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Abstract

Mouse embryonic stem (ES) cells have played a crucial role in studying developmental pro-
cesses and gene function in vivo. They are extremely useful in the generation of transgenic
animals as they can be genetically manipulated and subsequently microinjected into blastocyst
stage embryos, where they combine with the inner cell mass and contribute to the developing
embryo. Some of the resulting pups are chimaeric, consisting of a mixture of cells derived from
the host blastocyst and the injected ES cells. We have identified several ES cell clones arising
from gene targeting experiments with an impaired capacity to generate viable chimaeras. When
injected into blastocysts, these clones cause embryonic death during mid to late gestation, sug-
gesting that the cells are able to contribute to the embryo but interfere with normal embryonic
development. The aim of this work was to identify the underlying changes in the transcriptome,
epigenome or cell surface markers that have occurred in these compromised ES cells and to
further define the developmental phenotype of the chimaeric embryos. Different stages during
development were analysed and whereas there was little difference in embryonic death at
gestational day e13.5, there was a significant decrease in embryos surviving to gestational day
e17.5. Additionally, severe haemorrhaging was observed in all the dead embryos and small foci
of haemorrhaging could also be seen in a number of embryos that were still alive. This was also
observed at e13.5, albeit to a less severe extent. Using RNA sequencing to discover differences
in the transcriptome between control ES cells and the compromised ES cells, five genes were
identified that were downregulated in the compromised cells. Four of these, Gtl2, Rtl1as, Rian
and Mirg are all located in the imprinted Dlk1-Dio3 region on chromosome 12 and are normally
expressed from the maternal genome. This pattern was also validated in tissues from e17.5
chimaeric embryos. The expression of this locus is to a large extent regulated by a differentially
methylated region located approximately 13kb upstream of the Gtl2 promoter, the IG-DMR.
Whereas this is usually only methylated on the paternal copy, in the compromised ES cells both
the paternal and the maternal copy were fully methylated, likely causing the silencing of Gtl2,
Rtl1as, Rian and Mirg. Using the DNA methyltransferase inhibitor 5-azacytidine, expression of
Gtl2 could be rescued. Injection of those 5-azacytidine treated cells into blastocysts did partially
rescue the embryonic lethal phenotype. Additionally, cell surface markers were analysed in a
phenotypic screen using phage display. NGS analysis of the phage outputs indicates that there
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may be additional differences in cell surface markers between the control and compromised ES
cell clones, but their specific details remain to be identified.
Overall, we have identified the maternally expressed genes of the Dlk1-Dio3 region as markers
that can distinguish between ES cells with normal or compromised developmental potency and
propose to include these genes in the pre-blastocyst injection screening routine for experiments
involving the production of chimaeras or genetically modified mouse strains.
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Chapter 1

Introduction

1.1 A Brief History of Mouse Embryonic Stem Cells

The concept of "stem cells" has been around since at least the late nineteenth century when the
German biologist Ernst Haeckel used it to describe the unicellular organisms that he believed
to be the ancestors to all multicellular organisms [1]. Shortly after that, the term stem cells was
used in the context of embryology for the first time [2, 3]. However, it was not until the mid
twentieth century that scientists were starting to think about embryonic stem cells as we know
them today.
In the 1950s, Leroy Stevens set the scene with his pioneering work on testicular teratocarcino-
mas. Teratocarcinomas are tumours that occur predominantly in the gonads and can contain
a wide mixture of different tissue types derived from all three germ layers, including fully
differentiated structures like muscle, hair or bone. Stevens discovered that approximately 1%
of males of a particular mouse strain, the inbred 129 strain, develop these tumours sporadically
in their testes and that these can be maintained by serial transplantation [4]. He then proceeded
to show that grafting the genital ridges of developing embryos into the tissues of adult mice
can efficiently induce teratocarcinoma formation. He further noted that some structures in
the tumours resembled early embryo development [5]. This work was the first evidence that
teratocarcinomas are of embryonic origin. Supporting this theory, another important study
demonstrated that single undifferentiated tumour derived cells were able to fully regenerate
teratocarcinomas when injected into adult mice [6]. However, the same was not possible using
differentiated cells. These findings, as well as the close morphological resemblance of the
undifferentiated tumour cells and the pluripotent cells of the early pre-gastrulation mouse
embryo, led to the experiments showing that grafting early mouse embryos to extra-uterine
sites gives rise to retransplantable teratocarcinomas [7, 8]. It was thus argued that teratocar-
cinomas originate from the pluripotent cells (or stem cells) of the early mouse embryo and
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that undifferentiated teratocarcinoma cells would be a good model to study pluripotency and
differentiation.
Within the next couple of years the focus of the field was, therefore, to establish cell lines
of the undifferentiated tumour cells, also called embryonal carcinoma (EC) cells. Although
somewhat successful, EC cell cultures were very variable and pluripotency was often lost over
a few passages. This was improved when EC cells were cultured on a layer of mitotically
inactivated mouse embryonic fibroblasts (MEFs or feeder cells) [9]. Subsequently, a number of
groups reported that it was possible to make chimaeras from EC cells by injecting them into
the blastocoel cavity of a host embryo [10–12].
However, deriving EC cells from teratocarcinomas is a lengthy process and the similarity
between EC cells and the pluripotent embryonic cells remained questionable. Despite their
capacity to contribute to chimaeras, these are usually relatively low contribution chimaeras and
EC cells never contribute to the germline. To undergo this problem, both Martin Evans and
Gail Martin independently set out to derive pluripotent embryonic stem (ES) cell lines directly
from the embryo [13, 14]. They used the feeder cell system previously established for the
culture of EC cells to culture whole blastocysts or just the inner cell mass (ICM) of blastocyst
stage embryos, respectively. The derived ES cells have the same characterstics as EC cell lines:
they can be maintained as pluripotent cells in culture, they can recover teratocarcinomas upon
injection into adult mice and form tissues of all three germ layers. But more importantly, unlike
EC cells, they are able to contribute to high contribution chimaeras and also populate the germ
line [15]. These discoveries were the beginning of modern ES cell biology.

1.2 The Relationship Between ES Cells and the Early Embryo

We now know that ES cells are derived from the epiblast compartment of the developing
embryo, that normally goes on to form the embryonic tissues (Figure 1.1). This epiblast
lineage is established during preimplantation development, when the developing blastomeres
undergo two lineage segregation events (Figure 1.1A). The first lineage decision occurs at the
8-cell stage at embryonic day e2.75 and begins with compaction and polarisation of the cells.
During this process, cells on the outer part of the blastomere form tight junctions, leading
to a separation of these cells and thereby providing essential spatial cues which enable cell
polarisation and a clear distinction between inside and outside. The outer cells will have a bias
towards the trophectoderm lineage, giving rise to the placenta, whereas the ICM will later give
rise to the embryo proper as well as yolk sac, allantois and amnion [16]. The trophoblast lineage
is generally identified by Eomes (Eomesodermin) and Cdx2 (Caudal type homeobox 2) [17]
whereas the ICM expresses Oct4 (Octamer binding protein 4, also known as Pou5f1) [18, 19]
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Fig. 1.1 Development of the early embryo (A) Schematic of the morphological changes that
occur in the early embryo from the zygote to the blastocyst stage. ES cells can be isolated from
the ICM or Epi compartment of blastocysts. ICM: inner cell mass, TE: trophectoderm, Epi:
epiblast, PrE: primitive endoderm. (B) Development and lineage segregation from the zygote
into the three main germ layers.

and Nanog [20]. At e3.25, the trophectoderm starts to secret a fluid into the intercellular space
of the early blastocyst, inducing blastocoel formation and localisation of the ICM to one side
of this cavity. Through this process the distinctive blastocyst structure is created. During the
second lineage decision, the ICM partitions into the second extraembryonic lineage, called the
primitive endoderm (PrE), and the preimplantation epiblast. Only the epiblast will contribute
to embryonic tissues, whereas the PrE goes on to form the yolk sac [21, 22]. Separation of
these two lineages begins at e3.5 and is complete at e4.5. Initially, the ICM is a heterogeneous
population of cells displaying different gene expression patterns. However, at e4.5 there is a
clear distinction of epiblast and PrE as the latter forms an epithelial layer at the boundary of
ICM and blastocoel. The PrE can be identified by the expression of the markers Gata-4 and
Gata-6 (GATA binding protein 4/6) [23], whereas the epiblast expresses Nanog [24].

1.3 Pluripotency Is Maintained by a Transcription Factor
Network

ES cells are generally defined as pluripotent cells that have the capacity to self renew in culture
almost indefinitely and to contribute to all three germ layers (Figure 1.1B) both in vivo as well
as in vitro. ES cells as well as epiblast cells in the embryo express a network of transcription
factors that act together to sustain this pluripotent state. They work in such a way that they
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promote cell proliferation and at the same time prevent the cells from differentiating. Previous
studies have identified three transcription factors as the key players in this complex network,
OCT4, SOX2 (SRY-Box 2) and NANOG.

1.3.1 OCT4

OCT4 is a POU-domain transcription factor that is expressed throughout the embryo until the
first lineage segregation, after which its expression is restricted to the ICM and later to the
epiblast cells only. It is never expressed in the trophectoderm cells. In fact, one of its roles during
early development is thought to be the inhibition of differentiation into trophectoderm. First
evidence for this was shown by Nichols et al. in 1998 [19] who showed that the ICM cells of
Oct4-deficient embryos are not pluripotent but instead differentiate into the trophoblast lineage.
Similarly, reduced Oct4 gene expression in ES cells causes differentiation into trophectoderm
[25]. It was also shown that the precise level of expression is incredibly important. Not just
reduced Oct4 levels affect embryo development, but a 1.5-fold increase can already cause ES
cell differentiation into the mesoderm or endoderm lineages.

1.3.2 SOX2

Expression of Sox2, which encodes a SRY-box transcription factor, can be detected in all cells
of the early embryo from the oocyte to the blastocyst [26]. Loss of Sox2 results in a phenotype
that is almost identical to that of Oct4-deficient embryos [27, 28]. It is a binding partner of
OCT4. This was first discovered when SOX2 was identified to activate Fgf4 (Fibroblast growth
factor 4) expression together with OCT4 [29, 30]. Since then, a number of target genes of
OCT4 and SOX2 have been identified, including themselves, as well as the last of the three
core pluripotency genes Nanog.

1.3.3 NANOG

NANOG is a homeobox-containing transcription factor. Unlike OCT4 and SOX2 its expression
in the early embryo is restricted to the ICM and the epiblast and declines just before implantation.
Both in vivo and in vitro, Nanog-deficient cells are not pluripotent. Nanog-null embryos develop
normal until e3.5 but after that the embryos are lacking the epiblast and extraembryonic tissues
develop in a disorganised structure. ES cells lacking Nanog expression differentiate into parietal
endoderm-like cells [31, 32]. It is believed that the role of NANOG is the inhibition of the
Gata4 and Gata6 genes which are important for primitive endoderm development [31].
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Fig. 1.2 Signalling pathways in the maintenance of pluripotency during ES cell culture
BMP signalling through SMAD4/6 and the RAS/RAF/MEK/ERK pathway affect cell differ-
entiation. LIF signalling both inhibits differentiation and activates pluripotency genes. The
canonical WNT signalling pathway is involved in maintenance of pluripotency. Shown in red
are the trophic factors that are added to ES media: LIF, the MEK1/2 inhibitor PD0325901 and
the GSK3 inhibitor CHIR00921.

1.3.4 Other Factors

OCT4, SOX2 and NANOG are the master regulators at the heart of the pluripotency network.
On the one hand they act through a positive feedback mechanism to regulate each other and
on the other hand they work together to regulate downstream gene expression by activating
genes involved in maintaining the pluripotent state while at the same time repressing genes
that are important for differentiation. A number of other genes have been identified that are
very important for establishing and maintaining the pluripotent state, including Esrrb (Estrogen
related receptor beta), Stat3 (Signal transducer and activator Of transcription 3), Klf4 (Kruppel
like factor 4), Rex1 (RNA exonuclease 1 homolog) and many more, but most of these are
regulated but at least one of the core pluripotency markers OCT4, SOX2 or NANOG.
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1.4 Maintaining ES Cells in Culture

In vivo, the pluripotent state is very tightly regulated and it only really exists for approximately
half a day. In vitro, external factors are needed to maintain pluripotency and self renewal of ES
cells for a prolonged period of time. The first ES cell lines were cultured on MEFs in serum
containing media. Since then a few different methods have evolved for culturing ES cells.
These are summarised in Figure 1.2.

1.4.1 Serum/LIF Media

The first ES cells [13, 14] were cultured on a monolayer of MEF feeder cells in serum-based
media conditions. It was quickly suggested that the feeders produce and provide one or more
trophic factors that help maintain the ES cells’ pluripotent state. This was later identified to
be Leukaemia inhibitory factor (LIF) [33, 34]. It was shown that in the presence of serum
containing medium, LIF is sufficient to maintain pluripotency in ES cells in the absence of
feeders.
LIF belongs to the IL6 family of cytokines. Upon binding to its receptor, the glycoprotein
130 (gp130) is recruited and forms a heterodimer with the LIF receptor which leads to the
recruitment and activation of JAKs (Janus-associated kinases) as well as STAT3. STAT3 is then
activated by phosphorylation through JAK and forms homodimers which are translocated to the
nucleus where they function as transcription factors. Amongst a number of other pluripotency
related genes STAT3 also activates Nanog expression and thereby positively regulates the
expression of the core pluripotency gene network. Importantly, it also acts as an inhibitor of
differentiation into non-neuronal lineages.
Although there is no doubt that LIF is an extremely important regulator to maintain ES cell
pluripotency in culture, it is not sufficient to do so on its own. In the absence of serum, ES
cells will differentiate even in the presence of LIF [35], suggesting that the serum contains
additional factors that are required to maintain pluripotency in culture. Ying et al. [35] have
shown that replacing serum with bone morphogenic protein (BMP) is sufficient to block ES
cell differentiation. BMP signals through SMAD4/6 (SMAD family member 4/6) to upregulate
the expression of Id (Inhibitor of differentiation) genes. These suppress the differentiation of
ES cells into neuronal lineages. So together the main function of LIF and serum (or BMP)
seems to be to inhibit ES cell differentiation, thereby helping to maintain pluripotency.
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1.4.2 2i Media

Recent efforts have been looking into more drivers for ES cell differentiation. This has led to
the development of defined ES cell media conditions (also called 2i media). It has been shown
that ERK (Extracellular-signal-regulated kinase) signalling positively affects the cells’ ability
to respond to differentiation cues [36] and Erk2 mutant ES cells only need the addition of LIF
to maintain pluripotency. Similarly, inhibition of MEK1/2 (Mitogen-activated protein kinase
kinase 1/2) upstream of ERK1/2 combined with LIF supplementation is sufficient to maintain
ES cells in culture without differentiation [37].
Another pathway that has been implicated to be important for the balance between ES cell
pluripotency and differentiation is the Canonical WNT signalling pathway acting through
β -CATENIN [38–40]. In the absense of WNT ligands, cytoplasmic β -CATENIN is phosphory-
lated through action of GSK3 (Glycogen synthase kinase 3) and thereby marked for degradation.
In the presence of WNTs or the absence of GSK3, β -CATENIN is stabilised and moves to
the nucleus. In the nucleus, it interferes with transcription factor TCF3-binding (Transcription
factor 3) to promoters of important pluripotency genes [41]. TCF3 has a repressive function
and by interfering with its DNA binding, β -CATENIN activates the expression of pluripotency
genes. Ying et al. show that inhibition of GSK3, together with LIF can maintain ES cell
pluripotency [37]. Additionally, LIF is dispensable when combining the two inhibitors of
MEK1/2 and GSK3 (2i media). None of these require the addition of serum or BMP.

1.5 Epigenetic Regulation of Pluripotency and Differentia-
tion

The pluripotency gene network in the epiblast and in ES cells is remarkable in that it tightly
regulates the expression of genes required for self renewal but represses genes that will become
active during differentiation. However, they are not the only key players. Epigenetics also plays
a vital role in establishing and maintaining pluripotency as well as controlling differentiation
and lineage specification. Two main types of epigenetic modifications exist in ES cells -
DNA methylation and histone modifications. Additional epigenetic mechanisms include RNA-
mediated regulation of gene expression, however it is beyond the scope of this thesis to discuss
these.
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1.5.1 DNA Methylation

DNA methylation entails the addition of a methyl group to the cytosine of a CpG dinucleotide.
This is done with the help of different DNA methyltransferases (DNMTs). Most CpGs in the
genome are methylated. Unmethylated CpGs are mostly clustered in so called CpG islands near
promoter regions where they regulate gene expression [42]. Methylation of these CpG islands
is usually associated with gene silencing whereas unmethylated CpG islands are associated
with active gene expression [43]. This is because for transcription factors to be able to activate
gene expression, the promoter needs to be accessible and DNA methylation physically blocks
the DNA.
Directly after fertilisation, the DNA is demethylated genome wide (with the exception of im-
printed genes, which will be discussed later in this section) and becomes remethylated shortly
before implantation, when cell differentiation is initiated (Figure 1.3). DNA methylation
reaches its minimum at the blastocyst stage [44]. This is reflected in the fact that ES cells have
very low levels of DNA methylation and also have a very active transcriptome. An incredibly
high number of genes is expressed, but most of them only at low levels. It is believed that in the
embryo and in ES cells, DNA methylation is not important for the establishment and mainte-
nance of pluripotency but more for lineage segregation and differentiation. Upon differentiation
the promoters of Oct4 and Nanog become hypermethylated and their transcription is silenced.
ES cells that do not express any DNMTs are viable and can proliferate and self renew, but they
are unable to differentiate as they cannot upregulate genes required for germline specification,
nor silence pluripotency factors such as Oct4 and Nanog [45, 46].

1.5.2 Histone Modifications

The second main type of epigenetic modifications are histone modifications. DNA is wrapped
around structural and functional proteins called histones. This tight packaging is called chro-
matin. Like DNA methylation, histone modifications can alter gene expression by changing
chromatin structure. However, epigenetic regulation of gene expression by histone modifica-
tions is much more complex. Types of modifications include methylation, phosphorylation,
acetylation and ubiquitylation. Depending on the type of modification as well as the histone
and amino acid that are modified, gene expression can either be activated or silenced. For
example, tri-methylation of the histone 3 lysines 9 and 27 (H3K9me3 and H3K27me3) are
generally associated with a closed, repressive chromatin state whereas H3K4me3 and H3K9
acetylation (H3K9ac) are mostly associated with an open and accessible chromatin state which
allows transcription factors to bind and activate gene expression.
In ES cells, most of the core pluripotency transcription factors carry the active histone mark
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Fig. 1.3 Waves of DNA demethylation A first wave of demethylation occurs in the primor-
dial germ cells (PGCs). Parent-specific methylation patterns are imprinted during germ cell
development. Shortly after fertilisation, a second wave of demethylation occurs and a new
methylation signature is established around implantation. Imprinted genes with parent-specific
methylation patterns are spared from the second round of demethylation (dotted lines). Red
line is the female genome, blue line is the male genome.

H3K4me3, allowing for their active transcription. On the other hand, genes that are not required
until later during development are usually stably repressed. Interestingly, most genes that are
important for lineage specification in the pre- and peri-implantation embryo usually carry both
repressive as well as a smaller number of activating histone marks. This so called bivalent mark
keeps them in a state that allows for fast activation upon differentiation from pluripotent cells
[47].

1.5.3 Imprinted Gene Expression in Embryo Development

Epigenetic mechanisms, such as DNA methylation and histone modifications, remain crucial
during the rest of development as they are vital for further lineage specification and tissue
specific gene expression. One particular epigenetic mechanism that relies on DNA methylation
and is important during embryonic and fetal development is genomic imprinting. Prior to the
wave of DNA demethylation in the early pre-implantation embryo, DNA methylation marks are
erased in the primordial germ cells (PGCs) in the male and female germline (of their father and
mother, respectively). In the male, remethylation takes place in the prospermatogonia a few days
later, whereas in the female this process is only initiated after birth with oocyte development
(Figure 1.3). Although largely similar, the methylation signatures of male and female germ
cells are distinct and there are a few genes that have a defined parent-specific signature (i.e. they
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are methylated in only the male or the female germ cells) - these genes are called imprinted
genes. They keep their methylation signature throughout development and adult life. As
mentioned before, there is another round of DNA demethylation after fertilization. To maintain
the parent-specific signature of the imprinted genes, these are spared from demethylation.
The mechanisms for this are not fully understood but Dppa3 (Developmental pluripotency
associated 3) and Zfp57 (Zinc finger protein 698) have both been suggested to play a role
[48, 49].
Imprinting is known to be an incredibly important mechanism that controls and regulates
developmental processes. This was first realised in the 1980s when uniparental embryos
harbouring either two maternal (gynogenic) or two paternal (androgenic) genomes were created
[50, 51]. These are not viable - gynogenic embryos show a lack of extraembryonic tissues,
whereas androgenic embryos fail to produce embryonic tissues, suggesting that the correct
expression of imprinted genes is important for early lineage segregation and differentiation
processes. Since then, it has become clear, that imprinted genes have a variety of different roles
but one of the main responsibilities seems to be to regulate embryonic development and growth.
Interestingly, paternally expressed genes are generally associated with fetal growth, whereas
maternally expressed genes are associated with fetal growth restriction. Igf2 (Insulin-like
growth factor 2) for example is a paternally expressed gene and normally only the one paternal
copy is present [52]. Expression from both alleles (for example through hypomethylation of the
maternal copy) will lead to an over-dose of IGF2 and a severely growth enhanced embryo. On
the contrary, silencing of the paternal allele (for example through hypermethylation) results in
a growth restricted embryo [53]. Many imprinted genes are expressed not only in the embryo
but also in the placenta and they can indirectly affect embryonic growth and development
through regulation of placental development. Similarly to embryonic development, paternally
expressed genes enhance placental growth whereas maternally expressed genes negatively
regulate placental growth. Since the placenta acts as the interface between mother and embryo,
which supplies the embryo with important nutrients and growth factors, regulation of placental
growth and development by imprinted genes also has an effect on embryonic growth and
development [54]. So far, approximately 150 imprinted murine genes are known and aberrant
regulation of almost all of them has consequences for embryonic development.

1.6 Applications of Mouse ES Cells

ES cells have become an incredibly useful tool in a number of scientific areas in recent years.
While human stem cells research is often focussed on the therapeutic application of these cells,
mouse ES cells are mainly used to study developmental processes or diseases.
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1.6.1 Studying Developmental Processes and Modelling Diseases

In Vitro

One of the characteristics of ES cells is that they can differentiate into cell types of the three
germ layers and it is well known that ES cells will spontaneously differentiate in culture
if they are grown without the addition of a feeder layer or LIF. Often, beating clusters of
cardiomyocytes or cells that morphologically resemble neurons can be observed. However,
most cell types do not spontaneously arise and the addition of specific growth factors or
extracellular matrix proteins is required. Over the years, a number of different protocols
have been published for lineage-specific differentiation of ES cells. These include protocols
for the generation of cardiomyocytes [55–57], neurons [58–60], pancreatic cells [61, 62],
retina [63], adipocytes [64], skeletal muscle [65], renal cells [66] and germ cells [67]. These
differentiation models are extremely useful not only because they give access to rare progenitor
cell populations, but also because it is now possible to study developmental mechanisms in
vitro and look at the effect of altered gene expression on developmental processes. This is
particularly useful when studying diseases. Specific genes of interest that are known to be
affected in diseases can be altered in the ES cells, for example by knocking them out or making
them constitutively active. These mutations will then persist throughout differentiation and the
effect throughout the developmental stages can be analysed. This can be extremely useful for
studying neurodegenerative diseases. In the animal (or of course human patients) a phenotype
often only presents after considerable damage has already occurred in the cells. With ES cell
culture models, it is possible to study the early stages of diseases and identify changes and
defects on a cellular level. Some techniques such as RNA interference (RNAi) even make
it possible to look at the effect of aberrant gene expression during specific developmental
timepoints by only interfering with its expression for a specified time window.

In Vivo

In addition to studying gene function in vitro, ES cells can also be used to study the role of genes
in vivo in the context of the whole animal. Usually this is done by manipulating genes in the ES
cells and then injecting ES cells into blastocyst stage embryos to generate chimaeras. If the ES
cells have contributed to the germline, these chimaeras can be bred to homozygous wild-type
mice to obtain a heterozygous F1 generation. Subsequent interbreeding of F1 animals will
result in 25% of homozygous mutant animals in the F2 generation. This method is widely used
to generate a vast number of transgenic mouse lines. The effect of aberrant gene expression can
then be studied in vivo. The advantage of this over using just a cell culture model as described
above is that it is possible to investigate the effect of the mutation on a number of tissues and
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on the interaction between cells of different types of tissues. In culture the focus is usually only
on cells from one type of tissue. Furthermore, any changes that are observed on the cellular
level are more likely to be physiologically relevant.

1.6.2 Therapeutic Applications

Although the focus of research using mouse ES cells lies more on development and disease
biology, ES cells also have indirect potential in the therapeutic area. Firstly, the differentiated
ES cell disease models can be used for drug discovery and to test drug efficacy. Many diseases
can have a number of genetic causes and a lot of drugs are not effective for treating all of them
because they may not act on the affected biological pathway. Having a cell culture model with
a specific mutation can shed light on which drugs may be effective for which mutation. These
can then be further explored in vivo and in human samples.
Additionally, research into mechanisms of self renewal and cell proliferation of ES cells can
indirectly help cancer research. Most cancers arise from and harbour niches of so called cancer
stem cells and it is believed that the mechanisms of self renewal and proliferation in these cells
are similar to or the same as in ES cells [68].

1.7 Making Chimaeras Using Targeted ES Cells

1.7.1 Gene Targeting

As mentioned above, to study developmental processes and disease progression in vivo, ge-
netically modified ES cells can be injected into blastocyst stage embryos where they will
combine with the ICM and contribute to the developing chimaeric embryo. Although this area
of research is quickly developing and evolving with the arrival of CRISPR technology for
genome editing [69], for a long time gene targeting by homologous recombination has been the
method of choice to introduce specific genetic changes into the ES cell genome. All ES cells
used in this thesis have been genetically modified that way.
Gene targeting by homologous recombination can be used to introduce almost all kinds of mu-
tations, ranging from knockouts, insertions, large deletions and point mutations to conditional
knockouts or knockins that depend on the presence of a marker specific to the tissue or cells of
interest. In their simplest version, targeting vectors only contain a selectable marker such as the
bacterial neomycin resistance gene (neoR), as well as two flanking arms that have sequence
homology with the gene or locus of interest. The cell’s DNA repair machinery can then replace
the targeted locus with the homologous exogenous genomic sequence. These simple vectors
are usually replacement targeting vectors that disrupt the normal function of the gene of interest
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Fig. 1.4 Making chimaeras using targeted ES cells (A) Gene knockout by homologous
recombination. The targeting vector contains the disrupted target gene with the selection
marker NeoR. The targeted gene is not functional anymore. (B) Gene knockin by homologous
recombination. The targeting vector contains the intact target gene as well as the cDNA for
an additional gene (GeneX). This results in the expression of both the target gene and GeneX.
(C) Targeted ES cells can be injected into blastocysts. They will combine with the ICM and
contribute to chimaeras.

through the insertion of the selection marker (Figure 1.4A). Knockin vectors have a similar
design but they contain an additional genetic element that will be driven off the promoter of
the targeted locus. The exact positioning of the targeting vector into the recombined locus is
important both for making sure that the knocked in gene is in frame and to determine whether
the targeted gene is still expressed (in addition to the knocked-in gene) or not (Figure 1.4B).
These targeting vectors are usually introduced into ES cells by electroporation (other methods
are for example lipofection or nucleofection). However, homologous recombination is a very
rare event and usually several hundreds of ES cell colonies have to be analysed to identify a
small number of clones that contain the correct gene targeting event.
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1.7.2 Blastocyst Injections

To generate chimaeras using such targeted ES cells, two main strategies can be used: morula
aggregations or, more commonly, blastocyst injections. For morula aggregations, small clumps
of ES cells are combined with 8-cell morulae (e2.5) and left over night to aggregate and develop
into a blastocyst. All chimaeras described in this thesis were, however, generated by blastocyst
injections. For this, blastocysts are collected from plugged females (that were mated with
stud males) at 3.5 days post coitum by flushing the uterine horns. Using a micromanipulator,
10-12 individual ES cells are injected into the blastocoel cavity. A number of these are then
transferred back into pseudopregnant females that were mated with vasectomised males to
develop to term.
The injected ES cells will combine with the ICM of the host embyro to form the epiblast which
will later go on to become the embryo proper. The developing chimaeric embryo then contains
cells from the host blastocyst as well as cells that stem from the ES cells (Figure 1.4C). The
degree of chimaerism can vary but a successful blastocyst injection can very often yield pups
with >90% ES cell contribution. ES cells do not contribute to the extraembryonic tissues.

1.8 Some ES Cell Lines Do Not Contribute to Viable Chi-
maeras

The generation of chimaeric embryos by blastocyst injection is a technique that is well estab-
lished in our laboratory and used on a regular basis in collaboration with a group at Medimmune
(Cambridge, UK). All ES cells used in the experiments described in this thesis have come out
of a sequential gene targeting project run by Medimmune, meaning that multiple site-specific
mutations were introduced into the cells. Since the genes of interest whose expression was
altered in this sequential gene targeting project are not known to be implicated in or necessary
for embryonic development, most ES cell clones give rise to viable high contribution chimaeric
pups. Occasionally, the cells can be lost from the blastocyst for a variety of reasons, including
technical reasons or abnormal karyotype, resulting in pups without ES cell contribution.
During this collaboration, a number of compromised targeted ES cell clones have arisen that
repeatedly did not give rise to viable chimaeras. In this case, as shown in Table 1.1, for some
ES cell lines no pups were born. It can sometimes be the case that none of the blastocysts
implant into the uterus of the pseudopregnant recipient female, which would, of course, also
not result in the birth of pups. However, the recipient female mice were routinely weighed to
monitor pregnancy and on a number of occasions they gained weight but then lost it again in
the second half of pregnancy, meaning that they were pregnant but the embryos were lost mid
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Table 1.1 Initial blastocyst injection results ES cell contribution (in %) was assessed by coat
colour chimaerism.

Cell line Number of pups Of which chimera
(% ES cell contribution)

ESC(Ctrl) 1 NA NA
ESC(Ctrl) 2 3 2 (>90%)
ESC(Ctrl) 3 8 5 (>95%)
ESC(Ctrl) 4 4 3 (2x >95%)
ESC(Comp) 1 0 0
ESC(Comp) 2 0 0
ESC(Comp) 3 1 0
ESC(Comp) 4 0 0

ESC(Ctrl) 1

ESC(Comp) 1
ESC(Comp) 3

ESC(Comp) 4

ESC(Comp) 2
ESC(Ctrl) 2
ESC(Ctrl)3

ESC(Ctrl) 4

Fig. 1.5 ES cell pedigree Pedigree of how the ES cell lines were derived by sequential gene
targeting.

to late gestation. When opening the abdominal cavity of these pregnant females at what would
have been term, only decidua and dead embryos were observed. This suggests that the ES cells
have contributed to the developing embryo but they have died prenatally. In comparison, all of
the control cell lines had given rise to a number of excellent chimaeras after just one injection
session. One of the control ES cell clones (ESC(Ctrl)1) is the parental ES cell line to all other
cell lines used in this project and has not undergone gene targeting (ES cell pedigree shown in
Figure 1.5). These were never injected into blastocysts. However, since subclones of this line
have previously given rise to high percentage chimaeras, it is assumed to be a good control.



16 Introduction

For simplicity, the compromised cell lines will be referred to as ESC(Comp) and the control
cell lines to which they are compared will be referred to as ESC(Ctrl) throughout this thesis.

1.9 Hypothesis, Aims and Scope of This Thesis

We are very certain that the targeted mutations are not the cause for the observed embryonic
lethal phenotype in the ESC(Comp) chimaeras. All cell lines were screened for off-target
mutations or integration sites and for every gene targeting event a number of ES cell clones
(sister clones) were picked that have the identical genotype at the mutated locus of interest. For
all of the ESC(Comp) cell lines, at least one of those sister clones was also injected and gave
rise to a number of viable high percentage chimaeras.
Our hypothesis is that these compromised ES cell clones have undergone genetic or epigenetic
changes either during the subcloning or during subsequent culture that prevent them from
undergoing normal differentiation processes and therefore cause embryonic lethality. The
aims for this PhD project are therefore to further define the developmental phenotype of the
chimaeric embryos and to discover the underlying changes in the transcriptome, epigenome or
cell surface markers that have occurred in the compromised ES cells (ESC(Comp), with the
overall goal to identify a cell marker that can distinguish between compromised ES cells and
ES cells with good developmental potency.
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Methods

2.1 Cell Culture

2.1.1 Cell Culture Media

MEF Medium

Advanced DMEM (Invitrogen)
10% FCS (Millipore)
2 mM GlutaMax (Gibco)

Standard ESC Medium

DMEM (Invitrogen)
15% FCS (PAN Biotech)
4 mM GlutaMax (Gibco)
1X non essential amino acids (Gibco)
1 mM Sodium pyruvate (Gibco)
20 mM Hepes buffer (Gibco)
0.1 mM β -Mercaptoethanol (Gibco)
1.5x103 U/ml LIF (Millipore)

2i Medium

NDiff 227 (Takara)
1x103 U/ml LIF (Millipore)
3 uM CHIR99021 (Cayman)
1 uM PD0325901 (Cayman)
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EPSC Medium

DMEM/F12 (Invitrogen)
20% Knockout serum replacement (Gibco)
2 mM GlutaMax (Gibco)
1X non essential amino acids (Gibco)
0.1 mM β -Mercaptoethanol (Gibco)
1x103 U/ml LIF (Millipore)
1 uM PD0325901 (Cayman)
3 uM CHIR99021 (Cayman)
4 uM JNK Inhibitor VIII (Cayman)
10 uM SB203580 (Generon)
0.3 uM A-419259 (Cayman)
5 uM XAV939 (Sigma)

Differentiation Medium I

IMDM (Invitrogen)
20% FCS (PAN Biotech)
2 mM glutamine (Gibco)
1X non-essential amino acids (Gibco)
450 uM 1-thioglycerol (Sigma)

Differentiation Medium II

DMEM/F12 (Invitrogen)
5 ug/ml insulin (Sigma)
30 M sodium selenite (Sigma)
50 ug/ml transferrin (Generon)
5 ug/ml fibronectin (Invitrogen)

Differentiation Medium III

DMEM/F12 (Invitrogen)
25 ug/ml insulin (Sigma)
30 nM sodium selenite (Sigma)
50 ug/ml transferrin (Generon)
20 nM progesterone (Sigma)
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100 uM putrescine (Sigma)
1 ug/ml laminin (Sigma)
10 ng/ml bFGF (R & D Systems)
20 ng/ml EGF (R & D Systems)

Differentiation Medium IV

DMEM/F12 (Invitrogen)
25 ug/ml insulin (Sigma)
30 nM sodium selenite (Sigma)
50 ug/ml transferrin (Generon)
20 nM progesterone (Sigma)
100 uM putrescine (Sigma)
1 ug/ml laminin(Sigma)
2% B27 (Invitrogen)
10 mM Nicotinamide (Sigma)

2.1.2 Cell Culture Substrates

Gelatin

Cell culture plates were coated with 0.1% (w/v) Gelatin (Sigma) in PBS for 15 min at room
temperature and then washed with PBS twice. Cells were plated immediately.

Poly-L-ornithine/Laminin

Cell culture plates were coated with 0.1 mg/ml Poly-L-ornithine (Sigma) for 1 h at room
temperature and then washed with PBS twice. Poly-L-ornithine plates were then coated with
0.001 mg/ml laminin (Sigma) at 37°C for 1-3 h. After two washes with PBS the plates were
either used immediately or stored at 4°C.

2.1.3 Other Cell Culture Reagents

0.25% Tryspin-EDTA (Gibco)
DPBS (Gibco)
5-azacytidine (Sigma)
1.75 ug/ml Puromycin (Fisher)
150 ug/ml Hygromycin (Fisher)
Mitomycin C (Sigma)
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2.1.4 Mouse Embryonic Fibroblast (MEF) Cell Culture and Inactivation

Passage 0 MEFs (Taconic) were obtained from Medimmune. The cells were cultured in MEF
medium in a 37°C humidified incubator with 5% CO2. When 70-80% confluent, the cells were
passaged and after two rounds of passaging, MEFs were inactivated by incubating them in
normal MEF medium plus 10 ug/ml Mitomycin C for 3 h at 37°C.

2.1.5 ES Cell Culture

ES cells were also obtained from Medimmune and cultured on MEFs in standard ESC medium
in a 37°C humidified incubator with 5% CO2. When 70-80% confluent cells were passaged.
For Gtl2 rescue experiments, ES cells were cultured feeder-free on gelatin-coated plates in 2i
or EPSC media, or on MEFs in standard ES cell media supplemented with 5-azacytidine.

2.1.6 Karyotyping

The cells were passaged one day before karyotyping and fed fresh ESC medium 3 h before
chromosome preparation. The cells were incubated for 2.5 h in colcemid (0.2 ug/ml in culture
medium; Gibco) at 37°C. After trypsinisation, the cells were spun down at 1100 rpm for 5
min and gently resuspended in 5 ml hypotonic solution (75 mM KCl; Sigma). After 8 min
incubation at room temperature, the cells were spun down at 1100 rpm for 3 min and then
gently resuspended in 5 ml fixative (3:1 methanol:acetic acid) and left at -20°C for 30 min.
The fixative step was repeated and the cells were subsequently resuspended in 500 ul fixative.
Microscope slides were heated to 36°C in a water bath. From a height of 15-30 cm, 30 ul of
cell suspension was dropped onto each slide and left until the liquid had evaporated. The slides
were bathed in Giemsa stain solution for 3 min and washed with water before being analysed.

2.1.7 Differentiation Assays

Differention assays were performed as described previously [55, 58, 62].

Embryoid Body Formation

Embryoid bodies (EBs) were formed in hanging drops in differentiation medium I. 20 ul drops
containing a defined number of ES cells were placed on the lids of 10 cm bacteriological petri
dishes containing 10 ml PBS to avoid evaporation of drops. The ES cells were cultivated
in hanging drops for 2 days and then transferred into a 6 cm bacteriological petri dish with
differentiation medium I for 2-3 days.
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Mesoderm Differentiation

For differentiation into cardiac muscle progenitors 600 ES were used for EBs. After 4 days
(2+2) EBs were transferred into gelatine-coated 6 cm tissue culture dishes and cultured in
differentiation medium I for 4 days. At day 4+4 the cells were fixed and stained for α-smooth
muscle actin.

Ectoderm Differentiation

For neuronal differentiation 200 ES cells were used for EB formation. After 4 days (2+2), the
EBs were transferred into gelatin-coated 6 cm tissue culture dishes and cultured in differen-
tiation medium I for one day. At 4+1 days the medium was exchanged with differentiation
medium II. At day 4+8, the EBs were dissociated with trypsin and replated onto poly-L-
ornithine/laminin coated tissue culture dishes and cultured in differentiation medium III for
a further 6 days. At day 4+14 the cells were fixed and immunostained for the neural marker
β III-tubulin.

Endoderm Differentiation

For differentiation into endoderm progenitor cells 600 ES cells were used for EB formation.
After 5 days (2+3) the EBs were transferred into gelatine-coated 6cm tissue culture dishes
and cultured in differentiation medium I for 6 days. At day 5+6, they were dissociated with
trypsin and replated onto poly-L-ornithine/laminin coated tissue culture dishes in differentiation
medium IV supplemented with 20% FCS. After 24h the medium was replaced with medium IV
without FCS. At day 5+10 the cells were fixed and immunostained for the endoderm marker
Sox17.

Immunofluorescence on Cells

The cells were grown on coverslips and then fixed in 4% paraformaldehyde in 1X PBS for
10 min, washed twice in PBS/PVP (3 mg/ml PVP, Sigma), permeabilised for 30 min in 1X
PBS/PVP with 0.25% Triton X-100 (Sigma) and blocked in blocking buffer for 1 h. Blocking
buffer contained 1X PBS with 2% goat serum (Sigma), 1% bovine serum albumin (BSA,
Sigma) and 0.1% Tween 20 (Sigma). The primary antibodies were diluted in blocking buffer
and added to the cells for overnight incubation at 4°C. The cells were washed three times using
blocking buffer for 15 min. The secondary antibody was diluted in blocking buffer and added
to the cells for 1 h at room temperature. The cells were washed three times using blocking
buffer for 15 min. Coverslips were mounted with Vectashield with DAPI (Vector) on slides,
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sealed and left to set overnight at 4°C in the dark.
The primary antibodies used were against αSMA (Abcam, ab5694,1:100), β -III Tubulin (Ab-
cam, ab18207, 3.25 ug/ml) and Sox17 (R&D Systems, MAB1924, 10 ug/ml). The secondary
antibodies were goat anti-rabbit IgG H&L AF568 (Abcam, ab175471, 1:500), goat anti-rabbit
IgG H&L AF488 (ab150081, 1:500) and goat anti-mouse IgG H&L FITC (ab6785, 1:500).

2.1.8 Transfection Methods

For all methods, the cells were split and plated at a density of 5x106 cells per 10cm MEF
plate 24 h prior to the transfection. The vectors were used at the concentration of 2 ng of
pPBCAG-Venus-IP and pPBCAG-H2BtdTomato-IH and 1 ng of CAGG-PBase (pCyL43) [70]
per 5x106 cells. All vectors were kindly supplied by Professor Azim Surani (The Gurdon
Institute, University of Cambridge). After 24 h without selection, the medium was replaced
with fresh ESC medium containing the appropriate antibiotics (1.75 ug/ml Puromycin or 150
ug/ml Hygromycin). Cells were selected for 9 days with medium change every 1-2 days.

Electroporation

2x107 cells were resuspended in 700 ul PBS (Gibco) and mixed with the targeting vectors
which were diluted in 100 ul PBS. After incubation on ice for 5 min the cell/DNA suspension
was transferred into an electroporation cuvette and electroporated in a BioRad Gene Pulser
at 240 V, 500 uF with a time constant in the range of 11-13 ms. The cells were seeded onto
pre-prepared MEF plates at 5x106 cells per plate.

Nucleofection

Nucleofection was carried out using the Mouse ES Cell Nucleofector Kit (Lonza). 5x106 cells
were resuspended in 90 ul Mouse ES Nucleofector Solution and mixed with the targeting vectors
which were diluted in 10 ul Mouse ES Nucleofector Solution. The cells were nucleofected
using the A-013 program and then seeded onto pre-prepared MEF plates at 5x106 cells per
plate.

Lipofection

Lipofectamine 3000 (Invitrogen) was used according to the supplier’s protocol. Diluted DNA
and Lipofectamine were incubated for 5 min at room temperature and then directly added to
ES cells growing on MEFs. After 24 h the cells were split and 5x106 cells were seeded onto
each pre-prepared MEF plate.
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2.2 Molecular Biology Techniques

2.2.1 gDNA Extraction

gDNA was extracted from cells using the PureLink Genomic DNA Kit (Invitrogen). Using
a NanoDropND-1000 spectrophotometer, quality and quantity of the gDNA was tested. A
260/280 ratio above 1.8 was accepted for gDNA.
For genotyping of embryos, gDNA from tail samples was extracted by incubating the tissue
with 100 ul of lysis buffer over night at 55°C and subsequent Proteinase K inactivation at 94°C
for 15 min. Components of the lysis buffer are outlined in Table 2.1.

Table 2.1 Tail lysis buffer

Component Concentration (in H2O)
KCl (Sigma) 50 mM
Tris-HCl pH 8.3 (Sigma) 10 mM
MgCl2 (Sigma) 2 mM
Gelatin (Sigma) 0.1 mg/ml
Tween-20 (Sigma) 0.45%
Nonidet P-40 (Roche) 0.45%
Proteinase K (Sigma) 20 mg/ml%

2.2.2 RNA Extraction

RNA was isolated from cells or tissues using the RNeasy Plus Mini Kit (QIAGEN) or the
PureLink RNA Mini Kit (Invitrogen) and RNase Free DNase I(QIAGEN) following the
manufacturers’ protocols. Using a NanoDropND-1000 spectrophotometer, quality and quantity
of the RNA was tested. A 260/280 ratio above 2.0 was accepted for RNA.

2.2.3 cDNA Synthesis

First strand cDNA synthesis was performed using SuperScript III First-Strand cDNA Synthesis
for RT-PCR (Invitrogen) or the qPCRBIO cDNA Synthesis Kit (PCR Biosystems). RT-PCR
was performed in a Veriti 96Well Thermal Cycler (Thermo Fisher). Components of the reaction
mix and thermal cycling conditions are outlined in Table 2.2. cDNA quality and quantity
was measured using a NanoDropND-1000 spectrophotometer. A 260/280 ratio above 1.8 was
accepted for cDNA.
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Table 2.2 RT reaction mix and thermal cycling conditions for Invitrogen and PCR Biosys-
tems reagents

Reaction mix (per reaction) Thermal cycling conditions
1 ug total RNA 65°C for 5 min
1 ul 50 mM oligo(dT) (Thermo Scientific) On ice for 1 min
1 ul 500 ug/ml random primers (Promega)
1 ul 10 nM dNTP mix (Promega)
H2O (to obtain volume of 13 ul)
Add: 25°C for 5 min
4 ul 5X First Strand Buffer (Invitrogen) 50°C for 60 min
1 ul 0.1 mM DTT (Invitrogen) 70°C for 15 min
1 ul 40 U/ul RNaseOUT (Invitrogen)
1 ul 200 U/ul Superscript III RT (Invitrogen)
Add: 37°C for 20 min
1 ul RNase H (New England Biolabs)

Reaction mix (per reaction) Thermal cycling conditions
1 ug total RNA 42°C for 30 min
4 ul 5x cDNA Synthesis Mix (PCR Biosystems) 85°C for 10 min
1 ul 20x RTase (PCR Biosystems)
H2O (to obtain volume of 20 ul)
Add: 37°C for 20 min
1 ul RNase H (New England Biolabs)

2.2.4 PCR

Standard PCRs using cDNA (for gene expression analysis) or gDNA (for genotyping analysis)
were performed as outlined in Table 2.3. Primer sequences are listed in Table 2.5. The reactions
were run in a Veriti 96Well Thermal Cycler (Thermo Fisher).

2.2.5 qPCR

qPCR was performed using qPCRBIO SyGreen Mix Lo-ROX (PCR Biosystems) on the 7500
Fast Real-Time PCR System (Applied Biosystems). Components of the reaction mix and
thermal cycling conditions are outlined in Table 2.4.
All primers were designed using the NCBI Primer-Blast tool and are listed in Table 2.5. The
efficiency of all primers was assessed using serial dilutions to generate a standard curve.
Relative fold changes were calculated using the delta-delta-Ct method. Appropriate statistical
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analyses were performed using GraphPad Prism and results were considered significant where
the P-value was <0.05.

Table 2.3 PCR reaction mix and thermal cycling conditions

Reaction mix Step Thermal cycling
(per reaction) conditions
2 ul 10X Buffer B (NEB) DNA polymerase activation 95°C for 3 min
0.4 ul dNTPs (Promega) 40 cycles of: 40 cycles of:
0.8 ul 10 uM Forward Primer DNA denaturation 95°C for 15 sec
0.8 ul 10 uM Reverse Primer Primer annealing 60°C for 30 sec
0.08 ul Taq DNA polymerase (NEB) Primer extension 68°C for 1 min
14.92 ul Nuclease free H2O Final extension step 68°C for 5 min
1 ul cDNA/gDNA template

Table 2.4 qPCR reaction mix and thermal cycling conditions

Reaction mix Step Thermal cycling
(per reaction) conditions
7.5 ul SYBR Green master mix DNA polymerase activation 95°C for 2 min
(PCR Biosystems) 40 cycles of: 40 cycles of:
0.15 ul 10 uM Forward Primer DNA denaturation 95°C for 5 sec
0.15 ul 10 uM Reverse Primer Primer annealing/extension 60°C for 30 sec
6.2 ul DNA/RNA-free H2O
1 ul cDNA Melt curve 95°C for 15 sec

60°C for 1 min
95°C for 30 sec
60°C for 15 sec



26 Methods

Table 2.5 List of primer pairs

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’)
qPCR
HPRT GATTAGCGATGATGAACCA CCTCCCATCTCCTTCATGAC
Oct4 GAGCACGAGTGGAAAGCAAC CTCTTCTGCTTCAGCAGCTTG
Sox2 AACGGCAGCTACAGCATGATGC CGAGCTGGTCATGGAGTTGTAC
Klf4 GTGACTATGCAGGCTGTGGC TGTGTGTTTGCGGTAGTGCC
Nanog GAACGCCTCATCAATGCCTGCA GAATCAGGGCTGCCTTGAAGAG
Esrrb GACATTGCCTCTGGCTACCACT ACTTGCGCCTCCGTTTGGTGAT
Stat3 AGGAGTCTAACAACGGCAGCCT AGGAGTCTAACAACGGCAGCCT
Kiss1 TAAGACCCGGGTAGCCATCA ACAGACAGTTGATGGCCCTG
Venus CAAGATCCGCCACAACATCG CTCAGGTAGTGGTTGTCGGG
Gtl2 AGTGCCTTGTAAATCGCCCG CACCTACTGGGTGCTCACTG
Rian TGTCACGGTCAGCTCTGTTC ACCAAGGTGTACGCAACGAT
Mirg TCGCTTACGACAACCGACAA GGGTGAGAAGTTGGGGACTC
Dlk1 AGCACCTATGGGGCTGAATG CACTTGTCACAGAGGGGACC
Dio3 TGCGTATCAGACGACAACCGTC TGGAAGCCATCAGGTCGGACAA
Rtl1/Rtl1as AGGCTATCAACGAAGGTCGC TTCACCCGCAGCTCATCATT
Myf5 AAGGCTCCTGTATCCCCTCAC TGACCTTCTTCAGGCGTCTAC
PCR
Rtl1/Rtl1as [71] GAGAGTGGACCCCTACCACA GGCAAACCTCTCATCCATGT
(primer-specific)
Genotyping A TCTTTCTCAGTCAAAGGAAGTT TCACCATACCCCAAAGGTCACT

GCGAATCA CTGGTATC
Genotyping B CCCTGACCAAGTCAAATCCA GTTGCTACGCCTGAATAAGTG
Genotyping C TTGACTCATGGTAGCCAGTTGGG AGCGGCCGCAAATTTATTAGAGC

Transgene Copy Number Analysis by qRT-PCR

To assess the relative concentration of Venus compared to Kiss1 in individual transfected
colonies, standard curves for each gene were plotted. By rearranging the formula for each of
the standard curves, it was possible to calculate the DNA starting quantity as x=10(Ct−b)/m.
Assuming that 2 copies of Kiss1 are present it is then possible to predict the copy number of
Venus by calculating the ratio of xVenus :xKiss1.
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2.2.6 Gel Electrophoresis

Agarose (Sigma) was melted at the desired concentration (usually 1-2%, for fragments smaller
than 100bp a 4% gel was used) in 0.5X TBE buffer (1X TBE: 89 mM Tris, 89 mM boric acid,
2 mM EDTA in H2O). 1X Sybr Safe nucleic acid stain (Life Technologies) was added and the
gel was left to solidify in a casting tray. The DNA was mixed with loading dye and loaded
into the gel. Electrophoresis was performed at 130-140 V in 0.5X TBE buffer. Bands were
visualised by UV transillumination.

2.2.7 Plasmid Preparation

Transformation of Bacteria

Plasmids were transformed into One Shot TOP10 Chemically Competent E. coli bacteria
(Invitrogen). 50 ul of bacteria cells were incubated on ice with 0.5 ul plasmid DNA for 30 min,
heat shocked at 42°C for 30 sec and incubated on ice again for 2 min. 250 ul pre-warmed SOC
medium was added to the cells before shaking them at 37°C for 1 h. They were then spread on
ampicillin containing terrific-broth agar plates and incubated at 37°C over night. Terrific-broth
agar plates were prepared as described by Tartof and Hobbs [72]. Ampicillin was added at a
concentration of 50 ug/ul.

Plasmid Purification

Single bacterial colonies were picked and grown in 50 ug/ul ampicillin containing terrific broth
over night in a shaking incubator at 37°C. Plasmids were isolated using the Purelink HiPure
Plasmid Miniprep Kit (Invitrogen) according to the manufacturer’s instructions.

2.2.8 RNA Sequencing

Sample Preparation

RNA was extracted from three replicates of all eight cell lines (ESC(Ctrl)1-4 and ESC(Comp)1-
4). Cells were passaged twice after thawing before RNA extraction.

Library Preparation and Sequencing

Library preparation was performed using the Illlumina TruSeqHT kit according to the manufac-
turer’s protocol. Single-end sequencing was performed and each sample was sequenced in four
lanes on a NextSeq500 (Illlumina) instrument in the same High-Output 75 cycle sequencing
run. Sequencing depth was approximately 10M reads per sample. Library preparation and



28 Methods

sequencing was performed by the Cambridge Genomics Service (Deparment of Pathology,
University of Cambridge, UK).

Data Analysis

Mapping of sequence reads and statistical analysis was performed using the free bioinformatics
platform Galaxy (www.usegalaxy.org/).
After concatenating the sequencing output files from the four lanes for each sample, the quality
of sequenced reads was assessed with FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/)
to analyse basic statistics such as per base sequence quality, per sequence quality scores, per
base sequence content, sequence length distribution, Kmer content and adapter content. Reads
were trimmed by 8 and 4 bases at the start and end of each read respectively to improve
quality. TopHat2 [73] Version 0.9 with default settings was used to align reads to the mouse
genome(GRCm38/mm10). Reads that mapped uniquely were used for downstream analysis.
htseq-count [74] Version 0.6.1galaxy1 was applied to count the number of reads mapping
to each gene. Intersection-strict mode was chosen to exclude reads that overlap more than
one gene or reads that do not intersect a given gene with each read position. The Gencode
release M7 was used to annotate the genome. Differential expression analysis was subsequently
performed with DESeq2 [75] Version 2.1.8.3.

2.2.9 DNA Methylation Analysis

Sample and Library Preparation

gDNA was extracted from three replicates of all 15 cell lines (ESC(Ctrl)1-8 and ESC(Comp)1-
7). Cells were passaged twice after thawing before gDNA extraction. 1 ug of DNA was bisulfite
converted using the EZ DNA Methylation Kit (Zymo Research, D5020), according to the
manufacturer’s instructions. Samples were eluted in 66 ul elution buffer to get a concentration
of 15 ng/ul.For each sample, each imprinted region was amplified in a separate PCR reaction
(Table 2.6) and then pooled. 1.5X AMPure beads were used for PCR clean up. In a second
PCR reaction, barcoded adapters were attached to the samples for sequencing (Table 2.7). 1X
AMPure beads were used for PCR clean up. Libraries were sequenced as paired-end 150bp
reads on a MiSeq Instrument. 10% PhIX spike-in was included due to the low-complexity
libraries.
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Data Analysis

Data analysis was performed by Dr Eckersley-Maslin at the Babraham Institute Cambridge. In
brief, poor quality base calls and adapters were trimmed. Using Bismark (www.bioinformatics.
babraham.ac.uk/projects/bismark/) the sequences were subsequently aligned to the mouse
genome (GRCm38/mm10) and deduplication was performed in order to remove PCR bias.
Methylation calls were imported into Seqmonk (www.bioinformatics.babraham.ac.uk/projects/seqmonk/)
and probes were defined for every CpG that was included in the amplicons. Percentage methy-
lation was calculated for each of the probes that had at least 30 reads. The overall percentage
methylation for each imprinted region was calculated as the mean of individual CpG sites.

Table 2.6 PCR amplifying imprint regions

Reaction mix Step Thermal cycling
(per reaction) conditions
4 ul 2x KAPA HiFi Uracil+ Initial Denaturation 95°C for 5 min
1.2 ul Primer Pool 30 cycles of: 30 cycles of:
(sequences are confidential) DNA denaturation 98°C for 20 sec
0.8 ul DNA/RNA-free H2O Primer annealing 55-62°C for 15 sec
2 ul Bisulphite converted DNA Primer extension 72°C for 1 min

Final extension step 72°C for 10 min

Table 2.7 PCR attaching barcoded adapters to samples for sequencing

Reaction mix Step Thermal cycling
(per reaction) conditions
25 ul 2x KAPA HiFi Uracil+ Initial Denaturation 98°C for 45 sec
1 ul PE1.0 5 cycles of: 5 cycles of:
1 ul iTAG DNA denaturation 98°C for 15 sec
3 ul DNA/RNA-free H2O Primer annealing 65°C for 30 sec
20 ul DNA Primer extension 72°C for 30 sec

Final extension step 72°C for 5 min
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2.2.10 Phenotypic Screening

Cell Surface Selection

1x107 cells were used per selection and blocked in ES media for 1 h at room temperature
on a rotary mixer at 25 rpm. Phage library aliquots containing 1012 phage (libraries used
were scFv Bone Marrow Vaughan (BMV) and combined spleen (CS) libraries, available from
Medimmune, Cambridge, UK) were also blocked in ES media for 1 h at room temperature.
The cells and phage were then incubated together at room temperature on a rotary mixer at 20
rpm for 1 h, allowing the phage to bind to the cells.
For deselection,the supernatant of the ESC(Ctrl) cells was harvested and incubated with the
ESC(Comp) cells for 1 h at room temperature on a rotary mixer at 20 rpm.
Unbound phage was washed off by repeated rounds of PBS washes of the cells. To elute the
bound phage, the cells were incubated with trypsin for 20minutes. After inactivation of trypsin,
the cells were again spun down and the supernatant containing the eluted phage was kept.

Selection Rescue

E. coli TG1 cells were infected with the eluted phage and grown up over night on 2TYAG
bioassay plates (2TY agar plates with 100 ug/ml ampicillin and 2% glucose) at 30°C. The
bacteria were scraped off the plates using 2:1 2TY:Glycerol media and grown up in 2TYAG
media to mid-log phase at 37°C, 280rpm. After addition of M13KO7trp helper phage the cells
were grown for a further 1 h at 37°C, 150 rpm. For over night cultures at 25°C, 280 rpm,
growth media was changed to 2TYAK medium (2TY with 100 ug/ml ampicillin and 50 ug/ml
kanamycin).
The overnight cultures were spun down. Supernatant containing the rescued phage was used in
the next round of cell surface selection. Three rounds of selection and rescue were performed.
The outputs of rounds 2 and 3 were sequenced and their quality was analysed using BLAZE.

Phage to IgG Reformatting

All primer sequences used here are confidential. Phage to IgG reformatting was performed in
two cloning steps:
Glycerol stocks from the round 2 outputs were used to prepare plasmid DNA of the pCANTAB6
population, using the QIAprep Spin Miniprep Kit (QIAGEN, 27104). The pCANTAB6-scFv
construct was linearised by emulsion PCR, using the Micellula DNA Emulsion & Purification
Kit (Roboklon, 3600), following the manufacturer’s instructions. Lambda and Kappa popula-
tions were prepared in two separate PCR reactions. Table 2.8 outlines the reaction mix and
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Table 2.8 IgG conversion - Emulsion PCR for intermediate pool

Lambda PCR ul for 1 population
2X HiFi PCR Premix 111
L1 FW1 (10 uM) 9
L2 FW1 (10 uM) 9
L3 FW1 (10 uM) 9
Lpool FW1 (10 uM) 9
Hpool FW4 (10 uM) 9
Nuclease free H2O 33
BSA (0.2 mg/ml) 11
DNA template (5 ng/ul) 20 (add after removing 20 ul for no template ctrl)

Kappa PCR ul for 1 population
2X HiFi PCR Premix 111
K1 FW1 (10 uM) 9
Kpool FW1 (10 uM) 9
Hpool FW4 (10 uM) 9
Nuclease free H2O 33
BSA (0.2 mg/ml) 11
DNA template (5 ng/ul) 20 (add after removing 20 ul for no template ctrl)

Step Thermal cycling conditions
Initial Denaturation 94°C for 2 min
28 cycles of: 28 cycles of:
DNA denaturation 94°C for 10 sec
Primer annealing 60°C for 30 sec
Primer extension 72°C for 5 min
Final extension step 68°C for 3 min
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thermal cycling conditions. After breaking the emulsions and PCR purification, DNA was
eluted in 40 ul of DNA/RNA-free H2O.
4.5 ul of 10X CutSmart Buffer (NEB) and 2 ul of Dpn1 (10 U/ul, NEB) were added to each
sample and incubated at 37°C for 30 min to remove the pCANTAB6 template. The amplified
and digested populations were run on a gel and the 5kb DNA band was purified using the
QIAquick Gel Extraction Kit (QIAGEN). Purified DNA was eluted in 30 ul of DNA/RNA-free
H2O.
The pmDV.v2 donor fragment was prepared as outlined in Table 2.9. For the In-Fusion (Clon-
tech) cloning reactions were set up as described in the manufacturer’s protocol. 100 ng were
used each of the pmDV.v2 donor and pCANTAB6-scFv vector. These were incubated at 50°C
for 15 min. 2.5 ul of the In-Fusion reaction was transformed into 100 ul aliquots of Stellar
competent cells (Novagen 636763) and incubated on ice for 30 min. The cells were then
heat shocked in a water bath at 42°C for exactly 60 sec and again incubated on ice for 2 min.
After addition of 400 ul SOC medium, the cells were incubated stationary at 30°C for 10 min.
Transformed cells were plated on 2TYAG bioassay plates at 30°C for 24 h. The bacteria were
then scraped off the plates using 2:1 2TY:Glycerol media and stored in aliquots at -80°C.

Table 2.9 IgG conversion - Preparation of the pmDV.v2 donor fragment

Components ul per reaction
2X HiFi PCR Premix 50
MM018 Forward primer (10 uM) 2
pmDv.v2 REV reverse primer (10 uM) 2
Nuclease free H2O 44
pmDV.v2 plasmid (10 ng/ul) 2

Step Thermal cycling conditions
Initial Denaturation 94°C for 2 min
25 cycles of: 25 cycles of:
DNA denaturation 98°C for 10 sec
Primer annealing 60°C for 30 sec
Primer extension 72°C for 3 min
Final extension step 68°C for 5 min
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Table 2.10 IgG conversion - Emulsion PCR for final pool

PCR Components ul for 1 population
2X HiFi PCR Premix 111
H Fwd 1 (10 uM) 9
H Fwd 2 (10 uM) 9
VL-Rev or VK-Ref (10 uM) 9
Nuclease free H2O 51
BSA (0.2 mg/ml) 11
DNA template (5 ng/ul) 20 (add after removing 20 ul for no template ctrl)

Step Thermal cycling conditions
Initial Denaturation 94°C for 2 min
25 cycles of: 25 cycles of:
DNA denaturation 98°C for 10 sec
Primer annealing 62°C for 30 sec
Primer extension 72°C for 3 min
Final extension step 68°C for 5 min

Glycerol stocks of these intermediate pools were used to prepare plasmid DNA, using a QIAprep
Spin Miniprep Kit as before. The antibody cassette of the plasmids was amplified by emulsion
PCR. Table 2.10 outlines the reaction mix and thermal cycling conditions. The lambda and
kappa PCR products were run on a gel and the DNA from the 3kb bands was purified using the
QIAquick Gel Extraction Kit. Purified DNA was eluted in 30 ul of DNA/RNA-free H2O.
The pmIgGκ_v5 or pmIgGλ_v5 vectors were prepared as outlined in Table 2.11. In-Fusion
reactions with linearised pmIgGκ_v5 or pmIgGλ_v5 were set up for kappa and lambda samples
respectively as described in the manufacturer’s protocol. 100 ng were used each of the pmIgG
linearised vectors and the respective antibody cassette insert. These were incubated at 50°C
for 15 min. 2.5 ul of the In-Fusion reaction was transformed into 100 ul aliquots of Stellar
competent cells (Novagen 636763) in duplicates and incubated on ice for 30 min. The cells
were then heat shocked in a water bath at 42°C for exactly 60 sec and again incubated on ice for
2 min. After addition of 400 ul 2TY medium, the cells were incubated stationary at 37°C for
10 min. Transformed cells were plated on 2TYAG bioassay plates at 37°C over night. Bacteria
were then scraped off the plates using 2:1 2TY:Glycerol media and stored in aliquots at -80°C.
Individual colonies for HT IgG screening were picked into 2TYAG in 96 well plates and grown
over night at 37°C, 120 rpm. The intermediate and final expression pools were sequenced and
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their quality was analysed using BLAZE. HT IgG expression was performed by the scFV HTE
team at Medimmune as described by Xiao et al [76].

Table 2.11 IgG conversion - Preparation of the IgG vectors

Components ul per reaction Incubation conditions
Nuclease free H2O to 200 ul 37°C for 2 h
10X NEB Buffer 2 20
100X BSA 2
pmIgGκ_v5 maxiprep 5 ug
BsrGI (NEB) 2
Add BsiW1 (NEB) 2 55°C for 2 h

Components ul per reaction Incubation conditions
Nuclease free H2O to 200 ul 37°C for 4 h
10X NEB Buffer 2 20
100X BSA 2
pmIgGλ_v5 maxiprep 5 ug
BsrGI (NEB) 2
KasI (NEB) 4

Next Generation Sequencing - Sample Preparation

To prepare samples for next generation sequencing (NGS) of the phage outputs, a miniprep of
the glycerol stocks was performed using the QIAprep Spin Miniprep Kit (QIAGEN 27104). The
DNA was amplified by PCR (components of the reaction mix and thermal cycling conditions are
outlined in Table 2.12) and run on a 1% agarose gel. After gel extraction with the QIAquick gel
extraction kit (QIAGEN 28704) the DNA was further purified using AMPure beads (A63882).
The samples were submitted for sequencing to the DNA Sequencing Facility in the Department
of Biochemistry, University of Cambridge. Paired-end sequencing (2x300bp) was performed
using the MiSeq system and the MiSeq reagent kit v3 (Illumina).

Next Generation Sequencing - Data analysis

NGS data analysis was performed by Dr Samborskyy at the Department of Biochemistry,
University of Cambridge. In brief, read quality control and adapter trimming was performed
and paired-end sequences were merged to obtain complete scFv library sequences. These
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were mapped against a scFv processing pipeline that can separate reads into CDR and non-
CDR regions and automatically annotates FW1-4 and CDR1-3. Out of frame sequences were
excluded. In order to perform CDR frequency analysis, the CDR3 heavy and light chains were
concatenated, the number of occurrences of each was counted and the frequency was calculated
for each sample.

Table 2.12 RT-PCR reaction mix and thermal cycling conditions for NGS samples

Reaction mix Step Thermal cycling
(per reaction) conditions
25 ul Q5 Hotstart 2X Master Mix (NEB) Initial Denaturation 98°C for 30 sec
1 ul 10 uM LSeq Primer 20 cycles of: 20 cycles of:
1 ul 10 uM HLink Primer DNA denaturation 98°C for 10 sec
18 ul DNA/RNA-free H2O Primer annealing 55°C for 30 sec
5 ul DNA template (5 ng/ul) Primer extension 72°C for 1 min

Final extension step 72°C for 2 min

2.3 Animal Work and Histology

2.3.1 Blastocyst Injections

Animals

Timed matings of the inbred C57/BL6 mouse strain were set up to give blastocysts at 3.5 dpc
(days post coitum). One day later, 2.5 dpc psudopregnant F1 females (C57/Bl6 x CBA) were
derived by mating with vasectomised males.

Blastocyst Flushing

Pregnant 3.5 dpc C57/BL6 females were killed by cervical dislocation and their uterine horns
were removed in order to flush blastocysts. This was done using a 27 gauge needle that
was inserted into one end of each uterine horn and flushing it with M2 media (Millipore).
Blastocysts were then transferred into ESC media and either injected immediately or kept for a
few hours in a 37°C humidified incubator.
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ES Cell Injections and Embryo Transfers

Blastocyst injections and embryo transfers were carried out by Professor W.H. Colledge. ES
cell medium was replaced on the cells 1-2 h prior to the injections. The cells were then
trypsinised and resuspended in a small volume of ESC media. Using a Leitz Micromanipulator,
10-12 ES cells were injected into each blastocyst. After 2-3 h of recovery to give them time
to re-expand, the injected blastocysts were transferred into 2.5 dpc pseudopregnant F1 female
recipients using a NSET (non surgical embryo transfer) device.

2.3.2 Analysis of Chimaeras

In the first instance, pregnant females were weighed at gestational days e10.5, e13.5, e15.5. and
e17.5 to monitor pregnancy status. Chimaerism of born pups was then assessed by coat colour.
Later, pregnant females were sacrificed by dislocation of the neck at two time points during
gestation (e13.5 and e17.5) in order to define the embryonic phenotype. The embryos were
imaged using both the Zeiss SteREO Discover.V8 Stereomicroscope and the Leica M205 FA
fluorescence microscope with a DFC7000T camara .

2.3.3 Paraffin Embedding and Sectioning

Embyronic tissues were fixed in 4% PFA for 5 h and were then transferred into 70% EtOH over
night. The tissues were then transferred into fresh 100% EtOH for 4 h, before exchanging EtOH
for 50% Histoclear in EtOH for 1 h and subsequently 100% Histoclear overnight. The tissues
were transferred to 54-58°C warm paraffin wax twice for 3.5-4 h, before being embedded.
Sections were cut to a thickness of 7-8 um using a microtome and dried at 37°C for 24 h.

2.3.4 Haematoxylin and Eosin Staining of Embryo Sections

The tissue sections were placed in Xylene for two times 5 min each to remove paraffin wax.
They were then rehydrated by progressively moving the slides through series of ethanol (100%
EtOH, 100% EtOH, 90% EtOH, 70% EtOH, 50% EtOH, 30% EtOH) and PBS for 3 min each.
The slides were rinsed with water before staining with haematoxylin for 8 min. After a quick
wash in cold ddH2O they were placed into acid alcohol (70% EtOH with 1% HCl) for a few
seconds to force the stain to enter the nucleus. The tissue slides were extensively rinsed with
cold tap water for 6-10 min for blueing to occur. They were then stained for 45 sec with
Eosin and quickly washed with tap water twice. To dehydrate tissue sections, they were again
progressively moved through series of ethanol (50% EtOH, 70% EtOH, 90% EtOH, 100%
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EtOH, 100% EtOH) for 1 min each. The slides were then twice placed in Xylene for 2 min
each, mounted with coverslips using DPX mounting medium and let to dry and set over night.





Chapter 3

Initial Characterisation of the ES Cell
Clones

3.1 Introduction

This chapter provides an overview of the initial characterisation and quality control experiments
that were performed on the ES cells used for the experiments described in this thesis. We show
that all ES cell lines have a normal karyotype and retain the main characteristics of pluripotent
stem cells, that is self renewal and the ability to differentiate into cell types of all three germ
layers.

3.1.1 Effects of Prolonged Culture on Karyotype and Pluripotency

During gene targeting, ES cells are exposed to subcloning and repeated passaging. It is a
well established fact that long term culture can lead to chromosome instability and abnormal
chromosome numbers [77–79]. The most common chromosome number mutations appear to
be trisomy 8 or trisomy 11 [77]. A normal karyotype is not only important for the maintenance
and differentiation of cells in vitro [80] but also for in vivo development. The best known
example for this is probably trisomy 21 which leads to Down syndrome in humans. Similarly,
other karyotypical abnormalities can also cause more or less severe developmental defects,
often leading to embryonic lethality as numerous studies in both mouse and human have shown
[81–83].
Prolonged ES cell culture can not only lead to changes in the cells’ karyotype, but it can also
affect their pluripotency [84, 85]. This is thought to be due to the accumulation of epigenetic
changes [86].
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3.2 Results

3.2.1 Karyotyping

Karyotyping was performed on the ESC(Comp) clones by arresting the cells in metaphase using
colcemid. Metaphase is the stage of the cell cycle when the chromosomes are in their most
condensed state and hence easiest to count. Colcemid depolymerises microtubules which in
turn disrupts spindle formation. Spindle fibers are essential for cells to progress from metaphase
to anaphase. Disruption of the spindle will, however, not stop cells progressing from earlier
stages of the cell cycle to metaphase and colcemid treatment therefore enriches the metaphase
cell population [87]. Giemsa staining was then used to visualise the chromosomes and their
numbers could be counted.
Typically, in the mouse a karyotype is assumed to be normal if at least 70% of cells have 40
chromosomes. Figure 3.1B is an example of how a typical chromosome spread of a single
cell looks like. From these, the chromosome number was counted in 15 cells for each of the
compromised cell lines. All of them had 80% or more cells with exactly 40 chromosomes
(Figure 3.1A).
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Fig. 3.1 Chromosome counting (A) Number of chromosomes per cell for the four ESC(Comp)
clones (n=15). Percentages indicate the proportion of cells with exactly 40 chromosomes.(B)
Image of a typical chromosome spread of a single cell.
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3.2.2 Expression of Pluripotency Markers

The ES cell clones were analysed to see whether the cell lines still fulfilled the basic characteris-
tics of pluripotent stem cells - self renewal and the ability to differentiate into all other cell types.
Since the cell lines have been kept in culture for a seemingly infinite number of passages, they
clearly still retain the ability to self renew. Another good initial test for pluripotency is to look
at the expression of some of the core pluripotency genes. We chose to analyse the expression
of Nanog, Oct4, Sox2, Klf4, Esrrb and Stat3. Nanog, Oct4 and Sox2 are at the heart of the
pluripotency gene regulatory network and are absolutely essential for pluripotency. Several
studies have shown that ES cells that do not express these genes lose their ability to self renew
and will spontaneously differentiate [19, 25, 28, 31]. OCT4 and SOX2 form a heterodimer
which, by binding to the Nanog promoter, regulates the expression of Nanog and a number of
downstream genes that are important for the maintenance of pluripotency [88]. KLF4 is one
of the original four Yamanaka factors used to reprogram mouse fibroblast cells into induced
pluripotent stem cells (iPSCs) [89]. Additionally, KLF4 is a key regulator of Nanog expression.
It can also bind to the Nanog promoter and thereby assist OCT4 and SOX2 in controlling the
expression of Nanog [90]. In contrast, Esrrb is a target gene of NANOG and overexpression of
Esrrb can rescue Nanog-null ES cells [91]. Finally, STAT3 plays an important role in ES cell
self renewal and pluripotency through the LIF/JAK/STAT3 signalling pathway [92]. LIF is an
essential addition to ES cell media, but it requires expression of Stat3 in order to have an effect
on pluripotency.
Figure 3.2 shows that all the ESC(Comp) clones expressed these genes at levels compara-
ble to the controls. The only exception was the expression of Nanog in ESC(Comp)1 and
ESC(Comp)3 as well as the control clone ESC(Ctrl)4 (One-way ANOVA, p<0.05). However,
they were not completely silenced and it is questionable whether such a small downregulation
will have an effect on the cells’ self renewal and differentiation potential.

3.2.3 Differentiation Assay

To confirm the second characteristic of pluripotency - the ability to differentiate into cells of
all the three germ layers - we performed a differentiation assay. To initiate differentiation we
formed embryoid bodies (EBs) in hanging drops. EBs are three dimensional aggregates of ES
cells that have been shown in the past to recapitulate a number of differentiation processes
that occur in the developing early embryo. In general, EBs can contain early progenitors of
cells of the three germ layers (mesoderm, endoderm and ectoderm). If left to spontaneously
differentiate, it is possible to eventually find a number of different specialised cell types,
including cardiac muscle, skeletal muscle, adipogenic cells, neuronal cells and hepatic cells.
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Fig. 3.2 Expression of pluripotency markers (A) Nanog (B) Oct4 (C) Sox2 (D)Klf4 (E) Esrrb
(F) Stat3. Gene expression was normalised to Hprt and results were normalised to the values
of ESC(Ctrl)1. Error bars represent standard error of the mean. Stars represent significant
differences as calculated by ANOVA (p<0.05). n=2 (biological replicates).

However, some cell types will arise more frequently than others, which is why the EBs were
cultured in defined media that will induce differentiation down specific pathways. This can be
controlled by adding growth factors or growing the cells on specific substrates. Protocols for
this can be found in the literature [55, 58, 62] and the basic methodology is also outlined in
Figure 3.3A.

Mesoderm - Cardiomyocyte Differentiation

Cardiac muscle is one of the cell types that frequently develops when leaving EBs to sponta-
neously differentiate. Therefore, for mesoderm differentiation the EBs were left to differentiate
without the addition of growth factors. After EB formation in hanging drops, they were kept
in suspension culture for an additional three days to increase in size, after which they were
cultured on gelatin-coated plates. Only two days later, we were able to observe the first beating
cell clusters, which is typical for cardiomyocyte differentiation (data not shown). Staining for
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αSMA (alpha smooth muscle actin), which is an early mesoderm marker [93], was positive in
cells derived from all of our eight cell lines (Figure 3.3B).

Fig. 3.3 Differentiation assay (A) Experimental set up for the differentiation assay (B) Repre-
sentative images of differentiated cells from each cell line. αSMA in red stains cardiomyocytes,
SOX17 in green stains definitive endoderm cells and β III-TUBULIN in green stains neuronal
cells.
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Definitive Endoderm Differentiation

Spontaneous endoderm differentiation in EBs occurs much less frequently. Therefore, after
initiating differentiation, EBs were dissociated and plated on Poly-L-ornithine/Laminin-coated
plates in differentiation media containing Nicotinamide. Nicotinamide is a form of vitamin B3
and has been shown to be important for the differentiation and proliferation of insulin-producing
pancreatic progenitors. More recently, Cho et al. [94] suggest that Nicotinamide may act by
sustaining Pdx1 (Pancreatic and duodenal homeobox 1) expression, a transcription factor that
is important for pancreatic development.
Nine days after replating, cells were stained for SOX17 (SRY-Box 17), a transcription factor
that is a marker for definitive endoderm [95]. As Figure 3.3B shows, all cell lines have the
potential to differentiate into definitive endoderm cells.

Ectoderm - Neuronal Differentiation

Similar to endoderm differentiation, EBs do not often spontaneously differentiate into neurons
or neuronal progenitor cells. After initiating differentiation we again replated EBs onto Poly-L-
ornithine/Laminin-coated plates but this time added EGF (Epidermal growth factor) and bFGF
(basic fibroblast growth factor) to initiate neuronal differentiation. EGF and bFGF promote the
proliferation, survival and self-renewal of neural stem and progenitor cells and are routinely
used for the culture of neuronal cell types and for the differentiation of pluripotent stem cells
into neurons [96, 97].
After six days of exposure to these growth factors, the expression of β III-TUBULIN was
analysed. β III-TUBULIN is a microtubule element that is almost exclusively expressed in
neurons. As can be seen in Figure 3.3B, again all eight of our cell lines were able to differentiate
into neuronal cells.

3.3 Discussion

We have shown that all of the ESC(Comp) cell lines that were used for experiments presented
in this thesis have a normal karyotype with >80% of cells having exactly 40 chromosomes
and that all cell lines fulfil the basic characteristics of pluripotency - self renewal and the
ability to differentiate into cells of the three embryonic germ layers. Additionally, all cell lines
were screened for pathogens such as mycoplasma (data not shown). We are therefore very
confident that the lethality and developmental defects found in chimaeric embryos resulting
from blastocyst injections with these ES cell clones are due to other underlying genetic or
epigenetic mutations.
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3.3.1 Karyotype Analysis

The karyotyping that was performed here confirms that the cells have the right number of chro-
mosomes. However, with this method it is not possible to identify any structural chromosomal
changes like deletions, insertions, duplications, inversions or translocations. The consequences
of these can be incredibly detrimental to embryonic development, often causing lethality or
at least life-long disabilities [98]. Better methods to detect these changes would be extended
G-banding, fluorescence in situ hybridisation (FISH) [99] or chromosomal microarray studies
[100]. Furthermore, by simple chromosome counting we cannot rule out that there may be a
trisomy of one chromosome in addition to a monosomy of another chromosome, which would
also result in a total of 40 chromosomes. However, all of these occurrences are very rare and
the analysis of this was beyond the scope of this project.

3.3.2 Pluripotency and Differentiation Potential

Although in general all pluripotency genes that we looked at were expressed at comparable
levels between the ESC(Ctrl) and ESC(Comp) cell lines, there was a significant difference
in Nanog expression with ESC(Comp)1, ESC(Comp)3 and ESC(Ctrl)4 only expressing it to
around 70% of the level of the other clones. However, this level of silencing is unlikely to
cause changes to the cells’ pluripotency and their ability to contribute to chimeras. In fact, it
may be attributable to transcriptional heterogeneity which is a well known phenomenon in ES
cells, particularly if they have been grown in serum/LIF conditions [101, 102]. Both Chambers
et al. [103] and Singh et al. [104] demonstrate that there is a small ES cell subpopulation
which does not express Nanog or expresses it at lower levels. However, this silencing seems to
be reversible and some Nanog-null ES cells still retain pluripotency and their differentiation
potential. Similar results have also been reported for other plutipotency genes [105–108].
It therefore seems very unlikely that the ES cells will be affected by the slight difference in
Nanog gene expression. Particularly since the differentiation assay showed that all cell lines
retain the ability to differentiate into cells of the mesoderm, endoderm and ectoderm lineages.
We have, however, only shown that the cells can differentiate into quite early progenitors
of each of the three lineages. From this it is not clear whether there may be more specific
issues in later stages of development. We have also just performed a qualitative analysis, not
a quantitative one. Therefore it remains an open question whether there may be more subtle
differences in the efficiency of differentiation or whether some cell lines have a "preferred"
lineage that they differentiate into more frequently when left to differentiate spontaneously.
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3.3.3 Chapter Conclusion

Overall, we have shown in this chapter that the ES cells used in this thesis are of good
quality with a healthy karyotype, normal expression of pluripotency markers and the ability to
differentiate into cell types of all three germ layers.



Chapter 4

Blastocyst Injections and Histology

4.1 Introduction

This chapter describes the embryonic lethal phenotype observed in the ESC(Comp) chimaeras
in more detail. The aim of this analysis was to define the timepoint at which embryonic lethality
occurs and to identify developmental defects that have occurred in these embryos. Initially, all
cell lines were labelled fluorescently to identify and visualise the chimaeric embryos. These
were then injected into blastocysts and the phenotype of the chimaeras was analysed at e13.5
and e17.5. While no embryonic death was observed at e13.5, we show that there was a
significant decrease in embryos surviving until e17.5 and that a great number of embryos
showed signs of haemorrhaging.

4.2 Results

4.2.1 Cell Labelling Using the PiggyBac System

Adult chimaeras can usually be distinguished from their wild-type littermates by differences in
coat colour. In the embryo this is not possible. Therefore, all eight ES cell clones were labelled
fluorescently to identify chimaeric embryos and track ES cell contribution. This was done using
the PiggyBac (PB) system. This makes use of transposons which are mobile genetic elements
that can transpose from one genetic location to another via a "cut and paste" mechanism [109].
Two parts are needed for this system: the transposon itself and a transposase. In the PB system,
these are supplied in two separate vectors. The transposon vector contains the gene of interest
flanked with transposon specific inverted terminal repeat sequences (ITRs). The second vector
contains the transposase (PBase). The PBase recognises the ITRs, cuts the gene of interest
from the vector and randomly moves it to TTAA sites in the chromosome. We labelled the
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Fig. 4.1 PiggyBac vectors (A) pPBCAG-H2BtdTomato-IH vector containing the tdTomato
transgene, as well as the hygromycin resistance gene. (B) pPBCAG-Venus-IP vector containing
the Venus transgene as well as the puromycin resistance gene. (C) pCyL43 PBase (not to scale)
(D-E) Standard curves of Kiss1 and Venus to calculate transgene copy number

ESC(Comp) cell lines using tdTomato (Figure 4.1A) and the ESC(Ctrl) cell lines using Venus
(Figure 4.1B). The PBase (Figure 4.1C) was the pCyL43 vector described by Wang et al. [70].
The vectors used here were kindly supplied by Professor Azim Surani (The Gurdon Institute,
University of Cambridge).

Preliminary Transfection Efficiency and Transgene Copy Number Analysis

Our hypothesis was that during culture, perhaps during subcloning, the compromised ES cells
have incorporated genetic or epigenetic changes. Therefore, we wanted to avoid subcloning the
cells yet again and to label as many of the original cells as possible. Therefore three different
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Table 4.1 Transfection efficiencies

Electroporation Nucleofection Lipofection -ve ctrl
+ Venus + Venus + Venus + Venus + Venus + Venus - Venus
+ PBase - PBase + PBase - PBase + PBase - PBase - PBase

Cells plated 3.14x106 2x106 1.2x106 1.4x106 3x106 3x106 5x106

Colonies 5280 44 5332 96 1572 16 0
Efficiency 0.17% 0.0022% 0.44% 0.0069% 0.052% 0.00053% -

Table 4.2 Copy number analysis

Sample Ratio Number of
Venus/Kiss1 Venus copies

NF 1 0.43680 1
NF 2 0.62003 1
NF 3 1.39619 3
NF 4 0.32415 1
NF 5 0.48150 1
NF 1 0.42843 1
NF 2 0.27795 1
EP 1 1.77943 3-4
EP 2 0.21199 1
EP 3 5.69712 11
EP 1 0.15177 1
EP 2 0.79565 1-2
LF 1 32.27507 64-65
LF 2 0.82803 1-2
LF 3 8.08072 16
LF 4 6.75877 13-14
LF 5 0.93101 2
LF 1 26.73544 53-54

transfection methods (electroporation, nucleofection and lipofection) were tested for their
transfection efficiencies using the ESC(Ctrl)3 cell line. As Table 4.1 shows, nucleofection (NF)
resulted in the best transfection efficiency with 0.44% of cells expressing Venus compared to
0.17% and 0.052% after electroporation (EP) and lipofection (LF), respectively. Also note
the big difference in transfection efficiency between experiments with and without the PBase.
Knowing that the PB system is very efficient and that it randomly integrates the gene of interest
into the cells’ genome, it is likely that at least a subset of cells has more than one copy of Venus
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and it was next tested whether the type of transfection method had an effect on this. Higher
copy numbers increase the probability of one or more integration sites that might cause changes
in the cells’ normal functions. Therefore, we wanted to minimise this. To do this, a number
of individual ES cell colonies were picked for each of the different transfection methods and
gDNA was extracted. Using qPCR, standard curves were plotted for Venus (Figure 4.1D) and
Kiss1 (Figure 4.1E) as a control (Kiss1 was chosen randomly). We then calculated the DNA
starting quantities using the qPCR results for Venus and Kiss1 for each individual sample and
rearranging the equation of the standard curve slope to x=10(Ct−b)/m. Assuming that two copies
of Kiss1 are present it was then possible to predict the copy number of Venus by calculating the
ratio of xVenus to xKiss1. A ratio of approximately 0.5 implies that there is only 1 copy of Venus.
The data for a number of ES cell colonies are summarised in Table 4.2 and show that most of
the nucleofected cells only have one copy of Venus, whereas electroporation and especially
lipofection had the tendency to introduce multiple copies of Venus into the genome.

Fluorescent Labelling of Cells

We therefore decided to use nucleofection as the preferred method of transfection for the eight
cell lines (ESC(Ctrl)1-4 and ESC(Comp)1-4) used for the blastocyst injections. After nine days
of selection in hygromycin (pPBCAG-H2BtdTomato-IH) or puromycin (pPBCAG-Venus-IP)
the cells were pooled and their fluorescence was checked. Figure 4.2A shows that we managed
to fluorescently label all eight cell lines. Figure 4.2B also shows fluorescent images of e13.5
chimaeric embryos, providing further prove that the cell labelling was successful.

4.2.2 Phenotypes of e13.5 and e17.5 Chimaeras

We used the labelled cells for blastocyst injections to investigate the exact phenotype of the
chimaeras. All of the injections and embryo transfers into pseudopregnant recipient females
were carried out by Professor W.H. Colledge. The embryos were analysed at gestational days
e13.5 and e17.5. The graphs in Figure 4.3A,B show the breakdown of results for each cell
line at the two time points. Overall, we observed four broad phenotypes that are also shown
in Figure 4.3G: live and healthy/normal (i, ii), live with haemorrhaging (iii, iv), dead and not
resorbed yet (all of these had severe haemorrhaging) (v, vi), dead and fully resorbed (vii, viii,
ix). Interestingly, in most e17.5 embryos that were alive with haemorrhaging, the haemorrhages
predominantly occurred at the limbs and the tail. Additionally, some embryos also showed
signs of edema (Figure4.3G(v)), which, similar to haemorrhaging, is usually caused by vascular
defects.
At e13.5, no dead (not resorbed) embryos were found. At e17.5, however, we started seeing late
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Fig. 4.2 Fluorescently labelled cells and embryos (A) Images of all eight cell lines after
labelling with Venus or tdTomato. (B) Images of e13.5 chimaeras for each of the cell lines.

gestational embryonic lethality. Pooling all the data and comparing the two groups ESC(Ctrl)
and ESC(Comp) with each other in terms of the proportion of embryos that were still alive at
the two stages, we can see that at e13.5 there was no significant difference between the two
groups, no matter whether embryos with haemorrhaging were included or not (Figure 4.3C,E).
However, looking at just the healthy live embryos, the p-value is 0.09, suggesting that there is a
trend, although it is not quite significant yet. At e17.5, there was a clear significant difference
between the proportion of embryos that were still alive between the ESC(Ctrl) and ESC(Comp)
groups, both when looking at the healthy embryos and when including haemorrhaged ones
(Figure 4.3C,E).
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Fig. 4.3 Survival phenotype (A-B) Phenotypes of chimaeric embryos at e13.5 (A) and e17.5
(B). Numbers above bars are the percentages of live (normal) embryos. (C-F) Percentages
of live embryos compared between ESC(Ctrl) and ESC(Comp) groups for both time points:
including all live embryos (C), all live embryos but excluding ESC(Ctrl)4 samples (D), only
healthy/normal alive embryos (E), only healthy/normal live embryos and excluding ESC(Ctrl)4
samples (F). Stars represent significant difference as calculated by unpaired t-test with Welch’s
correction (p<0.05). (G) Range of phenotypes: live (normal) e13.5 (i), live (normal) e17.5
(ii), live (haemorrhaging) e17.5 (iii), live (haemorrhaging) e13.5 (iv), dead (not fully resorbed)
e17.5 (v, vi), dead (resorbed) e13.5 (vii), dead (resorbed) e17.5 (viii, ix). White arrow heads
indicate small foci of haemorrhaging. Other phenotypes include edema (v) and lack of posterior
development (viii). (H) Embryo crown-rump length in cm.
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Interestingly, the phenotype of the ESC(Ctrl)4 chimaeras was more like that of the ESC(Comp)
chimaeras rather than the other controls. This is intriguing since this clone has given rise to
healthy chimaeric animals in the past. The proportions of each of the observed phenotypes
for these chimaeras was very similar to that of ESC(Comp)1-4 for both time points (Figure
4.3A,B).
We therefore also compared the proportions of live embryos between the two groups after
excluding ESC(Ctrl)4 from the analysis. Looking at the healthy and haemorrhaged embryos
together, there was still no significant difference at e13.5 (Figure 4.3D), but the proportion
of just the healthy looking embryos was now significantly lower in the ESC(Comp) group
compared to ESC(Ctrl)1-3 (Figure 4.3F).
Furthermore, it was of interest when the embryos died. To answer this question, we looked at
the size of the embryos. There was no significant difference between the ESC(Ctrl) chimaeras
and any of the subsets of ESC(Comp) embryos, suggesting that their time of death was at
approximately e17.5 or shortly before (Figure 4.3H).

4.2.3 Histological Analysis

To take a closer look at what developmental defects occurred in the ESC(Comp) chimaeric
embryos, the e17.5 embryos were dissected and a number of the major organs were fixed,
paraffin embedded, sectioned and stained with H&E (haematoxylin and eosin) for histological
analysis. Since most of the bleeding was observed in the limbs, livers and some lungs, those
tissues were chosen for analysis first. We cannot be completely sure whether the ESC(Ctrl)4
chimaeras serve as good controls and hence they were excluded from this analysis. Since there
was a haemorrhaging phenotype, we first looked at the blood vessels. As shown in Figure
4.4B,C the blood vessels in the liver and in the limbs of the ESC(Comp) chimaeras had a
greater average diameter than those of the ESC(Ctrl) chimaeras. It was also noted that the
blood vessel walls were less well defined in the ESC(Comp) and it looked like their basement
membrane was impaired (Figure 4.4A(ii)). Some ruptured vessels were also observed (Figure
4.4A(iii)). The severity of this varied from no or very few ruptured blood vessels observed to
major haemorrhaging (Figure 4.4A(iv)), but this was not observed at all in any of the ESC(Ctrl)
samples. Additionally, in the limb sections, we noticed that the number of nucleated blood cells
appeared to be higher in the ESC(Comp) chimaeras than in the ESC(Ctrl) chimaeras (Figure
4.4A(v-viii)). These are likely either white blood cells or nucleated erythrocyte progenitors.
This was also observed in the livers but to a lesser extent. Neither of these effects were seen in
the lungs.
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Fig. 4.5 Measuring fluorescence intensity by mean grey value (A) Fluroescent images of
e17.5 embryos were analysed in ImageJ. Their outline was drawn (yellow line) and the mean
grey value of the defined area was measured. (B) Mean grey values for ESC(Comp) chimaeric
embryos. ns means no significant difference and stars represent significant differences as
calculated by ANOVA (p<0.05).

4.2.4 Correlation Between Contribution and Phenotype

There was a range of phenotypes and severity. All of the dead embryos showed severe
haemorrhaging whereas the degree of this varied more for the alive embryos and was mainly
restricted to smaller foci of bleeding. Interestingly, this phenotype could already be observed
at e13.5 embryos, indicating that, although lethality occurs later during development, the
phenotype starts to manifest during mid-gestation, if not earlier.
Given that these embryos are chimaeric and will potentially have different degrees of ES
cell contribution, we wondered whether these two factors correlated. To look into this, we
imaged the fluorescent embryos and used the grey-scale images to estimate ES cell contribution
using the mean grey value in ImageJ as shown in Figure 4.5A. This was only done for the
ESC(Comp) embryos. There was no significant difference between the live (normal) and the
live (haemorrhaging) groups or the live (normal) and the dead (not resorbed) groups. However,

Fig. 4.4 (preceding page) Histological analysis at e17.5 (A) H&E images of sections of the
limbs. i) ESC(Ctrl), ii-iii) ESC(Comp). Arrow heads showing blood vessels. iv) hemorrhage in
ESC(Comp). v-vi) ESC(Ctrl), vii-viii) ESC(Comp). Arrows showing nucleated blood cells.
Scale bar in iv is 250um, all others are 50um. (B-C) Box plots showing diameter of blood
vessels in the limbs (B) and liver (C). Whiskers range from 10th to 90th percentile. The line
inside the box represents the median, the mean is shown by a cross. Stars represent significant
differences as calculated by the Mann-Whitney U test (p<0.05).
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the mean grey value of the fluorescent images of the dead (not resorbed) group was significantly
higher than that of the live (haemorrhaging) group, indicating that there might be a correlation
between contribution and phenotype (Figure 4.5B).

4.3 Discussion

This chapter describes how the eight ES cell clones were labelled fluorescently using the
PiggyBac system and subsequently injected into blastocyst to further define the developmen-
tal potential by assessing the phenotype of the chimaeras derived from the compromised
ESC(Comp) clones. We have shown that the ESC(Comp) clones do not give rise to viable
chimaeras and that embryonic death occurs roughly around e17.5. Additionally, it was observed
that there were various degrees of haemorrhaging in the ESC(Comp) chimaeras and that there
are defects in blood vessel integrity.

4.3.1 Cell Labelling

To fluorescently label as many cells as possible and have a low copy number of transgene
integration to avoid further detrimental mutations, three different transfection methods were
tested for the efficiency and a copy number analysis in a number of labelled cells was performed.
This showed that nucleofection was the most efficient transfection method. Similar results were
also found previously by other groups [110]. Cells that were transfected using nucleofection
also had the least copies of Venus. However, efficiency and copy numbers were only tested in
one of the control cell lines and using the pPBCAG-Venus-IP plasmid. Although transfection
efficiency is unlikely to change a great deal in the other cell lines and using the pPBCAG-
H2BtdTomato-IH plasmid, it is possible that there will be variations in copy numbers between
and within the eight cell lines, especially, since this was only analysed for a small subset of
cells.
It is also noteworthy that the difference in the number of Venus copies present in cells transfected
with lipofection and the other two methods is very large, which was unexpected. All three
methods are routinely used by many laboratories and it would be interesting to further examine
whether this effect only occurred by chance or whether this is a real phenomenon.

4.3.2 Phenotypic Differences Between ESC(Ctrl) and ESC(Comp) Cells

Using the labelled cells, we showed that there is a clear difference in the developmental potency
between the ESC(Ctrl) and ESC(Comp) cells. The viability of the embryos was greatly reduced
in the ESC(Comp) chimaeras at e17.5. All of the dead embryos and even some of the live
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ones showed signs of haemorrhaging. Interestingly, some embryos also had edemas which are
caused by abnormalities in the development of the lymphatic system [111], suggesting that
there may be defects in blood vessel as well as lymphatic vessel development. Although no
embryonic lethality was observed at e13.5 yet, we could already see haemorrhaging in a large
number of embryos. Together with the data that there is no significant difference in embryo size
at e17.5, this suggests that the phenotype starts to manifest before e13.5 but embryonic death
does not occur until around e17.5. However, embryo size is not the ideal way to determine the
embryo’s age and developmental progress as it can be affected by a number of things such as
litter size. A better way to analyse whether the embryos are at similar developmental stages
would have been to weigh both the embryo and the placenta and calculate the fetal/placental
weight ratio.
One problem with using fluorescence to detect chimaerism was that for the resorptions it was
not possible to determine whether they had ES cell contribution or not. Apart from one embryo,
fluorescence could not be detected for any of them. This is likely due to the fact that most of the
tissue will have been reabsorbed or that the Venus and tdTomato proteins have been degraded.
Therefore, there is a chance that some of the resorptions included in this analysis may not
have had ES cell contribution. However, this is the case for both ESC(Ctrl) and ESC(Comp)
chimaeras.

ESC(Ctrl)4 Clone Behaves Like the Compromised ES Cells

One ES cell clone that stuck out was ESC(Ctrl)4. This clone had previously given rise to good,
high percentage chimaeras with germline transmission. However, in this study, the phenotype
of the chimaeras generated using this cell line look more like those of the compromised ES cell
clones. This was unexpected. Our hypothesis is that the compromised clones have acquired
some genetic or epigenetic mutations during their culture that lead to the embryonic lethal
phenotype. It is possible that the same or similar changes have accumulated in the cells of the
ESC(Ctrl)4 cell line. This hypothesis will be explored further in the next chapters.

Histological Analysis

Histological differences were found between tissues of the ESC(Ctrl) chimaeras and the
ESC(Comp) chimaeras. Due to the haemorrhaging phenotype, this analysis was mainly
focussed on blood vessel development. Both blood vessels of the liver and the subcutaneous
vessels of the limbs were dilated. Additionally, we saw a number of ruptured blood vessels and
blood vessels with reduced vascular integrity. Similar vessel phenotypes were described in a
number of mouse models with a haemorrhaging phenotype [112–114].
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There is still a lot more work to do to fully define the phenotype of the ESC(Comp) chimaeras
and to understand the precise developmental processes that are affected. Firstly, the H&E
analysis needs to be completed for more organs to see whether the vascular phenotype persists
in most of the body or whether it is confined to specific organs or tissues. Additionally, it would
be of interest to look at the blood vessel structure in more detail. Antibodies for CD31 (also
called PECAM1 - Platelet endothelial cell adhesion molecule) and αSMA could be used for
this. CD31 is expressed by endothelial cells of all blood vessels [115] and αSMA is usually
present in the walls of larger blood vessels. The combination of these two markers is often used
to assess blood vessel structure by looking at αSMA coverage or by analysing the organisation
of the CD31-positive and αSMA-positive cells lining the blood vessels.
An increase in the number of nucleated blood cells was also observed in tissues of ESC(Comp)
chimaeras. It is not clear, however, whether these are white blood cells or nucleated erythrocyte
progenitors as all of these are nucleated. If they are white blood cells, it is also unclear, whether
this is part of the phenotype and a reason for embryonic lethality or whether this is part of
the body’s wound healing response. It is well established that white blood cells play major
roles in wound healing and tissue repair [116]. Therefore, it is possible that an increase in the
number of white blood cells is the body’s response to the ruptured blood vessels and other
potential tissue malformations. However, the nucleated blood cells could also be erythrocyte
progenitors. These nucleated progenitors of red blood cells usually only persist in the blood
until approximately e16.5 [117], suggesting that there may be a developmental delay in the
ESC(Comp) chimaeras in terms of blood cell development.

4.3.3 Correlation Between ES Cell Contribution and Phenotype

We further showed that there is an increase in the fluorescence signal in the dead embryos
compared to the haemorrhaged live ones. Interestingly, there was no significant difference
between the live (normal) embryos and either the haemorrhaged or the dead ones. This is likely
due to the larger variation in that set of samples. The fourth phenotype (dead and resorbed)
had to be excluded from this analysis since as mentioned above the majority of the resorptions
were not fluorescent.

4.3.4 Chapter Conclusion

The data presented in this chapter show that chimaeras generated from ESC(Comp) ES cells
have a vascular phenotype and most of them die around e17.5. We observed a range of
haemorrhaging phenotypes as well as edemas in some embryos. Histology data analysing
blood vessels in the limbs and liver revealed that ESC(Comp) chimaeras have dilated vessels
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and poor vascular integrity compared to the ESC(Ctrl) chimaeras. This phenotype strikingly
resembles earlier steps of angiogenesis, suggesting that there may be a delay in the development
of the fetal vasculature in the ESC(Comp) chimaeras. Interestingly, we also observed an
increased number of nucleated blood cells in ESC(Comp) chimaeras, which could potentially
be immature erythrocytes [117]. This would also indicate that there may not only be a delay
in the development of the fetal vasculature but also a delay or defects in some aspects of
haematopoiesis. Other tissues were not analysed and it remains to be determined whether there
are developmental delays in other organs and tissues, too.





Chapter 5

Transcriptomics

5.1 Introduction

The work described in this chapter provides a detailed overview of the transcriptome profiles
of the eight ES cell clones that were used for the blastocyst injections described in Chapter
4 (Blastocyst Injections and Histology). The aim of this was to identify any transcriptional
changes that might account for the altered developmental phenotype of the ESC(Comp) clones
and that could in the future serve as markers to distinguish between ES cells with good or
compromised developmental potency.

5.2 Results

5.2.1 RNAseq Data Processing and Analysis

We performed single-end RNA sequencing of the four ESC(Ctrl) and the four ESC(Comp)
clones, with three replicates (R1-R3) for each sample. The sequencing coverage was 10M
reads per sample. Data processing was performed using the open, web-based bioinformatics
platform Galaxy (https://usegalaxy.org/). Read quality was assessed using the FastQC tool. The
overall quality of the reads was excellent with 94.6% of all reads having a Phred quality score
(Q score) of 30 or higher (Figure 5.1). The Q score is a measure of base calling accuracy and
an indicator of the probability of a base calling error (P). It is logarithmically related to P by
the equation Q=-10log(10)P, i.e. the higher the Q score, the lower the probability that a base
call is wrong. At Q=30, there is only a 1/1000 chance of the base call being wrong, or a 99.9%
chance that it is right.
To remove low quality bases (Phred score Q≤30) on the sequence read ends, as well as
positional sequence bias at the start of the sequence reads [118], the first 8 and the last 4 bases
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Fig. 5.1 Q score distribution Total Q score distribution for all reads of all samples.
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(C-D) Per base sequence content pre (A,C) and post (B,D) trimming.
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Fig. 5.3 RNAseq results (A) PCA plot and (B) MA-plot comparing gene expression in
ESC(Comp) samples vs ESC(Ctrl) samples. (C) Pedigree of ES cell clone derivation.

were trimmed off the reads. Representative examples of FastQC outputs pre and post trimming
are shown in Figure 5.2. They show that although the per base sequence quality was very
good to start with (Figure 5.2A), the trimming has improved the Phred score (Q≥30) even
further (Figure 5.2B). Additionally, the noise in the per base sequence content at the start of the
sequence read (Figure 5.2C) has been removed (Figure 5.2D) through trimming.
The trimmed sequence reads were mapped against the GRCm38.p4 reference genome with
Tophat [73]. We then calculated read counts in htseq-count [74] using the strict mode, which
only counts a sequence read when the read overlaps with the whole gene and when the read is
unique to a single gene. Genes were annotated with the GENCODE annotation vM7.
We next tested for differential gene expression between our ESC(Ctrl) and ESC(Comp) samples,
using the DESeq2 tool. On the principal component analysis (PCA) plot (Figure 5.3A) we
observed that the three replicates of each sample cluster very closely together, which is a good
confirmation that the sequencing run has worked and the data are reliable. From the PCA
plot it is, however, not possible to deduce whether there are differences in gene expression
between the two test groups as there are no distinct clusters grouping the samples in Controls
and Compromised clones. Nonetheless, we can identify four clusters of samples. The first one
containing ESC(Ctrl)1 and ESC(Comp)2, the second one containing ESC(Ctrl)4, ESC(Comp)1
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Fig. 5.4 RNAseq results without ESC(Ctrl)4 (A) PCA plot without ESC(Ctrl)4. (B) MA-plot
comparing all ESC(Comp) samples vs ESC(Ctrl)1-3.

and ESC(Comp)3, the third one containing ESC(Comp)4 and the last one containing ESC(Ctrl)2
and ESC(Ctrl)3. In general, this clustering is representative of the pedigree (Figure 5.3C) of
how the samples were derived as described in Chapter 1 (Introduction). The only exception to
this is sample ESC(Ctrl)4, which we would have expected to cluster closer to ESC(Comp)2
or ESC(Ctrl)2 and ESC(Ctrl)3. Similarly, the MA-plot, which visualises the differences in
gene expression between the two sample groups, shows that there is not a single gene that
is differentially expressed between all ESC(Comp) and all ESC(Ctrl) clones with a log2fold
change ≥+/-1 (Figure 5.3B).

RNAseq Data Analysis Excluding Sample ESC(Ctrl)4

From the blastocyst injection data we have seen that in terms of its phenotype, ESC(Ctrl)4
behaves more similarly to the compromised clones than the controls. The number of chimaeras
that were alive and healthy at e17.5 was significantly lower than in the other three controls
and similarly to the four compromised clones, in addition to dead embryos we saw a greater
number of embryos with haemorrhaging.
The PCA plot also indicates that its transcriptome may be more similar to the compromised
clones. We believe that this clone may have undergone similar genetic or epigenetic changes
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Fig. 5.5 Validation of RNAseq results (A) Maternally and (B) paternally expressed genes.
Error bars represent standard error of the mean. Stars represent significant differences as
calculated by ANOVA (p<0.05). (C) Results of the PCR for Rtl1as (top lane) and Rtl1 (bottom
lane) after primer specific reverse transcription.

as the ESC(Ctrl) clones after the initial successful blastocyst injections were performed. We
were therefore interested to see whether there were differences in gene expression between
only ESC(Ctrl)1-3 and the ESC(Comp) clones. Indeed, as shown on the new MA-plot (Figure
5.4B), there were now five genes that are differentially expressed with a log2fold change ≥+/-1
(p<0.05, Benjamini-Hochberg Correction). These are Mirg (miRNA containing gene), Rian
(RNA imprinted and accumulated in nucleus), Gtl2 (also called Meg3 - Maternally expressed
3), Gm27000 and Rtl1 (Retrotransposon gaglike 1). Gm27000 is a predicted gene on the
X-chromosome. Interestingly, all other genes are located in the same region on chromosome 12.
This is the imprinted Dlk1-Dio3 region (Figure 5.8), containing the paternally expressed protein
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coding genes Dlk1 (Delta like non-canonical Notch ligand 1), Rtl1 and Dio3 (Deiodinase,
iodothyronine type III), as well the maternally expressed lncRNA Gtl2, Rian, Mirg and Rtl1as,
an antisense transcript to the paternally expressed Rtl1. Rtl1 and Rtl1as are indistinguishable
by unstranded RNAseq. Therefore the lower expression of Rtl1 in the ESC(Comp) samples
identified by RNAseq really represents a lower cumulative expression of Rtl1/Rtl1as.

5.2.2 Validation of Expression Levels of Genes in the Dlk1-Dio3 Region

We validated the expression levels of all these genes by qPCR using cDNA prepared from new
samples of cells. The expression levels were all as expected from the RNAseq results. Gtl2,
Rian, Mirg and Rtl1/Rtl1as were expressed at much lower levels in the four ESC(Comp) clones,
whereas there was no significant difference between the expression of Dlk1 and Dio3 in the
two groups (Figure 5.5A-B).
In order to distinguish between Rtl1 and Rtl1as, we used primer-specific reverse transcription
to make cDNA, followed by conventional PCR to amplify the product. This method has been
described previously [71]. In brief, because the two transcripts are expressed in opposite
directions, each of the primers of the primer pair designed to amplify the Rtl1/Rtl1as transcript
will exclusively bind to either the Rtl1 or the Rtl1as transcript. If we replace the oligo(dT)s in
the reverse transcription reaction with either the forward or reverse primer, we can specifically
amplify Rtl1as or Rtl1, respectively. A PCR will then show which of the transcripts was present
in each sample. As shown in Figure 5.5C Rtl1as was expressed in ESC(Ctrl)1-3 but silenced
in all ESC(Comp) samples, as well as ESC(Ctrl)4. Rtl1 was not detectable in any of our samples.

5.2.3 Additional Compromised Clones Have a Similar Expression Profile
at the Dlk1-Dio3 Region

To further confirm the relationship between the expression levels of the maternally expressed
genes of the Dlk1-Dio3 region and the embryonic lethal phenotype that we observed after
blastocyst injections of the ESC(Comp) clones, four more control clones (ESC(Ctrl)5-8) and
three more compromised clones (ESC(Comp)5-7) were analysed. In Table 5.1 we show that
the control clones have previously given rise to a high number of excellent chimeras, whereas
we did not get many pups (and no chimeras) born with the compromised clones.
qPCR analysis of expression of Gtl2, Rian and Mirg revealed that while the four additional
controls had normal expression levels, all three ESC(comp) clones showed silencing of Rian
and Mirg and two of them also had lower expression of Gtl2 (Figure 5.6).
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Table 5.1 Blastocyst injection results of additional clones

Cell line Number of pups Of which chimera
ESC(Ctrl) 5 22 20
ESC(Ctrl) 6 18 18
ESC(Ctrl) 7 20 18
ESC(Ctrl) 8 14 14
ESC(Comp) 5 1 0
ESC(Comp) 6 0 0
ESC(Comp) 7 0 0
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Fig. 5.6 Expression of Gtl2, Rian and Mirg in additional clones Error bars represent standard
error of the mean. Stars represent significant differences as calculated by ANOVA (p<0.05).

5.2.4 Gtl2 Expression in the Embryos

We have identified differences in gene expression by using ES cells. However, the phenotype
we observe occurs late during gestation around embryonic day e17.5. This poses the question
of whether these genes are still silenced in the embryo.
To answer this question, we collected limbs from e17.5 chimeras from ESC(Ctrl)1-4 and
ESC(Comp)1-4 and looked at the expression of Gtl2 as a marker for the whole region. We
chose limbs because Gtl2 expression has been shown to be high in fetal skeletal muscle [119].
To account for the variation in the amount of muscle in each sample, we normalised gene
expression to the muscle marker Myf5 (Myogenic factor 5). In Figure 5.7A we show that as
expected chimeras from ESC(Ctrl)1-3 ES cell clones expressed Gtl2 in their limbs, whereas
Gtl2 expression in chimeras from ESC(Comp)1-3 and ESC(Ctrl)4 was very low. In chimeras



68 Transcriptomics

Gtl2 expression in e17.5 limb tissues
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Fig. 5.7 Gtl2 tissue expression (A) Gtl2 expression in limbs from e17.5 chimeras. Each dot
represents a tissue sample. Horizontal bars represent the means for each group of samples.
(B) Genotyping results for the three ESC(Comp)4 chimaeras and representative chimaeras
generated from other ESC(Ctrl) and ESC(Comp) clones. Top row is the PCR result for a
housekeeping control, bottom row is the PCR results for primers specific to each ES cell clone.

from the ESC(Comp)4 clone, however, Gtl2 levels were similar to those of the controls.
Interestingly, ES cell contribution in these chimaeras was also much lower than in all other
chimaeras (Figure 5.7B)

5.3 Discussion

We have shown that there is a relationship between the expression of the maternally expressed
genes in the Dlk1-Dio3 region on Chromosome 12 and the developmental potency of ES cells.
Initially, this was identified using RNAseq technology to analyse the transcriptome of the four
ESC(Ctrl) and the four ESC(Comp) clones that were used for the blastocyst injections described
in Chapter 4 (Blastocyst Injections and Histology). We further confirmed this relationship with
additional control and compromised ES cell clones and also showed that the expression of
these genes remains silenced in ES cell derived embryonic tissues.

5.3.1 Structure and Control of the Dlk1-Dio3 Region

The Dlk1-Dio3 region is located on the distal part of chromosome 12 and is an imprinted region,
meaning that some genes are expressed exclusively from the paternally inherited copy, whereas
others are expressed exclusively from the maternally inherited copy. This is usually controlled
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Fig. 5.8 Dlk1-Dio3 locus Dlk1-Dio3 imprinted region on the distal part of chromosome 12.
The paternal allele encodes the protein coding genes Dlk1, Rtl1 and Dio3. The maternal allele
encodes the non-coding RNAs Gtl2, Rtl1as, Rian and Mirg. Rian encodes a number of C/D
box snoRNAs. The region also contains two miRNA clusters: one within Rtl1as and the other
one within Mirg. There are two DMRS: the IG-DMR and the Gtl2-DMR which are methylated
on the paternal but unmethylated on the maternal chromosome. Expression of maternally
expressed genes is mainly controlled by the IG-DMR.

through differential DNA methylation of the two alleles at known regulatory regions.
The Dlk1-Dio3 region (Figure 5.8) contains three protein coding genes expressed from the
paternal allele as well as a number of noncoding RNAs expressed from the maternal allele.
Figure 5.8 gives an overview of the region. The paternally expressed protein coding genes are
Dlk1, Rtl1 and the most distal gene of the region Dio3 which is located 800kb downstream
of Dlk1. Expressed from the maternal allele are the long noncoding RNA (lncRNA) Gtl2,
the three genes Rian, Rtl1as, an antisense transcript to Rtl1, and Mirg, as well as additional
intergenic transcripts such as microRNAs (miRNAs). Rian harbours a large cluster of C/D box
small nucleolar RNAs (snoRNAs) and Rtl1as and Mirg also produce a number of miRNAs.
Given that these transcripts are all expressed in the same direction and the lack of an obvious
promoter apart from the Gtl2 promoter, it is believed that the maternal genes are all expressed
as one long polycistronic transcription unit. Their gene expression profile is remarkably similar
during embryonic development, but the function of most of these maternally expressed genes is
largely unknown.
There are several differentially methylated regions (DMRs) in this region that are known to
regulate expression, but the most important one for the control of Gtl2, Rian, Rtl1as and Mirg is
the IG-DMR (intergenic DMR), located between Dlk1 and Gtl2, approximately 13kb upstream
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of the Gtl2 promoter. It inherits a methylation mark during spermatogenesis and therefore,
only the paternal copy is methylated whereas the maternal copy remains unmethylated. DNA
methylation is associated with repressed gene expression. Hence, in a normal situation Gtl2,
Rian, Rtl1as and Mirg are exclusively expressed from the maternal allele.

5.3.2 Literature Review - Previous Publications Confirm Our Results

Uniparental Disomy and Knockout Mouse Models

The Dlk1-Dio3 region has previously been implicated with an embryonic lethal phenotype and
developmental defects. In 2000, Georgiades et al. [120] created a mouse model for mater-
nal or paternal uniparental disomy of chromosome 12 (mUPD12 and pUPD12 respectively).
The pUPD12 embryos would be expected to have low expression of the usually maternally
expressed genes Gtl2, Rian and Mirg as they inherit two paternal alleles. pUPD12 embryos are
alive until embryonic day e15.5 but the number of alive embryos decreases for later stages and
none survive to birth. mUPD12 embryos have a slightly less severe phenotype with embryos
dying perinatally. pUPD12 embryos show defects in muscle and skeletal development. Another
study [121] looked at the effect of maternal or paternal duplication of just the distal part of
chromosome 12 (which is where the Dlk1-Dio3 region is located). Their results are similar
to the above study, yet slightly more severe with embryos dying prior to e18.5. Since the
Dlk1-Dio3 region is the only known imprinted region on chromosome 12, these studies suggest
that the genes in this region play important roles during embryonic development. This was
further confirmed with a study by Lin et al. in 2007 [122]. They created a mouse model with
a deletion in the IG-DMR. Maternal transmission of this deletion causes paternalisation of
the maternal chromosome at this locus, meaning that the genes that are normally expressed
from the maternal chromosome are silenced and instead Dlk1, Rtl1 and Dio3 are expressed
from both chromosomes. The phenotype they observe is similar to the previous two studies
[120, 121] - embryos die pre- or perinatally starting from e16.5 and they also show defects in
muscle and skeletal development. Table 5.2 sums up the results of these publications.

Findings From iPSCs and ES Cells

In 2010, Stadtfeld et al. [123] observed that iPSCs that do not give rise to high percentage
chimeras by 2n blastocyst injection and that do not give rise to embryos through tetraploid
complementation do not express Gtl2, Rian, Mirg and many of the miRNAs encoded in that
region. These results show striking similarities to our findings. Unlike our study, however,
they did have chimeras born after 2n blastocyst injection, although they had very low iPSC
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Table 5.2 Mouse models with defects at the Dlk1-Dio3 region

Model mUPD12/ pUPD12/ matIG-DMR
mUPD(dist12) pUPD(dist12) deletion

Paternal 0X Dlk1/Dio3 2X Dlk1/Dio3 2X
gene expression Rtl1 4X Rtl1 4X
Maternal 2X 0X 0X
gene expression
Lethality perinatal prenatal pre-/perinatal

pUPD12: from e15.5 beginning at
pUPD(dist12) before e18.5 e16.5

Developmental Muscle Muscle Muscle
defects Skeletal/Bone Skeletal/Bone Skeletal/Bone

Placenta Placenta
Citations [120][121] [120][121] [122]

contribution.
More recently, similar results have also been published for ES cells. Stelzer et al. have
developed a reporter system that can track methylation at imprinted loci in vivo [124]. They
have used this system to analyse methylation and gene expression dynamics at the Dlk1-Dio3
locus in ES cells as well as embryos and adult mice [125]. They show that in a culture of
ES cells, a small population of cells will emerge over time that has either activated (IG-DMR
hypomethylation) or silenced (IG-DMR hypermethylation) the usually maternally expressed
genes on both alleles, the latter one likely being equivalent to our ESC(Comp) cells in terms
of gene expression. Using tetraploid complementation assays with these cells they show that
disruption of normal gene expression at the Dlk1-Dio3 locus causes severe developmental
defects. While 4n complementation embryos with both alleles active (twice the normal dosage
of maternal genes) die prior to implantation, 4n complementation embryos with both alleles
silenced (no expression of maternal genes) survive until midgestation but then die with severe
developmental defects such as brain malformation and muscle defects. The findings from
this study are similar to our findings. However, the exact phenotype they observe is different
to our results described in Chapter 4 (Blastocyst Injections and Histology). In this study
they find that the embryos die between e12.5 and e15.5, whereas we observe lethality later
during gestation around e17.5. Importantly, they also do not report any haemorrhaging. There
are several potential explanations for this. The first one being the difference in blastocyst
injections. They performed tetraploid complementation which results in embryos with 100%
ES cell contribution, whereas we injected 2n blastocysts. Although embryos from 2n blastocyst
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injection can have close to 90-95% ES cell contribution, there will almost always be at least
some host cell contribution. This will potentially have an effect on the severity of the phenotype.
Additionally, there is a difference in genetic background of the ES cells that were used. Stelzer
et al. used 129XCAST F1 ES cells, whereas all of our ES cells were 129XB6 F1 ES cells. It is
possible that the precise phenotype will also depend on the genetic background.

5.3.3 Silencing of Maternally Expressed Genes From The Dlk1-Dio3 Region
in ESC(Ctrl)4

Our RNAseq experiment and the gene expression validations showed that ESC(Ctrl)4 has the
same pattern of gene expression of Gtl2, Rian, Mirg and Rtl1as as the ESC(Comp) clones.
Together with the blastocyst injection data, which showed that the chimeras derived from
ESC(Ctrl)4 cells have the same phenotype as the chimeras derived from the ESC(Comp) clones,
this strengthens our hypothesis that this clone may have undergone similar genetic or epigenetic
changes as the compromised clones, which ultimately means that it may not be a good control.
In Chapter 6 (Epigenetics) we will comment on why we think it has contributed to good
chimeras in the past but seems to have lost that ability. We will continue to include it in our
experiments and analyses but it will be treated as a separate, independent sample.

5.3.4 Impact of Other Genes

Our data in combination with the evidence from the literature review, indicate that silencing
of the maternally expressed genes from the Dlk1-Dio3 region is likely causing the embryonic
lethal phenotype that we observe. However, we did also find that Gm27000 expression is
significantly lower in ESC(Comp) clones compared to the ESC(Ctrl) clones. It is of course a
possibility that this is also playing a role in the differences in developmental potency that we
observe between the two groups.
Additionally, given that the phenotype that we observe occurs relatively late during gestation,we
cannot rule out the possibility of there being differences in gene expression at later stages
during development. Our RNAseq analysis only looked at differential gene expression at the
ES cell state. If there were additional genetic or epigenetic changes affecting loci that are
naturally not expressed at the ES cell level, these changes would remain hidden.

5.3.5 Gtl2 Expression in e17.5 Tissues

By looking at the expression levels of Gtl2 in limbs from e17.5 embryos we confirmed that on
the whole the expression of Gtl2 remained silenced during development. The only exception
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here were the three chimeras obtained from the ESC(Comp) 4 clone. This was very unexpected,
but can potentially be explained by relating tissue Gtl2 levels with contribution of ES cells to
the chimeras. The ESC(Comp)4 chimeras all had much lower contribution of ES cell-derived
cells than the chimeras obtained from the other cell lines. This means that there must have been
a high contribution from the host cells, which we would expect to have normal Gtl2 expression
levels and therefore they would increase total Gtl2 expression levels.
We looked at the expression in the whole limb because they contain skeletal muscle and Gtl2 is
known to be expressed at high levels in skeletal muscle [119]. To account for the differences in
amount of muscle in every sample we normalised Gtl2 expression to Myf5 which is expressed
in muscle and involved in myogenesis during embryonic development. This method has two
main caveats. Firstly, we cannot exclude Gtl2 expression from other tissues from the limb
such as skin, fat or bone. This is unlikely, as previous work on Gtl2 expression pattern during
embryonic development indicates [119], but it cannot be ruled out completely. Secondly,
knockout and uniparental disomy studies have shown that lack of expression of the maternally
expressed genes from the Dlk1-Dio3 region causes a muscle phenotype. Using a muscle marker
to normalise against could therefore skew the data. However, the work from Stadtfeld et al.
[123] show that while gene expression of other muscle markers such as Myogenin are affected
there is no difference in Myf5 expression between embryonic tissues derived after 4n blastocyst
injections of iPSCs that do or do not express Gtl2. Nevertheless, a more accurate way to assess
Gtl2 expression in ES cell derived embryonic tissues might be to make use of the fact that
our ES cells are fluorescently labelled and any ES cell derived cells in the embryo should
therefore be fluorescent, too. We could dissect muscle tissue, then dissociate it (for example
using enzymatic dissociation with trypsin) and finally sort or manually pick the fluorescent
cells. Looking at gene expression using qPCR on those cells only would make the results
more accurate and likely reduce variation between samples as we would exclude host cell
contribution. Furthermore, just using muscle tissue would eliminate the need to use a muscle
marker as a housekeeping gene and it would also reduce the possibility of Gtl2 contamination
from other tissues.

5.3.6 Chapter Conclusion

In this chapter we described that RNA sequencing of ESC(Ctrl) and ESC(Comp) ES cells only
identified 5 genes that are differentially expressed between the two groups. Four of these, Gtl2,
Rtl1as, Rian and Mirg are all expressed from the maternal allele of the Dlk1-Dio3 imprinted
region on chromosome 12 and silenced in the ESC(Comp) clones. Growing evidence from the
literature also suggests that silencing of this locus causes embryonic lethality in mice. This lack
of expression is also seen not just seen in the ES cells but also in tissues from e17.5 chimaeric
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embryos.
Not much is known so far about the precise role and mode of action of these genes during
development. However, this locus has been implicated in the regulation of angiogenesis in
tumours. Interestingly, as presented in Chapter 4 (Blastocyst Injections and Histology), we also
observed a blood vessel phenotype that resembles a delay in angiogenesis or vessel maturation.
This will be discussed further in the overall thesis discussion.



Chapter 6

Epigenetics

6.1 Introduction

In Chapter 5 (Transcriptomics) we described that the maternally expressed genes of the Dlk1-
Dio3 region, Gtl2, Rian, Mirg and Rtl1as, are aberrantly silenced in the compromised ES cell
clones. Gene expression in this region is mainly regulated by differential methylation of the
IG-DMR, located approximately 13kb upstream of the Gtl2 promoter. We therefore hypothesise
that the differences in gene expression between the ESC(Ctrl) and the ESC(Comp) clones is
caused by abnormal DNA methylation of the Dlk1-Dio3 IG-DMR in the ESC(Comp) clones.
In this chapter, we present a methylation analysis of this region and show that the IG-DMR is
indeed hypermethylated in the compromised ES cell clones. We additionally show that gene
expression can be rescued with the DNMT inhibitor 5-azacytidine.

6.2 Results

6.2.1 Bisulfite Sequencing of the Dlk1-Dio3 IG-DMR

The IG-DMR is the main regulatory element controlling expression of the maternal genes at
the Dlk1-Dio3 region and we performed targeted bisulfite sequencing of the IG-DMR, since we
were interested to find out whether hypermethylation of this region on the maternal chromosome
may be causing the silencing of the maternally expressed genes in our ESC(Comp) samples.
Bisulfite treatment of DNA will convert all cytosine residues into uracil. Methylated cytosines,
however, are protected from this and bisulfite treated DNA will therefore only retain those
cytosine residues that are methylated. Using sequencing methods, we can then identify and
analyse DNA methylation. This experiment was carried out under the guidance of Dr M.
Eckersley-Maslin at the Babraham Institute Cambridge. We first bisulfite converted gDNA that
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Fig. 6.1 Bisulfite sequencing results (A) IG-DMR of the Dlk1-Dio3 region (B) Control regions
(C) NESPAS-Gnasxl (D) H13 (E) Mest (F) Nap1l5 (G) H19 (H) Commd1 (I) Peg13 (J) Igf2r.
Red outlines indicate aberrant methylation levels. The dotted line indicates 50% methylation.
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was extracted from the cell lines, followed by two PCR steps to amplify the imprinted region
and to attach barcoded sequencing adapters. Finally, the samples were sequenced in a MiSeq
PE150 run.
In the normal situation, the Dlk1-Dio3 IG-DMR is only methylated on the paternal allele to
allow transcription from the maternal allele. We therefore expected the control cell lines to have
a methylation level of approximately 50% overall, whereas any clones where gene expression
is silenced due to hypermethylation of the IG-DMR were expected to have methylation levels
close to 100%. As Figure 6.1A shows, all ESC(Ctrl) clones (apart from ESC(Ctrl)4) were
indeed 50% methylated whereas ESC(Ctrl)4 and ESC(Comp)1-6 were almost fully methylated.
The only exception was ESC(Comp)7 which also had normal methylation levels. Importantly,
however, we also show that all cell lines had the expected methylation levels of the four control
genes: Sox2 and Klf4 are active in ES cells and should therefore not be methylated, whereas
Prickle1 and Pcdhac1 are usually fully methylated and not expressed at the ES cell state (Figure
6.1B). We did not distinguish between DNA methylation on the paternal and the maternal allele,
but only took into account total DNA methylation.

6.2.2 Bisulfite Sequencing and RNAseq Results of Other Imprinted Re-
gions

To see whether the abnormal methylation of imprinted genes (loss of imprinting) was restricted
to the Dlk1-Dio3 locus or whether it was a more global phenomenon, we analysed methylation
levels of known DMRs of additional imprinted genes by Bisulfite sequencing as before. The data
presented in Figure 6.1C-J show that there was indeed clone-to-clone variation in methylation
levels at other imprinted genes. However, no other region showed such a consistent difference
between the controls and the compromised ES cell clones as the IG-DMR of the Dlk1-Dio3
region.
We then went back to our RNAseq data to see whether this pattern of clone-to-clone variation
was also reflected in the expression levels of other imprinted genes. Similar to the methylation
data, there was silencing or overexpression in individual clones but again, there was no obvious
pattern like for the maternally expressed genes from the Dlk1-Dio3 region (data not shown).
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Fig. 6.2 ES cell culture in different media conditions Gtl2 expression in five ES cell clones
after culture in standard Serum/LIF conditions as well as 2i and EPSCM. Error bars represent
standard error of the mean. Stars represent significant differences as calculated by 2-way-
ANOVA (p<0.05).

6.2.3 Rescuing Expression of the Maternally Expressed Genes of the
Dlk1-Dio3 Region

Culture in 2i or EPSCM Did Not Affect Gtl2 Expression Levels

It is a well established fact that methylation is a very dynamic and reversible DNA modification.
We therefore wondered, whether it was possible to reduce methylation of the IG-DMR and
thereby reactivate expression of the maternally expressed genes. To do this, we cultured some
of the ES cell clones in 2i and EPSCM (Expanded potential stem cell media) for at least 3
passages. Both of these are routinely used to culture ES cells and have been shown previously
to reduce global DNA methylation levels [126, 127]. We have assessed only Gtl2 expression as
an indicator of whether there is any effect of these conditions on the whole region. However,
there was no significant increase in Gtl2 expression after culturing the cells in 2i or EPSCM
compared to our standard culture conditions. If at all, there was a tendency for lower Gtl2
expression after culture in EPSCM, but this was only significant for ESC(Ctrl)3 (Figure 6.2).
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Fig. 6.3 Treatment with 5-azacytidine (A) Viability assay for 5-azacytidine concentrations
ranging from 0-10 uM and for 24 h (light grey line) or 48 h (dark grey line). (B-D) Gtl2, Rian
and Mirg expression after 48 h of 0.5 uM 5-azacytidine treatment. Error bars represent standard
error of the mean. Stars represent significant differences as calculated by 2-way-ANOVA
(p<0.05).

5-azacytidine Treatment Reactivated Gtl2 Expression

Since we did not achieve reactivation by using different culture conditions, we were keen to
investigate whether treatment of the cells with 5-azacytidine (5-aza) would work. 5-aza is a
DNA methyltransferase (DNMT) inhibitor and decreases global DNA methylation by trapping
DNMTs and marking them for degradation. This obviously causes 5-aza to be quite toxic
for cells in high concentrations or if it is administered for too long. Hence we performed
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Fig. 6.4 Chimaeric offspring after 5-aza injections (A) One female (i) and three males (ii-iv)
born after injection of 5-aza treated, unselected cells. Photographs were taken at 1 month of
age (B) Two very low percentage chimaeras born after injection of a 5-aza treated subclone
(ESC(Comp)3-AZA28). Photographs were taken at 2 weeks of age. White arrows show
differences in coat colour.

a cell viability assay first to ascertain the optimal treatment conditions (Figure 6.3A). From
this we chose to treat the cells with 0.5 uM 5-aza for 48 h. RNA was extracted immediately
after stopping the treatment. qPCR analysis for Gtl2, Rian and Mirg expression showed that
we could indeed increase their expression with 5-aza treatment (Figure 6.3B-D). Two of the
compromised clones expressed these genes to levels comparable to the untreated controls.
There was no significant difference in ESC(Comp)4 after 5-aza treatment and the expression
of all three genes in ESC(Comp)3 after 5-aza treatment was even higher than in the untreated
controls. Interestingly, one of the control clones (ESC(Ctrl)2) had doubled its Gtl2 expression
levels after 5-aza treatment. This was potentially due to activation of the paternal allele.
We decided to inject some of the 5-aza treated cells into blastocysts to see whether this was
sufficient to rescue their embryonic lethal phenotype and whether any chimaeras survive. After
the 48 h 5-aza treatment, the cells were left to recover for another 48 h before being injected.
As shown in Figure 6.4A four chimaeras were born, but they were all quite low percentage
chimaeras. As before, blastocyst injections were performed by Professor W.H. Colledge.

Subcloning of 5-azacytidine Treated Cells

So far we had only looked at the population average of Gtl2, Rian and Mirg expression di-
rectly after the 5-aza treatment. However, it is unlikely that all cells will have the exact same
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Fig. 6.5 Analysis of 5-azacytidine treated subclones of ESC(Comp)3 (A) Gtl2 expression
in 20 subclones of ESC(Comp)3 after 48h of 0.5uM 5-azacytidine treatment, compared to
ESC(Ctrl)3 and the parental untreated ESC(Comp)3 cell line. Error bars represent standard error
of the mean. Crosses and stars represent significant differences to ESC(Ctrl)3 and ESC(Comp)3
respectively as calculated by ANOVA (p<0.05). (B) Karyotype analysis of three subclones
with rescued Gtl2 expression (n≥15). (C-D) Rian (C) and Mirg (D) expression in the Gtl2
expressing ESC(Comp)3 subclones. ns means not significantly different from ESC(Comp)3
parental clone.

methylation changes. In some cells 5-aza may not have had an effect on the methylation of the
Dlk1-Dio3 IG-DMR at all, in others it may have demethylated one allele and in yet another
group of cells it may have demethylated both the maternal and the paternal allele causing a
double dose of gene expression. Additionally, previous publications have shown that after a few
days without treatment, 5-aza treated cells partially recover their DNA methylation levels. To
investigate this and to find out whether this may have been the reason for the low contribution
of the 5-aza rescued cells to chimaeras, we strove to maintain a pure population of cells that
all have stably reactivated the maternally expressed genes. For this, ESC(Comp)3 ES cells
were treated with 0.5 uM 5-aza for 48 h like before and then the cells were let to recover for
a week. After passaging, a number of ES cell colonies were picked to grow up and perform
qPCR for Gtl2, Rian and Mirg on. Overall, the cells had been off treatment for 18 days at the
time of RNA extraction. There was a lot of variation between the subclones in their level of
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Gtl2 reactivation, confirming our hypothesis that the effect of 5-aza varies between cells. While
the Gtl2 expression in some colonies was just increased slightly, others had levels three times
as high as the untreated ESC(Ctrl)3 clone. Out of 20 subclones of ESC(Comp)3 that were
analysed, 14 had significantly increased Gtl2 levels. Of these, six (13, 14, 28, 35, 39, 46) had
Gtl2 levels comparable to the untreated ESC(Ctrl)3 clone (Figure 6.5A). Unexpectedly, the
levels of Rian and Mirg did not change (Figure6.5C,D).
From the six partially rescued subclones, three were chosen for karyotyping. This was per-
formed as described in Chapter 3 (Initial Characterisation of the ES Cell Clones). Two of those,
subclones 28 and 48, had a normal karyotype with 80% and 84% of chromosome spreads that
were counted respectively having 40 chromosomes (Figure 6.5B).
One subclone(ESC(Comp)3-AZA28) was chosen for blastocyst injections. Although only Gtl2
was successfully reactivated, we were interested to see whether this was sufficient to at least
partially rescue the phenotype. However only two very lower percentage chimaeras were born
as well as 11 pups with no contribution (Figure 6.4B).

6.3 Discussion

In this chapter we have demonstrated that the IG-DMR of the Dlk1-Dio3 region is hyperme-
thylated in six out of seven of our compromised clones as well as the abnormal ESC(Ctrl)4
clone. Other imprinted regions also showed loss of imprinting, but there were no consistent
differences between ESC(Ctrl) and ESC(Comp) clones. We have further shown that we can
rescue Gtl2, Rian and Mirg expression using 5-azacytidine treatment.

6.3.1 Bisulfite Sequencing of the IG-DMR

Using targeted bisulfite sequencing of the IG-DMR of the Dlk1-Dio3 region, we have shown
that in the control clones the level of methylation is approximately 50% which is what would be
expected for a correctly imprinted locus. In the compromised clones as well as the ESC(Ctrl)4
clone, however, the level of methylation is close to 100%. Since DNA methylation is associated
with gene silencing this hypermethylation of the IG-DMR, which is the main regulatory element
of expression of Gtl2, Rian, Rtl1as and Mirg, is very likely responsible for the lack of expression
of these genes in the compromised clones.
The only exception to this was ESC(Comp)7 which has approximately 50% methylation at the
IG-DMR, similar to the controls. In Chapter 5 (Transcriptomics) we have seen that this clone
fails to give rise to viable chimaeras and also did not express Rian and Mirg, but Gtl2 expression
is not significantly different from the ESC(Ctrl) clones. Together these results suggest that for
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this clone there may be a different cause of aberrant silencing of Rian and Mirg. It is possible
that there is a deletion of the region containing Rian and Mirg, or another mutation that is for
example causing a stop codon at the wrong position. This would be interesting to analyse but it
is beyond the scope of this thesis.
Despite this, our hypothesis that this region is important for proper embryonic development
still holds.

6.3.2 Loss of Imprinting at Additional Imprinted Loci

We have found that additional imprinted genes are also hyper- or hypomethylated and/or their
expression is increased or decreased in a number of our ES cell clones. This is not just restricted
to the compromised clones. However, this result is not particularly surprising as it has been
shown previously that the epigenome in ES cells is extremely unstable [86, 128] and loss of
imprinting is a very common phenomenon in ES cells. Changes in the expression of imprinted
genes can often be observed in cloned mice even if they were derived from the same ES cell
clone. However, most of these changes do not seem to affect viability and Humpherys et
al. [128] argue that embryonic development is very tolerant to changes in the epigenome.
This would also explain why we see these kinds of changes in our ESC(Ctrl) clones without
observing an abnormal phenotype.
Despite this, misregulation of the Dlk1-Dio3 region seems to be detrimental for development. It
is likely that hypermethylation of the IG-DMR was caused by loss of imprinting during ES cell
culture. This has also been shown by Stelzer et al. [125]. They observe a small population of
cells in their ES cell cultures that is either hyper- or hypomethylated at the Dlk1-Dio3 IG-DMR.
All of our cell lines (apart from the parental ESC(Ctrl)1 cell line) were derived by subcloning.
It is possible that our compromised cell lines were derived from cells that happened to be
hypermethylated at the Dlk1-Dio3 IG-DMR.

Loss of Imprinting in ESC(Ctrl)4

The ESC(Ctrl) 4 clone is unusual. It was selected as a control cell line because in the past
it had given rise to excellent chimaeras. However, in our present study this ability seems to
have gotten lost and its phenotype is more like that of the compromised clones in that we
observed embryonic lethality in ESC(Ctrl)4 chimaeras. Additionally, its transcriptome and
methylation profile of the Dlk1-Dio3 region is almost identical to that of the compromised
cell lines. We believe that this is also due to loss of imprinting at the Dlk1-Dio3 locus. This
cell line most likely used to be a good control, but over passages compromised cells may have
accumulated to a point where most of the cells have this change. It is possible that a number
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of those hypermethylated cells were already present at the time of the successful blastocyst
injections. However, their proportion may have been low enough that only "normal" cells were
injected by chance.

6.3.3 Gtl2 Expression Rescue

As described in Chapter 1 (Introduction), correct DNA methylation is extremely important
during mammalian development. It is part of the cells’ mechanism to dynamically regulate
gene expression profiles and developmental processes. Most importantly, we also know that
DNA methylation is a reversible modification of the genome. We therefore argued that it should
be possible to reverse the hypermethylation and hence rescue gene expression at the Dlk1-Dio3
region in the ESC(Comp) clones.

Culture in 2i or EPSCM

Initially, we tried rescuing expression by culturing the cells in 2i media [129] and EPSCM
(Expanded potential stem cell media) [127]. 2i is routinely used in a number of labs to culture
ES cells as it has been shown that 2i-cultured ES cells are more representative of inner cell
mass cells of the blastocyst. EPSCM was introduced very recently as a means to establish
cultures of so called expanded potential stem cells that have the ability to differentiate into
and contribute to not only the embryonic lineages but also extraembryonic tissues. These can
be established from individual blastomeres, ES cells or iPS cells. Both of these media have
previously been shown to decrease global DNA methylation levels in ES cells [126, 127].
Culturing the ESC(Comp) clones in 2i media or EPSCM was unsuccessful in rescuing the
expression of Gtl2. In hindsight, this result was not very surprising since Leicht et al. [126] also
found that although global DNA methylation decreases with 2i culture, imprints are not usually
affected by this. However, it was later also shown that prolonged culture in 2i actually does
indeed affect and reduces DNA methylation at imprinting control regions [130]. So perhaps,
three passages were not a long enough exposure to reduce methylation of the Dlk1-Dio3
IG-DMR and reactivate Gtl2 expression. In their work on expanded potential stem cells, Yang
et al. [127] have only focussed on global DNA methylation and do not comment on DNA
methylation levels of imprinting control regions.

Treatment With 5-azacytidine

We successfully managed to reactivate expression of Gtl2, Rian and Mirg in the compromised
clones using 5-azacytidine. This is a DNMT inhibitor that reduces global methylation levels.
After uptake into the cell, it becomes metabolised to 5-aza-dCTP which can be incorporated
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into the DNA by the DNA replication machinery instead of cytosine. DNMTs recognise the
forming azacytosine-guanine dinucleotides and start a methylation reaction. Unlike the bonds
between DNMTs and cytosine, however, the covalent bonds formed between DNTMs and
azacytosine are irreversible and the DNMTs become trapped and will eventually be depleted.
This leads to global reduction in DNA methylation.
Interestingly, none of the ESC(Comp)3 subclones that were derived after 5-aza treatment,
expressed all three genes Gtl2, Rian and Mirg. Several were identified that had reactivated
Gtl2 expression but not that of Rian and Mirg. This is particularly interesting since they are all
believed to be regulated as one large polycistronic transcription unit. The cause for this result
remains to be elucidated.
When the 5-aza "batch-treated" cells were injected into blastocysts, a number of quite low
percentage chimaeras were born. However, the subcloned cells mostly gave rise to pups with
no contribution from the ES cells and two extremely low percentage chimaeras. This suggests
that Gtl2 is likely necessary for proper embryonic development but is not sufficient on its own
without Rian and Mirg.
An explanation for the low contributions could also be the 5-aza treatment itself. Although it
did reactivate gene expression, there are issues with this method. 5-azacytidine is very toxic for
the cells since it interferes with the DNA replication machinery. It is therefore possible that
the cells were damaged and although this may not be noticeable immediately it could lead to
long-term effects on viability and cell function. This could lead to the cells dying or unhealthy
cells being excluded from the inner cell mass of the developing embryo.

Alternative Ways to Rescue Expression of Maternally Expressed Genes From the Dlk1-
Dio3 Region

Although there is very strong evidence for a correlation between aberrant regulation of the
Dlk1-Dio3 region and the embryonic lethal phenotype that we observe, as mentioned previously
we cannot exclude other or additional causes entirely. To prove this - and to avoid toxic
effects of 5-aza treatment - we would need to decrease methylation and rescue expression
exclusively at the Dlk1-Dio3 locus. One way to do this could be using CRISPR-mediated
DNA demethylation by TET (Tet methylcytosine dioxygenase) enzymes. This method was
recently reported by several groups [131, 132]. They make use of the CRISPR-Cas9 genome
editing machinery as well as the DNA demethylation action of TET enzymes. Specifically,
they have fused the TET catalytic domain (TET-CD) to a catalytically deactivated Cas9 protein
and designed appropriate guide RNAs to target this complex to specific genes that are known
to be hypermethylated in their cell type of interest. The TET-CD then acts to specifically
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demethylate neighbouring CpGs which subsequently leads to activation of gene expression
at that locus. This system could be utilised to alter gene expression at the Dlk1-Dio3 region
by using guide RNA that will chaperone the Cas9 with the fused TET-CD to the IG-DMR.
A potential problem with this, however, is that this mechanisms is not able to distinguish be-
tween the maternal and the paternal strand and would therefore likely demethylate both alleles,
most certainly resulting in higher than normal gene expression. And as Stelzer et al. [125]
show, 4n complementation embryos from ES cells with hypomethylation at the Dlk1-Dio3
IG-DMR are not viable. However, this region is rich in single nucleotide polymorphisms
(SNPs) and since the ES cells are from a mixed genetic background it may be possible to
design a guide RNA that will preferentially bind to the maternal allele. Allele specific genome
editing has been shown to be successful [133], but may be more complicated in this case as
the fused TET-CD would potentially still be able to reach and demethylate CpGs on both alleles.

6.3.4 Chapter Conclusion

In this chapter, we showed that the IG-DMR in the Dlk1-Dio3 imprinted region, which controls
expression of the maternally expressed genes, is hypermethylated in the ESC(Comp) ES cells.
Hypermethylation of the IG-DMR is likely the cause for the silencing of Gtl2, Rtl1as, Rian and
Mirg. This is also supported by our data that shows that treatment of the cells with the DNMT
inhibitor 5-aza can rescue expression of Gtl2, Rian and Mirg. Although gene expression was
increased in ESC(Comp) clones to levels comparable to that in ESC(Ctrl) cells, blastocyst
injection of the 5-aza treated cells did not yield any high percentage chimaeras. More work
is required for this experiment to specifically demethylate the maternal allele of the IG-DMR
only and/or to reduce toxicity effects of 5-aza, in order to rescue not only the Gtl2, Rtl1as, Rian
and Mirg gene expression levels in the ESC(Comp) cells but also their developmental potency.



Chapter 7

Phenotypic Screening by Phage Display

7.1 Introduction

The work presented in this chapter was carried out during my industrial placement at Medim-
mune Cambridge which was part of the funding body requirements. Phenotypic screening using
phage display technology was performed to look at differences in cell surface markers between
the ESC(Ctrl) and ESC(Comp) cells. Similarly to the transcriptomics experiments described
in Chapter 5 (Transcriptomics) the goal was to potentially identify a diagnostic marker to
distinguish between ESC(Ctrl) and ESC(Comp) cells. Unlike RNA sequencing, however, this
method has the potential to identify changes in surface protein composition as well changes in
other cell surface molecules such as lipids, carbohydrates or post-translational modifications
of cell surface proteins. These play an important role in cell adhesion, cell signalling and
interaction between cells.

7.2 Introduction to Phage Display

Phage display was first demonstrated by George Smith in 1985 [134]. He successfully managed
to display foreign peptides on the surface of filamentous bacteriophages by fusing them to one
of their coat proteins. This discovery opened the door to a wide range of applications for phage
display, including the production of large quantities of antibodies and peptides, drug discovery,
medical diagnosis and many more.

7.2.1 Filamentous Bacteriophages

The most commonly used phage display systems are the E. coli filamentous bacteriophage (FB)
strains M13 and f1. These FBs belong to a group of bacterial viruses that infect gram-negative
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Fig. 7.1 Bacteriophage life cycle After a bacteriophage attaches to a bacterial host cell, it
injects its DNA which is then replicated and used for phage protein synthesis using the host’s
DNA replication and protein synthesis machinery. The different phage proteins are then
assembled within the host cell and released through a channel in the outer cell membrane that
is encoded by one of the phage genes.

bacteria. Instead of inducing a lytic infection, they use their host’s replication machinery to
produce and secrete new phage particles. Upon infection with circular single-stranded DNA,
the host polymerase converts it to the replicative double stranded form which then serves as the
template for DNA replication as well as transcription and translation of the 11 phage genes.
Capsid and assembly proteins are located in the bacterial inner cell membrane where assembly
will take place, whereas the replication proteins remain in the cytoplasm. Through a channel in
the outer membrane, the assembled phage particles are secreted out of the cell, ready to infect
another bacterial cell. This bacteriophage life cycle is illustrated in Figure 7.1.

7.2.2 Antibody Structure

Antibodies are a vital part of the body’s immune system as they have the ability to identify,
bind to and neutralise foreign objects, called antigens. Each antibody has binding specificity to
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Fig. 7.2 Antibody structure (A) Structure of a full length antibody. The two heavy chains
(HC) are shown in blue and the two shorter light chains (LC) are shown in green. The darker
shaded ends are the variable regions (Fv) of each the HCs and LCs. Each variable region has
three complementarity determining regions (CDRs) and four framework regions (FWs). The
two heavy chains are held together by a disulfide bond in the hinge region. (B) Structure of a
single chain variable fragment (scFv) containing only the variable regions of the heavy and
light chains, held together with a polypeptide linker.

a unique antigen. This binding specificity as well as their versatility and biological role can be
explained by looking at the antibody structure.
Antibodies all share the same basic structure which was discovered by Rodney Porter and
Gerald Edelman in the 1950s and 1960s [135–137]. Using dithiothreitol and iodoacetamide,
chemical agents that break and inhibit the formation of disulphite bonds, as well as denaturing
agents to disrupt noncovalent interactions, Edelman found two types of subunits with different
sizes which he called heavy and light chain, according to their molecular weight. Porter used
the proteolytic enzyme papain to fragment rabbit immunoglobulin G (IgG). This produced
three fragments, two of which had the same size and charge. The two identical fragments
still retained their antigen binding capacity and he therefore called them fragments of antigen
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binding (Fab). The other fragment did not bind antigen and due to its crystallising nature was
called fragment crystallisable (Fc). Porter later discovered that the Fab fragments are composed
of parts of the heavy chain as well as the entire light chain, whereas Fc fragments only contain
heavy chain. From this he concluded that antibodies must have a Y-shaped structure as shown
in Figure 7.2A.
We now know that both the heavy and the light chain can be further divided into a constant (C)
region at the C-terminal end and a variable (V) region, consisting of 110-130 amino acids at
the N-terminal end. Differences in the C region mainly determine the immunoglobulin isotype,
whereas antigen specificity is determined in the V region, specifically three hypervariable
regions called complementarity determining regions (CDRs). There are three CDRs (CDR1,
CDR2 and CDR3) on each chain and they are separated by so called framework residues. These
are responsible for the correct positioning of the CDRs at the surface of the antibody’s 3D
structure, thereby enabling interaction of CDRs and antigens.

7.2.3 Antibody Fragments for Modern Applications

In the past few decades it has become clear that the Fc region is not needed for a lot of appli-
cations and the use of fragments lacking the Fc domain has become more and more common.
This has been facilitated by recombinant antibody technologies and genetic engineering which
make it possible to produce several different types of antibody fragments.
The first known antibody fragments were Fabs. Since their discovery, they have been engi-
neered into even smaller fragments. The most commonly used ones are single chain variable
fragments (scFvs). scFvs only consist of the variable regions of the heavy and light chains,
held together with a polypeptide linker (Figure 7.2B). These are very easy to express in E.coli
and are therefore widely used in applications such as phage display.

7.2.4 Construction of scFv Phage Libraries

In order to construct a high quality phage library, a large number of very diverse antibody genes
is required. These come from B-lymphocytes that can be found in the spleen, bone marrow or
blood. It is generally distinguished between immune [138], naïve [139] and synthetic [140]
phage libraries. Immune libraries employ the immune system’s ability to produce specific
antibodies in large quantities when presented with antigens, and thereby to skew the diversity
of its own antibody repertoire. They are made from B-lymphocytes of immunised animals or
human donors, meaning that they have previously been presented with an antigen of interest or
that the patient has been affected by a disease. This can have the advantage that the resulting
phage library is naturally enriched for antibodies that are specific to the antigen of interest.
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Fig. 7.3 Biopanning Diverse phage library is added to the cells of interest. Some of the phage
will bind to the cells, the rest is washed off. Bound phage is eluted, amplified and used for
another round of selection. After several rounds the phage outputs will be enriched for phage
binding to the cells of interest.

Naïve libraries are derived from B-lymphocytes of non-immunised donors. They are not biased
towards a limited number of different antibodies, but in fact are designed to have a very high
diversity. Naïve libraries are constructed by isolating RNA from B-lymphocytes and reverse
transcribing mRNA into cDNA. Using different primers, VH and VL chain genes are amplified
separately and then combinatorially assembled into scFv fragments using a DNA linker to
create very large arrays of diverse antibody fragments. They can then be further amplified and
ligated into phagemid vectors, for transformation and growth in E. coli.
Similar to naïve libraries, synthetic libraries can in theory contain antibody fragments to any
possible antigen. However, they are created outside of the immune system. They have the
advantage that it is possible to control the phage contents as well as the variability and diversity
of the library.
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7.2.5 Biopanning

Phage libraries can contain up to 1012 phage particles, each of them displaying a unique
antibody fragment. During a process called biopanning which is illustrated in Figure 7.3 the
number of unique phage particles can be greatly reduced and the pool is instead enriched for
clones that bind to antigens of interest.
The phage library is added to a given target such as immobilised antigens or cells. After
removing any unbound phage, all bound phage is eluted, amplified in E. coli and used for
another round of biopanning. This process is usually repeated two to four times and leads to an
enrichment of the phage library for clones specific to the target.

7.2.6 Applications of Phage Display

Phage display has a number of diverse applications. Particularly notable, however, is the major
role that phage display of antibody fragments has had in the latest advances in drug discovery.
Up until recently, drug discovery heavily relied on the identification of target genes through
molecular biology techniques. However, finding suitable antibodies or small molecules that
bind to these and have the desired effect, can be very laborious. With the invention of antibody
phage display, this process was simplified and sped up as this technique allows for the screening
of a vast number of antibody fragments based on their functional activity rather than their
ability to bind to a specific target. Only after finding antibody fragments with the desired
phenotype, their binding partners will be identified.

7.3 Phage Display and Why It is Useful in This Project

Cell signalling plays an important role during embryonic development and is necessary for
the proper regulation of developmental processes [141]. Signalling events between cells
often involve the engagement of cell surface proteins. With the RNA sequencing experiment
described in Chapter 5 (Transcriptomics) we did not identify any changes in RNA coding for
cell surface proteins. However, with phage display we are able to identify changes not only in
cell surface proteins but also in lipids, carbohydrates and post-translational modifications of
proteins such as glycosylation or phosphorylation (a summary of examples of this can be found
in the 2014 review by Chan et al. [142]). These also play important roles in cell signalling,
cell adhesion and generally in the interaction between cells. We therefore hypothesise that
there may be a difference in any of those cell surface molecules between the ESC(Ctrl) and the
ESC(Comp) cell populations that causes the embryonic lethal phenotype in the ESC(Comp)
chimeras, assuming that it is continuously expressed after ES cell differentiation.
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Fig. 7.4 Experimental setup (A) Hypothesis 1: The ESC(Comp) cells are missing a cell
surface marker (shown in green) that is vital for embryonic development. (B) Hypothesis 2:
The ESC(Comp) cells overexpress a cell surface marker (shown in red) that is causing the
embryonic lethal phenotype. (C) Experimental setup 1: three rounds of selection on the pool of
ESC(Ctrl) cells and the pool of ESC(Comp) cells. (D) Experimental setup 2: three rounds of
deselection to select for phage binding specifically to the ESC(Comp) cells.

7.4 Experimental Setup

We were interested in differences between the two ES cell populations - ESC(Ctrl) and
ESC(Comp) - in terms of their cell surface and we had two hypotheses what the nature
of these differences could be: firstly, there may be a cell surface marker that is vital for proper
cell fuction but that is missing from the ESC(Comp) clones (Figure 7.4A), or secondly there
may be a cell surface marker that is expressed on the ESC(Comp) but not the ESC(Ctrl) cells
that is contributing to the embryonic lethal phenotype (Figure 7.4B). To investigate these, two
different experimental setups were used. For both of these, the cells were pooled into the two
groups (ESC(Ctrl) and ESC(Comp)) so that we were dealing with only two cell populations
rather than four ESC(Ctrl) and four ESC(Comp) cell lines. In the first experiment, we per-
formed three rounds of selection on the two pools of cells separately (Figure 7.4C). The other
one was a deselection experiment that allowed us to specifically select for phage that binds only
to the ESC(Comp) cells. Deselection involves taking the supernatant (anything that did not
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bind) of ESC(Ctrl) cells, adding it to the ESC(Comp) cells and then selecting for those phage
that bind to the ESC(Comp) cells (Figure 7.4D). Three rounds of deselection were carried out.
From now on we will call the different setups Ctrl, Comp and DS (Deselection).
The deselection experiment could have been done the opposite way to specifically select for
phage that binds exclusively to the ESC(Ctrl) cells in order to identify surface markers that are
missing from the ESC(Comp) clones. However, this requires all the ESC(Comp) cells to be
missing the same surface marker. As soon as one of the ESC(Comp) clones is different to the
other three, this difference could be masked. Since the cells were pooled and we could not
be entirely certain that the ESC(Comp) cells are all compromised in the same way, we would
potentially not be able to pick up any changes like that and decided to focus on identifying
overexpression changes in the ESC(Comp) cell pool as shown in Figure 7.4B.
Unfortunately, the Ctrl pool also contains the ESC(Ctrl)4 cell line since these experiments were
run in parallel with the RNAseq study. Therefore, any results coming out of this study need to
be carefully validated as the results will likely be skewed and subtle differences between the
two groups might be masked.

7.5 Results

7.5.1 Three Rounds of Cell Surface Selection and Selection Rescue

We performed three rounds of selection and selection rescue for both the two normal selections
and the deselection, using a combination of the CS (Combined Spleen [143]) and BMV (Bone
Marrow Vaughan [144]) phage libraries, in order to enrich for phage that binds to the different
cell populations. For each round, the selection output was monitored and after the second and
the third rounds a number of phage containing E. coli colonies were picked and sequenced to
check the quality of the outputs. Table 7.1 shows that with subsequent rounds the output size
(number of colony forming units (cfu)) increased. This is a good sign that the selections have
worked and we have indeed enriched for phage that binds to the respective cells of interest.
Interestingly, the output of the deselection was smaller than that of Ctrl and Comp, especially
after the first round. This might be because by the time the phage is added to the ESC(Comp)
cells, a lot of it will already have bound to the ESC(Ctrl) cells in the previous step, and therefore
the effective size of the phage library was smaller than for the Ctrl and Comp selections.
In order to check the quality of the outputs and to determine which output to take forward
to some of the next experiments, DNA sequencing was performed on a number of colonies
and the sequences analysed using Blaze2. Blaze2 is a software package that was developed
by Medimmune and that automatically recognises specific antibody sequences and annotates
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CDR1-3 and framework regions. It is also able to detect small changes in the sequences, such
as frameshift mutations and stop codons, as well as large truncations or missing sequences. We
looked at the number of unique functional sequences for each group after rounds two and three,
as well as the number of sequences with stop codons, frameshift mutations and truncations
(Table 7.2). While the number of sequences with frameshift mutations and stop codons were
quite constant from round two to round three, there was a clear increase in the number of
truncated sequences, particularly during deselection, and a subsequent decrease in the number
of unique functional sequences. We therefore decided to use the round two outputs for the
reformatting to IgG format described later in this chapter.

Table 7.1 Output sizes of the three selection rounds

Controls Compromised Deselection
Round 1 2x103 cfu/ml 2x103 cfu/ml 1x103 cfu/ml
Round 2 7x104 cfu/ml 6x104 cfu/ml 7x104 cfu/ml
Round 3 3x107 cfu/ml 3x107 cfu/ml 2x107 cfu/ml

Table 7.2 Blaze2 results of round two and round three outputs The numbers show absolute
numbers (and %) of sequences.

Controls Compromised Deselection
Round 2 Round 3 Round 2 Round 3 Round 2 Round 3

Missing 2 (4.2%) 1 (2.1%) 0 0 1 (2.1%) 3 (6.25%)
sequences
No/truncated 3 (6.25%) 8 (16.6%) 6 (12.5%) 9 (18.75%) 7 (14.6%) 17 (35.4%)
heavy chain
Frameshift 8 (16.6%) 6 (12.5%) 12 (25%) 9 (18.75%) 4 (8.3%) 7 (14.6%)
Stop codon 5 (10.4%) 8 (16.6%) 5 (10.4%) 2 (4.2%) 1 (2.1%) 2 (4.2%)
Functional 30 (62.5%) 25 (52.1%) 25 (52.1%) 28 (58.3%) 35 (72.9%) 19 (39.5%)
sequences
Unique 23 (47.9%) 16 (33.3%) 18 (37.5%) 14 (29.2%) 26 (54.2%) 13 (27.1%)
sequences

7.5.2 Next Generation Sequencing of Selection Outputs

The sequencing of a number of phage colonies gave us a good initial overview of the quality
of the selection outputs. However, we were interested to analyse both the initial phage library
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Fig. 7.5 Library diversity and dominant clones (A) The diversity of the original phage library
drops each round (B) Graph displaying the ten motifs with the highest read count in the original
library and their read counts in the subsequent round one to three outputs. There are a few
dominant clones in the original library. These persist in the round one outputs but disappear in
rounds two and three.

as well as all the selection outputs in more detail and performed next generation sequencing
(NGS) on them. To do this, plasmid DNA was extracted from glycerol stocks of all round one,
two and three outputs as well as the initial phage library. The scFv region of the phagemid
populations was PCR amplified and sequencing was performed in the Department of Biochem-
istry, University of Cambridge. The raw data was analysed by Dr M. Samborskyy. In brief,
the sequences were mapped against a scFv processing pipeline that automatically annotates
CDR1-3 and framework regions. After exclusion of out of frame sequences, the occurrence of
each CDR3 motif was counted and its relative frequency was calculated.
Firstly, we were interested in the diversity of the samples. Figure 7.5A shows that - as we
expected - the number of different motifs dropped significantly from the original phage library
to round one and also to the subsequent rounds. This shows that the selection has worked and
we have indeed enriched for specific phage during the three selection rounds. Additionally,
we wanted to find out whether there were any dominant clones (phagemids that are overrep-
resented) that were already present in the original library and what happened to them during
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Fig. 7.6 Evolution over selection rounds Top ten motifs in rounds one and three for Ctrl (A,
B), Comp (D, E) and Deselection (G, H) outputs and their counts per round. (C, F, I) Venn
diagrams of the top 50 motifs each round for Ctrl (C), Comp (F) and Deselection (I).

selection rounds as the presence of dominant clones could potentially skew the results. As can
be seen in Figure 7.5B there were indeed a number of sequence motifs that occur repeatedly in
the original library (the majority of motifs occurs only once). They still seemed to persist in
the round one outputs, but the occurrence dropped in rounds two and three and therefore the
presence of dominant clones does not appear to be problematic for the further analysis.

To analyse what the "evolution" was from round one to round three, we looked at the top 50
motifs from each output and compared them to each other. The Venn diagrams in Figure 7.6
show that round two and three outputs were much more similar to each other than either of them
were to the round one outputs. This was the case for all selections (Ctrl, Comp and Deselection).
Approximately 35 of the top 50 motifs were shared only between the round two and the round
three output, whereas almost none were shared only between the round one output and either
the round two or round three outputs. The top 10 motifs of rounds one and three and their
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Fig. 7.7 Differences between Ctrl, Comp and Deselection outputs Venn diagrams comparing
the top 50 motifs of Ctrl, Comp and Deselection outputs after round one (A), round two (B)
and round three (C).

count numbers for each round are also displayed in Figure 7.6. Most interesting, however, was
to investigate how similar or different the three outputs of each round were to each other and
whether we can identify one or more sequence motifs that can distinguish between ESC(Ctrl)
and ESC(Comp) cells. These data are displayed in Figure 7.7. We again looked at the top
50 motifs for each output. In the round three outputs, 14 motifs occurred in all three, five
were shared only between Ctrl(3) and Deselection(3), 13 were shared only between Ctrl(3)
and Comp(3), and only one motif was common to both Comp(3) and Deselection(3) but not
Ctrl(3). Interestingly, Comp(3) was more similar to Ctrl(3) than to Deselection(3). The results
for the round two outputs were very similar with 13 motifs shared between all three outputs,
four shared between only Ctrl(2) and Deselection(2), eleven shared between only Ctrl(2) and
Comp(2) and four shared between only Comp(2) and Deselection(2). After only one round of
selection the outputs were still more similar to each other. However, we can start to see that the
deselection outputs were more distinct.

7.5.3 scFv Reformatting to IgG Format

The NGS data showed that the round two and round 3 outputs were very similar and therefore
justifies using the round 2 outputs for further characterisation. In order to confirm that any
of the phage that were enriched during the rounds of cell surface selection differentially bind
to one cell type or the other, the scFv fragments need to be reformatted into full length IgG
antibodies. A group at Medimmune has recently developed a high throughput method for scFv
to IgG reformatting [76]. In brief, this is done in two main steps: Firstly, the scFV phagemid
pool is linearised by PCR amplification and by In-Fusion cloning a donor vector supplies the
heavy chain constant region, the hinge region and the light chain control elements. In a second
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step the incomplete IgG cassette of this intermediate pool is again amplified in a PCR reaction
and cloned into an IgG vector containing the heavy chain control elements as well as the λ and
κ light chain constant regions. This results in a complete IgG cassette coding for the entire
heavy chain and light chain (Figure 7.8).

A B

scFv.pCANTAB pool

Donor vector

scFv.pCANTAB IgG intermediate pool

Intermediate pools

pmIgG v.5

IgG final pool

AmpR f1ori Bac-ori

VH VL gIII

SfiI NotI

PLac

Hinge.CH1-3 LC control elements

AmpR f1ori Bac-ori

LC control elements VL gIIIVH Hinge.CH1-3

SfiI NotI

AmpR f1ori Bac-oriPLac

PolyAVH Hinge.CH1-3 PCMV Intron VLLCsig gIII

PCMV Intron HCsig

PolyAVH PCMV Intron VLLCsigPCMV IntronHinge.CH1-3PCMV Intron HCsig

PolyA

PolyA

CL(κ)

CL(λ)

CL(κ/λ)

EBNA OriP AmpRPuc-ori

EBNA OriP Puc-ori AmpR

.

Fig. 7.8 scFv to IgG reformatting (A) To create the intermediate pool, the phage display
vector is linearised by emulsion PCR amplification and fused with a donor fragment containing
the hinge region, the heavy chain constant region and the light chain control elements. (B) The
incomplete antibody cassettes from the intermediate pool are again amplified by emulsion PCR
and cloned into a pmIgG v.5 vector containing the missing heavy chain control elements and
light chain constant regions (λ /κ)

Intermediate Pool

Using plasmid DNA from round two outputs we performed an emulsion PCR to linearise the
scFv.pCANTAB phagemid pool. Emulsion PCR has the advantage that individual sequences are
separated into small water-in-oil droplets and therefore the chance of recombination between
antibody sequences is reduced and correct VH-VL pairing can be maintained. This was done
in two separate reactions for each population, in order to amplify both λ and κ light chains.
In-Fusion cloning was then performed using the linearised phagemid vector and the donor
vector supplying the heavy chain constant region, the hinge region and the light chain control
elements. This formed the intermediate pool which was transformed into Stellar competent
cells and colonies were grown over night. To check the quality of the intermediate pool we
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again analysed the output size (Table 7.3) as well as DNA sequenced a number of colonies and
analysed them using Blaze2 as described before (Table 7.4). The intermediate pools were in
the range of 1-5x104 cfu/ml, which was in the expected range. Blaze2 analysis of a number of
sequences from individual colonies showed that between 58-75% of sequences were unique
and functional. We also checked that the cloning sites were in frame.

Final Expression Pool

Plasmid DNA was prepared from the intermediate pools and the incomplete IgG cassette
was amplified using emulsion PCR. To prepare the final expression vector, the incomplete
antibody cassettes from the linearised intermediate pools were cloned into linearised pmIgG
donor vectors containing the heavy chain control elements and the λ and κ light chain constant
regions. This final expression vector was transformed into Stellar competent cells and as before
the output sizes (Table 7.3) and the quality of the final expression pool sequences were assessed
(Table 7.4). The outputs were in the range of 4x102-3x103cfu/ml. This was on the low side but
was sufficient for picking individual colonies for IgG expression. Blaze2 analysis showed that
there was a reduction in the number of unique and functional sequences. However, the number
was still sufficient to proceed to IgG expression.

Table 7.3 Output sizes during IgG reformatting

Controls Compromised Deselection
λ κ λ κ λ κ

Intermediate 3x104 cfu/ml 4x104 cfu/ml 2.5x104 cfu/ml 3x104 cfu/ml 3x104 cfu/ml 1.5x104 cfu/ml
Final 6x102 cfu/ml 3x103 cfu/ml 1.5x103 cfu/ml 4x102 cfu/ml 8x102 cfu/ml 8x102 cfu/ml

Table 7.4 Blaze2 results of intermediate and final pools

Controls Compromised Deselection
Intermediate Final Intermediate Final Intermediate Final

Missing 3 (3.4%) 12 (13.6%) 7 (8.0%) 13 (14.8%) 3 (3.4%) 10 (11.4%)
sequences
No/truncated 15 (17.0%) 21 (23.9%) 1 (1.1%) 47 (53.4%) 2 (2.3%) 34 (38.6%)
heavy chain
Frameshift 3 (3.4%) 0 6 (6.8%) 3 (3.4%) 7 (8.0%) 4 (4.5%)
Stop codon 13 (14.8%) 9 (10.2%) 10 (11.4%) 5 (5.7%) 5 (5.7%) 4 (4.5%)
Functional 56 (63.6%) 49 (55.7%) 70 (79.5%) 25 (28.4%) 73 (82.9%) 40 (45.5%)
sequences
Unique 51 (57.9%) 38 (43.2%) 66 (75.0%) 23 (26.1%) 65 (73.8%) 33 (37.5%)
sequences
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7.5.4 High Throughput IgG Expression

For each population (Ctrl, Comp, Deselection) 400 individual colonies were picked from
the final expression pool for high throughput IgG expression. Theoretically, each of those
colonies should contain a unique IgG plasmid. These were submitted to the scFv-HTE team at
Medimmune who performed IgG expression and quantification as described previously [76].
Next steps to analyse differential binding of those IgGs to either ESC(Ctrl) or ESC(Comp)
clones are in progress.

7.6 Discussion

In this chapter we attempted to identify differences in cell surface markers between the
ESC(Ctrl) and the ESC(Comp) cells using phage display. This technology can identify not just
changes in protein composition but also changes in lipids, carbohydrates and post-translational
modifications to proteins on the cell surface. The NGS data indicate that there may be differ-
ences between the two cell populations since the deselection output is quite distinct from the
two normal selections. However, as described below, more work needs to be done to confirm
whether there really are differences between the outputs in terms of their binding capacity and
to identify what the cellular changes are.
Furthermore, there is one major flaw with the experimental design. In the previous chapters we
have argued that the ESC(Ctrl)4 clone is unlikely to be a good control and should be excluded.
However, since the selection experiments were performed in parallel with some of the work
presented in previous chapters, it was still included in the ESC(Ctrl) pool. If there are indeed
differences between the two cell populations in terms of their cell surface, this may be masked
by the inclusion of ESC(Ctrl)4. To get a more precise analysis, the three rounds of selection
would ideally be repeated with just ESC(Ctrl)1-3. However, the data may still be able to give us
a good indication of whether there are any differences between the ESC(Ctrl) and ESC(Comp)
cells.

7.6.1 NGS of Selection Outputs

The NGS data has confirmed that over the three rounds, selection for specific phage is happening
as there is a reduction in the diversity of sequence motifs. The two biggest selection events
seem to have occurred from the original phage library to round one and in round two. However,
the outputs from rounds two and three are quite similar, which suggests that after two rounds
we have already enriched for phage binding to the respective cell types and also justifies using
the round two output for scFv to IgG reformatting.
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Dominant clones in the original phage library that could have a growth advantage and therefore
skew the results did not seem to be a concern for the analysis.
Comparing the three outputs of each round with each other, we would have expected the Comp
and the Deselection outputs to be the most similar. However, the Ctrl and Comp outputs were
more alike in terms of the top 50 motifs. This could be due to the type of selection. It is likely
that just running three rounds of selection on both the ESC(Ctrl) cell pool and the ESC(Comp)
cell pool will enrich for phage that is specific for ES cells in general, whereas deselection is
more likely to pick up differences between the two cell populations and enrich for phage that
binds specifically to the compromised ES cells. However, another explanation could also be
that during deselection, a lot of the phage that will bind to the common surface markers will
bind to the ESC(Ctrl) cells during the first part of the selection round and the pool of phage that
is added to the ESC(Comp) cells is therefore depleted of those phage. This would increase the
likelihood to enrich for phage that binds to less common surface epitopes during the second step
of each deselection round and not necessarily just to those that are specific to the ESC(Comp)
cells.
Nevertheless, we identified one CDR3 motif in the round three outputs and four CDR3 motifs
in the round two outputs that exclusively occurred in the list of top 50 motifs of the Comp and
Deselection outputs. It would be interesting to determine, whether these really do preferentially
bind to the ESC(Comp) cells or whether this was by chance. Similarly, if we assume that
deselection is better at identifying surface markers specific for ESC(Comp) cells than normal
selection, all the sequence motifs only occurring in the top 50 list of deselection could potentially
be of interest.

7.6.2 Next Steps and Future Work

To test the significance of these candidate motifs, a number of them could be synthesised
and that sequence could then be cloned into the appropriate IgG vector similar to how it was
described in section 7.5.3 of this chapter. These would then be used for a binding screen to test
whether any of them differentially bind to either the ESC(Ctrl) or ESC(Comp) cells.
Additionally, we have reformatted the scFv phagemids from the round two outputs into full
length IgG vectors and a number of these have been expressed by the HTE team at Medimmune.
The next step here would also be a binding screen and this work is in progress.

Binding Screen

This is typically done by combining the expressed IgGs with a secondary fluorescent antibody
and adding them to the two cell pools to allow for binding to occur. Using the high through-
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put Mirrorball system (www.ttplabtech.com/products/Detection-Instruments/mirrorball/), the
plates can then be imaged and analysed to potentially identify a small number of IgGs which
differentially bind to either the ESC(Ctrl) or the ESC(Comp) cells and which can ultimately be
used as a marker of ES cells with compromised (or normal) developmental potency.

Target Identification

If any IgGs that bind differentially to one group of cells are identified, target identification can
be performed. Knowing that a phage or a full length IgG has the required phenotypic effect
(in our case cell binding) does not tell us anything about the target that it is binding to. Target
identification can be a lengthy process and is usually done using affinity purification followed
by mass spectrometry.

7.6.3 Chapter Conclusion

In this chapter we describe the progress to date of the phage display phenotypic screen that
was done with the aim to identify differences in cell surface markers between ESC(Ctrl) and
ESC(Comp) cells. Two approaches were chosen, normal selection of both the ESC(Ctrl) and
the ESC(Comp) cell pools and deselection which selects phage that preferentially binds to the
ESC(Comp) cells. NGS results suggests that there may be a difference in terms of cell surface
markers between ESC(Ctrl) and ESC(Comp) cells. However, the design of this experiment was
flawed due to the inclusion of the potentially compromised ESC(Ctrl)4 clone and the results
are therefore likely to be skewed. Hence, a number of validation steps are necessary to confirm
or refute these results.





Chapter 8

Conclusion and Future Work

8.1 Overview of Findings

In this work we identified a number of ES cell clones with compromised developmental potency.
When they were injected into e3.5 blastocysts, these cells mainly generated chimaeras that were
not viable beyond mid to late gestation. At e13.5, there was no difference in viability between
the ESC(Ctrl) and ESC(Comp) chimaeras but we already observed varying degrees of haemor-
rhaging in the ESC(Comp) chimaeras. At e17.5 their viability was significantly decreased and
all of the dead chimaeric embryos were severely haemorrhaged. Some haemorrhaging was also
observed in the live ESC(Comp) chimaeras. Histological analysis revealed defects in blood
vessel integrity.

Initially, we analysed whether the ESC(Comp) cells still fulfilled all the characteristics of
pluripotent stem cells - self renewal and the ability to differentiate into cells of the three germ
layers. We were able to culture the cells for a large number of passages and they expressed a
number of the core pluripotency markers, suggesting that they are able to maintain the pluripo-
tent, self renewing state. Additionally, in a differentiation assay we showed that under the
appropriate culture conditions the ESC(Comp) cells differentiated into cells of the mesoderm,
endoderm and ectoderm lineages.

To investigate potential causes for the phenotype that we observed and also to identify a
marker that can distinguish between ES cells with normal or compromised developmental
potency, RNA sequencing was performed. This identified five genes that were silenced in the
ESC(Comp) clones. Four of these genes - Gtl2, Rtl1/Rtl1as, Rian and Mirg - are located in
the Dlk1-Dio3 imprinted region of mouse chromosome 12 and are all maternally expressed.
This finding was confirmed with additional ESC(Ctrl) and ESC(Comp) cell lines. We also
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showed that Gtl2 expression remained silent in tissues of e17.5 embryos. The fifth gene that
was identified, Gm27000, is a predicted gene with unknown function. The role of this was not
examined further.

Since gene expression at the Dlk1-Dio3 locus is mainly regulated by a differentially methylated
region (the IG-DMR) upstream of the Gtl2 promoter, we performed bisulfite sequencing to
analyse whether aberrant methylation was the cause for the gene silencing observed at this
locus. Indeed, we found that the Dlk1-Dio3 IG-DMR was hypermethylated. Other imprinted
regions that were analysed also showed hyper- or hypomethylation of their respective DMRs,
but for none of them there was such a clear correlation between phenotype and methylation
profile. The expression of Gtl2, Rian and Mirg could be partially rescued using the DNMT
inhibitor 5-azacytidine. Blastocyst injections of the 5-aza-treated cells gave rise to a small
number of very low percentage chimaeras that survived to adulthood.

Finally, we also looked at the cell surface proteome using a phenotypic screen by phage
display. This work is still in progress but NGS analysis of phage outputs indicated that there
may be additional differences between the ESC(Ctrl) and ESC(Comp) cells. However, the data
remains to be validated in order to determine whether these findings are real or whether they
have occurred by chance.

8.2 General Discussion and Future Work -
Relationship Between Phenotype and Genotype

8.2.1 Possible Role of Angiogenesis via VEGF Signalling

Not much is known about the precise role and mechanism of the maternally expressed genes of
the Dlk1-Dio3 region, but in recent years they have been linked with inhibition of angiogenesis
and tumour suppression. A large number of human tumours show hypermethylation of the
Dlk1-Dio3 IG-DMR and consequently express very low levels of MEG3 (the human homologue
to Gtl2) including brain [145, 146], breast [147], liver [148], lung [149], bone [150] and kidney
cancers [146]. This suggests a role of MEG3 loss in the onset and progression of cancer. Indeed,
it has been shown that MEG3 interacts with and activates the tumour suppressor p53 (Tumour
protein 53) [151]. When transfecting MEG3 into a colon cancer cell line that does not express
MEG3, functional p53 protein levels were significantly increased.
Gtl2/MEG3 downregulation or silencing has also been associated with increased angiogenesis
in human tumours (angiogenesis is one of the hallmarks of cancer [152]) [147] but also in
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diabetes [153], osteoarthritis [154], Gtl2 knockout mouse models [155] as well as a rat model
of tissue repair after ischaemic brain injury [156]. Angiogenesis is a multistep process that
starts with the secretion of pro-angiogenic factors including vascular endothelial growth factor
(VEGF), fibroblast growth factors (FGFs) or tumour necrosis factor α (TNFα). This leads to
dilation of existing vessels, breakdown of the basement membrane and pericyte detachment,
allowing existing vascular endothelial cells (VECs) to sprout from the original vessel and
start forming new functional blood vessels. Pericytes are cells that wrap around the VECs
to provide physical structure as well as important signalling molecules. After formation of
a lumen, the vessel matures by synthesis of a new basement membrane and incorporation of
pericytes and smooth muscle cells. A number of publications highlight the role of Gtl2/MEG3
in these processes via a variety of different pathways. Gordon et al. [155] investigated the
gene expression profiles of brains of Gtl2 knockout mouse embryos. They found an increase
in expression of angiogenesis related genes including Vegf and a VEGF receptor Vegfr1 as
well as genes in the Notch signalling pathway. In accordance with this finding, increased
microvessel formation in the brain was also observed. Similarly, Zhang et al. [147] showed that
proliferation and angiogenesis in breast cancers with low levels of MEG3 can be inhibited by
overexpressing MEG3, both in vitro and in vivo. The level of angiogenesis related genes were
significantly decreased in a MEG3-low breast cancer cell lines after overexpression of MEG3.
These did not only include the direct modulators of angiogenesis, Vegf and bFGF, but also
TGF-β1 (Transforming growth factor β1). TGF-β1 is an upstream regulator of VEGF, which
suggests that MEG3 acts through the TGF-β1 signalling pathway to modulate angiogenesis.
Studies in diabetic mice have shown that diabetic retinopathies are often accompanied by
microvascular dysfunction caused by a reduction in MEG3 levels [153]. This was found to be
regulated through the PI3K/AKT pathway, which is also upstream of Vegf expression.
Overall, these studies suggest a role of Gtl2/MEG3 in the inhibition of VEGF-mediated an-
giogenesis through a number of different pathways including the TGF-β1 and PI3K/AKT
signalling pathways. In addition, p53 has also previously been shown to be able to inhibit
expression of Vegf [157].

Interestingly, our ESC(Comp) chimaeras that do not express Gtl2 and the other maternally
expressed genes of the Dlk1-Dio3 region, show haemorrhaging and a vascular phenotype which
in part resembles some of the early steps of angiogenesis. We observed dilated vessels and poor
vascular integrity with seemingly impaired basement membrane. Given that loss of Gtl2/MEG3
expression led to enhanced angiogenesis via Vegf activation in a variety of pathologies and tis-
sues, including mouse tissues and cell lines, we hypothesise that aberrant signalling via VEGF
could at least in part have caused the phenotype that we observed. Increased angiogenesis can



108 Conclusion and Future Work

lead to vascular leakage and subsequent haemorrhaging. More intriguingly, however, over-
expression of Vegf has also been linked with increased occurrence of haemorrhaging [158–160].

We also noticed a striking resemblance between the phenotypes of the ESC(Comp) chimaeras
and Tie1 (Tyrosine kinase with immunoglobulin-like and EGF-like domains 1) mutant embryos.
Both have severe haemorrhaging at e17.5 or 16.5 respectively and first signs of haemorrhaging
can be observed around e13.5 [161]. TIE1 is a receptor that is part of the Angiopoietin/TIE
signalling axis which is involved in vascular maturation and stabilisation during later stages of
angiogenesis [162]. Apart from its general importance for vascular integrity, the precise role
and mechanism of action of TIE1 are not fully understood [114, 163].
Given the similarity between our ESC(Comp) chimaeras and mouse embryos, which lack the
expression of a gene that is so important for vascular maturation, we further hypothesise that
aberrant silencing of Gtl2 could lead to defects in vascular maturation and integrity.

These two hypotheses are also supported by the fact that vascular endothelial cells in the
human express high levels of MEG3 and thereby may be able to regulate angiogenesis related
signalling cascades and processes. To investigate the two hypotheses, immunohistochemistry
stainings could initially be performed for a number of proteins that are known to be involved in
angiogenesis. These proteins should include VEGF, VEGFR1, members of the TGF-β1 and
PI3K/AKT pathways as well as TIE1 and other members of the Angiopoietin/TIE family. Other
interesting targets might include EPH receptors (Erythroprotein-producing human hepatocel-
lular carcinoma receptors) as well as their ligands Ephrins (Eph family receptor-interacting
proteins) since they have also been shown to play an important role in vessel remodeling,
organisation and maturation [164]. Since haemorrhaging is seen as early as e13.5, it would be
interesting to analyse vessel formation and maturation at various stages during development to
not only analyse whether angiogenesis pathways are misregulated in the ESC(Comp) chimaeras
but also to detect the developmental timepoint at which the changes are first occurring.

8.2.2 Possible Effect of Gtl2 Silencing on Vasculature via DLK1-Notch
signalling

Gtl2 is known to negatively control the expression of Dlk1 (Delta like non-canonical Notch
ligand 1), one of the paternally expressed genes of the Dlk1-Dio3 region, [165, 166] by tar-
geting the polycomb repressive complex 2 (PRC2) to the Dlk1 promoter. In a number of
mouse models with aberrantly low expression of Gtl2, Dlk1 expression is significantly in-
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creased. DLK1 inhibits Notch signalling by mimicking the other Notch ligands. However, it
lacks an important domain that is required for activation of the Notch signalling pathway and
therefore DLK1 is inhibitory. Notch signalling is involved in a variety of processes related to
angiogenesis and interestingly, knockouts of some Notch proteins and a number of its ligands
cause vascular phenotypes including defects in vascular remodelling and morphogenesis and
severe haemorrhaging. NOTCH1/NOTCH4 double knockouts display severe defects in vascular
morphogenesis including malformation of the large blood vessels. These embryos are not
viable and die at e10 [167]. Deletion of the Notch ligand JAGGED results in abnormal vascula-
ture and haermorrhaging. These embryos are also not viable beyond e10 [168]. Similarly, a
double knockout of HEY1 and HEY2 (Hairy/enhancer-of-split related with YRPW motif pro-
tein 1/2) also results in severe haemorrhaging from e9.5 and defects in vascular patterning [169].

It is not very likely that disturbed signalling of the Notch signalling pathway via DLK1
is causing the phenotype in our ESC(Comp) chimaeras. Firstly, Dlk1 gene expression levels
in the ES cells were not significantly increased compared to ESC(Ctrl) cells and secondly,
lethality in these Notch signalling mutants occurs much earlier that in our chimaeras. However,
it is possible that although Dlk1 expression was normal in the ES cells it was upregulated at
a later developmental stage or that the chimaeric environment decreases the severity of the
phenotype, leading to lethality at a later timepoint. Therefore this possibility should certainly
be considered for future experiments.

8.2.3 Possible Role of a Placental Phenotype

Most of the Notch mutants also have a strong vascular placental phenotype that is largely
responsible for the embryonic lethality [170]. This poses the question to what extent a placental
phenotype could be responsible for the lethality observed in the ESC(Comp) chimaeras. Since
ES cells only contribute to the embryonic tissues, they do not contribute to the placenta.
However, they do contribute to the fetal blood vessels which form part of the developing
placenta. It would be very interesting to examine this further, specifically focussing on the
development of fetal placental blood vessels, as well as the labyrinth zone where the interchange
between fetal and maternal circulations occurs.

8.2.4 Possible Role of a Musculoskeletal Phenotype

Previous studies on mice with mutations in the Dlk1-Dio3 region that result in the loss of
expression of the maternally expressed genes, show that those embryos have musculoskeletal
defects. Georgiades et al. [120] show that embryos lacking Gtl2 expression have defects
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in skeletal muscle maturation and present with skeletal abnormalities. Similar results were
also published by other groups [121, 122, 171]. These studies suggest, that the Dlk1-Dio3
region may play more than one role during embryonic development. However, whether this is
regulated through similar pathways remains unclear.
We did not analyse musculoskeletal phenotypes in the ESC(Comp) chimaeras in this present
study, but it is possible that there are such muscular defects as well as other developmental
defects or delays that have contributed to embryonic lethality. It is unlikely that a muscular
defect alone is causing embryonic lethality, but understanding the full extent of the Dlk1-Dio3
knockout/silencing phenotype could potentially shed light on the underlying cellular mecha-
nisms that cause these developmental defects.

It would also be interesting to generate conditional knockouts of the maternally expressed
genes of the Dlk1-Dio3 region to analyse the role of them in different tissues or cell types,
including vascular endothelial cells and muscle. This may enable us to better understand its
precise role during development.

8.3 Concluding remarks

To conclude, we have identified the maternally expressed genes of the Dlk1-Dio3 region -
Gtl2, Rtl1/Rtl1as, Rian and Mirg - as markers that can distinguish between ES cells with
normal or compromised developmental potency. This finding is in accordance with previous
studies in the literature, but the precise roles and mechanisms of action of these genes during
development and their exact contribution to the phenotype that we observed remains to be
determined. Nevertheless, this finding is important especially for researchers working in the
field of transgenics. It is common practise to screen targeted ES cells for the correct gene
targeting event, karyotype and pathogens before performing blastocyst injections and investing
time and money for the generation of genetically modified mice. We suggest to also include
analysing gene expression of Gtl2, Rtl1/Rtl1as, Rian and Mirg to the pre-injection screening
routine. Loss of imprinting is not an uncommon phenomenon in ES cell culture and cells with
aberrant silencing of the maternally expressed genes of the Dlk1-Dio3 imprinted region will
most certainly not be able to contribute to viable chimaeras.
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