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Abstract  

At the start of October 2016 Japanese cell biologist Yoshinori Ohsumi was awarded the 

Nobel Prize in Physiology or Medicine ‘for his discoveries of mechanisms for autophagy’, 

autophagy being an intracellular degradation pathway that helps maintain cytoplasmic 

homeostasis. This commentary discusses Ohsumi’s Nobel prize-winning work in context, 

before explaining the clinical relevance of autophagy.  
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Introduction 

Macroautophagy (hereafter referred to as autophagy) is an important means of maintaining 

cellular homeostasis by trafficking cytoplasmic material for enzymatic degradation in the 

lysosome. In mammalian cells, the process involves formation of a cup-shaped, double-

membraned phagophore (or isolation membrane), which closes around cytoplasmic material 

to form a spherical, double-membraned autophagosome (Figure 1A). The autophagosome 

outer membrane ultimately fuses with a lysosome to form an autolysosome, resulting in 

degradation of the inner autophagosome membrane and sequestered cargo. Autophagy is both 

a constitutive process and subject to dynamic regulation by a range of physiological signals. 

Notably, autophagy is induced by nutrient starvation. The substrates of autophagy are 

extremely diverse, ranging from organelles such as mitochondria, through to aggregate-prone 

proteins and invading microorganisms.   

Characterisation of autophagy in yeast  

Yoshinori Ohsumi’s first contribution to autophagy research was demonstrating that 

autophagy in yeast is similar to that in mammalian cells (Figure 1B). He and colleagues 

observed that when the yeast Saccharomyces cerevisiae undergoes nutrient starvation, 

cytoplasmic components are delivered to the vacuole, equivalent to the mammalian 

lysosome, in single-membraned autophagic bodies.(1) Later, the group used electron 

microscopy to identify and characterise double-membraned autophagosomes as the 

precursors of autophagic bodies in yeast.(2) Autophagic bodies are the remains of 

autophagosomes after fusion with the vacuole; these intermediate structures are visible in 

yeast, but not in mammalian cells.   
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Early descriptions of autophagy in mammalian cells  

By the time Ohsumi began working in yeast, the study of autophagy in mammalian cells had 

already been underway for several decades. An earlier recipient of the Nobel Prize in 

Physiology or Medicine, Christian de Duve is considered by many the founding father of 

autophagy research.(3) de Duve coined the term ‘autophagy’ in 1963 to describe single- and 

double-membraned vacuoles containing cytoplasmic components observed by electron 

microscopy.(4) Per Seglen and colleagues made major contributions to the emerging field of 

autophagy. For example, Seglen helped characterise the cup-shaped phagophore, which 

closes to form the autophagosome.(5) 

Regulation of mammalian autophagy 

The response of autophagy to various physiological stimuli was also investigated in these 

early days, with de Duve and colleagues reporting that administering glucagon to rats 

upregulates autophagy in the liver.(6) This observation fits with autophagy induction in 

response to nutrient starvation as a means of producing amino acids for gluconeogenesis and 

other metabolic pathways; a hypothesis that was borne out almost a decade later, when amino 

acid depletion was shown to upregulate autophagy in both cultured human cells and rat 

liver.(7, 8) Analysis of the signalling events linking nutrient starvation to autophagy 

induction was to follow. A breakthrough came when Alfred Meijer’s group, working in 

hepatocytes isolated from starved rats, noted that phosphorylation of ribosomal protein S6 

paralleled the decrease in autophagy observed when amino acids were added to the culture 

medium. The immunosuppressive drug rapamycin, which indirectly inhibits S6 

phosphorylation by antagonising mTOR (mammalian target of rapamycin) function, was then 

shown to induce autophagy.(9) This work uncovered the role of mTOR signalling in 

autophagy regulation and established rapamycin as the first drug in the expanding class of 

autophagy inducers.   
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Molecular mechanisms of autophagy  

The morphology and regulation of autophagy were therefore beginning to be understood, yet 

none of the molecular machinery was known. At this point the Ohsumi and colleagues 

performed their first pioneering screens. The group used yeast lacking vacuolar proteases, 

which normally accumulate autophagic bodies under nutrient starvation, to identify fifteen 

autophagy-defective mutant yeast strains that failed to form autophagic bodies. In this way, 

they initially identified fifteen novel autophagy genes (now referred to as ATG genes).(10) 

Shortly afterwards, other groups such as those of Daniel Klionsky and Michael Thumm 

published genetic screens in yeast, which contributed to the growing list of ATG genes.(11-

13) ATG1 was the first such gene to be characterised by Ohsumi and colleagues. The kinase 

activity of the encoded protein (Atg1p) was found to be essential for autophagy, since genetic 

reconstitution with ‘kinase-dead’ mutant ATG1 cannot rescue the autophagy-deficient 

phenotype of ATG1 mutant yeast. Moreover, the phosphorylation status of Atg1p was shown 

to be regulated by nutrient availability, leading the authors to speculate (as has since been 

established) that the protein plays a key role in autophagy induction in response to nutrient 

starvation.(14) The Ohsumi group also demonstrated that inhibiting TOR with rapamycin 

induces autophagy in yeast, as previously shown in mammalian cells,(9) and that TOR 

signalling is upstream of the Atg proteins.(15) This suggests significant commonalities 

between autophagy regulation in yeast and mammalian cells, which have subsequently been 

utilised my many in autophagy research. Indeed, much pioneering work has been conducted 

in mammalian systems by Tamotsu Yoshimori and Noboru Mizushima, both of whom trained 

with Ohsumi.  

Ubiquitin-like conjugation systems in autophagy  

Investigations then began into how the Atg proteins interact. Despite having no apparent 

homology to ubiquitin, Atg12p was shown to covalently bind Atg5p in much the same way as 
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ubiquitin tags substrates (Figure 2A). In wild-type yeast most Atg5p/Atg12p was found as 

Atg5p-Atg12p conjugate, yet this was not the case in ATG7 and ATG10 mutant yeast. The 

Ohsumi group generated a series of yeast strains with targeted mutations to discover how this 

conjugate forms; first the carboxyl-terminal glycine of Atg12p is activated by Atg7p, then 

Atg12p is transferred to Atg10p and finally onto Atg5p.(16, 17) Around the same time 

Klionsky’s lab showed that Atg7p functions at the substrate sequestration step of 

autophagosome formation.(18) These studies lead to identification of the first mammalian 

ATG genes; human ATG12 and ATG5, which conjugate via reactions analogous to those in 

yeast and are expressed across the full range of human tissues.(19) Next, Ohsumi and 

colleagues described Atg16p as the third member of the Atg5p-Atg12p complex. The ATG16 

gene had been missed in their initial screen, but was identified via a secondary screen for 

Atg12p binding partners. Atg16p was shown to bind Atg5p directly (and thereby Atg12p 

indirectly) and play a key role in autophagy initiation, possibly by forming Atg5p-

Atg12p/Atg16p multimers.(20) 

Two years later a second ubiquitin-like conjugation system was discovered (Figure 2B), with 

Atg8p as the ubiquitin-like protein.(21) Ohsumi and colleagues had in fact already identified 

Atg8p as a marker of autophagic structures in yeast(22) and this new discovery explains how 

the hydrophilic protein Atg8p is able to associate with autophagic membranes. The reaction 

begins with Atg4p cleaving nascent Atg8p to reveal a carboxyl-terminal glycine.(21) Next 

Atg8p is activated by Atg7p (just as Atg12p), transferred to Atg3p and finally onto the 

membrane component phosphatidylethanolamine.(23) This lipidation reaction, the first 

example of a protein conjugating to a membrane phosphoglycerolipid, is central to membrane 

dynamics in autophagy. The Yoshimori lab then identified LC3 (short for microtubule-

associated protein 1 light chain 3) as the mammalian homologue of Atg8p. Two forms were 

described; non-lipidated LC3-I in the cytosol and phosphatidylethanolamine-conjugated LC3-
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II on autophagic membranes.(24) The amount of LC3-II was found to parallel 

autophagosome number and has gone on to become the canonical readout of autophagy in 

mammalian cells.(25) 

Autophagy in health and disease  

With Ohsumi’s work having facilitated the molecular dissection of autophagy, several groups 

began to focus on clinically-relevant aspects of the process. The seminal work linking 

autophagy to cancer was performed by Beth Levine’s group, who identified Beclin 1 as the 

human homologue of yeast Atg6p. BECN1 is described as a tumour suppressor in breast 

cancer, with monoallelic deletions and decreased expression observed in patient samples. 

Genetic reconstitution of MCF7 human breast cancer cells, which do not express detectable 

Beclin 1, is reported to restore autophagy induction in response to nutrient starvation and 

promote a less malignant phenotype.(26) In this way, autophagy is suggested to inhibit 

tumorigenesis. Over time the picture has become more complicated, since while maintenance 

of cellular homeostasis by autophagy can protect against malignant transformation, 

autophagy also drives resistance to conditions that cause cell death (hypoxia, for instance) 

and thereby promotes metastatic tumour progression.(27) Such complexity is illustrated by 

the roles of established oncogenes and tumour suppressors in autophagy. XIAP and cIAP1 

(overexpressed in several human cancers) induce autophagy by upregulating transcription of 

Beclin 1(28) and reduced expression of the proto-oncogene MYC impairs autophagosome 

formation.(29) On the other hand, the tumour suppressor PTEN positively regulates 

autophagy.(30) 

Autophagy is also implicated in infection and immunity, with the degradation of intracellular 

bacteria by autophagy (referred to as xenophagy) being possibly the most ancient form of 

defence against invading microorganisms. Xenophagy was first studied in the labs of 
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Yoshimori and Vojo Deretic. The Yoshimori group demonstrated that autophagy could 

eliminate group A Streptococcus from infected HeLa cells(31) and this was followed almost 

immediately by Deretic and colleagues’ report that autophagy induction in macrophages 

infected with Mycobacterium tuberculosis promotes clearance of the pathogen.(32) 

Autophagy is now thought to have additional immunologic roles, such as modulating 

inflammation and influencing lymphocyte development and function.(33) For instance, 

single-nucleotide polymorphisms in the core autophagy gene ATG16L1 have been identified 

by genome-wide association studies as susceptibility loci for Crohn’s disease,(34, 35) with 

Atg16L1-deficient mice showing much worse colitis pathology compared with wild-type 

controls.(36) 

Finally, autophagy has been identified as a potential therapeutic target in neurodegenerative 

disease. The functional link between autophagy and neurodegeneration was first established 

when we published that upregulating autophagy promotes the degradation of polyglutamine-

expanded huntingtin, the toxic species in Huntington’s disease.(37) This finding has since 

been translated into animal models, with autophagy induction ameliorating neurodegenerative 

pathology in a mouse model of Huntington’s disease.(38) A protective role for autophagy has 

subsequently been described in many more neurodegenerative diseases, predominantly via 

the clearance of intracytoplasmic aggregate-prone proteins, such as alpha-synuclein in 

Parkinson’s disease and Tau in various neurodegenerative conditions.(39) Impaired 

autophagy has also been shown to predispose to neurodegeneration, as highlighted by mouse 

studies demonstrating autophagy is essential for neuronal survival. Mice lacking Atg7 in the 

central nervous system suffer massive neuronal loss in the cerebral and cerebellar 

cortices(40) and those lacking Atg5 develop progressive motor function deficits, which are 

attributed to neurodegeneration.(41) Several human neurodegenerative conditions have since 

been linked to autophagic dysfunction, some directly attributable to mutations in autophagy 
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genes. Most recently, a homozygous missense mutation in ATG5 was identified that impairs 

autophagy and causes ataxia with developmental delay in affected patients.(42) 

Concluding remarks 

Building on what was already known about the morphology and regulation of autophagy in 

mammalian cells, the pioneering work Ohsumi performed in yeast gave researchers a toolkit 

with which to dissect the molecular machinery of autophagy. This has facilitated greater 

understanding of autophagy in human health and disease, especially in the fields of cancer, 

immunology and neurodegeneration. The hope is that autophagy will become an ever more 

tractable therapeutic target, with autophagy modulators moving into mainstream clinical 

practice.   
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Figures  

Figure 1: Autophagy pathway in mammalian cells and yeast. (a) In mammalian cells, the 

phagophore closes around cytoplasmic material to form a spherical, double-membraned 

autophagosome. The autophagosome outer membrane fuses with a lysosome to form an 

autolysosome, resulting in degradation of the inner autophagosome membrane and 

sequestered cargo. (b) The pathway is similar in yeast, except that the autophagosome outer 

membrane fuses with the vacuole. This fusion event forms single-membraned autophagic 

bodies within the vacuole that are degraded, together with the sequestered cargo.   
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Figure 2: Ubiquitin-like conjugation systems in yeast autophagy. (a) The first conjugation 

reaction, the carboxyl-terminal glycine of Atg12p is activated by Atg7p. Atg12p is then 

transferred to Atg10p and finally onto Atg5p. The final Atg5p-Atg12p/Atg16p complex is 

formed when Atg16p binds Atg5p.  (b) In the second conjugation reaction, Atg4p first 

cleaves nascent Atg8p to reveal a carboxyl-terminal glycine. Atg8p is then activated by 

Atg7p, transferred to Atg3p and finally onto the membrane component 

phosphatidylethanolamine (PE). Homologous proteins undergo equivalent conjugation 

reactions in mammalian autophagy. 

Figure 3: Timeline of autophagy research. Schematic showing how the autophagy field has 

developed; from when the term was first coined, to current research on autophagy in human 

health and disease. 
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