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Abstract

This thesis details several applications of Gaussian processes (GPs) for
enhanced time series modeling. We first cover different approaches for
using Gaussian processes in time series problems. These are extended
to the state space approach to time series in two different problems.
We also combine Gaussian processes and Bayesian online change point
detection (BOCPD) to increase the generality of the Gaussian process
time series methods. These methodologies are evaluated on predictive
performance on six real world data sets, which include three environ-
mental data sets, one financial, one biological, and one from industrial
well drilling.

Gaussian processes are capable of generalizing standard linear time se-
ries models. We cover two approaches: the Gaussian process time se-
ries model (GPTS) and the autoregressive Gaussian process (ARGP).
We cover a variety of methods that greatly reduce the computational
and memory complexity of Gaussian process approaches, which are
generally cubic in computational complexity.

Two different improvements to state space based approaches are cov-
ered. First, Gaussian process inference and learning (GPIL) general-
izes linear dynamical systems (LDS), for which the Kalman filter is
based, to general nonlinear systems for nonparametric system iden-
tification. Second, we address pathologies in the unscented Kalman
filter (UKF). We use Gaussian process optimization (GPO) to learn
UKF settings that minimize the potential for sigma point collapse.

We show how to embed mentioned Gaussian process approaches to
time series into a change point framework. Old data, from an old
regime, that hinders predictive performance is automatically and el-
egantly phased out. The computational improvements for Gaussian
process time series approaches are of even greater use in the change
point framework. We also present a supervised framework learning a
change point model when change point labels are available in training.

These mentioned methodologies significantly improve predictive per-
formance on the diverse set of data sets selected.
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Chapter 1

Introduction

Machine learning is the study of algorithms whose performance improves with

increased exposure to data. Most computer programs do not become more intel-

ligent no matter how much data they process; their entire functionality is specified

in advance by the programmer. A machine learning algorithm, by contrast, will

become more intelligent as more data is processed. In machine learning, software

must learn to match its output to training examples, where the correct output is

provided to the algorithm. The classic example is optical character recognizers

(OCR): Images of characters, say zero to nine, are provided and the software must

output which digit is in the image. As opposed to trying to specify rules about

what makes a two a two, example images are provided along with labels (this is

known as the training set). A good machine learning algorithm will predict the

correct character in a test set when novel images are provided to the algorithm.

An OCR is an example of an iid data set, the images are independent of one

another and their attributes do not change over time. The canonical examples

of machine learning are iid, but we focus on time series data. Examples of time

series data include air temperature or stock market returns.

Early on, machine learning researchers realized they had closer ties to statistics

than other parts of computer science [Friedman, 1997]; functionality was being

specified by real data not abstract specifications on paper, the original approach

in artificial intelligence (AI), as is the case with data structures like stacks and

queues. In contrast to an OCR, it is easy to specify on paper the requirements

such that a sorting algorithm is correct. However, machine learning still maintains

1



1. INTRODUCTION

(a) Celery (b) Airplane

Figure 1.1: Classification example: fMRI images from subject one in Mitchell
et al. [2008]. On the left we show four fMRI cross-sections when the subject was
exposed to the word celery. On the right we show four cross-sections for airplane.
In the context of classification, we would like to predict the word presented to
the subject based on the fMRI image.

some independence from statistics. Machine learning is more concerned about

new efficient algorithms for complex tasks while statistics is more concerned about

“understanding” a data set. Central to machine learning is test set performance.

Most machine learning algorithms do not exist in a vacuum. They are usually

tied to a given application area, which utilizes specialized domain knowledge.

Some of these areas include speech applications, computer vision, bioinformatics,

and finance [Mitchell, 2006]. We use an example classifying functional magnetic

resonance (fMRI) images based on a stimulus instead of the more cliche example

of numerical digits. This example uses computational neuroscience as the domain

area; each domain comes equipped with its own prior knowledge.

In this example, we summarize the results of Mitchell et al. [2008]; fMRI data

was taken from subjects while being presented with a variety of different nouns.

In Figure 1.1, we show four cross-sections from one subject while either being

presented with celery or airplane. After training on only 50 word-image pairs

per subject, Mitchell et al. [2008] were able to use machine learning methods to

predict whether a subject was presented with celery or airplane on novel new

fMRI test set images with 70% accuracy on the average subject.

When a programmer is assigned the task of writing such a predictive pro-

gram, certain tasks can be accomplished with standard computer science. The

2
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(b) State estimation for control

Figure 1.2: Two examples of time series data. On the right we show a control
system for an autonomous car [Montemerlo et al., 2008] using GPS as a sensor
and throttle as a control signal. The filter combines measurements over time to
reduce sensor noise. On the left we show data from the financial markets where
the problem is more time series prediction than control.

programmer knows how to take the results and store them in a database, possibly

make a web interface to the database, interface to the fMRI machine, and so on.

The programmer does not know how to write one bothersome function. How do

we take this array of N3 voxels, the fMRI image, and output the word used as

the stimulus? A programmer may try to elicit explicit rules from a neuroscientist

about how to classify the images, but such approaches are limited without the

use of real training data.

The task of identifying a word, for example, celery or airplane, from an image

is called classification. In this case, it is binary classification. If we include a third

word, e.g. corn, the task would become multiclass classification. If the task is to

identify certain continuous valued statistics on the objects, such as the duration

of a stimulus, then the task would be a regression problem. Chapter 3 focuses

on a start-of-the-art nonlinear regression method known as Gaussian processes

(GPs) [Rasmussen and Williams, 2006].

Although the iid examples like the fMRI classifier are the “bread-and-butter”

of machine learning, this thesis focuses on time series examples. Figure 1.2(a)

shows four indices of the Financial Times Stock Exchange (FTSE), a clear ex-

ample for time series prediction; better modeling of this time series could lead

3



1. INTRODUCTION

to better portfolio management. Returns in financial markets are known to have

volatility clusters [Lux and Marchesi, 2000], which makes it necessary to have

models that respond to changes in variance. Change point models, discussed in

Chapter 5, are useful in situations where there is a sudden increase in volatility

possibly due to a new earnings report or political event.

Figure 1.2(b) illustrates a classic engineering problem: feedback control sys-

tems. The figure illustrates a feedback control system for an autonomous vehicle.

The vehicle infers its position and velocity from a global positioning system (GPS)

and odometer, and controls those variables via motor throttle. Industrially this

is known as odometer assisted GPS [Geier, 1996]. The sensor measurements are

noisy and therefore the vehicle must use multiple measurements over time to re-

duce the error in its state estimation. Simple averaging does not work since the

vehicle is constantly moving, more clever methods must be used. When a feed-

back system is governed by stationary linear differential equations (also known as

an LTI system) the Kalman filter [Kalman, 1960] is the optimal method. Methods

involved in the nonlinear and nonstationary cases have been an active research

area over the last few decades. Chapter 4 reviews common existing methods and

introduces a few new approaches.

Example model A basic predictive model would model a scalar (yi ∈ R) by

placing a normal-inverse-gamma prior on iid Gaussian observations:

yi ∼ N (µ, σ2) , (1.1)

µ ∼ N (µ0, σ
2/κ) , σ−2 ∼ Gamma(α, β) . (1.2)

In this example the parameters are θ = {µ, σ2} and the model hyper-parameters

are {µ0, κ, α, β}. This gives a Student’s t predictive distribution p(yN+1|y1:N). In

later chapters this model is referred to as the time independent model (TIM) since

all the data points are independent conditional on the parameters: yi ⊥⊥ yj|θ.
TIM is a density estimation (unsupervised or output only) model. However,

we may have input variables as well; for instance, in the fMRI example the image

is the input x ∈ X , where X is the set of all N3 voxel images. In the unsupervised

case X = ∅. When we incorporate input variables we are in the supervised regime.
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The natural extension of TIM to the supervised case is linear regression:

yi ∼ N (axi + b, σ2) . (1.3)

The parameters are now θ = {a, b, σ2}.

1.1 Contributions

In this thesis we develop advanced methods for temporal data. We compare our

methodology to the standard linear approaches such as autoregressive (AR), mov-

ing average (MA), and Kalman filter methods as well some nonlinear extensions.

TIM is a naive model that will serve as a reference point or “baseline” for per-

formance. The bulk of the thesis’ material is found in three chapters: Gaussian

processes, state space models, and change point detection. We summarize how

each of these elements — Gaussian processes, state space, and change points —

combine to form this thesis’ contribution in the Venn diagram of Figure 1.3.

In Chapter 3, we give a brief introduction to Gaussian processes (GPs) before

moving on to advanced aspects. Gaussian processes are a nonlinear regression

method, extending (1.3), that do not assume the function underlying the rela-

tionship between x and y can be represented by an analytic form. They belong

to a class of methods known as Bayesian nonparametrics. We review two ways of

accounting for extra sources of uncertainty in GPs: uncertain inputs and output

scale uncertainty. In uncertain inputs, the input variable x is known only up to

a Gaussian distribution. We must “hedge our bets” when making predictions on

the outputs y in that case. In output scale uncertainty we treat the scale, or

units, of the outputs y as unknown and they must be inferred from data. This

is sometimes known as a “t-process.” We make contributions by offering a sim-

plified derivation of the uncertain input equations and presenting updates to do

inference in the t-process for the same computational cost as a standard Gaussian

process.

There are two approaches to applying Gaussian process methods to time series:

Gaussian process time series (GPTS) and the autoregressive Gaussian process

(ARGP). We compare these two approaches: The GPTS generalizes many of the
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CPD

SS

GP

IFM

GPIL

EKF/UKF

GPO

Results

GPK
UPM

GPTS/
ARGP
UPM

GP Tricks

UI

t-process

Figure 1.3: A Venn diagram representing the contributions and topics in this
thesis. We present the areas as change point detection (CPD) (Chapter 5),
Gaussian processes (GP) (Chapter 3), and state space models (SS) (Chapter 4).
Gaussian process optimization (GPO) (Section 4.2.1), GP uncertain inputs (UI)
(Section 3.2), and uncertain output scale (the “t-process”) (Section 3.1) are in
the GP circle. Gaussian process inference and learning (GPIL) (Section 4.3)
is both Gaussian processes and state space modeling. Gaussian process change
point models (Section 5.3) cover Gaussian processes and change point detection.
Whereas, the independent factor model (IFM) is only in change point detection.
Improvements to the unscented Kalman filter (UKF) (Section 4.2), and the re-
lated EKF are in state space modeling. Finally, the results section (Section 5.5)
evaluates methodologies in all circles.

standard linear time series methods, while the ARGP is arguably more general

still than the GPTS. However, some elegant properties of the GPTS are lost when

moving to an ARGP. The ARGP is also more computationally difficult than the

GPTS. We review and extend methods to bring down the computational penalty

of GPTS using Toeplitz methods or approaches that convert a GP to a Kalman

filter (GPK). Rank-1 matrix updates bring down the cost of ARGP. We extend

Rank-1 updates with a novel method called the sub-evidence that allows us to

cheaply make predictions at any point in a time series for any starting point of
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the training data.

Chapter 4 emphasizes state space models. We review existing work in state

space models such as the Kalman filter. Approximate extensions designed for

systems governed by nonlinear differential equations such as the extended Kalman

filter (EKF) and unscented Kalman filter (UKF) are presented in a unifying

framework for approximate filters. We cover some of the failure modes of these

approximations, i.e. poor predictive performance, and introduce model based

methods to make such failure less likely. We utilize GPs through the use of

Gaussian process optimization (GPO) for learning in this setup. GPs are also

used in a state-of-the-art nonlinear filter known as the GP assumed density filter

(GP-ADF), which utilizes the uncertain input methodology covered in Chapter 3.

We extend the GP-ADF by learning the system dynamics, in effect the governing

differential equations, of time series with the Gaussian process inference and

learning (GPIL) algorithm. Like a GP in a regression context, the GPIL does

not assume the system can be represented by an analytic form. We empirically

benchmark these approaches.

Finally, in Chapter 5 we extend the change point detection framework first

presented by Adams and MacKay [2007] and Fearnhead and Liu [2007]. In a

change point detection framework, we phase out old training data that is detri-

mental to the performance of an underlying model. In the absence of change

points, we would expect more data to only increase the performance of an al-

gorithm. We first build upon this approach for hyper-parameter learning. We

learn from training data quantities that were previously set by hand: What is

the hazard function, how often do change points occur? What is the prior of the

underlying model, i.e. what kinds of changes typically happen at change point?

In extension of the previous approaches that assumed TIM-like or simpler linear

models as the underlying model, we “plug-in” the Gaussian process based meth-

ods, GPTS and ARGP, as the underlying model. The computational complexity

can be greatly reduced using the methods of Chapter 3: Toeplitz methods, GPK,

and the sub-evidence. We can do this in both a streaming way, as the data is

coming in, and honing our inferences in retrospect by extending the methods

of Fearnhead [2006]. Our final contribution is a method for supervised change

point detection that uses labeled known change points in training. We also in-
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1. INTRODUCTION

corporate label noise on the change point labels. Finally, we evaluate all of our

methods and the standard approaches (over ten methods in all) on six real world

data sets. The data sets, summarized in Chapter 2, are environmental appli-

cations (Whistler snowfall, Nile record, fish killer), biology (bee waggle dance),

geological engineering (well log), and finance (industry portfolios).

Measuring performance Throughout the machine learning literature, and

this thesis, methods are motivated by performance increases. Therefore, we must

precisely define how we measure performance. For iid problems, we randomly

take N data points from our data set and place them in the training set, while

the remaining N ′ are placed in the test set. The parameters of a method are set

using the training set, while the predictive accuracy of a method is measured on

the test set according to a loss function. For time series methods, we generally

train on the first T time steps and test on the remaining T ′ time steps; it is more

realistic to test a model’s ability to predict the future based on the past than

vice-versa.

Consistent with rational decision making we consider the average loss over

each data point, where the loss function L ∈ Y × A → R measures the compat-

ibility between the actual data point y and an action a ∈ A. The average loss

over each test point is known as the empirical loss:

L̂ :=
1

N ′

N ′∑
i=1

L(yi, ai) . (1.4)

The hypothetical limiting case is known as the generalization error: L := limN ′→∞ L̂.

We obtain actions a from predictive probability distribution p(yi|xi) by minimiz-

ing the expected loss,

ai = argmin
a

E [L(yi, a)] = argmin
a

∫
L(yi, a)p(yi|xi) dyi . (1.5)

This procedure is known as Bayes’ decision rule. The black box functionality of

a machine learning method is shown in Figure 1.4.

For continuous variables y ∈ R we consider the mean-square-error (MSE),
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Model Decision

Figure 1.4: Black box model of a machine learning algorithm. The algorithm
is “configured” by a set of training inputs X and outputs Y . Then for any test
input x? it outputs an action a. Inside the black box we have drawn two smaller
black boxes which exist if a Bayesian decision process is being used. The first
inner black box provides a predictive probability distribution p(y?) according to
a model. The second inner black box implements (1.5).

L(yi, a) = (yi − a)2, and the mean-absolute-error (MAE), L(yi, a) = |yi − a|.
The optimal actions for MSE and MAE are to assign a the mean and median of

p, respectively. We will also use the log loss, also called negative log likelihood

(NLL), L(yi, p) = − log p(yi|xi), which has special properties for evaluating the

entire predictive distribution p. More complex loss functions are possible for

more complex tasks such as ranking, predictive intervals, resource allocation, and

so on. A more thorough background and motivational aspects of performance

evaluation is presented in Section B.1.

Bayesian machine learning Researchers in machine learning often borrow

ideas from Bayesian statistics. A Bayesian approach allows us to apply the rules

of probability in a unified way to the learning, prediction, and inference tasks.

The probability of an event is treated as betting odds rather than a hypothesized

limiting frequency in infinite independent trials (the frequentist paradigm). If

we take probabilities to be betting odds, de Finetti [1931b] showed that the laws

of probability are the unique rules that allow a bookie to avoid being placed in

Dutch books: scenarios where a bookie takes a collection of bets where he will
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1. INTRODUCTION

lose money in every possible outcome.1 See Pollard [2002, Sec. 1.5] for details.

In statistics, a common alternative to the Bayesian paradigm is hypothesis

testing. Consider a celery detector in the fMRI example, for a Bayesian celery

detector, we say the probability that the stimulus is a celery, given the image we

observed, is x%. The analog of this statement in hypothesis testing (frequentist)

terms would advertise that the probability of classifying the image as a celery

stimulus given it is really from an airplane is less than α, usually 5% (this is

known as a false positive rate). A practitioner would most likely use hypothesis

testing for a model selector: The probability of observing some statistic of the

data set, or more extreme in some sense, given it was actually generated from

some proposed model where airplanes and celery give identical observations is

less than 5%. We can illustrate the difference using an extreme case reasoning: A

celery detector, or model selector, that completely ignored the data and randomly

alerted 5% of the time would satisfy the frequentist statement.2

In machine learning, the generalization error is of primary importance. The

frequentist optimality criterion here is the minimax risk: the “true” probability

distribution of the data has been adversarially picked by nature to trick the

algorithm. There is often no clear way to obtain the minimax optimal algorithm

and bounds to the generalization error are often used as a proxy, for instance in

Vapnik-Chervonenkis (VC) analysis [Vapnik and Chervonenkis, 1971]. This is in

contrast to hypothesis testing; the statistical learning theory approach (such as

VC analysis) emphasizes generalization error bounds. For any arbitrary sampling

distribution, we could generate many independent data sets and only in less than

5% of them would the misclassification of airplanes and celery on the test set be

more than ε. The bound ε can be calculated from the training set. A Bayesian

machine learning algorithm has optimal Bayes’ risk: We get the lowest expected

loss in expectation under the prior. A more in-depth coverage of these issues is

in Section B.2.

1 Websites such as www.betfair.com and www.intrade.com are modern manifestations of
the thought experiment in de Finetti [1931b]. If the odds available to those making simultaneous
bets were not coherent, i.e. consistent with the rules of probability, it would be possible to make
a risk free profit through arbitrage.

2 The concept of statistical power was developed to exclude such tests. However, power will
be the function of a true latent parameter. Only in simple situations will there be a test that is
uniformly most powerful: more powerful than other tests for all values of a latent parameter.
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1.2 Nonparametric Methods

Nonparametric methods allow the number of parameters to grow with the sam-

ple to better fit the data.1 In Bayesian methods, we must specify a prior on the

parameters before we observe the data, or even the sample size, which precludes

us from changing the number of parameters as the sample size grows. Ferguson

[1973] observed that the solution to this dilemma is for nonparametric Bayesian

methods to place priors directly on infinite dimensional objects. We must make

the “parameters” θ infinite dimensional.2 For instance, they can be functions

(RD → R) as in Gaussian processes, over probability distributions M(RD) as

in Dirichlet processes (DPs), or over infinite binary matrices (N × N → {0, 1})
as in the Indian buffet process. A corollary of the parameters θ being infinite

dimensional is that the data cannot be summarized by any bounded finite num-

ber of sufficient statistics as the data set grows. In fact, Hipp [1974] showed

that only finite dimensional exponential family models summarize the data with

sufficient statistics of bounded dimension. In other words, when making predic-

tions we need to keep all the training data in memory; we cannot summarize the

data by its sample mean and variance as in the parametric Gaussian case, i.e.

TIM. We illustrate the more complex distributions that can be expressed by a

nonparametric approach in Figure 1.5.

Nonparametric methods are often motivated by making some set of param-

eters in a parametric model infinite. For instance, Gaussian processes can be

motivated as Bayesian linear regression with an infinite number of basis func-

tions. Likewise, Dirichlet process mixtures (DPMs) are motivated as mixture

models where the number of mixture components M become infinite. Paradox-

ically, this often makes the algorithms more efficient. This is often because the

computational complexity O(·) of a parametric (finite) model contains the num-

ber of components M . Using nonparametric methods forces the modeler to use

an efficient representation that is invariant to M since doing otherwise would

1 In “All of Nonparametric Statistics” Wasserman [2006, Ch. 1] infamously does not define
nonparametric statistics as to avoid inviting controversy. We take a more bold approach.

2 The term nonparametric causes quite a deal of confusion as it often leads people to believe
we are working with models with zero parameters when in fact we are referring to models with
an infinite number of parameters!
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1. INTRODUCTION

cause the computational complexity to become infinite when working with the

nonparametric version.

A common question to ask is whether nonparametric models offer any ad-

vantage over their parametric counterparts when the number of components M

is relatively large. In the nonparametric model the number of parameters (infi-

nite) is always much larger than the number of data points; in the parametric

case, there is always some data set N where the parameters no longer outnumber

the data points. Realistically, we may never reach that regime. However, recall

Ferguson [1973] noted that in a perfectly coherent Bayesian setting the number

of data points N should not affect our model choice. Often, it is merely more

elegant to let the number of parameters become infinite than pick some large,

but still arbitrary, number.
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Figure 1.5: Sample draws illustrating the difference between nonparametric and
parametric distributions. The top row shows parametric models while the bottom
row shows their nonparametric extension. The left column is for regression while
the right column is density estimation.
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1.3 Overview of Time Series Data

In this section we describe the time series data paradigm, challenges in modeling

real world time series, and the two main modeling approaches. All probabilis-

tic time series models are based on either the autoregressive or the state space

approach (known as data driven and parameter driven models, respectively, in

econometrics [Francis et al., 2011]). Accounting for many aspects of real world

time series, such as periodicity and missing data, is an often ignored part of the

literature, but is important in application. We build on this section’s introduc-

tion to the autoregressive approach in Chapter 3. Likewise, we build on the state

space approach in Chapter 4.

Time series are quantities that vary through time. They often consist of

continuous measurements yt that can be sampled at any point in time, arbitrarily.

Examples include circuit voltage, atmospheric temperature, and stock market

returns. In more precise terms, time series data maps from a time index t ∈ T to

a measurement yt ∈ R. Time series can be in discrete time (T = Z) or continuous

time (T = R), meaning discrete time is a special case of continuous time. For

example, if we measure the voltage exactly once per hour we model it as discrete

time where the time index is how many samples have been taken so far. We call

this case uniform sampling. However, if voltages are measured at arbitrary times

or with changing sampling rates it is more convenient to model it as a continuous

time process. To simplify the analysis we often, but not always, focus on discrete

time processes.

If we are looking at multivariate time series, for example if we are considering

a circuit’s voltage and current in the same model, then it is easier if we have

synchronized sampling. The sampling is synchronized if the different quantities,

also referred to as channels, are sampled at the same time. In the multivariate

case, yt ∈ RD, we treat a time series as discrete if the sampling is uniform and

synchronized. Otherwise, it makes more sense to use continuous time models.

Note that discrete time still allows for missing data. If the data is sampled at

one minute intervals but occasionally there are two or three minute gaps between

data points then we model it as discrete time with missing data.
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Model Decision
Memory

Figure 1.6: Black box model of a time series method. This is the temporal analog
to the iid black box in Figure 1.4. The model is the same as in the earlier iid
black box except we now have a memory unit drawn on the bottom of the model.
This signifies that information from recent data points is stored for predictions.
The time series comes in one step at a time in yt along with its external inputs,
also known as covariates or control inputs, xt.

1.3.1 Challenges in Time Series Data

Throughout this thesis we discuss approaches to handling features often found

in real world time series. In this section we give an overview of the challenges

often present. These challenges are often ignored since they are not theoretically

interesting, and are therefore under emphasized. However, we motivate aspects

of the models constructed in later chapters based on these ideas. Furthermore,

we take these challenges into consideration during the evaluation of the methods.

The challenges in this section are illustrated on a real example in Figure 1.7.

Trends The most common time series feature to account for is trends. For

instance, if there is a clear linear trend in the time series, it is inadvisable to

use a model that aggressively reverts to the mean when extrapolating. However,

simple linear models are even worse for extrapolating as they assume a time series

will keep increasing or decreasing forever. Trends can also be removed through

differencing. Exponential trends can sometimes be elegantly handled by moving
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Figure 1.7: We illustrate some of the challenges of real time series data on four
examples from an electronic communication system. In each of the figures, the
blue line represents the time series in the past while the red line represents it
in the future. The black line and gray region represent the mean and 95% error
bars in an example time series analysis on each time series; The region after the
vertical red line is a forecast based on the data before the red line. Periodicity,
at a daily period, is present to some degree in all the examples. Likewise, all
the time series have some degree of a smooth underlying pattern, a short term
correlation, not explained by the periodicity. The outside temperature and power
supply temperature show obvious change points. The power supply temperature
is visibly discretized to 1 C levels.

to the “return” space:

rt := log

(
yt
yt−1

)
= log(yt)− log(yt−1) . (1.6)

The term return space is used as this formula converts between prices and returns

when working with financial data. Using Gaussian process methods, covered in

Chapter 3, the model can automatically and implicitly difference, or move to

return space, time series when appropriate. We can strike an appropriate balance

between aggressive extrapolation and mean reversion in a model based manner.

Differencing the time series adds noise in some sense. If each y has additive
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Gaussian noise then the noise variance in yt − yt−1 is twice that in yt. However,

there is no loss in information as differencing is an invertible operation. A model

on the differenced time series merely implies a different model on the original

time series. We can work with the differencing level that is most compatible

with a given model. Therefore, although differencing increases the “noise level”

differencing does not necessarily lower performance.

Periodicity Many real world time series involve periodic patterns, especially

on natural time scales, such as days, weeks, or years. A common approach to

periodicity is to look at the Fourier transform of the time series and find frequen-

cies with large power. Sinusoids at this frequency are then removed (band-pass

filtering) [Baxter and King, 1999]; however, this requires setting arbitrary thresh-

olds. Differencing over the time of a period can also be applied. These ad hoc

approaches can introduce artifacts and be counter-productive [Nelson and Kang,

1981]. In Chapter 3 we illustrate how model based approaches to handle peri-

odicity are more elegant and effective. If the periodicity occurs in multiplicative

fashion, preprocessing with a log-scale transform can be useful.

Outliers Outliers could be the result of an unusual effect in the actual pro-

cess being observed. Financial returns are notorious for being “heavy tailed”

and many traders have been ruined for making erroneous Gaussian assumptions

[Crouhy et al., 2005, Ch. 14]. However, the outliers in question may simply be

“junk data.” For instance, missing data may be mistakenly entered as a mea-

surement of zero due to careless programming. Outliers may also be the result of

sensor anomalies, where a sensor gets stuck at a certain value. Machine learning

methods for sensor failure detection were explored in Osborne et al. [2010].

Standardizing In general, it is advisable to standardize (linearly transform the

data y1:T to have mean zero and unit variance) a time series before applying a

method to it. Firstly, it may help if a method is not appropriately scale invariant.

Additionally, standardization may alleviate numerical problems. Data whitening

[Bishop, 2007, Ch. 12] can be applied to multivariate data to make each channel

uncorrelated.
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Standardizing allows the data to subtly influence the prior, which is illegal

in a strict Bayesian formalism. In other words, standardizing induces a data

dependent prior. For instance, placing the mean of the prior of the data at zero

and then standardizing the data is the same as placing the prior at the sample

mean of the data.

If we are willing to learn the mean by maximum likelihood anyway then

standardizing does nothing more than avoid potential numerical problems. If

we are trying to do full Bayesian inference, standardizing the data will usually

only give the prior a small peek at the data and make little difference to the

resulting inferences. However, recent developments suggest this is not always

the case in nonparametric models such as Dirichlet process mixtures [Darnieder,

2011].

If the training set is continuously growing, we want our methods to learn the

scale of the data. They should be robust enough to work without any standard-

izing. However, we can standardize the data to some initial estimate of the scale

of the data anyway, to limit the potential for numerical difficulties.

Short-term correlations Short-term correlations can be visualized by auto-

correlation functions (ACF), partial ACFs (PACF), and scatter plots. The ACF

on a time series y1:T is defined as:

ACF(p) := Corr [yt, yt−p] =
Cov [yt, yt−p]√

Var [yt] Var [yt−p]
, (1.7)

and the PACF is:

PACF(p) := Corr
[
yt, yt−p|yt−p+1:t−1

]
(1.8)

=
Cov

[
yt, yt−p|yt−p+1:t−1

]√
Var

[
yt|yt−p+1:t−1

]
Var

[
yt−p|yt−p+1:t−1

] . (1.9)

The methods of Chapter 3 fit “hand-in-glove” for directly modeling short-term

correlations.
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Change points Parameters in the generative process may suddenly change.

Typically we would expect that the more data is observed the better a model will

perform at predicting. However, in time series analysis there are times in practice

where using old data is counter-productive. Many ad hoc approaches [Anagnos-

topoulos et al., 2008] have been developed to throw away old data, most of which

involve placing some form of “forgetting factor” in a parameter estimator to im-

plement a Robbins-Monro like scheme [Robbins and Monro, 1951]. The methods

in Chapter 5 automatically phase old data out as it becomes less accurate in mak-

ing predictions. Such change points methods work in a fully coherent Bayesian

manner without resorting to approximate inference.

Missing data Missing data is the source of many real data statistical headaches.

Substituting zero or some other value for missing data is a naive, yet sometimes

used method. An advantage of a fully probabilistic approach is that it allows for a

principled way to deal with missing data. A missing variable is simply marginal-

ized out instead of conditioned on. A matter of concern is the missing at random

assumption [Little and Rubin, 1987]. Does observing the data point as missing

provide information of its latent value? This issue arose in the NetFlix challenge

and was studied by Marlin et al. [2007]. When NetFlix users are rating movies,

the fact that they have not rated a movie means they have decided not to watch

it. Contrary to the missing at random assumption, this provides information that

they may not rate the movie highly. We emphasize the distinction between the

observation that data is missing and the assumption that it is missing at random.

Censored data Sensors often have minimum and maximum values that are

sometimes exceeded in the data. For instance, a thermometer might only return

data in a range of 0 C to 100 C. Properly modeling the observation using P (x ≥
100) may give much different results than p(x = 100).

Discretization Sensor data is often coarsely discretized to ∆x intervals. A

sensor might be designed to only report as many significant digits as it is confi-

dent in. For instance, a thermometer might only report to the nearest ∆x = 1 C.

Numerical and other problems can result when applying a method that expects
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the data to be continuous to discrete data. For instance, a long stream of iden-

tical measurements x, which should not happen in continuous data, may cause

problems when attempting to infer the variance.

The most principled approach is to consider the latent value of the continuous

time series prior to discretization xcontt , which is within a certain range of the

observed discretized value xt. Meaning we work with P (xcontt ∈ [xt −∆x/2, xt +

∆x/2]) rather than p(xcontt = xt). We can also add a minimum noise level in the

model according to the discretization level ∆x. However, a simple fix that works

with any black box method, is to add salt to the data x to arrive at salted data

s:

st := xt + εt, εt ∼ U [−∆x/2,∆x/2] . (1.10)

The more rigorous approach would be to create many salted versions of a train-

ing set and average the predictions. However, a singly salted method may give

approximately the same answer if the added noise is very small relative to the

signal.

We justify salt by the following setup. Suppose we are given a black box that

computes p(θ|xcont
1:T ), possibly the posterior on some parameters or a posterior

predictive. However, since we only have x1:T we must use this black box to

compute p(θ|x1:T ). We see that

p(θ|x1:T ) =

∫
p(θ|xcont

1:T )p(xcont
1:T |x1:T )dxcont

1:T , (1.11)

p(xcont
1:T |x1:T ) ∝ P (x1:T |xcont

1:T )p(xcont
1:T ) (1.12)

(1.10)
= p(xcont

1:T )
T∏
t=1

I{xcontt ∈ [xt −∆x/2, xt + ∆x/2]} . (1.13)

If ∆x is small enough such that the prior predictive p(xcont
1:T ) is approximately con-

stant within the small region near x1:T then the posterior will be approximately
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uniform:

p(θ|x1:T ) ≈
∫
p(θ|xcont

1:T )
T∏
t=1

U [xcontt | −∆xt/2,∆xt/2]dxcont
1:T (1.14)

≈ 1

N

N∑
i=1

p(θ|si1:T ) , (1.15)

where sit is the ith out of N iid draw of st from (1.10). We arrive at the salted

algorithm by averaging over many salted versions, which effectively reduces the

variance from Monte Carlo error in (1.10).

Non-uniform sampling Data analysis is simplest when a sensor is sampled

on a periodic interval, e.g. exactly every 600 s. Uniform sampling makes the data

naturally suited towards discrete time methods. However, this is not always the

case in real world data, which gives an advantage to time series methods that

work in the continuous time domain.

Point masses Point probability masses often occur in what might be assumed

as a continuous variable. For instance, we could treat daily snowfall as a contin-

uous variable with a smooth density. However, there is a positive probability of

seeing exactly 0 cm of snowfall in a day. In this case, we might want to use a clas-

sifier to estimate the probability that it snows paired with a regression method

to predict the log snowfall conditional that it does snow.

Summary This description of challenges is by no means exhaustive, but should

have sufficient coverage. Details of certain challenges given an emphasis in this

thesis are: periodicity, short-term correlations, and change points. Discretization

is present to some degree in all data sets. Discretization is often, but not always,

neglected. In later chapters, we discuss continuous time models that can handle

non-uniform sampling without difficulty. These challenges provide a context for

other parts of the thesis.

Much of the literature on these challenges in machine learning is augmented

by similar literature in signal processing, for instance: censored data [Olofsson,

2005], a review of the long studied connection between the ACF/PACF and the
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frequency domain [Oppenheim and Schafer, 1989], a review of “robust” signal

processing for handling outliers [Kassam and Poor, 1985], extensions to non-

uniform sampling [Marvasti, 2001], and handling missing data [Cooke et al., 2001].

1.3.2 Modeling Approaches

Discrete time data is modeled using either autoregressive or state space ap-

proaches. State space models are based on the notion that there is an unobserved

true state of the system, or latent state, evolving over time that can only be ob-

served indirectly. For example, the location of a car can only be observed through

noisy observations from either an odometer or a GPS. Tracking and control as

well as unsupervised tasks like visualization or time dependent dimensionality

reduction depend on the notion of a state space. Other applications, such as

finance, are more interested in predicting future observations than finding the

latent state. There, the latent state is merely a tool, which may or may not be

beneficial for prediction.

The most basic state space model with continuous valued latent state is the

linear dynamical system (LDS), which is the discrete time analog of a linear differ-

ential equation. The hidden Markov model (HMM) [Baker, 1975] is the discrete

space analog of an LDS. LDS methods treat predictable nonlinear behavior as

noise to a large degree. Many approaches have been invented to make predictions

in nonlinear dynamical systems (NLDS), Section 4.1.3.

To make the state space/autoregressive dichotomy concrete, suppose we have

a time series of length T , Y := [y1, . . . ,yT ]. In an autoregressive approach we

directly model the function mapping the last p values1 of y to the next value of

y. A model of the form:

yt ∼ p(yt|Y(p), θ) (1.16)

is an autoregressive model of order p with parameters θ. We typically restrict

1 We use the shorthand of (N) := (t−N):(t− 1) for the last N elements before a time
index t.
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(a) Autoregressive model (b) State space model

Figure 1.8: Graphical models for autoregressive and state space models. The
autoregressive model shown here happens to be of order two. These graphical
models show the difference in conditional independence assumptions between the
two approaches. The dark blue shading signifies an observed node (variable)
while the light blue signifies a latent variable.

ourselves to consider the case where:

p(yt|Y(p), θ) = N (f(Y(p)),Σ) , (1.17)

for some function f ∈ RD×p → RD and noise covariance Σ ∈ SD. By contrast, a

state space model would be of the form:

xt ∼ pf (xt−1|θ) , yt ∼ pg(xt|θ) , (1.18)

where typically only yt is directly observable. Similar to the autoregressive case,

we typically restrict ourselves to consider the case where:

pf (xt|xt−1, θ) = N (f(xt−1),Σf ) , pg(yt|xt, θ) = N (g(xt),Σg) , (1.19)

where f ∈ RD → RD and Σf ∈ SD are the system function and system noise

covariance, respectively. Likewise, g ∈ RM → RD and Σg ∈ SM are the observa-

tion function and observation noise covariance, respectively. If we further restrict

ourselves to linear systems we are left with the form:

xt ∼ N (Axt−1,Σf ) ,

yt ∼ N (Cxt,Σg) .
(1.20)

Some draws from systems (1.17) and (1.18) are shown in Figure 1.8.

We summarize the models discussed here using the “probability of everything”
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(POE).1 If we summarize our prior on the model as p(θ), we summarize the

autoregressive form as:

p(Y, θ) = p(θ)
T∏
t=1

p(yt|Y(p), θ) . (1.21)

Where as in the state space form:

p(X,Y, θ) = p(θ)
T∏
t=1

p(yt|xt, θ)p(xt|xt−1, θ) . (1.22)

In the case of nonparametric models θ might be infinite dimensional and we

cannot work with p(θ) explicitly, as mentioned in 1.2, requiring us to write the

POE after integrating out θ. For the autoregressive model this is:

p(Y) =
T∏
t=1

p(yt|Y1:t−1) , (1.23)

which is merely the standard one-step-ahead predictive formulation of the marginal

likelihood p(Y), also known as the evidence. For the state space model:

p(X,Y) =
T∏
t=1

p(yt|X1:t,Y1:t−1)p(xt|X1:t−1) . (1.24)

Both of these reductions are merely using the marginalization rules of probability.

We can convert between modeling data yt in autoregressive or in state space

form. Just as we integrate out θ from the state space form to get (1.24), we can

further marginalize out xt from a state space model leaving us with a predictor in

autoregressive form (1.23), albeit with potentially infinite order. In practice, we

may predict with the marginals of bounded order p(yt|Y(p)) instead of using all

the information p(yt|Y1:t−1). We can approximate a state space model via a finite

order autoregressive model. If we are using the negative log likelihood (NLL) as

the loss measure, we quantify the loss in predictive accuracy from truncating the

1 This comes from a quote of Steve Gull, “Always write down the probability of everything.”
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model order using mutual information:

I(yt; Y1:t−p−1|Y(p))

(A.43)
= H[yt|Y1:t−p−1]− H[yt|Y1:t−1] (1.25)

(A.45)
= E [NLL under order p model]− E [NLL under state space model] . (1.26)

This quantifies how much information is thrown away by discarding Y1:t−p−1

when making predictions.

Alternatively, we convert an autoregressive model into a state space form by

“storing” the previous observations in the latent space. We use the following

setup:

yt = xt,1 ∈ R , xt,1 ∼ p(xt−1,1:p|θ) , xt,i = xt−1,i−1 , i ∈ 2:p , (1.27)

where p is the autoregressive predictor from (1.16) substituting xt−1,1:p for y(p).

Therefore, a state space model with latent dimension D = p× E would be more

generic than an autoregressive model of order p.

The distinction of state space models and autoregressive models provides a

good first level splitting in the taxonomy of time series methods. In physical

systems, prior knowledge often tempts the use of state space models. Knowledge

of the equations of motion, for example, makes the representation of a state

space model much more natural. State space models also have the advantage of

not requiring the specification of an arbitrary order parameter. However, when

inference becomes difficult the direct approach of autoregressive models can be

advantageous.

1.3.3 Online Algorithms

Many applications demand online algorithms, meaning they are able to incor-

porate a new data point without repeating the entire training procedure. More

generally an offline algorithm is known as a batch method.

In the state space community, online and retrospective inference tasks are

known as filtering and smoothing, respectively. We consider the case of a ve-
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hicle tracking system to illustrate the distinction. When we are designing an

autonomous navigation system; we would like to perform filtering. The system

must decide where to steer the vehicle next based on its current location. The

system must use the latest information from its sensors to detect oncoming obsta-

cles. By contrast, a system on a Google street view1 car is capable of smoothing.

Street view must tag GPS locations to the street view photographs before being

used. The street view system uses GPS and odometer measurements taken be-

fore and after the photo was taken. Street view has the luxury of using past and

future GPS information in a retrospective context.

A subset of online methods is stream processing methods; these methods not

only update to new points but do not have to keep the previously observed data

in memory. These methods are memory efficient since they only need to keep

sufficient statistics of the data.

Summary We have discussed the two different approaches to time series mod-

els: autoregressive and state space. In each framework we can use either linear

or nonlinear models. Most of the classical methods are linear, but may struggle

to fully account for the common features in time series discussed. Methodology

in Chapter 3 covers nonlinear versions of autoregressive models and Chapter 4

covers nonlinear versions of state space models. Both chapters embrace a non-

parametric Bayesian approach. These extensions help us deal with the frequent

time series challenges, periodicity, change points, non-uniform sampling, etc., in

a principled manner.

1http://maps.google.com/
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Chapter 2

Data Sets

In this chapter we provide a preview of the data sets used in the experimental

results, Section 1.3.1. This provides a context in which to view the methodological

developments in the following chapters. We use six real data sets: Nile, well log,

snowfall, bee dance, industry portfolios, and “fish killer.” These data sets vary

greatly in size and dimensionality. They each contain different aspects of time

series mentioned in Section 5.5. We aim to best visualize each of the data sets to

assist in noticing each of these time series features. We summarize the data sets

used throughout this thesis in Table 2.1. Additionally, we provide the source of

each data set in Table 2.2.

Name T domain units SF US SS labels
Nile 663 R+ mm 1 year Yes N/A No
Well Log 4,050 R+ - - Yes N/A No
Snowfall 13,880 R+ cm 1 day Yes N/A No
Bee Dance 4,960 R2 × [0, 2π] px px rad 1/15 s Yes Yes Yes
Portfolios 11,455 (R+)30 USD 1 day No Yes No
Fish Killer 45,175 R+ m 15 min Yes N/A Yes

Table 2.1: Summary of data sets used. Sampling frequency is abbreviated as SF,
while uniform sampling is abbreviated as US, and synchronized sampling as SS.
The US dollar is abbreviated as USD. The bee data is made up of six sequences
of length: 1,057, 1,124, 602, 756, 813, and 608. This gives a total of 4,960 frames.
The x and y coordinates are measured in pixels (px) while the angle is radians
(rad).
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2. DATA SETS

Name Source
Nile http://lib.stat.cmu.edu/S/beran

http://mldata.org/repository/data/viewslug/nile-water-level/

Well Log Schlumberger
http://mldata.org/repository/data/viewslug/well-log/

Snowfall http://www.climate.weatheroffice.ec.gc.ca/

Whistler Roundhouse station, identifier 1108906
http://mldata.org/repository/data/viewslug/

whistler-daily-snowfall/

Bee Dance http://www.cc.gatech.edu/~borg/ijcv_psslds/

http://mldata.org/repository/data/viewslug/bee/

Portfolios http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_

Library/det_30_ind_port.html

http://mldata.org/repository/data/viewslug/industry-portfolio/

Fish Killer Aquatic Informatics
http://mldata.org/repository/data/viewslug/fish_killer/

Table 2.2: Sources of data sets used. We summarize the original source of
each data set used. We also provide the location of the data set on the http:

//mldata.org/ data set repository.

Nile data We consider the Nile data set [Beran, 1994], which has been used to

evaluate many change point methods [Garnett et al., 2009; Whitcher et al., 1998].

The data set, shown in Figure 2.1, is a record of the lowest annual water levels

on the Nile river during 622–1284 measured at the island of Roda, near Cairo,

Egypt. Domain knowledge in geophysics suggests a change point in year 715 due

to an upgrade in ancient sensor technology to the nilometer. Eltahir and Wang

[1999] provides evidence that anomalies in the Nile record can be used to infer

years of El Niño. The installation of the nilometer is the most visually noticeable

change in the time series.

Bee waggle dance data Honey bees perform what is known as a waggle dance

on honeycombs. The three stage dance is used to communicate with other honey

bees about the location of pollen and water. Ethologists are interested in iden-

tifying the change point from one stage to another to further decode the signals

bees send to one another. The bee data set contains six videos of sequences of bee

waggle dances [Oh et al., 2008]. The video files have been preprocessed to extract

the bee’s position and head-angle at each frame, which is shown in Figure 2.2.

While many in the literature have looked at the cosine and sine of the angle, we
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Figure 2.1: We show the Nile data (solid blue). The y-axis is the water level in
mm, while the x-axis is the year. The red cross marks the installation of the new
nilometer in 715.

chose to analyze angle differences.

Snowfall data We also used historical daily snowfall data in Whistler, BC,

Canada over the period July 1 1972 to December 31 2009, shown in Figure 2.3.

A probabilistic model of the next day snowfall is of great interest to local skiers.

In this data set, being able to adapt to different noise levels is key: There may

be highly volatile snowfall during a storm and then no snow in between storms.

Industry portfolio data We tried a multivariate data set: the “30 industry

portfolios” data set, which was also used in the context of change point detection

by Xuan and Murphy [2007]. The data consists of daily returns of 30 different

industry specific portfolios from July 1 1963 to December 31 2008. The portfolios

consist of NYSE, AMEX, and NASDAQ stocks from industries such as food, oil,

telecoms, etc.

Fish killer data We used water level data from a dam in Richmond, BC,

Canada [Osborne et al., 2011]. Dams typically include a fish weir mechanism for

fish to bypass a dam. However, when the dam is not up to standard the water

29



2. DATA SETS

(a) Bee sequence 1 (b) Bee sequence 2 (c) Bee sequence 3

(d) Bee sequence 4 (e) Bee sequence 5 (f) Bee sequence 6

Figure 2.2: We illustrate bee dance sequences one through six. The plots corre-
spond to the bee’s trajectory during each video sequence. Left turns are shown
in solid red, waggle in solid green, and right turn in solid blue. The bee’s starting
position is marked by a red circle (©) while the end position is marked with a
red cross (×).

level oscillates quickly in a particular pattern, shown in Figure 2.4. When this

happens the fish get stuck behind the dam and die. Water level data is used

by environmental authorities to notify a dam owner when there is a risk of a

mass loss of fish. An automated alert system would make these operations more

efficient.

Since water level is positive, we worked with log water level. The beginning

and end of every water oscillation (fish kills) are treated as a change point for the

purposes of supervision.

Well log data We applied our method to the well log data set for detecting

changes in rock stratification, described in Adams and MacKay [2007] and orig-

inally used in Ó Ruanaidh et al. [1994]. Shown in Figure 2.5, the time series

consists of 4050 nuclear magnetic resonance measurements taken from the drill

30



Jan Apr Jul Oct
0

0.2

0.4

0.6

Time of year

P
ro

b
a
b
ili

ty
 o

f 
s
n
o
w

(a) Probability of snow

Jan Apr Jul Oct

5

10

15

20

25

Time of year
M

e
a

n
 s

n
o
w

fa
ll 

(c
m

)

(b) Mean snowfall

Figure 2.3: We summarize the Whistler snowfall data set. On the left we show
the empirical probability of snowfall, P (snow > 0), for each day of the year
over 1972–2009. Likewise, on the right we show the empirical mean snowfall
conditional there is snow at all, E [snowfall|snow > 0], for each day of the year.
We are not plotting the data for February 29 (on leap year). The estimated
means are erratic in late spring and early autumn since the number of days with
nonzero snowfall is small. Season boundaries are shown by the dashed vertical
lines.
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Figure 2.4: We plot the fish killer data. On the left, we show the water level
behind the dam (solid blue) in m for the year long period. The areas of abnormal
behavior are shown in dashed red. On the right, we show a portion of the time
series in a closeup.
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Figure 2.5: We show the well log data (solid blue). The y-axis is the NMR
response.

while drilling a well. The method is commonly used to detect changes in the type

of rock being drilled. Well log interpretation is an important area of geostatis-

tics [Serra, 1984]. Changes in the mean are from changes in rock stratification;

changes in the noise variance are also observed.
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Chapter 3

Gaussian Process Overview

We provide a brief summary of Gaussian processes in this chapter. It therefore

makes a rather compressed introduction to the topic. A more thorough introduc-

tion is available in [Rasmussen and Williams, 2006]. We go into detail in certain

derivations that are particularly useful in later chapters, such as the output scale

uncertainty in Section 3.1. We explain two different approaches to Gaussian pro-

cess time series modeling and go into the details of efficient implementation, in

Sections 3.4 and 3.6. Although the methods in these sections are useful in their

own right, we further generalize them in Chapters 4 and 5. The Gaussian process

approaches to time series in this chapter automatically handle some, but not all,

of the challenges mentioned in Section 1.3.1. We show how many standard mod-

eling approaches can be derived as special cases of Gaussian process time series

models in Section 3.4.3. Finally, we discuss efficient rank-1 based methods to

efficiently do GP inference over different windows of the data in Section 3.5.

When performing a regression task we assume there exists some optimal pre-

diction function f ∈ X → Y , possibly with a noise distribution. In linear regres-

sion we may assume that the outputs y are a linear function of the inputs x, as

in (1.3), with some parameters θ, often much smaller than the number of training

examples N : |θ| � N . However, for many real world data sets a simple para-

metric form, such as a linear form, is an unrealistic assumption. Therefore, we

would like models that can learn general functions f . Since the functions are not

summarizable by a small (fixed) number of parameters θ, maximum likelihood

estimation of the parameters causes severe overfitting. In fact, in a Gaussian pro-
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cess the effective number of parameters is often infinite. Therefore, in order to do

inference and make predictions in a probabilistic framework, we must put a prior

probability distribution on functions. We make predictions using our posterior

on an underlying predictive function f given a set of training examples in the

form of input-output pairs: (x, y).

A Gaussian process (GP) is a nonparametric method as it places probability

distribution over functions. While most probability distributions are over finite

dimensional objects, such as scalars R or vectors RD, GPs are over infinite dimen-

sional objects f , functions (typically, RD → R).1 Therefore, GPs are a fundamen-

tal tool in Bayesian nonparametrics along with the Dirichlet process (DPs), which

is a distribution on distributions p (typically, M(RD)). Although called GPs in

machine learning, they were historically called kriging in the (geo)statistics com-

munity [Matheron, 1973]. GPs are only a distribution on functions f , not on the

inputs x. This means GPs are discriminative, knowledge of the distribution on

x does not help us predict y. We cannot learn anything from training examples

where y is missing.

Conceptually, a function f ∈ R → R can be thought of as an (uncountably)

infinitely long vector;2 imagine discretizing a function into a lookup table with

infinitely fine bins. That lookup table is stored in a vector f . A GP is merely

a multivariate normal distribution on the vector f , as illustrated in Figure 3.1.

The marginalization property of Gaussians (A.32) implies that we only need to

consider the covariance between the points in the function we have observations

of D = {(xi ∈ RD, yi ∈ R)}Ni=1, where yi = f(xi) with possibly some Gaussian

observation noise. Therefore, we only explicitly need to work with a probability

distribution on finite dimensional object y := [y1, . . . , yN ] while a GP implicitly

places a distribution on an infinite dimensional object f . While practitioners

accept this trick as “kosher,” mathematicians require more rigorous analysis to

prove that GPs “exist” [Orbanz, 2009].

1 GPs are applicable to much more general inputs x than RD, such as graphs and strings,
but we assume x ∈ RD for simplicity.

2 If the function is smooth, as it often is in GP setups, the function can be discretized into a
countably infinite vector. All smooth functions are summarized by their values at the rationals,
meaning f ∈ Q→ R.
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Figure 3.1: On the top row we show a synthetic function f ∈ R → R (solid blue)

sampled from GP that has been discretized to form a vector f . The entries in f ∈ RN

correspond to the height of the bins. We mark three of the vector entries with ×,©, and

�. On the bottom row we show the joint distribution between every combination of the

value of f at these three points. The solid blue ellipse represents the equiprobability

lines representing 90% of the distributions mass. The black dot shows the mean of

the distribution while the black crosses show the value of the two respective sampled

elements of f . Note that the distributions are all Gaussian. For any combination of

entries in f , the joint will be Gaussian.

35



3. GAUSSIAN PROCESS OVERVIEW

Prior specification A GP is specified by a mean function µ(·) ∈ RD → R and a

(positive-definite) covariance function, also called a kernel, kξ(·, ·) ∈ RD×RD → R
with hyper-parameters ξ. The covariance function hyper-parameters ξ describe

general properties of the functions generated from the GP, such as smoothness,

input scale and output scale. A GP implies the following distribution on the data

y:

y ∼ N (µ,K) , µi := µ(xi) , K(i, j) := kξ(xi,xj) (3.1)

⇔y ∼ GP(X|µ, k) , X := [x1, . . . ,xN ] . (3.2)

The matrix K ∈ SN is known as the covariance, or Gram, matrix, whose entries

K(i, j) are often thought of as the “similarity” between inputs xi and xj. We use

the notation GP to denote when a set of outputs y is drawn from a GP at inputs

x; we also use the notation to say a function f is drawn from a GP:

f ∼ GP(µ, k) . (3.3)

The prior mean function is typically set to zero: µ(x) = 0. We summarize this

setup with the graphical model in Figure 3.2.

Figure 3.2: Graphical model for a Gaussian process. The function values f
are fully connected, as indicated by the bold bar, and are dependent on x. The
observations y are f plus some observation noise. We caution the reader that the
bold bar is a non-standard notation in the graphical models community.
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The most common covariance function is the squared-exponential (SE),1

kξ(xi,xj) = σ2
0 exp

(
−1

2
(xi − xj)

>M(xi − xj)

)
(3.4)

= σ2
0 exp

(
−1

2
‖L>(xi − xj)‖22

)
, L := chol(M)> ∈ LD , (3.5)

which generates smooth functions that are infinitely differentiable. Typically, we

make M axis aligned for automatic relevance determination (ARD) [Neal, 1998]:

M := diag(`−2) , ξ := {σ2
0 ∈ R+, ` ∈ (R+)D} . (3.6)

The SE-ARD covariance has |ξ| = D + 1 hyper-parameters. The ARD kernels

can control the degree of spatial correlation differently in each input dimension.

Therefore, when learning the hyper-parameters the kernel can automatically re-

duce the influence of irrelevant inputs. Similarly, there is the Laplace covariance:

kξ(xi,xj) = σ2
0 exp

(
−‖L>(xi − xj)‖1

)
, (3.7)

which generates rough functions that are not differentiable. The M matrix in the

SE case is analogous to LL> case in the Laplace covariance. Due to the spherical

symmetries of the L2 norm we can use any matrix square root of M to get L for

the SE covariance [Ng, 2004]. Since those symmetries do not exist in the case of

the L1 norm we define the Laplace covariance in terms of L rather than M. In

an ARD Laplace:

L := diag(`−1) , ξ := {σ2
0, `} . (3.8)

Gaussian observation noise of variance σ2
n ∈ R+ is accounted for by adding σ2

n

along the diagonal of K.

The SE and Laplace covariance functions are said to be stationary because

they only depend on the difference between points xi − xj. A covariance is

isotropic, invariant to direction, if it only depends on the magnitude of the dif-

1 Although in wide use in the community, the term squared-exponential is a misnomer. It
could more accurately be called an exponentiated-quadratic.
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3. GAUSSIAN PROCESS OVERVIEW

ference ‖xi − xj‖2. Consequently, isotropic covariance functions ⊂ stationary

covariance functions ⊂ positive definite (all) covariance functions. A survey of

several covariance functions is done in Rasmussen and Williams [2006, Ch. 4].

Many mathematical operations preserve positive definiteness and can there-

fore be used for combining “old kernels” to make “new kernels.” The two most

common of these operations are the summation and product: The sum of any two

valid (positive-definite) covariance functions is also a valid covariance function;

the product of any valid two covariance functions is a valid covariance. Sampling

a function from a GP with the sum of two kernels is equivalent to sampling func-

tions from each kernel independently and adding them. For brevity we now drop

the hyper-parameters ξ from the kernel function kξ(·, ·) and write k(·, ·).

Example The constant covariance k′(xi,xj) = c ∈ R+ can be added in place

of a constant mean function. The hyper-parameter c acts as a prior variance on

a constant mean function µ ∈ R. We also place a hyper-mean on the prior on

the mean function µ0 ∈ R. To be precise,

y ∼ GP(X|µ0, k + k′) ⇔ y ∼ GP(X|µ, k) , µ ∼ N (µ0, c) . (3.9)

This gives us increased flexibility. Since the GP often mean reverts when extrapo-

lating, the zero mean assumption is often consequential. The constant covariance

allows us to include uncertainty in the mean function without necessitating sep-

arate computations for the posterior mean function.

Example Another meta-covariance function is composition: We can project

the input x to any feature space φ(x) and apply the kernel in that space and get

a valid kernel. In concrete terms,

k′(x,x′) = k(φ(x), φ(x′)) . (3.10)

MacKay [1998] constructed the periodic covariance function by projecting the

input to the unit circle, φ(x) =
[
cos(x) sin(x)

]>
, and then applying the squared
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exponential kernel:

k(x,x′) = σ2
0 exp

(
−(cos(x)− cos(x′))2 + (sin(x)− sin(x′))2

2`2

)
(3.11)

= σ2
0 exp

(
−2 sin2(x−x

′

2
)

`2

)
. (3.12)

Synthetic functions f sampled from the periodic kernel will be exactly periodic

with period 2π, the functions will not be sinusoids with probability one. In prac-

tice, we often add a square exponential term, which means the sampled function

f will be the sum of a periodic function and an SE function. We can also do a

covariance product with a squared exponential, which allows the periodicity to

decay and the periodic component to change slowly. When using the periodic co-

variance function, there are pitfalls in learning the hyper-parameters ξ = {σ0, `}.
If the periodic component is only present for a portion of the time series, then

the type-II MLE estimate of the amplitude of the periodic component σ0 will be

near zero. Using the product of the periodic and squared exponential alleviates

this problem.

We graphically demonstrate the differences between different kernels in Fig-

ure 3.3. We give examples of the priors and posteriors, for a set of points, for three

kernels. In addition to the point-wise mean and error bars we plot samples from

the distribution, as the mean function is unrepresentative of the whole distribu-

tion. We also plot the CDF on how large x must be before the function passes

a particular threshold. We do this to illustrate that GPs are flexible enough to

compute various quantities of interest about a function, not merely a predictive

mean and variance.

Posterior calculation We now explain how to calculate posterior distributions

for pointwise prediction. Using the standard conditioning rules for a Gaussian

distribution, (A.32), and (3.1) we get the predictive distribution on a new obser-

vation y? at test input x?:[
y

y?

]
(3.1)
= N

([
0

0

]
,

[
K K?

K>? K??

])
, (3.13)
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3. GAUSSIAN PROCESS OVERVIEW

implying

p(y?|x?,X,y) = N (µ?, σ
2
?) , (3.14)

µ?
(A.34)

= K>? K−1y ∈ R , (3.15)

σ2
?

(A.34)
= K?? −K>? K−1K? ∈ R+ . (3.16)

Here K? := k(X,x?) ∈ RN×1 is the cross-covariance between the test input x?

and the training inputs X. Likewise, K?? = k(x?,x?) ∈ R+ is the prior variance

of the test point. For numerical reasons, we always avoid explicitly working with

the inverse K−1 and use matrix back substitution methods instead.1 If the test

inputs are not known at training time, the following form is often used:

L := chol(K)> ∈ LN , β := L>\(L\y) ∈ RN , (3.17)

µ?
(3.15)
= K>? β , (3.18)

σ2
?

(3.16)
= K?? − (L\K?)

>(L\K?) . (3.19)

This, like the preceding form, requires O(N3) computation in training, but only

O(N) for the predictive means in test and O(N2) for the predictive variances.

The computational savings do not come from the superiority of back substitution

over matrix inversion but rather the precomputation of β during training.

3.1 Uncertain Output Scale

We illustrate the relevant computations for output scale uncertainty in this sec-

tion. This same setup is referred to as the “t-process” in Rasmussen and Williams

[2006, Sec. 9.9]. We review the derivation of the t-process and then introduce an

improvement that allows it to be used in a streaming manner. We also use an

example to argue that it is preferable over a standard GP in many cases.

GP hyper-parameters ξ are tractably learnable by maximizing the marginal

1 We use the notation A\y equivalently to A−1y except that we expect the computation
to be done using matrix back substitution rather than explicit calculation of the inverse and
then multiplying. We use the notation A = chol(B) to state that A is the (upper triangular)
Cholesky factorization of B such that B = A>A.
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Figure 3.3: The top row shows sample functions f from GP priors using either
the SE (left), Laplace (middle), or periodic (right) covariance functions. The gray
area represents the 95% error bars and the black line is the mean function of the
GP. The samples are the other (colored) lines. On the second row we sample
from the respective posteriors after observing f at N = 10 points shown with
blue crosses (×). On the bottom row we show the CDF (solid blue) for the time
until the function f crosses 0.5 for the first time after the input x = 5 (the dashed
red line in the second row). Since the CDF is estimated by Monte Carlo samples
the error bars on the CDF are shown in dashed red. Since the periodic covariance
function has essentially “nailed down” the function, it is highly confident where
the threshold is crossed as seen in the CDF plot.
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3. GAUSSIAN PROCESS OVERVIEW

likelihood p(y|X, ξ). This is sometimes called type-II maximum likelihood. In a

full Bayesian treatment, we should integrate out the hyper-parameters. Unfortu-

nately, this cannot be done analytically in general, e.g. for the input scale. Monte

Carlo methods are usually used to estimate these integrals [Titsias et al., 2010].

However, the output scale, with a gamma1 prior, can be integrated out ana-

lytically and adds some increased generality for a small computational penalty.

Consider the following setup using shape parameter α0 and inverse scale β0 for

the gamma prior on τ ,

y ∼ GP(X|µ0, k
′) , k′(xi,xj) := k(xi,xj)/τ , τ ∼ Gamma(α0, β0) . (3.20)

Here we apply an unknown scaling factor τ ∈ R+ to the covariance function k

to get a new covariance function k′. Note that without loss of generality we can

set β0 = 1 if we can control the scale of k by the covariance hyper-parameters ξ.

This corresponds to placing a gamma prior on the scale of variation in y. The

posterior on τ after N observations of y is:

p(τ |X,y) ∝ p(y|τ,X)p(τ) = N (y|0,K/τ)Gamma(τ |α0, β0) (3.21)

∝ |K/τ |− 1
2 exp

(
−1

2
y>(K/τ)−1y

)
τα0−1 exp(−β0τ) (3.22)

∝ τα0+
N
2
−1 exp

(
−β0τ −

1

2
y>K−1yτ

)
, (3.23)

which is the standard form of gamma,

p(τ |X,y) = Gamma(αN , βN) , (3.24)

αN = α0 +
N

2
, βN = β0 +

1

2
y>K−1y . (3.25)

This allows us to find the posterior on the output scale analytically.

1 Roughly five different parameterizations of the gamma distribution exist. We use the
shape, α ∈ R+, and inverse scale, β ∈ R+, parameterization. Meaning that if τ ∼ Gamma(α, β)
then p(τ) = (βα/Γ(α))τα−1 exp(−βτ) and E [τ ] = α/β. This parameterization is the most
convenient for Bayesian updating.
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Streaming implementation We improve upon (3.25) by computing the poste-

rior in a streaming manner. The term y>K−1y is referred to as the standardized-

square-error (SSE) of the GP because it is equal to the sum of the (standardized)

square error from the one-step-ahead predictives:

SSE :=
N∑
i=1

(yi −
=:ŷi︷ ︸︸ ︷

E
[
yi|y1:i−1,x1:i

]
)2

Var
[
yi|y1:i−1,x1:i

]︸ ︷︷ ︸
=:σ2

i

(3.26)

=

(
y − ŷ

σ

)>(
y − ŷ

σ

)
(3.27)

= (L\y)>(L\y) = y>K−1y . (3.28)

Showing that L\y gives the standardized one-step-ahead errors requires rank-1

update equations, which is covered in Section 3.6. Like the likelihood, this relation

holds for any permutation of the data points. The SSE formulation allows us to

update the posterior on τ online with O(1) additional computation. We note that

there is an active research area in efficient implementations of online Gaussian

processes [Csató and Opper, 2002].

We now also efficiently compute the evidence and posterior predictive. The

marginal likelihood of the data is found using Bayes’ rule,

p(y|X) =
p(y|τ,X)p(τ)

p(τ |X,y)
=
N (y|0,K/τ)Gamma(τ |α0, β0)

Gamma(τ |αN , βN)
. (3.29)

The non-normalization part of the gamma distribution in the denominator cancel

out with the numerator yielding a Student’s t, denoted St(·), marginal distribu-

tion:

p(y|X) ∝ Γ(αN)β−αNN ∝
(
β0 +

1

2
y>K−1y

)−(α0+
N
2 )

(3.30)

∝
(

1 +
1

2β0
y>K−1y

)−(α0+
N
2 )

, (3.31)
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3. GAUSSIAN PROCESS OVERVIEW

which we can write as (
1 +

1

2α0

y>
(
β0
α0

K

)−1
y

)− (2α0+N)
2

(3.32)

∝ St2α0

(
0,
β0
α0

K

)
. (3.33)

The proportionality relations are with respect to y when computing p(y|X).

Similar to (3.15) we get the following posterior predictive equations:

p(y?|x?,X,y) =

∫
p(y?|x?,X,y, τ)p(τ |X,y)dτ (3.34)

=

∫
N (y?|µ?, σ2

?/τ)Gamma(τ |αN , βN)dτ , (3.35)

µ?
(A.34)

= K>? K−1y , (3.36)

σ2
?

(A.34)
= K?? −K>? K−1K? . (3.37)

Equation (3.35) is the same as the marginal likelihood (3.33) if we had scale prior

Gamma(τ |αN , βN) and likelihood N (y?|µ?, σ2
?/τ). Therefore, by (3.33)

p(y?|x?,X,y) = St2αN

(
µ?,

βN
αN

σ2
?

)
. (3.38)

We make some remarks about the uncertain output scale setup. Firstly, note

that the predictive mean µ? is not directly affected by integrating out the scale.

Scale integration only relieves a degree of over-confidence that results when fit-

ting the scale via maximum likelihood. Therefore, integrating out the output

scale may affect the length scale found when optimizing the evidence and thereby

indirectly affect the predictive mean. Secondly, note that the uncertain output

scale affects the entire covariance function k, which includes terms for the noise

and constant covariance. Therefore, a larger output scale also implies a larger

amount of noise. Output scale uncertainty implies an unknown scale of the un-

derlying function f but also a fixed signal-to-noise ratio. Nonetheless, output

scale uncertainty still increases the generality of a GP and merely changing the

evidence from a Gaussian to Student’s t represents a more reasonable and robust
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distribution on the data. If outliers are pervasive throughout a data set it is

most appropriate to use a Student’s t observation noise model, which requires

sampling methods [Neal, 1997] or approximate inference [Kuss, 2006; Vanhatalo

et al., 2009].

We have provided a method to integrate out one hyper-parameter of the co-

variance function k, the overall scale, without incurring any significant compu-

tational cost. We would often like to integrate out additional hyper-parameters.

However, this cannot be done without approximate methods or a significant in-

crease in computational complexity. Additionally, we would often like to include

some heavy tail noise on the observations for increased robustness, but this re-

quires approximate methods. Uncertain output scale may provide some level of

additional robustness while allowing for exact inference.

3.2 Uncertain Inputs

We may be in a situation where there is uncertainty in location of the test inputs

x? to the GP. In this section, we cover Gaussian process prediction when the

test input x? has a Gaussian distribution. Due to the complex interaction of the

inputs in the kernel function k, we cannot analytically do GP inference when

multiple inputs, i.e. the training set, are uncertain. However, when only the test

input is uncertain, and has a Gaussian distribution, exact predictive moments

from a GP can be calculated analytically. We focus on the case of an SE-ARD

kernel k, where inference with uncertain inputs is easiest. The derivations in this

section are based on the results in Deisenroth [2009]; Girard et al. [2003]; Kuss

[2006]; Quiñonero-Candela et al. [2003]. We review these results but provide a

more concise derivation.

Suppose we would like to predict a function value f(x?), f ∈ RD → R, for an

uncertain test input x? ∼ N (µ,Σ), where f ∼ GP with an SE-ARD kernel k.1

A naive observer might assume that a Gaussian process with a Gaussian input

density would result in a Gaussian predictive density. We graphically illustrate

why this is not the case in Figure 3.4. If a Gaussian input x? ∼ N (µ,Σ) density

1 Throughout this section we say certain variables are in R+, however if kernels other than
SE-ARD are used, such as trigonometric kernels, these variables might take on negative values.
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Figure 3.4: GP prediction at an uncertain test input. The input distribution
p(x?) is the green Gaussian sitting on the bottom of the right panel. This panel
also shows the mean function (black) and the 95% error bars (shaded) based on
the training data points (black pluses +). To determine the expected function
value, we average over both the input distribution (green, sitting on the bottom of
the right panel) and the function distribution (GP model). The shaded distribu-
tion represents the exact distribution over function values. The exact predictive
distribution (green shaded, left panel) is approximated by a Gaussian (red) that
possesses the mean and the covariance of the exact predictive distribution (known
as moment matching).

is propagated through a nonlinear function, the predictive distribution

p(f(x?)|µ,Σ, ξ) =

∫
p(f(x?)|x?, ξ)p(x?|µ,Σ)dx? (3.39)

will not be Gaussian, and often not even unimodal. Fortunately, we can approx-

imate the predictive distribution p(f(x?)|µ,Σ, ξ) (we now drop the GP hyper-

parameters ξ for brevity) with a Gaussian (red in left panel of Figure 3.4) that

has the exact same mean and variance as the true predictive distribution (mo-

ment matching). This is the optimal approximation to the true density in the

Kullback-Leibler (KL) sense [Herbrich, 2005],

(µ∗, σ
2
∗) = argmin

m,s
KL(p(f(x?)|µ,Σ)‖N (f(x?)|m, s)) . (3.40)
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In order to determine the moments, µ∗ and σ2
∗, we must average over the GP

posterior on the function f and the input density p(x?).

Expected kernel trick ? We now describe what we term the expected kernel

trick, which shall be useful when finding the moments in a GP with uncertain

inputs. When using SE-ARD kernels we can reinterpret an expectation with

regard to an uncertain input in a probabilistic manner, which allows us to simplify

the operation of convolving the input distribution with the kernel using standard

Gaussian manipulations. Note that this trick bears little relation to the standard

kernel trick. Although in the GP model with uncertain test inputs the training

inputs x ∈ RD are considered deterministic, we treat them as random in the

expected kernel trick. This is purely for mathematical convenience since the

equations are in the same form as a model where x is random; and hence it is

the denoted expected kernel trick. For instance,

k(xi,x?) = cN (xi|x?,Λ) (3.41)

=⇒ Ex? [k(xi,x?)|µ,Σ] =

∫
cN (xi|x?,Λ)N (x?|µ,Σ)dx? (3.42)

(A.35)
= c

∫
N
([

xi

x?

] ∣∣∣∣∣
[
µ

µ

]
,

[
Σ + Λ Σ

Σ Σ

])
dx? . (3.43)

We now break the Gaussian into its conditionals and utilize that probability

distributions integrate to one:

Ex? [k(xi,x?)|µ,Σ] = cp̃(xi)

∫
p̃(x?|xi)dx? (3.44)

(A.32)
= cN (xi|µ,Σ + Λ) ∈ R+ . (3.45)

Probability manipulations assuming the algebraic convenience model where xi

and x? are jointly Gaussian and unknown are demarcated with p̃(·) and Ẽ[·]
to distinguish them the GP model we are using elsewhere throughout this sec-

tion. Since the kernel is an unnormalized Gaussian we must use a normalizer

c := α2(2π)D/2 |Λ| 12 ∈ R+. The covariance and mean of the joint normal is

constructed using the mixing property of Gaussians (A.35). We also find the
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following expression useful

Ex? [x?k(xi,x?)|µ,Σ]

=

∫
x?cN (xi|x?,Λ)N (x?|µ,Σ)dx? (3.46)

(A.35)
= c

∫
x?N

([
xi

x?

] ∣∣∣∣∣
[
µ

µ

]
,

[
Σ + Λ Σ

Σ Σ

])
dx? . (3.47)

We again break the joint into its conditionals and turn the integral into an ex-

pectation:

Ex? [x?k(xi,x?)|µ,Σ] = cp̃(xi)

∫
x?p̃(x?|xi)dx? (3.48)

(A.32)
= cN (xi|µ,Σ + Λ)Ẽ[x?|xi] (3.49)

(A.34)
= cN (xi|µ,Σ + Λ)(µ+ Σ(Σ + Λ)−1(xi − µ)) (3.50)

(3.45)
= Ex? [k(xi,x?)|µ,Σ](µ+ Σ(Σ + Λ)−1(xi − µ)) ∈ R . (3.51)

Finally, we might be in a scenario where the following has to be computed:

Ex? [ka(xi,x?)kb(xj,x?)|µ,Σ] (3.52)

= cacb

∫
N (xi|x?,Λa)N (xj|x?,Λb)N (x?|µ,Σ)dx? (3.53)

(A.35)
= cacb

∫
x?N


x?

xi

xj


∣∣∣∣∣∣∣
µµ
µ

 ,
Σ Σ Σ

Σ Σ + Λa Σ

Σ Σ Σ + Λb


 dx? (3.54)

= cacbp̃(xi,xj)

∫
p̃(x?|xi,xj)dx? (3.55)

(A.32)
= cacbN

([
xi

xj

] ∣∣∣∣∣
[
µ

µ

]
,

[
Σ + Λa Σ

Σ Σ + Λb

])
∈ R+ . (3.56)

The normalizers ca ∈ R+ and cb ∈ R+ are the same as c except they use the

hyper-parameters for ka and kb, respectively. These same relations were shown in

Deisenroth [2009, Ch. 2]; we have used the expected kernel trick to provide a sim-

plified derivation. The expected kernel trick provides a more elegant derivation of
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these relations. Although we exclusively work with a SE-ARD kernel with respect

to uncertain inputs, similar relations are possible for any kernel we can integrate

with respect to a Gaussian such as polynomial and trigonometric kernels.

Univariate output We begin by finding the predictive moments (mean and

variance) of a GP with uncertain inputs in the univariate case, after which we

progress to the multivariate scenario. For a univariate output, we find the predic-

tive mean µ∗ ∈ R of p(f(x?)|µ,Σ) using the law of iterated expectations (A.40),

µ∗ := Ex?,f [f(x?)|µ,Σ]
(A.40)

= Ex? [Ef [f(x?)|x?]|µ,Σ] (3.57)

(3.18)
= Ex? [β

>K?|µ,Σ] (3.58)

= β>Ex? [K?|µ,Σ] (3.59)

(3.18)
= β>q , (3.60)

where q := [q1, . . . , qN ]> ∈ (R+)N . Using (3.45) we see that

qi := Ex? [k(xi,x?)|µ,Σ] (3.61)

(3.45)
= α2|ΣΛ−1 + I|− 1

2 exp

(
−1

2
(xi − µ)>(Σ + Λ)−1(xi − µ)

)
. (3.62)

Similarly we find the predictive variance σ2
∗ ∈ R+ using the law of total vari-

ance (A.41):

σ2
∗ := Varx?,f [f(x?)] (3.63)

(A.41)
= Ex? [Varf [f(x?)|x?]|µ,Σ] + Varx? [Ef [f(x?)|x?]|µ,Σ] . (3.64)

We can reformulate the first term

Ex? [Varf [f(x?)|x?]|µ,Σ]
(3.16)
= Ex? [K??|µ,Σ]− Ex? [K

>
? K−1K?|µ,Σ] (3.65)

(A.26)
= α2 − tr

(
K−1Ex? [K?K

>
? |µ,Σ]

)
, (3.66)

where we have made use of the cyclic property (A.26) of the trace. Unlike others

in the literature we include the measurement noise on the training set on the
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3. GAUSSIAN PROCESS OVERVIEW

diagonal of K. Meaning, where we use K we would write (K + σ2
εI)−1 in the

other convention. We can deal with the second term:

Varx? [Ef [f(x?)|x?]|µ,Σ] = Ex? [Ef [f(x?)|x?]2|µ,Σ]− Ex? [Ef [f(x?)|x?]|µ,Σ]2

(3.67)

= Ex? [(β
>K?)(K

>
? β)|µ,Σ]− (β>q)2 (3.68)

= β>Ex? [K?K
>
? |µ,Σ]β − (β>q)2 . (3.69)

Together (3.66) and (3.69) simplify to

σ2
∗ = α2 − tr

(
K−1Q

)
+ β>Qβ − µ∗2 , (3.70)

Q := Ex? [K?K
>
? |µ,Σ] . (3.71)

We find the entries of the symmetric matrix Q ∈ (R+)N×N using (3.56)

Q̃ij = Ex? [k(xi,x?)k(x?,xj)|µ,Σ]

=
k(xi,µ)k(xj,µ)

|2ΣΛ−1 + I| 12
exp

(
(z̃ij − µ)>(Σ +

1

2
Λ)−1ΣΛ−1(z̃ij − µ)

)
,

(3.72)

where we have used z̃ij := 1
2
(xi + xj) ∈ RD for brevity.

Multivariate outputs In the multivariate scenario we will consider, for sim-

plicity, the case where the predictive mean vector µ∗ ∈ RE of p(f(x?)|µ,Σ) is

merely the concatenation of E independent predictive means. Meaning,

fa(x?) ⊥⊥ fb(x?)|x? , (3.73)

for all a, b ∈ {1, . . . , E} and a 6= b. We then obtain the predictive mean vector

µ∗|µ,Σ =
[
β>1 q1 . . . β>EqE

]>
= diag(β>1:Eq1:E) , (3.74)

where qi is computed using (3.62) with length-scales, the input-scales, for the re-

spective output dimension Λi. The diagonal entries of the predictive covariance

Σ∗ ∈ SE are the marginal predictive variances of each target dimension indi-
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vidually. For notational brevity we abbreviate fa(x?) by f ?a for a ∈ {1, . . . , E}.
Despite the independence of the outputs when the inputs are known (3.73), uncer-

tain inputs result in target dimensions that covary. In other words, the predictive

covariance contains non-diagonal terms:

Σ∗|µ,Σ =


Var [f ?1 |µ,Σ] . . . Cov [f ?1 , f

?
E|µ,Σ]

...
. . .

...

Cov [f ?E, f
?
1 |µ,Σ] . . . Var [f ?E|µ,Σ]

 . (3.75)

The non-diagonal terms of Σ∗, the cross-covariances, are given by

Cov [f ?a , f
?
b |µ,Σ] = Ef,x? [f ?af ?b |µ,Σ]− Ef,x? [f ?a |µ,Σ]Ef,x? [f ?b |µ,Σ] . (3.76)

We separate the expectations using the conditional independence in the deter-

ministic case, f ?a ⊥⊥ f ?b |x?, to obtain

Ef,x? [f ?af ?b |µ,Σ]
(3.73)
= Ex?

[
Efa [f ?a |x?]Efb [f ?b |x?]|µ,Σ

]
. (3.77)

Plugging in the mean function from (3.18),

Efa [f ?a |x?] = ka(x?,X) K−1a ya︸ ︷︷ ︸
=:βa

, (3.78)

we see that

Ef,x? [f ?af ?b |µ,Σ]
(3.77)
= Ex? [β

>
a ka(x?,X)>kb(x?,X)βb] (3.79)

= β>a Ex? [ka(x?,X)>kb(x?,X)]︸ ︷︷ ︸
=:Qab

βb , (3.80)
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3. GAUSSIAN PROCESS OVERVIEW

where the β terms have are pulled out of the integral since they are independent

of the test input x?. We find the entries Qab ∈ (R+)N×N using (3.56)

Qab
ij = Ex? [ka(xi,x?)kb(x?,xj)] (3.81)

= α2
aα

2
b |(Λ−1a + Λ−1b )Σ + I|− 1

2

× exp

(
−1

2
(xi − xj)

>(Λa + Λb)
−1(xi − xj)

)
× exp

(
−1

2
(ẑij − µ)>((Λ−1a + Λ−1b )−1 + Σ)−1(ẑij − µ)

)
, (3.82)

ẑij := Λb(Λa + Λb)
−1xi + Λa(Λa + Λb)

−1xj ∈ RD . (3.83)

Note that there is a different Qab for each combination of output dimensions a

and b, and Qab equals Q in (3.72) for identical target dimensions a = b.

We have now found the exact mean µ∗ and covariance Σ∗ of the non-Gaussian

predictive density p(f(x?)|µ,Σ), with f ∼ GP and x? ∼ N (µ,Σ).

Algorithm 1 Gaussian process regression with uncertain inputs

Require: Use SE-ARD covariance k
1: function GPUR(ξ ∈ (R+)D+2×E,x ∈ RN×D,y ∈ RN×E,µ ∈ RD,Σ ∈ SD)
2: for a in 1 to E do
3: (Λ, αa, σ

2
εa)← ξa

4: Calculate covariance matrix Ka from x and ξa
5: βa←K−1a ya
6: Find qa using (3.62)
7: Find V(:, a) using (3.90)
8: end for
9: for a and b in 1 to E do

10: Find Qab using (3.82)
11: Mab←β>a Qabβb . Find the second moment using (3.80)
12: end for
13: µ∗

>←1>(β1:E � q1:E) . Using (3.74) and (A.1)
14: Σ∗←M− µ∗µ∗> + diag(σ2

ε) . Includes measurement noise
15: return µ∗ ∈ RE,Σ∗ ∈ SE,V ∈ RD×E

16: end function

When using GPs for filtering we need to compute the input-output covariance.

This is the only moment of interest of the joint distribution on (x?,y?) we have
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not yet computed. Fortunately, the input-output covariance can be computed

analytically as well:

Covx?,fa [x?, fa(x?)|µ,Σ] = Ex?,fa [x?fa(x?)|µ,Σ]

− Ex? [x?|µ,Σ]Ex?,fa [fa(x?)|µ,Σ] ∈ (R+)D×E . (3.84)

We first note that:

Ex?,fa [x?fa(x?)|µ,Σ] = Ex? [x?Efa [fa(x?)|x?]|µ,Σ] (3.85)

= Ex? [x?ka(x?,X)βa|µ,Σ] (3.86)

= Ex? [x?ka(x?,X)|µ,Σ]βa (3.87)

=
N∑
i=1

βaiEx? [x?ka(x?,xi)] ∈ (R+)D . (3.88)

Substituting back into (3.84) and applying (3.51) we compute each column indi-

vidually with

Covx?,fa [x?, fa(x?)|µ,Σ] =
N∑
i=1

βaiEx? [x?ka(x?,xi)]− µEx? [ka(x?,xi)] (3.89)

=
N∑
i=1

βaiqaiΣ(Σ + Λa)
−1(xi − µ) ∈ (R+)D . (3.90)

We have now computed all the moments, up to second order, of p(x?, f(x?)|µ,Σ).

We summarize all the calculations necessary to do so in Algorithm 1.

We have built upon Ghahramani and Roweis [1999] which utilized the tractabil-

ity of propagating normally distributed uncertain inputs through radial basis

function (RBF) regressors. We have exploited the RBF structure of GP pre-

dictive mean and variances to find exact predictive moments for uncertain test

inputs in a GP. The derivations are relatively technical. However, GP prediction

with uncertain inputs is abstracted into a black box when called upon in later

chapters.
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3.3 Multiple Views of Gaussian Processes

The normal distribution on an infinitely long vector view, known as the function

space view, is perhaps the most direct way to describe a GP. However, there are

many ways to describe and derive a GP, which is a sign of their generality. GPs

have links to many well-known methods including Bayesian linear regression,

artificial neural networks, and splines. Understanding different views of GPs

adds to intuition and helps build a unifying framework. Additionally, different

descriptions of a GP are more convenient, either theoretically or computationally,

depending on the circumstance.

Weight space Another view, the weight space view, is to think of a GP as

Bayesian linear regression with an infinite number of basis functions with Gaus-

sian priors on the weights. If we use the eigenfunctions of the covariance k as the

basis functions we get equivalent predictions to the GP described by the function

space view. The setup is:

y = Φw , Φ(i, j) := φj(xi) , wj ∼ N (0, λj) , for j ∈ N , (3.91)

where φj ∈ RD → R and λj ∈ R+ are the jth eigenfunction and eigenvalue of the

covariance k, respectively. We reconstruct the covariance matrix by

K(i, j) =
∞∑
k=1

φk(xi)λkφk(xj) . (3.92)

Here we moved from working with an infinite number of basis functions (3.91) to

an SN covariance, or kernel, matrix (3.92); this is an instance of a general method

known as the kernel trick [Schölkopf and Smola, 2001, Ch. 1]. The weight space

view is generalized to the mathematically “deeper” reproducing kernel Hilbert

space (RKHS) [Schölkopf and Smola, 2001, Ch. 2] view, which is beyond the

scope of this thesis.

Neural networks A bridge between neural networks [Rumelhart et al., 1986]

and GPs was created by Neal [1996] who showed that a Bayesian neural network
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with an infinite number of hidden units is equivalent to a GP with a particular

covariance function. Representations of new sparse GP approximations as neural

networks by Lázaro-Gredilla [2010, Ch. 3] shows the field has come full circle in

some respects.

Cholesky space ? We can also link GPs to moving averages, which we call

the Cholesky view. Consider the process of sampling synthetic data. We sample

from a multivariate normal (and therefore a GP) using its Cholesky factorization:

y = chol(K)>w , w ∼ N (0, I) . (3.93)

This is interpreted as the data y being a smoothed version of white noise w ∈ RN

as in a moving average. Since the Cholesky factorization is upper triangular,

this has a causal interpretation: The noise wi only influences data points yi:N .

We can interpret the entries in the Cholesky factorization as the representing

the relationship between nodes in a directed Gaussian belief network [Weiss and

Freeman, 2001]. This view is more naturally suited towards the graphical model

representation of Figure 1.8(a); in contrast, the function space view is naturally

represented by Figure 3.2.

The Cholesky view naturally gives rise to a modeling check for a GP; we get

the white noise back by multiplying by the inverse of the Cholesky factorization:

w
(3.93)
= chol(K)−>y . (3.94)

If w does not look like white noise then it is a sign there is some misspecification

in the covariance function or the noise model.

Radial basis functions We can interpret (3.18) as a radial basis function

(RBF) predictor. In an RBF,

µ? =
N∑
i=1

wik(‖xi − x?‖) , (3.95)
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which is equivalent to a GP if w = β, and for isotropic covariance functions

K? represents k(‖xi − x?‖). In general there is no clearly defined mechanism to

determine w in RBFs, but often wi = 1/N . In a GP the weights are inferred

using (3.17).

Each of these methods may provide some additional insight into GPs by their

connections to GPs. The list is not exhaustive, connections exist with other

methods as well. The generality of the GP framework is evidenced by how many

methods are special cases of GPs, or limiting cases corresponding to GPs.

3.4 Gaussian Process Time Series

In this section we cover the first of two approaches for GP time series model-

ing. We describe efficient computational methods for prediction on a fixed and

variable horizon as well as for hyper-parameter learning. In this section we com-

pare different methods for attaining the necessary computational savings. These

computational methods are useful for the time series approaches discussed in this

section alone, but are even more necessary when we combine GPs and change

point methods in Chapter 5. The bulk of this section will be literature review.

However, we will provide some novel distinctions, clarifications, and slight exten-

sions.

In a Gaussian process time series (GPTS) the time index t is treated as the

input while the time series observation yt is the output:

yt = f(t) + εt , f ∼ GP(0, k) , εt ∼ N (0, σ2
n) . (3.96)

GPTS generalizes many of the classic time series models such as AR, the au-

toregressive moving average (ARMA) [Murray-Smith and Girard, 2001], and the

Kalman filter.

There are many opportunities to improve upon naive inference in GPTS.

When making online predictions, ordinary inference in a GP requires O(T 3) com-

putational time to invert the covariance matrix every time a new data point is

encountered. This results in O(T 4) total computation time for naive implemen-

tation. This can be brought down to O(T 3) using rank-1 update methods (Sec-
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tion 3.5 and 3.6). However, we can leverage the fact that the GP input is one

dimensional in GPTS using two different approaches. If the time series is sampled

using uniform sampling, the covariance matrix becomes Toeplitz. Therefore, we

can do predictions using the Yule-Walker equations (see Golub and Van Loan

[1996, Sec. 4.7]) in O(T 2) time, which we call GP Yule-Walker (GPYW).

However, we lower the computational cost further to O(T ) by converting

the GPTS model to a state space representation using Kalman filtering using the

methods in Hartikainen and Särkkä [2010]; we refer to this method as GP Kalman

(GPK). We can also eliminate the uniform sampling requirement by converting

the GPTS to a continuous time Kalman filter representation. This approach

works for most, but not all, stationary covariance functions. By contrast, the

Yule-Walker approach works with any stationary covariance function. Different

covariance functions have different latent dimensionality D in the state space

representation. Taking D into account the computational cost is O(D3T ). Note

that GPK does not reduce the generally O(T 3) problem of Gaussian process

regression to O(T ) in general since the trick only works in a one-dimensional

input space. Hence, it works in GPTS where the input is time t, a one-dimensional

quantity.

3.4.1 Toeplitz Methods

In this section we cover how to use GPYW for (fixed and variable horizon) pre-

diction and hyper-parameter learning. If we are using a stationary covariance

function1 k(t− t′) and the time series is uniformly spaced, the covariance matrix

of y is

K =


k(0) k(1) . . . k(T − 1)

k(1) k(0) . . . k(T − 2)
...

...
. . .

...

k(T − 1) k(T − 2) . . . k(0)

 , (3.97)

which exactly matches the form of a symmetric Toeplitz matrix. We use the

function Toeplitz(v) to generate a Toeplitz matrix from its first column v, which

1 We abbreviate k(t, t′) as k(t− t′) for stationary covariance functions.
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implies

K = Toeplitz(
[
k(0) k(1) . . . k(T − 1)

]>
) . (3.98)

Using the Yule-Walker equations, we solve for an arbitrary vector z ∈ RN in

Tz = −r ∈ RN , (3.99)

T := Toeplitz(
[
ρ r>1:N−1

]>
) ∈ RN×N . (3.100)

This requires O(N3) computation and O(N2) memory in the naive method but

only O(N2) computation and O(N) memory using the Yule-Walker equations,

shown in Algorithm 2 also known as the Durbin algorithm. We generalize to

the case where T is an arbitrary Toeplitz matrix, unrelated to r, using the

Levinson algorithm, which is more expensive than Yule-Walker by a constant

factor. Furthermore, it is possible to compute the inverse T−1 using the Trench

algorithm [Trench, 1964]. The inverse T−1 is persymmetric but not Toeplitz

and therefore requires O(N2) storage. Consequently the inverse T−1 should be

avoided when possible.

Algorithm 2 Implementation of the Yule-Walker equations. Also known as the
Durbin algorithm. Solves for z in Toeplitz(

[
ρ r1:N−1

]
)z = −r.

1: function YuleWalker(ρ ∈ R+, r ∈ RN)
2: r← r/ρ . Rest of algorithm assumes diag(T) = 1.
3: (z(1), α, β)←(−r(1),−r(1), 1)
4: for k = 1 to N − 1 do
5: β←(1− α2)β
6: α←−(r(k + 1) + r(1:k)>Ez(1:k))/β . Use exchange matrix E (A.5)
7: z(1:k)← z(1:k) + αEz(1:k)
8: z(k + 1)←α
9: end for

10: return z
11: end function

One step prediction If we want to predict the next step into the future using

the last N observations, we can use the Yule-Walker setup. Using the standard
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GP predictive mean equation (3.15):

E
[
yt|y(N)

] (3.18)
= K>? K−1y(N)

(A.6)
= K>? EK−1︸ ︷︷ ︸

=:α>

Ey(N) , (3.101)

=⇒ α = K−1EK? =⇒ Kα = EK? =⇒ K(−α) = −EK? , (3.102)

K? := k(t−N:t− 1, t) = Ek(1:N) , (3.103)

K := Toeplitz(
[
K?? EK?

]
) . (3.104)

Since K−1 is persymmetric, we can apply the exchange matrix to both sides

K−1 = EK−1E.1 We must use the exchange matrix to flip K? to put it in the

form required for the Yule-Walker equations (3.100):

−α = −K−1EK? (3.105)

= −


k(0) k(1) . . . k(N − 1)

k(1) k(0) . . . k(N − 2)
...

...
. . .

...

k(N − 1) k(N − 2) . . . k(0)


−1 

k(1)

k(2)
...

k(N)

 , (3.106)

Now we can make rolling forecasts using the last N observations in the time

series using the inner product of α and Ey(N). This puts a GPTS in a linear

autoregressive formulation. Although it seems we want to use all observations in

the past, not only the last N , for forecasting, (3.102) is useful in Chapter 5. Ad-

ditionally, if α decays to negligibly small values for large N it is computationally

cheaper to only predict using the last N observations yet only incurring a small

approximation error. If we want to predict using all the observations so far, i.e.

N = t and therefore increasing, or the work varying predictive horizon then the

Levinson algorithm is more appropriate.

Perhaps counter-intuitively, the predictive variances only depend on N and w

and are invariant to y. Therefore, we precompute the predictive variances before

1 We use E to refer to the exchange matrix (A.5) such that Ey1:T = yT :−1:1.
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seeing the data:

Var
[
yt|y(N)

]
= σ2

? = K?? −K>? EK−1EK? = K?? −K>? Eα . (3.107)

Variable horizon If we are predicting in a variable horizon w ∈ N then it

does not make sense to precompute and store α since we have to store a different

matrix for each prediction horizon leading to greater memory use. In this case it

makes more sense to use the Levinson algorithm formulation:

E
[
yt+w−1|y(N)

]
= K>? K−1y(N)︸ ︷︷ ︸

=:β

=⇒ Kβ = y(N) , (3.108)

K? := k(t−N:t− 1, t+ w − 1) (3.109)

= Ek(w:N + w − 1) , (3.110)

which is the form of the Levinson algorithm, Algorithm 3. This is the same form

for β as in (3.17). Now β is independent of K? and therefore we can use the same

β for multiple prediction horizons. Since the right hand side of the linear system,

y(N), is arbitrary in Levinson, we do not have to bother with reversing the order of

various vectors as is the case with Yule-Walker. We still need (3.107) to compute

the predictive variances. We can do this using either the Durbin algorithm, or for

multi-step predictive variances by using Levinson to solve K−1EK?. However,

the predictive variances are computed before any data is observed, meaning that

the online complexity is no greater by computing the predictive variances.

Hyper-parameter learning We also want to learn the covariance hyper-parameters

ξ by maximizing the evidence. Although we could add the log likelihood of the

one-step-ahead predictives, we do this more directly in the case of a GP:

log p(y|ξ) = −1

2
y>K−1y − 1

2
log |K| − T

2
log 2π (3.111)

= −1

2
y>β − 1

2
log |K| − T

2
log 2π . (3.112)

The optional lines in Algorithm 3 are used to calculate the log determinant used

here with negligible additional computational cost. In the case of uncertain out-
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Algorithm 3 Implementation of the Levinson algorithm. Solves for z in
Toeplitz(

[
ρ r1:N−1

]
)z = b and optionally find log

∣∣Toeplitz(
[
ρ r1:N−1

]
)
∣∣.

1: function Levinson(ρ ∈ R+, r ∈ RN ,b ∈ RN)
2: (r,b)←(r/ρ,b/ρ) . Rest of algorithm assumes diag(T) = 1.
3: (x(1), z(1), α, β)←(b(1),−r(1),−r(1), 1)
4: D← 0
5: for k = 1 to N − 1 do
6: β←(1− α2)β
7: D←D + log β . Optional: if we want to find log |T|
8: µ←(b(k + 1)− r(1:k)>Ex(1:k))/β
9: x(1:k)←x(1:k) + µEz(1:k)

10: x(k + 1)←µ
11: if k < N − 1 then . Every iteration but the last
12: α←−(r(k + 1) + r(1:k)>Ez(1:k))/β
13: z(1:k)← z(1:k) + αEz(1:k)
14: z(k + 1)←α
15: end if
16: end for
17: D←D +N log ρ . Optional
18: return z and D = log |T|
19: end function

put scale, we expand upon (3.33) to get:

log p(y|ξ, α0, β0) = −
(
α0 +

T

2

)
log

(
1 +

1

2α0

y>
(
β0
α0

K

)−1
y

)
− 1

2
log

∣∣∣∣β0α0

K

∣∣∣∣
+ log Γ

(
α0 +

T

2

)
− log Γ(α0)−

T

2
log(2πα0) , (3.113)

which simplifies to

log p(y|ξ, α0, β0) = −
(
α0 +

T

2

)
log

(
1 +

1

2β0
y>β

)
− 1

2
log |K|

+ log Γ

(
α0 +

T

2

)
− log Γ(α0)−

T

2
log(2πβ0) . (3.114)

Therefore, we can compute the evidence in O(T 2) time.

There exist faster Toeplitz system solvers based on fast Fourier transforms
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(FFT) that run in O(T log T ) time [Cunningham et al., 2008, Sec. 4]. However,

they do not give intermediate results, i.e. we cannot simultaneously obtain results

for the first t ≤ T data points without incurring additional computational cost, as

is the case with the Durbin algorithm, Algorithm 2. If we want to predict based

on the last M < N variables instead of the last N , we use the state of z after

running the loop M iterations. However, when computing the marginal likelihood

we do not care about the intermediate results, rendering the FFT method more

appropriate.

Initialization When hyper-parameter learning in GPs is done by type-II MLE

we use gradient based optimization to do learning. Since the marginal likelihood

is typically non-convex, how we initialize the hyper-parameters is consequential.

Local optima in GP hyper-parameter learning are typically not as problematic

as they are in other methods such as neural networks. Typically, there are only

a few local optima to the marginal likelihood.

The most general strategy is to merely sample the initial hyper-parameters

randomly. However, we must pick a distribution from which we sample. Most of

the hyper-parameters of a GP are not unitless and therefore rescale with the data.

A fixed distribution to sample the initial hyper-parameters would be inappropri-

ate since the effective distribution can be changed arbitrarily with a rescaling

of the data. There we must adapt the initial guess distribution to the scale of

the data. Hyper-parameters usually have the units of the output of the GP y

or a particular input dimension xi. We estimate the scale of the data using the

95% quantile R to maintain robustness against a few outliers, we also consider

the median distance ∆ between data points on each of the input dimensions.

Throughout this thesis we use the following initialization distribution on the ini-

tial parameter setting θ0:

log θ0 ∼ N (µθ, σ
2
θ) , (3.115)

σ2
θ = (log(c1R/∆)/4)2 , µθ =

1

2
(log(c2R∆)) . (3.116)

We motivate this rule by the intuition that it does not make much sense to

initialize a length scale beyond the range of the data or smaller than the median
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distance between the data points. We cannot determine effects on scales much

smaller than the distance between points. Likewise, we cannot determine effects

on scales larger than the range of the data. Therefore, we if we want the initial

point to be between these extremes 95% of the time we use initializer constants

c1 ≈ 1 and c2 ≈ 1. Likewise for hyper-parameters matching with units on the

output scale, R is output range and ∆ is the typical distance between targets.

After running a few iterations of learning with different initializations we select

the solution with the largest marginal likelihood.

A level of arbitrariness is allowed in setting this rule given that it is only used

for initialization. We only need to be within the domain of influence of the global

optima. In LDS [van Overschee and de Moor, 1994] and HMMs [Hsu et al., 2009]

there exist analytic initializers that have some guarantees of being “close” to

the true parameters in some sense. Analogous methods for GP hyper-parameter

initialization is an opportunity for future research.

3.4.2 GP Kalman

We can find the covariance function on the data implied by a linear dynami-

cal system (LDS). A key quantity in doing this is the stationary distribution

on the latent state xt. We combine the linear transformation property of Gaus-

sians (A.36) with the definition of an LDS from (1.20) to propagate the covariance

matrix one step into the future using the system matrix A ∈ RD×D and the sys-

tem noise Q ∈ SD: AΣxA
> + Q. Therefore, the stationary covariance matrix

Σx ∈ SD obeys the fixed point equation

Σx = AΣxA
> + Q . (3.117)

If we iterate this fixed point equation from Σx = Q we get

Σx
(3.117)

=
∞∑
i=0

AiQ(Ai)> . (3.118)

The parameterization of the latent space in an LDS is unidentifiable, we can

transform the latent space such that Q = I [Roweis and Ghahramani, 1999]. If
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the A in this transformed space is symmetric then the above expression simplifies

to:

Σx =
∞∑
i=0

Ai(Ai)> =
∞∑
i=0

(AA>)i =⇒ Σx
(A.25)

= (I−AA>)−1 , (3.119)

using that Σx is a matrix geometric series in AA>.

LDS to GPTS To convert an LDS into a continuous time model like a GPTS,

we must put the LDS in a continuous time form, which is a stochastic differential

equation (SDE):

dxt = Fxtdt+ GdWt , (3.120)

yt = Cxt + νt , (3.121)

where dW is a vector Weiner process. This implies that when propagating from

a time t to a time s,

xs = exp(F|s− t|)xt + wt,s , (3.122)

wt,s ∼ N (0,GG>|s− t|) . (3.123)

Therefore, if we assume the discrete time version is sampled at unit time intervals,

s− t = 1, then

A
(3.122)

= exp(F) , Q
(3.123)

= GG> . (3.124)

Given that we have a prior covariance of the stationary distribution on xt, we get

a covariance between xt and xs of:

Σ(s, t) := E
[
xtx

>
s

]
− E [xt]E [xs]

>︸ ︷︷ ︸
=0

(A.36)
= Σx exp(F|s− t|) , (3.125)

which we refer to as Σ for short. If xt is a scalar this reduces to a Laplace

covariance function (3.7). We can also find the implied covariance between the
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noisy observations. We get the following joint distribution on (xt,xs):[
xt

xs

]
(A.36)

= N
([

0

0

]
,

[
Σx Σ

Σ> Σx

])
. (3.126)

Following the SDE equations:[
yt

ys

]
(3.121)

=

[
C 0

0 C

][
xt

xs

]
+

[
νt

νs

]
, (3.127)

where νt and νs are the measurement noise at time t and s, respectively. There-

fore, the covariance on the observations y is:

Cov

[
yt

ys

]
(A.36)

=

[
CΣxC

> + R CΣC>

CΣ>C> CΣxC
> + R

]
. (3.128)

GPTS to LDS We can use these equations to solve the reverse, and more

computationally useful, problem, find the equivalent LDS from GPTS. If the

GPTS observations y are univariate, we often need a multivariate latent state

x to account for the temporal correlations. We set R to be the measurement

noise of the GPTS and set C =
[
1 0

]
. What remains is to solve for a matrix

F ∈ RD×D such that,[
1 0

]
Σx exp(F∆t)

[
1 0

]> (3.125)
= k(∆t) , (3.129)

for all ∆t > 0. We can interpret the first element xt(1) as f(t) and xt(i) as the

(i−1)th derivative of xt. How many times differentiable samples from a GP with

covariance k are determine D, the size of the matrix F. For a Laplace, F is scalar;

for a SE, F must be infinite; and for a Matérn, F is of finite size. In order for F to

be of finite size, the spectral density of covariance function S(ω) := |F{k}(ω)|2
must be representable as:

S(ω) ∝ 1

P(ω2)
, (3.130)

where P(·) represents any polynomial.
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Hartikainen and Särkkä [2010] showed that we can find an appropriate F by

taking the Fourier transform of the SDE. We summarize those key results in the

next two equations. We must be able to put the spectral density S(ω) of the

covariance function k in the form:

S(ω) =
q

(ω2)D +
∑D−1

i=0 ai(ω2)i
, (3.131)

where q ∈ R+ is a constant. We can then put F in the form

F =



0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1

−a0 −a1 −a2 −a3 . . . −aD−1


. (3.132)

We use q as the spectral density of the white noise process (the precision). Noise

is present only on the last element xm.

3.4.3 Equivalent Covariances

All of the typical linear time series models such as autoregressive (AR), moving

average (MA), autoregressive moving average (ARMA), and the Kalman filter (as

shown in the previous section) are equivalent to a GPTS with the appropriate

covariance matrix. By putting all the standard time series models in a GPTS

framework we provide a unifying framework from what is typically a “zoo” of dif-

ferent methods. Furthermore, we can visualize the generative assumptions of each

of these methods through the induced covariance functions, which are much more

intuitive, or “interpretable,” than examining the weight vectors or the frequency

response. We also place learning the parameters within the GP framework, which

often classically are done by many ad hoc methods. In particular, selecting the

model order is often done by significance testing, ignoring multiple comparison

and other issues. If we use a GPTS covariance function with comparable flexibil-

ity to the equivalent GPTS covariance function in the classical linear models we

sidestep the issue of order selection. The results of this section generalize those
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of Murray-Smith and Girard [2001].

AR process Any linear autoregressive predictor can be converted to a GPTS.

Using (3.102) we can convert a GPTS to an autoregressive formulation. Like-

wise, we show the reverse operation of converting an autoregressive process to its

effective covariance matrix. Recall from the Cholesky space view of a GP (3.93):

y = Lε1:T , ε1:T ∼ N (0, I) , L ∈ LT . (3.133)

Note the similarity to an AR process. The AR process is defined by an A ∈ LT

matrix such that

p(yt|y1:t−1) = N (A(t, 1:t− 1)y1:t−1,A(t, t)2) . (3.134)

The row A(t, 1:t− 1) is equivalent to the Eα vector for predicting yt from (3.102)

and A(t, t) is
√
σ2
? from (3.107). We can convert from A to L by

yt
(3.133)

= L(t, 1:t)ε1:t (3.135)

(3.134)
= A(t, 1:t− 1)y1:t−1 + A(t, t)εt (3.136)

(3.133)
= A(t, 1:t− 1)L(1:t− 1, 1:t− 1)ε1:t−1 + A(t, t)εt (3.137)

=⇒ L(t, 1:t) =
[
A(t, 1:t− 1)L(1:t− 1, 1:t− 1) A(t, t)

]
. (3.138)

Therefore, there is a recursive relation to find the Cholesky factorization of the

covariance matrix: K = LL>.

MA process Converting between a GP and an MA(q) process is even easier:

yt = M(t, 1:t)ε1:t , ε ∼ N (0, I) , (3.139)

which is already in the form of a GP in the Cholesky view: L = M =⇒ K =

MM>.

We have introduced the linear AR process in a general form. The usual

67
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definition for an AR process is:

yt = µ+ σεt +

p∑
i=1

wiyt−i , εt ∼ N (0, 1) . (3.140)

Without loss of generality we assume the drift µ = 0 since it corresponds to a

mean function, which can be added to yt. Equivalently we can make the variance

on ε unity and put a weight of σ on the noise term. Therefore, in a typical AR(p)

process:

A(t, t− p:t− 1) = Ew> , A(t, t) = σ ∈ R+ , (3.141)

for all t > p.

Likewise, for an MA(q) process, the weights are typically a constant vector.

The usual MA1 is:

yt = µ+ σεt +

q∑
i=1

wiεt−i , εt ∼ N (0, 1) . (3.142)

Again we assume µ = 0 and reformulate as:

yt =

q∑
i=0

w̃iεt−i , w̃> :=
[
σ w>

]
, εt ∼ N (0, 1) (3.143)

=⇒ yt = w̃>Eεt−q:t (3.144)

=⇒ M(t, t− q:t) = Ew̃> , (3.145)

for all t > q.

Edge effects We have shown how to convert standard AR and MA equations

and embed them in the covariance matrix of GPTS. However, the issue of how

to initialize AR and MA models is typically ignored. How do we predict in AR

and MA if t ≤ p or t ≤ q? We must set initial conditions, often we assume

yt = 0 for t ≤ 0 in the AR case; or εt = 0 for t ≤ 0 for the MA case. By

1 Often the εt is not multiplied by σ, but itself has variance σ2. In order for the MA to be
equivalent to the Cholesky space formulation we use the σεt.
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putting these systems in the GPTS framework we get a natural procedure for

handling missing data, both for t ≤ 0 and general missing observations. By

converting our representation to a stationary covariance function k ∈ R → R
we can naturally account for the effects of non-uniform sampling and therefore

extend these methods to continuous time.

The ACFs (1.7) for stationary AR and MA systems are typically not computed

in the context of edge effects. Meaning, if we compute the equivalent covariance

matrix for an AR system, the covariance matrix will only become Toeplitz with

respect to the AR ACF when p � t. Likewise, we take a Toeplitz covariance

matrix K with a stationary ACF the A matrix will only stabilize to an AR

system with constant weights after p� t.

This is illustrated in Figures 3.5 and 3.6. We use a AR(3) process assuming

yt = 0 for t ≤ 0 and show the GP covariance and MA process for the exact same

distribution. It takes ≈ 20 time steps for the GP covariance to lose these edge

effects and become Toeplitz (stationary covariance). In the next row of Figure 3.5

we show what happens when we force the GP covariance to be Toeplitz and find

the equivalent AR and MA processes. The AR process has perturbed weights for

the first few steps and the longest lag column of the MA process is non-Toeplitz.

We show the weights/covariance function for each model once edge effects become

negligible in Figure 3.6. Despite having more parameters the AR process basically

induces a Laplace covariance function (two hyper-parameters) in the GP. The

MA process still accounts for noise at large lags despite the small order of the

underlying AR model.

ARMA process In a standard ARMA(p,q) model

yt = µ+

p∑
i=1

wARi yt−i + σεt +

q∑
i=1

wMA
i εt−i , εt ∼ N (0, 1) . (3.146)

We generalize this to

yt = µ+ A(t, 1:t− 1)y1:t−1 + M(t, 1:t)ε1:t , εt ∼ N (0, 1) . (3.147)
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(a) A matrix of AR (b) K of GP (c) M matrix of MA

(d) A matrix of AR (e) K of GP (f) M matrix of MA

(g) A matrix of AR (h) K of GP (i) M matrix of MA

Figure 3.5: Illustration of the relationship between AR, GP, and MA models. The first

column represents the A matrix of an AR formulation of a process, the second column

represents the K matrix of a GP, and the third column represents the M matrix of a

MA process. On the first row we start with the matrix representation of an AR process

with a constant weight vector Ew> = [0.1 0.2 0.6 0.5]. We show the GP covariance

matrix and MA matrix for the exact same distribution on the time series. On the

second row we make GP covariance function stationary by making K Toeplitz. The

other columns show the AR and MA matrices. On the third row we make the process

a constant MA process, and show the exact AR and GP equivalents.
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(c) MA weights

Figure 3.6: We show the final row of the matrix for the AR (A), GP (K), and
MA (M) processes. These correspond to the predictive equations of each process
once the edge effects are negligible.

We get the equivalent covariance matrix for the ARMA similar to how we did for

(3.138):

yt
(3.133)

= L(t, 1:t)ε1:t (3.148)

(3.134)
= A(t, 1:t− 1)y1:t−1 + M(t, 1:t)ε1:t (3.149)

(3.133)
= A(t, 1:t− 1)L(1:t− 1, 1:t− 1)ε1:t−1

+ M(t, 1:t− 1)ε1:t−1 + M(t, t)εt . (3.150)

Solving for L(t, 1:t− 1) we get:

L(t, 1:t− 1) = A(t, 1:t− 1)L(1:t− 1, 1:t− 1) + M(t, 1:t− 1) ,

L(t, t) = M(t, t) . (3.151)

Again, we find the full covariance matrix by: K = LL>.

Differencing GPs can automatically capture the modeling effect of differencing

or summing. Differencing is a linear operation:

y′ := Dy , (3.152)

where the D matrix, see (A.8), acts as a differencing operator. A linear operation

(multiplication by D) on a GP results in a GP with a different covariance function.
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Recall from the linear transform property (A.36) of a multivariate Gaussian that

K := Cov [y] =⇒ Cov [Dy] =: K′
(A.36)

= DKD> . (3.153)

This gives us a model based approach to selecting between working with the

original data and the differences data: We can compare the marginal likelihoods

under each covariance function. Furthermore, we can do a covariance sum be-

tween the differenced covariance and the original to allow for a hybrid approach.

If we apply the cumulative sum operator D−1 to the ARMA covariance matrix we

also reduce the autoregressive integrated moving average (ARIMA) to the special

case of GPTS.

Return space We can also do the return space transformation in a model based

way. Recall that:

rt := log(yt+1)− log(yt) ∈ R (3.154)

=⇒ rt
(A.7)
= D log y (3.155)

=⇒ y
(A.9)
= exp D−1r . (3.156)

Therefore, if we put a GP on r := [r1, . . . , rT ] then we can apply D−1 to get

a covariance of D−1K(D−1)> on the cumulative returns. The exp represents

a warping function that has been used in the context of GPs through warped

Gaussian processes [Snelson et al., 2004; Wilson and Ghahramani, 2010]. The

warped GP framework allows us to generalize the return space view to functions

other than exp in R→ R+.

Summary The GPTS is a general framework for time series modeling since so

many other methods can be constructed as special cases. The reverse process of

casting a GPTS as a simple method has computational benefits. Toeplitz methods

and GPK provide two alternative methods of improving the computational benefit

of standard GP methods.
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3.5 The Sub-evidence ?

In (3.112) and (3.114) we described how to get the evidence for a data set y

under a Gaussian process, with exact computation in O(N3) time. We show in

this section that we can compute the evidence p(y1:b) for all 1 ≤ b ≤ N for free

using the Cholesky sub-sampling property (A.15). Perhaps surprisingly, we can

use the Cholesky rank-1 updating methods from Seeger [2008] to also get p(ya:b)

for all 1 ≤ a ≤ b ≤ N in O(N3) time; we call this quantity the sub-evidence.

We can find the evidence of a GP with all starting and end points of the data

for the same big-O cost as finding the evidence for the entire data set. Naive

computation would be O(N5).

The expensive component in computing the evidence of a GP is finding the

Cholesky factorization of the kernel matrix K. Therefore, if we can compute the

Cholesky of K(a:b, a:b) for all a and b cheaply then we can find the sub-evidence

cheaply. Once we find K(a:N, a:N) computation of K(a:b, a:b) is trivial by (A.15):

w := b− a+ 1 , (3.157)

chol(K(a:b, a:b))
(A.15)

= chol(K(a:N, a:N))(1:w, 1:w) . (3.158)

The simplest way to find the sub-evidence is by working from the end to start.

We define the sub-evidence matrix P ∈ LT where P(a, b) := p(ya:b). Meaning we

start with a = b = N and decrement a down to 1 by applying rank-1 methods

with O(N2) cost each, leaving us with O(N3) total cost. Consider the following

setup:

Knew :=

[
κ knew

k>new K

]
, Lnew :=

[
` 0

v M

]
, (3.159)

which implies

Knew = LnewL>new =

[
` 0

v M

][
` v>

0 M>

]
. (3.160)
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We can block-wise multiply out LnewL>new to get equations:

vv> + MM> = K = LL> , `2 = κ , `v> = knew (3.161)

=⇒ ` =
√
κ , v> = knew/` , M = chol(L− vv>) . (3.162)

The first two equations for updating L upon decrementing a are trivial, the down-

date1 from L to M requires clever rank-1 methods described in Seeger [2008].2

The current algorithm is retrospective, it starts with a = N , we must know all

the data before we start. The sub-evidence recursions are adapted to work in an

online fashion by starting at a = 1 and incrementing through the data set by re-

versing the order of the rows and columns in K. Furthermore, if the O(N3) total

cost becomes prohibitive we can limit the maximum window size b− a by remov-

ing the largest rows and columns from L before applying the rank-1 downdate.

The cost is then O(Nw2) for a maximum window size w. Furthermore we do not

have to evaluate the entire kernel matrix K giving us total memory complexity

O(Nw + w2). We summarize the sub-evidence method in Algorithm 4.

We reformulate the evidence expression of (3.112) into a form that is compat-

ible with the sub-sampling property:

α := L\y , (3.163)

log p(y)
(A.14)

= −1

2
α>α− 1> log diag(L)− N

2
log 2π , (3.164)

where we have made use of finding the determinant from the Cholesky (A.14).

Solving a linear system with a lower triangular matrix preserves the sub-sampling

property (A.17). Therefore, we get the intermediate solutions by doing a cumu-

lative inner product (A.16) and cumulative sum along the diagonal of log L.

1 This is a downdate as opposed to an update since we are subtracting vv> rather than
adding it.

2 The downdate is even implemented in the MATLAB built in command
cholupdate(L,v,′−′).
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Algorithm 4 The GP sub-evidence

1: function GP-sub(X ∈ RN×D,y ∈ RN)
2: L←[∅] . Initialize at empty matrix
3: K← k(X,X)
4: b←N
5: for a = N down to 1 do
6: `←

√
K(a, a)

7: v←K(a+ 1:N, a)/`
8: M← choldowndate(L,v)

9: L←
[
` 0
v M

]
10: if size of L exceeds maximum window size w then
11: L←L(1:w, 1:w)
12: b← a+ w − 1
13: end if
14: α←L\y(a:b)
15: t← 1:b− a+ 1
16: − log P(a, a:b)← 1

2
D−1(α�α) + D−1 log diag(L) + 1

2
log(2π)t

17: end for
18: return − log P . Return matrix containing all negative log evidences
19: end function

We can also find the sub-evidence with uncertain output scale by:

tα := α0 +
1

2
t , tβ := β0 +

1

2
D−1(α�α) , (3.165)

− log P(a, a : n) = tα � log(tβ/β0) + D−1 log diag(L)

− log Γ(tα) + log Γ(α0) +
1

2
log(2πβ0)t . (3.166)

The sub-evidence is a useful quantity for adding robustness against change

points. The ability to compute the sub-evidence in O(N3) time, the same com-

putation cost as a standard GP, may have wider implications. This is a significant

improvement over simple rank-1 updates, O(N4), and naive calculation O(N5).
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3.6 Autoregressive Gaussian Process

We show a second approach to time series modeling with GPs, the autoregressive

Gaussian process (ARGP). The ARGP is a more general and powerful approach

than the GPTS, but it is more computationally tricky than a GPTS. In an ARGP

[Quiñonero-Candela et al., 2003] of order p, the past p values y(p) are taken as

the GP input while the output is yt:

yt = f(y(p)) + εt , f ∼ GP(0, k) , εt ∼ N (0, σ2) . (3.167)

Clearly, this is more general than a GPTS because we showed in Section 3.4

that we could convert a GPTS to an AR formulation with a linear relation. The

ARGP has this same form, but with a nonlinear relationship.

Relationship to GPTS ? The GPTS has some more elegant properties than

the ARGP: Firstly, the GPTS is time reversible while the ARGP generally is not.

The marginal likelihood of the data p(y) is the same as p(Ey) in a GPTS, but

not in an ARGP. Therefore, ARGP is placing prior information on the direction

dynamics evolve. In many physical systems, such as Newtonian mechanics, the

laws are reversible [Tolman, 1938, Ch. 5] [Hutchison, 1993], meaning ARGP might

be incompatible with our prior assumptions. Second, the prior induced by the

ARGP is different depending on the sampling rate. We introduce an augmented

time series ỹ with an extra observation in between each of those in y, but the

extra observations are treated as missing. The marginal likelihood of p(y1:T ) is

the same as p(ỹ1:2:T ) in a GPTS, but not in an ARGP. Therefore, if we double the

sampling rate of the time series and apply an ARGP we induce a different prior

over the process, which might not be desirable if the sampling rate was chosen

arbitrarily. Third, the GPTS can elegantly handle continuous time while the

ARGP cannot. Arbitrary spacing of observations in time can easily be accounted

for with a GPTS; there is not a clear tractable method to do so in an ARGP.

Nonetheless, the ARGP is still useful since it models more complex dynamics

than the GPTS.
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Correcting the ARGP Two properties of the GPTS could be instilled through

sufficient model selection. We could perform model selection on the direction of

time. We could also perform model selection on the sampling rate by trying mod-

els with differing numbers of hidden nodes between observations. Additionally,

continuous time could be handled by placing a GP directly on the differential

equation for the system. These proposals are listed in order of increasing compu-

tational difficulties.

Efficient implementation As in the GPTS, re-learning the GP from scratch

every time step requiresO(T 3) operations, which impliesO(T 4) time for the entire

time series. In the GPTS case, we dramatically improved the efficiency by using

either Toeplitz methods (Section 3.4.1) or GPK (Section 3.4.2). In the GPTS, the

input is the time index t (often a controlled quantity) where as in ARGP it is yt,

a random quantity. Therefore, the covariance matrix is not Toeplitz, prohibiting

the use of the Yule-Walker method. The inputs do not increase in time and are

not one-dimensional, unless p = 1, which hinders our ability to use GPK. When

adding a new data point in a kernel machine it is sometimes recommended to

update the inverse of the covariance matrix K−1 using rank 1 updates [Schölkopf

and Smola, 2001, Ch. 10], which requires O(T 2) operations as opposed to O(T 3)

for complete recomputation. However, doing rank-1 updating of the inverse of

the covariance is highly numerically unstable.

Therefore, we work with rank-1 methods on the Cholesky instead. We could

use the methods of Section 3.5 to get rolling predictions from an ARGP. However,

if we are only increasing the end point of the time series, i.e. we fix a = 1 and only

increase b in (3.158), the Cholesky updates methods in Section 3.5 are “overkill.”

Instead, we use the Cholesky updates described in Nguyen-Tuong et al. [2010].

These are faster than choldowndate by a constant factor. The update equations

are:

v := Lt−1\K? , σ2
?

(3.16)
= K?? − v>v , (3.168)

Kt :=

[
Kt−1 K?

K>? K??

]
=⇒ Lt =

[
Lt−1 0

v>
√
σ2
?

]
. (3.169)
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We use the base case of K0 = L0 = [∅] being the empty matrix. We can verify

these recursions by multiplying out LtL
>
t and showing it is equivalent to Kt.

The updating occurs almost for free as we must compute v and σ2
? when making

rolling predictions anyway. Once Lt is obtained we can predict yt using (3.15) or

(3.38) for uncertain output scale.

Using (3.169) we can now justify the trick in (3.28) to find the SSE:

Lt\y1:t

(3.28)
= s1:t (3.170)

=⇒
[
Lt−1 0

v>
√
σ2
?

]∖[
y1:t−1

yt

]
(3.169)

=

[
s1:t−1

st

]
(3.171)

=⇒
[
y1:t−1

yt

]
=

[
Lt−1 0

v>
√
σ2
?

][
s1:t−1

st

]
. (3.172)

If we multiply out the matrices to solve for yt we get:

yt = v>s1:t−1 +
√
σ2
?st , (3.173)

v>s1:t−1
(3.168)

= K>? (L−1t−1)
>L−1t−1y1:t−1 (3.174)

= K>? K−1t−1y1:t−1
(3.15)
= µ? , (3.175)

substituting back in we get

st =
yt − µ?√

σ2
?

. (3.176)

Therefore, by back-substituting the Cholesky factorization LT into the time series

y we get the standardized error s1:T of the one-step-ahead predictives.

3.6.1 External Inputs and Efficiency

We may be in a situation where we want to use external inputs zt ∈ RE, or co-

variates, in the model. For instance, when building a predictive model of snowfall

we might want to use temperature as an input. One option is model these two

time series jointly. However, it may be more direct to build a conditional model,

as is the case in discriminative generative distinction in iid data. If the external
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inputs are a quantity that might be controlled, as is the case in feedback control

systems, it is more appropriate to build a conditional model.

In the GPTS setup, the conditional model would be:

yt = f(t, zt) + εt , f ∼ GP(0, k) , εt ∼ N (0, σ2) . (3.177)

Using an ARGP, we would have:

yt = f(y(p), zt) + εt , f ∼ GP(0, k) , εt ∼ N (0, σ2) . (3.178)

Like in ARGP, the GPTS with external inputs no longer has a Toeplitz covariance

matrix in general. If the external inputs are sampled on an appropriate grid they

can still have a Toeplitz structure [Storkey, 1999]. If the external inputs are not

on an appropriate grid, we must use either the same inference methods used for

ARGP or use a linear dependence on the inputs. We can apply a set of basis

functions φ for the dependence on zt:

yt = f(t) + w>φ(zt) + εt , f ∼ GP(0, k) , (3.179)

w ∼ N (0,S) , εt ∼ N (0, σ2
n) , (3.180)

where S ∈ SE is the prior covariance on the weights w ∈ RE. If we use the ARMA

covariance for k we get the autoregressive moving average with exogenous inputs

(ARMAX) model.

3.6.2 Multivariate Gaussian Process Time Series

While GPs typically are used for modeling functions with a univariate output,

they can also be extended to multiple outputs. In the kriging community this is

known as cokriging. This is considered the joint approach of modeling y and z

together rather than the conditional approach used in Section 3.6.1.

The simplest way to model a multivariate function f ∈ RD → RE with a GP

is to use E independent GPs for each output dimension; each output dimension

typically gets its own covariance hyper-parameters ξ, although they can be tied

together. If we want to allow for correlations between the dimensions we can
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have M GPs on latent functions g, typically M = E, and have a mixing matrix

C ∈ RE×M such that

gi ∼ GP(µi, ki) for i ∈ 1:M , (3.181)

f(x) = Cg(x) , y = f(x) + ε , ε ∼ N (0,Σn) . (3.182)

The ith latent GP has mean function µi and covariance ki. Linear operations on

latent GPs is as general as we can get while preserving a predictive distribution

that is Gaussian [Boyle and Frean, 2005]. If the covariance function on each of

the M latent dimensions is the same, the distribution on Y ∈ RN×E the data

can be specified in terms of a matrix normal [Dawid, 1981]. Although (3.182) is

the most standard approach to multiple output GPs, we can also represent the

output dimension as in input:

Cov
[
ymi , y

n
j

]
= k((xi,m), (xj, n)) , (3.183)

where the covariance function also considers a correlation between the output

dimensions m and n on data points i and j respectively. This yields a more

general approach.

Both the GPTS and ARGP are directly extendable to the multivariate case

using the setup of (3.182). We substitute a time series for Y and time indices for

x in (3.182) and obtain a multivariate GPTS. In the multivariate GPTS D = 1

and E is the dimensionality of the time series. In ARGP of order one, D = E is

the dimensionality of the time series. We substitute the time series at t− 1 for x

and the time series at t for yt in (3.182) to obtain the multivariate ARGP.

GPTS is already quite general given that most standard methods can be

constructed as a special case. However, the ARGP extends this even more as the

ARGP is arguably more general than the GPTS. Computational optimizations

are more difficult than in GPTS, but the rank-1 Cholesky updates and the sub-

evidence can be utilized for computational advantages.
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3.7 Conclusions

We have provided a brief introduction to GPs, albeit emphasizing aspects not

covered elsewhere. For instance, we have provided detailed calculations of how

to handle uncertain output scale, sometimes called the “t-process.” We have

also covered two different approaches to the autoregressive time series modeling:

GPTS and ARGP.

The GPTS encompasses many of the standard linear time series models as

special cases. GPTS can be converted to these models for computational advan-

tages. Standard models such as AR can be converted to GPTS to handle effects

such as non-uniform sampling and edge effects. Additionally, we can constrain

the parameter space in GPTS to handle long range effects, while limiting the

number of parameters and therefore the over fitting potential.

The alternative approach, the ARGP, is even more flexible than the GPTS.

However, it requires more parameters to model long range effects in its standard

formulation. We have developed methodologies to do rolling updates of an ARGP

in an online manner using rank-1 updates. Furthermore, we can find the sub-

evidence, the evidence of the data at every starting and end point of the data in

the same O(T 3) cost as finding the evidence of the data in its entirety.

Just as many standard time series methods can be cast as GPs, GPs have

connections to many other methods. For instance, GPs are limiting cases of

neural networks. We have discussed connections to Bayesian linear models, RBF,

and the rarely discussed Cholesky space view.

An overall theme of this chapter has been to describe aspects often neglected

in an applied setting in a more concrete manner. We have discussed the existence

of GPs in a computationally defined way. We have more thoroughly described

the connections between GP methods and standard time series methods as well

as regression methods more generally.
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Chapter 4

State Space Models

Imagine tracking the location of a car based on odometer and GPS sensors, both

of which are noisy. Sequential measurements from both sensors are combined to

overcome the noise in the system to obtain an accurate estimate of the car’s po-

sition and velocity, known as the system state. Furthermore, suppose the engine

temperature is unobserved, it can still be inferred via the nonlinear relationship

with acceleration. To exploit this relationship appropriately, inference techniques

in nonlinear models are required; they play an important role in many practical

applications. Filtering in linear dynamical systems (LDS) and nonlinear dynam-

ical systems (NLDS) is frequently used in many areas, such as signal processing,

state estimation, control, and finance/econometric models [Harvey, 1991; Lefeb-

vre et al., 2004; Thrun et al., 2005]. Filtering (inference) aims to estimate the

state of a system from a stream of noisy measurements.

LDS and NLDS belong to a class of models known as state space models.

A state space model assumes that there exists a sequence of latent states xt

that evolve over time according to a Markovian process specified by a transition

function f ∈ RM → RM . The latent states are observed indirectly in yt through

a measurement function g ∈ RM → RD. We consider a more constrained set of

state space models than (1.18), but still relatively general, given by

xt = f(xt−1) + εt , xt ∈ RM ,

yt = g(xt) + νt , yt ∈ RD .
(4.1)
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Here, the system noise εt ∼ N (0,Q) and the measurement noise νt ∼ N (0,R)

are both iid Gaussian. We refer to the entire sequence as X := [x1, . . . ,xT ] and

Y := [y1, . . . ,yT ]. In the LDS case, f and g are linear functions, whereas the

NLDS covers the general nonlinear case. For notational clarity, in the LDS case

we write

xt = Axt−1 + εt , xt ∈ RM , A ∈ RM×M ,

yt = Cxt + νt , yt ∈ RD , C ∈ RD×M .
(4.2)

Both the LDS and the NLDS have an initial state distribution p(x1|∅) = N (µ0,Σ0)

with µ0 ∈ RM and Σ0 ∈ SM . Therefore, we summarize the parameter space of

the LDS as Θ = {A,C,Q,R,µ0,Σ0}.
When state space modeling is used in control, the equations are typically

augmented with a set of control inputs u,

xt = Axt−1 + But + εt , ut ∈ RE , B ∈ RM×E ,

yt = Cxt + Dut + νt , D ∈ RD×E .
(4.3)

where D is often assumed to be zero: D = 0. Since none of our problems involve

designing or benchmarking feedback control units, we neglect the control input,

setting B = 0. However, the methods in this chapter can be augmented to

include a control input by treating it equivalently to the previous latent state in

the system equation, albeit with no state uncertainty.

When high dimensional systems, i.e. large observation dimensionality D, can

accurately be modeled using a small latent state dimensionality M , state space

approaches have a natural “edge” over their autoregressive counterparts. The

smaller latent space naturally constrains the number of effective parameters to

be learned.

The outline of this chapter is as follows: We begin by surveying the standard

approaches to filtering and learning in state space models. We include a discussion

of the pitfalls and challenges in these methods. Second, we use GPs for learning

the system dynamics of a state space model in a nonparametric fashion. Third,

we discuss a separate GP-based learning procedure that helps avoid some of the

pitfalls in a standard approach, the unscented Kalman filter. Finally, we evaluate
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these methodologies on nonlinear filtering and learning tasks.

4.1 Existing Work

Kalman filtering [Kalman, 1960] corresponds to exact (and fast) inference in

LDS, which only models a limited set of phenomena. For the last few decades,

there has been interest in NLDS for more general applicability. In the state

space formulation, nonlinear systems do not generally yield analytically tractable

algorithms and some form of approximation must be used.

The most widely used approximations for filtering in NLDS are the extended

Kalman filter (EKF) [Maybeck, 1979] and the unscented Kalman filter (UKF)

[Julier and Uhlmann, 1997]. There are also Monte Carlo based approximations

known as particle filters [del Moral, 1996]. The EKF linearizes f and g at the

current estimate of xt. This can be considered a nonstationary (local) linear ap-

proximation of a nonlinear system. The UKF propagates several representative

estimates of xt through f and g and reconstructs a Gaussian predictive distribu-

tion assuming the propagated values came from a linear system. The locations of

the representative estimates of xt are known as the sigma points. Many heuristics

have been developed to help set the sigma point locations [Julier and Uhlmann,

2004].

In this section we integrate Kalman filtering and its approximations the EKF

and UKF into a common framework for filtering methods. These filters use the

same algorithm as the Kalman filter, but use different methods of approximating

the moments, which are intractable to calculate for general nonlinear f and g. We

discuss subtleties of implementing these filtering methods. These approximations

lead to GP filtering methods in the next section, which compute moments exactly

when f and g are modeled by GPs, unlike the EKF and UKF.

4.1.1 Kalman Filtering

Inference in state space models follows a common pattern, corresponding to mes-

sage passing algorithms [Ghahramani and Roweis, 1999; Pearl, 1986] in models

whose graphical structure have the same structure as an LDS. Filtering methods
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are typically described as having two steps: the time update and the measure-

ment update. They iterate in a predictor-corrector setup. We further break the

measurement update into the measurement prediction and the Bayes’ update to

get a three step process. In the time update we find p(xt|y1:t−1):

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1) dxt−1 , (4.4)

using p(xt−1|y1:t−1). In the measurement prediction step we predict the observed

space, p(yt|y1:t−1) using p(xt|y1:t−1):

p(yt|y1:t−1) =

∫
p(yt|xt)p(xt|y1:t−1) dxt . (4.5)

Finally, in the Bayes’ update we use Bayes’ rule to find p(xt|yt) using information

from how good (or bad) the prediction in the measurement prediction step is:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
∝ p(yt|xt)p(xt|y1:t−1) . (4.6)

In the linear Gaussian case all of these equations can be done analytically using

matrix multiplications, which is the standard Kalman filter.

Due to the Markovian properties present in all state space models from (4.1),

we can do exact filtering with Algorithm 5. Except in small states spaces, the

probability updates here may require high dimensional integrals. In LDS case,

tractability is obtained since we only need to propagate the moments of a Gaus-

sian efficiently updated with the transformation and conditioning properties of

Gaussians, which is shown in Algorithm 6. All deterministic filters in common

usage for approximate inference in nonlinear systems, as shown in Deisenroth and

Ohlsson [2011], can also be cast in the form of Algorithm 6. The subroutines in

Algorithm 7 only apply to the standard Kalman filter. In nonlinear methods,

such as the EKF and UKF, they merely approximate functions predict-x and

predict-y. In this chapter we cover the GP assumed density filter (GP-ADF),

which also fits into this framework. In GP-ADF, we compute the exact means

and covariances of predict-x and predict-y by modeling the latent functions f

and g with GPs. By contrast, the EKF and UKF return approximate moments
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that are only exact when f and g are linear.

Algorithm 5 General form of exact inference in state space models

1: p(x1|∅)←(µ0,Σ0) . Initialize the recursion
2: for t = 1 to T do
3: Measurement prediction step: p(yt|y1:t−1) using p(xt|y1:t−1) . Using (4.5)
4: Bayes’ update: p(xt|y1:t) using yt . Using (4.6)
5: Time update: find p(xt+1|y1:t) using p(xt|y1:t) . Using (4.4)
6: end for

Algorithm 6 General deterministic filtering setup

1: function filter(Y ∈ RT×D, θ,µ0 ∈ RD,Σ0 ∈ SD)
2: Use parameters θ to configure predict-y and predict-x
3: (µx,Σx)←(µ0,Σ0) . Initialize state mean µx and covariance Σx

4: for t = 1 to T do
5: . Find E

[
yt|y1:t−1

]
, Cov

[
yt|y1:t−1

]
, and Cov

[
xt,yt|y1:t−1

]
6: (µy,Σy,Σxy)← predict-y(µx,Σx)
7: . Find E [xt|y1:t] and Cov [xt|y1:t]
8: (µx,Σx)← filter-update(yt,µx,Σx,µy,Σy,Σxy)
9: (µx,Σx)← predict-x(µx,Σx) . Find E [xt+1|y1:t] and Cov [xt+1|y1:t]

10: end for
11: return Value of µy and Σy, or (µx,Σx), for each iteration
12: end function
13: function filter-update(y,µx,Σx,µy,Σy,Σxy)
14: ι←y − µy . Find the innovation

15: K←ΣxyΣ
−1
y . Find the Kalman gain

16: µx←µx + Kι
17: Σx←Σx −KΣyK

>

18: return (µx,Σx)
19: end function

Implementation details The updates of the covariance matrices in Algo-

rithm 6 can become asymmetric due to numerical imprecision. One approach

to this obstacle is to symmetrize the covariance matrices after each update, i.e.

Σx← 1
2
(Σx + Σ>x ). There can still be numerical problems whereby parameters,

especially the system noise Q, of the filter are ill-conditioned and result in non-

positive definite covariance matrices Σx. The most robust solution is to use a
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Algorithm 7 Updating in a standard Kalman filter

1: function predict-y(µx ∈ RD,Σx ∈ SD) . Kalman filter only
2: µy←Cµx
3: Σy←CΣxC

> + R
4: Σxy←ΣxC

>

5: return (µy,Σy,Σxy)
6: end function
7: function predict-x(µx ∈ RD,Σx ∈ SD) . Kalman filter only
8: µx←Aµx
9: Σx←AΣxA

> + Q
10: return (µx,Σx)
11: end function

square-root (SR) filter [van der Merwe and Wan, 2001], which propagates the

Cholesky factorization of the covariance matrices instead.

Initialization convention An inconsistency in the literature has developed

for initializing a state space model. In this thesis, we adopt the convention

that our first observation is y1 and x1 ∼ N (µ0,Σ0). However, it is sometimes

adopted that x0 ∼ N (µ0,Σ0) followed by a transition to x1 with the first ob-

servation at y1. We take the view that this introduces a superfluous node into

the graphical model that can be integrated out and ignored. The motivation for

using the x0 is that the filtering recursions are done in the order predict-x,

predict-y, filter-update, which is perhaps more logical than the predict-y,

filter-update, predict-x order adopted in this thesis. We compare the con-

ventions visually in their respective graphical models in Figure 4.1.

(a) Our convention (b) Other convention

Figure 4.1: We contrast the two initialization conventions. In our convention x0

is integrated out, while in the other convention there is an extra time update.
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Learning in a Kalman filter Model based learning of an LDS can be done

using the EM algorithm as introduced by Shumway and Stoffer [1982]. Although

we could directly apply a gradient based method to the marginal likelihood, the

linearities in the model allow for analytic EM updates. The two approaches are

related as EM corresponds to coordinate descent in the marginal likelihood [Neal

and Hinton, 1998].

To apply EM, we must smooth the state distribution using a Kalman smoother,

known as forward-backward or Rauch-Tung-Striebel (RTS) smoothing, for the E-

step [Rauch et al., 1965]. In the M-step, we optimize the expected complete

likelihood EX[p(X,Y|Θ)] of the observed variables and the latent states with

respect to the parameters Θ.

In the linear case, once the E-step is complete the optimization in the M-step

can be computed analytically. Additionally, coordinate descent has advantages

over gradient descent in certain circumstances [Salakhutdinov et al., 2003]. In

many of the nonlinear extensions considered in this chapter, there are no ana-

lytic EM updates, negating any of the computational benefits of using an EM

approach. The EM advantage of not needing derivatives does not apply in the

case of nonlinear systems, where the M-step itself may require gradient based

optimization methods.

Linear systems allow for SVD based methods for learning, which are commonly

used in many communities. There is no clear and principled way to extend these

methods to nonlinear systems.

Latent dimensionality Before learning the LDS parameters Θ we must select

a latent dimensionality M . We cannot merely try each M and select the di-

mensionality with the best (largest) marginal likelihood, known as the evidence,

after EM training. Since each latent dimension forms a superset of models of

the lower dimension the MLE solution of dimension M + 1 will always be yield

a higher likelihood than the MLE solution for dimension M . Ever larger latent

dimensionalities will be favored, eventually leading to over-fitting once the num-

ber of parameters becomes too large. The Bayesian solution to this is to place

priors on the parameters Θ and compare different dimensionality by the marginal
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likelihood:

p(M |Y) ∝ p(Y|M)P (M) = P (M)

∫
p(Y|Θ,M)dΘ , (4.7)

where P (M) is the prior on the latent dimensionality. The marginal likelihood

automatically introduces a complexity penalty against overly flexible models, or

more parameters roughly speaking. This gives the marginal likelihood an auto-

matic Occam’s razor effect [Rasmussen and Ghahramani, 2001]. A good intuition

for this effect is given in MacKay [2003, Ch. 28].

The marginal likelihood p(Y|M) in this and many other cases is notoriously

difficult to compute. MCMC estimates of the evidence typically have unaccept-

ably large variance. However, there have been attempts at advanced methods

to compute the evidence more accurately [Murray, 2007, Ch. 4]. We could get

samples from the posterior on the parameters Θ across different dimensions us-

ing reversible jump MCMC (RJ-MCMC) [Green, 1995]. Bounds to the marginal

likelihood in an LDS can also be found by variational methods [Ghahramani and

Beal, 2001]. Both these methodologies are beyond the typical complexity en-

countered for an LDS. Indeed one of the advantages of the Gaussian process

time series (GPTS) methods, as opposed to LDS, is that we need not do model

selection over parameter spaces of varying dimension.

There are simple evidence approximations we can apply to the LDS. A simple

approach for model selection is to approximate the marginal likelihood using the

Bayesian information criterion (BIC) [Schwarz, 1978]:

−2 log p(Y|M) ≈ BIC = −2 log p(Y|Θ̂,M) + |Θ| logN , (4.8)

which poses no extra computational burden over finding the MLE solution. The

BIC approximately introduces an Occam’s penalty through the parameter count-

ing penalty. A similar and popular criterion is the Akaike information criterion

(AIC) [Akaike, 1974].

In order to apply the BIC, we must count the parameters in an LDS. This is
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not as trivial as it may seem. The nominal cardinality of the parameters is

|Θ| = M2 +M2 +DM +D2 +M +M2 = 3M2 +DM +D2 . (4.9)

However, the effective degrees of freedom is lower since the latent space is uniden-

tifiable and can always be transformed so that A is diagonal. Therefore, the ma-

trix A only has M degrees of freedom. Additionally, a positive definite covariance

matrix (SD) has D(D + 1)/2 degrees of freedom since it is bijective through the

matrix logarithm to the symmetric real matrices. The initial µ0 and Σ0 will only

have a small effect on the solution and therefore should not be included in the

final parameter count. The fair parameter count is

|Θ| = (3M + 2DM +M2 +D2 +D)/2 . (4.10)

This can now be used in an AIC/BIC procedure.

4.1.2 Extended Kalman Filtering

The EKF explicitly linearizes f and g at the point E
[
xt|y1:t−1

]
at each step. We

substitute A and C for the Jacobian matrix of f and g evaluated at µt. Therefore,

the EKF requires knowledge of the derivatives of f and g. In predict-y and

predict-x we substitute

Ct ≈
dg(x)

dx

∣∣∣∣
x=E[xt]

, At ≈
df(x)

dx

∣∣∣∣
x=E[xt−1]

(4.11)

for C and A, respectively. This approximation can be quite good if the function

is close to linear. However, if the covariance of x is large enough to enclose

nonlinearities in f or g then the approximation can fail, as shown in Figure 4.2.

Gradients are a local property and can be completely unrepresentative of the

function. The EKF is attractive in that it has no free parameters that must be

set.
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4.1.3 Unscented Kalman Filtering

The UKF uses the whole distribution on xt ∈ RD, not only the mean, to place

sigma points and implicitly linearize the dynamics, which we call the unscented

transform (UT) [Julier et al., 1995]. In one dimension the sigma points roughly

correspond to the mean and α-standard deviation points; the UKF generalizes

this idea to higher dimensions. The exact placement of sigma points depends on

the unitless parameters {α, β, κ} ∈ R+ through

X 0 := µ , X i := µ± (
√

(D + λ)Σ)i , (4.12)

λ := α2(D + κ)−D , (4.13)

where
√·i refers to the ith row of the Cholesky factorization.1 The sigma points

have weights assigned by:

w0
m :=

λ

D + λ
, w0

c :=
λ

D + λ
+ (1− α2 + β) , (4.14)

wim := wic :=
1

2(D + λ)
, (4.15)

where wm is used to reconstruct the predicted mean and wc used for the pre-

dicted covariance. We interpret the unscented transform as approximating the

input distribution by 2D+ 1 point masses at X with weights w. Once the sigma

points X have been calculated the filter accesses f and g as black boxes to find Yt,
either f(Xt) or g(Xt) depending on the step. The UKF reconstructs a Gaussian

predictive distribution with the mean and covariance determined from Yt pre-

tending the dynamics had been linear. In other words, the equation used to find

the approximating Gaussian is such that the UKF is exact for a linear dynamics

model f and observation model g. It does not guarantee the moments will match

the moment of the true non-Gaussian distribution. The UKF is a black box filter

as opposed to the EKF which requires derivatives of f and g.

Both the EKF and the UKF approximate the nonlinear state space as a non-

stationary linear system. The UKF defines its own generative process, which

1 If
√

P = A⇒ P = A>A, then we use the rows in (4.12). If P = AA>, then we use the
columns.
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linearizes the nonlinear functions f and g wherever in xt a UKF filtering the time

series would expect xt to be. Therefore, it is possible to sample synthetic data

from the UKF by sampling from its one-step-ahead predictions as seen in Algo-

rithm 8. The sampling procedure augments the filter: predict-sample-correct. If

we use the UKF with the same {α, β, κ} used to generate synthetic data, then

the one-step-ahead predictive distribution will be the exact same distribution the

data point was sampled from.

Algorithm 8 Sampling data from UKF’s implicit model

1: p(x1|∅)← (µ0,Σ0)
2: for t = 1 to T do
3: Measurement prediction step: p(yt|y1:t−1) using p(xt|y1:t−1)
4: Sample yt from measurement prediction step distribution
5: Bayes’ update: p(xt|y1:t) using yt
6: Time update: find p(xt+1|y1:t) using p(xt|y1:t)
7: end for

4.1.3.1 Setting the Parameters

We summarize all the parameters as θ := {α, β, κ}. For any setting of θ the UKF

will give identical predictions to the Kalman filter if f and g are both linear.

Many of the heuristics for setting θ assume f and g are linear (or close to it),

which is not the problem the UKF solves. For example, one of the heuristics for

setting θ is that β = 2 is optimal if the state distribution p(xt|y1:t) is exactly

Gaussian [Wan and van der Merwe, 2000]. However, the state distribution will

seldom be Gaussian unless the system is linear, in which case any setting of θ

gives exact inference! We use the often recommended parameters α = 1, β = 0,

and κ = 3 [Thrun et al., 2005, Ch. 3], as the default UKF.

4.1.3.2 The Achilles’ Heel of the UKF

The UKF, like the EKF, can have embarrassingly poor performance because

its predictive variances can be far too small if the sigma points are placed in

unlucky locations. Insufficient predictive variance will cause observations to have

too much weight in the Bayes’ update, which causes the UKF to fit to noise.
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Meaning, the UKF will perform poorly even when evaluated on root-mean-square-

error (RMSE), which only uses the predictive mean. On the NLL (log loss), the

situation is even worse where too small predictive variances are heavily penalized.

In the most extreme case, the UKF can give a delta spike predictive dis-

tribution. We call this sigma point collapse. As seen in Figure 4.2, when the

sigma points are arranged together horizontally the UKF has no way to know the

function varies anywhere. Using a different set of sigma points we get either a

completely degenerate solution (a delta spike) or a near optimal approximation

within the class of Gaussian approximations.

A key contribution of this chapter is a method to learn the parameters θ in such

a way that collapse becomes unlikely. Anytime collapse happens in training the

marginal likelihood will be substantially lower. Hence, the learned parameters will

avoid anywhere this delta spike occurred in training. Maximizing the marginal

likelihood is tricky since it is not well-behaved for settings of θ that cause sigma

point collapse.

−1

−0.5

0

0.5

1

xt

−10 −5 0 5 10

xt−1

Figure 4.2: An illustration of a good and bad assignment of sigma points. The
lower panel shows the true input distribution. The center panel shows the sinu-
soidal system function f (blue) and the sigma points for α = 1 (red crosses ×)
and α = 0.68 (green circles©). The left panel shows the true predictive distribu-
tion (shaded), the predictive distribution under α = 1 (red spike) and α = 0.68
(green). The parameters β and κ are fixed at their defaults in this example. We
also show the EKF predictive distribution as the (widest) blue distribution.
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The Kalman filter is the standard and most general exact filtering method

used in continuous state spaces. The EKF and UKF form the standard approxi-

mate methods in the nonlinear cases. Although more exotic filtering algorithms

exist, all approximate filters fit in a framework by approximating the predictive

distribution from the system function and observation function.

4.2 UKF Learning ?

In this section, we discuss a novel learning method for the UKF that avoids the

sigma point collapse pitfall discussed in Section 4.1. Unlike the EKF, the UKF

has free parameters that determine where to put the sigma points. Our contribu-

tion is a strategy for improving the UKF through a novel learning algorithm for

appropriate sigma point placement: We call this method UKF-L. The key idea in

the UKF-L is that the UKF and EKF are doing exact inference in a model that

is somewhat “perverted” from the original model described in the state space

formulation. The interpretation of EKF and UKF as models, not merely ap-

proximate methods, allows us to better identify their underlying assumptions.

This interpretation also enables us to learn the free parameters in the UKF in a

model based manner from training data. If the settings of the sigma point are

a poor fit to the underlying dynamical system, the UKF can make horrendously

poor predictions. Although, the UKF-L requires a learning to determine θ once

the parameters are determined it has the same computational complexity as a

standard UKF.

A common approach to estimating model parameters θ in general is to maxi-

mize the log marginal likelihood from the one-step-ahead predictions:

`(θ) := log p(Y|θ) =
T∑
t=1

log p(yt|y1:t−1, θ) . (4.16)

Ordinarily it is reasonable to try a gradient based optimizer on the marginal

likelihood, but as seen in Figure 4.3 the marginal likelihood shows substantial

instability/local optima. The instability in the likelihood is likely the result of

the phenomenon explained in Section 4.1.3.2, where a slight change in parameter-
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ization can avoid problematic sigma point placement. This makes the application

of a gradient-based optimizer hopeless.
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Figure 4.3: Illustration of the UKF when applied to a pendulum system. We
plot the cross-sections of the marginal likelihood (blue line) in nats per obs. when
varying the parameters one at a time from their defaults (red vertical line). The
dashed green line is the total variance diagnostic D := E [log(|Σ| / |Σ0|)], where
Σ is the predictive variance in one-step-ahead prediction. We divide out the
variance Σ0 of the time series when treating it as iid to make D unitless. We
use D to help visualize when sigma point collapse is occurring, which is further
addressed in Section 4.4.4. Values of θ with small predictive variances closely
track the θ with low marginal likelihood. Note that the “noise” is a result of the
sensitivity of the predictions to parameters θ due to sigma point collapse, not
randomness in the algorithm as is the case with a particle filter.

We could apply Markov chain Monte Carlo (MCMC) and integrate out the

parameters. However, this is usually “overkill” as the posterior on θ is usually

highly peaked unless T is very small. Even in the case when T is small enough

to spread the posterior out, we would still like a single point estimate for compu-

tational speed on the test set.1

We focus on learning using a Gaussian process based optimizer [Osborne et al.,

2009; Srinivas et al., 2010], which is described in the next section. Since the

marginal likelihood surface has an underlying smooth function but contains what

amounts to additive noise, a probabilistic regression method seems a natural fit

for finding the maximum.

1 If we want to integrate the parameters out we must run the UKF with each sample of
θ|Y during test and average. To get the optimal point estimate of the posterior we would like
to compute the Bayes’ point [Snelson and Ghahramani, 2005].
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4.2.1 Gaussian Process Optimizers

Estimating the parameters amounts to finding the maximum of a structured

function: the log marginal likelihood. Therefore, it seems natural to use a prior

over functions to guide our search. Given that Gaussian processes form a prior

over functions we can use them for global optimization. The same principle has

been applied to integration in Rasmussen and Ghahramani [2003]. Note that

the use of GPs in this section is completely incidental to their use elsewhere

in the chapter. The appropriateness of GPs for filtering is unrelated to their

appropriateness for optimization.

GP optimization (GPO) allows for effective derivative free optimization. We

consider the maximization of a likelihood function `(θ). GPs allow for derivative

information ∂θ` to be included as well, but in our case this is not useful due to

the function’s instability.

GPO treats optimization as a sequential decision problem in a probabilistic

setting, receiving reward r when using the right input θ to get a large function

value output `(θ). This setup is also known as a Markov decision process (MDP)

[Sutton and Barto, 1998, Ch. 1]. At each step GPO uses its posterior over the

objective function p(`(θ)) to look for θ it believes has a large function value

`(θ). A maximization strategy that is greedy will always evaluate the function

p(`(θ)) where the mean function E [`(θ)] is the largest. A strategy that trades-

off exploration with exploitation will take into account the posterior variance

Var [`(θ)]. Areas of θ with high variance carry a possibility of having a large

function value or high reward r. The optimizer is programmed to evaluate at the

maxima of

J(θ) := E [`(θ)] +K
√

Var [`(θ)] ∈ R , (4.17)

where K ∈ R+ is a constant to control the exploration exploitation trade-off. The

objective J is known as the upper confidence bound (UCB) [Auer, 2000], since it

optimizes the maximum of a confidence interval on the function value. The UCB

has recently been analyzed theoretically by Srinivas et al. [2010]. The optimizer

must also find the maximum of J , but since it is a combination of the GP mean

and variance functions it is easy to optimize with gradient methods.
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We summarize the method in Algorithm 9; the subroutine to compute J is

shown in Algorithm 10. GPO assumes we provide a feasible set of θ to search

within. Algorithm 10 optionally adds a barrier to make sure that new candidate

points for evaluation stay within the feasible set. Alternatively, a constrained

optimization routine could be used. Every iteration we consider another set of C

candidate points to evaluate `(θ).

We illustrate the iterations of GPO in Figure 4.4. The function in the figure is

highly non-convex and the global approach of the GP helps greatly. We consider

a feasible region of θ ∈ [0, 10] and initialize the search by evaluating the function

at the edges and the midpoint: {0, 5, 10}. The figure illustrates how the UCB

criterion J trades off exploitation with exploration. For instance, a purely explo-

rative strategy would evaluate the function at θ = 9 in Figure 4.4(f), since the

error bars are the largest even though the optima does not occur there. Likewise,

a purely (greedy) exploitative strategy would get stuck evaluating the function

at θ = 5 in Figure 4.4(a) and never discover the maximum at θ = 1.

Algorithm 9 Gaussian process optimization

1: function GPO(Range ∈ RD×2, f ∈ RD → R,M ∈ N, C ∈ N)
2: . Use the end points and midpoints of the feasible set
3: X←multiGrid(Range) ∈ RD×3D

4: . Evaluate the function f at each of the grid points
5: y← f(X) ∈ R3D

6: for i = 1 to M do
7: Precompute L, Cholesky of GP covariance matrix
8: for j = 1 to C do
9: . Sample a random initial point

10: x0 ∼ N (E [x] ,Cov [x]) ∈ RD

11: . Maximize the UCB criterion J w.r.t. x?
12: (Sj, Fj)←max UCB(x?,X,y, K,L), x? initialized at x0

13: end for
14: Append S(argmaxF ) to X . X now RD×3D+i

15: Append f(S(argmaxF )) to y . y now R3D+i

16: end for
17: return X(argmax y)
18: end function
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Figure 4.4: Illustration of GPO in one dimension. The red line represents the
(highly non-convex) function we are attempting to optimize with respect to its
input θ. Its true maximum is shown by the green circle. The black line and the
shaded region represent the GP predictive mean and two standard deviation error
bars. The black plus (+) show the points that have already been evaluated. The
red cross (×) is the maximum of J(θ) shown by the red horizontal line. Here we
use K = 2 so the UCB criterion J corresponds to the top of the two standard
deviation error bars shown in the plot. At each iteration GPO evaluates the
function where the top of the error bars is highest.
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Algorithm 10 Upper confidence bound

1: function UCB(x? ∈ RD,X ∈ RN×D,y ∈ RN , K ∈ R+,L ∈ LN)
2: . Compute E [x?|X,y] and Var [x?|X,y] using a GP in numerically

stable way
3: Find K?? ∈ R+ and KX,? ∈ RN×1

4: α←L>\(L\y)
5: f̄←K>X,?α . E [x?|X,y]

6: β←L>\(L\KX,?)

7: fsd←
√

K?? −K>X,?β .
√

Var [x?|X,y]

8: J← f̄ +Kfsd . Find the UCB
9: Add a barrier to J , e.g. ‖x?‖20 . Optional

10: Compute dJ w.r.t. x?
11: return J and dJ
12: end function

4.3 Gaussian Process Inference and Learning ?

In this section we discuss a novel methodology for learning state space dynamics

in a nonparametric manner using GPs. To do so, we first need to cover sparse

Gaussian processes. We then combine sparse Gaussian processes with the uncer-

tain input methodology in Section 3.2 to obtain a GP filter that can be placed in

the general framework of Algorithm 6. The reader should note that the methods

in this section are largely unrelated to the UKF-L.

Typically, a parametric form for the transition dynamics and observation

model is assumed. General forms of the dynamics model for inference and learn-

ing were proposed in terms of radial basis functions (RBF) [Ghahramani and

Roweis, 1999] and neural networks [Honkela and Valpola, 2005]. In the context

of modeling human motion, Gaussian processes (GPs) have been used for infer-

ence in Wang et al. [2008] and Ko and Fox [2009]. Recently, GPs were used for

filtering in the context of the UKF, the EKF [Ko and Fox, 2009], and the assumed

density filter (ADF) [Deisenroth et al., 2009].

For nonlinear systems these methods encounter problems: The local lineariza-

tions of the EKF and the UKF can lead to the problems explained in the previous

section such as sigma point collapse. Furthermore, learning using the UKF and

the EKF typically requires a parametric form of the dynamics and measurement
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functions to be specified in advance. Neural network [Honkela and Valpola, 2005]

and RBF [Ghahramani and Roweis, 1999] approaches have a constant level of

uncertainty in the dynamics and measurement functions, which means they do

not appropriately quantify uncertainty in f and g. Although probabilistic GPs

are used in Wang et al. [2008] and Ko and Fox [2009], the maximum-a-posteriori

(MAP) estimation (point estimate) of the latent states can lead to overconfi-

dent predictions because the uncertainty in the latent states is not accounted for.

Other GP approaches proposed solely for filtering [Deisenroth et al., 2009; Ko

and Fox, 2009] do take the state uncertainty into account, but require ground

truth observations of the latent states during training, a strong assumption in

many applications.

In this section, we address the shortcomings of the methods above by propos-

ing the Gaussian process inference and learning (GPIL) algorithm for inference

and learning in NLDS. Our flexible framework uses non-parametric GPs to model

both the transition function and the measurement function. The GPs naturally

account for three kinds of uncertainties in the real dynamical system: system

noise, measurement noise, and model uncertainty. Our model integrates out the

latent states unlike Ko and Fox [2009]; Wang et al. [2008], where a MAP approxi-

mation to the distribution of the latent state is used. The non-parametric nature

of our model does not require a prespecified parametric form of the measurement

and/or dynamics model. At the same time, GPIL does not require any ground

truth observations of the latent states x.

The main contributions of this section are twofold: We propose a tractable

algorithm for approximate inference (filtering) in GP state space models. Using

GP models for f and g, see (4.1), we propose learning without the need of ground

truth observations xi of the latent states.

4.3.1 Sparse Gaussian Processes

A prerequisite for applying the uncertain input methodology for Gaussian pro-

cesses in state space models is the notion of a sparse Gaussian process. Therefore,

we briefly cover the relevant portions of the sparse Gaussian process literature.

Gaussian processes form a fully connected model; there are no conditional
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independence assumptions between the elements of the output vector f := f(X) ∈
RN , where X ∈ RN×D is a matrix of inputs. Most sparse Gaussian processes

(SGP) introduce conditional independence assumptions. SGPs were originally

introduced for computational speed ups during training: The O(N3) cost for

training becomes prohibitive for large data sets even for a standard regression

task. In this thesis we use SGPs for a different purpose: When GPs are used

in latent space, the training inputs are not observed exactly, and SGP methods

must be used even if we are willing to pay a O(N3) computational price during

training. The methods in Section 3.2 can handle a single uncertain input to a GP;

here we are dealing with an entire training set of uncertain inputs, which requires

additional methodology. SGPs were first utilized in this context for Gaussian

process latent variable models (GP-LVM) in Lawrence [2004].

Figure 4.5: Graphical model for sparse Gaussian process using FITC approxi-
mation. Once the pseudo-points α,β are conditioned on, all the function values
f become independent.

Several different SGP methods have been developed. Many of them were uni-

fied into a common framework by Quiñonero-Candela and Rasmussen [2005]; cer-

tain approaches such as compact support kernels [Wendland, 2005, Ch. 9], conju-

gate gradient matrix inversion [Gibbs, 1997, Ch. 3], or projected processes [Csató

and Opper, 2002] do not fit into the framework of Quiñonero-Candela and Ras-

mussen [2005], but we do not consider them here. In this section we summarize the

main results from the fully independent training conditional (FITC) SGP found

in Snelson and Ghahramani [2006]. In FITC there exists a set of M pseudo-

inputs such that if we knew β := f(α) ∈ RM , the pseudo-output, at all the

pseudo-inputs α ∈ RM×D then our prediction of the function value at all other
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places would be independent:

p(f |X,α,β) =
N∏
i=1

p(f(xi)|α,β,xi) (4.18)

= N (Kx,αK−1α,αβ, (Kx,x −Kx,αK−1α,αKα,x)� I) , (4.19)

where we have introduced the notation Kx,x := k(X,X) ∈ SN , Kα,x := k(α,X) ∈
RM×N , Kα,α := k(α,α) ∈ SM , and so on. This setup is summarized in terms of a

graphical model in Figure 4.5. For notational brevity we also define the operator

Qa,b := Ka,αK−1α,αKα,b ∈ R|a|×|b|. We also use A � I to “zero out” all but the

diagonal elements of a matrix A. This type of approximation to a standard GP,

referred to as a full GP in the SGP literature, introduces approximate low-rank

covariance matrices of the training data. FITC induces the following marginal

distribution on the training f ∈ RN and test points f? := f(x?) ∈ RN ′ with

x? ∈ RN ′×D:

p(f , f?) = N
(

0,

[
Qx,x − (Qx,x −Kx,x)� I Qx,?

Q?,x K?,?

])
. (4.20)

Therefore, the FITC prediction after observing y, noisy observations of f , is

p(f?|y) = N (K?,αΣKα,xΛ
−1y,K?,? −Q?,? + K?,αΣKα,?) , (4.21)

Σ := (Kα,α + Kα,xΛ
−1Kx,α)−1 ∈ SM , (4.22)

Λ := (Kx,x −Qx,x + σ2
0I)� I ∈ RN×N . (4.23)

This allows for the inversion of the covariance matrix to be done in less than

O(N3) time, lowering the computational complexity of GP training. One point

of ambiguity is whether the we should assume there is observation noise on the

pseudo-outputs β; if yes, a noise variance is added to the diagonal of Kα,α. All

of the calculations should follow through the same regardless. We assume the

pseudo-outputs have noise.

The locations of the pseudo-inputs are now free parameters, which must be

learned. A naive approach is to pick a random subset of the real inputs as pseudo-

inputs. Note that pseudo-inputs do not have to be real inputs of the data points.
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Although a random subset of the data is often used to initialize the pseudo-inputs,

better performance is often obtained by optimizing the pseudo-inputs as hyper-

parameters. We pick the locations that maximize the evidence. In a standard

SGP setup we marginalize out the pseudo-outputs β, which has less potential for

overfitting than optimizing them. Unfortunately, when using SGPs for latent GP

models, we often have to optimize the pseudo-outputs as well.

Therefore, although useful in sparse regression, in latent space models such

as GPIL, (4.20) and (4.21) are irrelevant since they are found by integrating out

β. We only care about distributions conditioned on β since we optimize them as

parameters. We use (4.19) for test set prediction. For a single test case, as is the

case in GPIL, (4.19) is equivalent to a vanilla GP prediction with training inputs

α and training outputs β.

SGP hyper-parameters are often optimized jointly with pseudo-inputs. Maxi-

mizing these regularization terms simultaneously with other parameters can lead

to local optima difficulties. These types of problems were one of the reasons

for moving from neural networks to GPs in the first place. Indeed, Lázaro-

Gredilla [2010, Ch. 3] has represented certain SGP setups as two stage neural

networks with the second layer weights (parameters) integrated out and the first

layer weights corresponding to the pseudo-inputs. Methods of training SGP and

avoiding local optima problems is an ongoing area of research [Titsias, 2009; Yan

and Qi, 2010]. SGPs hyper-parameters are frequently initialized by learning them

via a full GP on a random subset of the training data that is small enough to fit

inside the given computational budget.

4.3.2 Model and Algorithmic Setup

We consider an NLDS, where the stochastic Markovian transition dynamics of

the hidden states and the corresponding measurement function are given by (4.1).

The transition function f and the measurement function g, in (4.1), are both

unknown. In order to make predictions, we have to learn them solely given the

information of T sequential observations Y := [y1, . . . ,yT ].

We use GPs to model both the unknown transition function f and the un-

known measurement function g, and write f ∼ GPf , g ∼ GPg , respectively.
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Throughout this section, we use the squared exponential kernel (3.5), SE-ARD,

and a prior mean of zero. Independent GPs are used for each target dimension

of f and g.

Since the latent states X are unobserved, we cannot learn f and g directly.

Let us have a look at the “parameters” of a GP. In a standard GP setup, the GP

can be considered effectively parameterized by the hyper-parameters, the training

inputs, and the training targets. In the considered state space model, (4.1), the

training inputs are never observed directly. Due to the difficulty of GPs with

uncertain inputs on the entire training set, we use SGPs and parameterize a GP

by a pseudo training set, which is considered a set of free parameters for learning.

In other words, we learn parameter estimates of α and β from Figure 4.5, for

both f and g, during training.

These parameters are related to the pseudo training inputs used for sparse GP

approximations in the previous section. The pseudo inputs that parameterize the

transition function f are denoted by α = {αi ∈ RM}Ni=1 and the corresponding

pseudo targets are denoted by β = {βi ∈ RM}Ni=1. Intuitively, the pseudo inputs

αi can be understood as the locations of the Gaussian basis functions (SE kernel),

whereas the pseudo targets βi are related to the function value at this location.

We interpret the pseudo training set as N pairs of independent observations of

transitions from xt−1 to xt. Note that the pseudo training set does not form

a time series, i.e. βi 6= αi+1. To parameterize the measurement function g, we

follow the same approach and use the pseudo inputs ξ = {ξi ∈ RM}Ni=1 and

pseudo outputs υ = {υi ∈ RD}Ni=1. We use υ instead of training to Y directly

since often N � T . An example of a pseudo training set and the corresponding

GP model is in Figure 4.6(a).

Once the pseudo training set (α and β) is determined, predicting xt from xt−1

is a GP prediction [Deisenroth et al., 2009; Quiñonero-Candela et al., 2003]. Here,

xt−1 serves as the (uncertain) test input, while α and β are used as a standard

GP training set. Likewise, predicting yt from xt corresponds to a GP prediction

at uncertain inputs with xt as the test input and a training set defined through ξ

and υ. The model setup for predictions (conditioned on the pseudo training set)
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Figure 4.6: Use of SGPs in GPIL. On the left we show an example of a function
distribution inferred from a pseudo training set. The αi are the pseudo training
inputs, while the βi are the pseudo training targets. The shaded area is the 95%
confidence region of the function (solid blue). On the right we show the graphical
model for GPIL. The free parameters α,β and ξ,υ serve as a pseudo training
set for GPf and GPg, respectively. Note that GPf and GPg are not full GPs, but
rather sparse GPs that impose the condition xt+1 ⊥⊥ xt−1|xt,α,β.

is

xti ∼ GPf (xt−1|α,βi) , ytj ∼ GPg(xt|ξ,υj) ,

where xti is the ith dimension of xt and ytj is the jth dimension of yt. Note that

xt+1 ⊥⊥ xt−1|xt,α,β, which preserves the Markovian property in (4.1). It would

therefore be more accurate to describe the SGP approximation as a fully inde-

pendent conditional (FIC) rather than a FITC in the terminology of SGPs. Once

the Markovian property is intact inference follows the structure of Algorithm 5

as is the case with the EKF and UKF. The corresponding graphical model is

shown in Figure 4.6(b).

Without conditioning on the pseudo training set, the conditional indepen-

dence property would be xt+1 ⊥⊥ xt−1|xt, f , which requires conditioning on the

infinite dimensional object f . This makes it difficult to design practical inference

algorithms that exploit the Markovian property.

The hyper-parameters for the dynamics GP and the measurement GP are

denoted by θf ∈ (R+)M+2×M and θg ∈ (R+)M+2×D, respectively. Just as with the
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LDS, the prior on the initial state is a Gaussian with mean µ0 ∈ RM and covari-

ance Σ0 ∈ SM . We fix µ0 = 0 and Σ0 = I since the scale of the latent states X is

arbitrary, the other parameters can be rescaled to make any assumption on the

moments of the initial state realistic. The entire parameter space is summarized

as Θ := {α,β, ξ,υ, θf , θg,µ0,Σ0}.

4.3.3 GP-ADF

In this section we describe the GP-ADF, which serves as a filter that does exact

moment matching and is a subroutine in the GPIL algorithm.

The EKF and UKF algorithms are equivalent to the standard Kalman filter

except that the moments, µx and Σx, propagated through the transition and mea-

surement functions are substituted for their respective approximations according

to the unscented transform (UKF) or first order Taylor series linearization (EKF).

When the functions f and g are represented with a GP posterior, GP-ADF com-

putes the moments, E [xt+1|y1:t], Cov [xt+1|y1:t], E
[
yt|y1:t−1

]
, Cov

[
yt|y1:t−1

]
, and

Cov
[
xt,yt|y1:t−1

]
, exactly unlike the EKF and UKF where the moments are sel-

dom exact outside the linear case. When an SE-ARD covariance function (3.5) is

used these exact moments are easily computed in a GP even for uncertain inputs

(see Section 3.2). The ability to handle uncertain inputs is essential since we will

be propagating the latent state, which will seldom be known with certainty.

If f and g are modeled by GPs, then finding E [xt+1|y1:t] and Cov [xt+1|y1:t]

can be reduced to finding the predictive moments from the system function f

with an uncertain test input. Likewise, finding E
[
yt|y1:t−1

]
and Cov

[
yt|y1:t−1

]
correspond to the predictive moments from the observation function g with an

uncertain input. The variable Cov
[
xt,yt|y1:t−1

]
can be thought of as the cross-

covariance between the input and the output when predicting with g.

It may seem paradoxical that although we cannot compute the exact mo-

ments for arbitrary f and g black box functions, when we place a GP prior on

these functions and try to estimate from a finite number of evaluations, we can

get exact moments when propagating moments through the posteriors on f and

g. The explanation is that GP posteriors can always be represented as an RBF

and therefore we are approximating f and g by an RBF; the basis functions are
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Gaussian when an SE kernel is used. Once they are represented by an RBF com-

putational speedups can be used to get exact moments. The predictive variance

will take into account the extra uncertainty introduced by approximating f and

g with a RBF containing a finite number of basis functions. Therefore, the GP-

ADF is a superior approach over an ad-hoc approximation to f and g with an

RBF representation.

Time update The time update corresponds to computing the GP-ADF ap-

proximation to predict-x: the one-step-ahead predictive distribution of the hid-

den state p(xt|y1:t−1) using p(xt−1|y1:t−1) as a (Gaussian) prior on xt−1. Propa-

gating a density on xt−1 to a density on xt corresponds to GP prediction (under

model GPf ) with uncertain inputs, addressed in Section 3.1. The exact mean

µx and covariance Σx of the predictive distribution can be computed analyti-

cally. The predictive distribution on xt is therefore approximated by a Gaussian

N (µx,Σx) using exact moment matching. Therefore, we utilize Algorithm 1 to

implement the predict-x step:

(µx,Σx)← GPUR(θf ,α,β,µx,Σx) . (4.24)

The predictive distribution p(xt|xt−1,y1:t−1) of the latent state explicitly models

three sources of uncertainty: a) the uncertainty about the underlying function,

b) the uncertainty induced by the system noise, and c) the uncertain inputs.

Measurement prediction Analogously, we approximate the predictive distri-

bution in observed space using predict-y. We approximate the measurement

prediction p(yt|y1:t−1) by a Gaussian N (µy,Σy) with the exact mean and the

exact covariance using the above prediction p(xt|y1:t−1) as a prior on xt:

(µy,Σy,Σxy)← GPUR(θg, ξ,υ,µx,Σx) . (4.25)

Both the time update and measurement prediction scale quadratically in the

number pseudo inputs N .
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Bayes’ update The Bayes’ update computes a posterior distribution p(xt|y1:t)

by refining the predictive distribution p(xt|y1:t−1) by incorporating the most re-

cent measurement yt. Since we already have exact moments, we merely plug

them into the filter-update to complete the ADF [Deisenroth et al., 2009].

4.3.4 Learning in GPIL

Following from the approach of the UKF-L, we optimize the implied marginal

likelihood by the GP-ADF directly,

`(Θ) := log p(Y|Θ) =
T∑
t=1

log p(yt|y1:t−1,Θ) , (4.26)

except that here we can use gradient based optimization. The predictive distri-

bution p(yt|y1:t−1,Θ) is provided by the GP-ADF. This is in contrast to the EM

approach to learn state space models.

Following the example in LDS we could apply the EM algorithm in the state

space models for inference and learning. The shortcoming of this approach in

nonlinear systems is that the smoothing step requires further approximations.

Additionally in the GPIL the expectation in the M-step cannot be computed

exactly either. By optimizing a corrupt likelihood, the learning algorithm does

not account for the biases introduced by the approximate inference algorithm.

Furthermore, it may not even converge since the M-step itself is approximate.

By optimizing the implied marginal likelihood directly we avoid these problems.

Initialization There exist some inherent traps in learning an algorithm like

GPIL: We are attempting to optimize parameters, {α,β, ξ,υ}, and their regu-

larizers, θf and θg, simultaneously. This allows for the parameters to fall into

bad local optima. For instance, explanations of the data as all noise are al-

ways plausible. This dilemma became highly apparent with the development of

regularized neural networks [Neal, 1996]. The regularization predicament also

plagues sparse GP approximations in general. Therefore, good solutions require

good initializations that are within the domain of influence of an optimum that

is reasonable.

109



4. STATE SPACE MODELS

The key difficulty in learning the GPIL is the existence of the latent states X;

indeed, this is the motivation behind using EM in state space models. Therefore,

we choose to initialize GPIL using hard estimates for latent states from an LDS.

In order to infer the latent states with an LDS we must use a Kalman filter

and estimate its parameters. Although EM is common for learning in LDS,

and will converge to a local optimum, EM would need to be initialized too.

Therefore, the N4SID algorithm [van Overschee and de Moor, 1994], also known

as subspace identification, is popular in practice for initializing nonlinear methods.

The N4SID algorithm is a closed form algorithm for estimating the parameters in

an algorithm based on an SVD; N4SID comes with guarantees of being sufficiently

“close” to the true parameters although not being at an optimum of the likelihood.

Once we infer the parameters with N4SID, we get a hard estimate of the latent

states X̂ using a Kalman filter for initialization purposes.

Next, we initialize the hyper-parameters of the GPIL, θf and θg. In the GPIL

we have an advantage over typical sparse GP approximations. We can learn the

hyper-parameters (the regularizers) on the full data set, and then leave them

fixed when learning the pseudo training set. In standard sparse GPs this is not

practical since the point is to avoid the computational cost of using the full set,

and learning the hyper-parameters on the full set would defeat the purpose of

using a sparse GP in the first place. In GPIL we use SGPs due to the latent

states x, not the size of the training set.

To learn the pseudo-points we can do standard sparse GP learning since the

inputs to the GPs are not uncertain if we are using X̂. Therefore, we only have to

optimize the pseudo-inputs and not the pseudo-outputs, limiting the overfitting

potential. We follow the standard practice in sparse GPs and initialize the pseudo-

inputs with a random subset of the real inputs.

Once the pseudo-inputs are learned we can find the pseudo-outputs by eval-

uating the posterior mean of sparse GPs evaluated at the pseudo-inputs. We

have now initialized all the parameters of the GPIL, and it can be followed by

direct likelihood maximization to correct for signal missed in initialization, bi-

ases in initialization, and biases in the approximations in the GP-ADF filtering

algorithm.
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Summary of GPIL algorithm We summarize both the learning and filtering

aspects of the algorithm in Algorithm 11. The GP-ADF likelihood is compatible

with complex step [Martins et al., 2003] trick for calculating the derivatives in

Line 7.

The GP-ADF fits in the standard framework of approximate filters by pro-

viding exact predictive moments from the system and observation functions by

modeling them as GPs. Once modeled as GPs, exact moment methods for pre-

dicting with uncertain inputs can be used. We can use sparse GP methods to do

learning of the system and observation functions used by the GP-ADF.

Algorithm 11 Gaussian process inference and learning (GPIL)

1: function GPIL(Y ∈ RT×D, N ∈ N,M ∈ N)
2: Find initial LDS using N4SID with M latent dimensions
3: (µ0,Σ0)←(0, I)
4: Filter initial states using Kalman filtering
5: Initialize θf , α, β using SGP on latent state means
6: Initialize θg, ξ, υ using SGP on latent state means to Y . Both SGPs

use N pseudo-points
7: Maximize predictive likelihood of GP-ADF using (4.26)
8: return Θ←{α,β, ξ,υ, θf , θg,µ0,Σ0}
9: end function

10: function GP-ADF(Y, θf ,α,β, θg, ξ,υ,µ0,Σ0)
11: (µx,Σx)←(µ0,Σ0)
12: for t = 1 to T do
13: . Find E

[
yt|y1:t−1

]
, Cov

[
yt|y1:t−1

]
, and Cov

[
xt,yt|y1:t−1

]
using

Alg. 1
14: (µy,Σy,Σxy)← GPUR(θg, ξ,υ,µx,Σx)
15: . Find E [xt|y1:t] and Cov [xt|y1:t] using Alg. 6
16: (µx,Σx)← filter-update(yt,µx,Σx,µy,Σy,Σxy)
17: . Find E [xt+1|y1:t] and Cov [xt+1|y1:t]
18: (µx,Σx)← GPUR(θf ,α,β,µx,Σx) using Algorithm 1
19: end for
20: return value of µy and Σy for each iteration
21: end function
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4.4 Results for Filtering

We test our method on filtering in three dynamical systems: the sinusoidal dy-

namics, the Kitagawa dynamics used in Deisenroth et al. [2009]; Kitagawa [1996],

and pendulum dynamics used in Deisenroth et al. [2009]. The sinusoidal dynamics

are described by

xt+1 = 3 sin(xt) + εt , εt ∼ N (0, 0.12) , (4.27)

yt = σ(xt/3) + νt , νt ∼ N (0, 0.12) . (4.28)

where σ(·) represents a sigmoid. The Kitagawa model is described by

xt+1 = 0.5xt +
25xt

1 + x2t
+ εt , εt ∼ N (0, 0.22) , (4.29)

yt = 5 sin(2xt) + νt , νt ∼ N (0, 0.012) . (4.30)

The Kitagawa model was presented as a filtering problem in Kitagawa [1996]. The

pendulum dynamics are described by a discretized ordinary differential equation

(ODE) at ∆t = 400 ms. The pendulum possesses a mass m = 1 kg and a length

l = 1 m. The pendulum angle ϕ is measured anti-clockwise from hanging down.

The state x = [ϕ, ϕ̇]> of the pendulum is given by the angle ϕ and the angular

velocity ϕ̇. The ODE is

d

dt

[
ϕ̇

ϕ

]
=

[
−mgl sinϕ

ml2

ϕ̇

]
, (4.31)

where g the acceleration of gravity. The measurement function is

yt =

arctan
(
p1−l sin(ϕt)
p1−l cos(ϕt)

)
arctan

(
p2−l sin(ϕt)
p2−l cos(ϕt)

) ,

[
p1

p2

]
=

[
1

−2

]
, (4.32)

which corresponds to bearings only measurement since we do not directly observe

the velocity. We use system noise Q = diag(
[
0.12 0.32

]
) and R = diag(

[
0.22 0.22

]
)

as observation noise.

For all the problems we compare the UKF-L with the UKF-D, EKF, GP-UKF,
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GP assumed density filter (GP-ADF), and time independent model (TIM); we use

UKF-D to denote a UKF with default parameter settings, and UKF-L for learned

parameters. The TIM treats the data as iid normal and is inserted as a reference

point. The GP-UKF and GP-ADF use GPs to approximate f and g and exploit

the properties of GPs to make tractable predictions. The Kitagawa and pendulum

dynamics were used by Deisenroth et al. [2009] to illustrate the performance of

the GP-ADF and the poor performance of the UKF. Deisenroth et al. [2009] used

the default settings of α = 1, β = 0, κ = 2 for all of the experiments. We used

exploration trade off K = 2 for the GPO in all the experiments. Additionally,

GPO used the squared-exponential with automatic relevance determination (SE-

ARD) covariance function plus a noise term of 0.01 nats per obs. We set the GPO

to have a maximum number of function evaluations of 100; even better results can

be obtained by letting the optimizer run longer to hone the parameter estimate.

We show that by learning appropriate values for θ = {α, β, κ} we can match, and

exceed, the performance of the GP-ADF and other methods.

The models were evaluated on one-step-ahead prediction. The evaluation

metrics were the negative log-predictive likelihood (NLL), the mean squared error

(MSE), and the mean absolute error (MAE) between the mean of the prediction

and the true value. Note that unlike the NLL, the MSE and MAE do not account

for uncertainty. Also, the MAE will be more difficult for approximate methods

than MSE. For MSE, the optimal action is to predict the mean of the predictive

distribution, while for the MAE it is the median. Most approximate methods

attempt to moment match to a Gaussian and preserve the mean; the median of

the true predictive distribution is implicitly assumed to be the same as the mean.

4.4.1 Sinusoidal Dynamics

The models were trained on T = 1000 observations from the sinusoidal dynamics

and tested on R = 10 restarts with T = 500 points each. The initial state was

sampled from a standard normal x1 ∼ N (0, 1). The GP-ADF inherently needs to

do learning and cannot merely accept a known system function like the EKF and

UKF. Although this somewhat disadvantages the GP-ADF, we gave it access

to samples from the latent state to learn f as accurately as possible. The UKF
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optimizer found the optimal values α = 2.0216, β = 0.2434, and κ = 0.4871.

The predictive results are shown in Table 4.1. The measures are supplied with

95% confidence intervals. NLL is reported in nats per obs., while MSE and MAE

are in the units of y2 and y, respectively.

Table 4.1: Sinusoid: Comparison of the methods on the sinusoidal dynamics. The

p-values from a paired two-sided t-test under the null hypothesis that the UKF-L has

the same mean loss as the other methods are p < 0.0001 for all alternate methods and

loss measures. Since NLL on continuous variables has an arbitrary additive constant

corresponding to the parameterization of the space (see Section B.1), the NLL values

have been shifted so the best performing method has NLL zero.

Method NLL ×101 MSE ×103 MAE ×102

EKF 3.91±0.38 30.0±1.3 13.60±0.30
GP-ADF 1.40±0.17 26.03±0.99 12.96±0.27
GP-UKF 1.72±0.18 27.3±1.1 13.25±0.28
TIM 3.22±0.16 36.1±1.2 15.98±0.29
UKF-D 1.03±0.17 23.04±0.89 12.21±0.25
UKF-L 0.00± 0.24 18.81± 0.77 10.91± 0.24

Table 4.2: Kitagawa: Comparison of the methods on the Kitagawa dynamics. The

p-values from a paired two-sided t-test under the null hypothesis UKF-L is the same as

the other methods are p < 0.0001 for all alternate methods and loss measures, except

a where p = 0.0082.

Method NLL ×101 MSE ×100 MAE ×101

EKF 960±720a 7.24±0.82 14.66±0.99
GP-ADF 10.18±0.16 18.03±0.43 40.26±0.60
GP-UKF > 1000 23.01±0.96 41.7±1.1
TIM 10.10±0.12 18.23±0.42 40.57±0.59
UKF-D 15.8±5.5 5.07±0.58 12.71±0.82
UKF-L 0.0± 2.1 3.40± 0.45 10.46± 0.67
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Table 4.3: Pendulum: Comparison of the methods on the pendulum dynamics. The

p-values from a paired two-sided t-test under the null hypothesis UKF-L is the same

as the other methods are p < 0.0001 for all alternate methods and loss measures. Since

the observations in the pendulum data are angles we projected the means and the data

to the complex plane before computing MSE and MAE.

Method NLL ×102 MSE ×102 MAE ×102

EKF 23.4±4.5 20.42± 0.45 61.96± 0.63
GP-ADF 47.74±0.94 39.06±0.48 95.96±0.66
GP-UKF 241.3±3.8 81.20±0.90 139.88±0.93
TIM 41.7±1.2 40.93±0.43 101.16±0.60
UKF-D 251.4±8.0 54.98±0.81 111.51±0.99
UKF-L 0.0± 2.6 24.75±0.68 66.54±0.70

4.4.2 Kitagawa

The Kitagawa model has a tendency to stabilize around x = ±7, where it is linear.

The challenging portion for filtering is away from the stable portions where the

dynamics are highly nonlinear. Deisenroth et al. [2009] evaluated the model using

R = 200 independent starts of the time series allowed to run only T = 1 time

steps, which we find somewhat unrealistic. Therefore, we allow for T = 10 time

steps with R = 200 independent starts. In this example, x1 ∼ N (0, 0.52).

The learned values of the UKF-L parameters were α = 0.3846, β = 1.2766,

κ = 2.5830; quantitative results are shown in Table 4.2.

4.4.3 Pendulum

The models were tested on R = 100 runs of length T = 200 each, with:

x1 ∼ N (
[
−π 0

]>
, diag(

[
0.12 0.22

]
)) . (4.33)

The initial state mean of
[
−π 0

]>
corresponds to the pendulum being in the

downward position. The models were trained on R = 5 runs of length T = 200.

We found that in order to perform well on NLL, but not on MSE and MAE,

multiple runs of the time series were needed during training; otherwise, TIM had
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the best NLL. This is because if the time series is initialized in one state the model

will not have a chance to learn the needed parameter settings to avoid rare, but

still present, sigma point collapse in other parts of the state space. A short period

of sigma point collapse in a long time series can give the models a worse NLL

than even TIM due to incredibly small likelihoods. The MSE and MAE losses

are more bounded, so a short period of poor performance will be offset by good

performance periods. Even when R = 1 during training, sigma point collapse

is much rarer in UKF-L than UKF-D. The UKF-L found optimal values of the

parameters to be α = 0.5933, β = 0.1630, κ = 0.6391. This is further evidence

that the correct θ is hard to proscribe a priori and must be learned empirically.

We compare the predictions of the default and learned settings in Figure 4.7.

Quantitative results are shown in Table 4.3.
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(a) Default θ
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(b) Learned θ

Figure 4.7: Comparison of UKF-D and UKF-L for one-step-ahead prediction;
we show the first element of yt in the Pendulum model for the first 20 time steps.
The red line is the truth, while the black line and shaded area represent the mean
and 95% confidence interval of the predictive distribution.

4.4.4 Analysis of Sigma Point Collapse

We find that the marginal likelihood is extremely unstable in regions of θ that

experience sigma point collapse. When sigma point collapse occurs, the predic-

tive variances become far too small, making the marginal likelihood much more

susceptible to noise. Hence, the marginal likelihood is smooth near its maximum
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where sigma point collapse is unlikely, as seen in Figure 4.3. As a diagnostic D

for sigma point collapse we look at the mean |Σ| of the predictive distribution.

4.5 Results for Learning

In this section we illustrate the learning ability of the GPIL on some synthetic

examples. We thoroughly benchmark its performance on real data sets, the data

described in Chapter 2, in Section 5.5. We evaluate on the sinusoidal dynam-

ics of (4.27) and (4.28) with an added twist of adding two noise dimensions to

the observations distributed according to a standard normal. The results were

produced using a pseudo training set of size N = 10 with T = 200 training set

duration.

The true dynamics and observation model are compared to the learned model,

GPf and GPg, in Figure 4.8. Since the latent function is unidentifiable we trans-

formed the latent state coordinate system in the figures. It seems that the GPIL

set the latent coordinate system to be approximately x′ = −3x. On the far right

of the system function, it appears the GPIL under-estimates the true function.

However, when we consider the observation function, very negative values are

under-valued when projecting back into observable space. Therefore, the GPIL

learned in a slightly nonlinear reparameterization of the latent coordinate system.

The error bars (shaded area) on the learned dynamics model are larger than the

true noise level since they include both system noise and model uncertainty.

Quantitative results for the sinusoidal dynamics are shown in Table 4.4 using

one-step-ahead prediction. We compared GPIL to TIM and the ARGP as a

reference.

We use T ′ = 1000 test set observations for the evaluation procedure. The

evaluation metrics were the negative log-predictive likelihood (NLL), the mean

squared error (MSE), and mean absolute error (MAE).

4.5.1 Discussion

The learned parameters of the UKF performed significantly better than the de-

fault UKF for all error measures and data sets. Likewise, it performed signifi-
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Figure 4.8: True (red) and learned (black) transition/observation function. The
95% error bars of the learned system are represented by the gray area and 95%
error bars for the true system are shown by the (red, dashed) lines. The blue
stem plots are the learned pseudo-inputs. We show the observation function for
each of the three observation dimensions. The system is unidentifiable and it
seems GPIL has roughly learned in a coordinate system of x′ = −3x. The true
functions have been transformed accordingly.
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Table 4.4: Sinusoid: Evaluation of the GPIL on the sinusoidal dynamics example.

We report the NLL per data point, MSE, and MAE with the NLL 95% error bars. The

p-values from a paired two-sided t-test under the null hypothesis GPIL is the same as

the other methods are p < 0.0001 for all alternate methods and loss measures.

Method NLL ×101 MSE ×100 MAE ×101

ARGP 1.90±0.77 2.12±0.13 17.69±0.54
GPIL 0.00± 0.76 2.06± 0.13 17.32± 0.54
TIM 3.66±0.73 2.11±0.13 17.93±0.55

cantly better than all other methods except against the EKF on the pendulum

data on MAE/MSE. We found that results could be improved further by aver-

aging the predictions of the UKF-L and the EKF.

There exists another set of parameters rarely addressed in the UKF. The

Cholesky factorization is typically used for
√

Σ. However, any matrix square-

root can be used. Meaning, we can apply a rotation matrix to the Cholesky

factorization Σ and get a valid UKF, which gives us O(D2) extra degrees of

freedom (parameters). We could attempt to learn these as well. However, the

beauty of the UKF-L is that the number of parameters to learn is three regardless

of D. Global optimization using GPO, or other methods, could become more

difficult in the presence of an extra D − 1 parameters.

Another noteworthy extension of the UKF-L methodology is to particle fil-

ters [Doucet et al., 2001]. Particle filters are known to have even more arbitrary

parameters than the UKF, such as in the proposal distribution. Although the

Monte Carlo nature of particle filters could present challenges, the model based

learning approach could add some robustness to particle filtering.

GP-ADF and UKF-L A somewhat surprising result in filtering is that UKF-

L does better than GP-ADF on the problems tried, even on MSE. Since the

GP-ADF uses exact moment matching, i.e. an exact mean, it is reasonable to

expect that it would do better than UKF-L on MSE, where the optimal action is

to report the mean. However, the GP-ADF gives the exact moments only for a

single propagation, such as predict-x, through a GP. Since the true input dis-

tribution in the next step, such as predict-y, is not Gaussian the approximation
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compound and the GP-ADF no longer gives the exact predictive moments. There

are also compound approximations in the UKF-L as well, which we might expect

to cancel out with the GP-ADF approximations. However, since the UKF-L finds

parameters θ that work empirically we get approximations that work globally. In

contrast, the GP-ADF uses purely local moment-matching approximations.

Additionally, the GP-ADF requires training points to get an RBF represen-

tation of the dynamics. For filtering, this gives it a distinct disadvantage to the

EKF and UKF, where we can pass it the “platonic” function (a parametric form

rather than data points). However, the GP-ADF has an advantage when little

is known about the system dynamics. The GP-ADF learns the dynamics in a

nonparametric manner, and only being able to learn from training points is not

a disadvantage if training points are all we have. A possible middle ground, for

future research, is to apply the UKF-L methods to the GP-UKF.

Computational complexity The UKF-L, UKF, and EKF have test set com-

putational time O(DT (D2 +M)). The GP-UKF and GP-ADF have complexity

O(T (N2DM2 + N2D3)), where N is the number of points used in training to

learn f and g. This means that if N2 � D then UKF-L will have a much smaller

computation complexity than the GP-ADF, which also attempts to avoid sigma

point collapse. Typically it will take much more than D points to approximate

a function in D dimensions, which implies we will almost always have N2 � D.

The D3 term in GP-ADF comes from the covariance calculations in the GP. This

is usually not problematic as D is typically small. If a large number of training

points N is needed to approximate f and g then the GP-ADF and GP-UKF

become much slower than the UKF.

4.6 Conclusions

Filtering We presented an automatic and model based mechanism to learn the

parameters of a UKF, {α, β, κ}, in a principled way. The UKF can be rein-

terpreted as a generative process that performs inference on a slightly different

NLDS than desired through specification of f and g. We demonstrated how the

UKF can fail arbitrarily badly in very nonlinear problems through sigma point
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collapse. Learning the parameters makes sigma point collapse less likely to occur.

When the UKF learns the correct parameters from data, it can outperform other

filters on common benchmark dynamical systems problems. This includes filters

designed to avoid sigma point collapse, such as the GP-ADF. The GP-ADF has

the strength of being able to learn system dynamics in a nonparametric manner.

However, this is also a disadvantage since the GP-ADF can only learn this way

and cannot accept a known parametric form as is the case for the UKF-L. This

gives the UKF-L more information to exploit.

Learning Independent to the UKF-L, we have introduced the GPIL algorithm.

In GPIL, the latent states xt are never observed directly. Only observations yt can

be accessed to train the latent dynamics and measurement functions. Contrarily,

direct access to ground truth observations of a latent state sequence was required

in Deisenroth et al. [2009]; Ko and Fox [2009] for training. Parameterizing a GP

using the pseudo training set is one way to train a GP with unknown inputs. In

principle, we would train the model by integrating the pseudo training set out.

However, this approach is analytically intractable.

With GPIL we introduced a general method for inference and learning in

nonlinear state space models. Both the transition function between the hidden

states and the measurement function are modeled by GPs allowing for quantifying

model uncertainty and flexible modeling. The free parameters of the GPs are

their hyper-parameters and a pseudo training set, which are jointly learned using

a gradient-based optimizer. We demonstrated that GPIL successfully learned

nonlinear (latent) dynamics based on noisy measurements only.
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Chapter 5

Change Point Detection ?

Many processes have change point structure: Stock markets exhibit change points

when some significant economic event causes an increase in volatility, weather sys-

tems may exhibit change points during years of El Niño, and electronic systems

show change points when devices begin to fail or configurations change. An in-

ability to react to regime changes can have a detrimental impact on predictive

performance. Change point detection (CPD) attempts to reduce this impact by

recognizing regime change events and adapting the predictive model appropri-

ately. As a result, CPD is a useful tool in a diverse set of application domains

including robotics, process control, and finance.

CPD is especially relevant to finance where risk resulting from parameter

changes is often neglected in models. For example, Gaussian copula models used

in pricing collateralized debt obligations (CDOs) had two key flaws: assuming

that subprime mortgage defaults have a fixed correlation structure, and using a

point estimate of these correlation parameters learned from historical data prior

to the burst of the real-estate bubble [Jones, 2009; Li, 2000]. Bayesian change

point analysis avoids both of these problems by assuming a change point model

of the parameters and integrating out the uncertainty in the parameters rather

than using a point estimate.

We also assume that our application demands online change point detection:

An autonomous robot must detect change points in its sensors online, an auto-

matic trading system must detect change points as soon as possible, and elec-

tronic monitoring applications must alert to change points in measurements as
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soon as possible. Many of the previous Bayesian approaches to CPD have been

retrospective, where the central aim is to infer change point locations in batch

mode [Barry and Hartigan, 1993; Xuan and Murphy, 2007]. While these methods

are useful for analyzing a variety of time series data sets, they are not designed

for online prediction systems that need to adapt predictions in light of incoming

regime changes. Examples of such systems include dialog systems, autonomous

navigation systems, and adaptive compression algorithms, to name a few.

The Bayesian Online CPD (BOCPD) algorithm was recently introduced by

Adams and MacKay [2007], and similar work has been done by Fearnhead and

Liu [2007]. Central to the online predictor is the time since the last change point,

namely the run length. We perform exact online inference about the run length

at every time step, given an underlying predictive model (UPM) and a hazard

function. Given all the observations up to time t, y1 . . . yt ∈ Y , the UPM is used

to compute p(yt|y(r), θm) for any r ∈ [0, . . . , (t − 1)] and (r) := (t− r):(t− 1).

The UPM can be thought of as a simpler base model whose parameters η change

at every change point according to fixed hyper-parameters θm; for instance, the

UPM could be iid Gaussian (TIM) with a different mean and variance within

each regime.

We have a great deal of flexibility in determining how the run length affects

the change point hazard. The run length rt ∈ N0 is incremented every time

step until there is a change point when it is reset to zero. The hazard function

H(r|θh) ∈ N→ [0, 1] is the prior probability of a change point occurring given a

run length rt. We define the change point vector ct ∈ {0, 1} to be true (1) if there

is a change point at time t and false (0) otherwise. Notice that through H(r|θh)
we can specify, a priori, arbitrary duration distributions for parameter regimes.

In prior applications of BOCPD, e.g. Adams and MacKay [2007], it is as-

sumed that data in each regime is iid and from an exponential family UPM

with known hyper-parameters. However, many data sets are not well-described

by a generative model that is piecewise iid. Indeed, many temporal sequences

clearly exhibit pronounced temporal smoothness within each regime. We there-

fore extend BOCPD to allow for time series UPMs such as GPTS (Section 3.4)

and ARGP (Section 3.6). Additionally, prior BOCPD setups treat its hyper-

parameters, θ := {θh, θm}, as fixed and known. Empirically, it is clear that the
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performance of the algorithm is highly sensitive to hyper-parameter settings. We

improve the flexibility of BOCPD by providing a principled mechanism to learn

hyper-parameters from the incoming data stream without sacrificing the online

nature of the algorithm.

Garnett et al. [2009] added robustness to change points in Gaussian process

methods through the use of a “change point kernel.” The change point kernel is

a non-stationary kernel that allows an abrupt change in some form of behavior

in a GPTS model. This approach has three shortcomings compared to BOCPD

based approaches: Firstly, the kernel only allows for a single change point at a

known location. Therefore, to infer the change point location we must integrate

over different kernels, which must be done using sampling methods or Bayesian

Monte Carlo (BMC). Extensions of this work, such as Álvarez et al. [2010],

often resort to optimizing the change point locations with maximum likelihood,

which carries an over fitting risk. BOCPD can compute the posterior over change

point locations analytically and online. Secondly, the change point kernel only

allows for a single change point and often necessitates the use of a sliding window

based approach, and thereby introducing another free parameter, to find multiple

change points. Third, it narrowly focuses on GPTS based UPMs. BOCPD treats

the UPM as a black box and could be an ARGP or even a non-kernel method

such as a Dirichlet process.

Notational conventions For simplicity we assume that r0 = 0, meaning there

is a change point at t = 0, as an initial condition. However, more general initial

state distributions are possible in this framework. We define τi as the time of the

ith change point, where τ0 := 0. The quantities are related by

rt =

{
0 , ct = 1

rt−1 + 1, ct = 0
,

τi∑
t=1

ct = i , cτi = 1 . (5.1)

Therefore, there is a change point at time t⇔ ct = 1⇔ rt = 0⇔ τi = t for some

i, which is exemplified in Table 5.1. Meaning, τ is a sorted list of change point
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t: 0 1 2 3 4 5 6 7 8 9
c: 1 0 0 0 1 0 1 1 0 0
r: 0 1 2 3 0 1 0 0 1 2
τ : τ0 τ1 τ2 τ3

♣ ♣ ♣ ♣ ♦ ♦ ♠ ♥ ♥

Table 5.1: Example of the relationship between c, r, and τ . We represent which
regime the data is in using different card suits (♣,♦,♠,♥).

times. Since the r, c, τ are discrete and related via a bijection:

P (τ ) = P (c) = P (r) =
T∏
t=1

H(rt−1 + 1)ct(1−H(rt−1 + 1))1−ct . (5.2)

We use c ∈ {0, 1}T , r ∈ NT
0 , and τ ∈ {1, . . . , T}M to refer to the latent change

points and c̃, r̃, and τ̃ to refer to the labeled (observed) change points.1 Equa-

tion (5.1) also applies to c̃, r̃, and τ̃ .

We observe yt for t ∈ {1, . . . , T}. The indexing convention in BOCPD is that

if ct = 1 then yt+1 is the first data point sampled from the new model and yt is

sampled from the old model. Hence, P (rt = 0|y1:t) is the probability there is a

change point at time t without observing the first data point in the new regime.

To include the first data point in the new regime we look at P (rt = 0|y1:t+1).

We summarize the model using the probability of everything (POE):

log p(y1:T , c1:T |θ) = log p(y1:T |c1:T , θm) + logP (c1:T |θh) (5.3)

=
M∑
i=0

log p(yτi+1:τi+1
|θm) (5.4)

+
T∑
t=1

log(H(rt−1 + 1))ct + log(1−H(rt−1 + 1))(1− ct) .

1 Since M is itself random, we could more rigorously write τ ∈ P(1:T ).
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Figure 5.1: Industry Portfolios: BOCPD run length distribution in 1998–2008.

The shading represents the CDF of the run length distribution, while the solid red

line represents the median of the distribution. Areas of a quick transition from black

(CDF of zero) to white (CDF of one) indicate a sharply peaked run length distribution.

Many events of market impact create change points. Some of the other change points

correspond to minor rallies or rate cuts but not a historical event. Note that we plot

the filtering distribution, so the vertical spikes are change points BOCPD thinks are

plausible but then realizes are false upon receiving more data.

5.1 The BOCPD Algorithm

BOCPD calculates the posterior run length at time t, i.e. P (rt|y1:t), sequentially.

This posterior is used to make online predictions robust to underlying regime

changes through marginalization of the run length variable:

p(yt+1|y1:t) =
∑
rt

p(yt+1|y1:t, rt)P (rt|y1:t) (5.5)

=
∑
rt

p(yt+1|y(r))P (rt|y1:t) , (5.6)

where y(r) refers to the last rt observations of y, and p(yt+1|y(r)) is computed

using the UPM.
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The run length posterior is found by normalizing the joint likelihood:

P (rt|y1:t) =
p(rt,y1:t)∑
rt
p(rt,y1:t)

. (5.7)

The joint likelihood is updated online using a recursive message passing scheme

χt := p(rt,y1:t) =
∑
rt−1

p(rt, rt−1,y1:t) (5.8)

=
∑
rt−1

p(rt, yt|rt−1,y1:t−1)p(rt−1,y1:t−1) (5.9)

=
∑
rt−1

P (rt|rt−1)︸ ︷︷ ︸
hazard

p(yt|rt−1,y(r))︸ ︷︷ ︸
UPM

p(rt−1,y1:t−1)︸ ︷︷ ︸
χt−1

. (5.10)

This defines a forward message passing scheme to recursively calculate χt from

χt−1. The conditional can be restated in terms of messages as P (rt|y1:t) ∝ χt.

All the distributions mentioned so far are implicitly conditioned on the set of

hyper-parameters θ.

Example BOCPD model A simple example of BOCPD would be to use a

constant hazard function H(r|θh) := θh, meaning P (rt = 0|rt−1, θh) is indepen-

dent of rt−1 and is constant, giving rise, a priori, to geometric inter-arrival times

for change points. We can use time TIM (1.2) as the UPM, which is the pre-

dictive distribution obtained when placing a normal-inverse-gamma prior on iid

Gaussian observations (i.e., a Student’s t predictive):

yt ∼ N (µ, σ2) , (5.11)

µ ∼ N (µ0, σ
2/κ) , σ−2 ∼ Gamma(α, β) . (5.12)

In this example the parameters are η := {µ, σ2} and the model hyper-parameters

are θm := {µ0, κ, α, β}. A new value for µ and σ2 are sampled at each change

point. To illustrate this setup, we plot synthetic data sampled from BOCPD in

Figure 5.2.

We preview results from applying BOCPD with a variant of TIM as the UPM

to the industry portfolios data in Figure 5.1. We see that the inferred change
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points have a correspondence with historical events.
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Figure 5.2: We plot synthetic data sampled from a BOCPD model. The blue
dots represent the data points sampled from the black mean function and 95%
error bars represented by the shaded area. The dashed red vertical lines represent
the change points. On the left figure we show a time series y sampled from a
TIM base model (UPM). By contrast, on the right we see a time series sampled
from a GPTS UPM (SE and periodic covariance functions), which shall be one
of the contributions of this chapter.

The posterior on η is updated at every new data point for each run length

(each possible starting point for the data). We consider fully Bayesian integration

of η while using the type-II MLE for the hyper-parameters θ. Since θ does not

change at change points its posterior p(θ|y1:T ) will become peaked in large T

allowing for a MLE approximation for computational convenience. As in related

work, the Bayesian in BOCPD refers to the integration of parameters η (µ, σ2).

5.1.1 Hyper-Parameter Learning

We can evaluate the (log) marginal likelihood of the BOCPD model at time T , as

it can be decomposed into the one-step-ahead predictive likelihoods (as is done

in Section 4.3.4):

log p(y1:T |θ) =
T∑
t=1

log p(yt|y1:t−1, θ) . (5.13)
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Hence, we can compute the derivatives of the log marginal likelihood using the

derivatives of the one-step-ahead predictive likelihoods. These derivatives are

found in the same recursive manner as the predictive likelihoods. Using the

derivatives of the UPM, ∂
∂θm

p(yt|rt−1,y(r), θm), and those of the hazard function,
∂
∂θh
P (rt|rt−1, θh), the derivatives of the one-step-ahead predictors are propagated

forward using the chain rule, as shown in Algorithm 12. The derivatives with

respect to the hyper-parameters are plugged into a conjugate gradient optimizer

to perform hyper-parameter learning. An alternative approach to computing the

marginal likelihood of BOCPD is shown in Section 5.3.4.

Algorithm 12 Learning (Lines marked with ? ) and Run Length Estimation in
BOCPD. Lines marked with † directly call the UPM.

1: function getLikelihood(y ∈ RT , θm, θh) . All multiplications in function
are element-wise

2: (χ0, ∂hχ0, ∂mχ0)←(1, 0, 0) . Initialize the recursion, set hazard and
UPM deriv. to 0

3: † Initialize S to sufficient statistics of UPM prior
4: Define χ̃t as χt(2:t+ 1)
5: for t = 1 to T do
6: †π(r)← p(yt|S)
7: h←H(1:t)
8: χ̃t←χt−1π(r)(1− h) . Update the messages, no new change point,

(5.10)
9: ? ∂hχ̃t←π(r)(∂hχt−1(1− h)− χt−1∂hh)

10: ? ∂mχ̃t←(1− h)(∂mχt−1π(r) + χt−1∂mπ(r))
11: χt(1)←∑χt−1π(r)h . Update the messages, there is a new change

point, (5.10)
12: ? ∂hχt(1)←∑π(r)(∂hχt−1h + χt−1∂hh)
13: ? ∂mχt(1)←∑h(∂mχt−1π(r) + χt−1∂mπ(r))
14: P (rt|y1:t)← normalizeχt
15: † Update sufficient statistics of posteriors S
16: end for
17: p(y1:T )←∑χT . 1× 1 Calculate the Evidence, message normalization

constant
18: ? ∂p(y1:T )←(

∑
∂hχT ,

∑
∂mχT )

19: return (p(y1:T ), ∂p(y1:T ))
20: end function
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Sufficient statistics In the case of the TIM, we can store the sample moments,∑
y and

∑
y2, for each run length and recover the posterior predictive. These

quantities are computed in a streaming manner. We need to maintain two vari-

ables for each run length and merely accumulate y and y2 at each time step. The

predictive distribution requires the sample mean and sample variance. We can

construct this from the sample moments

1

t

t∑
i=1

(
yi −

1

t

t∑
j=1

yj

)2

=
1

t

t∑
i=1

y2i −
(

1

t

t∑
i=1

yi

)2

(5.14)

=⇒ V̂ar [y] = Ê [y2]− Ê [y]
2
. (5.15)

This streaming method of computing the sample variance is known to be prone to

numerical problems. For instance if the mean is 106 and the variance is 10−3, we

will be subtracting two large numbers to get a small number in (5.15), which is a

classic case of catastrophic cancellation, a numerically unstable operation [Chan

and Lewis, 1979]. During training, we avoid this by standardization. In the

test set during streaming operation we do not know the scale of the data. How-

ever, if we know the approximate scale of the data from the training set we can

standardize the data sufficiently to avoid gross numerical problems.

Once we have the sufficient statistics S for each run length we get the posterior

on η for each run length as

µt =
κ0µ0 +

∑
y

κ0 + t
∈ R , κt = κ0 + t ∈ R+ , (5.16)

αt = α0 +
1

2
t ∈ R+ , βt = β0 +

1

2
SSE +

κ0t(ȳ − µ0)
2

2(κ0 + t)
∈ R+ , (5.17)

SSE :=
t∑
i=1

(yi − ȳ)2 =
∑

y2 − 1

t
(
∑

y)2 ∈ R+ (5.18)

which gives a posterior predictive distribution on yt+1 of

p(yt+1|y(r)) = St2α

(
µ,
β

α

κ+ 1

κ

)
. (5.19)

In the multivariate case, we use either the independent factor model (IFM)
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or a full joint normal. In the IFM, each dimension of yt ∈ RD is considered

conditionally independent given the parameters η. Therefore, we only need to

accumulate yt and y2
t independently on each dimension. We also apply (5.18)

and (5.19) to each dimension independently.

In the joint case, yt ∈ RD is distributed from a normal with a full covariance

matrix, where the mean and covariance changes at each change point. We place

a Gaussian-Wishart prior1 on the mean vector and precision matrix:

Σ−1 ∼ Wν0(Λ0) ∈ SD , (5.20)

µ|Σ ∼ N (µ0,Σ/κ0) ∈ RD , (5.21)

yt ∼ N (µ,Σ) ∈ RD . (5.22)

Therefore, in this case we must accumulate
∑

y and
∑

yy>. In the full covariance

case, η = {µ,Σ} and θm = {µ0, κ0, ν0,Λ0}. Following Gelman et al. [2004, Ch.

3], we get updates of

µt =
κ0

κ0 + t
µ0 +

t

κ0 + t
ȳ ∈ RD , κt = κ0 + tR+ , νt = ν0 + t ∈ R+ , (5.23)

Λ−1t = Λ−10 + SSE +
κ0t

κ0 + t
(ȳ − µ0)(ȳ − µ0)

> ∈ SD , (5.24)

SSE =
t∑
i=1

(yi − ȳ)(yi − ȳ)> =
∑

yy> − 1

t

(∑
y
)(∑

y
)>
∈ SD0 . (5.25)

This also gives a Student’s t predictive:

p(yt+1|y(r)) = Stνt−d+1

(
µt,

Λ−1t
νt − d+ 1

κ+ 1

κ

)
. (5.26)

Scaling factors In practice the messages χ, the joint of the data and run length

probability, will become very small in large T . This leaves the potential for nu-

merical underflow issues. We correct this in one of two ways: by scaling factors

or moving the messages to log scale. To use scaling factors we merely renormalize

1 A Wishart distribution on the precision matrix Λ ∈ SD takes the form Wn(Λ|V) ∝
|Λ|

n−D−1
2 exp(− 1

2 tr(V−1Λ)) with expectation E[Λ] = nV. If the precision matrix is of dimen-

sion one it corresponds to a Gamma distribution with parameters α = n/2 and β = V−1/2.
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χ every iteration on line 14 of Algorithm 12. Then, the model evidence is the

product of the normalization constants at every iteration rather than the normal-

ization constant on χ at the end of the algorithm. The normalizer on χ is now

the one-step-ahead predictive probability. Alternatively, we can move χ to log

scale. The product in line 8 becomes a sum, and the summation in line 11 is im-

plemented with the log-sum-exp trick (see Section A.3). Log scale is more robust

during learning when an initial setting of the hyper-parameters is potentially so

bad that we get numerical underflow, from small predictive probabilities, even

when rescaling every iteration. Scaling factors and the log-sum-exp trick were

compared in the context of HMMs in Mann [2006].

5.1.2 Improving Efficiency

In a historical context, it is surprising that the Bayesian updating in BOCPD

can be done analytically. Many of the previous approaches to Bayesian segmen-

tation, such as Barry and Hartigan [1993], required at best particle filtering if not

reversible jump MCMC (RJ-MCMC), where it is notoriously difficult to obtain

convergence.1 As first noticed by Fearnhead [2006], it was falsely assumed that if

we did not know the number of change points in advance, we had to allow for a

change parameter space as in general model comparison. This type of situation is

a classic example of when RJ-MCMC is necessary. However, the special temporal

structure in BOCPD allows for the dynamic programming solution.

Although the exact inference algorithm in BOCPD is a great improvement

over RJ-MCMC, there is still room for improvement. The posterior P (rt|y1:t)

forms a vector of length t, which requires t + 1 updates to propagate it to the

next time step. Each update in TIM (or any parametric exponential family) can

be done in a streaming manner, requiring O(1) computation, exact BOCPD in-

ference on the entire time series is O(T 2). In practice, the run length distribution

will be highly peaked. We make the approach more efficient by pruning out run

lengths with probability below a threshold, e.g. ε = 10−3, or considering only

the K most probable run lengths and setting the remaining probabilities to zero.

1 Professors will often refer to their graduate students as having a “driver’s license” for
RJ-MCMC. Furthermore, you may hear them refer to crashes causing the students to “lose
their license.”
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These modifications run in O(T/ε) and O(TK), respectively.

Relationship to HMMs There exist some overlap between HMMs and BOCPD.

Any BOCPD model with a finite number of possible UPM parameters η and a

constant hazard is equivalent to an HMM. Likewise, any HMM where the transi-

tion matrix has identical rows, i.e. there is no state dependence in the transitions,

is a BOCPD model. We must select the number of states Q in an HMM. The

computational complexity in an HMM grows O(Q2T ).

If we further consider Hidden semi-Markov models (HSMMs) [Ferguson, 1980]

then we can create more overlap by alleviating the constant hazard requirement.

However, HSMMs will still require a finite number of states, whereas BOCPD

can have an (uncountably) infinite number of possible UPM parameter settings

η. Furthermore, in HSMMs a duration D must arbitrarily be specified on regime

duration, which makes them less appropriate for settings where regime durations

are long, regime changes are rate, or there are large number of (possibly novel)

states. The complexity of an HSMM is O(D2Q2T ), although this can often be

reduced to O(DQ2T ) [Johnson, 2005].

5.2 Change Point Detection with External In-

puts

The change point detection model does not have to be completely generative. We

can allow external inputs x ∈ RD into the UPM. The clear extension of the TIM

to include external inputs would be a changing Bayesian linear regression (BLR)

model:

yt ∼ N (x>t w, σ2
n) , (5.27)

w ∼ N (µ0, σ
2
nS) , σ−2n ∼ Gamma(α0, β0) . (5.28)

For simplicity we set µ0 = 0 ∈ RD and S = κ−10 I ∈ SD. We summarize the

parameters as η = {w, σ2
n} and the hyper-parameters as θm = {κ0, α0, β0}.

In this case we must accumulate xx> ∈ RD×D and xy ∈ RD. As shown in
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Rasmussen and Williams [2006, Ch. 2], the predictive distribution given these

sufficient statistics for a known noise variance is

p(yt+1|y(r)) = N (σ−2n x>t+1A
−1Xy(r),x

>
t+1A

−1xt+1 + σ2
n) , (5.29)

A := σ−2n (XX> + κ0I) ∈ SD , (5.30)

where X ∈ RD×r is the matrix of the most recent inputs and y(r) ∈ Rr is the vector

of the most recent outputs. In this formulation, we must compute A−1Xy(r),

which is O(D3), but that should be negligible if D � T . To update the sufficient

statistics XX> and Xy, for each run length, we must apply the update rule for

every new data point

XX>←XX> + xtx
>
t , (5.31)

Xy←Xy + xtyt . (5.32)

Recall that BLR is a special case of a GP, therefore we can extend BLR to the

scale with output scale uncertainty using (3.38) [Minka, 2001]. In BLR, adding

an uncertain noise output is effectively the same as output scale uncertainty in a

GP since the prior on the weights are rescaled according to the noise:

p(yt+1|y(r)) = St2α

(
µ?,

β

α
σ2
?

)
, (5.33)

α = α0 +
r

2
, β = β0 +

1

2
y>(r)K

−1y(r)

(3.28)
= β0

1

2
SSE , (5.34)

where K is the implicit GP kernel from BLR. Using (3.28) we keep track of

β by accumulating the SSE avoiding the need to compute a quadratic matrix

form every time step.1 Also recall that BLR in a feature space, i.e. using E basis

functions, is also a GP, therefore we can apply (5.33) to BLR with basis functions.

1 We do not need to consider BLR as a special case of GP to do these calculations, but
doing so reduces redundant derivation.
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In this case we must accumulate Φ(x)Φ(x)>, Φ(x)y, and the SSE

p(yt+1|y(r)) = N (σ−2n φ(xt+1)
>A−1Φy(r), φ(xt+1)

>A−1φ(xt+1)) , (5.35)

A := σ−2n (ΦΦ> + κ0I) ∈ SE , (5.36)

where Φ := φ(X) ∈ RE×r is the basis function representation of each of the past

inputs x. We can keep the µ0 = 0 simplification without losing any generality by

adding a constant basis function where φ(x) = 1. We extend this to multivariate

yt by applying it to each output dimension independently; or, in analogy to the

full covariance TIM UPM, we could use a linear model with noise outputs that

covary with an unknown covariance matrix. We can get predictive equations

using Minka [2001]. Just as in the TIM case, standardization issues that could

lead to numerical problems apply to each of the UPMs presented here. Therefore,

standardization in both y and x is also a good measure to take in the external

inputs case as well.

5.3 Gaussian Process Change Point Detection

In this section, we first extend BOCPD by implementing UPMs that exploit

temporal structure within each regime, using two time series models based on

Gaussian processes (GPs). As mentioned in Chapter 3 there are two ways to

model a time series with a GP: GPTS and ARGP. GPs can be used to model

time series data directly (i.e. the mapping T → Y , where T is the set of time

indices). This gives rise to a GP time series (GPTS) model. Alternatively, they

can be used to learn the mapping between observations yt and yt+1 to produce a

nonlinear autoregressive (AR) model (an ARGP). GPs are an attractive choice

for time series UPMs because we can integrate out the functions representing the

GPTS and ARGP mappings, thus improving predictive performance.

A similar sequential nonstationary GPTS model was introduced in Garnett

et al. [2009]. In this approach GPs are made robust to incoming change points

through the introduction of an additional hyper-parameter in the covariance func-

tion, which represents the location at which a change point occurs inside a past

window of data. The size of the window is prespecified and it is implicitly as-
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sumed that there can only be one change point inside it. Next-step predictions

are improved using hyper-parameter marginalization (this includes the change

point hyper-parameter). As the required integral is intractable for a GP model,

Bayesian Monte Carlo (BMC) [Rasmussen and Ghahramani, 2003] is used to

perform quadrature integration. BMC requires defining a separate GP to model

the marginal likelihood surface in addition to the GP in the model itself. This

is problematic because the marginal likelihood function is positive by definition.

Hence the approximation by a GP, whose range is the entire real line, can be

poor. This shortcoming gets worse as the dimensionality of the hyper-parameter

space increases, which occurs when we apply change point detection to higher-

dimensional time series data.

In principle, GPIL and its variants could also be used [Deisenroth et al., 2009;

Turner et al., 2010; Wang et al., 2008], but inference in Gaussian process state

space models is computationally intensive even without change points so we do

not apply it here.

When using a GPTS UPM we have the option of integrating out the output

scale. If we have an uncertain output scale and an additive constant term in the

covariance, the TIM UPM forms a nested model with respect to GPTS UPM.

Using GPTS, defined in (3.96), we either have a Gaussian predictive (3.15)

p(yt|y(r), θm) = N (µt, σ
2
t ) , (5.37)

µt = K>? K−1y(r) , σ2
t = K?? −K>? K−1K? , (5.38)

K := k((r), (r)) , K? := k((r), t) , K?? := k(t, t) , (5.39)

or a Student’s t predictive (3.38) if we are integrating out the output scale:

p(yt|y(r), θm) = St2αt

(
µt,

βt
αt
σ2
t

)
, (5.40)

αt = α0 +
r

2
, βt = β0 +

1

2
y>(r)K

−1y(r) . (5.41)

The UPM hyper-parameters θm are the GP hyper-parameters, as well as the

output scale prior if applicable. In the case of a SE covariance for GPTS θm =

{`, σ2
0, σ

2
n, α0} we assume β0 = 1 since we can rescale the output hyper-parameters
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σ2
0 and σ2

n for the same effect. This model is not necessarily more general than a

TIM UPM since TIM allows for a changing mean at each change point. Therefore,

we add a constant covariance term σ2
c , which as shown in (3.9) effectively inte-

grates out an unknown mean. We now have a GPTS model, with changing mean

and variance in each regime like TIM, but with the added flexibility of temporal

correlations. Notice that under such a model the GP hyper-parameters, other

than output scale, are assumed to be fixed across different regimes. Meaning,

the length scale ` does not change at each change point. If we desire to model

changes in the GP hyper-parameters at every change point, then the BOCPD

algorithm dictates that we should integrate them out within the UPM.

5.3.1 Methods to Improve Execution Time

Efficient computation is trickier with GPs than iid UPMs, and the computational

bottleneck is the posterior predictive from the UPM p(yt|rt−1,y(r)) rather than

updating the run length distribution (5.10). Prediction in GPs is O(T 3) with T

training points due to computing the inverse of the covariance matrix. Therefore,

if we naively recomputed the GP every time step it would run O(T 5). For GPTS

UPMs and uniformly sampled data, we can put the prediction in AR form using

Toeplitz methods, making it O(T ) per prediction, or O(T 3) total. If the covari-

ance function allows GPK then it is O(1) per prediction or O(T 2) total. We bring

this down further with pruning to O(T/ε) or O(TK). An efficient implementa-

tion of GPTS is shown in Algorithm 13. If we do not care about output scale

uncertainty we replace line 9 with: N (yt|µ,σ2(1:t)); the SSE is not necessary in

that case.

If we are not interested in online computation, such as batch training in

hyper-parameter learning, we can further improve performance (as mentioned in

Section 3.4.1). The main computational bottleneck in Algorithm 13 is line 6.

Note that this takes the form of a convolution. If we define an M ∈ UT matrix

where M(r, t) is the one-step-ahead predictive mean at time t with run length r,

we can precompute it as:

M(r, t) := E
[
yt+1|y(r)

]
=⇒ M = αToeplitz(y1:T ) . (5.42)
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We must pad M with a starting column of zeros and first row of zeros to account

for the cases of predicting y1 and predictions with run length zero. The use of a

matrix by Toeplitz matrix multiplication allows for FFT, anO(T log T ) operation,

based calculations.

We must use different tricks to improve the efficiency of the ARGP UPM. Us-

ing the sub-evidence rank-1 methods from Section 3.5 we bring the computational

cost for computing the log marginal likelihood for every starting and end point

down to O(T 3). This is precisely what is needed for efficient computation in an

ARGP UPM. If pruning is applied the complexity is reduced further to O(TR̃2)

or O(TR̃2), where R̃ is the typical max run length not pruned out. Recall from

Section 3.5 that once we have the Cholesky factorization of the covariance for the

last R̃ points we get the evidence of the intervening points for free. Therefore,

it is only necessary to prune out a maximum run length, not remove run length

hypothesis that are very unlikely yet of a small run length than the maximum

considered.

The BOCPD recursions require the log predictive probabilities, which are

found by differencing the column of log P from Algorithm 4 since the log predic-

tive probability is the change in the log evidence upon adding a new data point.

Similar methods to the sub-evidence are used to find the predictive mean and

variance for each run length without increasing the computational complexity.

If we would like to achieve online computation we must adapt the sub-evidence

methods and reverse the ordering of the rows and columns in the kernel matrix

K. We summarize this methodology for the ARGP UPM in Algorithm 15. We

utilize a function ARsplitp(y), see (A.31), that takes a vector of a time series and

returns a matrix with the time series lagged by each order up to p. This feature

matrix allows us to treat autoregression as a standard regression problem.

Forecasting Once we have estimated the run length we would like to be able

to forecast into the future. We demonstrate the computations required for fore-

casting at all horizons from one to f ∈ N in Algorithm 16. For an iid model like

TIM, conditional on the run length, our prediction of the next point will be the

same as the prediction of f points into the future. However, to get a marginal

prediction we have to weight each of these predictions against the run length
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Algorithm 13 Efficient GPTS UPM implementation

1: function GPTS-CP(y ∈ RT , θm, θh) . θm includes α0 and β0
2: R← 1
3: SSE← 2β0 . Initialize SSE to account for contribution from gamma prior
4: Precompute α matrix and predictive variances σ2 using Algorithm 14
5: for t = 1 to T do . Find the predictive distribution
p(y(t)|y(1:t− 1), rt−1 = r − 1)

6: µ←α(1:t, 1:t− 1)Ey(1:t− 1)
7: df← 2α0 + (0:t− 1)>

8: σ2
?←σ2(1:t)� SSE(1:t)� df . Uses element-wise division �

9: π← Stdf(y(t)|µ,σ2
?)

. Keep track of the SSE in streaming manner
10: SSE(2:t+ 1)← SSE(1:t) + (µ− y(t))2 � σ2(1:t)
11: SSE(1)← 2β0

. Do the ordinary BOCPD updates as in Algorithm 12
12: R(2:t+ 1, t+ 1)←R(1:t, t)� π � (1−H(1:t))
13: R(1, t+ 1)←∑R(1:t, t)� π �H(1:t)
14: Z(t)←∑R(1:t+ 1, t+ 1)
15: R(1:t+ 1, t+ 1)←R(1:t+ 1, t+ 1)/Z(t) . Use scaling factor
16: end for
17: return R and Z
18: end function

Algorithm 14 Efficient precomputation of GP predictions

1: function GP-precomputation(T ∈ N, θm)
2: Find K?? = k(0, 0) and K? = k(1:T − 1, 0)
3: Find α ∈ LT−1 such that ith row of α is solution to Yule-Walker equations

after i iterations
4: σ2←K?? − αK? ∈ (R+)T−1

5: Insert row of zeros to top of α
6: Insert K?? to σ2(1)
7: return α ∈ RT×T−1 and σ2 ∈ (R+)T

8: end function
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Algorithm 15 Efficient ARGP UPM implementation

1: function ARGP-CP(y ∈ RT , θm, θh, p ∈ N0)
2: (L, nlml0,α, tα, tβ)←[∅]
3: X←ARsplit(y)
4: R̃← 1
5: for t = 1 to T do
6: K??← k(X(t),X(t))
7: K?← k(EX(t− R̃ + 1:t− 1),X(t))
8: if we want to get the predictive distribution then
9: v←L\K?

10: µ>←
[
0 D−1(v �α)

]
11: [σ2

?]
>←

[
K??β0/α0 (tβ � tα)� (K?? −D−1(v � v))

]
12: df>←

[
2α0 2tα

]
13: end if
14: Update L using K? and K?? according to Algorithm 4
15: α←L Eyt−R̃+1:t

16: (t, tα, tβ)←(1:R̃, α0 + 1
2
(1:R̃), β0 + 1

2
D−1(α�α))

17: nlmlt← tα � log(tβ/β0) + D−1 log diag(L) − log Γ(tα) + log Γ(α0) +
1
2

log(2πβ0)t
18: π← exp(−(nlmlt −

[
0 nlmlt−1

]>
))

19: Do the ordinary BOCPD updates as in Algorithm 12
20: Set maximum run length R̃ based on pruning criterion
21: Trim rows/columns to max size R̃ on R, L, nlmlt, α, tα, and tβ
22: Renormalize current column of R
23: end for
24: return R
25: end function

distribution. This run length distribution will change further into the future as it

is more likely there will be an intervening change point for large forecast horizons

f . More probability mass naturally shifts to the prior predictive of the UPM for

longer forecast horizons. We do this by re-weighting the run length according to

the hazard function in Line 7 of Algorithm 16. For non-iid UPMs like a GPTS, we

also must consider that our predictions, even conditional on the run length, will

change with the prediction horizon. Since the predictive variances are invariant

to the data y1:T they can be precomputed.

We would also like to summarize the predictive distributions for each run

length for plotting purposes. We summarize the distribution by moment matching
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to a single Gaussian, using the mixture equations (A.37). Once we have the

predictive means conditional on the run length µ and the run length weights W,

we get the marginal means by 1>(µ�W) = diag(µW) by (A.1). If we are using

an uncertain output scale we will have to adjust the predictive variances exactly

as we did for the one-step-ahead predictions in Algorithm 13. We are left with

a mixture of Student’s t distributions for the forecast, or mixture of Gaussians

for certain output scale. If any of the Student’s t distributions have fewer than

two degrees of freedom the variance of the entire mixture will be undefined.

Therefore, the moment matching approach will be inappropriate unless α0 > 2,

which ensures the variance will always be defined.

Algorithm 16 Multi-step forecasting step of GPTS UPM

1: function GPTS-CP-Forecast(y ∈ Rt−1,K?? ∈ R+,K? ∈ Rt−1×f )
2: M← Levinson(K??,K?(1:t− 2, :),Ey) ∈ Lt−1 . Use Algorithm 3
3: µ←MK? ∈ Rt−1×f

4: Insert row of zeros on top of µ
5: τ← t where R ∈ [0, 1]t

6: for i from 1 to forecast horizon f do
7: . Put all new mass into mixture weight for prior predictive
8: W(1, i)←1>R(1:i)
9: W(2:t, i)←R(i+ 1:τ + 1)

10: Increment τ so that R ∈ [0, 1]τ

11: Set H to be the hazard of 1:τ
12: (R(1),R(2:τ + 1, 1))←(R>H,R� (1−H)) . Now R ∈ [0, 1]τ+1

13: Normalize R to sum to one
14: end for
15: return W ∈ [0, 1]t×f and µ ∈ Rt×f . Can use precomputed predictive

variances
16: end function

5.3.2 Changing Hyper-Parameters

In Section 3.1 we showed that we can integrate out the output scale analytically.

Other hyper-parameters such as the length scales or the signal-to-noise ratio

cannot be analytically integrated out. However, if we want to integrate out a

small number of hyper-parameters, one or two, then we can place a coarse grid
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on the set of hyper-parameters and effectively apply numerical integration. We

must, for each run length, provide a predictive distribution for each hypothesis,

i.e. grid point, on the hyper-parameters and do Bayesian model averaging based

on the evidence for each hypothesis. Since we have the one-step-ahead predictive

log likelihoods, we can get the model evidence. This approach corresponds to

putting delta spike priors on the hyper-parameters at each grid point. However,

this approach scales exponentially in the number of hyper-parameters integrated

out. Unless we are willing to accept a very coarse grid prior, a few hypotheses on

the joint configuration of all the GP hyper-parameters, we must move to Monte

Carlo methods. Variational approximations may also be possible, but we have

not explored this option.

We can place a prior on the changing p(λ|φ) GP hyper-parameters λ with

hyper-prior parameters φ. In the case of a GPTS with an SE-ARD kernel we use

λ := {σ2
0, `, σ

2
n}. A general principle in approximate and Monte Carlo methods is

to integrate out as much analytically as possible. We can set σ2
0 to be fixed since

it is accounted for by the output scale τ which can analytically be integrated

out. The hyper-parameter σ2
n effectively then becomes a changing signal-to-noise

ratio. For simplicity we often place wide Gaussian priors on log ` and log σ2
n.

As a result, the UPM becomes:

p(yt|y(r), φ) =

∫
p(yt|y(r), λ)p(λ|y(r)) dλ (5.43)

=
1

Z

∫
p(yt|y(r), λ)p(y(r)|λ)p(λ|φ) dλ , (5.44)

where Z :=
∫
p(y(r)|λ)p(λ|φ) dλ ∈ R+. We can find p(yt|y(r), λ) with (5.41), or

(5.39) for certain output scale. The log marginal likelihood of the GP p(y(r)|λ),

with unknown output scale, is given by:

log p(y(r)|λ)
(5.40)
= −

(
α0 +

r

2

)
log

(
1 +

1

2β0
y>(r)K

−1y(r)

)
− 1

2
log |K|

+ log Γ
(
α0 +

r

2

)
− log Γ(α0)−

r

2
log(2πβ0) (5.45)

Since log marginal likelihood has a nonlinear dependence on λ, both the integrals

in (5.44) are intractable, regardless of any Gaussianity assumptions on p(λ|φ).
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Consequently, we approximate these integrals using two methods, each with their

own set of pros and cons. In the first technique we place a grid ({λg}) over

a subspace of GP hyper-parameters that is assumed to be reasonable for the

problem at hand (assigning uniform prior mass for each grid point). The integrals

can then be approximated with sums:

p(yt|y(r), λ) ≈
∑
λg

p(yt|y(r), λg)

(
p(y(r)|λg)∑
λg
p(y(r)|λg)

)
. (5.46)

Applying more sophisticated quadrature algorithms for (5.44) is difficult as the

target function is positive, and the interpolant could venture into the negative

region. The grid method does not scale with increasing dimensionality. Alterna-

tively, we can apply Hamiltonian Monte Carlo (HMC) [Duane et al., 1987; Neal,

1992], which scales much better to higher dimensions than grid based methods.

In HMC we aim to compute samples {λs} from the posterior p(λ|y(r)), allowing

us to approximate the integral as a sum:

p(yt|y(r), λ) ≈
∑
λs

p(yt|y(r), λs) . (5.47)

The samples are updated sequentially for each run length hypothesis considered.

The samples for rt = 0 are straightforward as they come from the Gaussian

prior p(λ|φ) = N (φm, φv). We can trivially obtain iid samples at this stage.

As the posterior p(λ|y(r)), represented by samples {λ(t−1)s }, will look similar to

p(λ|y(t−r):t), we can initialize the HMC sampler at {λ(t−1)s } and run it for a

short number of iterations for each sample. In practice, we have found that 4

trajectories with a mean of 11 leapfrog steps give respectable results. Note that

other sequential Monte Carlo (SMC) methods could be used also, though we have

not explored these options.

5.3.3 External Inputs

We can model time and the external inputs jointly in a GP, as is the case in a

standard GPTS. However, we lose the Toeplitz structure for efficient inference;

we also lose the one-dimensional input space allowing for GPK. We must use the
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rank-1 updates approach. Therefore, we model the dependence on the external

inputs with a linear function or with a linear in basis functions relationship. If we

can sufficiently constrain the external inputs to an appropriate grid, as mentioned

in Section 3.6.1, we can efficiently use the richer model representation of a GP

for the external inputs.

5.3.4 Smoothing

Although one of the key features of the BOCPD algorithm is its online nature,

we can also do efficient recursions to “smooth back” to find a retrospective distri-

bution on the times of the change points. We can place probability distributions

on various quantities by smoothing: the time of the ith change point, the number

of change points, the presence of a change point at time t. We can also find the

most likely segmentation. Exact samples from the BOCPD posterior were first

derived in Fearnhead [2006]. The prior in BOCPD clearly forms a Markov chain

by the POE in (5.4). However, Fearnhead [2006] showed it is possible to sample

from the posterior on the change point time τ in a Markovian nature. Therefore,

it is possible to recast the posterior on the change point times P (τ |y1:T ) as a

Markov chain with T possible states.

We find it convenient to define the following quantities:

P(t, s) := p(yt:s|ct:s−1 = 0) , P ∈ LT , (5.48)

q(t) := p(yt:T |ct−1 = 1) , q ∈ (R+)T . (5.49)

We interpret q as the marginal likelihood of the data under the BOCPD model,

not the UPM, for any starting point. When smoothing it is more convenient to

work with the lifetime distribution g ∈ N → [0, 1] representation, as opposed

to the hazard in filtering H. We also use the cumulative lifetime distribution

G ∈ N→ [0, 1], where

g(t) :=
t−1∏
i=1

(1−H(i))H(t) , G(t) :=
t∑
i=1

g(i) . (5.50)
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Using the law of total probability we see that:

q(t) =
T−1∑
s=t

p(yt:T , τ = s) + p(yt:T , ct+1:T−1 = 0) . (5.51)

We can further break each element in the sum down as:

p(yt:T , τ = s) = p(yt:s,ys+1:T |τ = s)P (τ = s) (5.52)

= g(s+ 1− t)p(yt:s|ct:s−1 = 0)p(ys+1:T |cs = 1) (5.53)

(5.48)
= g(s+ 1− t)P(t, s)q(s+ 1) . (5.54)

Likewise we see that

p(yt:T , ct+1:T−1 = 0)
(5.48)
= P(t, T )(1−G(T − t)) . (5.55)

This completes the recursions to solve for q.

Once we have solved for q we use Bayes’ rule and plug in to get the posterior

on the time of the initial state:

P (τ1|y1:T ) = p(y1:T , τ1)/p(y1:T ) (5.56)

= P (τ1)p(y1:τ1|τ1)p(yτ1+1:T |τ1)/q(1) (5.57)

(5.48)
= g(τ1)P(1, τ1)q(τ1 + 1)/q(1) . (5.58)

We must also consider the possibility there are no change points at all:

P (τ 1:T−1 = 0|y1:T )
(5.48)
= P(1, T )(1−G(T − 1))/q(1) . (5.59)

We can do similar manipulations to solve for the time of later change points

P (τj|y1:T , τj−1)

= P (τj|yτj−1:T
, τj−1) (5.60)

= P (τj|τj−1)p(yτj−1+1:τj
|τj−1, τj)p(yτj+1:T |τj−1, τj)/p(y1:T |τj−1) (5.61)

= P(τj−1 + 1, τj)q(τj + 1)g(τj − τj−1)/q(τj−1 + 1) . (5.62)
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Again we can do similar manipulations to find the probability there are no more

change points:

P (cτj−1+1:T = 0|y1:T )

= P(τj−1 + 1, T )(1−G(T − τj−1 − 1))/q(τj−1 + 1) . (5.63)

We can now solve for the conditional posterior on the time of the jth change point

P (τj|y1:T , τj−1) using these recursions. We can get samples from the posterior over

the change point times P (τ |y1:T ) by sequentially sampling from these conditional

posteriors until we draw the option of no more change points.

We are more interested in getting the marginal posterior on the time of the

jth change point P (τj|y1:T ), which we can do without resorting to averaging over

Monte Carlo samples. Since the conditional distribution P (τj|y1:T , τj−1) in (5.62)

only depends on the previous change point time τj−1, the posterior over change

points forms a Markov chain. This can be stated as τj ⊥⊥ τ 1:j−2|y1:T , τj−1. There-

fore, we can construct a transition matrix to transform one marginal distribution

P (τj−1|y1:T ) into the next one P (τj|y1:T ). Furthermore, since the recursions do

not directly depend on j, only the change point’s time τj, it forms a homogeneous

Markov chain.

In order to make sure that the Markov chain only has a finite number of states

we restrict ourselves to states where τ = 1:T − 1. However, we do not know in

advance how many nodes will be in that Markov chain, since we do not know

for what j when τj ≥ T , however we can upper-bound it as T − 1. Although

conceptually we would like to think of the change point chain running on forever

beyond T we can add a T th sink state to the Markov chain to represent when we

have already observed the last regime in the time series. Once the Markov chain

is in the sink state the Markov chain stays there permanently. In summary, we

have a Markov chain with T possible states of length T − 1.

We use (5.62) to construct the transition matrix T. Recall that T(i, j) =

P (τk = j|y1:T , τk−1 = i) for i, j < T , which we can calculate with (5.62). If j = T

then we must use (5.63). Finally, T(T, i) = I{i = T} to implement the sink state.
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These operations are summarized in matrix form as:

G := Toeplitz(
[
0 g(1:T − 2)

]
,0) ∈ LT−1 , (5.64)

T =

[
P(2:T , 1:T − 1)> �G� (q(2:T ) · (1� q(2:T ))>) 0

P(2:T − 1, T )� (1− EG(1:T − 2))� q(2:T − 1) 1

]
∈ [0, 1]T×T . (5.65)

We must calculate the initial state distribution as P (τ1|y1:T ) using (5.58) and

(5.59).

Since the change point structure takes the form of a Markov chain we can

find the most likely segmentation using the Viterbi algorithm [Viterbi, 1967].

Note that since q(t) is the marginal probability of BOCPD for all points after t,

q(1) is equivalent to the marginal likelihood computed using the one-step-ahead

predictions in (5.13).

Number of change points We can also calculate the posterior on the number

of change points M . Note that τi+1 = T ⇔M ≤ i, where T is being used in

the sense of the sink state in the Markov chain formulation above. Therefore,

the posterior marginals P (M ≤ i) = P (τi+1 = T |y1:T ) represent the CDF on M ,

which can be differenced for the distribution.

Smoothed run length distribution Although we have derived the recursions

for q to find the smoothed distribution on change point times, some slight modi-

fications are required to find a smoothed version of the filtered run length distri-

bution. We define the run length distribution rt′ in terms of ct−1:s−1, t
′ := s− 1

and i := s− t, and then apply Bayes’ rule:

P (rt′ = i|y1:T )

= P (ct−1 = 1, ct:s−1 = 0|y1:T ) (5.66)

= p(y1:T |ct−1 = 1, ct:s−1 = 0)P (ct−1 = 1, ct:s−1 = 0)/p(y1:T ) . (5.67)
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We now break the data y into the parts before and after the change point and

utilize the conditional independence y1:t−1 ⊥⊥ ct:s−1 = 0|ct−1 = 1:

P (rt′ = i|y1:T )

= p(y1:t−1|ct−1 = 1)p(yt:T |ct−1 = 1, ct:s−1 = 0)P (ct−1 = 1, ct:s−1 = 0)/p(y1:T )

(5.68)

=
p(y1:t−1, ct−1 = 1)p(yt:T |ct−1 = 1, ct:s−1 = 0)P (ct:s−1 = 0|ct−1 = 1)

p(yt:T |y1:t−1)p(y1:t−1)

(5.69)

= p(ct−1 = 1|y1:t−1)Q(t, s)/p(yt:T |y1:t−1) , (5.70)

Q(t, s) := p(yt:T |ct−1 = 1, ct:s−1 = 0)P (ct:s−1 = 0|ct−1 = 1) (5.71)

We now define recursions by generalizing q to a Q matrix:

Q(t, s) = p(yt:T , ct:s−1 = 0|ct−1 = 1) (5.72)

=
T−1∑
u=s

p(yt:T , τ = u|ct−1 = 1) + p(yt:T , ct:T−1 = 0|ct−1 = 1) (5.73)

=⇒ Q(t, s) = p(yt:T , τ = u|ct−1 = 1) + Q(t, s+ 1) (5.74)

= Q(t, s+ 1) + P(t, s)Q(s+ 1, s+ 1)g(s+ 1− t) . (5.75)

We must use the edge cases of

Q(t, T ) = P(t, T )(1−G(T − t)) =⇒ Q(T, T ) = P(T, T ) . (5.76)

Note that we can find q from the diagonal of Q: q(t) = Q(t, t). The other terms

in calculating P (rt′ = i|y1:T ) in (5.70) are readily available from the filtering step.

p(ct−1 = 1|y1:t−1) = p(rt−1 = 0|y1:t−1) , (5.77)

p(yt:T |y1:t−1) =
T∏
j=t

p(yj|y1:j) . (5.78)

The one-step-ahead likelihoods here were found during the filtering steps.
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Conditional independence remark As relied upon in this section the du-

ration of each regime is independent and the parameters within a regime are

also assumed to be drawn independently. This is in contrast to an HMM where

the transition probability between different states is dependent on the current

state, which is more appropriate in settings such as speech recognition. This is

arguably the largest weakness in change point models. The tractability of the

BOCPD inference algorithm stems from these conditional independence assump-

tions. Recently, Fearnhead and Liu [2011] has introduced a BOCPD-like model

where there is dependence between the regimes and provided an accurate, but ap-

proximate, inference algorithm. Combining these regime dependence approaches

with the contributions of this chapter, such as Gaussian process UPMs, is an

opportunity for future research.

5.4 Supervised Change Point Detection

In many applications change points may correspond to well-defined observable

events. In this section we introduce a new method to train a change point model

when we have some labeled change points. For instance, we consider a data set

of water levels in a dam. We use known faults of water level management in

training as change points in a time series of measurements.

Completely unsupervised learning often yields undesirable results in detecting

change points. It may find all sorts of changing behavior in the time series to alert

as change points despite being irrelevant. Common sense, and theory, suggest

including supervision in inference when labels are available. Supervision informs

the algorithm of what type of changing behavior we wish to detect. However, it is

unrealistic to assume the supervision labels are completely reliable. Change point

times may be incorrect or missing and spurious change points may be inserted.

We adapt the unsupervised BOCPD learning method, described in Section 5.1.1,

to the supervised case. We can also view the method as a supervised form of time

series segmentation.

Throughout this section we assume the following task: A training set contain-

ing a time series of measurements y1:T and noisy change points c̃1:T is provided.1

1 The use of ·̃ refers to the observed version of a variable, subject to temporal labeling errors
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We focus on the case where the quantity of labeled change point data is small

since it may be difficult or expensive to obtain. During test we are given only

the time series y1:T ′ and at each time step t we must provide a run length dis-

tribution P (rt|y1:t) indicating the time since the last change point. We must

account for change point label noise in test as well since only noisy labels are

available for evaluation. This is in contrast to unsupervised change point detec-

tion where a common task is to provide the one-step-ahead prediction in data

space p(yt+1|y1:t).

Training in supervised BOCPD can be done either discriminatively or genera-

tively; both approaches are used and compared in this section. Both methods are

augmented with a noise model that accounts for jitter (temporal segmentation

error) in the labels. We denote the noise model parameters by θn. We summarize

all of the hyper-parameters as θ := {θh, θm, θn}.
We must consider that the change point labels are often hand labeled and

therefore require a noise distribution. A human labeler, despite extensive domain

knowledge, may not be able to specify the exact location of the change point in a

time series and thereby introduces jitter in the labels. Some change points might

require a judgment call on the part of the human labeler and therefore we can

consider insertions and deletions in the change point labels. If the amount of

noise in the change point labels is small it is computationally advantageous to do

noise free training.

The key contributions of this section are: 1) extending BOCPD to the super-

vised framework using either generative or discriminative training. 2) We also

develop a novel noise process for the training labels (i.e. for segmentation error)

with an efficient learning method in training and an efficient inference method in

test.

The simplest and fastest method of training BOCPD using labeled data is

to assume the labels are noise free. However, the noise free assumption is often

poor and we weaken it in Section 5.4.1. The hyper-parameters are trained us-

ing either the generative likelihood p(y1:T , c1:T |θ) or the discriminative likelihood

P (c1:T |y1:T , θ). The generative-discriminative distinction has lately generated

much interest [Bishop, 2007].

like c̃t, as opposed to the latent and noise free version, like ct.
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Generative The generative likelihood pGen calculated using the decomposition

in the POE (5.4). Equivalently, (5.4) can be viewed as the sum of the log marginal

likelihood of y within each regime and the sum of the log probabilities of the

change point inter-arrival times under the lifetime distribution implied by the

hazard function. Note that if we marginalize c1:T out of the generative likelihood

(5.4) we get the unsupervised likelihood (5.13).

Discriminative The discriminative likelihood pDisc is also easy to calculate:

log pDisc :=
T∑
t=0

logP (rt|y1:t, θ)︸ ︷︷ ︸
=:R(rt,t)

. (5.79)

This means we sum the log probabilities in the path of the R ∈ [0, 1]T×T matrix

described by the labeled run length. This objective is more similar to the eval-

uation criteria than the generative objective in (5.4). This training objective is

different than if we used P (ct|y1:t) since that would merely be rewarding param-

eter settings that could weakly identify change points instantly. It will always

take at least a few data points after a change point to identify it.

Evaluating the entire run length matrix, as is done in unsupervised and dis-

criminative training, requires O(T 2) operations.1 However, this can be decreased

with pruning. By contrast, the generative training procedure only requires O(T )

operations.

5.4.1 Noise Models

Throughout this section we use the zero mean discrete Laplacian (DL) [Inusah

and Kozubowski, 2006] to model the jitter εi := τ̃i − τi ∈ Z as

P (εi) = DL(εi|γ) :=
1− γ
1 + γ

γ|εi| . (5.80)

We also assume the noise is symmetric with mean µ = 0; the noise parameters are

only the DL dispersion parameter: θn := γ ∈ [0, 1). The jitter εi is the difference

1 We assume that a single posterior prediction and posterior update can be done in O(1)
time, which is the case for exponential family UPMs.
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between the observed time of ith change point τ̃i and the ith latent (true) change

point τi. We assume that the observed data y1:T is conditionally independent of

the jitter: y ⊥⊥ τ̃ |τ . Therefore, the “probability of everything” in the noisy case

is

p(y1:T , τ̃ , τ |θ) = p(y1:T |τ, θm)P (τ̃ |τ, θn)P (τ |θh) (5.81)

= pGen

M∏
i=1

DL(τ̃i − τi|γ) . (5.82)

This type of noise model is different from flipping c̃ with some small probability

since the DL on τ̃ enforces the notion that the labeled change points τ̃ will be

close to the latent change points τ . The methodology presented here is more

general than the DL and is applicable to any discrete noise distribution.1 We can

find the maximum likelihood estimate (MLE) of γ after observing N data points

ε by solving the quadratic equation

γ̂2 +
2N∑N
i=1 |εi|

γ̂ − 1 = 0 . (5.83)

However, we do not directly observe the jitter ε and cannot directly apply (5.83),

but we extend it in the next section.

5.4.2 Stochastic Expectation Maximization

We would like to learn the hyper-parameters θ by maximizing the generative

likelihood p(y1:T , τ̃ |θ) (the evidence) by integrating out τ from (5.81). However,

we cannot easily compute the one-step-ahead predictive in the presence of noisy

change point labels. So, we cannot compute the evidence as easily as in (5.13).

We can compute the evidence if we augment the data with the latent change

points τ ; this is the exact problem the expectation maximization (EM) algorithm

[Dempster et al., 1977] is designed to solve. However, in order to use the EM

algorithm we must be able to calculate the posterior P (τ |τ̃ ,y1:T , θ) in the E-step.

Although we cannot do this in closed form, we approximate the posterior using

1 We can extend it to deletions and insertions for the jitter-deletion-insertion (JEDI) noise
model.
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an importance sampler, giving rise to the stochastic expectation maximization

(SEM) algorithm [Wei and Tanner, 1990].

Intuitively, we would like to jitter the labels around and average the likeli-

hoods to ensure the learned hyper-parameters are not being fit to label noise.

The SEM approach does this in a principled way. In the E-step we find a pos-

terior over the latent change points given the current estimate over the hyper-

parameters and the observations. In the M-step we maximize the auxiliary func-

tion Q = E [log p(τ , τ̃ ,y|θ)] ∈ R using the posterior from the E-step. The E-step

is stochastic because it is approximated using an importance sampler.

In the E-step we use samples from the proposal distribution q to approximate

the posterior on τ :

P (τ |θ,y, τ̃) ≈
N∑
i=1

wiδ(τ i = τ̃ ) , τ i ∼ q(τ i|τ̃ ) , (5.84)

wi ∝
P (τ i|τ̃ ,y)

q(τ i|τ̃ )
∝ P (τ̃ |τ i)p(y|τ i)P (τ i)

q(τ i|τ̃ )
, (5.85)

where N is the number of importance samples and the weights w ∈ [0, 1]N are

normalized so they sum to 1. We use τij for the time of the jth change point

according to the ith importance sample. Likewise, rit and cit correspond to rt

and ct according to the ith importance sample. For simplicity, we typically set

q(τ i|τ̃ ) = P (τ̃ |τ i) =⇒ τij ∼ DL(τ̃j|γ), so that the weights w are simply

weighted according to the noise free marginal likelihood (see (5.4)) of the data

y1:T and the labels τ had the jittered labels from q been the actual labels: wi ∝
p(y|τ i)P (τ i).

In the M-step we get a new estimate of the hyper-parameters θnew using the

approximate posterior from the E-step: θnew = argmaxθ E [log p(τ , τ̃ ,y|θ)],

E [log p(τ , τ̃ ,y|θ)] ≈
N∑
i=1

wi log p(τ , τ̃ ,y|θ) (5.86)

=
N∑
i=1

wi log p(τ i,y|θh, θm) +
N∑
i=1

wi logP (τ̃ |τ i, θn) ,

where the first term is used to find the model and hazard hyper-parameters and
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the second term is used to find the noise parameters. The optimization routine to

find θm and θh need not be concerned with the second term since it only depends

on θn.

We estimate γ in the M-step with a MLE extended to handle importance

samples. Also note that here each weighted sample is a length M sequence of

change points τ . The weighted formula is:

γ̂2 +
2M∑N

i=1

∑M
j=1wi|τij − τ̃j|

γ̂ − 1 = 0 . (5.87)

To find the model θm and hazard θh hyper-parameters we simply optimize the

weighted expectation of the marginal likelihoods using (5.4) as in the noise free

case.

Smoothing alternative Although we use SEM in this section it may be pos-

sible to use the smoothing approach of Section 5.3.4 for a more direct approach.

Since the smoothed distribution (posterior) on the change point times follows a

Markov chain, we could treat the latent change point times as the hidden state

in an HMM, and the observed change point times as the observed variables. We

could directly maximize the likelihood p(y1:T , τ̃ |θ) in this setup. However, this

line of work has not been completely explored.

5.4.2.1 Efficient Implementation

We evaluate the contribution of θm and θh in the M-step efficiently. Following

the same form as (5.4) we see that

N∑
i=1

wi log p(τi,y|θm, θh) =
N∑
i=1

wi

T∑
t=1

`ri,t−1,t

+ log(1−H(ri,t−1 + 1))(1− cit) + logH(ri,t−1 + 1)cit , (5.88)

where ` := log p(yt|rt−1, θm) ∈ RT×T is a matrix of log posterior predictive prob-

abilities. We next define W := W0 + W1 ∈ [0, 1]T×T using the following weight
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matrices

[W0]r′,t :=
N∑
i=1

wi(1− cit)I{ri,t−1 = r′} , (5.89)

[W1]r′,t :=
N∑
i=1

wicitI{ri,t−1 = r′} . (5.90)

Given the weight matrices we re-organize the terms to simplify the UPM portion

of the likelihood:

N∑
i=1

wi

T∑
t=1

`ri,t−1,t =
T∑
t=1

T−1∑
r′=0

N∑
i=1

wi`r′,tI{ri,t−1 = r′}

=
T∑
t=1

T−1∑
r′=0

Wr′,t`r′,t = 1>(W � `)1 .

Adding the contribution from the hazard we see that

N∑
i=1

wi log p(τi,y|θm, θh)

= 1>(W � `)1 + log(1−H(1:T ))W01 + log(H(1:T ))W11 . (5.91)

Additionally, the weight matrices will typically be very sparse. The matrices and

` only need to be evaluated at the nonzero elements of the weight matrices. The

computational complexity of (5.91) is O(‖W‖0), where ‖W‖0 is the “zero norm”

or cardinality of W, compared to O(NT ) for naive implementation.

5.4.2.2 Test Set Prediction

So far we have explained how to use a DL noise model efficiently in training.

The second step is to get a run length distribution in test. After finding θ in

training using SEM, the run length distribution found using ordinary BOCPD

will be the predictive distribution on rt. However, since we will be evaluated on

the ability to predict run length induced by the real noisy labels, we must convert

the predictive distribution on rt to one on r̃t.

We approximate the true posterior in r̃t by a distribution conditional on the
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previous latent change point being the previous labeled change point:

P (r̃t|rt) ≈ P (ε = rt − r̃t|ε ∈ [−rt, t− rt]) . (5.92)

In other words, we assume that given the sorted list of change point times τ ,

the observed change points τ̃ will be sorted despite applying iid noise to the

latent change points τ . The accuracy of approximation (5.92) is investigated in

Figure 5.3(c). We next marginalize out rt to find R∗(r̃t, t) := P (r̃t|y1:t):

P (r̃t|y1:t) =
t∑

r′=0

P (r′|y1:t)︸ ︷︷ ︸
R(r′,t)

P (ε = r′ − r̃t)︸ ︷︷ ︸
=:K(r′,r̃)

/P (ε ∈ [−r′, t− r′])︸ ︷︷ ︸
=:Z(r′,t)

. (5.93)

Equation (5.93) effectively applies a kernel smoother, which we treat as the noise

distribution, to P (r′|y1:t) to find P (r̃t|y1:t). In the case of DL noise:

K(i, j) = DL(i− j|γ) , (5.94)

Z(i, j) = (DLCDF(j − i|γ)−DLCDF(−i|γ))−1 .

Using (A.21) we rewrite (5.93) as

R∗(r̃t, t) =
t∑

r′=0

R(r′, t)K(r′, r̃t)Z(r′, t) (5.95)

=⇒ R∗ = K>(R� Z) ∈ [0, 1]T×T . (5.96)

The K ∈ [0, 1]T×T term performs the smoothing while Z ∈ (R+)T×T re-weights

the elements of R to control for edge effects resulting from conditioning on

r̃t ∈ [0, t]. Equation (5.96) can be implemented very efficiently since K will

be (symmetric) Toeplitz, which allows for FFT based methods. Alternatively, we

can use pruning and take advantage of sparsity imposed on R. Therefore, the

total complexity is O(min(T 2 log T, T‖R‖0)).
We also use (5.96) in the discriminative learning framework. We substitute

the R∗ matrix for the R matrix in the training objective specified in (5.79).

The derivatives ∂θR can be propagated forward with the chain rule to get ∂θR
∗

allowing for gradient based optimization. Like generative SEM training, the noisy
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Figure 5.3: Importance sampler: We show some of the latent change points (red

lines below the curve) from the importance sample with the greatest weight wi after

N = 105 samples. The black lines above the curve are the labeled change points. The

blue line is the x position in sequence two of the bee data. Hazard estimation: We

show Greenwood’s nonparametric cumulative hazard estimate from the change points

in the entire bee sequence two (19 change points) in black with the 95% confidence

region. The solid blue line is the estimate of the cumulative hazard from the SEM

method. The red dashed line is estimated from noise free generative training and the

green dotted line is from noise free discriminative training. Calibration test: A Monte

Carlo calibration test [Fearnhead and Liu, 2011] of approximation (5.92) at time t = 50

with N = 103 samples. The CDF (≤) and the CDF off-by-one (<) are both in solid

blue, which should straddle the diagonal for exact inference.

discriminative setup also allows for joint training of θn and {θh, θm}.

Synthetic data We performed Monte Carlo experiments to validate the ac-

curacy of approximation (5.92) used in finding the run length distribution in

test after accounting for jitter. Figure 5.3(c) shows the output of a calibration

test on the run length distribution at t = 50 using synthetic data. We sampled

N = 103 synthetic data sets of T = 100 from BOCPD and applied change point

noise from the DL with γ = 0.5. We then looked at the CDF C of the run

length in the ith sample at t under the run length distribution from BOCPD,

Ci := P (r̃t ≤ r̃it|y1:t), using the smoothing method from (5.96). For continuous

variables the empirical CDF of the CDF C should follow the diagonal, a uniform

distribution, if the inference method is exact. Since the run length distribution

is discrete we must look at the CDF (≤) and the CDF off-by-one (<), which

should straddle the diagonal for exact inference. The calibration test shows that

the approximation is accurate in general. This test has to be done with synthetic
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data since with real data there is no way to determine if the inaccuracies are a

result of modeling error or approximation error. We quantify the calibration by

doing the appropriate one-sided Kolmogorov-Smirnov (KS) test against a uni-

form for the upper and lower curves. The curves in Figure 5.3(c) have p-values

of p = 0.9995 and p = 0.9977. This means there is no detectable approximation

error under this calibration test. However, for t close to zero the approximation

error is detectable due to the edge effects of the jitter sending a change point

prior to t = 0.

5.5 Results

We tested BOCPD with three different UPMs: IFM, GPTS, ARGP. We com-

pared it against the vanilla GPTS and ARGP as well as the GPIL. For the

classical methods, we compared against linear AR, MA, ARMA, and Kalman

filtering. We also compare them to the time independent model (TIM), modeling

the data as iid normal, as a baseline. The methods were compared on all six

real world data sets described in Chapter 2: Nile, well log, Whistler snowfall,

bee dance, portfolios, and fish killer. To quantify the performance of each of

these models we evaluate them on test data using the one-step-ahead negative

log predictive likelihood (NLL) in nats per obs., mean-square-error (MSE), and

mean-absolute-error (MAE).1 The predictive mean was used for the predictions

under MSE while the predictive median was used for MAE. We initially evaluate

the predictive accuracy of these methods; in Section 5.6 we evaluate run length

estimation capability on the data sets where we have ground truth labels of the

change points.

All of the change point methods used the logistic hazard: H(t) = hσ(at+ b),

where θh = {h, a, b} where learned during training. In GPTS and ARGP we used

output scale uncertainty. In the change point methods we learned the scale shape

prior α0 as hyper-parameter, while we fixed β0 = 1 as it is unidentifiable when

learning the output scale of the covariance functions. For vanilla ARGP and

GPTS we fixed α0 = 1 and β0 = 1, attempting to learn those hyper-parameters

1 MSE is given by
∑
t ‖µt − yt‖22 where µt is the predictive mean. MAE is given by∑

t ‖µt − yt‖1 where µt is the predictive median.
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by MLE would be inappropriate since we only observe one draw from prior,

unlike in the change point context. In the GPTS based methods we found the

rational quadratic (RQ) covariance function worked the best. We also included a

constant covariance component, which is especially important in the change point

context since it allows for a changing mean function as is the case in an IFM.

In the ARGP setups we used the squared exponential with automatic relevance

detection (SE-ARD) covariance function. In the ARGP we learned orders one

through five and selected the order with the best Bayesian information criterion

(BIC), see (4.8), on the training set. In GPTS learning we initialized the hyper-

parameters with (3.115) using five restarts, although this was often “overkill.”

For ARGP learning we initialized the hyper-parameters for each order with the

hyper-parameters of the previous order with a length scale of ` = 1.0 for the

new order. Although the length scale is not unitless an initializer of 1.0 is not

arbitrary given the data was standardized. The number of hyper-parameters was

used for the parameter count in BIC.

For the Kalman filter (linear dynamical system) we tried latent dimensions

of order one through five, selecting the one with the best BIC. For each latent

dimensionality we learned the parameters using EM learning initialized at the

N4SID solution.

For the AR, MA, and ARMA models we tried order zero through five (36

possible settings for ARMA) selecting by BIC. For each of these models we used

the package of Sheppard [2009].1 All the autoregressive models, AR, ARMA,

and ARGP, used an initial state of the time series of zero. We threw out a

particular order if the optimal parameters at that order did not give a stationary

model. A nonstationary model might have predictions that become unstable,

i.e. “blow up” during the test set. One of the advantages of the GP based time

series methods is that there is no worry the inferred covariance will ever become

nonstationary/unstable.

For the GPIL we used the SE-ARD covariance function with a linear mean

component, it was initialized as described in Section 4.3.4. GPIL used a pseudo

training set of size N = 15.

Each of the data sets was standardized, with the mean and scale determined

1 We used the package available at http://www.kevinsheppard.com/wiki/MFE_Toolbox.
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only from the training data. We reported the results on unsalted time series; we

also ran experiments on the salted data and found that the performance changed

negligibly, i.e. much less than the reported confidence intervals. After dividing

each of the data sets into training and test, we trained each of the methods on the

training set. The optimal prediction, according to each loss function, was supplied

for each one-step-ahead prediction on the training set. We report the mean test

set error for each combination of method, data set, and loss metric along with

95% error bars as determined by a t-test. The results are provided with the p-

value testing the null hypothesis that methods are equivalent to BOCPD with

an ARGP UPM (ARGP-CP) using a two-sided paired t-test, as recommended by

Bar-Shalom et al. [2001, Sec. 1.5]. Since the NLL for continuous variables has an

arbitrary additive constant determined by the parameterization of the space, we

shift the NLL scores so the best performing method has mean NLL of zero.

5.5.1 Nile Data

We first consider the Nile data set. We trained the (hyper) parameters of all

the models on data from the first T = 200 years (622–821). The predictive

performance was evaluated on the following T ′ = 463 years, 822–1284.

The run length posterior of GPTS-CP on the Nile can be seen in Figure 5.4.

The installation of the nilometer is the most visually noticeable change in the

time series. We also see that the only change point the GPTS-CP is completely

confident in occurs shortly after the nilometer installation.

In Figure 5.4 we also see that the smoother is successful at sharpening the

run length distribution and median run length. In the filter there are times when

it infers a change point and then reverses itself upon realizing the mistake, as

shown by the “spiky” nature of the median run length. This behavior is absent

in the smoothed distribution. We see that in years 900–1100 even the smoothed

distribution maintains ≈ 5 different change point hypotheses. In other areas the

smoothed, and to some extent, the filtered distribution is quite confident in the

identified change point.

Quantitative results in predictive performance are shown in Table 5.2. We

see that the GPTS UPM (GPTS-CP) outperforms all the other methods on all
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metrics. It even outperforms the ARGP UPM (ARGP-CP) which appears to

be more flexible. Also, the Kalman filter does reasonably well on this data set.

By analyzing the scatter plots of the Nile data it is apparent that the system is

close-to-linear, satisfying the assumption of the Kalman filter, but possibly the

noise level in the system is changing over time. It seems the extra ability to model

nonlinearity in the ARGP UPM is not as useful as the GPTS UPM ability to

aggregate information over a longer time span.

Table 5.2: Nile: Results of all methods considered on next step prediction error for

Nile data during the test set of 822–1284. We compare: autoregressive (AR) model,

autoregressive Gaussian process (ARGP), autoregressive Gaussian process in a change

point model (ARGPCP), autoregressive moving average (ARMA), Gaussian process

time series in a change point model (GPTSCP), Gaussian process inference and learn-

ing (GPIL) state space model, independent factor model (IFM) with change point

detection, Kalman filter, moving average (MA), and time independent model (TIM).

Method NLL ×101 p-value MSE ×101 p-value MAE ×101 p-value

AR 0.81±0.58 0.0002 5.20±0.86 0.1734 5.42±0.44 0.2341
ARGP 0.49±0.64 0.0582 5.06±0.86 0.4536 5.31±0.44 0.8640
ARGPCP 0.21±0.72 N/A 4.94±0.87 N/A 5.29±0.44 N/A
ARMA 1.12±0.67 <0.0001 5.77±0.93 0.0014 5.78±0.46 0.0015
GPTSCP 0.00± 0.77 0.0376 4.73± 0.82 0.0723 5.12± 0.43 0.0267
GPIL 1.28±0.66 <0.0001 5.91±0.93 0.0001 5.87±0.46 <0.0001
GPTS 0.29±0.64 0.5043 4.78±0.81 0.2353 5.18±0.42 0.1870
IFM 0.50±0.86 0.0766 5.20±0.88 0.0609 5.41±0.44 0.1942
Kalman 0.83±0.56 <0.0001 5.19±0.86 0.1382 5.44±0.44 0.1505
MA 2.17±0.61 <0.0001 7.1±1.1 <0.0001 6.53±0.49 <0.0001
TIM 3.94±0.72 <0.0001 10.3±1.5 <0.0001 7.89±0.59 <0.0001

5.5.2 Well Log Data

We also show the results of the well log data after training on the first T = 1000

points and testing on the remaining T ′ = 3500 using the same methods as with

the Nile data. The results are show in Table 5.3. The well log time series is

approximately piece-wise constant, corresponding with the IFM’s assumptions.

However, the slight nonlinear temporal correlations within each regime give the
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Figure 5.4: Nile Record: The output BOCPD with the GPTS UPM, 622–
1284. We show the results of filtering (top) and smoothing (bottom). The large
black cross marks the installation of the nilometer in 715. The portion before
the red dashed line was used to train the hyper-parameters. Filtering: The
small red crosses mark alert locations where the probability of a change point
under the BOCPD posterior since the last alert exceeds 0.95. We call this naive
segmentation. On the bottom panel is the run length CDF and its median (solid
red). Smoothing: The top panel shows the time series segmented by the output
of the Viterbi segmentation after smoothing with red crosses. On the lower panel
we show the smoothed run length CDF and its median.
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Figure 5.5: Well Log: The output BOCPD with the ARGP UPM. We show
the results of filtering (top) and smoothing (bottom). The portion before the red
dashed line was used to train the hyper-parameters. Filtering: The small red
crosses mark alert locations where the probability of a change point under the
BOCPD posterior since the last alert exceeds 0.95. We call this naive segmen-
tation. On the bottom panel is the run length CDF and its median (solid red).
Smoothing: The top panel shows the time series segmented by the output of
the Viterbi segmentation after smoothing with red crosses. On the lower panel
we show the smoothed run length CDF and its median.
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ARGP UPM a slight advantage over the GPTS UPM and the IFM. The ARGP-

CP performs much better than the ARGP since the ARGP gets confused by

the steplike nature of the time series. We show that the filtered and smoothed

segmentations are quite reasonable in Figure 5.5. The obvious discontinuities

are flagged as change points. We also see that changes in variance, cusps, and

unexpected troughs in the data are flagged as change points.

Table 5.3: Well log: Results of all methods (acronyms defined in Table 5.2) considered

on next step prediction error for well log data during the test set of the final 3500 points.

Method NLL ×101 p-value MSE ×101 p-value MAE ×101 p-value

AR 14.3±1.3 <0.0001 22.4±1.5 <0.0001 11.24±0.36 <0.0001
ARGP 7.70±0.65 <0.0001 28.2±4.2 <0.0001 11.16±0.45 <0.0001
ARGPCP 0.00± 0.31 N/A 6.94± 0.81 N/A 5.98± 0.21 N/A
ARMA 15.8±2.1 <0.0001 22.0±2.2 <0.0001 10.60±0.37 <0.0001
GPTSCP 0.41±0.30 <0.0001 9.8±1.4 <0.0001 6.42±0.27 <0.0001
GPIL 15.28±0.97 <0.0001 91.0±5.7 <0.0001 21.70±0.75 <0.0001
GPTS 5.43±0.49 <0.0001 15.0±1.2 <0.0001 9.21±0.29 <0.0001
IFM 0.48±0.30 <0.0001 9.8±1.4 <0.0001 6.55±0.27 <0.0001
Kalman 9.8±1.2 <0.0001 17.3±1.4 <0.0001 9.79±0.32 <0.0001
MA 12.9±1.1 <0.0001 22.6±1.5 <0.0001 11.35±0.35 <0.0001
TIM 46.7±3.0 <0.0001 97.4±6.0 <0.0001 22.80±0.76 <0.0001

5.5.3 Snowfall Data

We also used historical daily snowfall data in Whistler, BC, Canada, to evaluate

our methodology. The models were trained on three years of data, T = 1000

points. We evaluated the models’ ability to predict next day snowfall using 35

years of test data, T ′ = 12, 880 points. A probabilistic model of the next day

snowfall is of great interest to local skiers. In this data set, being able to adapt to

different noise levels is key: there may be highly volatile snowfall during a storm

and then no snow in between storms. Hence, the data is compatible with the

IFM’s model assumptions. The GPIL is also competitive. Results are shown in

Table 5.4.
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GPIL learned a GP model for a scalar close-to-linear stochastic latent tran-

sition function. A possible interpretation of the results is that the daily pre-

cipitation is nearly linear. Note that for temperatures above freezing no snow

occurs, which resulted in a hinge measurement model. GPIL learned a hinge-like

function for the measurement model, Figure 5.6, which allowed for predicting no

snowfall the next day with high probability. The Kalman filter was incapable of

such predictions since it assumes linear functions f and g.
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Figure 5.6: Learned measurement GPIL functions f (left) and g (right). The
gray area is the 95% error bars that include model uncertainty and measurement
noise. Pseudo targets are represented by the blue stem lines.

5.5.4 Fish Killer Data

We also work with the fish killer data. The data was sub-sampled to one data

point per hour. We then trained on the first T = 1000 points (hours), August

2000–October 2000, and tested on the remaining T ′ = 10, 294 (≈ 14 months),

October 2000–November 2001.

The GPTS UPM outperforms the ARGP UPM in Table 5.5. The fish killer

time series is the smooth time series, making the long-range smoothing of the

GPTS advantageous. However, the change point framework gives a very dramatic

improvement in performance for the ARGP. The rapid changes in the time series

near the fish kills likely confuse the standard ARGP.
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Table 5.4: Snowfall: Results of all methods (acronyms defined in Table 5.2) considered

on next step prediction error for the Whistler snowfall data during the test set of the

final 35 years.

Method NLL ×101 p-value MSE ×101 p-value MAE ×101 p-value

AR 17.19±0.30 <0.0001 6.82±0.29 <0.0001 4.76±0.12 0.0129
ARGP 16.28±0.65 <0.0001 10.43±0.42 <0.0001 5.67±0.15 <0.0001
ARGPCP 0.74±0.41 N/A 7.36±0.29 N/A 4.68±0.13 N/A
ARMA 17.19±0.30 <0.0001 6.82±0.29 <0.0001 4.76±0.12 0.0129
GPTSCP 0.54±0.40 <0.0001 7.20±0.29 <0.0001 4.55±0.13 <0.0001
GPIL 16.85±0.41 <0.0001 7.66±0.33 0.0055 4.92±0.13 <0.0001
GPTS 16.71±0.21 <0.0001 6.59±0.27 <0.0001 4.81±0.12 <0.0001
IFM 0.00± 0.43 <0.0001 7.07±0.29 <0.0001 4.45± 0.13 <0.0001
Kalman 16.92±0.27 <0.0001 6.55± 0.26 <0.0001 4.75±0.12 0.0087
MA 17.36±0.29 <0.0001 7.10±0.30 0.0049 5.15±0.12 <0.0001
TIM 19.25±0.21 <0.0001 10.94±0.41 <0.0001 7.53±0.13 <0.0001

Table 5.5: Fish killer: Results of all methods (acronyms defined in Table 5.2) con-

sidered on next step prediction error for the fish killer data during the test set of the

final 10,294 hours.

Method NLL ×101 p-value MSE ×101 p-value MAE ×102 p-value

AR 67.6±1.9 <0.0001 88.1±3.8 <0.0001 239.5±3.4 <0.0001
ARGP 50.0±2.1 <0.0001 85.8±3.8 <0.0001 208.1±4.0 <0.0001
ARGPCP 1.59±0.37 N/A 8.2±2.5 N/A 18.3±1.8 N/A
ARMA 35.3±2.4 <0.0001 2.22±0.19 <0.0001 34.45±0.63 <0.0001
GPTSCP 0.00± 0.35 <0.0001 0.93±0.12 <0.0001 8.47± 0.49 <0.0001
GPIL 30.3±2.3 <0.0001 29.8±3.6 <0.0001 85.0±3.0 <0.0001
GPTS 15.4±1.1 <0.0001 0.69± 0.12 <0.0001 9.88±0.47 <0.0001
IFM 12.30±0.30 <0.0001 4.63±0.70 0.0003 39.3±1.1 <0.0001
Kalman 23.7±3.8 <0.0001 0.78±0.15 <0.0001 11.44±0.50 <0.0001
MA 35.3±2.4 <0.0001 2.22±0.19 <0.0001 34.45±0.63 <0.0001
TIM 67.6±1.9 <0.0001 88.1±3.8 <0.0001 239.5±3.4 <0.0001
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5.5.5 Bee Waggle Dance Data

Honey bees perform what is known as a waggle dance on honeycombs. The three

stage dance is used to communicate with other honey bees about the location of

pollen and water. Ethologists are interested in identifying the change point from

one stage to another to further decode the signals bees send to one another. The

bee data set contains six videos of sequences of bee waggle dances. The video

files have been preprocessed to extract the bee’s position and head-angle at each

frame. While many in the literature have looked at the cosine and sine of the

angle, we chose to analyze angle differences. Since this data set is multivariate

we included vector autoregression (VAR) and an ARGP extension (VARGP).

In the quantitative results, Table 5.6, we find the ARGP-CP does significantly

better than the other methods. The GPTS-CP does not improve much upon the

GPTS because the x and y positions over time are explained well by a stationary

GPTS model.

The GPTS-CP does identify some change points; since BOCPD is likelihood

based no change points would be found if GPTS consistently had the best likeli-

hood. As will be shown in Section 5.6 the performance of change point detection

on ground truth change points will be much better if some supervision signal is

included during training.

5.5.6 Industry Portfolio Data

We also tried a multivariate data set: the “30 industry portfolios” data set, which

was also used in the context of change point detection by Xuan and Murphy

[2007]. The data consists of daily returns of 30 different industry specific portfolios

from 1963 to 2009. The portfolios consist of NYSE, AMEX, and NASDAQ stocks

from industries such as food, oil, telecoms, etc. We trained on the first T = 1000

trading days and tested on the remaining T ′ = 10, 455 trading days.

The data is heavy tailed and our change point model assumes the data has

normal errors. Change point models can justify the assumption of normal errors

with a change point model by claiming every heavy tail event is merely a change

in variance. This will lead to very frequent change points. So, we transform the

data set by whitening and then using the normal quantile function N -CDF−1 and
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Table 5.6: Bee dance: Results of all methods (acronyms defined in Table 5.2) con-

sidered on next step prediction error for bee dance video sequence one during the test

set of the final 807 frames.

Method NLL ×100 p-value MSE ×100 p-value MAE ×101 p-value

AR 10.22±0.34 <0.0001 14.37±0.67 <0.0001 53.2±1.4 <0.0001
ARGP 0.20±0.12 <0.0001 1.45± 0.21 <0.0001 9.63± 0.63 0.0009
ARGPCP 0.00± 0.13 N/A 1.70±0.26 N/A 10.06±0.71 N/A
ARMA > 1000 0.0002 > 1000 0.0002 > 1000 <0.0001
GPTSCP 0.31±0.13 <0.0001 1.76±0.27 <0.0001 10.44±0.72 <0.0001
GPIL 7.38±0.31 <0.0001 7.07±0.46 <0.0001 34.8±1.3 <0.0001
GPTS 0.38±0.14 <0.0001 1.76±0.27 0.0004 10.21±0.72 0.0009
IFM 1.59±0.15 <0.0001 2.17±0.28 <0.0001 16.00±0.78 <0.0001
Kalman 0.79±0.18 <0.0001 1.78±0.27 <0.0001 10.53±0.72 <0.0001
MA 3.89±0.24 <0.0001 1.68±0.22 0.5684 13.52±0.66 <0.0001
TIM 9.08±0.30 <0.0001 14.68±0.69 <0.0001 53.7±1.4 <0.0001
VAR 0.71±0.21 <0.0001 1.61±0.23 0.0411 10.35±0.66 0.0334
VARGP 0.40±0.15 <0.0001 1.48±0.21 <0.0001 9.85±0.63 0.1506

Student’s t CDF with four degrees of freedom, ỹt := N -CDF−1(St4-CDF(yt)), to

implicitly build the heavy tail assumption into the model. The marginal heavy

tail behavior of financial returns are known to be well-modeled by a Student’s

t with four degrees of freedom [Carnero et al., 2004]. We could directly model

the data using Student’s t distributions, but we would lose the tractability from

conjugate priors.

In Figure 5.1, we show that the change points found coincide with significant

events with regard to the stock market: the climax of the Internet bubble, the

burst of the Internet bubble, and the 2004 presidential election. The methods

used in Xuan and Murphy [2007] did not find any correspondence with historical

events. For financial returns the iid assumption within a regime is reasonable,

so as expected the GP finds very long covariance length scales, attributing the

variability within each regime to noise.

We show the predictive performance of each model in Table 5.7. Economic

theory suggests that none of the methods should perform better than TIM in

terms of their point estimates. Unsurprisingly, all of the methods are clustered
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Table 5.7: Portfolios: Results of all methods (acronyms defined in Table 5.2) consid-

ered on next step prediction error for the industry portfolio data (all 30 indices) during

the test set of the final 8,455 trading days, July 3 1975 to December 31 2008.

Method NLL ×100 p-value MSE ×100 p-value MAE ×100 p-value

AR 5.70±0.42 <0.0001 30.21±0.51 <0.0001 23.25±0.19 <0.0001
ARGP > 1000 <0.0001 30.14±0.50 <0.0001 23.25±0.19 <0.0001
ARGPCP 0.17±0.22 N/A 29.95± 0.50 N/A 23.35±0.19 N/A
ARMA 5.77±0.42 <0.0001 30.29±0.51 <0.0001 23.28±0.19 <0.0001
GPTSCP 0.00± 0.22 <0.0001 30.17±0.51 <0.0001 23.38±0.20 0.0075
GPIL 5.04±0.39 <0.0001 29.99±0.50 0.0085 23.25±0.19 <0.0001
GPTS 3.22±0.34 <0.0001 30.20±0.51 <0.0001 23.24± 0.19 <0.0001
IFM 0.27±0.21 <0.0001 30.43±0.51 <0.0001 23.36±0.20 0.2822
Kalman 5.82±0.43 <0.0001 30.14±0.51 <0.0001 23.25±0.19 <0.0001
MA 6.07±0.43 <0.0001 30.60±0.51 <0.0001 23.40±0.19 0.0002
TIM 5.12±0.40 <0.0001 30.02±0.50 <0.0001 23.26±0.19 <0.0001
VAR 7.60±0.48 <0.0001 31.35±0.53 <0.0001 23.61±0.20 <0.0001
VARGP 9.90±0.45 <0.0001 30.15±0.50 <0.0001 23.28±0.19 <0.0001

close together in terms of MAE and MSE. However, the NLL rewards good

estimates of the variance. The GPTS, and in particular change point methods

perform the best here. Likely, they are exploiting volatility clustering present in

financial time series.

Discussion We see the most pronounced change point behavior in the well log,

snowfall, and fish killer data sets. The GPTS UPM appears to work better than

the ARGP UPM in data sets where there are long range correlations, even within

a single regime, such as the Nile, bee, and fish killer data sets. The GPTS also

has an advantage on data sets with close-to-linear correlations such as portfolio

data, Nile data, and bee data. The ARGP UPM is more suited towards nonlinear

relationships and short term trends as the order is usually short.
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5.6 Supervised Results

We compare supervised BOCPD to other methods on its ability to predict the

labeled run length and forecast in data space. We compare the generative, dis-

criminative, and unsupervised methods on these tasks. In run length prediction

we compare the noise-free models with the noisy models. The models are eval-

uated on negative log predictive likelihood (NLL), MAE (L1), and MSE (L2).

The point estimates used in the predictions for MAE and MSE are the posterior

median and mean, respectively.

In all of the experiments we compare our results to the data independent

model (DIM) as a reference. In data space prediction the DIM model corresponds

to modeling the data as iid Gaussian. In the run length space the DIM model

corresponds to assuming a constant hazard and an uninformative UPM p(yt) ∝ 1,

which gives a geometric run length posterior in large t.

We adapted the CUSUM [Page, 1955] method to our experimental setup as

well. We used the criterion of Grigg and Spiegelhalter [2008] to set the parameters

of the test statistic to optimize the power of the CUSUM, which used the typical

change in mean between change points. The CUSUM only provides a test statistic

(which can be transformed to a p-value) for the null hypothesis there have been

no change points since the last detection. To evaluate on run length the output of

CUSUM in training was fit to the true (labeled) run length using a linear model.

This supervised CUSUM is included in the comparison.

We used the Gaussian process time series UPM for supervised BOCPD in both

the bee data and fish killer data. The independent factor model (IFM) UPM

also gave competitive results although not a good as a GP. The GPTS UPM

covariance was constructed using a sum of squared-exponential (SE), constant,

and noise terms. The constant covariance allowed for a different mean in each

regime. We also used a scale parameter τ ∼ Gamma(α0, 1) in the covariance.

This gives a total of five model hyper-parameters per dimension. As in the

unsupervised examples, we used the logistic hazard H(t) = hσ(at + b), and the

hazard parameters θh = {h, a, b} were learned during training. For SEM we used

N = 104 samples in the E-step and did five EM iterations in all the examples

shown. Using the methods in Section 5.4.2.1 the computational penalty for a
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large N is small allowing us to use many samples in the E-step. The results of

SEM did not appear to change much after a few iterations.

The methods are compared on bee dance data and the fish killer data, both of

which come with labels. The bee data is multivariate and the labels have a strong

relationship to the time series. By contrast, the fish killer data is univariate and

the labels only correspond to certain features in the time series. A time series

may possess many features that appear as change points, but which we have no

interest in detecting; for instance, there may be a rapid increase in water level

after a storm.

Table 5.8: Bee dance: Results for sequence one of the bee data for 250 training points

and 807 test points. The results are provided with 95% error bars and the p-value

testing the null hypothesis that methods are equivalent to GP SEM using a two-sided

paired t-test. The first three columns represent the loss in predicting the run length

(using P (rt|y1:t)) while the final column shows the loss in data space of predicting the

next data point (using p(yt+1|y1:t)). All the methods are generative except those labeled

“Disc.” We shift the NLL (in nats/observation) so the best method has NLL zero. The

MAE and MSE have the units of t and t2, respectively, in run length prediction. We

omit the p-values on the NLL columns as they are all p < 0.0001 except a where

p = 0.3429.

Run length r Data y
Method NLL ×101 L1 ×100 p-value L2 ×10−2 p-value NLL ×100
GP Gen. (Eq. (5.4)) 36.6±1.9 23.6±2.1 <0.0001 11.5±1.5 <0.0001 0.09±0.15
GP SEM 0.00± 0.87 14.4± 1.2 N/A 4.82±0.60 N/A 0.02±0.14
GP Uns. (Eq. (5.13)) 34.9±2.2 15.9±1.5 0.0268 6.3±1.1 0.0033 0.00± 0.14a

IFM Disc. (Eq. (5.79)) 41.3±3.8 298±18 <0.0001 > 1000 <0.0001 6.72±0.12
IFM Gen. 125±13 16.38±0.92 0.0039 4.30±0.40 0.1187 2.63±0.11
IFM SEM 2.19±0.48 15.63±0.78 0.0541 3.63± 0.31 <0.0001 2.65±0.11
IFM Uns. 487±38 21.0±1.2 <0.0001 7.01±0.58 <0.0001 1.33±0.15
TIM 5.02±0.19 18.59±0.86 <0.0001 14.49±0.79 <0.0001 8.69±0.30

5.6.1 Bee Dance Data

As in the unsupervised case, we compare methods on the first sequence of six

in the bee data using the first 250 frames (four change points) for training and

the remaining 807 frames (15 change points) for test in Table 5.8. In terms of

NLL, change point models that lack a label noise distribution produce predictive

distributions that are overconfident (too sharp). Noise models help on MSE and
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Figure 5.7: Bee Dance Data: The top panel shows: x coordinate (blue), y coordinate

(green), and angle (red). The large black cross marks the labeled switches in the bee’s

dance. The red crosses mark alerts from SEM, which are placed when the probability

of a change point since the last alert exceeds 95%. The lower panel shows the log run

length distribution from SEM (lighter means higher probability). The posterior median

in solid red and the labeled run length is marked in dashed blue. Note how the labeled

run length falls into the white bands showing that the labeled run length is often near

the posterior mode.

MAE as well, but those metrics do not allow for the extreme penalties NLL does.

However, there is still a significant increase in performance in terms of MAE

and MSE. In Figure 5.7, we see that SEM produces highly accurate run length

despite a small training set. The estimated hazard functions from training are

shown in Figure 5.3(b) along with a nonparametric hazard estimate from the

entire sequence with error bars. Although SEM has the flexibility to de-jitter the

change point locations, it still finds a more accurate hazard estimate, in terms

of the actual labels, than standard generative training. The de-jittering of the

change point labels is shown in Figure 5.3(a). By visual inspection of the bee

data we see that the labeled change points are typically ±10 frames away from

the qualitatively optimal positions.

5.6.2 Fish Killer Data

We trained on the August to October period (1000 points) and tested on October

to December (another 1000 points), sampled once every 75 minutes. Since water

level is positive, we worked with log water level. The beginning and end of every
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Figure 5.8: Fish Killer Data: The top panel shows the water level over a four

month period. The lower panel shows the product of the run length distribution and

the probability of being in a abnormal state. All other aspects of the plot match the

graphical conventions of Figure 5.7.

water oscillation (fish kills) are treated as a change point for the purposes of

supervision. Training period has five fish kills while there are another 10 in test.

We learned the hyper-parameters θ using the generative training procedure.

We used a mixture of covariances for the UPM:

kθm(t, t′) = kξ0(t, t
′)(1− s) + kξ1(t, t

′)s , (5.97)

where s ∈ {0, 1} is a latent variable controlling which covariance function to use.

Here, θm = {ξ0, ξ1}. After each change point s is drawn from a fair Bernoulli

distribution. Both covariance components are the same as the covariance used

in the bee data (SE + constant + noise). Equation (5.97) allows for switching

length scales at change points, which is helpful since shorter length scales fit the

time series better during the fish kills. We plot the results in Figure 5.8. However,

instead of plotting the run length matrix R, we plot log(R�A), Ar′,t := P (s =

1|rt = r′), since we are interested in the run length since the last change point

that selected the covariance function where the fish kill occurs. The method

knows not to flag the water surges from large autumn storms as change points.

By contrast, unsupervised training gives an average expected run length of 23

points (≈ 1 day).
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5.7 Conclusions

Change point methodology We have shown how to do probabilistic fully

Bayesian change point detection in a general manner, i.e. little restriction on

UPM or hazard function. We can compute several probabilistic quantities of

interest: run length filtering (online operation), run length smoothing (retrospec-

tive operation), finding the most likely segmentation, finding the time of the ith

change point, and the presence of change point in a segment. As opposed to

previously assumed, all of these quantities are calculated exactly and without

complex sampling schemes. We also have shown how to do supervised learning if

there is a well-defined notion of change point.

Experimental results We have done a rigorous evaluation of all our methods

against standard methods (> 10 methods in total) on all data sets in Chapter 2.

This included multivariate and univariate problems, the aspects of all the different

data sets summarized in Table 2.1. We have compared every combination of over

ten methods on six data sets with three loss functions. We can evaluate using a

time series prediction task (along with unsupervised change point distribution).

However, we can also do supervised evaluation of the run length distribution when

labels are available. We have shown that change point methods, especially when

combined with Gaussian processes, can lead to excellent performance in general.

We have found that the ARGP UPM is arguably the most general and is helped

by embedding in a BOCPD scheme. We also found it useful for supervised results

to have a noise distribution on change point labels.
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Chapter 6

Conclusions

In this thesis we have shown how to unify many different time series methods

into a Gaussian process (GP) framework. With the appropriate covariance func-

tion (kernel) AR, MA, ARMA, and Kalman filter models (classical models) are

equivalent to the GPTS model. We also have explained an arguably more general

approach of the ARGP over the GPTS. The ARGP takes the linear relations in

the AR model and places a nonparametric prior, the GP, over them. Likewise,

the GPIL algorithm, with its filtering sub-routine the GP-ADF, takes the linear

relations in a Kalman filter and places a GP prior on them. These nonlinear

extensions to these linear models are further augmented by allowing for change

points. We allow our models to throw away old data that is no longer useful, in

an automatic and model based fashion.

AR models have a long history of researchers engineering extra ad-hoc terms

and features to be placed in the model to create some qualitative effect seen in

an observed time series. In GPTS and ARGP we can more directly specify our

assumptions through the covariance function and then solve for the appropriate

inferential/prediction mechanism. For instance, the periodic covariance function

can be used to infer the periodic component of a time series. Similar examples

exist for many of the challenges in time series data discussed in Section 1.3.1.

Likewise, for the change point models we can automatically phase out old data

in a model based way rather than contriving ad hoc schemes to throw away the

old data.

The covariance building process has a model complexity advantage over the
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classical time series approach. With a sufficiently large latent state a Kalman

filter can have the same features as a GPTS. However, learning the transition

matrix of a Kalman filter with a large latent space contains many parameters and

can lead to overfitting. The GPTS approach allows for similar qualitative effects

while constraining the number of hyper-parameters, which limits the over-fitting

potential.

All of these models can be implemented with tractable inference strategies

(polynomial time). However, we have explained various strategies that can dras-

tically improve the computational cost over naive implementation: Toeplitz meth-

ods, FFT methods, and rank-1 updating schemes. We can also reduce the more

sophisticated models such as GPTS to a Kalman filter for doing linear time infer-

ence. Therefore, in addition to the modeling benefits of casting classical models

in the GP framework, there are computational benefits to doing the reverse.

The model based approaches have benefits in the standard approximation

methods used in nonlinear state space models, such as the UKF. They can

use Gaussian processes for derivative free optimization of the parameters in the

UKF by maximizing the evidence. Although the parameters are usually seen as

approximation settings that are set using rough arguments about approximation

accuracy, we can improve the performance by learning them as if they were model

hyper-parameters.

We have united nonparametric Bayesian methodology with change point de-

tection, both supervised and unsupervised, and state space modeling. The meth-

ods in this thesis have extended those used in the classical time series and control

methodology and an additional interpretation of standard methods.

Future work This thesis provides many opportunities for future work. For

instance, robustness against sigma point collapse in the UKF could be achieved

by using the UKF as UPM within a change point framework. When the filter

collapses the change point framework can automatically “restart” it. This would

be the spirit of the Venn diagram in Figure 1.3 by providing yet another entry in

it. There are also opportunities to unite the GP based UPMs with the latent force

models of Álvarez et al. [2010], in which we observe the output of an ODE where

the external forcing function is a GPTS UPM like process. A valuable direction
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would be to consider alternative UPMs such as Dirichlet processes. We could also

explore combined UPMs where the predictions from GPTS or a Kalman filter are

fed into an ARGP as features and trained jointly. We can alternatively combine

ARGP and GPTS using a single GP with both time and the previous p points

as a single input (t,y(p)). Finally, we allow for an observed process to be a linear

transformation of multiple independent change point processes. This would be

useful for instance, in the portfolio data, where there might be a change point in

a particular sector which affects each dimension of the time to varying degrees.
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Appendix A

Mathematical Background

A.1 Matrix Algebra

Traces and diagonals We use the following forms to put trace and diagonal

operations in the form of matrix operations:

diag(AB) = (A�B>)1 = (1>(A> �B))> , (A.1)

tr(AB) = 1>(A�B>)1 = 1>(A> �B)1 , (A.2)

diag(ab>) = a� b . (A.3)

These alternative forms can be cheaper computationally.

Special matrix operators The exchange matrix E is the mirror image of the

identity matrix I: It flips the elements of a vector a ∈ RN such that

Ea = a(N:−1:1) . (A.4)

If N = 3

E3 =

0 0 1

0 1 0

1 0 0

 . (A.5)
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We can use the exchange matrix to define the anti-transpose on a matrix X as:

EX>E . (A.6)

Matrices that are persymmetric, such as Toeplitz matrices, are invariant to the

anti-transpose. We can define a differencing operator by:

Dij = I{i = j} − I{i = j + 1} (A.7)

=⇒ D =


1 0 0 . . .

−1 1 0 . . .

0 −1 1 . . .
...

...
...

. . .

 . (A.8)

Likewise, D−1 acts as the cumulative sum operator, the inverse operation to

differencing:

D−1ij = I{i ≤ j} (A.9)

=⇒ D−1 =


1 0 0 . . .

1 1 0 . . .

1 1 1 . . .
...

...
...

. . .

 . (A.10)

We can also create a “repeat matrix.” For any A ∈ RM×N ,

A⊗ 1> = A
[
I I . . . I

]
=
[
A A . . . A

]
, (A.11)

1⊗A =


I

I
...

I

A =


A

A
...

A

 . (A.12)

182



Cholesky factorization The square root B of a matrix A ∈ SN is any matrix

such that

B>B = A (A.13)

The matrix square root is not unique. However, the Cholesky factorization of A

is the only square root that is upper triangular. We can find the determinant of

A easily once we have computed the Cholesky factor B:

log |A| = 2 · 1> log diag(B) . (A.14)

Sub-sampling property Certain matrix operations have a sub-sampling prop-

erty: The solution to smaller operations can found by sub-sampling the result to

the larger operation. For instance, if A ∈ SN and M ≤ N

chol(A)(1:M, 1:M) = chol(A(1:M, 1:M)) . (A.15)

A consequence of this is that we can get the intermediate determinants us-

ing (A.14). We can get the intermediate results a of an inner product x>x with

a cumulative sum and Hadamard product:

a = D−1(x� x) . (A.16)

The sub-sampling property is preserved when solving a linear system with a lower

triangular matrix:

Lx = b =⇒ x = L\b =⇒ x(1:m) = L(1:m, 1:m)\b(1:m) . (A.17)

Hadamard matrix forms The general definition of a matrix multiplication is

X = AB =⇒ Xij =

p∑
k=1

AikBkj , (A.18)
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We may be in a situation where we have multiple “like terms”

Xij =

p∑
k=1

A1(i, k)A2(i, k) · · ·An(i, k) (A.19)

×B1(k, j)B2(k, j) · · ·Bm(k, j) (A.20)

×C1(i, j)C2(i, j) · · ·Cq(i, j) . (A.21)

In that case we can group the like terms with a Hadamard product:

X = C1 � C2 � · · · � Cq
� ((A1 � A2 � · · · � An)(B1 �B2 � · · · �Bm)) . (A.22)

Obviously, if any of these terms reverse the order, i, j instead of j, i, we can

substitute the transpose in the final expression.

Geometric matrix series Suppose we have matrix A ∈ RN×N and a series

such that,

Bn :=
n−1∑
i=0

Ai ∈ RN×N . (A.23)

The series converges if and only if each of the eigenvalues has a magnitude less

than one: |λi| < 1. Then the series equals

Bn = (I−A)−1(I−An) ∈ RN×N , (A.24)

and the series converges to

lim
n→∞

Bn = (I−A)−1 . (A.25)

Rotation of trace Any trace of a matrix product is invariant under cyclic

permutations:

tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC) . (A.26)
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This combined with x = tr(x) for any scalar x is often used to re-arrange matrix

products. For instance, suppose we have vectors a ∈ X → R1×n, b ∈ Rn×1,

c ∈ R1×m, d ∈ X → Rm×1, we can simplify the following expression,∫
a(x)bcd(x)p(x)dx =

∫
tr(a(x)bcd(x))p(x)dx (A.27)

=

∫
tr(cd(x)a(x)b)p(x)dx (A.28)

=

∫
cd(x)a(x)bp(x)dx (A.29)

= c

∫
d(x)a(x)p(x)dxb ∈ R . (A.30)

The Lag Matrix When using autoregressive models it will be convenient to

work with the lag matrix of a time series vector y1:T . If we use order p we get:

ARsplitp(y) =



0 0 . . . 0

y1 0 . . . 0

y2 y1 . . . 0
...

...
. . .

...

yp yp−1 . . . y1
...

...
. . .

...


∈ RT×p . (A.31)

A.2 Probability Operations

Gaussian properties In this section we demonstrate four useful properties

of a multivariate Gaussian distribution. We can marginalize out variables of a

multivariate Gaussian with:[
x

y

]
∼ N

([
a

b

]
,

[
A C>

C D

])
=⇒ x ∼ N (a,A) . (A.32)
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Conditioning is done by:[
x

y

]
∼ N

([
a

b

]
,

[
A C>

C D

])
(A.33)

=⇒ x|y ∼ N (a−C>D−1(y − b),A−C>D−1C) . (A.34)

If the mean is also random we can use the mixing property of Gaussians :

x|µ ∼ N (µ,Σ) , µ ∼ N (µ0,Σ0) =⇒ x ∼ N (µ0,Σ + Σ0) . (A.35)

When doing a general linear transformation we see that:

x ∼ N (a,A) , y = Cx =⇒
[
x

y

]
∼ N

([
a

Ca

]
,

[
A A>C>

CA CAC>

])
. (A.36)

Moments of a mixture We can find the moments of any arbitrary mixture

distribution provided that we can find the moments of the components. Suppose,

we have a mixture distribution in the form

p(x) =
N∑
i=1

wipi(x) , (A.37)

where w ∈ [0, 1]N and ‖w‖1 = 1. The expectation and covariance of the ith

component is µi and Σi. By the linearity of the expectation,

E [x] =
N∑
i=1

wiµi . (A.38)

To find the covariance we start by finding the second moment and subtracting

off the outer product of the mean:

Cov [x] =
N∑
i=1

wi(Σi + µiµ
>
i )− E [x]E [x]> . (A.39)

These are referred to as the mixture equations in Bar-Shalom et al. [2001, Ch. 1].
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Conditional expectation The law of iterated expectations states that

Ex[x] = Ey[Ex[x|y]] , (A.40)

which follows from Fubini’s theorem. Likewise, there is the law of total variance

which states that

Varx[x] = Ey[Varx[x|y]] + Vary[Ex[x|y]] . (A.41)

Entropy Similarly, we get the following laws relating entropy and mutual in-

formation:

I(x; y) = H[x]− H[x|y] = H[y]− H[y|x] (A.42)

= H[x] + H[y]− H[x, y] . (A.43)

The entropy can be viewed as the NLL under the true model:

H[x] := −
∫
p(x) log p(x)dx (A.44)

= Ep[NLL of x under model p] . (A.45)

Under an incorrect model q we can express the NLL in terms of KL divergence:

Ep[NLL of x under model q] = KL(p(x)‖q(x)) + H[x] . (A.46)

A.3 The Log-Sum-Exp Trick

We often put variables in algorithms in logarithmic scale for numerical stability;

their magnitude varies too wildly to get sufficient precision otherwise. For brevity,

we denote the logarithm of a variable x ∈ R+ as x` := log x ∈ R. When an

algorithm involves products moving to logarithmic scale is trivial,

x = abc =⇒ x` = a` + b` + c` . (A.47)
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When the algorithm involves a sum term we must first exponentiate and then

sum

x = a+ b+ c =⇒ x` = log(exp(a`) + exp(b`) + exp(c`)) , (A.48)

which defeats the whole purpose of working in logarithmic scale in the first place.

However, we can cleverly divide out the largest term, by shifting all the terms so

that largest is zero:

m := max(a`, b`, c`) , (A.49)

x` = log(exp(a`) + exp(b`) + exp(c`)) + log(exp(−m)) +m (A.50)

= log(exp(a` −m) + exp(b` −m) + exp(c` −m)) +m. (A.51)

This obeys two rules of thumb in numerical stability: Avoid the exponentiation

of positive numbers and the logarithm of numbers less than one. Shifting the

largest to zero guarantees we will only exponentiate non-positive numbers and

since we are summing positive numbers including 1 we know we will take the

logarithm of a number larger than one. Even if some of the logarithmic terms

underflow by getting shifted to negative infinity, its exponent will be set to zero

and the result will be valid.
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Appendix B

Foundational Aspects

B.1 Measuring Performance

Given that machine learning is interested in predictive performance we need a

way to measure the performance. Machine learning has developed a standard

evaluation procedure; for simplicity, we first consider the case of iid data. For

iid data, the evaluation procedure works as follows. Each data point is randomly

assigned to be in either a training set of size N or a test set of size N ′.1 The

models’ parameters θ are set in a way specified by the model designer using the

training set. Then on each point in the test set the model makes a prediction

about the data point yi. If the model outputs a probability distribution p(yi|xi)
we convert it to an action a ∈ A (or point estimate) by minimizing the expected

loss L ∈ Y ×A → R,

ai = argmin
a

E [L(yi, a)] = argmin
a

∫
L(yi, a)p(yi|xi) dyi . (B.1)

This optimization is Bayes’ decision rule. In the TIM model, the actions taken

a are the ones that minimize (B.1) under TIM’s Student’s t posterior predictive

distribution. Certain methods do not provide a predictive distribution p, and

1 A common novice mistake is to test a model on the same data set the model was trained
on. This gives overly optimistic estimates of performance and does not tell us how well an
algorithm will perform on new data. After all, a method could merely memorize the correct
output for a training set. Generalization error bounds attempt to quantify how optimistic the
training set error is.
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directly give an action a.

We have an infinite number of choices for the loss function L (also known

as negative utilities U in fields such as economics). If y is continuous (y ∈ R)

common loss functions are mean-square-error (MSE), L(yi, a) = (yi − a)2, and

mean-absolute-error (MAE), L(yi, a) = |yi−a|. The optimal actions for MSE and

MAE are to supply the mean and median of p, respectively. MSE and MAE are

both examples of loss functions for point estimates (A = Y); however, we can also

evaluate the accuracy of a predictive probability distribution (A = M(Y)).1 For

the log loss, also called negative log likelihood (NLL), L(yi, p) = − log p(yi|xi),
the optimal action is to supply p itself; the log loss is therefore a proper loss

function [Dawid, 2006]. We should keep track of the units of a loss function:

For NLL the unit is nats (or bits if log2 is used) while for MSE and MAE we

use the units of y2 and y, respectively. For this reason, MSE and MAE are not

well-defined for multivariate predictions if the variables have different units. For

instance, consider the case of a joint prediction of wind speed and temperature.

In classification y ∈ Y (binary |Y| = 2 or multiclass |Y| > 2) it is common

to define a loss matrix L ∈ R|Y|×|A| where Lij is the cost incurred by providing a

hard label j when the true label is i. The versatility of the log loss allows it to be

used in the classification context as well. The models’ performance or empirical

loss L̂ is the average loss over each test point:

L̂ :=
1

N ′

N ′∑
i=1

L(yi, ai) . (B.2)

The generalization error L is the (hypothetical) limiting case: L := limN ′→∞ L̂.

A wide-spread misperception is that actions must be point estimates: Class

probabilities must be converted to a hard cost label or a regression prediction

must be converted to a best estimate (albeit with a variable cost function). More

complex actions are possible, for instance, a classifier could rank each class ac-

cording to its likelihood (A = Π(Y)) or a regression method could provide a

credible interval (A = Y2). Other examples include, portfolio allocation in in-

1 We use the notation M(X ) to describe the set of all probability distributions p(x) on
x ∈ X . More technically, M(X ) is the set of all positive normalized measures on X .
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vestment, ordering search results in information retrieval or face recognition, or

power to the motor in feedback control. In all of these cases, the actions test

many aspects of the predictive distribution. For instance, the portfolio alloca-

tion algorithm must balance risk, which utilizes many aspects of the predictive

distribution. See Bishop [2007, Ch. 1] for more details.

Another common misperception is that focusing on the expected loss (and not

the variance) leads to unnecessary risk taking. Indeed if an agent focuses only on

the expected monetary payoff (say expected profit in dollars) unnecessary risks

will result: Making a roulette bet with an expected payoff of $5 will be equally as

advisable as receiving $5 as a sure outcome. This type of situation leads to the St.

Petersburg paradox [Bernoulli, 1738]. However, the wide family of loss functions

L, such as − log($) or −
√

$, takes the variance of the payoff into account. In

fact, Savage [1954] showed rationality requires an agent pick a loss function L

and stay within the expected (not median or maximum) loss framework [Koller

and Friedman, 2009, Ch. 22]. A good historical account of these developments is

given by Ortega [2010].

Ideally a loss function should not be arbitrary and defined in terms of amount

of money made or lost by a particular action a. For instance, in ranking the com-

monly used normalized discounted cumulative gain (NDCG) [Valizadegan et al.,

2009] is a combination of several ad hoc terms that attempt to give “something

reasonable.” If a human user is taking an action based on the predictive proba-

bility or the problem has not been defined in a way that makes the loss function

non-arbitrary we would like to evaluate the predictive probabilities on a proper

loss function such as the NLL. The NLL is invariant to nonlinear transformations

in the data and has other properties general loss functions do not. For instance,

in the case of predicting a continuous variable y the mean-square-error (MSE)

or mean-absolute-error (MAE) are different for y, y3, and log y. However, the

difference in NLL between two methods is the same in all these cases, which

makes the NLL a natural choice for cases when the loss function is arbitrary.

Transformation invariance is closely related to locality in loss functions: A loss

function is local if the loss when the true value is y if the loss only depends on

p(y|x) in an infinitesimal neighborhood of y. The NLL was believed to be the

only local and invariant proper loss function [Bernardo, 1979]; however, Dawid

191



B. FOUNDATIONAL ASPECTS

[2006] showed that under mild regularity conditions the Fisher loss is local and

invariant as well.

Unlike the misclassification rate in hard classification, it is often charged that

the log loss is not interpretable. Some rules of thumb for interpreting the log loss

have been developed (see Kass and Raftery [1995] and Murray [2007, Ch. 4]). If

we attempt to choose between two models MA and MB based only on N ′ test

set predictions with average loss LA and LB in nats per observation (or nats per

obs. for short), Bayes’ rule says that the posterior of probability of MA being

correct is:

P (MA|Test set performance) = σ(−N ′(LA − LB)) , (B.3)

where σ(·) is the logistic sigmoid and the prior on MA is P (MA) = 0.5. There-

fore, if we want to go from a prior probability on MA of 50% to 95%, we need

around N ′ = 300 if the difference in loss is 0.01 nats per obs., N ′ = 30 if the dif-

ference in loss is 0.1 nats per obs., and N ′ = 3 if the difference in loss is 1.0 nats

per obs. Therefore, a difference less than 0.01 nats per obs. is often said to be of

insignificant performance, 0.1 nats per obs. is good, and at 1.0 nats per obs. MA

is “blowing MB out of the water.” For continuous variables the log loss is only

invariant up to an additive constant and may be negative. Therefore, expressions

such as LA is twice LB make no sense: We need to think in terms of LA − LB.

If we measure the NLL in bits there are two other interpretations: 1) If we

designed optimal lossless compression codes CA and CB based on MA and MB,

respectively, then the difference in the compressed file sizes CA and CB will be

N ′(LA − LB). 2) Likewise, if a bookie set the odds of a gambling system based

on MB and the player based his on MA, with one bet made per test point,

then the expected number of rounds for the player to double his money would be

(LB − LA)−1 [Cover and Thomas, 2006, Ch. 6]. This property is invariant to the

game played subject to fairness-like regularity conditions.

In many applications algorithms are used in an interactive way with a hu-

man user. For instance, in topic modeling documents are clustered into logical

categories; Chang et al. [2009] introduced to machine learning the notion of eval-

uating algorithms by human users — on Mechanical Turk — as opposed to using
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a contrived loss function.

Benchmarking a time series method is not as straightforward as an iid method.

Because the predictions are independent in the iid case, we average the loss over

the data points. Suppose we have a training time series of length T and and test

set of length T ′. Unlike in the iid case, we do not split test and train randomly,

we select the later portion of the time series for test and the earlier part for

training to maintain causality and a more realistic evaluation. Doing otherwise

would allow for information leakage; using information from the future to predict

the past. We illustrate the difference in data splitting methodology between iid

data and time series data in Table B.1. For a time series method we report the

average error for a rolling forecast over a forecast horizon of length w:

L̂ :=
1

T ′

T+T ′∑
t=T+1

L(yt, at) , (B.4)

at = argmin
a

E [L(yt, a)] (B.5)

= argmin
a

∫
L(yt, a)p(yt|y1:t−w) dyt . (B.6)

We are left with an arbitrary prediction horizon parameter w. If we do not have a

reason to favor a particular w, the least arbitrary option is to use w = 1: the one-

step-ahead predictive. If we use NLL as the loss function and w = 1 we find that

L̂ = − log p(yT+1:T ′ |y1:T ). The prequential framework described in Dawid [1986]

is largely based on w = 1, most of which was inspired by evaluating probabilities

in weather prediction.

iid data � � ? ? ? � ? � ? � ? ? ? � ?
time series data � � � � � � ? ? ? ? ? ? ? ? ?

Table B.1: Illustration of difference of train (�) and test (?) split in time series
versus iid data scenarios. We show N = 6 training points and N ′ = 9 test points.
In the iid case we randomly picked the location of the test points. In the time
series case, we have all the training points followed by the test points.

Some exceptions to the standard iid testing procedure shown in Table B.1

exist. There is data set shift, where the test set input distribution p(x) may

be different than in training [Quiñonero-Candela et al., 2009]. Transduction,
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where the algorithm had full knowledge of the test set inputs [Gammerman et al.,

1998]. Finally, there is active learning, where the algorithm is allowed to query

the training inputs x it believes are most informative [Settles, 2010]. We do not

emphasize any three of these cases in the iid case. However, we do extensively

work with the time series analog of data set shift, change point detection.

B.2 Bayesian Machine Learning

A significant cohort of machine learning researchers borrows ideas from Bayesian

statistics. Bayesians are willing to use probability to express uncertainty over any

operationally defined quantity; sometimes these probabilities are interpreted as

states of belief or knowledge. Although used much earlier by Bayes [1763]; Laplace

[1774], Bayesian probability was operationally defined in terms of betting odds

by de Finetti [1931b]:

Definition 1. An agent gives an event A probability P (A) if it would bet $P (A)

when they receive $1 if A happens and nothing if it does not.

It has also been indirectly defined by common sense axioms of how someone

should rationally calculate states of knowledge by Cox [1946]. Quoting MacKay

[2003, Ch. 2] the Cox axioms are summarized by:

Definition 2. Axiom 1. Degrees of belief can be ordered; if P (A) is “greater”

than P (B), and P (B) is “greater” than P (C), then P (A) is “greater” than P (C).

[Consequence: Beliefs can be mapped onto real numbers.]

Axiom 2. The degree of belief in a proposition A and its negation Ā are related.

There is a function f such that

P (A) = f [P (Ā)] . (B.7)

Axiom 3. The degree of belief in a conjunction of propositions A, B (A and

B) is related to the degree of belief in the conditional proposition A|B and the

degree of belief in the proposition B. There is a function g such that

P (A,B) = g[P (A|B);P (B)] . (B.8)

194



This is in contrast to the frequentist alternative where only samples from

“repeatable” processes are treated as random and under the jurisdiction of prob-

ability theory. In this context, infinite trials form the definition of probability.

Definition 3. The probability of A, P (A), is the proportion of times event A

happens over an infinite number of identical trials:

P (A) := lim
N→∞

NA

N
. (B.9)

Bayesians charge that this is a metaphysical notion and it is meaningless

because (B.9) is not a real mathematical limit; it also conditions on untestable

notions of identical trials and independence.

In the Bayesian setting a probability distribution p(y1:N) ∈M(YN) on a set of

variables y1:N ∈ YN merely represents a state of knowledge about the variables.

Important terminology in Bayesian methods is the prior and posterior: The prior

is a probability distribution that expresses a knowledge before seeing any data

while the posterior is the updated state of knowledge after observing the data.

The prior on parameters are parameterized by hyper-parameters.

At first glance it seems as if we update our beliefs in a completely uncon-

strained way and there is no calculus to work with such quantities. However, de

Finetti [1931b] proved that unless we reason about a set of variables y1:N , e.g.

computing p(ya|yb), a, b ⊆ 1:N and use p to make bets, using the laws of prob-

ability we could be Dutch booked, meaning we will lose money for any possible

outcome. We can guarantee we will not be Dutch booked if and only if we make

bets using the rules of probability to represent our state of knowledge. No notion

of an infinite sequence of experiments is required. Leaving no room for Dutch

books is known as being coherent. Bayesian updating leaves a great deal of flex-

ibility in what prior is used, but in order to avoid Dutch books some prior must

be used. Note that although this was the first provable justification for Bayesian

probability this is by no means the only one (see Bernardo and Smith [2000] for

an in-depth summary). Foundational issues for Bayesian probability are found

throughout Jaynes [2003].

The work of de Finetti [1931a] and later Hewitt and Savage [1955] provided a

bridge between the two notions or probability. If we believe that our observations
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are exchangeable: p(y1:N) = p(yπ(1:N)) for any permutation π ∈ Π(1:N), then the

distribution on the data is mathematically equivalent to placing a distribution

on a hypothetical limiting distribution on y, q ∈ M(Y), and then observing the

data y independently from q. We do not believe we are more likely to see any

particular data set more than an arbitrary recording of it. In other words, we

can represent any exchangeable joint as

p(y1:N) = p(yπ(1:N)), ∀π,N ⇔ ∃µ(dq) s.t. p(y1:∞) =

∫ ∞∏
i=1

q(yi)µ(dq) , (B.10)

where µ(dq) represents a prior distribution over the sampling distribution q. We

can show via a well-defined mathematical limit that the empirical distribution on

an infinite sequence on y’s will approach q:

lim
N→∞

p(P(y1:N)) = µ(dq) , (B.11)

where P(y1:N) represents the empirical distribution. This notion of an infinite

sequence of experiments is legal within the Bayesian framework because it is

the mathematical limit of a probability distribution: We are not defining prob-

ability in terms of physical limit on an infinite number of events. However, for

exchangeable observations the two formulations are mathematically equivalent.

Note that the distribution must be infinitely exchangeable; meaning, exchange-

ability applies for any N with joint distributions consistent under marginalization.

Finitely exchangeable versions are derived in Diaconis and Freedman [1980].

An often overlooked aspect of the de Finetti theorem (B.10) is that it requires

us to consider distributions on infinite dimensional θ. If we restricted ourselves to

finite dimensional θ (parametric models) the de Finetti theorem would be false.

This division in statistics has consequences in the fMRI example from Chap-

ter 1. If we are building a celery detector, the hypothesis testing (frequentist)

classifier would be designed such that the probability of classifying the image as a

celery stimulus given it is really from an airplane is less than α, usually 5% (this

is known as a false positive rate). In the Bayesian celery detector, we say the

probability that it is a celery, given the image we observed, is x%. The substantive

difference between the two statements is often puzzling to those not well-versed
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in probability.1 The difference is made most clear by extreme case reasoning. No

unique procedure is defined for the frequentist celery detector, a celery detector

that completely ignored the data and alerted randomly 5% of the time would sat-

isfy the frequentist statement. No unique procedure is defined for the Bayesian

change point detector either; in the Bayesian change point detector the designer

must first specify a prior probability distribution of the mapping from an image

to the probability of the stimulus being celery. Once the prior assumptions are

specified, there then exists a uniquely optimal procedure for classifying the fMRI

images. Also note that the hypothesis testing statement is asymmetric, we would

get different answers depending on if we consider a false positive to be saying it

is a celery image when it is an airplane or vice-versa.

The division has a slightly different context in machine learning. Machine

learning is concerned about test set performance, so we would like to specify al-

gorithms that make the best predictions on new data. However, it is not possible

to say before being given a data set what the best algorithm will be. The “no free

lunch theorem” says that algorithms that perform better on one data set will lose

some performance on others. Bayesian machine learning cares about achieving

optimal performance on average under our prior assumptions. By contrast, fre-

quentist analysis is typically concerned with asymptotic or minimax performance:

How well does the algorithm perform in large training sets assuming nature is ad-

versarial. In other words, how well does an algorithm perform in the worst-case;

the true generating distribution has been selected to trick the algorithm.

In machine learning practitioners from domain areas often ask “if it works”

why do we care about such philosophical arguments. Indeed the predictive per-

formance centric nature of machine learning has led to a more pragmatic stance.

All properties of an algorithm should somehow be translatable to how well it

performs on a test set; any other considerations lead to unresolvable philosoph-

ical wars that preoccupied statistics for decades. Even non-Bayesian theories of

machine learning such as probably approximately correct (PAC) [Valiant, 1984]

1 Benjamin Franklin used the Bayesian formulation as he once said “it is better [one hundred]
guilty Persons should escape than that one innocent Person should suffer.” [Smyth, 1905, March
14, 1785] Implying that P (Innocent|Evidence) ≤ 0.01 for conviction. The hypothesis testing
statement would have been: For every hundred innocent persons tried the number convicted
should be less than or equal to one. Or equivalently, P (Evidence|Innocent) ≤ 0.01.
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and Vapnik-Chervonenkis (VC) [Vapnik and Chervonenkis, 1971] analysis state

their results in terms of how well the algorithm will perform in the test set for a

finite (real) training set. The only difference being that the non-Bayesian analysis

assumes the “true” data generating mechanism has been chosen in an adversarial

manner. A summary of the various optimality criterion are shown in Table B.2.

Machine Learning Statistics
Bayesian Bayes’ risk in data space Bayes’ risk in parameter space

Eθ,D[L(y?, a)] Eθ,D[L(θ, a)]
frequentist minimax risk in data space minimax risk in parameter space

maxθ ED[L(y?, a)] maxθ ED[L(θ, a)]

Table B.2: Summary of optimality criteria in Machine Learning and Statistics.
The divisions between machine learning and statistics are somewhat fuzzy and
this table is one way to summarize the difference. However, too boldly promul-
gating this table as the distinction would invite controversy. Prediction of the
population quantity θ can typically be operationally defined as the limiting case
predicting value of consistent estimator for large data set: limN→∞ θ̂(D). We
define D := {X, Y, x?, y?} as the combination of the training and test set, inputs
and outputs. The Bayesian methods will determine a from predictive probabil-
ities using (B.1). In the frequentist criterion it is entirely up to the method on
how to predict a.
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