed that these recently expanded and widely 

disseminated lineages (referred to as ‘clustered’ lineages) were more virulent than isolates 

from genetically distinct backgrounds which suggested that they had adapted to the CF lung 

(73). In chapter 2 the genetic changes that occurred prior to the clonal expansion of the three 

most prevalent MABSC lineages, the DCCs, were examined and it was shown that no single 

genetic factor had predisposed the DCCs to become the most prevalent in the CF 

community. The aim of this chapter was to investigate the genetic changes that occurred 

during the clonal expansion of the recently emerged and expanding lineages. To increase 

the signal available, given the small number of SNPs observed during the clonal expansion 

of the clustered lineages and because the observation that these lineages had increased 

virulence was determined by comparing clustered vs unclustered lineages, this analysis 

investigated the changes that occurred during the clonal expansion of all the recently 

emerged clustered lineages (73).  

 

By investigating the changes occurring during the clonal expansion of the clustered lineages 

and looking for convergence occurring between the lineages as they have expanded and 

spread amongst the CF community, genes associated with the ongoing adaptation and 

spread of these lineages could be identified. Given that the clustered lineages have been 

shown to be more virulent and to be capable of indirect person to person transmission, the 

genes under positive selection could be associated with these characteristics, which 

currently are poorly understood (70, 73, 119).  

 

3.2 Methods 

3.2.1 Mapping, variant calling and phylogenetic analysis 

The single isolate per patient dataset described in section 7.1.1.1 supplemented with 29 

publicly available isolates was used in this analysis. Initially, using the mapping, variant 

calling and phylogenetic methods described in sections 7.3, 7.4 and 7.5, phylogenetic trees 

for each subspecies were inferred from the variable site alignments generated after mapping 

the 555 isolates to their subspecies reference genomes (Table 15) in order to increase the 

mapping resolution whilst maintaining the ability to detect convergence between clustered 
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lineages. However, in order to increase the power to detect convergence between clustered 

lineages from different subspecies the 152 M. a. massiliense subspecies isolates and 32 M. 

a. bolletii isolates were also mapped to the M. a. abscessus ATCC19977 reference genome, 

using the methods described previously. 

3.2.2 Phylogenetic Clustering  

TreeGubbins (developed by Simon Harris, for further details see section 7.5) was used to 

identify significantly dense nodes within the phylogenies (73). All the descendants of a 

significantly dense node were classified as clustered isolates. Isolates which did not fall 

within a cluster were classified as unclustered. Only clusters consisting of at least five 

isolates, to increase power, and with isolates from multiple locations, to rule out all isolates 

from a cluster that were potentially acquired from the same environmental source, were 

investigated in this analysis. 

3.2.3 Identifying genes under positive selection 

By mapping the SNPs back onto each of the phylogenies, using an inhouse script 

(developed by Simon Harris, for further details see section 7.4), the position and effect 

(synonymous, nonsynonymous, nonsense, intergenic) of each variant predicted to have 

occurred between the reconstructed ancestors of each node were identified. The SNPs of 

interest in this analysis were those that were accumulated i) on the branches after the clonal 

expansion of each clustered lineage and ii) that had occurred between nodes that had 

generated multiple progeny (i.e terminal branch SNPs were removed). Terminal branch 

SNPs were removed as the aim of this analysis was to detect genes under selection during 

the clonal expansion of the clustered lineages and it could be argued that only for the 

variants that occur between nodes that go on to produce multiple progeny is there evidence 

to show that they have contributed to the continuing expansion of the clustered lineages. 

 

To identify genes under positive selection SNPs potentially acquired via recombination were 

required to be removed. Consequently, for each branch, SNPs were discounted if three or 

more had occurred within an 1000bp window. The remaining variants were then summed to 

determine the number of nonsynonymous, nonsense and synonymous SNPs accumulated 

by each gene on the branches within the clustered lineages. Genes which had accumulated 

a greater number of nonsynonymous SNPs than would have been expected by chance were 

determined using a method based upon Ding et al’s (2008) ‘burden of mutation’ approach as 

described in section 7.11 (295).  
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3.2.4 Candidate genes follow up analysis 

The annotations for candidate genes identified through this analysis were enhanced by 

searches against the Pfam (v.31.0) and InterPro (v.68.0) databases (224). The orthogroup 

catalogue developed by McGuire et al. (2012), was used to identify if any of the candidates 

genes were orthologous to genes encoded by M. tuberculosis H37Rv (230). Phage regions 

within the M. a. massiliense CIP108297 and M. a. bolletii BD reference genomes were 

detected using PHASTER (227, 228).  

 

All the isolates, excluding the publicly available isolates, were de novo assembled and 

annotated as described in sections 7.6 and 7.7. An in silico PCR approach, applied using an 

inhouse script (developed by Simon Harris), was used to determine the presence or absence 

of the operon believed to be controlled by one of the candidate genes in the assemblies of all 

the isolates. Ten mismatches were permitted between the 81bp primers designed to match 

the start and end of the region of interest. In order to identify the presence of other proteins in 

the same family as the candidate genes, the amino acid sequences for all the CDSs of each 

isolate were extracted and each CDS was searched against the Pfam-A (v.3.1b2) profile 

database using Hmmer (v.1.1) (296).  

 

In some cases it was useful to perform comparisons either between the three reference 

genomes, M. a. abscessus ATCC19977, M. a. massiliense CIP108297 and M. a. bolletii BD 

or between these reference genomes and M. tuberculosis H37Rv, in order to investigate the 

level of sequence similarity and gene synteny. This was done using tblastx (v.2.2.25) and 

blastn (v2.4.0), with an e-value threshold of 0.001 and the match length required to be 

greater than 10. The results were visualized using ACT (v. 13.0.0) and EasyFig (v. 2.1.1) 

(276, 297).   
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3.3 Results 

3.3.1 Detecting the recently emerged MABSC lineages circulating in the CF community 

Phylogenetic trees were constructed for each subspecies after the 556 isolates were mapped 

to their respective subspecies reference genomes, M. a. abscessus ATCC19977, M. a. 

massiliense CIP108297 and M. a. bolletii BD. TreeGubbins was used to identify the 

significantly dense nodes within each of the subspecies phylogenies (Table 8, appendix table 

2.1, 2.2, 2.3). The descendants of the significantly dense nodes which were made up of more 

than five isolates and of isolates from more than one location were hypothesized to represent 

lineages of the MABSC which had recently emerged and spread amongst the CF community 

(Figure 24). Within M. a. abscessus, M. a. bolletii and M. a. massiliense,  11, one and eight 

recently emerged, circulating lineages were identified respectively (Figure 24). 

 

Table 8: Number of clusters detected by TreeGubbins for each subspecies phylogeny 

 M. a. abscessus M. a. bolletii M. a. massiliense 

Total number of clusters 39 5 14 

Total number of clusters of 

interest 
11 1 8 

Total number of isolates in 

clusters 
249 5 111 

Total number of unclustered 

isolates 
124 27 40 

 

 

Bryant et al. (2016) showed that the clustered lineages
6
 within the MABSC global population 

were more virulent than the unclustered lineages, which suggested that these lineages had 

an advantage over other MABSC lineages within the lung or hospital environment (73).  The 

genetic determinants which occurred before the clonal expansion of three largest clustered 

lineages were investigated in chapter 2. In this chapter the genetic changes that occurred 

during the clonal expansion of the clustered lineages were investigated to identify genes 

under positive selection as these genes could have contributed to the dominance of these 

lineages in the CF community by increasing their virulence and/or transmissibility. 

 

                                                

6 The TreeGubbins clusters determined by Bryant et al. (2016) were regenerated for this analysis. 69/525 isolates used in both 

analyses were assigned differently in the two analyses (22 were identified as clustered in this analysis but part of clusters not 

meeting the criteria of interest in Bryant et al’s analysis and 47 were found to be unclustered in this analysis and clustered in 

Bryant et al’s analysis). This is likely to be due to using different mapping programs, the addition of the publicly available 

isolates in this analysis and using different versions of TreeGubbins. 
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Figure 24: Significantly clustered lineages within the three MASBC subspecies 
phylogenies when mapped to their subspecies reference genomes 

Phylogenetic trees for each subspecies of the MABSC inferred from the variants identified 

after mapping the isolates to their corresponding reference genomes, M. a. abscessus 
ATCC19977, M. a. massiliense CIP108297, M. a. bolletii BD. The clusters identified by 

TreeGubbins are marked, along with whether they consisted of isolates from a single country 

or international. Clusters which consisted of isolates from only one CF centre or less than five 

isolates were not included in further analysis. 11 significant clusters were identified within the 

subspecies M. a. abscessus, eight significant clusters were identified within subspecies M. a. 
massiliense and one within subspecies M. a. bolletii.  

3.3.2 Genes under selection both within clusters and between clusters 

Once the SNP dense regions occurring independently on each branch after the LCA of the 

clustered lineages and the SNPs occurring on the terminal branches were removed, a total of 

1,287 SNPs remained on branches within the 11 M. a. abscessus clusters, 584 SNPs 
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remained on the branches within the eight M. a. massiliense clusters and 15 SNPs remained 

on the branches within the one M. a. bolletii cluster (Figure 25).  

 

 

 

Figure 25: Distribution of SNPs removed due to recombination or due to occurring on  
terminal branches when the isolates were mapped to their subspecies reference 
genomes. 

Summary of the number and type of SNPs on the branches after the clonal expansion of the 

clustered lineages when terminal branch SNPs were included (lower panel) and terminal branch 

SNPs were discounted (upper panel). The colors represent the number of SNPs removed due 

to potentially be acquired via recombination. This showed the majority of SNPs removed due to 

recombination were synonymous. These SNPs were based on the phylogenies inferred from 

the alignments generated after mapping all the isolates were mapped to their respective 

subspecies reference genomes. 

 

Within M. a. abscessus clustered lineages, 560 genes accumulated a nonsynonymous SNP, 

with the maximum number of nonsynonymous SNPs accumulated by a single gene being 

eight (Appendix table 2.4). At least one nonsynonymous SNP was gained by 227 genes 

within M. a. massiliense clustered lineages, with the maximum acquired by a single gene 

being four (Appendix table 2.6). After the clonal expansion of the M. a. bolletii clustered 

lineage the maximum number of nonsynonymous SNPs accumulated by a gene was one, 

with only eight genes accumulating at least one nonsynonymous SNP (Appendix table 2.5).   
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In total three genes were found to have accumulated a greater number of nonsynonymous 

SNPs than would have been expected by chance using a single tailed binomial test (P < 

0.01). Two genes were found to be under positive selection after the clonal expansion of M. 

a. abscessus clustered lineages, one gene after the clonal expansion of M. a. massiliense 

clustered lineages and no genes were found to have accumulated a significant number of 

nonsynonymous SNPs after the clonal expansion of the one M. a. bolletii clustered lineage 

(Table 9, for the full results see appendix table 2.7, 2.8 and 2.9). 

 

MAB_4027 accumulated seven nonsynonymous SNPs on the branches after the clonal 

expansion of M. a. abscessus cluster 1 (Table 9). Contrastingly, the five nonsynonymous 

SNPs accumulated by MAB_2292c were acquired on the branches after the clonal 

expansion of both M. a. abscessus cluster 1 and cluster 16 and similarly the two 

nonsynonymous SNPs accumulated by CIP108297_03869 (MAB_3906c) occurred on the 

branches after the clonal expansion of M. a. massiliense clusters 2 and 8 (Table 9).  This  

provided evidence that suggested that clustered lineages from differing genetic backgrounds 

were evolving in the same way.
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Table 9: Genes under selection after the clonal expansion of the clustered lineages when the isolates were mapped to their 
subspecies reference genomes 

Subsp. Locus Observed expected P-value Clusters Product Pfam InterPro 

M. 
tuberculosis 

H37Rv 
ortholog 

M. a. abscessus MAB_4027 7 0.185 1.35x10-11 1 tetR regulator 

Helix turn helix  

DNA binding 

domain 

Helix turn helix 

DNA binding 

domain, 

Tetracyclin 

repressor C-

terminal 

domain 

NA 

M. a. abscessus MAB_2292c 5 0.314 0.002 1, 16 
Hypothetical 

protein 
NA NA NA 

M. a. 

massiliense 

CIP108297_03869 

(MAB_3906c) 
2 0.013 0.002 6, 8 

Hypothetical 

protein 
NA NA NA 
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All the genes that accumulated a significant number of nonsynonymous SNPs on the 

branches after the clonal expansion of the clustered lineages were present in each of the 

subspecies reference genomes. However, whilst there was evidence of overlap between 

different clustered lineages of the same subspecies, there was no overlap between the 

significant genes identified between the subspecies and nor were nonsynonymous SNPs 

accumulated by these genes on the branches after the clonal expansion of the lineages in 

other subspecies. Consequently, given the small number of candidate genes identified, the 

isolates were all mapped to the M. a. abscessus ATCC19977 reference genome in an 

attempt to increase the power to detect changes between clustered lineages in different 

subspecies. 

3.3.3 Parallel evolution not detected between clustered lineages from different 

subspecies 

TreeGubbins was used to identify the significantly clustered lineages from the phylogenies 

constructed from the variant positions extracted from the alignments produced from mapping 

the 152 M. a. massiliense and 32 M. a. bolletii isolates to M. a. abscessus ATCC19977 

reference genome. One clustered lineage consisting of greater than five isolates and isolates 

from more than one location was identified within the M. a. bolletii subspecies phylogeny, 

whilst nine were identified within the M. a. massiliense subspecies phylogeny (Table 10, 

Figure 26, appendix table 2.2, 2.3).  

 

Table 10: TreeGubbins clusters detected within the phylogenies for each subspecies 
when all isolates were mapped to M. a. abscessus ATCC19977 
 

 M. a. abscessus M. a.bolletii M. a. massiliense 

Number of clusters 39 5 11 

Number of clusters of 

interest 
11 1 9 

Number of isolates in 

clusters 
249 5 113 

Number of unclustered 

isolates 
124 27 38 
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Figure 26:Phylogenetic trees for each subspecies of the MABSC inferred from the 
variants identified after mapping all the isolates to the M. a. abscessus ATCC19977 
reference genome. 

The metadata columns represent the TreeGubbins clusters and whether they consist of isolates 
from a single country or international. Clusters which consisted of isolates from only one CF 
centre or less than 5 isolates were not included in further analysis. 11 clusters were identified 
within M. a. abscessus, nine within subspecies M. a. massiliense and one within subspecies M. 
a. bolletii. 

 

In total 623 SNPs were accumulated on the branches after the clonal expansion of the nine 

M. a. massiliense clustered lineages when SNP dense regions and terminal branch SNPs 

were discounted (Figure 27) (appendix table 2.10). Only 11 SNPs were identified on the 

branches after the clonal expansion of the M. a. bolletii cluster when terminal branch SNPs 

and SNP dense regions were removed (Figure 27) (Appendix table 2.10). These were 

combined with the 1287 SNPs observed on the branches after the clonal expansion of the M. 

a. abscessus clustered lineages. Nonsynonymous SNPs were acquired by 820 genes, with 

the maximum number of nonsynonymous SNPs gained by a gene being 10 (appendix table 

2.10, 2.11).  
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Figure 27: Bar charts summarizing the impact on the SNP count caused by removing 
recombination and removing SNPs on terminal branches. 

Summary of the number and type of SNPs on the branches after the clonal expansion of the 
clustered lineages when terminal branch SNPs were included (lower panel) and terminal branch 
SNPs were discounted (upper panel). The colors represent the number of SNPs removed due 
to potentially be acquired via recombination. This showed the majority of SNPs removed due to 
recombination were synonymous. These SNPs were based on the phylogenies inferred from 
the alignments generated after mapping all the isolates were mapped to the M. a. abscessus 
ATCC1977 reference genome.  

 

 

A single tail binomial test found only one gene had accumulated more nonsynonymous SNPs 

than would have been expected by chance (P < 0.01) (appendix table 2.11). Similarly to the 

previous analysis, MAB_4027 accumulated a significant number of nonsynonymous SNPs, 

seven, all within M. a. abscessus cluster 1 (p-value 2.96X10-06, appendix table 2.11). Given 

that no new candidates were identified through mapping the isolates to the same reference 

genome, the three candidates identified from mapping the isolates to the subspecies 

reference genomes were analysed further.   
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3.3.4 Regulator of a mammalian cell entry operon under selection in M. a. abscessus 

cluster 1 

The only candidate gene identified for M. a. massiliense clustered lineages was 

CIP108297_03869 which accumulated two nonsynonymous SNPs on branches within M. a. 

massiliense clusters 6 and 8 (Figure 28), with the two branches having three descendants 

each. CIP108297_03869 consists of 123 nucleotides (41 amino acids) and encoded a 

hypothetical protein. No conserved domains were detected within the gene when it was 

compared against the Pfam and InterPro databases. CIP108297_03869 was flanked 

upstream by a hypothetical protein and downstream by a luxR family regulator. 

 

Given the short length of the gene and lack of conserved domains, the possibility that the 

gene had been disrupted by a result of a miss-assembly or by a contig break was 

investigated. The 88 contigs that made up the M. a. massiliense CIP108297 reference 

genome were re-ordered to follow the order of the M. a. abscessus ATCC19977 reference 

genome for this analysis and the re-ordered contigs were re-annotated using Prokka. Whilst 

CIP108297_03896 was found not to be  annotated as a CDS in the original M. a. massiliense 

CIP108297 reference genome, nor did a contig break occur where CIP108297_03896 was 

predicted to be encoded by Prokka. Interestingly, a CDS was predicted at this loci within M. 

a. abscessus ATCC19977 (Appendix Figure 2.1). However, the equivalent gene in M. a. 

abscessus ATCC19977, MAB_3906c, was found to be significantly longer, consisting of 77 

as opposed to 41 amino acids. By looking at the available transcription start sites, codon 

specific GC content and ribosomal binding sites the start codon of MAB_3906c was 

determined to be accurate and thus the start of the gene in M. a. massiliense 

CIP108297_03896 appeared to have been deleted. Using the coverage data of the 152 M. a. 

massiliense isolates mapped to M. a. abscessus ATCC19977, the start of MAB_3906c was 

found to have been deleted in 133 of the 152 isolates. The 17 isolates that make up M. a. 

massiliense cluster 7 and 2 unclustered isolates encoded a full length version of this gene. 
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Figure 28: Distribution of the nonsynonymous SNPs accumulated by CIP108297_03869 
across the M. a. massiliense subspecies phylogeny 

The metadata column indicates the two clustered lineages, 6 and 8, that accumulated five 
nonsynonymous SNPs (red lines) within CIP108297_03869 during their clonal expansion. The 
phylogeny and clusters used in this figure were those generated after mapping M. a. massiliense 
isolates to M. a. massilinese CIP108297. 
 

The remaining two candidates both accumulated a significant number of nonsynonymous 

SNPs after the clonal expansion of M. a. abscessus clustered lineages. MAB_2292c 

accumulated five nonsynonymous SNPs, four on branches within M. a. abscessus cluster 1 

and one on a branch within M. a. abscessus cluster 16 (Figure 29). These branches had 10 

descendant isolates. MAB_2292c, encodes a hypothetical protein, with no conserved 

domains detected when the amino acid sequence was compared against the Pfam and 

InterPro databases, whist it was also not found to have an ortholog within M. tuberculosis 

H37Rv (230). The gene is 1121 nucleotides in length (374 amino acids) and is flanked 

upstream by a hypothetical protein and downstream by a MarR family regulator (Figure 29).  
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MAB_4027 accumulated seven nonsynonymous SNPs on seven branches within M. a. 

abscessus cluster 1, with 36 descendant isolates (Figure 30). MAB_4027 encodes a tetR 

regulator, with the searches of the amino acid sequence against the Pfam and InterPro 

databases showing a helix-turn-helix DNA binding domain was encoded by amino acids 27 

to 73 and a C-terminal ligand binding domain was encoded by amino acids 102 to 183. Five 

of the seven nonsynonymous SNPs fell within the C-terminal ligand binding domain. 

MAB_4027 was, similarly to MAB_2292c, not found to be orthologous to any genes in M. 

tuberculosis H37Rv (230). Directly downstream of MAB_4027 two yrbE family genes were 

encoded (MAB_4028, MAB_4029) followed by six mce genes (MAB_4030-MAB_4035) and 

two hypothetical proteins (MAB_4036, MAB_3037) (Figure 30). No conserved domains were 

 
Figure 29: Distribution of the five nonsynonymous SNPs accumulated within 
MAB_2292c 

Five nonsynonymous SNPs were accumulated within MAB_2292c during the clonal expansion 
of M. a. abscessus cluster 1 (DCC1) and M. a. abscessus cluster 16. The function of 
MAB_2292c  is unclear with no conserved domains detected within the gene. MAB_2292c was 
flanked by a tetR regulator, a hypothetical protein and marR regulator. These failed to provide 
further insight into the function of MAB_2292c. 
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detected to be encoded by the two hypothetical proteins when they were compared against 

the Pfam and InterPro databases. This sequence of genes is consistent with that of an mce 

operon, which are key virulence factors in M. tuberculosis H37Rv (259).  

 

 

 
 

Figure 30: A regulator of an mce operon accumulated a significant number of 
nonsynonymous SNPs during the clonal expansion of M. a. abscessus cluster 1 (DCC1) 

The maximum likelihood phylogenetic tree of the M. a. abscessus subspecies with the metadata 
aligned representing the seven SNPs accumulated by the tetR regulator encoded by 
MAB_4027. The tetR family regulator was encoded directly upstream of a complete mce operon.  
Five of the seven nonsynonymous SNPs were acquired within the C-terminal ligand domain, 
which was predicted to be encoded by amino acids 102-183. 
 

As MAB_4027 could potentially be regulating this mce operon, the operon was compared 

against the four well characterized and virulence-associated mce operons encoded by M. 

tuberculosis H37Rv. The tblastx comparisons between the four mce operons and the mce 

operon being investigated here showed that none of the mce operons shared complete 

synteny (Figure 31) and that, whilst there was some sequence conservation between the 

yrbE genes, the level of AAI between the mce proteins was minimal and there was no AAI 

between the putative regulator (MAB_4027) of the candidate mce operon and the regulators 

of the three M. tuberculosis H37Rv mce operons which encode a regulator directly upstream 
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of the eight conserved mce operon genes. In fact only the mce4 operon encoded by M. 

tuberculosis H37Rv was orthologous to an mce operon encoded by M. a. abscessus 

ATCC19977 (Appendix Figure 2.2). 

 

 
Figure 31:mce operon under the control of MAB_4027 does not share complete gene 
synteny with any of the four mce operons encoded by M. tuberculosis H37Rv 

Tblastx comparisons between the mce1 (A), mce2 (B), mce3 (C) and mce4 (D) operons 
encoded by M. tuberculosis H37Rv and the mce operon under the control of the tetR regulator, 
MAB_4027. The maximum e-value permitted was 0.001, the match length had to be at least 
25bps and have at least 30% identity. No homology was detected between MAB_4027 and the 
regulators of the mce operons in M. tuberculosis and nor did the mce operon share complete 
gene synteny with any of the four mce operons encoded by M. tuberculosis. 

 

 

Using an in silico PCR approach, the presence and absence of this mce operon across the 

MABSC was investigated to see whether it was unique to M. a. abscessus cluster 1, 

although this was unlikely given the regulator was present in each of the subspecies 

reference genomes. The mce operon was found to be encoded by 505 (96%) of the 525 
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isolates7 (Figure 32). The mce operon was lost ancestrally once before the clonal expansion 

of M. a. massiliense clusters 5 and 7 and sporadically in seven further isolates. 

 

3.3.5 MABSC clustered and unclustered lineages on average encode the same number 

of mce operons 

The number of mce operons encoded by species, including in a previous analysis of the 

MABSC, has also been associated with virulence, although this is debated (72, 259, 298). 

Therefore, given that clustered lineages were found to be more virulent than unclustered 

lineages and that a regulator of an mce operon was found to be under selection during the 

clonal expansion of M. a. abscessus cluster 1 (DCC1), the number of mce operons encoded 

by all the isolates in the MABSC was investigated to see if the clustered lineages encoded a 

significantly different number of mce operons to unclustered lineages (73). 

 

To identify whether a different number of mce operons was encoded by the clustered and 

unclustered lineages, a hmmer search for the conserved domains (yrbE: PF02405, mce: 

PF02470 and PF11887) characteristic of mce operon genes was performed. An mce operon 

was classified as the presence of two yrbE domain containing genes followed by six mce 

domain domaining genes, with one gap permitted. This showed that on average each isolate 

encoded 6.01 mce operons, with clustered lineages encoding on average 6.23 mce operons 

and unclustered isolates encoding on average 6.06 mce operons, suggesting that there was 

no significant difference between the number of mce operons encoded by clustered and 

unclustered lineages8 (Figure 32). 

 

3.3.6 SNP dense regions are mainly associated with mobile elements 

Only three genes were identified as under positive selection on the branches after the clonal 

expansion of the clustered lineages. In order to identify whether genes had gained a 

significant number of nonsynonymous SNPs the SNPs acquired via recombination had to be 

removed. However, these regions could also be contributing to the expansion of these 

lineages by increasing their virulence and/or transmissibility.  

 

                                                
7 The publicly available isolates were not included in this part of the analysis. 
8 These were based on the clusters identified after all the isolates were mapped to the M. a. 
abscessus ATCC19977 reference genome. 
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Figure 32: No significant difference between the number of mce operons encoded by 
clustered and unclustered lineages 

The metadata aligned to the midpoint rooted maximum likelihood phyogenies of each 
subspecies represent 1) the TreeGubbins clusters, 2) whether the clusters have spread within 
a country or internationally, 3) the presence or absence of mce operon regulated by MAB_4027 
and 4) the number of mce operons predicted to be encoded by each isolate. The whites spaces 
in the 3 and 4 metadata column represent the publicly available isolates that were not included 
in this part of the analysis. 
 

 

When the isolates were mapped to their respective reference genomes and terminal branch 

SNPs were discounted, 186 SNP dense regions consisting of 3,251 SNPs were identified 

after the clonal expansion of M. a. abscessus clustered lineages. 104 SNP dense regions 

consisting of 3,269 SNPs were identified after the clonal expansion of the M. a. massiliense 

clustered lineages and 6 SNP dense regions incorporating 19 SNPs were identified after the 

clonal expansion of the M. a. bolletii cluster. Significantly more synonymous SNPs were 
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removed as being due to recombination than nonsynonymous or intergenic SNPs, with 

77.6%, 75.1% and 73.1%  of the SNPs removed from M. a. abscessus clustered lineages, M. 

a. massiliense clustered lineages and M. a. bolletii clustered lineages respectively being 

synonymous (Figure 25, 27).   

 

To identify whether the majority of these SNPs were acquired in known mobile regions, as 

would be expected, PHASTER was used to identify the potential phage regions within M. a. 

massiliense CIP108297 reference genome and M. a. bolletii BD reference genomes (227, 

228). Three possible phage regions were predicted within M. a. massiliense CIP108297, two 

complete and one incomplete were detected, whilst one phage region with questionable 

completeness was detected within M. a. bolletii BD (Table 11). The mobile regions encoded 

by M. a. abscessus ATCC19977 have been described previously (82). 

 

Table 11: Phage regions detected by PHASTER 

Subspecies Region length Region completeness score 

M. a. massiliense 

CIP108297 
62.4Kb 1789906-1852400 intact 150 

M. a. massiliense 

CIP108297 
18.3Kb 3654520-3672829 incomplete 60 

M. a. massiliense 

CIP108297 
44.6Kb 3875981-3920589 intact 100 

M. a. bolletii BD 71.1Kb 4299517-4370677 questionable 80 

 

 

For each subspecies, 85%, 72%, and 100% of the genes encoded within the SNP dense 

regions predicted for M. a. abscessus, M. a. massiliense and M. a. bolletii respectively were 

associated with mobile elements such as phage or integrated plasmids (Figure 33, A, B)  

(appendix table 2.12, 2.13, 2.14) (82). Similarly when all the isolates were mapped to M. a. 

abscessus ATCC19977, a combined total of 237 SNP dense regions were detected, 

incorporating 3,646 SNPs of which 76.6% were synonymous. 82.6% of the SNP dense 

regions (Figure 33, C) were associated with phage or other mobile genetic elements 

described in (82) (appendix table 2.14). 

 

Synonymous SNPs also dominated amongst the remaining regions not associated with 

phage or other mobile elements, with 53% of the 104 SNPs remaining in M. a. abscessus 

clustered lineages being synonymous and 76.6% of 2,011 SNPs remaining in M. a. 
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massiliense clustered lineages. When all the isolates were mapped to M. a. abscessus 

ATCC19977 a similar pattern was observed with 67.9% of the 274 SNPs not associated with 

predicted mobile elements being synonymous.  

 

 

 
 

Figure 33: The majority of SNPs removed due to potentially being acquired via 
recombination are associated with mobile elements 

Proportion of  the SNP dense regions that were associated with mobile elements when A) all M. 
a. abscessus isolates mapped to M. a. abscessus ATCC1997 B) all M. a. massiliense isolates 
mapped to M. a. massiliense CIP108297 and C) all the isolates were mapped to M. a. abscessus 
ATCC19977. A figure was not included for M. a. bolletii as 100% of the SNP dense regions 
identified were associated with mobile elements. 

 

3.4 Discussion 

The MABSC global population structure consists of multiple clades of significantly densely 

clustered isolates, suggestive of recently emerged lineages that have spread rapidly to 

multiple locations (73). These lineages are responsible for the majority of infections caused 

by the MABSC in people with CF. Molecular phenotyping showed that these lineages are 

more virulent than unclustered isolates, which led to the hypothesis that these clustered 

lineages had undergone multiple rounds of evolution within CF lung, enabling them to adapt 

to become successful lung pathogens and thrive as a CF pathogen (73). In this chapter, the 

aim was to investigate which genes were under positive selection after the clonal expansion 

of the clustered lineages, based on identifying SNPs that had occurred in the recent 

ancestral history of the clustered lineages and which had generated multiple progeny, 

indicating the continuing success of the lineage. The continuing expansion of the clustered 

lineages is hypothesized to be being driven by factors such as virulence and/or 

transmissibility.  



3. Continuing expansion of the clustered lineages  

 119 

 

Three candidate genes, involving SNPs accumulated after the clonal expansion of 4 

lineages, were identified once SNPs on the terminal branches or gained via recombination 

events were removed (Table 9, Figure 28, 29, 30). For two of the three candidate genes, 

MAB_2292c and CIP108297_03869, nonsynonymous SNPs were accumulated in more than 

one cluster, suggesting that clustered lineages from genetically distinct backgrounds are 

evolving in the same way (Figure 28, 29). Contrastingly, MAB_4027, only accumulated SNPs 

on the branches after the clonal expansion of M. a. abscessus cluster 1, which could imply 

that the effect of the mutations acquired by this gene is only beneficial in the context of the 

M. a. abscessus cluster 1 genetic background. No convergence was seen between clustered 

lineages from different subspecies, even when the power to detect core genome SNPs was 

increased by mapping all the isolates to the same reference genome. However, given only 

one candidate was identified for M. a. massiliense clustered lineages and none were 

identified for M. a. bolletii clustered lineages and that the maximum number of 

nonsynonymous SNPs acquired by a single gene were four and one respectively in these 

subspecies, it suggests that a lack of signal is responsible as opposed to this being evidence 

that lineages from different subspecies of the MABSC are adapting in different ways to the 

CF environment. 

 

Of the three candidate genes only one, MAB_4027, had an assigned annotation, with no 

conserved domains detected within either of the other two candidate genes, MAB_2292c and 

CIP108297_03869 (Table 9). The lack of any conserved domains in these genes meant it 

was not possible to determine the function of these genes without experimental analysis. The 

genes flanking MAB_2292c and CIP108297_03869 also failed to shed light on the function of 

these genes, with both genes flanked downstream by a regulator and upstream by 

hypothetical proteins and not forming part of a clearly defined operon from which it may have 

been possible to infer a potential function (Figure 28, 29).  

 

Furthermore, in the case of CIP108297_03869 it is possible that this gene has already lost its 

function. A blastn comparison showed that CIP108297_03869 had significant sequence 

homology to the end of MAB_3906c encoded by M. a. abscessus ATCC19977, suggesting 

that the start of CIP108297_03869 had been deleted (appendix figure 2.1). Analysis of read 

coverage confirmed the deletion, with the loss of the start of this gene occurring in 133 of the 

152 M. a. massiliense isolates. All the isolates within M. a. massiliense cluster 79 (n=17), as 

                                                
9 Based on the clusters identified by TreeGubbins when all the isolates were mapped to their own subspecies reference 
genomes.  
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well as two unclustered isolates, encoded a full length version of this gene. This shows that 

the majority of M. a. massiliense isolates encode a shorter version of this gene, however, it 

remains unclear firstly whether the shorter version of the gene is functional and if so what 

impact the nonsynonymous SNPs would have. It should also be noted that given the short 

length of the gene and the small number of nonsynonymous SNPs accumulated, this 

candidate gene could also be a false positive. 

 

MAB_4027 accumulated the greatest number of nonsynonymous SNPs involving the most 

progeny. This gene encodes a TetR repressor and is located upstream of an mce operon 

which it is likely to be regulating (Figure 30). Mce operons are known to be critical to the 

virulence of M. tuberculosis, with the four mce operons encoded by this organism associated 

with its ability to invade mammalian cells, prevent phagosome maturation and use 

cholesterol as a sole carbon source (272, 290, 299, 300). However, tblastx comparisons 

showed that there was no orthology between the four mce operons encoded by M. 

tuberculosis H37Rv and the mce operon possibly under the control of MAB_4027 (Figure 

31). Consequently, it is not possible to definitively say that this mce operon is performing a 

similar virulence associated function in M. abscessus as the mce operons encoded by M. 

tuberculosis. However, homologs of mce operons are present in all mycobacteria as well as 

five other genera of actinomycetes, several species of which inhabit an environment much 

more similar to that of the natural niche inhabited by the MABSC (259). In other soil dwelling 

actinomycetes mce operons have been associated with the import of sterols, virulence 

against amoebae, changes in biofilm formation and colonization of plant roots (301, 302). 

Thus, it seems more likely that this mce operon is performing a function beneficial in the 

MABSC’s original niche, potentially similar to those described for other soil dwelling 

actinomycetes, and that a change in regulation of this function is contributing to the ongoing 

success of M. a. abscessus cluster 1.  

 

Three of the four M. tuberculosis mce operons encode repressors directly upstream of their 

corresponding mce operons which provides further support to suggest that MAB_4027 is 

regulating the mce operon located just downstream of it (177, 300, 303) (Figure 31). The 

distribution of the nonsynonymous SNPs accumulated by MAB_4027, with five of the seven 

occurring in the ligand binding domain, suggests that changes in ligand binding affinity are 

being selected for, although it is not possible to determine without experimental analysis 

whether these changes result in increased or decreased expression of the operon. There 

have been no reports in the literature, to my knowledge, of mutations occurring naturally in 

the repressors of mce operons, with analyses into the function of the regulators of mce 
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operons being carried out using artificial disruption of these genes (300, 303, 304). However, 

naturally occurring mutations in mce genes were identified by Tettelin et al. (2014) when they 

compared representatives of the Seattle, Papworth and Brazilian (not CF associated) 

outbreak lineages to isolates not associated with outbreaks (91). Representatives from these 

outbreaks fall within or close to M. a. massiliense cluster 1 (DCC3) which potentially 

suggests that mce operons are playing a role in the adaptation of M. a. massiliense cluster 1, 

although, of the 17 SNPs they observed in mce genes only two were nonsynonymous which 

potentially explains why these were not detected in this analysis (91). Interestingly, mce 

genes have also been associated with the adaptation of the modern Beijing strains of M. 

tuberculosis, which have been shown to be more virulent than their ancestral sub lineage 

and have also spread globally (305). 

 

Given that this analysis showed that the change in regulation of an mce operon was 

potentially associated with the success of one of the most prevalent MABSC lineages and 

that the number of mce operons has previously been noted to differ between MABSC 

lineages and that differences in the number of mce operons encoded by species of 

actinomycetes has in the past been tentatively associated with virulence, the number of mce 

operons encoded by the clustered and unclustered lineages were compared (72, 298). 

However, no difference was observed between the number of mce operons encoded by the 

clustered and unclustered lineages, although this was based on a conservative estimate with 

only one gene missing in the mce operon allowed (Figure 32). This analysis also doesn’t 

determine whether the mce operons are orthologous, and thus it is possible that mce 

operons are contributing to the difference in virulence of the clustered and unclustered 

lineages. On the other hand, other analyses have suggested that the number of mce operons 

is not associated with virulence and rather that niche specialization has led to the differing 

number of mce operons encoded by different species, the results of this analysis support this 

hypothesis (259, 302).  

 

Whilst potential candidates associated with the continuing adaptation of the clustered 

lineages were identified, this analysis was limited by a lack of signal detected on the 

branches after the clonal expansion of the clustered lineages. This could be due to several 

factors such as: i) not enough time having passed since the clonal expansion of the lineages 

for selection to have occurred, ii) variants in the accessory genome could have been missed 

due to not mapping to a close enough reference iii) recombination could be contributing to 

the adaptation of the clustered lineages, iv) variants that became fixed during the early 

rounds of evolution, prior to the population bottleneck, are not possible to decipher from 



3. Continuing expansion of the clustered lineages  

 122 

those that occurred prior to the LCA and thus are not detected in this analysis and v) true 

signal could have been discounted by removing the SNPs on the terminal branches  

 

Further research is required to quantify exactly what impact time is playing on the ability to 

detect whether selective pressure is acting on the branches after the clonal expansion of the 

clustered lineages. Bryant et al. dated the emergence of the three largest lineages, M. a. 

abscessus cluster 1 (DCC1), M. a. abscessus cluster 2 (DCC2) and M. a. massiliense cluster 

1 (DCC3) to be 1980, 1963 and 1972 respectively (73). This analysis has not been 

performed for the remaining clusters and thus it is unknown how recently these lineages 

emerged, although the densely clustered nature of the clades suggests it was recent, which 

could mean that not enough time has passed since the emergence of these lineages for 

selection to have occurred. The temporal dynamics of these lineages warrant further 

investigation. 

     

Another contributing factor to the lack of signal could be the loss of variants occurring in the 

accessory genome due to mapping the isolates firstly to their individual subspecies reference 

genomes and secondly to a single reference genome, M. a. abscessus ATCC19977. This 

approach was taken in order to maximize the chances of identifying genes under selection in 

the core genome and thus after the clonal expansion of multiple clusters. However, by 

mapping isolates from each cluster to a reference from within the cluster and thus increasing 

the resolution the power to detect genes under selection on multiple branches within a 

cluster may be increased. It should be noted that the M. a. abscessus ATCC19977 reference 

genome falls within M. a. abscessus cluster 1 and both M. a. abscessus candidates included 

nonsynonymous SNPs acquired within this cluster, suggesting that lack of resolution within 

the other clusters due to mapping to a genetically distant reference genome is playing a role 

in the lack of signal detected. 

 

Recombination could also be playing a role in the adaptation of the clustered lineages to 

increased virulence and transmission. The majority of SNPs removed due to potentially being 

introduced via recombination were associated with mobile elements, particularly phage 

(Figure 33). These SNPs were also predominantly synonymous (Figure 25, Figure 27), which 

was to be expected as regions of the genome that have been introduced from an external 

source have been under a differing selection pressure where in the majority of cases 

deleterious changes have had time to be purged (280). However, it is not possible to 

definitively rule out that the SNPs removed due being acquired via recombination are not 

playing a role in the increased virulence and transmissibility of the clustered lineages. The 
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focus of this analysis was on using independently acquired SNPs to identify genes 

associated with the continuing adaptation of the clustered lineages and therefore the genes 

which overlapped the SNP dense regions were not investigated further and thus warrant 

further analysis in the future.   

 

Finally, the signal was also weakened by removing the terminal branch SNPs. These were 

removed because the aim of this project was to identify genes that were driving the 

continuing expansion of the clustered lineages, and it could be argued that there is no 

evidence that the variants accumulated on the terminal branches have contributed to the 

continuing spread of the lineage as they have no descendants. Clearly this interpretation is 

biased by sampling and is also based on the assumption that the tree structure is correct. A 

way to include the terminal branch SNPs and satisfy the criteria that there is evidence that 

the acquisition of SNPs in this gene has led to the continued expansion of the lineage would 

be to investigate the genes that accumulated a significant number of nonsynonymous SNPs 

with the terminal branch SNPs included, but only investigate further those in which at least 

one variant was accumulated on the branches deeper in the clusters. This analysis should be 

expanded to include this in the future. 

3.5 Conclusions and Future Directions 

This analysis aimed to identify genes associated with the continuing expansion of the 

clustered lineages, which cause the majority of MABSC infections in the CF community and 

have been shown to be more virulent. Three candidate genes were identified with the most 

significant candidate being the finding that a regulator of an mce operon was under selection 

in one of the largest clusters that has spread globally. Whilst the functions of the other two 

candidate genes could not be determined, they provided evidence to suggest that clustered 

lineages from differing genetic backgrounds were adapting in the same way to enable their 

continued success in the CF environment. This investigation was hampered by the limited 

signal detected. Further analysis is required to address the effect time is playing on the ability 

to detect signal after the clonal expansion of the clustered lineages as well as to investigate 

the contribution of other types of variation such as indels, recombination and gene presence 

absence to the evolution of these lineages. Despite the limited signal, interesting candidates 

were identified and further analysis is required to determine their function, which in turn could 

increase our understanding of how the organisms of the MABSC are adapting to become 

more successful in lung environment. 
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4. Adaptation of the Mycobacterium abscessus species 

complex to the Cystic Fibrosis lung 

 

Statement of contribution: 

This project was supervised by Julian Parkhill and Andres Floto. I performed all the 

bioinformatics analysis reported in this chapter. RNA extraction was carried out by Daniela 

Rodriguez-Rincon. The phoPR knock-outs were generated by Juan Manuel Belardinelli. 

Julian Parkhill, Andres Floto, Mary Jackson, Josephine Bryant and Daniela Rodriguez-

Rincon, Juan Manuel Belardinelli contributed to the interpretation of these results.  
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4.1 Introduction 

People with CF have increased susceptibility to chronic pulmonary infections caused by a 

variety of bacterial, fungal and viral pathogens. The three subspecies of the MABSC are an 

emerging threat to people with CF and due to their highly antibiotic resistant nature are 

extremely difficult to treat resulting in treatment failure rates as high as 50% (55, 149, 306). 

Therefore, novel treatments are urgently needed.  

 

MABSC organisms are found in a soil and water environment and are not natural inhabitants 

of the lung, although their ability to replicate in amoebae and form biofilms on surfaces 

suggests that adaptations beneficial to survival in their original niche have contributed to their 

ability to cause opportunistic infections (92, 93, 95, 102-104). However, how the MABSC has 

specifically evolved in response to the selection pressures applied by the host within the CF 

lung environment is not well understood and a greater understanding of this would increase 

our knowledge of the pathogenesis of the MABSC, which could in turn potentially uncover 

novel drug targets.  

 

Examining the evolution of bacteria over time within its host has long been used to determine 

the genes and pathways involved in the adaptation of an opportunistic pathogen to a novel 

niche. This approach has been used extensively to examine the within patient evolution of 

other CF pathogens, including Pseudomonas aeruginosa (182, 307-309), Staphylococcus 

aureus (309, 310) and the Burkholderia cepacia species complex (40, 311, 312). In these 

analyses, parallel adaptive evolution was observed in antibiotic resistance associated genes 

as well as genes involved in bacterial membrane composition, metabolism, biofilm formation 

and regulation (308, 310, 312). Furthermore, possible novel treatments were identified, for 

example the possibility of targeting the heme utilisation pathway of P. aeruginosa (307).  

  

Thus far applying longitudinal analysis to the MABSC has been limited by small sample sizes 

and a lack of longitudinal samples and has predominantly been undertaken with the aim of 

identifying antibiotic resistance mutations (313). Although a couple of studies have begun to 

investigate the adaptation of the MABSC to the CF lung through this method: Kreutzfeldt and 

colleagues sequenced 178 isolates obtained from 12 patients, over a period of 12 years. 

However, they only examined the genetic changes over time with regards to adaption to the 

lung in one patient. Through this they identified nonsynonymous mutations in genes involved 

in transcriptional regulation and metabolism and most interestingly the acquisition of two 

independent nonsynonymous mutations in the histidine kinase encoding phoR gene, which is 
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part of the PhoPR two component system (TCS) (183). The PhoPR TCS regulates a myriad 

of genes involved in complex lipid biosynthesis and virulence in M. tuberculosis and is 

believed to be critical to its pathogenicity (314, 315). Davidson and colleagues in their 

analysis of the MABSC global population structure also sequenced multiple isolates per 

patient and examined the within host evolution, however, their analysis of the longitudinal 

samples only extended as far as to comment on the level of within host diversity and did not 

extend to identifying parallel evolution between patients in order to identify genes associated 

with the adaptation to the lung (89). 

  

Consequently, given that the detection of parallel evolution in multiple patients has been 

shown to enable the discovery of genes and pathways associated with the adaptation of 

saprophytic bacteria to a human host and that this approach has yet to be applied to the 

MABSC, the aim of this project was to detect parallel evolution between patients infected 

with MABSC infections in order to provide insights that could potentially increase our 

knowledge of the pathogenesis of the MABSC, identify novel drug targets and inform 

intervention strategies. 

4.2 Materials and Methods 

4.2.1 Within host evolution dataset 

For 201 patients from which samples were collected for MABSC global collection more than 

one isolate was obtained. These isolates collected from multiple patients could either 

represent co-infection with genetically diverse lineages, a transmitted lineage or the within 

host evolution of a single lineage. In order to determine the isolates in which the genetic 

changes would have occurred under selection pressure from the host, phylogenetic analysis 

was performed.   

4.2.2 Mapping, variant calling and de novo assembly 

All 1252 isolates in the MABSC global population dataset were mapped to M. a. abscessus 

ATCC19977 using BWA-MEM (v. 0.7.2), using the parameters described in section 7.3 

(215). Variants were called and extracted from the alignments following the methods 

described in section 7.3 and 7.4.  De novo assembly and annotation for each isolates was 

carried out as described in section 7.6 and 7.7. 
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4.2.3  Phylogenetic analysis 

To ensure that the variants being counted were only those that had occurred under within 

host selection pressure, it was necessary to determine and remove isolates from patients for 

which the last common ancestor was that of another patients and not another isolate from 

the same patient. To achieve this a maximum likelihood phylogenetic tree was inferred, using 

RAxML (v.8.2.8), from an alignment of the variant cites. From this phylogeny, only isolates 

from a patient that either formed a monophyletic clade (Appendix Figure 3.1) or a 

paraphyletic clade in which another patients isolates were nested within the diversity of the 

patient of interest (Appendix Figure 3.1) were included in the longitudinal dataset. This 

resulted in a final longitudinal dataset of 810 isolates obtained from 182 patients (Appendix 

Table 3.1). 

4.2.4 Detecting genes that accumulated a significant number of nonsynonymous SNPs 

in multiple patients 

To determine whether a gene had accumulated a greater than expected number of 

nonsynonymous or nonsense SNPs, the ‘burden of mutation’ method described by Ding et 

al. (2008) was used as described in section 7.11 (295).  For this method to work 

recombination has to be removed, this was achieved by identifying blocks of three or more 

SNPs that occurred within 1000bps of each other and then identifying if the isolates from the 

patient either accumulated all the SNPs in the possible recombination or did not accumulate 

any of the SNPS in the possible recombination. If this criteria was met, these SNPs were 

removed as potential recombination. 

4.2.5 Candidate gene follow up analysis 

The Prokka annotations of the candidate genes were enhanced by searches against the 

Pfam (v.3.1.0) and InterPro (v.68) protein databases (224, 225). Candidates possibly 

associated with phage were identified using the PHASTER database (228). Candidate genes 

orthologous to M. tuberculosis H37Rv were identified from the catalogue of  Mycobacterium 

orthologs described in (230). The functional interpretation of the candidates was also 

enhanced by pathway and functional enrichment analysis using the STRING database and 

the webtool DAVID (6.8) .   

 

For more specific analysis of the candidates, the protein sequences of some of the 

candidates were aligned to their M. tuberculosis H37Rv ortholog using muscle (v.3.8.31) 

(60). To determine if a specific domain of a gene was under selection, where enough 

nonsynonymous SNPs had been accumulated for this analysis to be possible, a permutation 
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test approach was used to generate the expected distribution of nonsynonymous SNPs 

amongst the domains, followed by a Fisher’s exact test (two tailed) to determine if there was 

a significant difference between the observed and expected distribution of nonsynonymous 

SNPs amongst the domains. A p-value of less than 0.01 was seen as significant. 

4.2.6 Generation of PhoPR knockout mutants 

The following work was performed by Juan Manuel Belardinelli. Homologous recombination 

at the PhoPR locus of M. a massiliense CIP108297 was performed using a mycobacterial 

recombinase-based system in which the recombineering genes from mycobacteriophage 

Che9c are expressed from the replicative plasmid pJV53-xylE (a derivative of the pJV53 

plasmid generated in-house in which the xylE colored marker was added to improve 

selection of transformants) under control of an acetamide-inducible promoter (316). 

Acetamide-induced M. a. massiliense CIP108297 cells harboring pJV53-xylE were electro-

transformed with approximately 300 ng of linear allelic exchange substrate consisting of the 

streptomycin-resistance cassette from pHP45Ω flanked by 1,000 bp of DNA sequence 

immediately flanking the PhoPR operon, and double-crossover mutants were isolated on Str-

containing agar. Allelic replacement leading to the complete deletion of the PhoPR locus was 

checked by PCR using a pair of primers annealing outside the linear allelic exchange 

substrate.  

4.2.7 RNA sequencing and differential expression analysis 

RNA sequencing was carried out on the illumina V4 platform to generate 75bp paired end 

reads. The reads were mapped to M. a. abscessus ATCC19977 using BWA v.0.7.112 to 

produce a bam file, with BWA also used to index the reference and align the reads (317). 

The default parameters were used apart from the quality threshold for read trimming which 

was set to 15 and the maximum insert size which was set at 510bp, the maximum fragment 

size of the sequencing library. Duplicate reads were marked using Picard (318).  

 

Gene expression values were computed from alignment of the reads to the CDSs present in 

the M. a. abscessus ATCC19977 chromosome. These were used to generate the reads 

mapping and reads per kilobase per million (RPKM) . Only reads with a mapping quality 

score of 10 were included in the count (319, 320). In order to follow a strand-specific 

approach, a read which was a true pair and which was the second of a pair was modified 

depending on which strand it mapped to. If the read met the aforementioned criteria and 

mapped to the forward strand the read was modified to map to the reverse strand, with the 

read sequence not being complemented, whilst if a read mapped to the reverse strand then 
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the read was modified to map to the forward strand with the read sequence not 

complemented.  

 

Differential expression analysis was carried out using the R package DESeq2 (321). Briefly, 

DESeq2 takes the raw count data, broken down per gene, from an RNAseq experiment and 

proceeds to correct the counts for library size and dispersion, identifying significantly 

differentially expressed genes using the Wald statistical test, which tests the null hypothesis 

that the log fold change between the gene under the two conditions is negligible (321). The 

p-values were corrected for multiple testing using the Benjamini Hochberg method. P-values 

of less than 0.01 were seen as significant. The analysis were carried out using the Deago 

pipeline (322). 
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4.3 Results 

The final longitudinal dataset consisted of 810 isolates obtained from 182 patients (Table 11). 

All three subspecies were represented, with 496 M. a. abscessus isolates sampled from 123 

patients, 86 M. a. bolletii isolates sampled from 14 patients and 228 M. a. massiliense 

isolates sampled from 46 patients. On average 4 isolates were sampled per patient. For one 

patient, SMRL_J, multiple isolates from two separate subspecies, M. a. massiliense and M. 

a. abscessus, were sampled. For three other patients, PAP_007, SMRL_AT, and PAP_019, 

the evolution of two separate M. a. massiliense lineages were examined. Overall the within 

host evolution was examined for 186 MABSC lineages.  

 

Table 11: Summary of the final within host evolution dataset 

Total number of isolates: 810 

Total number of patients: 182 

Total number of lineages following evolution of: 186 

Patients with multiple lineages: 

SMRL_J (1xmass 1xabss) 

PAP_019 (2xmass) 

SMRL_AT (2xmass) 

PAP_007 (2xmass) 

M. a. abscessus 
patients 123 

isolates 496 

M. a. bolletii 
patients 14 

isolates 86 

M. a. massiliense 
patients 46 

isolates 228 

 

 

A total 1,185 SNPs were accumulated over time within 137 patients, with no SNPs 

accumulated by lineages within 45 patients (Appendix table 3.2). Overall 682 

nonsynonymous or nonsense SNPs, 369 synonymous SNPs and 134 intergenic SNPs were 

detected (Appendix table 3.4). An average of 6.3 SNPs were accumulated per lineage per 

patient. To see if the lineages within patients were evolving in a clock like manner, a linear 
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regression plot was constructed for the 116 lineages for which the day/date/year of sampling 

was available (Appendix table 3.3). Figure 34A showed that there was a weak positive 

correlation (r2 = 0.24) between the number of SNPs accumulated and the time span of 

collection. It should be noted that this does not take into account time since infection but 

before sampling. The slope coefficient, 0.010211, represents the number of substitutions 

accumulated per day which equates to the accumulation of 3.7 substitutions per year.  

However, there was a clear outlier that accumulated significantly more SNPs than would 

have been expected and which couldn’t be explained by sampling time or recombination. 

Given that the acquisition of a hypermutator phenotype is a feature that has been associated 

with other CF pathogens and has been observed before for MABSC lineages (Josephine 

Bryant, unpublished data), the isolates associated with this patient were investigated for 

possible SNPs that could infer a hypermutator phenotype. 

4.3.1 Acquisition of a hypermutator phenotype 

One of the subclones from patient SMRL_AT stood out as having accumulated significantly 

more SNPs over time, having accumulated 135 SNPs over a time span 3 years, 11 months 

and 26 days, a 36 fold increase in the substitution rate (Figure 34A). No nonsynonymous or 

nonsense SNPs were identified in genes that could potentially confer a hypermutator 

phenotype and therefore indels were investigated to look for potential frameshift mutations. 

The deletion of the adenine at base position 77 in the endonuclease III (nth) gene 

(MAB_0418), encoding a DNA repair enzyme that excises damaged pyrimidines from double 

stranded DNA and which has been shown to confer a hypermutator phenotype in E. coli, was 

identified (323, 324). Removing this patient from the linear regression analysis resulted in a 

slight increase in the correlation coefficient (adj R2  0.43) and a slope coefficient of 0.009 

(Figure 34B), resulting in the estimated substitution rate being reduced to the accumulation 

of 3.1 SNPs per year, which overlaps with previously estimated substitution rates for this 

species (70).  

 

A hypermutator phenotype introduces many variants into the population, some of which may 

be beneficial to the organism’s survival. Therefore, in order to increase the signal and despite 

the potential for hitchhiker mutations, the lineage from the patient with the hypermutator 

phenotype was investigated, along with the lineages from the remaining patients, for 

evidence of parallel evolution occurring between patients. 
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Figure 34: MABSC can acquire a hypermutator phenotype over time within patients 

Linear regression analysis showing the number of variants accumulated within a patient plotted 
against the time span between the earliest and latest sample available for the patient (n=116). 
A) shows that whilst the majority of patients are accumulating SNPs in a clock-like manner, one 
patient (SMRL_AT) has accumulated significantly more SNPs that would have been expected 
given the time span over which the samples were collected. B) shows the affect that the removal 
of the patient that has acquired a hypermutator phenotype has on the correlation. The grey 
shaded represents the 95% confidence interval for the regression. 

 

4.3.2 MABSC lineages evolving in parallel within the CF lung in multiple patients 

A nonsynonymous or nonsense mutation was acquired by 125 of the 186 (67%) lineages 

(Appendix table 3.2). The SNPs were distributed across 461 genes (including 16s rRNA and 

23s rRNA), with 61 genes accumulating nonsynonymous or nonsense SNPs in more than 

one patient over time (Appendix table 3.4). Seventeen of the 61 genes were found to have 

accumulated a greater number of nonsynonymous or nonsense SNPs in multiple patients 

than would have been expected by chance (adjusted p-value < 0.01) (Table 12), suggesting 

that these genes were potentially involved in the adaptation of the MABSC to the CF lung 

(full results can be seen in Appendix table 3.5). In total 128 nonsynonymous or nonsense 

mutations was accumulated by the 17 candidate genes, with SNPs observed in these genes 

in 58 of the 182 patients (32%) investigated.  
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Table 12: Summary of the genes which acquired a significant number of nonsynonymous SNPs in multiple patients 

Locus Product 
M. 

tuberculosis 
locus 

Product 
No. 

Observed 
nonsyn 
SNPs 

Expected no. 
nonsyn SNPs 

No. of 
patients 

Binomial 
p-value 

Adj. 
p-vlaue 

MAB_0173 
Prokka Prenyltransferase family protein 

Rv3806c UbiA 11 0.21 11 0 0 Pfam UbiA 
InterPro UbiA 

MAB_2372 
Prokka Probable GTP-binding protein 

EngA Rv1713 EngA 12 0.314 10 0 0 Pfam 
InterPro 

MAB_3539 
Prokka Putative transcriptional regulator, 

WhiB family Rv3219 WhiB1 7 0.064 7 6.22E-15 1.02E-11 Pfam 
InterPro 

MAB_1881c 
Prokka Putative transcriptional regulator, TetR 

family NA NA 8 0.157 7 1.35E-13 
 

1.66E-10 
 Pfam 

InterPro 

MAB_0674 
Prokka 

Putative sensor histidine kinase PhoR Rv0758 PhoR 20 2.693 15 1.28E-12 1.26E-09 Pfam 
InterPro 

MAB_0416c 
Prokka 

Putative CRP transcriptional regulator Rv3676 cAMP receptor binding protein 7 0.148 7 4.90E-12 4.02E-09 Pfam 
InterPro 

MAB_3029 
Prokka 

Iron-dependent repressor IdeR Rv2711 IdeR 7 0.159 4 8.64E-12 6.07E-09 Pfam 
InterPro 

MAB_1068c 

Prokka Conserved hypothetical protein 

Rv0966c 

Tuberculist Conserved 
hypothetical 

6 0.141 5 1.87E-10 1.15E-07 Pfam DUF1707 – probably membrane 
associated Pfam DUF1707 

InterPro DUF1707 – probably membrane 
associated InterPro DUF1707 

MAB_0115c 
Prokka Conserved hypothetical protein 

Rv3849 EspR 5 0.096 5 9.57E-10 5.23E-07 Pfam No domains predicted 

InterPro One unintegrated signature 

MAB_0189c 

Prokka Probable arabinosyltransferase C 

Rv3793 EmbC 15 2.806 13 4.50-08 2.21E-05 
 

Pfam 
Mycobacterial cell wall arabinan 

syntehesis protein/ EmbC C-terminal 
domain 

InterPro 

Arabinofuranosyltransferase, N-
terminal domain, 

Arabinosyltransferase, C-terminal 
domain 



4. Adaptation to the CF lung  

 

 

136 

 

MAB_3817c 
Prokka 

50S ribosomal protein L2 Rv0704 50S ribosomal protein L2 5 0.189 5 5.22E-08 2.33E-05 Pfam 
InterPro 

MAB_3036c 
 
 

Prokka Conserved hypothetical protein 
Rv2718c 

 
NrdR 

 

4 
 
 

0.106 
 
 

3 
 
 

1.01E-07 
 
 

4.13E-05 
 
 

Pfam ATP cone domain – regulatory domain 

InterPro ATP cone domain, ribonucleotide 
reductase regulator (NrdR-like) 

MAB_4695c 
Prokka 

Putative 
glycosyltransferase/rhamnosyltransfer

ase Rv1524/Rv1526c NA 
 5 0.277 5 4.88E-07 0.0002 

Pfam No domains predicted 
InterPro Glycosyltransferase signatures 

MAB_1483 
 
 

Prokka Conserved hypothetical protein 

Rv1339 
 
 

tuberculist 
Conserved 
hypothetical 

protein 
4 
 
 

0.165 
 
 

4 
 
 

8.81E-07 
 
 

0.0003 
 
 

Pfam Beta-lacatamase superfamily domain Pfam 
MBL-fold metallo 

hydrolase 
domain 

InterPro Beta-lacatamase superfamily domain InterPro 
Ribonuclease 

Z/Metallo-beta-
lactamase 

MAB_1915 
Prokka 

Probable fatty acid-CoA ligase FadD NA NA 5 0.408 4 4.46E-06 0.001 Pfam 
InterPro 

MAB_2297 
Prokka Probable methyltransferase 

NA NA 3 0.104 3 4.42E-06 0.001 Pfam (erm (41)) 
InterPro (erm (41)) 

MAB_4532c 

Prokka Conserved hypothetical protein 

Rv2416c Eis2 4 0.282 2 1.15E-05 0.003 Pfam Acetyltransferase (GNAT) 
domain/sterol carrier protein domain 

InterPro N-acetyltransferase Eis 
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Fourteen of the 17 genes were predicted to be orthologous to genes in the M. tuberculosis 

H37Rv genome (Table 12). Functional overlap between the candidate genes was 

investigated by querying the 17 genes against STRING database, which showed no 

pathways were enriched. The webtool DAVID clustered the seven genes with regulatory 

functions, however, the clustering was not significant (medium stringency, Score: 1.34; all p-

values > 0.05). Despite the lack of significant enrichment of genes in particular pathways or 

functional categories, genes with similar functions and involved in overlapping pathogenic 

processes were evident (Figure 35). 

 

 

Figure 35: Functional similarity between genes evolving in parallel in multiple patients  

Heat map showing the number of nonsynonymous  and nonsense SNPs accumulated per 
patient in the 17 genes that accumulated a greater number of nonsynonymous SNPs than 
would have been expected by chance. The variants accumulated over time in 16s rRNA gene 
(MAB_r5051) and 23s rRNA gene (MAB_r5052), that are known to be associated with 
aminoglycoside and macrolide antibiotic resistance respectively are also shown. Out of the 182 
patients for which the within patient evolution of an MABSC lineage was investigated 59 (32%)  
accumulated at least one nonsynonymous or nonsense mutation in either one of the 17 
candidate genes or the 16s rRNA or 23s rRNA genes. The candidate genes are grouped 
according to possible overlapping functions: regulators stimulated by environmental cues 
(brown), other regulators (beige), genes involved in cell wall biosynthesis (light green) and 
antibiotic resistance associated (dark green). 
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4.3.3 Selection for variants in regulators which respond to environmental cues 

Four genes which directly or indirectly sense environmental cues in the phagosome and 

respond by causing subsequent large scale changes in gene expression accumulated a 

significant number of nonsynonymous SNPs over time within multiple patients (Figure 35). 

These were MAB_3029, an iron dependent repressor (IdeR), MAB_0674, the histidine 

sensor kinase component, PhoR, of the PhoPR TCS; MAB_0416c, a cyclic AMP receptor 

binding protein (CRP) and MAB_3539, a WhiB family regulator. All four genes were found to 

be orthologous to genes in M. tuberculosis H37Rv, with ideR (MAB_3029) being orthologous 

to Rv2711, phoR (MAB_0674) being orthologous to Rv0758, CRP (MAB_0416c) being 

orthologous to Rv3676 and MAB_3539 (from herein referred to as whiB1) being orthologous 

to the WhiB1 regulator Rv3219 (Table 12) (230).  

 

Twenty-eight different patients accumulated at least one nonsynonymous SNP in one of 

these regulators sensing phagosomal environmental cues, with six patients accumulating 

nonsynonymous SNPs in more than one of these genes (Figure 35). Amongst these four 

genes, the most nonsynonymous SNPs, 20, were accumulated by the phoR component of 

the PhoPR TCS, whilst CRP, whiB1 and ideR accumulated seven each. Fifteen patients 

accumulated one or more nonsynonymous mutation in phoR, whilst seven patients 

accumulated nonsynonymous SNPs in CRP and whiB1 and 5 patients accumulated 

nonsynonymous SNPs in ideR. In order to hypothesize what impact the acquisition of these 

nonsynonymous SNPs could be having of the function of these genes, the distribution of the 

nonsynonymous SNPS across each gene was investigated to see if particular domains were 

under selection. 

4.3.4 Within host selection pressure acting upon specific domains within the 
regulators responding to environmental cues 

The protein structures of IdeR, PhoR, CRP and WhiB1 in M. a. abscessus ATCC19977 are 

unknown, however, the structures of their orthologs in M. tuberculosis H37Rv have been 

determined. The amino acid alignments between these genes in M. a. abscessus 

ATCC19977 and M. tuberculosis H37Rv showed a high level of AAI between three of the 

genes with their M. tuberculosis H37Rv ortholog, with an AAI of 82.5% between IdeR protein 

sequences, MAB_3029 and Rv2711, 96% between CRP protein sequences, MAB_0416c 

and Rv3676 and 89% between WhiB1 regulators MAB_3539 and Rv3219. Contrastingly, the 

AAI between the PhoR encoding MAB_0674 and Rv0758 was 32%. However, the high level 

sequence identity between three of the four ortholog pairs and the presence of identical 

conserved motifs amongst all of them, suggested that it would be possible to potentially use 
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the functional information known for these genes in M. tuberculosis H37Rv to predict the 

effect of the nonsynonymous mutations in their corresponding orthologs in M .a. abscessus 

ATCC19977. 

 

The structure of IdeR in M. tuberculosis H37Rv has shown that it forms a homodimeric 

protein, with each monomer consisting of a helix-turn-helix (HTH) diphtheria toxin regulator 

(HTH_DTXR) domain, predicted to be encoded by amino acids 26 to 125 in MAB_3029 and 

an FeoA (dimerization) domain, which was predicted to be encoded by amino acids 151 to 

227 in MAB_3029 (Figure 36). A third domain similar to the Src-SH3 domain is also encoded 

(325). Three of the seven nonsynonymous mutations accumulated in parallel in this gene 

were observed in HTH_DTXR domain, with one falling within the HTH DNA binding domain 

and one in the FeoA domain, however, none of the nonsynonymous SNPs occurred at the 

metal ion binding sites (site 1: His79, Glu83, His98, Glu172, Gln 175; site 2: Met10, Cys102, Glu105 

and His106) or at sites predicted to make contact with DNA (325, 326).  
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Figure 36: Nonsynonymous SNPs acquired in parallel in IdeR functional domains 

Alignment of the IdeR protein sequences from M. a. abscessus ATCC199777 and M. 
tuberculosis H37Rv, adapted from (327). Black arrows represents the positions of the 
nonsynonymous SNPs accumulated in parallel between patients infected with MABSC 
lineages. Red arrows indicate amino acids that interact with the metal ion in metal ion binding 
site 1. Blue arrows indicate amino acids that interact with the metal ion in metal ion binding site 
2. Green arrows indicate sites predicted to make contact with DNA. The thin black lines 
represent the DNA binding and  FEO domains respectively as predicted by SMRT. The bold 
black line marks the helix turn helix DNA binding motif (aa 25-51). 

 

CRP, which consists of a cAMP binding domain, predicted to be encoded by amino acids 10 

to 128 in MAB_0416c, and a helix-turn-helix cAMP regulatory domain, predicted to be 

encoded by amino acids 167 to 215, acquired 7 nonsynonymous SNPs in parallel (Figure 

37). Three of the  SNPs, E80G and R89Q in two patients, were acquired in the cAMP binding 

domain at sites known to directly bind cAMP in M. tuberculosis H37Rv (328). Furthermore, 

the mutation observed in the HTH cAMP regulatory domain, G185S, occurred at a highly 

conserved site (328).  
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Figure 37: Variants were acquired in parallel in CRP at sites that could potentially affect 
its function. 

The MABSC global population structure showing that variants were accumulated by CRP in 
seven patient infected with genetically distinct lineages. Three of the variants acquired by CRP 
in parallel occurred at sites, R89Q and E80G, known to interact with cAMP in M. tuberculosis. 
One variant, G185S,  occurred at a highly conserved site in the cAMP regulatory domain.  

 

WhiB1 consists of a single WhiB domain, predicted to be encoded by amino acids 3 to 71 in 

MAB_3539. All seven nonsynonymous SNPs fell within this domain, although MAB_3539 is 

only 84 amino acids in length. One of the nonsynonymous mutations, R68C, occurred within 

a predicted helical motif, encoded by amino acids 65 to 76, whilst one of the nonsynonymous 

mutations, W49R, occurred at a site that forms part of the mouth of a channel where a 

cluster sulfide atom is exposed (329). The disruption of the structure of the channel by the 

nonsynonymous SNP at this site, could potentially enable NO to access the [4Fe-4S] cluster 

causing it to be destabilized (Figure 37) (329, 330). The destabilization of the [4Fe-4S] 
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cluster causes WhiB1 to disassociate from the major sigma factor, enabling the positively 

charged residues in the c-terminal helix, none of which accumulate a nonsynonymous 

change in parallel, to bind DNA resulting in a change in gene expression (329). 

 

 

 

Figure 38: WhiB1 accumulated mutations in parallel at sites that could cause changes 
it its function  

WhiB1 protein sequences of M. a. abscessus ATCC19977 and M. tuberculosis H37Rv aligned 
with muscle (60). Black arrows represent  nonsynonymous SNPs accumulated over time within 
multiple patients. Red arrows indicate cysteine residues which coordinate the [4Fe-4S] cluster. 
Green arrows indicate the two arginine residues that are involved in DNA binding. Blue arrows 
indicate the residues which form the mouth of the channel through which the cluster sulfide 
atom is exposed (329). 

 

 

Twenty nonsynonymous SNPs were accumulated in parallel by PhoR, the response 

regulator of the PhoPR TCS. PhoR is membrane bound protein with a sensor loop, encoded 

by amino acids 59 to 176 in MAB_0674, that extends into the periplasmic space, and multiple 

cytoplasmic domains (314).  Figure 39 shows that the 20 nonsynonymous SNPs 

accumulated in parallel by PhoR did not appear to be randomly distributed across the 

protein. By mapping the nonsynonymous SNPs onto the secondary structure (Figure 40), 

70% (14/20) of the nonsynonymous SNPs were found to have been accumulated in the 

region predicted to encode the sensor loop. Through a permutation test this was shown to be 

a pattern that was not expected by chance (p-value: 0.0036). 
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Figure 39: The 20 nonsynonymous SNPs acquired by PhoR were not randomly 
distributed across the protein sequence 

This figure shows the MABSC global population structure with the aligned metadata 
representing the distribution of the 20 nonsynonymous SNPs accumulated in parallel by PhoR, 
the response regulator component of the PhoPR TCS, in lineages infecting 14 patients. Isolates 
from each subspecies accumulated nonsynonymous mutations over time within the host. The 
pattern of the mutations across the gene also suggested that the mutations were not randomly 
distributed. 
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Figure 40: PhoR sensor loop under selection within the host 

The secondary structure of PhoR, a histidine sensor kinase, showing its membrane topology, 
Adapted from Broset et al. 2015 (314). Each domain is colored separately, oblong shapes 
represent alpha helices, arrows represent Beta pleated sheets. 14 of the 20 (70%) 
nonsynonymous SNPs that were accumulated in parallel in 20 patients fell within the sensor 
loop, a pattern that would not be expected by chance (p-value: 0.0036). 

 

Whilst there was evidence that within host selection pressure was specifically selecting for 

changes in particular functional domains in all the regulators responding to environmental 

cues, this was most evident for PhoR . Therefore, to understand more about the functional 

role that PhoR was playing in the adaptation of the MABSC to the CF lung and with the 

eventual aim to understand the functional impact of the changes accumulated in the sensor 

loop, RNA-seq analysis was performed to determine the MABSC PhoPR regulon. 

 

4.3.5 PhoPR potentially up-regulates virulence related genes in response to a low 
environmental pH and carbon source of pyruvate 

The role of PhoPR in M. tuberculosis H37Rv has been extensively studied and it has been 

demonstrated that the PhoPR TCS acts a key regulatory switch by sensing the point at which 

during the maturation of the phagosome the pH drops and pyruvate becomes readily 

available as a carbon source (331). As the environmental cues that PhoR is responding to in 

the MABSC are unknown, it was hypothesized that it could potentially be sensing similar 

environmental cues as PhoR in M. tuberculosis H37Rv. To test this hypothesis the PhoPR 
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TCS was knocked out in M. a. massiliense CIP108297 and the gene expression levels were 

subsequently compared between isolates in which PhoR was hypothesized to be stimulated 

(a combination of a low pH (5.7) and sole carbon source of pyruvate) and those in which they 

were not. A summary of the comparisons are in Table 13.  

 

Table 13: Summary of the differential expression analyses performed to determine the 
MABSC PhoPR regulon  

Comparison phoPR stimulation 
No. of activated 

genes 
No. of inactivated 

genes 

PhoPR WT vs PhoPR KO: 

CS: Glycerol 

pH: 5.7 

not stimulated 

vs 

not stimulated 

3 41 

PhoPR WT vs PhoPR KO: 

CS: Glycerol 

pH: 7 

not stimulated 

vs 

not stimulated 

2 42 

PhoPR WT vs PhoPR KO: 

CS: Pyruvate 

pH: 5.7 

stimulated 

vs 

not stimulated 

45 27 

PhoPR WT vs PhoPR KO: 

CS: Pyruvate 

pH: 7 

not stimulated 

vs 

not stimulated 

3 42 

PhoPR WT: 

CS: Pyruvate 

pH: 5.7 

vs 

PhoPR WT: 

CS: Pyruvate 

pH: 7 

stimulated 

vs 

not stimulated 

12 

 

 

8 

 

 

PhoPR WT: 

CS: Glycerol 

pH: 5.7 

vs 

PhoPR WT 

CS: Glycerol 

pH: 7 

not stimulated 

vs 

not stimulated 

0 

 

 

21 

 

 

PhoPR WT: 

CS: Pyruvate 

pH: 5.7 

vs 

PhoPR WT: 

CS: Glycerol 

pH: 5.7 

stimulated 

vs 

not stimulated 

16 0 

PhoPR WT: 

CS: Pyruvate 

pH: 5.7 

vs 

PhoPR WT: 

CS: Glycerol 

pH: 7 

stimulated 

vs 

not stimulated 

18 23 

PhoPR WT: 

CS: Pyruvate 

pH: 7 

vs 

PhoPR WT 

CS: Glycerol 

pH: 5.7 

not stimulated 

vs 

not stimulated 

13 4 

PhoPR WT: 

CS: Pyruvate 

pH:7 

vs 

 

PhoPR WT: 

CS: Glycerol 

pH: 7 

not stimulated 

vs 

not stimulated 

4 21 
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The comparisons between the WTs and their corresponding PhoPR KOs under different 

conditions showed that many more genes were activated under the conditions hypothesized 

to stimulate PhoR (Figure 41) than under the conditions where PhoR was not expected to be 

stimulated (Figure 41 A, B, C) (Appendix table 3.6). The only overlap between the activated 

genes in all four comparisons were phoP and phoR (Figure 42), whilst seven genes were 

inactivated under all the conditions when the WTs and their corresponding KOs were 

compared (Figure 42). These seven genes were phage related (MAB_1725c, MAB_1774, 

MAB_1775, MAB_1782, MAB_1796, MAB_1801). 

 

 

Figure 41: A distinct gene expression pattern was observed when phoPR was grown 
with pyruvate as a sole carbon source and at a pH of 5.7 

Volcano plots showing the significantly differentially expressed (red points) genes between M. 
a. massiliense reference genome CIP108297 and the M. a. massiliense CIP108297 phoPR 
knockout (KO) under the following conditions: A)  sole carbon source Glycerol and pH 7, B) 
sole carbon source Pyruvate and pH 7 C) sole carbon source Glycerol and pH 5.7 and D) sole 
carbon source pyruvate and pH 5.7.  Under the conditions examined in A, B and C, where  it 
was hypothesized that phoR was not stimulated,  the majority of the significantly differentially 
expressed genes were inactivated (< -2 log2fold-change). Contrastingly, under the conditions 
compared in D, where phoR was hypothesized to be stimulated, more genes were activated 
than inactivated. 
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Figure 42: Minimal overlap between differentially expressed genes under conditions 
where phoR was hypothesised to be stimulated and where it  was not. 

Venn diagrams showing the overlapping DE genes identified from the comparisons between 
the M. a. massiliense CIP108207 WT and their corresponding PhoPR KOs. Apart from phoP 
and phoR there were no genes activated under all the conditions tested, whilst there were 7 
genes inactivated under all conditions. The limited overlap between the DE patterns produced 
when the WT and PhoPR KO were compared having been grown at pH 5.7 and with a sole 
carbon source of Pyruvate (pink) to the other conditions suggested that potentially these 
conditions had resulted in the stimulation of PhoR.  
 

The distinctive DE pattern observed under the conditions where PhoR was hypothesized to 

be stimulated suggested that potentially the DE genes could be part of the PhoPR regulon in 

the MABSC. The functions of the 43 genes activated when the WT was compared to the 

PhoPR KO under PhoR stimulatory conditions showed some functional similarity to some of 

the genes known to be regulated by the PhoPR TCS in M. tuberculosis H37Rv (Figure 43) 

(315, 332). Amongst the 43 genes activated were the DosS/R TCS (MAB_3890c, 

MAB_3891c) and three of the four genes (MAB_2489, MAB_3903, MAB_3904) that have 

been shown previously to be under the control of the DosS/R TCS in M. a. abscessus 

ATCC19977 (181, 333).  There was also activation of genes involved in the metabolism lipids 

(MAB_3486, MAB_3487) and fatty acids (MAB_3354) and further genes associated with the 

hypoxic response (MAB_1130, MAB_0869c). Several genes involved in the metabolism of 

sulfur were also activated (MAB_1652, MAB_1653, MAB_2217), which, whilst they haven’t 

been associated with the PhoPR regulon in other species previously, have been shown to be 

activated in nutrient limited and oxidative stress conditions (334). Whilst there is some 

functional similarity between the potential MABSC PhoPR regulon presented here and that of 

M. tuberculosis H37Rv, the only DE genes orthologous to genes in the M. tuberculosis 

H37Rv PhoPR regulon were phoP and phoR, the sensor histidine kinase component, dosS, 

of the DosS/R TCS and a gene involved in the initial hypoxic response (MAB_3903) 

(appendix table 3.6) (230, 315). 
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Figure 43: Overlap between the MABSC and M. tuberculosis phoPR regulons 

Heatmap of the normalised read counts showing the difference in read depth for the 151 
differentially expressed genes identified from all the comparisons performed. Highlighted are 
some of the functions of the DE genes identified from the comparison between Pyr_5.7 and 
KO_pyr_5.7, which have some similarity to the genes under the control of the M. tuberculosis 
H37Rv phoPR regulon.  

 

The inactivation of 20 genes when PhoR was believed to be stimulated suggested that the 

PhoP also acted as a repressor. Amongst the 20 genes was a gene upregulated by PhoP in 
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M. tuberculosis H37Rv, MAB_3100, an L-alanine dehydrogenase, which is orthologous to 

Rv2780 (315, 332). Inactivation of a gene involved in fatty acid biosynthesis (MAB_0759c), 

as well as further metabolism associated genes (MAB_1628c, MAB_3840, MAB_4198c) and 

several membrane associated proteins (MAB_1989c, MAB_4721, MAB_4517c, MAB_1539c) 

were also observed (appendix table 3.6). Overall the DE expression profile under these 

conditions provides some evidence to suggest that the PhoPR regulon in the MABSC could 

potentially be controlling genes involved in both the metabolic adaptation of the organism to 

enable survival in the phagosome as well as aiding the organisms survival by activating 

stress response operons. 

 

Contrastingly, the DE patterns produced by comparing the WTs and PhoPRs KO when they 

were grown under conditions where PhoR was not thought to be stimulated showed that just 

one gene, other than phoP and phoR, was activated and only under one condition (Figure 

41, 42). However, 61 genes were inactivated under these conditions suggesting that phoPR 

TCS was having some regulatory effect. Eleven genes were inactivated under all the 

conditions where PhoR was not thought to be stimulated (Appendix table 3.6).  Amongst 

these 11 genes were two genes involved in phosphate transport (MAB_0746, MAB_0747), 

two genes involved in the transport of 2-aminoethylphosphonate (MAB_1501 and 

MAB_1502) and potentially two genes involved in the metabolism of this substrate 

(MAB_1499 and MAB_1500). The overlap of genes inactivated under all the conditions 

where PhoR was thought not to be stimulated either suggested i) that PhoR was actually 

being stimulated and that stimulation of PhoR under these three conditions (Table 13) 

resulted in the inactivation of these genes, ii) that unphosphorylated PhoP was potentially 

able to block the transcription of these genes by other regulatory elements or iii) it potentially 

suggested that a secondary mutation had occurred resulting in the DE of genes not 

associated with the PhoPR regulon. 

 

Given that there was evidence that PhoR was stimulated by the environmental cues of a low 

pH and sole carbon source of Pyruvate and that this led to the expression of genes 

potentially aiding its survival in the phagosome (Figure 43) and that there was no evidence of 

such a response caused when the organism was grown under the other conditions, which 

could be interpreted as PhoR not being stimulated, it was hypothesized that a similar DE 

pattern would be produced when comparing the DE genes between the PhoR stimulated WT 

and the WTs in which PhoR was not believed to have been stimulated. Table 13 shows the 

number of DE genes identified when the gene expression levels between the stimulated 

PhoR WT were compared to the WTs gene expression levels under conditions not thought to 
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stimulate PhoR. Only four of the DE genes (MAB_2489, MAB_3903, MAB_3904, 

MAB_2792c) identified in the stimulated WT versus PhoPR KO analysis were also found to 

be DE between the stimulated WT and not stimulated WTs (Figure 44, 45). Three of these 

four genes form part of the DosS/R regulon, although contrastingly to the stimulated PhoR 

WT versus PhoPR KO DE analysis, the genes encoding the DosS/R TCS were not found to 

be DE.  

 

 

Figure 44: The expression patterns between isolates where phoPR was stimulated and 
not stimulated did not replicate the expression pattern between the stimulated phoPR 
WT when it was compared its KO 

Volcano plots showing the differentially expressed genes when comparing the expression of 
M. a. massiliense CIP108297 under conditions were it was hypothesized that phoPR would be 
stimulated vs M. a. massiliense CIP108297 grown under conditions where it was hypothesized 
phoR was not stimulated.    
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This lack of overlap could have been due to the changes in expression caused by the 

stimulation of PhoR not being strong enough to be observed without the effect of PhoPR KO 

or the differing environmental conditions causing other regulatory machinery to interact with 

PhoPR regulon. However, it was also possible, given the unexpected overlapping DE genes 

identified between all the WT versus PhoPR KO analyses under the conditions not thought to 

stimulate PhoR, where no overlap would have been expected given the different 

environmental conditions and hypothesized lack of stimulation of PhoR, that a secondary 

mutation was causing this overlap and potentially contaminating the DE analysis. 

 

 

 

Figure 45: Limited overlap between the DE genes identified between the stimulated and 
not stimulated PhoPR WTs and the DE genes identified between the stimulated PhoPR 
vs the PhoPR KO. 

Venn diagrams showing the overlap between DE genes identified from the comparisons 
between the PhoPR stimulated and not stimulated WTs (Green, gold, blue) and the PhoR 
stimulated WT vs its corresponding PhoPR KO (pink). Overlap between the DE patterns was 
expected, however, no genes were activated or inactivated across all the comparisons 
performed. Only four genes identified as possibly part of the PhoPR regulon in the stimulated 
PhoR versus PhoPR KO DE analysis, three of which were part of the DosS/R regulon, were 
also found to be DE between the stimulated PhoR and not stimulated WT experiments. 
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Using WGS of the mutant and parent strains, a secondary mutation, a frameshift in the 

phosphate transport system permease (pstA1) gene, MAB_0748, was identified in the 

phoPR KO strains. Amongst the inactivated genes identified between WT and phoPR KOs 

were several genes involved in phosphate transport (MAB_4047c, MAB_4048c, MAB_0746, 

MAB_0747, MAB_0751c), which could be due to the loss of function of pstA1 (Figure 43) 

(Appendix table 3.6). However, the similarity in functions of some of the DE genes identified 

between the WT and PhoPR KO when PhoR was believed to be stimulated and those known 

to be controlled by PhoPR in M. tuberculosis H37Rv suggested that potentially some of the 

signal from the activation of PhoR was also being observed. 

4.3.6 Further regulators under selection 

Three further regulators also accumulated a significant number of nonsynonymous SNPs in 

parallel in multiple patients. MAB_3036c, a possible ribonucleotide reductase repressor 

(nrdR) and orthologous to M. tuberculosis H37Rv gene Rv2718c, accumulated four 

nonsynonymous SNPs in three patients (Table 12). Whilst Pfam identified the cone domain 

(amino acids 46-134) characteristic of these regulators, an alignment to its ortholog in M. 

tuberculosis H37Rv, revealed the presence of the other conserved domain, the zinc ribbon 

domain (Figure 46) (335, 336). Three of the four nonsynonymous changes were 

accumulated within the cone domain. 

 

MAB_0115c, a conserved hypothetical protein with no domains predicted through Pfam, 

accumulated five nonsynonymous SNPs in five patients. MAB_0115c has been shown to be 

orthologous to the M. tuberculosis H37Rv gene, espR (230). EspR is a key regulator which 

controls  the expression of the virulence associated ESX-1 secretion system responsible for 

the secretion of the ESAT-6 antigen and furthermore it has also been shown to be expressed 

in the presence of phoP in M. tuberculosis H37Rv (337).  
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Figure 46: Accumulation of nonsynonymous SNPs in parallel in the cone domain of a 
ribonucleotide reductase regulator 

Protein sequence alignment of MAB_3036c, a ribonucleotide reductase regulator and its M. 
tuberculosis H37Rv ortholog, Rv2718c. The black arrows mark the four nonsynonymous SNPs 
(E138K,V127A,I109N,S59G) accumulated in parallel in MAB_3036c. The four conserved 
cysteine residues (red arrows) and four conserved arginine residues (blue arrows) 
characteristic of a zinc finger domain are indicated. Amino acids residues in the cone domain 
that have been found to interact with ATP in E. coli are indicated by the green arrows. Adapted 
from figure in Grinberg et al. 2006 (335). 

 

Finally, a tetR family regulator, MAB_1881c, accumulated eight nonsynonymous SNPs in 

seven patients. No ortholog in M. tuberculosis H37Rv was predicted. MAB_1881c was 

predicted to be encoded downstream of a fatty acid biosynthesis operon (MAB_1800c, 

MAB_1799c, MAB_1798c, MAB_1797c, MAB_1796c, MAB_1795c) and thus could have 

potentially been regulating this operon. However, MAB_1800c, annotated as a conserved 

hypothetical protein, was found to encode a pucR type regulator helix-turn-helix domain and 

gene synteny analysis with M. tuberculosis H37Rv, showed that the gene order of this 

operon was conserved between the two species apart from the presence of MAB_1881c and 

two conserved hypothetical proteins (MAB_1882c, MAB_1883c) downstream of MAB_1881c, 

which encoded a doxX domain and DM13 domain respectively (Figure 47).  
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Figure 47: MAB_1881c not regulating FASII operon 

Tblastx comparison between the FASII operons in M. a. abscessus ATCC19977 (top) and M. 
tuberculosis H37Rv (bottom), regulated by mabR (Rv2242 and MAB_1880c). MAB_1881c, the 
tetR family regulator which accumulated seven SNPs in parallel within SNPs forms part of an 
insertion into M. a. abscessus ATCC19977 or deletion in M. tuberculosis H37Rv. Figure made 
with EasyFig (276).  

 

4.3.7 Adaptation of lipids potentially involved in host pathogen interactions 

Changes in cell wall composition are also known to have a significant impact on the survival 

of pathogens within their host. Three genes involved in biosynthesis of cell wall lipids were 

found to have accumulated a significant number of nonsynonymous and nonsense mutations 

within patients (Table 12, Figure 35). MAB_0173, which encodes UbiA, a 5-phospho-α-d-

ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase (DPPR synthase), 

accumulated 11 nonsynonymous SNPs in 11 patients. MAB_0173 encodes a single UbiA 

domain from amino acids position 32 to 301. All 11 nonsynonymous SNPs were accumulated 

within this domain, although the MAB_0173 only consists of  305 amino acids. The M. 

tuberculosis H37Rv ortholog of UbiA, Rv3806, catalyzes a step in the synthesis of 

decaprenyl-phospho-arabinose (DPA) and decapolyprenol-phosphoribose (DPR). DPA is the 

sugar donor for D-arabinose when in its furanose ring form (Araf) and D-arabinose in turn is 

a key constituent cell wall lipids arabinogalactan and lipoarabinomannan (LAM) (338). 

 

A second gene involved in the synthesis of LAM, a potential arabinosyltransferase 

(MAB_0189c), also accumulated a significant number of SNPs over time within patients, with 

15 nonsynonymous SNPs observed across 13 patients (Table 12, Figure 35). MAB_0189c 

has been reported to be orthologous to Rv3793, which encodes the embC component of the 

embCAB operon in M. tuberculosis H37Rv (230). In M. tuberculosis H37Rv, EmbA and 

EmbB play roles in arabinogalactan biosynthesis, whilst EmbC is involved in the biosynthesis 
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of LAM (338). Two domains were encoded by MAB_0189c, an arabinose transferase domain 

from amino acid position 31 to 682 and an EmbC C-terminal domain encoded from amino 

acid positions 716 to 1082. Of the 15 nonsynonymous SNPs accumulated in parallel by 

MAB_0189c, 11 fell within the arabinose transferase domain, three fell within the EmbC C-

terminal domain and one was not acquired within a domain. Given that 73% (11/15) of the 

nonsynonymous SNPs fell within the arabinose transferase domain it suggested that the 

within host selection pressure may be specifically selecting for variants within this domain. 

However, after randomly introducing 15 variants into the embC sequence 1000 times to 

determine the distribution of nonsynonymous SNPs that would be expected by chance, the 

observed distribution was not found to be significant (P-value: 0.6999).  

 

MAB_1915, which accumulated 5 nonsynonymous SNPs in parallel, encodes a fatty acid 

CoA-ligase (FabD). A single AMP binding domain, characteristic of long-chain fatty acid CoA 

ligases, is encoded by MAB_1915 from amino acid 27 to 490. Three of the five 

nonsynonymous SNPs accumulated in parallel in this gene were acquired within this domain. 

However, this gene did not fall within the FasII operon (Figure 46), and nor was it found to be 

orthologous to a FabD family protein within M. tuberculosis H37Rv. The genes upstream of 

MAB_1915 included a adenylate cyclase (MAB_1914c) and a conserved hypothetical protein 

(MAB_1913), whilst downstream the genes included a 3-methyl-2-oxobutanoate 

hydroxymethyltransferase (MAB_1916c) and a conserved hypothetical protein (MAB_1917). 

4.3.8 Accumulation of mutations in antibiotic resistance genes 

Adaptation to antibiotic resistance is also a key survival mechanism used by pathogenic 

bacteria and nonsynonymous mutations were accumulated by multiple patients in four known 

MABSC antibiotic resistance genes. Three nonsynonymous SNPs were accumulated in the 

erm(41) gene in three patients infected with M. a. abscessus lineages. The truncation of this 

gene in M. a. massiliense subspecies isolates results in infections caused by this subspecies 

being susceptible to macrolide treatment, whereas M. a. abscessus and M. a. bolletii 

subspecies both have full length erm(41) genes which causes inducible resistance to 

macrolides  (77, 339). However, the transition of a T-to-C at position 28 leads to the loss of 

function of erm(41) and subsequent macrolide susceptibility (142). None of the three 

mutations observed longitudinally occurred at this position (Table 14). 

 

Macrolide resistance can also be acquired by mutations in the 23s rRNA gene in both 

isolates with a functional erm(41) gene and those without (340). Sixteen mutations were 

observed over time within patients in the 23s rRNA gene. Six were accumulated at position 
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2270 (equivalent E.coli number 2058) with the substitution of A to T seen once, A to C seen 

twice and A to G seen three times. Four A to G substitutions occurred at position 2271 

(equivalent E.coli number 2059). Other than A2270T, all the point mutations observed at 

these two positions (2270 and 2271) have been shown experimentally to cause 

clarithromycin resistance (313, 340, 341). The point mutation, T2823C, has also been 

observed previously (341). The remaining five mutations occur at positions that have not, as 

of yet, been associated with antibiotic resistance (Table 14).    

 

Table 14: Potential antibiotic resistance mutations acquired over time within the host 

Gene Product 
No. 

SNPs 

No.  
unique 
SNPs 

No. 
patients 

Patients SNPs 

MAB_r5051 

16S 

ribosomal 

RNA 

8 4 8 

AHL_C_ABSS,AUS_B_ABSS, 

AUS_I_ABSS,BIR_Z_ABSS, 

PAP_012_ABSS, 

SMRL_AT_clone1_MASS, 

SMRL_BW_ABSS, 

SMRL_CG_ABSS 

G100T,T1086C,T1479C, 

A1375G,A1375G,A1375G, 

A1375G,A1375G 

MAB_r5052 

23S 

ribosomal 

RNA 

16 10 13 

AHL_C_ABSS,AUS_AD_ABSS, 

AUS_AP_MASS,AUS_J_ABSS, 

BIR_W_ABSS,BIR_W_ABSS, 

RHS_M_MASS,RHS_O_ABSS, 

RHS_O_ABSS,SMRL_BD_ABSS, 

SMRL_CG_ABSS, 

SMRL_CG_ABSS, 

SMRL_CV_ABSS, 

SMRL_R_MASS, 

UNC_H_ABSS,UNC_S_ABSS 

G768C,A841G,C1829T, 

A2270T,A2270G, 

A2270C, 

A2270G,A2270G,A2270C, 

A2271G,A2271G,A2271G, 

A2271G,G2281A, 

T2758G,T2823C 

MAB_2297 Erm(41) 3 3 3 
AUS_J_ABSS,RHS_O_ABSS, 

SMRL_BN_ABSS 
P140S,P140R,W10R 

MAB_4532c Eis2 4 4 2 
AUS_AD_ABSS,PAP_033_ABSS, 

PAP_033_ABSS,PAP_033_ABSS 

Y227C,C294R,L282P, 

V77A 

 

 

MAB_4532c, which encodes an enhanced intracellular survival protein (Eis2), accumulated 

four nonsynonymous SNPs in two patients. The alignment, constructed using muscle, of the 

amino acid sequences of MAB_4532c and its M. tuberculosis ortholog Rv2416c showed they 

shared an AAI of 33%. One of the nonsynonymous mutations occurred in the 10th Beta 

pleated sheet, Y227C, whilst, a further nonsynonymous mutation occurs in the 13th Beta 

pleated sheet, C294R, in very close proximity to residues which both form and line the 

aminoglycoside binding pocket (342). L282P occurs at an amino acid residue conserved 

across the three eis homologues compared in (342). The amino acid change, V77A, 
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occurred in the 4th Beta pleated sheet, flanked by sites which are conserved and in the 

vicinity of amino acid residues responsible for forming the aminoglycoside binding site (342).  

 

Resistance to aminoglycosides can also be acquired by the MABSC through point mutations 

in the 16s rRNA gene (156, 343). Eight point mutations were accumulated longitudinally in 

this gene in eight patients, with five of the eight mutations being a substitution of A to G at 

position 1375 (equivalent to E.coli no. 1408), a point mutation that has previously been 

associated with aminoglycoside resistance in the MABSC (Table 14) (156, 343). The 

remaining three point mutations: T1479C, T1086C and G100T have not been reported 

previously in the literature, to my knowledge. 

4.4 Discussion 

Identifying genes evolving in parallel in multiple patients is a method that has been applied to 

multiple CF pathogens to successfully identify novel virulence factors and potential drug 

targets (40, 182, 307-309, 311, 312). This approach had only been applied on a small scale 

to examine the within patient evolution of the MABSC (183). The MABSC global population 

dataset included multiple isolates for 182 patients once isolates potentially acquired by 

transmission or representative co-infection had been removed (Appendix Figure 3.1). The 

aim of this chapter was to look for convergent evolution occurring between these MABSC 

lineages evolving independently in individual patients in order to uncover novel virulence 

factors which could increase our understanding of the pathogenesis of the MABSC and 

potentially identify novel drug targets. 

 

The acquisition of mutations over time within patients was found to be common with lineages 

from 75% of the patients investigated acquiring at least one SNP. The majority of patients 

appeared to be acquiring mutations in a clock like manner, although the level of variation 

from one patient stood out. The isolates obtained from SMRL_AT accumulated a level of 

variation that suggested that the lineage had acquired a hypermutator phenotype (Figure 

34A). An indel, leading to a frameshift in the endonuclease III (nth) gene, an enzyme that 

catalyzes two steps in the base excision repair pathway, was subsequently identified in the 

isolates from SMRL_AT (323, 324). Mutations in this gene in E. coli have been shown to infer 

a weak hypermutator phenotype (323, 324). The acquisition of a hypermutator could 

potentially have enabled this MABSC lineage to adapt to the CF lung quicker, as the 

increased substitution rate increases the chance of acquiring a mutation in a beneficial gene, 

such as genes involved in pathogenicity or antibiotic resistance, as has been observed in 

hypermutating lineages of other CF pathogens (344, 345). There is evidence to suggest that 
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this has occurred in the lineage infecting SMRL_AT as nonsynonymous SNPs were 

accumulated over time in the potentially pathoadaptive genes phoR and fabD, as well the 

antibiotic resistance associated 16s rRNA gene (Table 12,Figure 35). On the other hand, 

some lineages from other patients without a hypermutator phenotype acquired more 

nonsynonymous SNPs than the lineage from SMRL_AT in potentially pathoadaptive genes, 

which could be due to a difference in sampling time, but could also reflect the fact that whilst 

a hypermutator phenotype initially provides an advantage, it also increases the chances of 

the bacteria acquiring a lethal mutation (346, 347).  

 

Naturally occurring hypermutators have not been described before in the literature for 

Mycobacteria, however, a hypermutator in M. abscessus has been described previously 

(Josephine Bryant, unpublished work). The hypermutator phenotype in this patient was due 

to a premature stop codon in the uracil DNA glycosylase (udg) gene (MAB_3283c), which 

removes uracil that has been mis incorporated into DNA due to deamination of cytosine 

(348). Although the isolates from this patient, PAP_033, were included in this analysis and 

were found to have accumulated a premature stop codon in MAB_3283c, the number of 

variants accumulated, 15 in 1101 days (3 years and 5 days), did not stand out as greater 

than expected. The lack of evidence in this analysis for PAP_033 being a hypermutator is 

likely to be due to only consensus SNPs and not minority variants being analysed (Josephine 

Bryant, unpublished work). This suggests that it is possible that there are more patients 

whose isolates have acquired a hypermutator phenotype which have not been detected 

through this analysis, and that hypermutation could be contributing to greater extent than is 

currently evident to the adaptation of the MABSC to the CF lung.  

 

Further support for the presence of further hypermutators in this MABSC dataset was 

provided by the substitution rate estimated through this analysis. An average 3.1 SNPs were 

estimated to become fixed per genome per year which is within the 95% confidence interval 

for a previously estimated M. a. abscessus substitution rate (1.8 substitutions per genome 

per year; CI: 0.8-3.3) (70). However, this is still higher than expected. One explanation could 

be that further hypermutators are present in the dataset but haven’t been detected. The 

relatively low R2  value also suggests that potentially other variables are effecting the 

correlation. These could be biological variables such as the selection pressure being applied 

by the individual hosts differing through a combination of factors such as the host's immune 

system, co-infection with other CF pathogens or antibiotic treatment being taken over the 

time in which the samples were collected, or they could be methodological. Methodological 

reasons that could be influencing the correlation include the time span over which the 
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isolates were collected not reflecting the length of infection, true variants not being called due 

to not meeting the variant calling criteria resulting in false negatives, isolates with a lower 

than expected number of SNPs could have acquired variation through other means, such as 

indels, which were not investigated in this analysis, or it could be that variants in the 

accessory genome of these isolates were missed due to all the isolates being mapped to M. 

a. abscessus ATCC19977. 

 

Parallel evolution of MABSC lineages was detected between patients, with 17 genes 

accumulating a greater number of nonsynonymous SNPs than would have been expected by 

chance in multiple patients (Table 12, Figure 35). Three of the genes, embC, phoR and fabD 

were also found to have accumulated nonsynonymous SNPs over time within a single patient 

in Kreutzfeldt and colleagues analysis (183). There is also considerable overlap between the 

candidate genes identified here and those identified in analysis done previously on a subset 

(n=31) of the patients used in this analysis, although using a different statistical approach 

(Josephine Bryant, unpublished work). 

 

Nonsynonymous SNPs were accumulated in these 17 genes by 57 patients, just 31% of the 

patients investigated. Whilst this could be due to some patients not having been sampled 

over a long enough period of time for SNPs to have become fixed in the population, it could 

also suggest that there are other ways in which the MABSC is adapting to the lung and that 

the signal for this method of adaptation was not strong enough to be detected within this 

dataset. However, the signal that was detected in this dataset, through the identification of 

genes evolving in parallel, has highlighted a group of genes with potential roles in the 

adaptation of the MABSC to the lung. 

 

Functional enrichment analysis carried out using DAVID and the String database and by 

searching the KEGG database, failed to highlight any significantly enriched functions or 

pathways amongst the candidate genes. This could be due to being underpowered and in 

the case of the pathway enrichment analysis could be due to the lack of knowledge about 

which genes are involved in which pathways encoded by the MABSC. Investigating the 

candidate genes functions manually showed that regulation was the most common function 

(7/17) and that genes involved in similar biological processes were present (Figure 35). Most 

striking was the presence of four regulators which respond to environmental cues emitted 

bbeduring the maturation phagosome which when coupled with the accumulation of a 

significant number of nonsynonymous SNPs in three genes involved in cell wall biosynthesis, 

which is also at the interface of host-pathogen interactions in the phagosome, suggests that 
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the within host selection pressure is selecting for changes aiding survival within the 

phagosome (329, 331, 338, 349-352).  

 

The four regulators responding to environmental cues that accumulated a significant number 

of nonsynonymous SNPs in parallel were IdeR, PhoR, CRP and WhiB1 (Table 12). For three 

of the regulators, IdeR, CRP and WhiB1 the stimulant they are sensing is known, with IdeR 

responding to levels of Fe2+, CRP responding to levels of cAMP, which are increased when 

mycobacteria are under stress conditions, and WhiB1 responding to the presence of nitric 

oxide (NO) (325, 329, 351, 353). However, the stimulant that causes PhoR to phosphorylate 

PhoP is less well understood, with a low pH currently believed to be the environmental cue, 

although dependent on which carbon source is available from the host (331). All these 

signals are features of the phagosomal environment and have been shown in M. tuberculosis 

H37Rv to act as triggers for the reprogramming of M. tuberculosis H37Rv regulatory 

networks to enable survival in the macrophage (354).  Within the CF lung, these are also 

features of the extracellular environment, with the pH of CF sputum estimated to be 5.2 and 

areas with hypoxic conditions also created due to the formation of mucus plugs and the 

presence of aerobic bacteria (26, 32, 355). Consequently, these regulators could also be 

contributing to the extracellular survival of the MABSC.  

 

In M. tuberculosis H37Rv, these four genes have been shown to have overlapping regulons 

and to potentially be involved in the regulation of one another, resulting in a recent review 

presenting these four genes as part of a central regulatory cascade that sets in motion the 

key virulence strategies utilized by M. tuberculosis to survive and persist within the host (356, 

357). Therefore, it is tempting to speculate, given the selection for variants in four of the 

regulators/sensors in this cascade, all of which are orthologous to their M. tuberculosis 

H37Rv counterparts, that a similar regulatory control hub is playing a role in the survival of 

the MABSC within the host. Further research is required to establish the genes controlled by 

these regulators, particularly in the case of the PhoPR TCS and CRP and WhiB1 regulators, 

although an initial attempt to determine the PhoPR regulon in the MABSC was carried out in 

this analysis. Further research is also required to determine the extent of the interaction 

between the regulators, both in terms of overlapping regulons and in terms of whether they 

are potentially influencing the regulation of one another. 

 

The position of the variants accumulated could potentially suggest how these regulators are 

adapting in order to provide a selective advantage to the MABSC. However, the definitive 

functional impact of the nonsynonymous SNPs acquired by the four regulators cannot be 
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proved without experimental analysis. Preliminary sequence analysis showed that all four of 

the regulators accumulated at least one variant in either domains or at positions with known 

functional roles in their corresponding M. tuberculosis H37Rv orthologs, which could be seen 

as evidence that the mutations accumulated within the host are changing the function of the 

protein (Figure 36, 37, 38, 40).  

 

IdeR accumulated a variant in the predicted DNA binding motif, although not at a position 

known to make contact with the DNA (green arrow, Figure 36), which could potentially 

suggest that the IdeR DNA binding affinity might be affected as opposed to the complete loss 

of its DNA binding capability (325). Three of the other variants detected in this gene also fall 

near the DNA binding motif and therefore could also potentially be affecting the DNA binding 

capabilities of IdeR (Figure 36). IdeR, of which there is only a single copy in M. a. abscessus 

ATCC19977 and M. tuberculosis H37Rv, has been shown to be essential in M. tuberculosis 

as it regulates the genes responsible for iron homeostasis; both too little and too much Fe2+  

is detrimental to the organism's survival (350). Further research is required to determine the 

functional impact of the nonsynonymous SNPs accumulated by IdeR. 

 

 One of the seven variants acquired by WhiB1 occurred at a position W49R, which in the 

structure of its M. tuberculosis H37Rv ortholog forms the mouth of a channel that allows NO 

access to the [4Fe-4S] cluster, destabilization of which results in WhiB1 being able to bind 

DNA (Figure 38) (329). However, whether this amino acid change makes the [4Fe-4S] 

cluster more accessible, which could be interpreted as beneficial as it might make WhiB1 

more sensitive to NO resulting in a faster transcription response by the MABSC to oxidative 

stress conditions, or whether alternatively it does the opposite and blocks the channel 

resulting in a slower or complete lack of a response, is unclear. However, given that this 

change is from a non-polar hydrophobic amino acid (tryptophan) to a polar basic amino acid 

(arginine), a structural change seems probable. Only one variant occurred at a position with 

functional information available and thus it is not possible to determine, without further 

research, the impact of the nonsynonymous SNPs acquired by WhiB1 (329).  

 

Three of the seven nonsynonymous SNPs acquired by CRP occurred at sites directly 

interacting with cAMP, R89Q twice and E80G (Figure 37) (328, 358). This suggests that the 

ability of CRP to bind cAMP might be affected, particularly as both amino acid changes result 

in an amino acid with a charged side chain being replaced by an amino acid with an 

uncharged side chain, although in both cases the polarity of the amino acid remains the 

same. However, the exact impact of the nonsynonymous SNPs on CRP cannot be 
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determined without experimental analysis. But the accumulation of variants in this 

transcription factor suggest it is regulating genes associated with virulence. It’s ortholog in M. 

tuberculosis, Rv3676, has been shown to be required for virulence and amongst its putative 

regulon was WhiB1 which was also found to accumulate a significant number of 

nonsynonymous SNPs within the host (357).   

 

PhoR provided the strongest evidence that the within host selection pressure was selecting 

for variants in specific domain, with 70% of the nonsynonymous SNPs being accumulated in 

the sensor loop, a pattern not expected by chance (Figure 39, 40). The PhoPR TCS is a key 

virulence factor in M. tuberculosis. It has been shown to regulate complex lipid biosynthesis, 

genes involved in the response to hypoxia, the secretion of the immunogenic protein ESAT-6 

and activation of the DosS/R regulon (315, 359, 360). It is tempting to hypothesize that the 

accumulation of nonsynonymous SNPs in the sensor loop is due to PhoR adapting to the 

environmental cue it is detecting within the host, potentially either due to being exposed to 

differing concentrations of the stimulant or even potentially a different stimulant to what it 

senses in its natural environment. This would fit in with the idea of the within host selection 

pressure potentially selecting for variants in these regulators that adjust the interaction 

between either the regulator and its environmental cues or the regulator and its DNA  binding 

site, resulting in a faster response to the changing environment in the host. 

 

However, intriguingly, nonsynonymous variants accumulated in the PhoR sensor loop have 

been observed previously in M. tuberculosis species complex organisms, with a 

nonsynonymous SNP in the sensor loop of PhoR occurring in the last common ancestor of 

M. africanum L5 and L6 and all animal adapted M. tuberculosis complex lineages (361). This 

variant downregulates the PhoPR regulon and reduces virulence, although compensatory 

mechanisms which partially restored the expression of the PhoPR regulon have been 

identified in some of these lineages (361). The impact of the sensor loop mutation, which 

when it was introduced into M. tuberculosis H37Rv resulted in a reduced PhoPR regulon and 

reduced virulence, potentially suggests that the accumulation of variants in the sensor loop in 

the MABSC could be causing a reduction in virulence, although this is based on the 

assumption that the M. tuberculosis and MABSC PhoPR regulons are similar (361). In order 

to discover whether the M. tuberculosis and MABSC PhoPR regulon were similar, RNA-seq 

analysis was performed. 

 

The initial RNA-seq results comparing the PhoPR WT grown under the conditions 

hypothesized by Baker et al. (2014) to stimulate the PhoPR dependent response to a low pH 
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suggested that there was some overlap between the two regulons, with the DosS/R regulon, 

resuscitation promotion factors (rpfs) and genes involved in lipid metabolism activated in the 

WT in comparison to the KO (Figure 43) (315, 331, 360). The striking difference between DE 

pattern produced under these conditions and the DE pattern produced when the WT and 

KOs under the alternative conditions which were not thought to activate the PhoPR regulon, 

suggested that this was the PhoPR regulon (Figure 41, 42). However, comparing the WTs 

under PhoR stimulated and not stimulated conditions, failed to reproduce these results 

(Figure 44, 45). Plausible explanations for this could be that the signal was not strong 

enough to detect, or other regulators which respond to the differing environmental conditions 

were also influencing the control of PhoPR regulated genes. However, the identification of a 

secondary mutation knocking out the pstA gene, which forms part of a phosphate 

transmembrane channel which transports inorganic phosphate into the cell as well as 

repressing the SenX3 sensor component of the SenX3/RegX3 TCS in the presence of high 

phosphate concentrations, explained why SenX3/RegX3 TCS and several other phosphate 

transport associated genes appeared to be being suppressed by PhoPR in the WT vs KO 

comparisons (Figure 43) (362). Although, these genes were only evident under the 

conditions where PhoPR was not stimulated, which could be due to PhoPR also inducing the 

expression of these genes, one of which, phoY, is induced by PhoPR in M. tuberculosis 

H37Rv and therefore these genes wouldn’t be seen as DE between the stimulated WT and 

KO given the KO also included the loss of function of pstA (332). This secondary mutation 

complicates the interpretation of the results as the DE genes identified as the possible 

PhoPR regulon, also include those DE expressed due to the indel in pstA. Consequently, 

further research is required to decipher the genes controlled by the MABCS PhoPR regulon.  

 

However, if the assumption that the PhoPR regulons are similar is correct, as the RNA-seq 

analysis results provide some imperfect support for, this suggests that PhoPR regulon is 

controlling virulence related genes as well as providing evidence that the PhoPR regulon is 

being activated by conditions similar to the CF lung, both in the sputum and the macrophage. 

Consequently, depending on the impact of the nonsynonymous SNPs on the function of 

PhoR, the variants accumulated in parallel could either cause a similar effect to those in the 

sensor loop in M. tuberculosis complex species, reducing the expression of the PhoPR 

regulon and reducing virulence (361). Although, it should be noted that a secondary mutation 

could potentially be recovering some of the PhoR function, as has been seen in an M. bovis 

outbreak strain  (361). Whilst this does not support the hypothesis proposed earlier that the 

selection for variants in this domain is increasing its sensitivity to its environmental cue, 

resulting in key virulence regulons being activated faster, it could potentially suggest that 
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these variants are being selected for because they result in reduced virulence, which been 

shown to help the persistence of bacteria causing chronic lung infections, including other CF 

pathogens (363, 364).  

 

A significant amount of experimental analysis is required to determine the impact of these 

nonsynonymous SNPs on their respective protein functions, as well as RNA-seq and/or 

CHIP-seq analysis, if the hypothesis that a central regulatory control hub is coordinating 

MABSC response to within host environmental cues in a similar way to M. tuberculosis is to 

be tested. Whilst the generation of a PhoPR KO without a secondary mutation to determine 

which genes are regulated by PhoPR is also necessary. The final step to decipher the impact 

of the PhoR sensor loop SNPs would be to introduce the observed variants individually into a 

reference phoR gene and perform RNA-seq to determine their impact on the regulon. 

 

Three further regulators accumulated a significant number of nonsynonymous SNPs in 

parallel (Figure 35), and furthermore, two of the M. tuberculosis H37Rv orthologs of these 

regulators, Rv3849 and Rv2718, are also involved in the regulatory reprogramming of M. 

tuberculosis H37Rv to enable survival in the macrophage (356). One of the regulators, 

MAB_0115c, was orthologous to espR (Rv3849) which in M. tuberculosis H37Rv, is not only 

regulated by PhoP, but also regulates, amongst other virulence associated genes, the genes 

encoding the ESX-1 secretion system which is responsible for transporting a key virulence 

factors such as ESAT-6 protein which is involved in phagosomal rupture and immune 

modulation (337, 365). Given that the MABSC only encodes ESX-3 and ESX-4, EspR in the 

MABSC cannot be regulating the expression of ESX-1 or ESAT-6 which potentially explains 

why, in the RNA-seq analysis performed in this analysis, EspR is not found to be activated by 

PhoP, although this could be due to the secondary mutation (72). However, analysis in M. 

tuberculosis H37Rv has shown that EspR effects the regulation, both positively and 

negatively, of multiple cell wall associated genes and other potential virulence factors, 

including those also part of the regulons of PhoP and CRP; this suggests that MAB_0115c 

could also be regulating genes playing a role in pathogenesis and is further support for within 

host selection for variants in global regulators with the potential to enact large scale 

regulatory changes (365).   

 

MAB_3036c encodes a ribonucleotide reductase repressor (nrdR). Ribonucleotide 

reductases (RNRs) perform the critical function of catalysing the breakdown of 5’- di or tri-

phosphates into deoxynucleotide triphosphates (dNTPs) which are needed for DNA 

replication and repair (336). Three of the observed nonsynonymous SNPs fall within the cone 
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domain (Figure 46), which contains the binding site for either ATP or dATP, which when 

bound by NrdR maintains the repressor in a structure where it is able to bind DNA, although 

a more complex allosteric mechanism has also been proposed (275). Thus, it is possible that 

the three variants that were accumulated in this domain could potentially be affecting the 

binding of dATP or ATP, and consequently its function. Expression of RNRs is believed to 

vary in response to changing environmental conditions, such as nutrient and oxidative 

stresses, with derepression of RNRs aiding the recovery from DNA damage which provides 

further support for the within host selection for variants in a regulator responding to 

environmental cues (366). Investigations into the role of NrdR have shown that increased 

expression of NrdR results in decreased growth and fitness in E. coli, whilst over expression 

of RNRs in B. subtilis, when nrdR was experimentally KO, has been shown to induce 

stationary phase adaptive mutagenesis, resulting in the acquisition of mutations in genes that 

aid the organisms survival (366, 367). Contrastingly depression of RNRs in M. smegmatis did 

not confer a hypermutator phenotype or affect the growth rate (336). This fits with the 

hypermutator observations from this analysis, where none of the patients (AHL_C, 

SMRL_CG, SMRL_L) which accumulated a SNP in NrdR appeared to have acquired a 

hypermutator phenotype, although the number of SNPs accumulated by these patients is 

quite high, which could suggest that this interpretation is wrong and that a similar scenario as 

to what is seen in B. subtilis is occurring (Appendix table 3.2) (366).  Whilst further research 

is required to determine the impact of the variants on the function of NrdR, if they were to 

cause the same effect as the reduced growth and fitness phenotype displayed by E.coli then 

this could be evidence of M. a. abscessus adapting to persistence, whilst if the variants result 

in the stationary phase mutagenesis phenotype displayed by B. subtilis, it could be evidence 

of a mechanism used by M. a. abscessus to escape host defenses (366, 367).  

 

The final regulator, a tetR family regulator, MAB_1881c, is encoded just downstream of the 

FASII fatty acid biosynthesis pathway, which plays a role in pathogenesis as through this 

pathway key constituents of the Mycobacterial cell wall are synthesized (368). However, the 

regulator for this operon, mabR, is encoded by the adjacent CDS to the candidate gene, 

suggesting that it is unlikely that the candidate regulator is influencing this regulon, 

particularly as this operon is conserved within M. tuberculosis, and it is clear that the 

regulator of interest has either been inserted into M. a. abscessus ATCC19977 or deleted 

from M. tuberculosis H37Rv along with two other CDS annotated as conserved hypothetical 

proteins (Figure 47) (368). Consequently, the function of this regulator remains unclear.  
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Whilst the MABSC appears to predominantly be using changes in regulation to adapt to the 

host, there was also evidence of parallel evolution within genes involved in cell wall lipid 

biosynthesis and evidence of the emergence of antibiotic resistance over time within the 

host. Cell wall lipids are at the interface of host pathogen interaction and two genes, 

MAB_0173 (ubiA) and MAB_0189c (embC) involved in cell wall lipid biosynthesis were found 

to have accumulated significantly more SNPs than would have been expected by chance 

(Table 12). The functions of the M. tuberculosis H37Rv orthologs of these two genes, 

Rv3806 and Rv3793 respectively, suggest that there could potentially be overlap in the 

effects of acquiring mutations in these two genes. UbiA catalyzes a step in the synthesis of 

the sugar donor, DPA, which donates a sugar to Araf (the furanose ring form of D-

arabinose), which is a key constituent of both arabinogalactan and LAM, whilst EmbC, after 

an initial Araf molecule is bound to the lipomannan backbone, continues to extend the chain 

of Araf, resulting in the formation of LAM (338). A further step results in the addition of 

mannose residues to LAM, leading to the formation of mannose-lipoarabinomannan, which 

has been shown in M. tuberculosis H37Rv to potentially play a role in halting phagosome 

maturation (352). This suggests that the mutations acquired longitudinally in these genes 

could be associated with the interaction between M. a. abscessus and the host, although 

further research is required to determine their function in the MABSC and the consequences 

for their interaction with the host.  

 

Initially, the accumulation of variants in MAB_1915, a fatty acid CoA-ligase (FabD), 

suggested it could also be playing role in cell wall biosynthesis. However, it does not fall 

within the FASII operon in M. a. abscessus ATCC19977 (Figure 47), and nor is it orthologous 

to the fabD gene in this operon in M. tuberculosis H37Rv, which suggests it is not performing 

a role in this pathway and consequently it isn’t possible to associate the accumulation of 

variants in this gene with the biosynthesis of the mycolic acids in the mycobacterial cell wall. 

In addition, the genes flanking MAB_1915, fail to shed light on the possible function of this 

gene.  

 

Two cell wall biosynthesis genes which might have been expected to have accumulated a 

significant number of SNPs longitudinally were the genes that encode the GPLs as these are 

associated with the switch from a smooth to rough morphotype which has been association 

with virulence (160). Seven and eight nonsynonymous SNPs were accumulated in parallel in 

the genes, MAB_4098 and MAB_4099 respectively, however, the number of SNPs 

accumulated by these genes was not found to be significant (Appendix table 3.4, 3.5). This is 

likely to be due to the length of these genes, and the lack of synonymous SNPs accumulated 
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in parallel within them, resulting in very a high expected number of nonsynonymous SNPs. 

Whilst this is a limitation of this method and can result in false negatives, the lengths of these 

genes are exceptional and thus it is unlikely to be having a significant impact on the results.  

 

Acquisition of antibiotic resistance mutations has been shown to commonly occur within the 

CF lung given the long courses of antibiotics people with CF undertake. The MABSC is 

already one of the hardest infections to treat and resistance and adverse reactions to the 

only treatment protocol of an aminoglycoside, macrolide and one or more parenteral 

antibiotics are common (55). Thus it was not surprising to find mutations occurring in parallel 

in antibiotic resistance associated genes10, with many of the variants detected in 16s rRNA 

and 23s rRNA genes, causing aminoglycoside and macrolide  resistance respectively, having 

been described previously (Table 14) (313, 340, 341). Although potentially some novel 

variants causing resistance were identified (Table 14, in bold).  

 

Variants were also detected in MAB_4532c, which encodes Eis2. MAB_4532c, has recently 

been linked with antibiotic resistance due its upregulation by WhiB7, which is induced by the 

presence of the antibiotic amikacin (152). Thus the variants accumulated within this gene 

could be associated with antibiotic resistance. In M. tuberculosis H37Rv the eis gene, 

Rv2416c, which was found to be orthologous to MAB_4532c, has been linked with 

intracellular survival as well as being associated with kanamycin resistance (369, 370). 

Therefore it is possible that MAB_4532c could play a dual role as well. Further research is 

required to determine the role MAB_4532c is playing in the adaption of the MABSC to the CF 

lung.   

 

Interestingly, variants were also detected in erm(41), which causes inducible macrolide 

resistance, in three patients infected with M. a. abscessus lineages which have the full length 

erm(41) gene and consequently are resistant to macrolides, which makes the acquisition of 

variants in parallel within this gene unexpected (77, 339). However, the fact that two of the 

three patients, AUS_J and RHS_O,  also accumulated a SNP in 23s rRNA gene suggests 

that potentially these nonsynonymous mutations could be causing the loss of function of 

erm(41), similarly to the T28C mutation, which would explain the need for a mutation in 

another macrolide resistance associated gene (77, 339). Furthermore, both these isolates 

accumulated a SNP in the same position (P140S, P140R), suggesting that this could  

                                                

10 The 16s rRNA and 23s rRNA genes were not included in the statistical test for accumulation of a greater than expected 
number of snps but variants accumulated over time within these genes were recorded. 
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potentially be a previously undescribed variant that can cause the loss of function of erm(41). 

It is less clear what effect the variant accumulated in the third patient has, but the lack of a 

compensatory mutation in a gene conferring macrolide resistance suggests that it is unlikely 

to cause the loss of function of erm(41). 

4.5 Conclusions and Future Directions 

Overall this analysis has shown that there is strong evidence of parallel evolution of the 

MABSC within the host. Through this analysis it was possible to identify genes potentially 

playing a role in the adaptation of the MABSC to the CF lung. The MABSC was found to be 

adapting to the host through mechanisms commonly used by other pathogenic 

microorganism, including other CF pathogens. Evidence of the acquisition of a hypermutator 

phenotype was discovered, along with the detection of convergent evolution in genes 

associated with regulation, cell wall lipid biosynthesis and antibiotic resistance related genes. 

 

Particular attention was paid to the regulators, the majority of which responded to 

environmental cues emitted within the phagosome. Many of these regulators had been 

associated with the regulation of virulence genes in other pathogenic organisms, suggesting 

that this analysis has potentially uncovered key regulators of virulence genes in the MABSC. 

Further research is required to determine what genes are under the control of these 

regulators through which our understanding the genes involved in the pathogenesis of the 

MABSC could be greatly increased. The first attempt to characterize the MABSC PhoPR 

regulon was attempted in this analysis with the results suggesting that it regulates genes with 

similar functions to those under the control of PhoPR in M. tuberculosis H37Rv, although this 

analysis was confounded by the presence of a secondary mutation.  

 

Through this analysis genes potentially associated with the pathogenesis of the MABSC 

were uncovered, further research is required to validate the functions of these genes and 

determine whether any are promising drug targets. However, it is interesting to note that 

some of the candidates highlighted through this analysis, such as UbiA, and PhoP of PhoPR 

have been suggested before as good candidates for potential novel drugs or vaccines (371, 

372). 
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5. Investigating the epidemic of M. a. massiliense post-
surgical wound infections in Brazil  
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5.1 Introduction 

All three subspecies of MABSC are capable of causing opportunistic infections. Most 

commonly they cause pulmonary infections in those with underlying lung conditions and skin 

and soft tissue infections (SSTIs). Outbreaks of both pulmonary infections and SSTIs caused 

by the MABSC have been reported for decades. The majority of these outbreaks have been 

point source and on a small scale. However, there are a few exceptions, the outbreaks of 

pulmonary infections in CF patients in Papworth hospital in the UK and Seattle in the U.S, 

which were caused by indirect person to person transmission and the epidemic of post-

surgical wound infections in Brazil (70, 119, 130, 373). Whilst the outbreaks of pulmonary 

infections in the CF centers in the U.S and the U.K have been thoroughly investigated 

through WGS, leading to significant breakthroughs in the understanding of the MABSC, only 

a few isolates from the epidemic of post-surgical wound infections in Brazil have been 

sequenced (89, 91). 

 

The epidemic of post-surgical wound infections in Brazil began in the city of Belém in the 

northern state of Pará in 2004 (374). Over the following decade, over 2000 cases were 

reported in at least 15 states spanning geographically distant regions of Brazil, with the 

highest concentration of cases observed in Rio de Janeiro, where 1051 cases were reported 

between 2006-2007 (130, 373, 375-378).  

 

Molecular typing techniques found that isolates associated with the outbreaks were caused 

by M. a. massiliense. Partial rpoB sequencing of outbreak isolates from different locations 

revealed identical sequences and furthermore pulsed phase gel electrophoresis (PFGE) 

patterns from DraI digested DNA of isolates from different outbreak locations revealed 

identical patterns apart from a ~50kb band (130). Both results suggested that a single clone 

was responsible for the outbreaks in geographically distant regions in Brazil and that this 

clone may have adapted to thrive in this specific niche (130, 375).  

 

The WGS representatives of the epidemic lineage from Goiás, GO-06, and Rio de Janeiro, 

CRM-019 and CRM-020, were found to be closely related to each other and to isolates from 

the pulmonary infection outbreak that occurred in Papworth hospital in the UK (89, 91). 

However, the shorter genetic distance between the outbreak isolates from Rio de Janeiro 

and Papworth (reported as one SNP in (89)) in comparison to the genetic distance between 

the isolates from Rio de Janeiro and Goiás (reported as 75 SNPs) suggested that there may 
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be more diversity between the outbreak isolates from Brazil than originally thought and that 

potentially a single lineage was not responsible for outbreaks (89).  

 

On the other hand, epidemiological similarities were evident between the post-surgical 

wound infection outbreaks in Brazil. The vast majority of infections occurred after video-

assisted surgeries and specifically after surgeries in which the surgical tools had been 

disinfected through immersion of the equipment for 30 minutes in 2% glutaraldehyde (GTA) 

solution (130, 373, 375-378). The epidemic lineage was found to be tolerant to GTA solutions 

up to concentrations of 8% (131). Observations of poor practices, including inadequate 

cleaning and sterilization of surgical equipment and the re-use of disposable equipment in 

some hospitals where outbreaks occurred led to the hypothesis that the epidemic lineage 

may have been exposed to nonlethal levels of GTA resulting in it adapting to become GTA 

tolerant and giving the lineage a selective advantage over other NTM lineages in the surgical 

environment (374). Furthermore, the epidemic lineage was also found to be more virulent 

than the M. a. massiliense type strain CIP108297 (379).  

 

The GTA tolerance and increased virulence phenotypes of this lineage have yet to be fully 

explained, although potential candidates have been identified. A 56,264bp incP-1β circular 

plasmid, pMAB01, was identified in an isolate, INCQS 00594, from the initial outbreak in 

Belém (87). pMAB01 was predicted to encode 64 CDSs, with two variable regions encoding 

a mercury resistance transposon and streptomycin, kanamycin and sulfonamide resistance 

genes as well as a qacEdelta1 gene, which potentially encodes a protein that can export a 

range of drugs and biocides (87). Whist pMAB01 might be associated with the increased 

virulence of this lineage, it has been shown not to be responsible for the GTA tolerance 

phenotype of the epidemic lineage. In their investigation into the GTA tolerance phenotype, 

Lorena et al. used outbreak isolates with pMAB01 both present and absent and still observed 

the GTA tolerance phenotype in all the outbreak isolates (131). Consequently, this 

phenotype remains unexplained. Defects in porins have been suggested as a possible cause 

as GTA is believed to act by forming cross-links with proteins on the cell membrane and 

defects in porins were found to be responsible for the GTA tolerance of M. chelonae (131, 

287). Genes with known virulence properties in other Mycobacteria, for example MmpL 

proteins, were found to have accumulated 86 unique SNPs in the outbreak isolate CRM-

0020 in comparison to the Papworth and Seattle outbreak isolates (91). These SNPs could 

potentially be associated with the adaption of this lineage to increased virulence as well as to 

its adaption to the specific niche it is flourishing in in Brazil.  
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It also remains unclear how the lineage has spread to multiple hospitals, in multiple states 

throughout Brazil because in all the outbreaks the source was not identified (130, 373, 375-

378). Surgeons moving with their own surgical equipment between different hospitals, cities 

and states has been proposed as a possible vehicle for transmission as has the possibility 

that the lineage had been disseminated to the geographically distant locations through 

contamination of non-activated GTA solution and the possibility that the lineage spread to 

distant outbreak locations through aquatic environments (131, 373).  

 

Therefore, the aim of this project was to use WGS to understand the spread of the epidemic 

lineage throughout Brazil and to use comparative genomic techniques to determine how the 

epidemic lineage has adapted to the surgical niche, specifically its adaption to GTA 

tolerance. 

5.2 Materials and Methods 

5.2.1 Collection, DNA extraction and sequencing of post-surgical wound infection 
isolates from Brazil 

Dr Sylvia Leão orchestrated the collection of 190 samples associated with the epidemic of 

post-surgical wound infections in Brazil, with the samples cultured from swabs taken from 

skin lesions or biopsies. The samples were collected from 9 different states between 2004 

and 2010 (Appendix table 4.1). Vinicius calado Nogueira de Moura extracted the DNA from 

this collection using the following method: The isolates were grown in liquid Middlebrook 7H9 

medium supplemented with OADC (oleic acid, alumin, dextrose and catalase) (Becton 

Dickinson). DNA from single colonies was extracted using the QIAamp DNA mini kit 

(Quiagen) according to the manufacturer’s recommendations.  

 

DNA sequencing was carried out using the Illumina Hiseq 2500 platform. Illumina libraries 

were constructed with a 450bp insert size according to Illumina protocols and used to 

generate 125bp paired-end sequences. One isolate was found to be contaminated and one 

isolate failed the initial round of sequencing. Both sequences were subsequently discounted 

from further analysis. In total 188 isolates associated with the epidemic of post-surgical 

wound infections in Brazil were analysed.  

5.2.2 Mapping, de novo assembly and annotation 

The reads of the 188 isolates from the epidemic of post-surgical wound infections in Brazil 

and the 526 isolates sequenced for Bryant et al’s (2016) global population study were 
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mapped to the M. a. abscessus type strain ATCC19977, using BWA-MEM (73, 215). 

Variants were called using Samtools (v1.2) and Bcftools (v1.2) with the parameters 

described in chapter 7.3 (216).  

 

To gain a higher resolution understanding of the genetic diversity between the Brazilian 

epidemic isolates and their closest relatives in the global population, including publicly 

available isolates previously sequenced from Brazil, CRM-0020 and GO-06, and the UK, 

47J26, a reference was selected from the newly sequenced isolates. An isolate sampled 

from the initial outbreak in Belém, Pará, BRA_PA_42, was selected as the reference 

because the de novo assembly consisted of two contigs, with the chromosome present in a 

single contig. In total, the reads of 246 (Brazil: 188, publicly available: 3, closest relatives in 

global population: 55) isolates, were mapped, using BWA-MEM, to BRA_PA_42, with 

variants called via Samtools (v1.2) and Bcftools (v1.2) with the parameters described in 

section 7.3 and 7.4 (215).  

 

Draft genomes were generated and annotated for the 188 isolates sequenced from the 

Brazilian epidemic following the methods described in section 7.6 and section 7.7 (219). 

Where necessary the Prokka annotations of the genomes were supplemented by comparing 

the gene sequences against the Pfam, InterPro and PHAST databases (220, 224, 225, 227). 

5.2.3 Phylogenetic analysis 

From the alignment produced after mapping the 526 isolates representative of the MABSC 

global population and the 188 isolates from Brazil (n=714) to the M. a abscessus 

ATCC19977 reference genome. 326,792 variable positions were identified with SNP-sites 

(217). RAxML (v.8.2.8) was used to infer a maximum likelihood phylogenetic tree from the 

alignment of these variable positions, as described in section 7.5 (61).  

 

1,127 variable positions were identified with SNP-sites from the alignment produced after 

mapping the Brazilian isolates and the 58 isolates from the two clades in the global 

population most closely related to them to the Brazilian reference genome BRA_PA_42  

using the methods described in section 7.3 and 7.4 (217). A maximum likelihood phylogeny 

with 100 bootstrap replicates was inferred via RAxML (v.8.2.8) from these variable positions 

(61). 

 

To examine the diversity between the Brazilian epidemic isolates Minimum Spanning Trees 

(MST) were inferred using the goeBURST algorithm implemented in Phyloviz. This required 
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an alignment of the variable positions between the 188 Brazilian isolates when mapped to 

BRA_PA_42. This alignment was produced using BCFtools (v1.2) with variants called when 

the following parameters were met: a base call quality of greater than or equal to 10 and 

where at least four high quality reads supported alternative alleles (216). 197 variant sites 

were identified and assigned to 97 genotypes using the adegenet and poppr R packages 

(380, 381).  

5.2.4 Temporal analysis 

To determine whether there was a molecular clock within the Brazilian epidemic lineage, the 

phylogenetic root-to-tip distance was regressed against the sampling date, with the 

correlation examined with the phylogeny rooted to maximize r2, maximize signed r2 and 

minimize residual mean squares (382). Isolation dates were permuted 1000 times using a 

clustered permutation approach to account for the potential of confounding temporal and 

genetic structures (i.e the likelihood that closely related sequences have been sequenced at 

the same time) to obtain the statistical significance of the regression (382). This required a 

phylogeny inferred from the variable positions present in a recombination free alignment of 

the 173 Brazilian isolates where the day/month/year of isolation was available. This 

alignment was produced using Gubbins (383). The 144 variable positions present in the 

4,686,049 bp recombination free alignment were extracted using SNP-sites (217). The 

phylogeny was inferred using RAxML (v.8.2.8) (61).  

 

Bayesian Markov Chain Monte Carlo (MCMC) analysis, implemented using the BEAST 

(v.1.8.3) package, was used to estimate the date of emergence of the Brazilian epidemic 

lineage (384). BEAUTi was used to create the XML file required by BEAST from the 

recombination free SNP alignment of 173 Brazilian isolates (384). Three independent MCMC 

chains of 100 million states were run using a GAMMA site heterogeneity model with a 

relaxed log normal clock and constant population size model. The convergence after an 

initial burn-in period of 10%, the agreement between the three runs and determination of 

whether all effective sample size (ESS) values were greater than 200 were assessed using 

Tracer (v1.6) (385).  

5.2.5 Comparative genomic analyses 

Assemblies consisting of less than 100 contigs and with lengths that fell within 1.5 times the 

interquartile range were used to compare the genome sizes of the Brazilian lineage to the 

size of the three MABSC subspecies. Large scale insertion and deletions (indels) between 

the Brazilian lineage reference, BRA_PA_42, and representatives of the two clades most 
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closely related to the lineage in the global population were detected using blastn (v2.4.0)  

comparisons (386). The results were visualized using the artemis comparison tool (ACT) 

(297). The Prokka annotations of the gene content of the indels was enhanced by comparing 

the gene sequences with the Pfam (v.3.1.0), InterPro (v.68) and PHAST databases and 

blastn comparisons against the non-redundant nucleotide sequence database (224, 225, 

227). GO-terms were assigned using BLAST2GO (233).  

5.2.6 Analysis of the second contig in the new Brazilian reference genome 
BRA_PA_42 

The Brazilian lineage reference genome selected from the newly sequenced isolates, 

BRA_PA_42, consisted of two contigs, with the chromosome present in a single contig. The 

second contig was compared using blastn to the non-redundant nucleotide sequence 

database. To test the hypothesis that this second contig was a novel plasmid, the potential 

circularity of this contig was examined by looking at read pair information, whilst the prokka 

annotation of the contig, supplemented by comparing the gene sequences against the Pfam 

(v.3.1.0), InterPro (v.68) and PHAST databases, was examined for core plasmid genes and a 

lack of core phage genes.  

 

The gene order of the Type VII secretion system (T7SS) encoded by the second contig was 

compared to the T7SSs recently described by Ummels et al. (2014) and Dumas et al. (2016) 

and to the chromosomal ESX-5 T7SS encoded by Mycobacterium tuberculosis H37Rv (387, 

388). The average nucleotide identity (ANI) and average amino acid identity (AAI) between 

these T7SSs was calculated using blastn and tblastx, with the following parameters: an E-

value of less than or equal to 0.00001 and match length greater than or equal to 100. 

 

The prevalence of both this second contig and the plasmid previously found to be associated 

with the Brazilian post-surgical wound infection epidemic, pMAB01, in the MABSC global 

population was determined by mapping the reads of the 714 isolates (global population: 526, 

Brazil: 188) to this contig and the reference of pMAB01 (CP003376.1) with BWA-MEM (87, 

215). The presence or absence of the plasmid across all the isolates used in this study was 

also determined by comparing the assemblies to a local blastn database built from the 

nucleotide sequences of the second contig in BRA_PA_42 and pMAB01.  
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5.2.7. Investigating mycobacterial porins as the genetic basis of the GTA resistant 
phenotype displayed by the Brazilian lineage 

5.2.7.1 Identifying msp porins in M. a. abscessus ATCC19977 

Mycobacterium smegmatis porins (msp) have been shown to be responsible for resistance to 

aldehyde based disinfectants in M. chelonae and M. smegmatis (287). To test the hypothesis 

that these porins could be playing a role in the GTA resistant phenotype of the Brazilian 

lineage a tblastx comparison was carried out, and visualized using ACT, between M. a. 

abscessus ATCC19977 and M. chelonae ATCC 35752 to identify the porin region 

corresponding to the mspA-C loci in M. chelonae (MCH_4689c, MCH_4690c and 

MCH_4691c) that has been associated previously with resistance to aldehyde disinfectants 

(287). The CDSs MAB_1080 and MAB_1081 were found to have high AAI (96%) with the 

three M. chelonae porins and occurred in the same wider sequence context. 

5.2.7.2 Investigating the genome organisation at the mspA/mspB porin locus  

To investigate the genome organization at the locus encoding mspA (MAB_1080) and mspB 

(MAB_1081) across the MABSC global population, the reads of the 71511 isolates that make 

up the MABSC global population dataset including the Brazilian epidemic lineage were 

mapped, using BWA-MEM, to the 3,803 bp region encoding the mspA and mspB porin genes 

in M. a. abscessus  ATCC19977 (215). The coverage over the porin locus containing the 

mspA and mspB genes was determined for each isolate using Samtools v1.3, with a 

mapping quality threshold of 20 (probability mapped to correct location 99%) and base call 

quality of 30 (base call is 99.9% accurate) (216).  

 

Presence of both msp-like porin genes at this locus was determined by an average depth of 

coverage greater than eight in the 436bp intergenic region between mspA and mspB and an 

average depth of coverage greater than eight over both mspA and mspB. Deletion of both 

msp-like porin genes at this locus was determined by the absence of coverage (average of 

less than eight reads mapped) in the intergenic region between mspA and mspB and a 

reduction in depth of coverage greater than 20 between the 1000bp region upstream of the 

start of the porin loci and the 94bp signal peptide region of mspA.  The presence of a single 

msp-like porin gene at this locus was determined by absence of coverage in the intergenic 

region between mspA and mspB (average of less than eight reads mapped) and no 

                                                

11 The Brazilian isolate that failed the initial round of sequencing was re-sequenced and subsequently included in the analysis 
of the porin genes in the Brazilian epidemic lineage 
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reduction in depth of coverage greater than 20 between the 1000bp flanking region upstream 

of the porin loci and the 94bp signal peptide region of mspA.  

5.2.7.3 Generation of porin knock-out mutants 

The following work was carried out by Vinicius calado Nogueira de Moura. The 

Mycobacterium abscessus subspecies massiliense type strain CIP108297 was grown at 37℃ 

in Middlebrook 7H9-OADC broth (BD, Difco) supplemented with 0.005% Tween 80, Mueller-

Hinton II broth (BD, Difco), minimal Glycerol-Alanine-Salt (GAS) medium supplemented with 

0.05% tyloxapol (pH 6.6), or on Middlebrook 7H11-OADC agar (BD, Difco). Kanamycin 

(Kan), hygromycin (Hyg) and streptomycin (Str) were added to final concentrations of 400, 

1,000 and 200 μg/ml respectively. The strain used for cloning was Eschericha coli DH5α. 

This was grown in LB Lennox (BD, Difco) medium at 37℃.  

 

The orthologs of mspA and mspB in M. a. massiliense CIP108297, MMCCUG48898_0905 

(mspA) and MMCCUG48898_0906 (mspB) were inactivated using allelic replacement via a 

recombineering system. The mycobacteriophage Che9c recombineering proteins, Gp60 and 

Gp61, were expressed, under the control of an acetamide-inducible promoter, from the 

replicative plasmid pJV53-XyLE (316, 389). M. a. massiliense CIP108297 colonies harboring 

the acetamide-induced plasmid pJV53-XyIE were electro-transformed with linear allelic 

exchange substrates encoding the mspA and mspB loci. Double-crossover mutants were 

isolated on Str-containing medium. To delete the mspA locus, a linear allelic substrate was 

generated by bookending the streptomycin-resistance cassette from pHP45Ω with 571 bp of 

the DNA upstream of the internal Xmnl restriction site of mspA and 500 bps of the DNA 

downstream of this site. Similarly, to delete the mspB locus, a linear allelic substrate was 

generated by bookending the streptomycin-resistance cassette with 571 bp of the DNA 

upstream of the internal Xmnl restriction site of mspB and 500 bps of the DNA downstream 

of this site. To delete both mspA and mspB, the linear allelic substrate consisted of the 

streptomycin cassette bookended by the 571bp of DNA upstream of the Xmnl site of mspA 

and the 357bp of DNA downstream of the Xmnl site of mspB.  

 

To complement the knock-out mutants the replicative plasmids pOMK-mspA, pOMK-mspB 

and pOMK-mspAB were constructed by cloning mspA, mspB or the 2.1 kb region encoding 

both mspA and mspB into the multicopy plasmid pOMK (389). The porin genes are 

expressed by their own promoter in these complementation constructs. 
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5.2.7.4 Glutaraldehyde tolerance assay 

The susceptibility of the M. a. massiliense CIP108297 wild-type, mpsA knock-out, mspB 

knock-out, mspAB knock-out and their respective complemented isolates, to commercial 

GTA was determined by performing suspension tests following the protocol used by de 

Moura et al. (389). This work was performed by Vinicius calado Nogueira de Moura 

 

5.3 Results 

5.3.1 A single, recently emerged lineage is responsible for post-surgical wound 
infection outbreaks throughout Brazil  

The Brazilian isolates formed a single clade, to the exclusion of all other MABSC isolates, 

within the global population phylogeny (Figure 48A), confirming that the epidemic was 

caused by a single lineage (Herein referred to as the Brazilian lineage). The clade was most 

closely related to the recently DCC in M. a. massiliense subspecies which encompasses the 

causal lineages of the Papworth and Seattle outbreaks (73) agreeing with previous 

descriptions of the position of the Brazilian lineage in the MABSC global population (89, 91). 

 

The higher resolution phylogeny, inferred from the variant positions identified after mapping 

the Brazilian lineage, the isolates that made up the DCC and the outlying clade to 

BRA_PA_42, showed that there were 149 SNPs between the last common ancestor of the 

Brazilian lineage and its shared common ancestor with the DCC (Figure 48B).  It also 

showed that there was evidence of geographical and temporal structure within the Brazilian 

epidemic lineage (Figure 48B).  

 

Due to the temporal structure evident in the phylogeny shown in Figure 48B, root-to-tip linear 

regression analysis was performed to examine whether there was a temporal signal within 

the Brazilian lineage (382). A significant temporal signal was detected, using a phylogenetic 

root satisfying three separate criteria, within the Brazilian epidemic lineage (Figure 49) and 

therefore a more accurate estimation of the substitution rate and date of emergence of the 

lineage was determined using BEAST (384). This estimated that the Brazilian lineage 

emerged in 2003 (2002.7; upper 95%: 2003.8, lower 95%: 2001.3), just prior to the initial 

outbreak in Pará in 2004 (Figure 50) (374). The mean substitution rate was estimated to be 

8.25×10−07 SNPs/site/year (upper 95 %: 1.07×10−06, lower 95 %: 5.31×10−07) which equates to 

approximately 3.8 SNPs/genome/year (2.4–5.0 SNPs/genome/year), similar to that 
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previously measured for a DCC within M. a. abscessus (3.5×10−7 SNPs/site/year (1.83x10–

5,11×10−7)) (73).  

 

 

Figure 48: A single lineage of M. a. massiliense is responsible for the epidemic of 
postsurgical wound infections in Brazil 

A) Midpoint rooted maximum likelihood phylogeny of the Brazilian epidemic lineage in the 
context of the Mycobacterium abscessus species complex global population. The Brazilian 
isolates form a single clade (light blue), closely related to the M. a. massiliense DCC.   
B) Maximum likelihood phylogeny of the Brazilian outbreak lineage, the closely related DCC 
rooted to an outlying clade. The metadata columns show that the Brazilian outbreak lineage 
isolates cluster by state and year and show the presence (red) and absence (blue) of the two 
plasmids associated with this lineage, pMAB01 and pMAB02. 
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Figure 49: Significant temporal signal detected within the Brazilian epidemic lineage 

Linear regression plots of the phylogenetic root-to-tip distance against sampling dates. The 
dates were randomly permuted, using clustered permutation, 1000 times to determine the 
significance of the correlation. Each plot shows the correlation between the root-to-tip distance 
and the sampling date when the phylogeny was rooted A) to maximise r2 B) to maximise signed 
r 2 and C) to minimise the residual mean squares of the model. 
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Figure 50: Brazilian lineage emerged in 2002, just prior to the initial outbreak in Belem 

Maximum clade credibility tree of the Brazilian lineage inferred from the 27,003 trees  produced 
by BEAST. The emergence of lineage was estimated by BEAST to be approximately 2003. The 
colors represent the state from which the isolate was collected.  

 

5.3.2 Onward spread throughout Brazil 

Geographical clustering was also evident within the phylogeny shown in Figure 48B. As this 

suggested the Brazilian epidemic of post-surgical wound infections was not caused by a 

point source outbreak MSTs were constructed to determine the potential transmission route 

of the Brazilian lineage between different states within Brazil. The MSTs, shown in Figure 51, 
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show that the state in which the original outbreak occurred, Pará, acts as the main hub for 

transmission throughout the epidemic period. Transmission of the lineage from Pará 

potentially seeded the subsequent outbreaks in Goiás (2006), Mato Grosso (2006), Rio 

Grande do Sul (2007) and Amazonas (2010). There is also evidence that a transmission 

event occurred between Pará and Paraná, however, the majority of cases in Paraná appear 

to have been seeded by a transmission event from Rio de Janeiro. Whilst a transmission 

event from Pará in all likelihood introduced the lineage into Espírito santo (2006-2007) and/or 

Rio de Janeiro (2006-2007) it is not possible to determine which location it was introduced 

into first. Similarly, it is unclear whether a transmission event from Pará or Goiás seeded the 

outbreak in São Paulo.  
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Figure 51: Brazilian epidemic lineage spread to geographical distant parts of Brazil via 
several waves of transmission out of Pará 

Minimum spanning trees (MSTs) showing the transmission route supported by the genetic data. 
The node sizes represent the number of isolates. The nodes are colored according to the state 
from which the isolate was collected.  Open circles represent isolates with a known location, but 
the date of collection of the isolate was unknown.  The MSTs imply that transmission events 
from Pará introduced the epidemic lineage to Goiás, Mato Grosso and either Rio de Janeiro or 
Espirito Santo in 2006, Rio Grande do Sul and Paraná in 2007 and Amazonas in 2010. The 
outbreak in São Paulo in 2008 was seeded either from Goiás or Pará. A transmission event 
from Rio de Janeiro to Paraná in 2007 is shown to be responsible for the majority of cases in 
this region. 
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5.3.3 Large scale deletions characterize the Brazilian epidemic lineage and suggest it's 
undergone adaptation to a novel niche 

The genetic data presented in this study and epidemiological investigations presented in 

previous studies both suggest that a single lineage has spread to multiple different states in 

Brazil, which implies that this lineage may have adapted to gain a selective advantage in the 

Brazilian surgical niche (130). This in part has been proved by the identification of the GTA 

resistance phenotype displayed by this lineage (131). Blastn analysis between 

representatives of the Brazilian lineage, the DCC and the outlying clade showed that 

Brazilian lineage had incurred 14 deletions (Figure 52), however only two of these deletions 

were unique to the Brazilian lineage. This led to the hypothesis that the Brazilian lineage had 

potentially undergone reductive evolution and therefore the genome sizes of the Brazilian 

lineage were compared to the genome sizes of the isolates that make up the rest of the 

global population grouped by subspecies. Figure 53 shows that the Brazilian lineage was on 

average 298,431 bps smaller than the average genome size of the three subspecies. As the 

smaller genome size was potentially indicative of reductive evolution and could represent the 

adaption of the lineage to a novel niche, the CDS content of the two deletions that had only 

occurred in the Brazilian lineage was investigated to determine the potential functions lost by 

the lineage. The deletion, del_12078_1#71_01025_01041, consisted of 17 CDSs, with a 

functional annotation, reported in appendix table 4.2, possible to predict for seven. The 

deletion, del_12078_1#71_02602_02653, consisted of 52 CDS, with the functional 

annotation predicted for 49, reported in appendix table 4.3. Neither deletions were found to 

encode CDSs with significant nucleotide similarity to known phage genes in the PHAST 

database. However, del_12078_1#71_02602_02653 shared 89% ANI to the previously 

described insertion sequence ISMab1 (85).  

 

GO-term analysis showed that del_12078_1#71_02602_02653 encoded 13 CDSs involved 

in oxidation and reduction processes and that nine CDSs were associated with metabolic 

processes. Three of the 17 CDSs encoded by del_12078_1#71_010205_01041 had GO-

term functions suggesting they played in role in DNA integration processes, whilst seven 

were predicted to be involved in DNA-binding processes. The possible function of the 

remaining six CDSs present in this deletion could not be predicted.  
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Figure 52: Large scale deletions characterize the Brazilian lineage 

Blastn comparisons between the Brazilian lineage reference genome, BRA_PA_42 and two 
representatives of the closely related dominant circulating clone and a representative of an 
outlying clade. 14 deletions were detected to have occurred in the Brazilian lineage, but only 
two, labelled, had been deleted solely in the Brazilian lineage. 
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Figure 53: Brazilian epidemic lineage has a smaller genome size than the average for 
the MABSC 

Boxplots comparing the genome sizes of the three subspecies (M. a. abscessus (red): 352, M. 
a. massiliense (purple): 130, M. a. bolletii (green): 30) to those of the Brazilian lineage (blue). 
The borders of the boxplots represent the 25th and 75th percentile, the bold line represents the 
median genome size and the whiskers mark the 5th and 95th percentile. The median size of the 
Brazilian lineage falls between the 5th and 25th percentile for M. a. massiliense and below the 
5th percentile for M. a. abscessus and M. a. bolletii, suggesting it is markedly smaller than the 
majority of MABSC lineages. 
 

 

5.3.4 A second novel plasmid, pMAB02, is associated with the Brazilian epidemic 
lineage 

There was also evidence that the Brazilian epidemic lineage had adapted to a novel niche 

through the gain of genetic material, with the presence of the previously described incP-1β 

plasmid, pMAB01, and a potentially novel 95,804 kb plasmid, identified in BRA_PA_42 (87). 

The nucleotide sequence of this potentially novel plasmid, the second contig in the reference 

genome BRA_PA_42, when compared against the non-redundant nucleotide sequence 

database was found to share 99% nucleotide identity with a query coverage of 100% to a 

sequence described as Mycobacterium phage Adler (KC960489.1). However, the presence 

of core plasmid genes such as parA, parB, traI and traM and a lack of core phage genes 

(appendix table 4.4) as well as evidence from read pair information that it was circular 

suggested that this contig was most likely a plasmid, which was subsequently designated 

pMAB02. 
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The plasmids, pMAB01 and pMAB02, were found to differ in their presence both within the 

Brazilian epidemic lineage and across the global population. pMAB01 was present in 62% 

(117/19012) of the Brazilian isolates and no further isolates in the global population (Figure 

48B, Figure 54A). Figure 48B showed that there was potentially evidence of geographical 

loss of pMAB01, with a sub-clade consisting of only isolates from Rio Grande do Sul all 

having lost the plasmid. pMAB02 was present in 99% of the Brazilian isolates and only five 

other isolates in the global population (Figure 48B, Figure 54A). GO-06, marked in Figure 

48B, was the only isolate from Brazil found not to contain pMAB02, however, this isolate was 

re-sequenced in this study (BRA_GO_06) and the plasmid was found to be present.  

 

The presence of pMAB02 in all the isolates from Brazil suggested it could be conferring a 

selective advantage upon the lineage, therefore the gene content of the plasmid was 

investigated for potential virulence determinants. pMAB02 encoded 121 CDSs (Figure 54B) 

but it was not possible to predict the function of 89 of the CDSs. However, included amongst 

the 32 CDS for which it was possible to predict a function were plasmid partitioning proteins, 

parA and parB, and further genes involved in conjugation (appendix table 4.4). Furthermore, 

a complete T7SS was encoded by pMAB02 (Figure 54B). Gene order comparisons between 

the pMAB02 T7SS and the T7SSs encoded by M. a. bolletii 50 594 plasmid 2, 

Mycobacterium marinum plasmid pRAW and the chromosomally encoded ESX-5 T7SS 

found on M. tuberculosis H37Rv showed that the pMAB02 shared most similarity to the 

recently described ESX-P1 T7SS, that had originally been identified on M. marinum plasmid 

pRAW (Figure 54C) (387). No nucleotide similarity (i.e no blastn hits were returned with an e-

value less than the cutoff of 0.00001) was detected between the T7SS encoded by pMAB02 

and these T7SSs. However, the average amino acid identity (AAI) between the pMAB02 

T7SS and the T7SSs encoded by M. a. bolletii 50 594 plasmid 2, Mycobacterium marinum 

plasmid pRAW and the chromosomally encoded ESX-5 T7SS was calculated to be 36%, 

38% and 37% respectively.  
 

                                                

12 188 isolates sequenced in this study and two publicly available isolates, GO-06 and CRM-0020 
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Figure 54: A second novel plasmid encoding a type VII secretion system present in the 
Brazilian epidemic lineage 

A) Presence (red) and absence (blue) of the plasmids, pMAB01 and pMAB02, across the 
MABSC global population. B) Plasmid map of the newly described pMAB02. Genes associated 
with plasmid mobility (green) and replication (blue) and the T7SS (red) are highlighted. C) Gene 
order comparison between the T7SS encoded by pMAB02 and those encoded by either other 
Mycobacterial plasmids or other Mycobacterial chromosomes. The T7SS has the most similar 
gene order to the T7SS encoded by pRAW. 
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5.3.5 Variation in the genome organization at the mspA/mspB porin locus in the 
Brazilian epidemic lineage 

Defects in porin genes have been associated with biocide resistance in other Mycobacterium 

species (287). Given that the GTA tolerance phenotype of the Brazilian epidemic lineage 

remains unexplained, with pMAB01 having been found not to be associated with this 

phenotype and no likely candidates on the novel plasmid pMAB02, the two msp-like porins, 

MAB_1080 and MAB_1081, that were shown through tblastx analysis to share 96% AAI with 

the msp porins associated with aldehyde based disinfectant resistance in M. chelonae and to 

be encoded in the same sequence context, were investigated (87).  

 

The reference porin region (1093346bp to 1097148bp) extracted from M. a. abscessus 

ATCC19977 included the two msp orthologs and 1000bp flanking regions up and down 

stream. The resulting reference was 3,803bps in length. MAB_1080 consisted of 672bps and 

223 amino acids whilst MAB_1081 consisted of 669bps and 222 amino acids. 

 

Analysis of the depth of coverage of the mapped reads over the mspA and mspB porin locus 

showed that of the 526 isolates associated with pulmonary infections, 469 isolates encoded 

two msp-like porin genes at this locus (Figure 55, Figure 56A), 54 encoded a single fusion 

msp-like porin gene (Figure 55, Figure 56B) and three isolates encoded no msp-like porin 

genes at this locus (Figure 55,  Figure 56C). A single msp-like porin gene, a fusion of mspA 

and mspB, was observed in 180 of 189 isolates associated with the post-surgical wound 

infection epidemic in Brazil, the remaining 9 isolates encoded two msp-like porin genes at 

this locus (Figure 55). 
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Figure 55: A fusion of mspA and mspB porin genes has occurred in the majority of 
isolates from Brazil  

The maximum likelihood phylogenetic tree of the MABSC global population with the metadata 
column representing the number of msp-like porin genes encoded at the mspA/mspB porin 
locus. The majority of isolates in the MABSC global population encoded two msp-like porins at 
this locus. A deletion of a porin at the mspA/mspB porin locus has occurred in the majority of 
isolates from Brazil. 
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Figure 56: Variation observed across the MABSC global population at the mspA/mspB 
porin locus 

Blastn comparisons, visualized with EasyFig (276), showing the genome variation seen across 
the MABSC global population at the mspA/mspB locus. A) this shows the genome organization 
at the locus when both mspA and mspB are present. B) This shows the genome organization 
at this locus after a recombination event has occurred resulting in the deletion of a porin. C) 
Represents an example of the deletion of both mspA and mspB.  
 

 

5.3.6 Deletion of a porin gene at the mspA/mspB porin locus is not responsible for the 
GTA tolerance of the Brazilian epidemic lineage 

Given that a porin gene was found to be deleted in 95% of the Brazilian epidemic isolates, M. 

a. massiliense CIP108297 porin knockout mutants and their respective complements were 

generated by Vinicius Calado Nogueira de Moura to test their susceptibility to GTA. All the 

knock-out mutants were found to be susceptible to GTA and to have similar GTA 

susceptibilities to that of their WT parent, with the complement mutants also presenting 

similar GTA susceptibilities (Figure 57). 
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Figure 57: Deletion of a porin not responsible for the glutaraladehyde tolerance 
phenotype of the Brazilian epidemic lineage 

Number of colony forming units (CFUs) after suspension of M. a. massiliense CIP108297 WT, 
mspA KO, mspB KO,  and Brazilian lineage isolate CRM-0019 in 0.5% and 2.2% GTA solution 
after five and 30 minutes respectively. The CIP108297 porin KO mutants were found to be 
susceptible to killing by GTA and mirrored the response of the WT at both concentrations tested, 
whist the Brazilian lineage representative CRM-0019 was shown to be able to survive exposure 
to both concentrations tested. Figure courtesy of Vinicius Calado Nogueira de Moura. 
 

 

5.4 Discussion 

An epidemic of post-surgical wound infections occurred in Brazil between 2004-2011 (130, 

373, 375-378). Molecular typing techniques suggested that a single M. a. massiliense clone 

was responsible for the post-surgical wound infection outbreaks that occurred in as many as 

15 states (130, 373). The outbreaks were epidemiologically linked by their association with 

video-assisted surgeries where the instruments were disinfected with GTA and the epidemic 

clone was shown to survive 30 mins exposure to GTA concentrations of less than 8% (131). 

The clone was also shown to be more virulent than the M. a. massiliense type strain 

CIP108297 (379). However, the sources of the outbreaks failed to be identified and it was 

unclear whether the epidemic was caused by a point source or whether it had been 

transmitted to the outbreak locations throughout Brazil. The molecular mechanism driving the 

GTA resistance phenotype was also unknown as were the genetic adaptations potentially 

driving the increased virulence displayed by this clone, although some candidates had been 

identified (91). Furthermore, at the commencement of this study only three isolates from this 

epidemic had been WGS and the results had suggested there was greater diversity between 

the outbreak isolates from different locations than suggested by molecular typing techniques 

(89, 91).  
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WGS can be used to understand the transmission dynamics of outbreaks and uncover the 

genetic adaptations driving life threatening pathogens. This study aimed to harness this 

ability by WGS isolates from nine outbreak locations spanning the duration and geographical 

breadth of the post-surgical wound infection epidemic to determine how the epidemic lineage 

spread throughout Brazil and how it had adapted to be more virulent and specifically GTA 

resistant. 

 

Phylogenetic analysis confirmed that a single lineage was responsible for the epidemic of 

post-surgical wound infections in Brazil, as had been suggested by molecular typing (Figure 

48A) (130). It also supported the close phylogenetic relationship between the epidemic in 

Brazil and the pulmonary infection outbreaks that occurred in CF centers in the UK and US 

(89, 91), which have subsequently been found to form part of a virulent and human 

transmissible M. a. massiliense lineage (DCC3) that has spread globally (73). The close 

relationship of the epidemic lineage to the DCC and the recent emergence of the lineage, 

estimated by BEAST to be c. 2003, suggests that a lineage that had been recently 

introduced into Brazil subsequently adapted to the Brazilian surgical niche (Figure 50), 

although it is not possible to definitively rule out the presence of the LCA of the epidemic 

lineage in the Brazilian environment. However, taking together the close relationship with the 

DCC, the recent emergence of the lineage and the knowledge that poor sterilization practices 

were observed in hospitals where outbreaks occurred, adds further weight to a previously 

suggested hypothesis that an M. a. massiliense lineage was introduced into the Brazilian 

hospital niche, exposed to non-lethal levels of GTA which led to the selection of a GTA 

tolerant lineage which subsequently spread throughout hospitals in Brazil (131, 373, 374, 

376, 378).  

 

How the epidemic lineage has spread across Brazil remains unclear. Contamination of 

aquatic environments, the movement of surgeons with their own equipment and the 

contamination of inactivated GTA have been proposed as possible mechanisms (373, 377). 

Drawing a definitive conclusion to this question is not possible due to the lack of any further 

epidemiological information for the samples used in this study. However, the genetic data 

does provide evidence suggesting the lineage was transmitted to the outbreak locations 

throughout Brazil as the phylogeny of the Brazilian lineage shows evidence of geographical 

and temporal structure (Figure 48B). This is more consistent with the idea of transmission 

than dissemination from a point source, which would be represented by a star shaped 

phylogeny with no geographical substructure. Furthermore, point source outbreaks would be 

expected to occur contemporaneously, thus, if a single source of contaminated GTA 
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distributed to the outbreak locations was responsible the outbreaks in different states would 

have been expected to occur at the same time.  

 

Whilst there is strong evidence that the lineage has been transmitted to the differing outbreak 

locations, the vehicle enabling the transmission is unclear. Evidence provided by the MSTs 

(Figure 51), which suggest that transmission events from Pará seeded the outbreaks in 

states as far away Rio Grande do Sul, which is approximately 4000km south of Pará, and 

shows a high level of genetic similarity between the outbreak sub lineages responsible, imply 

that it’s highly unlikely that the lineage spread from differing outbreak locations through 

aquatic systems as greater genetic diversity would be expected and it would require water 

systems linking very distant locations. Furthermore, it’s highly likely outbreaks not associated 

with video-assisted surgeries would be expected if contamination of hospital water supplies 

was involved in the dissemination of the epidemic lineage (376). Therefore, the genetic data 

fits best with the scenario of human mediated transmission of the epidemic lineage and 

combined with the evidence of surgeons moving between hospitals where outbreaks 

occurred and equipment from different laparoscopic surgical teams being cleaned together 

suggests that the movement of surgeons with contaminated equipment is likely to be 

responsible for the spread of the epidemic lineage (131, 373). 

 

It was not possible, due to incomplete sampling, to predict the transmission event that led to 

every outbreak. However, the MSTs did indicate that Pará acts as the main hub for 

transmission (Figure 51), as well as highlighting the role of this state as a continued source 

of the lineage throughout the duration of the epidemic and despite the outbreak in Pará 

ending in 2005 (374). This suggests that the lineage is capable of persisting in the hospital 

niche for significant periods of time, as was also observed in Rio Grande do Sul, and 

emphasizes the importance of maintaining sterilization practices and the risk of further 

outbreaks if these are not enforced (375). The combination of the ability to persist in the 

hospital environment and undergo long distance spread, as is evident by the transmission of 

the lineage between geographically distant states in Brazil, also has serious implications for 

the global spread of M. a. massiliense lineages.  

 

Phenotypic and molecular analyses have shown that the Brazilian epidemic lineage had 

begun to adapt to the Brazilian surgical environment, with the lineage found to be more 

virulent than M. a. massiliense CIP108297 as well as GTA resistant (131, 379). Previous 

WGS analysis showed unique indels occurred in the genomes from the Papworth pulmonary 

infection outbreak and Brazilian post-surgical wound infection epidemic which could also 
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suggest the lineage has adapted to a specific niche (89).The smaller genome size of the 

Brazilian epidemic lineage is potentially further evidence of this adaptation (Figure 53). 

Specifically, it could be evidence of reductive evolution, which has been observed in other 

Mycobacterial pathogens, Mycobacterium leprae and Mycobacterium ulcerans, although on a 

much longer time scale (205, 390). This process has been observed on a comparable time 

scale in the pathogens Salmonella enterica subsp. Enterica serovar Typhimurium and 

Salmonella enteritidis (391, 392). On the other hand, the median genome size of the 

Brazilian epidemic lineage falls between the 5th and 95th percentile of the genome sizes for 

M. a. massiliense, and therefore it could be argued that the reduction in the genome size of 

the Brazilian lineage does not exceed the variation expected between M. a. massiliense 

lineages and consequently could suggest that this is not evidence of reductive evolution. The 

fact that only two of the 14 deletions observed in the Brazilian lineage were unique to this 

lineage (Figure 52) could be seen as further evidence that reductive evolution hasn’t 

occurred.  

 

The function of the deletions incurred by the Brazilian lineage were predicted using GO-term 

analysis. Del_12078_1#71_02620_02653 had 13 CDSs with functions related to oxidation-

reduction processes and nine CDSs with functions associated with metabolic processes, 

suggesting that it may play a role in the degradation of an environmental metabolite, which in 

turn could be seen as evidence that the Brazilian lineage is losing genetic material it no 

longer requires in its new niche (Appendix table 4.3, table 4.4). However, experimental 

analysis is required to conclusively determine the function of both the deletions that occurred 

uniquely in the Brazilian lineage and in turn gauge the strength of the evidence they provide 

in terms of how the Brazilian lineage is adapting to its new niche.  

 

The gain of genetic material is also a mechanism by which bacteria adapt to new niches. 

Two plasmids, pMAB01 and pMAB02, are harbored by the majority of isolates associated 

with the post-surgical wound infection epidemic in Brazil and only a few other isolates in the 

MABSC global population (Figure 48B, Figure 54A), suggesting these plasmids may be 

playing a role in the adaption of this lineage. There is evidence that pMAB01, which is 

conjugative and encodes resistance to antibiotics, mercury and quaternary ammonium 

compounds, was lost in specific geographical regions (Figure 48B) (87). However, this is 

probably due to loss of the plasmid during culture as the isolates from Goiás are known to 

have harbored pMAB01 in previous analysis and spontaneous curing of pMAB01 has been 

observed in Brazilian lineage isolates (130, 373, 377). pMAB02 was found to be encoded by 

all the Brazilian isolates sequenced in this study and just five other isolates in the global 
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population (Figure 54A). This mobile element has been identified from the Brazilian lineage 

before, both as Mycobacteriophage Adler and in all likelihood the three uncharacterized 

contigs in the assembly of CRM-0020 made up of mainly hypothetical proteins described by 

Tettelin et al. 2014 (91). However, firstly the gene content, such as the presence of plasmid 

mobility genes traI and traM and plasmid replication genes parA and parB (Figure 54B) and 

secondly, the read pair evidence, suggest the second contig in BRA_PA_42 is a circular 

plasmid. Furthermore, its co-occurrence with pMAB01, which encodes a complete type IV 

secretion system and has been shown to be conjugative, suggests it is potentially 

mobilizable (87, 393).   

 

The function of both pMAB01 and pMAB02 in the adaption of the Brazilian lineage has not 

been established. pMAB01 encodes multiple resistance genes suggesting that it could play a 

significant role in an opportunistic pathogen, although it has been shown to not be 

responsible for the GTA resistant phenotype of the Brazilian epidemic lineage. It was only 

possible to predict a function for 32 of the 121 CDSs encoded by pMAB02, although it was 

found to encode a complete T7SS (Figure 54B).  

 

T7SSs play a critical role in the pathogenicity of M. tuberculosis as well as other 

Mycobacterial pathogens (394). There are five types of chromosomally encoded T7SSs, 

labelled ESX-1 to ESX-5, encoded by various diverse Mycobacteria. ESX-1 and ESX-5 

specifically are associated with host-pathogen interactions and escape from the phagosome, 

whilst ESX-3 is involved in iron and zinc acquisition (394-398). However, plasmid encoded 

T7SS have only recently been described (387, 388). Whilst there is nearly complete gene 

synteny between the T7SS encoded by pRAW, a plasmid harbored by M. marinum (Figure 

54C), the AAI between the T7SS on pMAB02 and the others shown in Figure 54C ranged 

between 36% and 38% suggesting they diverged from one another a significantly long time 

ago. The T7SS encoded by pRAW has been shown to play a part in a novel conjugation 

mechanism, which could be a possible function of the T7SS encoded by pMAB02, although 

pMAB02 could also be mobilizable due to the presence of pMAB01, as previously discussed 

(387). It is also possible, given the increased virulence and GTA resistance phenotypes 

displayed by the Brazilian epidemic lineage that the T7SS system is playing a role in the 

expression of these phenotypes (379). On the other hand, the presence of pMAB02 in five 

other MABSC global population isolates (Figure 54A) suggests that, particularly in the case 

of the increased virulence phenotype, this is unlikely as the DCC closely related to the 

Brazilian epidemic lineage has also been shown to display increased virulence and only two 
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of the DCC isolates harbour pMAB02 (73). Experimental analysis is required to fully 

determine the role pMAB02 is playing in the adaptation of the Brazilian epidemic lineage. 

 

The ability of the Brazilian epidemic lineage to survive exposure to GTA provided it with the 

selective advantage that enabled it to thrive in the Brazilian surgical niche. However, the 

molecular mechanism responsible for its resistance is unknown. Whilst pMAB01 has been 

shown not to be responsible for this phenotype, despite the presence of a known biocide 

resistance gene, no other analysis has been done to find the cause of this phenotype (87). 

With the current understanding of the gene content of pMAB02 it is difficult to argue that it is 

responsible for the GTA resistance phenotype. Therefore, changes in the chromosome were 

investigated as possible candidates to explain the GTA resistance and specifically porins 

because they have been associated with GTA resistance in M. chelonae (131, 287). The 

initial observation of the deletion of a porin gene in 180 of 189 Brazilian epidemic lineage 

isolates (Figure 55) showed a change in the porin region had occurred and suggested, given 

that porins were responsible for GTA resistance in M. chelonae, they potentially could be 

responsible in this lineage of M. a. massiliense. On the other hand, given the GTA resistant 

phenotype was evident in all the Brazilian epidemic lineage isolates tested, the fact that nine 

isolates from this lineage were found to encode both mspA and mspB (Figure 55) hinted that 

potentially the porins were not responsible. This was shown to be the case when the growth 

of M. a. massiliense CIP108297 WT, CIP108297 mspA KO, CIP108297 mspB KO and the 

Brazilian lineage isolate, CRM-0019, in 0.2% and 2.2% GTA solution was tested and all the 

isolates bar the epidemic isolate from Brazil were found to be susceptible (Figure 57). 

Therefore, porins are not responsible for the GTA resistance phenotype in the Brazilian 

epidemic lineage and thus either pMAB02 or a different chromosomal change must be 

responsible for this phenotype.  

5.5 Conclusions and Future Directions 

In summary, WGS of isolates associated with the post-surgical wound infection epidemic in 

Brazil has shown that a single lineage of M. a. massiliense is responsible. The lineage is 

closely related to a DCC, which when taken together with the estimated emergence of the 

epidemic lineage in 2003 and the poor sterilization practices observed suggests that a 

lineage recently introduced into Brazil was exposed to non-lethal levels of GTA, adapted to 

become GTA resistant and subsequently spread throughout hospitals in Brazil, with the 

genetic data suggesting that the lineage was transmitted to these locations as opposed to 

being spread through water systems or contaminated inactivated GTA. Large chromosomal 

deletions and the presence of a second novel plasmid suggested that the lineage has 
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adapted to a novel niche, although further experimental analysis is required to link these 

observations to the known virulence and GTA resistance phenotypes of the epidemic 

lineage, with a deletion of a porin shown not to be responsible for the GTA resistance 

phenotype.  

 

The evidence presented here of the rapid adaptation of globally circulating MABSC lineage 

to a specific novel hospital niche and its subsequent transmission to multiple geographically 

distant locations highlights the threat posed by the MABSC 
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6.1 A restatement of research aims 

The Mycobacterium abscessus species complex (MABSC) has emerged as an increasingly 

common opportunistic pathogen, with particularly serious consequences for people with 

underlying lung conditions such as Cystic Fibrosis (CF). The highly antibiotic resistant nature 

of the MABSC and the toxicity of the currently available treatment means that the outcome of 

MABSC infections are poor. Thus novel antibiotics are urgently needed.  

 

MABSC whole genome sequencing (WGS) analysis has already significantly enhanced our 

understanding of these opportunistic pathogens by showing that the majority of infections in 

people with CF are caused by isolates that form part of a few recently emerged, more 

virulent and globally disseminated lineages (Figure 6), as well as uncovering evidence that 

the MABSC is capable of indirect person-to-person transmission (70, 73).  

 

This thesis aimed to build upon this, with the broad aim of using WGS to investigate what 

genetic changes have occurred as the MABSC has evolved during its emergence as a more 

common opportunistic pathogen. Through such analyses our understanding of the adaptive 

mechanisms and functional pathways the MABSC is using to survive and thrive in the human 

host could be improved and potentially novel drug targets could be uncovered.  

6.2 Findings with clinical and epidemiological implications 

6.2.1 The emergence of the most prevalent MABSC lineages is due to increased 
opportunity as opposed to the acquisition of single common genetic factor. 

Particular lineages of the MABSC have been shown to be responsible for the majority of 

MABSC infections in people with CF (73). However, whether the same genetic factors were 

responsible for the emergence of these lineages had not been investigated. Through dN/dS, 

SNP density and pangenome analysis, no evidence was uncovered to suggest the same 

genetic factor had driven the emergence of the three most prevalent lineages. This 

suggested that a host factor rather than a single bacterial factor could be the common driver 

of their emergence and the increasing availability of the CF niche due to the increasing 

number of people with CF living longer is the most likely candidate. Each of the dominant 

circulating clones (DCCs) were found to encode a unique combination of potential virulence 

factors that could explain the increased virulence of these lineages and why it was these 

lineages that had expanded to the greatest extent as opposed to other MABSC lineages. 

However, the fact that the rapid emergence and global spread of these more virulent 



6. Conclusions  

 

 

204 

lineages was likely to be due to opportunity as opposed to a common genetic factor suggests 

that there should be an awareness (and maybe even an expectation) of the potential for 

uncommon opportunistic pathogens to rapidly emerge and spread amongst the CF 

community, even when there is limited evidence to suggest the particular species is capable 

of doing so. 

 

The analysis in this thesis did not extend to comparing the dN/dS, SNP density and gene 

content of all clustered lineages in comparison to all unclustered lineages. This analysis 

should be performed in the future and could uncover further functional gene content that 

could have contributed to the emergence of the more prevalent MABSC lineages. However, 

the evidence thus far suggests that it is unlikely that a single combination of genetic factors 

that defines an epidemic lineage of the MABSC exists.  

 

6.2.2 Detection of potential novel MABSC antibiotic resistance variants  

Variants had accumulated over time within the host in four genes which are known to be 

linked to antibiotic resistance: 16s rRNA, 23s rRNA, erm(41) and eis2 (77, 152, 313, 343). 

Whilst many of the variants accumulated by 16s rRNA, which cause aminoglycoside 

resistance, and 23s rRNA, which cause macrolide resistance, had been previously observed, 

novel antibiotic resistance variants were uncovered. These require experimental validation to 

determine whether they are responsible for antibiotic resistance.  

 

Much less easy to understand is what the likely impact of the variants accumulated by Eis2 

is. Eis2 has recently been shown to be linked with the high level of intrinsic amikacin 

resistance displayed by M. abscessus and to be part of the whiB7 regulon (152). Thus it is 

unclear how the accumulation of nonsynonymous variants would be beneficial if they cause 

loss of function in this gene, deletion of which has been shown to be increase the 

susceptibility of M. abscessus to aminoglycosides (399). Therefore a change or adjustment 

in function seems a more logical consequence of the accumulation of these nonsynonymous 

SNPs. On the other hand, given the propensity for pathogens adapting to chronic infection to 

adapt to become less virulent, if eis2 is also performing a virulence associated function, it 

could be that the loss of its function is beneficial to long term survival in the host and that its 

intrinsic aminoglycoside resistance function could be compensated for by an acquired 

aminoglycoside resistant mutation in 16s rRNA (369). Despite this uncertainty, the data 

provided here should provide a useful resource to further investigate the role of this gene. 
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This analysis also highlights how WGS can be applied to detect mutations potentially 

associated with antibiotic resistance. 

6.2.3 WGS of the Brazilian post-surgical wound infection epidemic shows that the 
MABSC is capable of causing large scale outbreaks, persisting in the hospital 
environment and being transmitted long distances. 

The largest number of non-CF related MABSC infections has been observed in Brazil where 

an epidemic of post-surgical wound infections caused by a glutaraldehyde tolerant lineage of 

M. a. massiliense has been ongoing since 2004 (130). There had been uncertainty over 

whether a single lineage was responsible and how the lineage had spread to geographically 

distant locations throughout the country (89). WGS of 188 isolates from the epidemic showed 

that a single lineage of M. a. massiliense that had recently been introduced into Brazil  

adapted to become glutaraldehyde (GTA) tolerant and then spread through several waves of 

transmission to geographically distant regions of Brazil.  

 

The scale of this epidemic, with over 2000 cases recorded, highlights the ability of the 

MABSC to cause large scale nosocomial outbreaks. This is concerning given the ability 

displayed by this lineage to rapidly acquire adaptations beneficial to its novel environment, to 

persist in the environment, as displayed by the fact that transmission events continued to 

emanate from Belém even after the outbreak ceased, and to survive long distance 

transmission events. These features suggest that there is the potential for this lineage to be 

introduced and cause outbreaks in health care settings around the world. Although, it should 

be noted that outbreaks in Brazilian hospitals ceased when new surgical tool disinfection 

protocols were introduced and thus it is unlikely that outbreaks will occur unless these are 

inadequate (as was witnessed by further outbreaks in Brazilian hospitals when 

implementation of the new disinfection protocols lapsed). There has yet to be evidence that 

this lineage has spread outside of Brazil and caused further outbreaks. Although, a point 

source outbreak caused by the dissemination of contaminated ultrasound gel in Taiwan was 

found to be closely related to the Brazilian epidemic lineage through multi locus sequence 

typing (400). It would be interesting to WGS representatives from this outbreak to establish 

their context in the MABSC global population and examine how closely related the causal 

agents of these outbreaks are. 

 

Evidence from both the global dissemination of the DCCs and the spread of the Brazilian 

epidemic lineage to geographically distant parts of Brazil show that some lineages of the 

MABSC are capable of surviving long distance transmission events. Whilst there is evidence 
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that the mechanism for local transmission of MABSC infections can be via fomites or long-

lived cough aerosols, how the Brazilian lineage was transmitted long distances within Brazil 

and how the DCCs have been globally disseminated remains unclear (73). Given their 

differing epidemiology, it is likely their vehicles of transmissions are different. The lack of 

epidemiological information meant that it was not possible to clarify what vehicle had enabled 

the spread of the Brazilian epidemic lineage. A previously stated hypothesis, that the WGS 

data supports, is that the movement of surgeons with contaminated equipment is responsible 

(131). How the DCCs have become globally disseminated is less clear. Potential areas 

where further research may contribute to the understanding of the spread of the DCCs would 

be a greater understanding of the role of asymptomatic carriage in the epidemiology of the 

MABSC as well as a greater understanding of the distribution of the MABSC in the 

environment.  

 

This analysis also highlights how WGS can be useful in identifying whether isolates from a 

suspected outbreak are monophyletic and can also distinguish whether an outbreak is from a 

point source or not, but it also emphasizes that without sufficient epidemiological information 

the full power of WGS as an epidemiological tool cannot be realized. 

6.2.4 The loss of an Msp family porin does not explain the glutaraldehyde resistant 
phenotype associated with the Brazilian epidemic lineage 

The Brazilian epidemic lineage rapidly adapted to the surgical niche in Brazil by becoming 

GTA resistant (131). Mycobacterium smegmatis porins (msp) had previously been 

associated with GTA resistance in M. chelonae and M. smegatis and the observation that an 

msp porin at the same locus had been deleted in the majority of isolates from the Brazilian 

epidemic lineage led to the hypothesis that porins could be responsible for the GTA 

resistance displayed by this lineage (287). However, this was found not to be the case, 

similarly to P. fluorescens (401), and thus the cause of the GTA resistant phenotype remains 

unclear. As GTA remains one of the most widely used disinfectants around the world, due to 

its low cost and lack of volatility, and resistance has been observed in multiple nosocomial 

pathogens, including the CF pathogen P. aeruginosa, understanding how organisms become 

resistant to GTA is essential to optimize its usage (402). Possible avenues for further 

research include the role of efflux pumps and, given the strong evidence that GTA’s 

mechanism of action involves forming cross links with cell wall associated proteins, genetic 

changes affecting these seem worthy of further investigation (287, 403). As the deletion of a 

porin was not found to be responsible for the GTA resistant phenotype it is possible that it is 
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playing a role in other phenotypic characteristics of the Brazilian epidemic lineage, such as 

its increased virulence (379).  

6.3 Findings which contribute to our understanding of how MABSC 
is adapting to cause disease  

6.3.1 Changes in common pathoadaptive pathways could have contributed to the 
emergence of the most prevalent MABSC lineages 

All three DCCs were shown to have undergone changes, either whilst the LCA of each 

lineage existed in its natural habitat or that were selected for in the early selective sweeps 

prior to the clonal expansion of each lineage, that could have contributed to the emergence 

of these lineages as the most common cause of MABSC infections in CF.  There were 

examples amongst the candidates of genes which participate in pathways that have been 

linked to the adaptation of other organisms to survival within the host, which suggests that 

the MABSC is adapting via similar mechanisms to other pathogens. Interestingly, recent 

publications also investigating the functional adaptation of the MABSC uncovered similar 

evidence of overlap and came to similar conclusions (181, 404).  

 

Examples from this analysis include i) the presence of genes involved in the transport, 

catabolism and biosynthesis of branched chain amino acids (BCAA) in DCC1, which have 

been shown to be important to the virulence of M. tuberculosis, S. pneumoniae and 

Staphylococcus aureus (244-246), ii) the presence of the same cluster of genes associated 

with ubiquinone biosynthesis by DCC1 and DCC2 which has been linked with virulence in E. 

coli (258, 282) and perhaps most significantly iii) the observation of changes in β-oxidation of 

fatty acids in all three DCCs. Significantly, genes associated with the β-oxidation of fatty 

acids genes were also shown to be upregulated by M. a. abscessus ATCC19977 when 

grown in Synthetic Cystic Fibrosis Medium (SCFM) (181). β oxidation of fatty acids has been 

shown to be important to the pathogenesis of both M. tuberculosis, which switches to β 

oxidation of fatty acids as a carbon source during survival within the phagosome, and P. 

aeruginosa which has been shown to upregulate these genes when grown in SCFM (284, 

405).  

 

There were limitations to this analysis, which include the possibility that the functions 

encoded by these genes are present within the other less prevalent MABSC lineages or that 

the candidates could have emerged through a limitation of pangenome analysis that makes 
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correctly splitting paralogous genes challenging. However, it is not possible without 

experimental analysis to determine whether other genes are providing these potential 

beneficial functions in other MABSC lineages. Their overlap with known virulence pathways 

in other pathogens supports these as strong candidates for further investigation in the bid to 

understand how the MABSC is adapting to become a more prevalent opportunistic 

pathogens.  

 

6.3.2 DCC3 acquired a methyltransferase which could be contributing to its increased 
ability to survive intracellularly. 

A methyltransferase encoded on a mobile element was found to be present in all DCC3 

isolates. Through PacBio analysis the methyltransferase was shown to modify an RGATCC 

motif. Phagocytic uptake and intracellular survival assays suggested that the 

methyltransferase was potentially playing a role in the intracellular survival of the DCC3 

lineage. Whilst these results are preliminary, as the phenotype has not been able to be 

reproduced, this could potentially be the first evidence that a change in the methylome of an 

MABSC lineage is associated with its virulence. Indeed, changes in the methylome have 

been linked with virulence in other organisms (305, 406). If this phenotype is confirmed, this 

would suggest a wider analysis of the methylome of MABSC lineages with differing degrees 

of virulence and transmissibility could potentially be worthwhile. This was also the first 

attempt to functionally validate a candidate associated with the emergence of the most 

prevalent MABSC lineages and thus, even though this result is preliminary, it suggests that 

the methods used to address the aims set out in this thesis have potentially successfully 

identified valid candidates. 

6.3.3 Mce operons are implicated in both the emergence and ongoing expansion of the 
DCC: 

DCC3 was found to have acquired a complete mce operon prior to, or in the early selective 

sweeps prior to, its clonal expansion. The regulator of an mce operon was found to have 

accumulated a significant number of nonsynonymous SNPs during the ongoing clonal 

expansion of DCC1. These results suggest that these known virulence factors are 

contributing to the adaptation of the MABSC (176, 259, 407). Thus these seem promising 

candidates for further investigation. Analysis showed that both MABSC clustered and 

unclustered isolates on average encoded the same number of mce operons but pangenome 

analysis suggested that these were not all part of the core. Therefore, this suggests that the 

differing lineages may encode paralogous mce operons with differing functions which could 
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be contributing to their differing degrees of prevalence in disease. If the two mce operons 

were found to have differing functions a further layer of intrigue would be added, given that 

one candidate mce operon was identified as associated with predisposing DCC3 to be 

successful in the CF lung environment and the other was associated with the ongoing spread 

of DCC1, and thus their functions could be associated with the different stages of adaptation 

of an MABSC epidemic lineage.  

6.3.4 Mycobacterium abscessus is adapting to the CF lung through routes commonly 
used by CF pathogens 

Similarly to the adaptive mechanisms that were linked with the emergence of the DCCs, the 

MABSC was shown to use many of the same mechanisms as other as other CF pathogens 

to adapt to the CF lung, such as the acquisition of a hypermutator phenotype, changes in cell 

wall associated genes, global transcriptional regulators and antibiotic resistance associated 

genes (39, 40, 308). Experimental analysis is needed to understand the role of these genes 

but the virulence associated functions of many of their orthologs suggest that they could be 

playing a significant role in the pathogenesis of the MABSC. Whilst intriguingly some of their 

orthologs have also already been proposed as novel drug targets which suggests they could 

also be suitable targets for novel drugs for the MABSC (371, 372). 

 

Whilst these candidates could have highlighted key virulence factors in the MABSC, through 

protein sequence analysis, some of the variants accumulated within these genes were 

shown to have incurred nonsynonymous changes both at sites known to participate in the 

formation of the correct topology of the protein and in regions binding DNA or their co-

factors. Thus this dataset could be of use to those investigating the structure of these 

proteins.  

6.3.5 PhoR is a key virulence factor in the MABSC 

PhoR stood out from the other candidates that accumulated nonsynonymous SNPs over time 

within the host due to both the number of changes it accumulated and the fact they were 

clustered in the sensor loop. Imperfect evidence from RNA-seq analysis suggested the 

PhoPR regulon was controlling the expression of some genes with similar functions to that of 

the PhoPR regulon in M. tuberculosis. The functional impact on the protein of these SNPs 

remains unclear, with two hypotheses suggested: i) the accumulations of variants increase 

the efficiency of PhoR to sense its environmental cue and thus M. abscessus is better able to 

rapidly adapt to changing environmental conditions within the host or ii) as CF pathogens 

tend to become less virulent as they adapt to cause chronic infection, the accumulation of 
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variants could result in a decrease in the function of PhoR, and thus a reduction in virulence. 

In M. tuberculosis, the accumulation of variants in the PhoR sensor loop results in the 

attenuation of virulence, which supports the second hypothesis. Either way, the evidence 

presented in this thesis suggests that PhoR is a key virulence factor in the MABSC. 

6.3.6 A second plasmid, pMAB02, which encodes a type VII secretion system, is 
present within the Brazilian epidemic lineage 

Type VII secretion systems, which play a role in the virulence of M. tuberculosis, could also 

be playing a role in the virulence of MABSC (396). pMAB02 the a novel plasmid identified 

through this thesis as present in the Brazilian epidemic lineage. The Brazilian epidemic 

lineage has been shown to have increased virulence and a genetic explanation for this has 

not been proposed (379). Thus the type VII secretion system encoded by the plasmid may 

be of interest. The plasmids associated with the MABSC are also relatively understudied, 

and if further research into pMAB02 or indeed pMAB01 show that plasmid encoded genes 

are contributing to the success of this epidemic lineage, the role of plasmids in the MABSC 

could become of significant interest. 

6.4 Future Directions 

Much of the research in this thesis was exploratory, with the purpose of generating 

hypotheses that could explain how the MABSC has evolved as it has become a more 

prevalent opportunistic pathogen. Whilst follow up analysis of several candidates has begun, 

a significant amount of further research is required to validate the candidates identified. 

These results will contribute to gaining a clearer picture of how the MABSC is able to cause 

disease and could potentially indicate potential novel drug targets. 

 

Ongoing further analysis has already shown that the porins undergo several deletions over 

time within multiple patients and isolates encoding a single porin were subsequently shown 

to be more virulent than those encoding both. This suggests that the loss of the porin in the 

Brazilian epidemic lineage could be associated with its increased virulence. Further research 

is also already ongoing regarding the role of PhoR, with evidence thus far supporting the 

hypothesis of the accumulation of variants in the sensor loop is associated with a reduction in 

virulence and therefore adaptation to persistence. This emphasizes even more the need to 

clarify the M. abscessus PhoR regulon as it suggests the genes under its control are 

associated with virulence. 
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As this dataset is publicly available it provides the opportunity for the MABSC to continue to 

be investigated through genomic analyses. There are many remaining challenges and 

questions. This thesis addressed its aims in the knowledge that some types of genetic 

variation that could be contributing to the evolution and adaptation of the MABSC have not 

been investigated. Perhaps most significantly the influence of recombination is not 

thoroughly addressed. Both Tan et al. (2017) and Sapriel et al. (2016) emphasize the role of 

recombination in the evolution of the MABSC, and find that highly admixed MABSC are more 

commonly associated with causing infections in CF (86, 90). This conclusion would benefit 

from being placed in the global population context afforded by this data set. Analysis from 

this thesis, showing that many of the genes that defined the DCC lineages occurred in 

blocks, suggests that large scale recombination events are contributing and thus further 

research into MABSC recombination is warranted. 

 

A significant gap remains in our knowledge with regards to how the MABSC is able to be 

transmitted. A greater understanding of the environmental ecology of the MABSC would 

enhance our understanding of the global distribution of MABSC lineages could in turn  

contribute to our understanding of how they have spread globally. Avenues of research such 

as asymptomatic carriage may also be worthy of further investigation. Furthermore, a greater 

availability of environmental MABSC isolates would enhance our ability to detect the key 

functional pathways the MABSC uses to cause disease. 

6.5 Closing comments 

Through this thesis, the functional genomic changes that could have contributed to the 

emergence, ongoing spread and host adaptation of MABSC lineages have been explored. 

The findings have highlighted functional pathways used by the MABSC to cause disease in 

the human host and have uncovered promising candidates for further research.  
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7. Materials and Methods 

This chapter summaries the dataset and methods used in multiple chapters in this thesis. 

The collection of the metadata used in this dataset was orchestrated by Andres Floto and 

Julian Parkhill. Clinical metadata was collected by Dorothy Grogono. Josephine Bryant 

performed the quality control analysis on the WGS dataset. 
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7.1 Datasets 

7.1.1 Global population dataset 

The main dataset used in this analysis was a combination of the datasets published by 

Bryant et al. in their analyses of the MABSC global population structure (73) and of the 

outbreak of M. abscessus at Papworth hospital in the UK (70). This dataset consisted of 

Clinical MABSC isolates submitted from all the major Cystic Fibrosis (CF) centers in the UK 

and the five mainland mycobacterial reference laboratories: National Mycobacterial 

Reference Laboratory (NMRL); Regional Centre for Mycobacteriology, Birmingham; Regional 

Centre for Mycobacteriology, Newcastle; Scottish Mycobacteria Reference Laboratory and 

Wales Centre for Mycobacteriology. Isolates were also contributed from European CF 

centers in the Republic of Ireland (Cystic Fibrosis centers from St Vincent’s Hospital Dublin), 

Sweden (Gothenburg), Denmark (Copenhagen and Skejby) and the Netherlands (Nijmegen) 

as well as from the USA (University of North Carolina Chapel Hill) and Australia 

(Queensland).  

 

The global population dataset was supplemented by 29 publicly available isolates, including 

isolates from France, China, Malaysia, South Korea and Brazil and further isolates from the 

USA, including representatives from the Seattle CF center outbreak (119), and the UK 

(appendix table 5.2). These provided an additional eight M. a. abscessus isolates, two 

additional M. a. bolletii isolates and 19 additional M. a. massiliense isolates.  

 

The final dataset, once contaminants had been removed, consisted of 1252 MABSC isolates, 

with 781 M. a. abscessus isolates, 108 M. a. bolletii isolates and 363 M. a. massiliense 

isolates. These isolates were obtained from 525 patients (appendix table 5.1).  Including 

publicly available isolates, the final dataset consisted of 1281 MABSC isolates, with 789 M. 

a. abscessus isolates, 110 M. a. bolletii isolates and 382 M. a. massiliense isolates. These 

isolates were obtained from 553 patients (appendix tables 5.1 and 5.2).  

7.1.1.1 Single isolate per patient dataset 

In chapters 2, 3, 5 phylogenetic trees were constructed using a single representative isolate 

for each patient. This dataset included 525 isolates marked in appendix table 5.1, the M. a. 

abscessus ATCC19977 reference genome and the 29 publicly available isolates (appendix 

table 5.2).  
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7.1.1.2 Within host evolution dataset 

In Chapter 4 the genetic changes occurring over time within a patient were investigated. The 

MABSC global population dataset included multiple isolates for 201 patients (those used in 

the analysis are marked in appendix table 5.1, for more information see chapter 4).  

7.1.2 Brazilian post-surgical wound infection epidemic dataset 

A total of 190 isolates were obtained from nine states in which outbreaks of SSTIs, caused 

by the MABSC, occurred in Brazil. The analysis of this dataset is reported in chapter 5. 

7.2 DNA extraction and whole genome sequencing 

All culturing and DNA extraction steps for the sequencing of isolates analysed in this thesis 

were carried out by external collaborators. The methods used to extract the DNA from the 

global population dataset isolates are summarized in (73). The methods used to culture and 

extract the DNA from the Brazilian dataset are described in chapter 5. Library preparation 

and sequencing of all the isolates was carried out by the DNA pipeline team at the Wellcome 

Trust Sanger Institute. All isolates were subjected to multiplexed paired end sequencing on 

either the Illumina HiSeq (either 2000 or 2500 technology) or MiSeq platforms, resulting in 

the production of raw read files in fastq format.  

7.3 Mapping and variant calling 

Mapping and variant calling were carried out using an in house pipeline (developed by Simon 

Harris). Raw reads were mapped, where appropriate, to the MABSC subspecies reference 

genomes: M. a. abscessus ATCC19977, M. a. massiliense CIP108297 and M. a. bolletii BD  

(table 15) (81, 82, 86). Mapping was carried out using BWA-MEM (v. 0.7.12-r1039), with 

default parameters, resulting in the generation of BAM files (215). PCR duplicate reads were 

identified and marked in the BAM files using Picard MarkDuplicates (v.1.127). GATK 

indelrealigner (v.3.4-46-gbc02625) was used to realign reads locally around indels.  
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Table 15: Summary of the reference genomes used in this thesis13 

 M. a. abscessus M. a. massiliense M. a. bolletii 

Reference name ATCC19977 CIP108297 BD 

Type Finished Draft Draft 

Total chromosome length (bps) 5,067,172 4,890,609 5,048,007 

Total number of contigs 
(chromosome) 

1 80 22 

Total number of CDS 4,920 4,821 4,903 

Total number of RNAs 50 71 77 

NCBI accession number NC_010394.1 GCA_001792625.1 AHAS00000000.1 

 

 

Samtools mpileup (v. 1.2.1) and bcftools call (v. 1.2.1) were used to determine the 

consensus base call from the aligned reads (216).  Default parameters were used for 

Samtools mpileup apart from limiting maximum per sample read depth (-d) and the per 

sample read depth for indel calling (-L) to 1000, setting the adjusted mapping quality score  

(-C) to 50 in order to downgrade the quality scores of bases called from reads with a large 

number of mismatches, and selecting a threshold of 8 for the minimum number of gapped 

reads required for an indel to be considered (-m). Bcftools was then used to call the bases. 

All alternative alleles were recorded (-A), masked reference sites (-M, Ns) were kept and a 

prior (mutation rate, -P) of 0.001 was applied. Finally, filters, which were estimated to reduce 

the number of false positive base calls to less than 1 SNP per genome, were applied (208). 

The following criteria had to be met in order for a base to be called: a SNP/Mapping quality 

ratio of 0.8; a minimum depth of 8 reads supporting the called base, including at least 3 

reads supporting the called base on each strand; a minimum base quality score of 50; a 

minimum mapping quality score of 20 and p-values less than 0.01 for strand bias, mapping 

bias and tail distance bias. This resulted in the creation of a pseudo sequence for each 

isolate, with base calls which did not meet the above criteria recorded as an N. 

                                                

13 The contigs of the draft genomes for M. a. massiliense CIP108297 and M. a. bolletii BD were reordered against the M. a. 
abscessus ATCC19977 reference genome and re-annotated using Prokka. 
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7.4 Extracting variant positions from alignments and constructing 
phylogenies 

Variant positions were extracted from alignments of multiple isolates using SNP-sites 

(v.2.3.2) (217). For phylogenetic analyses only sites for which greater than 50% of isolates 

had a base called (i.e not Ns) were included. Maximum likelihood phylogenetic trees were 

inferred from these alignments via RAxML (v.8.2.8), using the Generalised Time Reversible 

(GTR) model of evolution and the GAMMA model for among site rate variation (61). 100 

bootstrap replicates were performed.  

  

On the majority of occasions it was useful to map the variants back onto the phylogeny, 

which both allowed for the branches to be scaled by number of SNPs and for ancestral 

changes to be examined within the context of the phylogeny. This was achieved using an 

inhouse script (developed by Simon Harris) which reconstructs the ancestral sequence for 

each node of the phylogeny using an ACCTRAN (ACCelerates the evolutionary 

TRANsformation of a character) parsimony model (218). 

7.5 Phylogenetic clustering 

The clustering method, TreeGubbins, used by Bryant et al. (2016) in their analysis of the 

MABSC global population structure, was also applied in this analysis (73).  TreeGubbins 

(developed by Simon Harris) is an algorithm that allows you to determine significantly dense 

nodes in a phylogeny enabling the differentiation of densely clustered isolates from more 

loosely clustered isolates, which could indicate recently emerged lineages. TreeGubbins, 

using a one-dimensional scanning statistic likelihood function, calculates the density of each 

node (the mean descendant branch length) and compares it to the expected density of each 

node (the mean branch lengths of the remaining tree). The statistical significance of each 

node, starting with the node with the maximum likelihood, is determined by randomly re-

assigning, 100 times, the branch lengths across the tree and recalculating the density of 

each node. The process is repeated until no significant nodes (P-value < 0.05) are detected.  

 

This clustering method was applied to the subspecies phylogenies, consisting of a single 

isolate per patient and publicly available isolates, inferred from i) an alignment of the variant 

positions after all the isolates were mapped to the M. a. abscessus ATCC19977 reference 

genome and ii) from the alignments of the variant positions after the isolates were mapped to 

their respective subspecies reference genomes, either M. a. abscessus ATCC19977, M. a. 
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bolletii BD or M. a. massiliense CIP108297. Only clusters with greater than five isolates (to 

provide enough power) and including isolates from multiple sites (to rule out clusters of 

isolates acquired from the same environmental source) were included in downstream 

analysis.  

7.6 De novo assembly 

De novo assemblies for all the isolates were constructed using an in house pipeline (408). 

This pipeline generates multiple assemblies, using Velvet (v.2.2.5) and VelvetOptomiser 

(v.1.2), for each isolate using differing kmer lengths (kmer lengths are varied between 66%-

90% of the read length) (219). The assembly with the highest N50 (length of the longest 

contig, where half of the nucleotides in the assembly are in contigs of at least the length of 

that contig) is taken forward and improved using SSPACE to scaffold the contigs and 

GapFiller to fill in sequence gaps (409, 410). 

7.7 Annotation 

The de novo assemblies of all the isolates were annotated using Prokka (v.1.11) (220). 

Prokka predicts features encoded by the assemblies using Prodigal (CDSs) (411), RNAmmer 

(rRNA) (412), Aragorn (Transfer RNA genes) (413), SignalP (Signal leader peptides) (414) 

and Infernal (Non-coding RNA) (415). These features are then annotated in a hierarchical 

manner starting with searches against smaller more trustworthy databases before resorting 

to more general curated protein family databases, with an e-value of 10-6 as the cutoff for a 

significant hit. 

7.8 Pangenome analysis 

At times it was useful to compare gene content differences between groups of isolates. This 

was achieved using the pangenome software Roary (223). Only CDS of at least 120 

nucleotides in length and with less than 5% of nucleotides unknown are included in the 

analysis. In the initial step, Roary clusters CDS iteratively with CD-hit starting with CDS 

which share 100% sequence identity and 100% match length. This is subsequently repeated 

with the thresholds being reduced by 0.5% each time until it reaches the cut off of 98%, 

which can be adjusted by the user. The core genes, defined as CDSs present in at least 99% 

of the isolates, are then removed and a representative sequence for the remaining CDSs are 

placed in a fasta file. 
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An all against all blastp is then performed between all the remaining CDSs, with a user 

defined threshold. The results of the all against all blast are then clustered using a Markov 

Cluster Algorithm (MCL), which produces the final result of clusters of homologous genes 

which are subsequently combined with the core genes identified via CD-hit. However, 

because these clusters can contain paralogous genes a further step is performed to try and 

reduce this using a conserved gene neighborhood method to detect orthologs amongst a 

group containing potential paralogs.  

7.9 Functional enrichment analysis  

GO-term enrichment analysis was used to determine whether candidate genes lists 

generated were enriched with particular functions. GO-terms had previously assigned to the 

CDSs encoded by the M. a. abscessus ATCC19977 reference genome (231). For candidates 

identified from the de novo assemblies, InterProScan was used to assign GO-terms to the 

Prokka annotated CDSs (416).  

 

GO-term enrichment analysis was performed using the R package TopGO (v.2.20) (232). 

TopGO enables the user to apply one of several algorithms that take the GO hierarchy into 

account  when testing whether a candidate list is enriched with particular MF, BP or CC using 

a Fisher’s Exact test. Taking the GO hierarchy into account reduces the number of false 

positive as it reduces the impact of the inheritance problem. The inheritance problem refers 

to the problem of general GO-terms inheriting their more specific descendant GO-terms 

resulting in false positives (417). The weight01 algorithm, the default method in TopGO, was 

used in this analysis. Only GO-terms assigned to at least five genes were tested, to increase 

the power to detect enrichment. The p-values were corrected for multiple testing using the 

Benjamini-Hochberg method, with an adjusted p-value of 0.01 seen as significant. 

 

Pathway analysis was carried using the Blast2GO (v.4.1.9) interface (233). The default 

settings selected by Blast2GO were used. Briefly, Blast2GO predicts the pathways a set of 

candidate genes are participating in by firstly comparing the candidate genes against the 

NCBI non-redundant sequence database. This is followed by the genes being assigned GO-

terms. Each GO-term, where the information is available, is linked to an enzyme code. The 

enzyme codes are then compared against the KEGG (Kyoto Encyclopedia of Genes and 

Genomes) pathway database to identify which pathways the candidate genes are 

participating in.  
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7.10 Detection of orthologous genes between MABSC isolates and 
other mycobacterial species 

Often it was useful to determine whether a candidate gene was orthologous to a gene within 

another species of Mycobacteria, particularly the causative agent of tuberculosis, 

Mycobacterium tuberculosis, for which the most functional information is known. Orthologs 

between Mycobacterium tuberculosis H37Rv and the M. a. abscessus  ATCC1977 reference 

genome have been previously identified and where possible were used (230). 

 

In some cases the candidate genes identified were from the de novo assemblies and in such 

cases a reciprocal blast approach was used to identify orthologous genes. Local nucleotide 

blast databases were created from the genes, predicted by Prokka, to be encoded by either 

the de novo assembly of the MABSC genome of interest or the pangenome and for 4,032 

genes encoded by the M. tuberculosis H37Rv reference genome (83). Each gene encoded 

by one genome was then compared using tblastx (v.2.2.25), with an e-value threshold of 

0.00001, against the blast database of all the genes encoded by the other (386). For genes 

to be predicted as putative orthologs, the genes had to be each other’s top hit, have a 

sequence identity greater than 50% and a match length of greater than 50%. 

7.11 Detecting genes under selection 

To identify genes under selection SNPs potentially acquired via recombination were required 

to be removed. The methods used to detect recombinant SNPs are described in the chapters 

were this method is applied.  

 

Genes which had accumulated a greater number of nonsynonymous SNPs than would have 

been expected by chance were determined using a method based upon Ding et al’s (2008) 

‘burden of mutation’ approach (295). This method estimates the ρSN (synonymous mutation 

rate) by dividing the observed number of synonymous SNPs by the number of coding 

sequence bases in the reference genome (M. a. abscessus ATCC19977: 4,686,864bps; M. 

a. massiliense CIP108297: 4,514,468bps; M. a. bolletii BD: 4,648,845bps). The expected 

nonsynonymous mutation rate (ρNS ) is then estimated using the following equation:  ρNS  = 

ρSN  X R.  R represents the ratio of nonsynonymous sites to synonymous sites and is 

determined by permuting every base of every codon in silico and identifying whether it 

resulted in a synonymous or nonsynonymous change. This was done on a per gene level, 

with the number of synonymous SNPs accumulated per gene used to estimate the value of 
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ρSN per site per gene. If no synonymous SNPs were observed in a gene the synonymous 

mutation rate estimated for the whole genome was used. Finally, to obtain the expected 

number of nonsynonymous SNPs per gene, ρNS was multiplied by the gene length.  

 

To determine if the observed number of nonsynonymous SNPs was significantly greater than 

the expected, a one tailed binomial test was used. The p-values were corrected for multiple 

testing using Benjamini Hochberg method. A p-value of less than 0.01 was seen as 

significant. 
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8. Appendix 

All the tables summarized in these appendices are available on the accompanying CD. 
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8.1. Appendix for Chapter 2 

Appendix table 1.1: Breakdown of the number the SNPs on the branches leading to the LCA 

of each of the DCCs and those occurring on the branches evolving completely independently 

of all the DCCs. 

 

Appendix table 1.2: Summary of the 23 candidates genes identified through SNP density 

analysis as associated with the emergence of DCC1. 

 

Appendix table 1.3: Summary of the 6 candidate genes identified through SNP density 

analysis as associated with the emergence of DCC2.  

 

Appendix table 1.4: Summary of the 61 candidate genes identified through SNP density 

analysis as associated with the emergence of DCC3. 

 

Appendix table 1.5: Summary of the functions of the genes flanking the regulator MAB_3565 

(marked with a *) which was identified through SNP density analysis as associated with the 

emergence of DCC2. 

 

Appendix table 1.6: Summary of the functions of the genes flanking the regulator MAB_3582 

(marked with a *) which was identified through SNP density analysis as associated with the 

emergence of DCC2. ** represent a potentially frameshifted gene 

 

Appendix table 1.7: Summary of the functions of the genes flanking the regulator MAB_4754 

(marked with a *) which was identified through SNP density analysis as associated with the 

emergence of DCC2.  

 

Appendix table 1.8: List of the GO-terms assigned to the 4,920 CDSs encoded by M. a. 

abscessus ATCC19977  
 
Appendix table 1.9: Summary of the results of the Fishers exact test, performed with the R 

package TopGO, which examined whether the candidates identified through SNP density 

analysis as associated with the emergence of DCC1 were enriched with particular Molecular 

Function GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  
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Appendix table 1.10: Summary of the results of the Fishers exact test, performed with the R 

package TopGO, which examined whether the candidates identified through SNP density 

analysis as associated with the emergence of DCC1 were enriched with particular  Biological 

function GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method. 
 
Appendix table 1.11: Summary of the results of the Fishers exact test, performed with the R 

package TopGO, which examined whether the candidates identified through SNP density 

analysis as associated with the emergence of DCC1 were enriched with particular Cellular 

Component GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method. 

 

Appendix table 1.12: Summary of the results of the Fishers exact test, performed with the R 

package TopGO, which examined whether the candidates identified through SNP density 

analysis as associated with the emergence of DCC2 were enriched with particular Molecular 

Function GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  

 

Appendix table 1.13: Summary of the results of the Fishers exact test, performed with the R 

package TopGO, which examined whether the candidates identified through SNP density 

analysis as associated with the emergence of DCC2 were enriched with particular Biological 

function GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  
 
Appendix table 1.14: Summary of the results of the Fishers exact test, performed with the R 

package TopGO, which examined whether the candidates identified through SNP density 

analysis as associated with the emergence of DCC2 were enriched with particular Cellular 

Component GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  
 
Appendix table 1.15: Summary of the results of the Fishers exact test, performed with the R 

package TopGO, which examined whether the candidates identified through SNP density 

analysis as associated with the emergence of DCC3 were enriched with particular Molecular 

Function GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  
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Appendix table 1.16: Summary of the results of the Fishers exact test, performed with the R 

package TopGO, which examined whether the candidates identified through SNP density 

analysis as associated with the emergence of DCC3 were enriched with particular  Biological 

function GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  
 
Appendix table 1.17: Summary of the results of the Fishers exact test, performed with the R 

package TopGO, which examined whether the candidates identified through SNP density 

analysis as associated with the emergence of DCC3 were enriched with particular Cellular 

Component GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  
 
Appendix table 1.18: Table summarizing the KEGG pathways to which candidates identified 

through the SNP density analysis were mapped using the program Blast2GO. 

 

Appendix table 1.19: Pangenome gene presence absence table showing the breakdown  

 of the 35,994 genes identified by Roary to make up the MABSC pangenome. 

 

Appendix table 1.20: Functional summary of the four genes encoded by representatives of 

each of the DCCs and no further isolates in the MABSC global population. The proportion of 

DCC isolates that encoded these genes suggested that they had been acquired after the 

clonal expansion of the DCCs and thus were not associated with their initial emergence.  

 

Appendix table 1.21: Emergence of DCC1 - pangnome candidates 

Table summarising the 183 genes present in 90% of DCC1 and less than 10% of non-DCC 

isolates. This includes the Prokka, Pfam and InterPro annotations of each candidate as well 

the COG functions predicted by EggNOG and M. tuberculosis orthologs.  

 

Appendix table 1.22: Emergence of DCC2 - pangnome candidates 

Table summarising the 217 genes present in 90% of DCC2 and less than 10% of non-DCC 

isolates. This includes the Prokka, Pfam and InterPro annotations of each candidate as well 

the COG functions predicted by EggNOG and M. tuberculosis orthologs.  
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Appendix table 1.23: Emergence of DCC3 - pangnome candidates 

Table summarising the 119 genes present in 90% of DCC3 and less than 10% of non-DCC 

isolates. This includes the Prokka, Pfam and InterPro annotations of each candidate as well 

the COG functions predicted by EggNOG and M. tuberculosis orthologs.  

 

Appendix table 1.24: List of the GO-terms assigned to 4,138 of the 18,386 genes in the 

MABSC accessory genome by InterProScan.  

 

Appendix table 1.25: Summary of the results of the Fishers exact test, performed with the R 

package TopGO. This examined whether the candidates identified through pangenome 

analysis as associated with the emergence of DCC1 were enriched with particular Molecular 

Function GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  

 

Appendix table 1.26: Summary of the results of the Fishers exact test, performed with the R 

package TopGO. This examined whether the candidates identified through pangenome 

analysis analysis as associated with the emergence of DCC1 were enriched with particular  

Biological Process function GO-terms. No GO-terms were found to be enriched after the p-

values were corrected for multiple testing using the Benjamini-Hochberg method.  

 
Appendix table 1.27: Summary of the results of the Fishers exact test, performed with the R 

package TopGO. This examined whether the candidates identified through pangenome 

analysis as associated with the emergence of DCC1 were enriched with particular Cellular 

Component GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  

 

Appendix table 1.28: Summary of the results of the Fishers exact test, performed with the R 

package TopGO. This examined whether the candidates identified through pangenome 

analysis as associated with the emergence of DCC2 were enriched with particular Molecular 

Function GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  

 

Appendix table 1.29: Summary of the results of the Fishers exact test, performed with the R 

package TopGO. This examined whether the candidates identified through pangenome 

analysis as associated with the emergence of DCC2 were enriched with particular Biological 
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Process GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  

 
Appendix table 1.30: Summary of the results of the Fishers exact test, performed with the R 

package TopGO. This examined whether the candidates identified through pangenome 

analysis as associated with the emergence of DCC2 were enriched with particular Cellular 

Component GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  

 
Appendix table 1.31: Summary of the results of the Fishers exact test, performed with the R 

package TopGO. This examined whether the candidates identified through pangenome 

analysis as associated with the emergence of DCC3 were enriched with particular Molecular 

Function GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  

 

Appendix table 1.32: Summary of the results of the Fishers exact test, performed with the R 

package TopGO. This examined whether the candidates identified through pangenome 

analysis as associated with the emergence of DCC3 were enriched with particular  Biological 

Processes GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  

 
Appendix table 1.33: Summary of the results of the Fishers exact test, performed with the R 

package TopGO. This examined whether the candidates identified through pangenome 

analysis as associated with the emergence of DCC3 were enriched with particular Cellular 

Component GO-terms. No GO-terms were found to be enriched after the p-values were 

corrected for multiple testing using the Benjamini-Hochberg method.  

 

Appendix table 1.34: List of the 38 KEGG pathways that pangenome candidates for all the 

DCCs were predicted to participate in with Blast2GO. 
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8.2. Appendix for Chapter 3 

Appendix table 2.1: Summary of the TreeGubbins clusters identified within the maximum 

likelihood phylogeny of the M. a. abscessus subspecies when all the M. a. abscessus 

isolates were mapped to M. a. abscessus ATCC19977. 

 

Appendix table 2.2: Summary of the TreeGubbins clusters identified within i) the maximum 

likelihood phylogeny of M. a. bolletii based on SNP alignment produced after mapping all the 

M. a. bolletii isolates to M. a. bolletii BD and II) the clusters identified within the maximum 

likelihood phylogeny of the M. a. bolletii subspecies based on the SNP alignment produced 

after mapping all the M. a. bolletii isolates to M. a. abscessus ATCC19977. 

 

Appendix table 2.3: Summary of the TreeGubbins clusters identified within i) the maximum 

likelihood phylogeny of M. a. massiliense based on SNP alignment produced after mapping 

all the M. a. massiliense isolates to M. a massiliense CIP108297 and II) the clusters 

identified within the maximum likelihood phylogeny of the M. a. massiliense subspecies 

based on the SNP alignment produced after mapping all the M. a. massiliense isolates to M. 

a. abscessus ATCC19977. 

 

Appendix table 2.4: Breakdown of all SNPs identified on branches within M. a. abscessus 

clusters when M. a. abscessus isolates were mapped to M. a. abscessus ATCC19977. This 

includes SNPs on the terminal branches and those subsequently removed due to 

recombination.  

 

Appendix table 2.5: Breakdown of all SNPs identified on branches within M. a. bolletii 

clusters when M. a. bolletii isolates were mapped to M. a. bolletii BD. This includes SNPs on 

the terminal branches and those subsequently removed due to recombination.  

 

Appendix table 2.6: Breakdown of all SNPs identified on branches within M. a. massiliense 

clusters when M. a. massiliense isolates were mapped to M. a. massiliense CIP108297. This 

includes SNPs on the terminal branches and those subsequently removed due to 

recombination.  

 

Appendix table 2.7: Summary of the binomial test results for the nonsynonymous SNPs 

accumulated in each gene on branches after the clonal expansion of the M. a. abscessus 

clustered lineages after being mapped to M. a. abscessus ATCC19977. Two genes 
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accumulated a significant number of nonsynonymous SNPs (p < 0.01). Terminal branch 

SNPs and recombination were removed. 

 

Appendix table 2.8: Summary of the binomial test results for the nonsynonymous SNPs 

accumulated in each gene on branches after the clonal expansion of the M. a. bolletii 

clustered lineages after being mapped to M. a. bolletii BD. no genes accumulated a 

significant number of nonsynonymous SNPs (p < 0.01). Terminal branch SNPs and 

recombination were removed. 

 

Appendix table 2.9:Summary of the binomial test results for the nonsynonymous SNPs 

accumulated in each gene on branches after the clonal expansion of the M. a. massiliense 

clustered lineages after being mapped to M. a. massiliense CIP108297. One gene 

accumulated a significant number of nonsynonymous SNPs (p < 0.01). Terminal branch 

SNPs and recombination were removed. 

 

Appendix table 2.10: Breakdown of all SNPs identified on branches within the clusters 

detected by TreeGubbins after all the isolates were mapped to M. a. abscessus ATCC19977. 

This includes SNPs on the terminal branches and those subsequently removed due to 

recombination.  

 

Appendix table 2.11: Summary of the binomial test results based on the SNPs accumulated 

by each gene on branches after the clonal expansion of all clustered lineages after all 

isolates were mapped to M. a. abscessus ATCC19977. One gene accumulated a significant 

number of nonsynonymous SNPs (p < 0.01). Terminal branch SNPs and recombination were 

removed. 

 

Appendix table 2.12: Summary of the SNPs removed due to occurring in SNP dense regions 

after the clonal expansion of M. a. abscessus clustered lineages. The regions overlapping 

known phage or other mobile elements are marked. 

 

Appendix table 2.13: Summary of the SNPs removed due to occurring in SNP dense regions 

after the clonal expansion of the M. a. bolletii clustered lineages detected from the phylogeny 

inferred from the alignment after the M. a. bolletii isolates were mapped to M. a. bolletii BD. 

The regions overlapping known phage or other mobile elements are marked. 
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Appendix table 2.14: Summary of the SNPs removed due to occurring in SNP dense regions 

after the clonal expansion of the M. a. massiliense clustered lineages detected from the 

phylogeny inferred from the alignment after the M. a. massiliense isolates were mapped to 

M. a. massiliense CIP108297. The regions overlapping known phage or other mobile 

elements are marked. 

 

Appendix table 2.15: Summary of the SNPs removed due to occurring in SNP dense regions 

after the clonal expansion of the clustered lineages detected from the phylogenies inferred 

from the alignments after all the isolates were mapped to M. a. abscessus ATCC19977. The 

regions overlapping known phage or other mobile elements are marked. 

 

 

 

 

Appendix Figure 2.1: Deletion of the start of CIP108297_03869 in M. a. massiliense 
CIP108297 

Blastn comparison between the regions in M. a. massiliense CIP108297 encoding the 
candidate gene CIP108297_03869 and the corresponding region in M. a. abscessus 
ATCC19977. This shows that a longer CDS is encoded at this position in M. a. abscessus 
ATCC19977 and suggests that an 111bp deletion has occurred at the start of  
CIP108297_03869. 
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Appendix Figure 2.2: Orthology between the M. tuberculosis mce4 operon and one 
of the mce operons encoded by M. a. abscessus ATCC19977. 

tblastx comparison between the mce4 operon and flanking genes in M. tuberculosis 
H37Rv and an M. a. abscessus ATCC19977 shows that the mce4 operon appears to be 
ortholgous between the two species, with a high level of sequence conservation and the 
mce4 operon occurring in the same sequence context. Mce4 appears to be the only 
orthologous mce operon shared between M. a. abscessus ATCC19977 and M. 
tuberculosis H37Rv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8. Appendices  

 

 

233 

8.3. Appendix for Chapter 4 

 

 

 

Appendix Figure 3.1:  Example of the phylogenetic analysis performed to determine 
the isoaltes to include to examine how the MABSC was adapting to the lung 

Phylogenetic analysis to remove patients with polyclonal isolates or isolates that have been 
transmitted from another patient. 13/14 isolates from patient SMRL_CG form a paraphyletic 
clade with the only isolate from patient SMRL_BB. The isolate from SMRL_BB is nested 
within the diversity form patient SMRL_CG, consequently the evolution that occurs after the 
last common ancestor (LCA) of the 13 SMRL_CG isolates likely occurs under the within host 
selection pressure, with possible transmission to patient SMRL_BB. The final isolate 
obtained from patient SMRL_CG is not included in the longitudinal dataset as it does not 
share a LCA with any other SMRL_CG isolates. Three examples of patients where the 
isolates form a monophyletic clade, and thus the evolution since the LCA is believed to have 
occurred under the within host selection pressure, are also marked. 
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Appendix table 3.1: Summary of the within patient evolution dataset with the reasoning for an 

isolates inclusion or exclusion. Phylogenetic analysis was used to determine whether all 

isolates from a patient shared a LCA and thus that the variation observed had occurred 

within the host or whether an isolate shared a LCA with an isolate from another patient which 

could suggest the isolate was transmitted and thus it had not evolved under the selection 

pressure from a single host. Only isolates evolving within a single patient were included in 

this analysis. 

 

Appendix 3 table 3.2: Summary of all the variants accumulated over time within each patient. 

The variants were  detected by mapping all isolates to the M. a. abscessus ATCC19977 

reference genome.  

 

Appendix table 3.3: Summary of the number of SNPs accumulated over time within each 

patient for which the day/month/year of sample collection was known. This dataset was used 

for the hypermutation analysis. 

 

Appendix table 3.4: The distribution of the 1,185 SNPs accumulated across the M. a. 

abscessus ATCC19977 genome overtime within the 186 MABSC lineages for which the 

within host evolution was investigated.   

 

Appendix table 3.5: Table showing the results of the binomial test carried out upon each 

gene to identify if it had accumulated a significant number of nonsynoymous SNPs over time 

within multiple patients. 

 

Appendix table 3.6: Table reporting the level of differential expression for each of the 

significantly differentially expressed genes identified from each of the comparisons 

performed in Table 13. The functional interpretation of each of the differentially expressed 

genes is reported. 

 

8.4. Appendix for Chapter 5 

Appendix table 4.1: Summary of the 189 isolates obtained from nine states in Brazil where 

post-surgical wound infection outbreaks occurred. One isolate (16933_5#71) was found to be 

contaminated after sequencing. This dataset was supplemented by two previously 
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sequenced isolates from Brazil CRM-020 and GO-06 as well as the single isolate per patient 

MABSC global population dataset (appendix table 5.2). 

 

Appendix table 4.2: Annotation of Del_12078_1#71_01025_01041 

The Prokka, InterPro and GO-term annotations of the CDSs present within the globally 

circulating clone cluster 2 isolate, PAP1174, but lost in the Brazil lineage isolate, 

BRA_PA_42, starting at position 639781. (This is the start position of the deletion in 

BRA_PA_42 when the BRA_PA_42 assembly begins with CDS LgrD_9). 

 

Appendix table 4.3: Annotation of Del_12078_1#71_02620_02653 

The Prokka, InterPro and GO-term annotations of the CDSs present within the globally 

circulating clone cluster 2 isolate, PAP1174, but lost in the Brazil lineage isolate, 

BRA_PA_42, starting at position 2076766 (This is the start position of the deletion in 

BRA_PA_42 when the BRA_PA_42 assembly begins with CDS LgrD_9). 

 

Appendix table 4.4: Prokka, Pfam and InterPro annotations of the CDs identified on the novel  

plasmid, pMAB02, associated with the Brazilian epidemic lineage. 

8.5. Appendix for Chapter 7 

Appendix table 5.1: MABSC global population dataset 

Summary of the MABSC global population dataset used in this thesis. This includes the date, 

time, CF status, subspecies, location of isolation of the isolates obtained from each patient . 

Columns marking which isolates make up the single isolate per patient, within host evolution 

and pangenome dataset are also included. 

 
 
Appendix table 5.2: This table is a summary of the 29 publicly available MABSC sequences 

that were added to the MABSC global population dataset sequenced for Bryant et al’s global 

population study. Isolates marked with * represent isolates were the raw reads for the WGS 

were not available and thus the assembly was shredded using an inhouse script to 

regenerate the raw reads. ^ marks isolates which were mapped to the M. a. abscessus 

ATCC19977 reference genome with the percent identity to report a mapping at 0.80. If the 

isolate was known to be associated with an outbreak, the outbreak is recorded in brackets 

next to the country the isolate was obtained from. 

 
Appendix table 5.3: Summary of the de novo assembly statistics for the isolates sequenced 

in the MABSC global population study.  
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