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The spectrum of STAT functions
in mammary gland development
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The signal transducer and activator of transcription (STAT)
family of transcription factors have a spectrum of functions in
mammary gland development. In some cases these roles
parallel those of STATs in other organ systems, while in other
instances the function of individual STATs in the mammary
gland is specific to this tissue. In the immune system, STAT6 is
associated with differentiation of T helper cells, while in the
mammary gland, it has a fundamental role in the commitment
of luminal epithelial cells to the alveolar lineage. STAT5A is
required for the production of luminal progenitor cells from
mammary stem cells and is essential for the differentiation of
milk producing alveolar cells during pregnancy. By contrast,
the initiation of regression following weaning heralds a
dramatic and specific activation of STAT3, reflecting its
pivotal role in the regulation of cell death and tissue
remodeling during mammary involution. Although it has
been demonstrated that STAT1 is regulated during a
mammary developmental cycle, it is not yet determined
whether it has a specific, non-redundant function. Thus, the
mammary gland constitutes an unusual example of an adult
organ in which different STATs are sequentially activated to
orchestrate the processes of functional differentiation, cell
death and tissue remodeling.

Introduction

The JAK-STAT field recently celebrated its 20th anniversary. In
1991, Andrew Wilks at the Ludwig Institute for Cancer Research
in Melbourne1 described kinases that were named JAK1 and
JAK2, for Janus kinase, after the Roman god of gates and
doorways. Using complementation of mutagenized cell lines,
George Stark and Ian Kerr at the ICRF in London identified other
components of the interferon response pathway.2 In the same year,
a factor highly expressed in the mammary glands of sheep and
cows was described, although it was not until the following year
that the true identity of this transcription factor was revealed.
Originally named MPBF (milk protein binding factor)3 or MGF
(mammary gland factor)4 this STAT was subsequently named
STAT5 following the cloning of components of the ISGF3
complex in Darnell’s laboratory5 and coining of the term STAT.6

We now know that there are seven signal transducer and
activator of transcription (STAT) family members in mammals,
located in pairs on three different chromosomes, with the
exception of STAT5A and STAT5B, which probably arose by a
gene duplication event, which occupy the same locus as STAT3.7

Several members of the STAT family of transcription factors
are essential for mammary gland development. This is perhaps
surprising as STATs generally transduce signals from cytokines
(Fig. 1). However, their roles in this tissue highlight the distinct
function of each STAT as a signal transduction molecule. In
addition to STAT5, other members of the STAT family are
expressed during development of the adult mammary gland8 and
several play important roles in mammopoeisis, lactogenesis
and post-lactational regression.9 In this article, we will first
outline the principal stages of mammary gland development
and then discuss in detail the roles of the four STATs that are
differentially regulated at specific developmental times in the
mammary gland.

Mammary Gland Development

The mammary gland is an unusual tissue since most of its growth
and development occurs in the adult. It is composed of a network
of ducts and branches that consist of a polarized bi-layered
epithelium of luminal and basal cells that arise from a common
multipotent stem cell.10,11

Mammary gland development occurs in three specific stages:
in the embryo, during puberty and during gestation. Similar
processes are involved in all mammals although the number of
glands varies considerably. The first evidence of mammary gland
development occurs in the mouse at embryonic day 10.5 when
the two mammary (or milk) lines appear. These ridges of
ectoderm are derived from embryonic skin and run in an
anteroposterior direction from the fore- to the hind-limb buds.
The cells in the milk lines are thought to migrate at E11.5 to form
five pairs of placodes that are not only symmetrically positioned
but appear at predictable locations.12 However, there are specific
genetic mutations that can alter both the number and the position
of the placodes. By E13.5, epithelial buds form and then sink into
the underlying dermis and induce mammary mesenchyme to
develop, followed by elongation of the buds to give mammary
sprouts. Limited branching then forms a rudimentary mammary
gland embedded within a subdermal fat pad at E18.5 after which
development is arrested.
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Initially postnatal development reflects overall body growth.
Following puberty, terminal end buds (TEBs) develop at the
ductal tips and in response to estrogen start to invade the fat pad,
forming an elongated ductal network. When the limits of the fat
pad have been reached at approximately 10 weeks of age, growth
ceases and the TEBs regress. No further changes take place unless
pregnancy ensues, whereupon, in response primarily to proges-
terone and prolactin signaling, tertiary branching is initiated and
alveolar buds form. These lobuloalveolar structures produce milk
during lactation and alveolar epithelial cells are a distinct lineage
from the luminal epithelial cells present in the ducts of non-
pregnant mammals.

Remarkably, with each pregnancy, the mammary gland under-
goes a new cycle of alveologenesis. This is required as, following

lactation, the milk-producing cells become superfluous and are
removed by programmed cell death coupled with extensive tissue
remodeling. This process of regression, called involution, is one of
the most dramatic examples of physiologically regulated cell death
that occurs in an adult tissue. One particularly interesting aspect of
involution is that is occurs in two discrete phases.13 In the mouse,
cell death can be halted by returning the pups to the mother and
re-commencing lactation. This reversible phase is approximately
48 h in the mouse although it is considerably longer in larger
mammals such as cows.14 Reversibility is lost after this time
window and the architecture of the gland changes dramatically
with loss of the alveolar epithelium and its replacement by
re-differentiated adipocytes. These stages of mammary gland
development are depicted schematically in Figure 2.

Figure 1. Cytokine signaling through the JAK-STAT pathway. Signaling components for STAT3, STAT5 and STAT6 that are utilized in mammary gland
in response to IL-4/IL-13, prolactin and LIF. A subset of target genes for each of these STATs, at specific times in the developmental cycle, are indicated
in the boxes. Socs proteins, which are direct transcriptional targets of STATs, are negative regulators of STATs, providing an exquisite level of regulation
of STAT signaling. For a discussion of Socs proteins in mammary gland development, see Watson and Neoh.9 The phenotype of mice with deletions
of selected STAT target genes is beyond the scope of this review, but is discussed elsewhere in the case of GATA318,19 and whey acidic protein.59

For a discussion of the involution phenotype of selected transgenic mice, see Radisky and Hartmann.60
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Expression and Activation of STATs
during a Mammary Developmental Cycle

With the exception of STAT3, genetic deletion of STAT genes
has little impact on mammary gland development during
embryogenesis since mammary glands form normally in their
absence. Thus we can conclude that STATs 1, 2, 4, 5 and 6 are
not required for embryonic and early post-natal development.
STAT3 gene deletion results in early embryonic lethality thereby
precluding any investigation of its role in mammary gland. It is
possible that STAT3 could be important in mammary stem cell
self-renewal or maintenance, as it is for embryonic stem cells15 but
this has not been directly investigated.

It is however during pregnancy that the function of individual
STATs is revealed. Studies of expression levels showed that
STATs 1, 3, 5 and 6 were expressed during gestation, lactation
and involution while very low levels of STAT4 were detected and
it was not determined whether this was restricted to mammary
epithelium or was present in stromal cells. STAT2 has not been
detected.8 Interestingly, tyrosine phosphorylation patterns are
distinct albeit over-lapping. The highest levels of pSTAT1 are
found in virgin gland and in late involution, during remodeling of
the gland, while STAT3 activity is restricted to the day of birth
and the first 10 d of involution. Despite the observation that
STATs 1 and 3 can form heterodimers, these STATs have
reciprocal patterns of activity during a mammary developmental
cycle. Low levels of pSTAT6 are found in virgin glands where a

small number of cells stain positively with pSTAT6 antibodies.16

However, during early gestation, most alveolar cells become
pSTAT6+. The pattern of pSTAT5 is similar to pSTAT6 but
appears later in gestation and reaches a peak during lactation.
These developmentally regulated windows of STAT activity
(Fig. 3) are highly suggestive of specific roles for individual STAT
factors in the adult mammary developmental cycle. Genetic
studies using knockout mice has revealed these roles which are
discussed in the following sections.

The Function of Individual STATs in Mammary Gland

We will consider each STAT in turn, in the order in which they
are activated, starting with the gestational time points of the
developmental cycle.

STAT6 regulates commitment to the alveolar lineage. STAT6
has a clearly demonstrated role in immune cells and in particular
as a regulator of the differentiation of naive T helper (Th) cells to
the Th2 lineage whereby the cytokines IL-4 and IL-13 activate
STAT6. This is associated with changes in chromatin structure
and with transcriptional upregulation of the Th2 transcription
factors Gata-3, c-Maf and NFAT1/NFATc2.17

A role for both IL-4/IL-13 and STAT6 in alveologenesis has
been shown using mice deficient for either STAT6 or for both of
these cytokines.16 An early defect in proliferation of alveolar cells
during gestation and a 70% reduction in the numbers of alveoli
was observed in knockout mice. As pregnancy progressed, the

Figure 2. A schematic overview of postnatal mammary gland development in the mouse. A mammary gland developmental cycle from mature non-
pregnant adult through pregnancy and involution is indicated on the right of the diagram. Abbreviations: TEB, terminal end bud; LIF, leukemia inhibitory
factor. Based on a figure from Wiseman and Werb61 and reproduced from reference 9 with permission.
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differences between knockout and control glands diminished and
lactation was unaffected. In contrast, precocious alveologenesis
was observed in SOCS5 knockout glands as predicted from the
role of SOCS5 as a negative regulator of STAT6 signaling.
Increased expression of IL-4Ra and Gata-3 occurs concomitantly
with STAT6 activity at day 5 gestation while levels of pSTAT5 are
decreased in the absence of STAT6. Interestingly, Gata-3 is
important for maintenance of differentiated alveolar cells as
conditional deletion of Gata-3 during gestation results in death of
the alveolar cells and lactation failure.18,19 Thus, the IL-4/IL-13/
STAT6 pathway is a regulator of mammary gland development
adding a further complexity to this process which has long been
associated with progesterone and prolactin (PRL) signaling.20

Studies in HC11 mammary epithelial cells in culture revealed
that STAT6 can regulate expression of β-casein21 although, as
discussed below, this is a task more usually performed by STAT5.
KIM-2 mammary epithelial cells can be induced to undergo
a program of differentiation in response to treatment with
lactogenic hormones that mimics differentiation of alveolar
cells during pregnancy.22 Treatment of KIM-2 cells with IL-4
or IL-13 induced tyrosine phosphorylation of STAT6 and Gata-3
expression. Interestingly, the type-1 cytokines IL-12a, IFNc and
TNF, which activate STAT1, are secreted by undifferentiated
KIM-2 cells but there is a switch to secretion of the type-2
cytokines IL-4, IL-13 and IL-5 when these cells are induced to
differentiate.16 This suggests that differentiation requires autocrine
or paracrine signaling by type 2 cytokines.

STAT5A is essential for lobuloalveolar development and the
expression of milk protein genes. STAT5 was initially shown to

be an essential regulator of milk protein gene expression. The
promoter of the sheep β-lactoglobulin (BLG) gene has three
STAT5 binding sites in the proximal 406 bp promoter region.3

Using in vivo transgenic studies, it was demonstrated that these
motifs are essential for maximal expression of BLG although
mutation of these sites did not affect tissue specificity.23 Similarly,
the whey acidic protein (WAP) promoter has STAT5 binding
motifs that are required for expression of WAP in mammary
gland24 and STAT5 is also important for β-casein expression in
HC11 mammary epithelial cells.25 Clearly, lack of STAT5 would
seriously impair milk production.

STAT5 is predominantly activated by PRL during gestation.
The phenotype of PRL receptor knockout mice, which fail to
undergo alveologenesis, indicates that STAT5 may have a more
extensive role than just a regulator of milk protein gene expression
and could be involved in regulating proliferation and/or
differentiation of alveolar epithelial cells.26

STAT5 is encoded by two different genes, STAT5A and
STAT5B.27 Mice in which the STAT5A gene was disrupted
showed incomplete lobuloalveolar development at late pregnancy
time points and failed to lactate and nurse their pups.28

In contrast, STAT5B deficient mice had growth defects.29

Combined deletion of STAT5A and STAT5B showed that,
although there is some redundancy between these two proteins,
they mediate virtually all growth hormone and prolactin
functions.30 Subsequent generation of complete null alleles of
STAT5A/B by conditional gene targeting at two different stages of
development (virgin and mid-pregnancy) revealed that STAT5
is indeed required for alveolar development in pregnancy and

Figure 3. STAT activity during a mammary gland developmental cycle. Although STATs are expressed throughout the cycle, their activation by tyrosine
phosphorylation is strictly regulated and occurs at specific stages in the cycle. This pattern of activity reflects the requirement for each STAT as
determined using genetic deletion of each individual factor.
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showed also that loss of STAT5 from differentiated alveolar cells
results in rapid cell death.31 The phenotype of conditional JAK2
knockout mice, an upstream regulator of STAT5A, essentially
recapitulates that of the STAT5A deficient mice.32

More recently, STAT5A has been shown to be required for the
generation and/or expansion of alveolar luminal progenitor cells
from mammary stem cells.33 The mechanism by which STAT5
gene expression is regulated is not clear as the Ets transcription
factor Elf5 has been shown to bind to the proximal STAT5A gene
promoter in late pregnancy. Furthermore, in Elf5 knockout
mammary epithelial cells, levels of STAT5A are downregulated.34

However, it also appears that STAT5A/5B can regulate Elf5
expression since STAT5A/5B-null luminal progenitor cells do not
express Elf5. Furthermore, the distal region of the Elf5 gene
promoter contains multiple STAT binding sites33 indicating that
there could be a positive transcriptional regulatory loop between
Elf5 and STAT5.

STAT3 is a mediator of cell death and inflammatory signaling
in involution. The profile of STAT3 activation via tyrosine
phosphorylation suggests a potential function in involution and,
indeed, STAT3 activity has been demonstrated to have a pivotal
role in this process. Interestingly, this role encompasses both
control of epithelial cell death, and modulation of the inflam-
matory environment of the gland.

As previously mentioned, deletion of STAT3 results in early
embryonic lethality.35 Consequently a murine mammary con-
ditional deletion of STAT3 has been developed using the Cre-lox
recombination system where Cre recombinase is under the control
of a mammary-specific promoter36 such as whey acidic protein
(WAP-Cre)37 or β-lactoglobulin (BLG-Cre).38 Although the latter is
a whey protein not naturally present in rodent milk,39 Cre
expression under the control of the ovine BLG promoter can target
transgenes efficiently to secretory mammary epithelial cells of
rodents.40

Using the BLG promoter to drive Cre expression in STAT3fl/fl

mice, it was shown that STAT3 is essential for the initiation of
cell death and remodeling following induction of synchronous
weaning.38 Such mice, with a mammary-specific conditional
deletion of STAT3, exhibited a notable delay in involution of at
least 3 d and reduced levels of cell death. This delay in cell death
and tissue remodeling was associated with the downregulation of
IGFBP5, a negative regulator of IGF survival signaling which is
considered to have a pro-apoptotic role in the mammary gland41

and the upregulation of p53 and p21. An independent study
using WAP-Cre to drive conditional deletion of STAT3 yielded
similar results and revealed an extension of the reversible phase of
involution by 4 d in the absence of STAT3.37 These studies
confirmed that STAT3 has a cell autonomous role in inducing cell
death in mammary epithelium.

A recent study42 has shifted the paradigm that cell death during
first phase of involution is via classical apoptotic pathways. Given
that mammary gland regression progressed unabated both in
caspase 3/caspase 6 doubly deficient mice, and in transgenic mice
overexpressing the viral caspase inhibitor p35 under the control of
the mouse mammary tumor virus promoter, it was inferred that
cell death in early involution must be independent of executioner

caspases. Interestingly, it was demonstrated that during involution
mammary epithelial lysosomes undergo lysosomal membrane
permeabilization and that STAT3 upregulates the expression of
the lysosomal proteolytic enzymes cathepsins B and L while
downregulating their inhibitor Spi2A. Correspondingly, delayed
involution was observed in mice administered with cathepsin B
inhibitor, and tellingly, the phenotypic delay correlated with the
extent of inhibition of cathepsin B. Thus, it is now considered
that cell death during reversible involution is regulated by STAT3
activity coordinating cell death via a lysosomal-mediated pathway
rather than apoptosis.42

Studies using leukemia inhibitory factor (LIF) deficient mice43

and implantable LIF containing pellets44 demonstrated that the
initial activator of STAT3 in the mammary gland following
weaning is LIF. TGFβ3 also regulates STAT3 activity in involu-
tion.45 By contrast, IL-6, which is known to activate STAT3 in other
contexts, does not play a role in control of STAT3 activity during
this process.46 During the irreversible phase STAT3 is activated by
the IL-6 cytokine family member oncostatin M (OSM) and its
receptor (OSMR).47 OSMR itself is regulated by LIF induced
STAT3, in a positive feedback loop acting to propagate continued
activation of STAT3 as LIF levels decline.38,47,48

It has previously been noted that the onset of involution
heralds a dramatic upregulation of genes connected with the acute
phase response and inflammation,49-51 some of which have a
microarray expression profile that mirrors the phosphorylation
profile of STAT3.49,50 A wider role for epithelial STAT3 in
modulating the inflammatory environment of the gland during
involution has also been recently demonstrated showing STAT3 is
a key transcriptional regulator of genes associated with innate
immunity in first phase involution, and wound healing in second
phase involution.52 Furthermore, epithelial STAT3 activity
influences the influx of macrophages and mast cells during
involution and promotes polarization of macrophages toward an
alternatively activated (M2) phenotype. In the absence of STAT3,
the gland retains a phenotype associated with classically activated
(M1) macrophages, evidenced by significantly increased expres-
sion of iNOS (an M1 marker) and decreased expression of
arginase-1 and Ym1 (M2 markers). Given the significant
decrease in IL-4Ra expression in STAT3 deleted glands at 96 h
involution, it seems probable that IL-4 signaling has a role in this
polarization.52

In spite of the significant advances in understanding of STAT3
signaling during mammary gland involution made in the last
decade, several key questions remain relatively unexplored.
Investigation of the role of STAT3 activity in the stroma will
require conditional deletion in stromal cells. This is a potentially
exciting area for future research, particularly given the increasing
recognition of the intricate levels of interplay between epithelial,
immune cell and stromal compartments.

STAT1 has no apparent role in development but influences
mammary tumorigenesis. The pattern of STAT1 phosphoryla-
tion is unlike the other STATs in that it tends to be high when
other STATs are low. Thus, pSTAT1 is highest in virgin and late
involuting glands but is low during gestation and lactation.9,38

Although STAT1 knockout mice have been available for over
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15 years, no analysis of mammary development in STAT1
deficient mice has been published. Given the normal growth of
pups nursed by STAT12/2 dams, it is unlikely that STAT1 has a
major role in mammary gland development. STAT1 can be
phosphorylated by IFNc in mammary epithelial cells in vitro, and
IRF1, a primary downstream target of STAT1 has been shown to
play a minor role in involution.53 This is interesting in the context
of the second wave of STAT 1 phosphorylation that is observed
around day 3 to 4 of involution, although the role of STAT1
signaling in second phase involution remains poorly characterized.

The enhanced and precocious activation of STAT1 via tyrosine
phosphorylation observed in the absence of epithelial STAT3 at
24 h involution38 demonstrates that STAT1 and STAT3 may
both be activated via the common signal transduction subunit
gp13054 and that STAT3 preferentially binds to this receptor chain.
STAT1 could adopt a compensatory role in the eventual com-
mencement of involution observed in STAT3 deleted mammary
glands.38 However, it is not known whether the downstream
effects of STAT1 in this situation are mediated through the same
targets as STAT3. It is worth noting that microarray analysis of
STAT3 knockout glands at 24 h involution revealed that most of
the highly upregulated genes in the absence of STAT3 are STAT1
target genes (Hughes and Watson, unpublished).

Recently, there has been some interest in determining a
function for STAT1 in breast tumorigenesis. Using MMTV-Cre
mediated deletion of floxed STAT alleles to ablate STAT1
specifically in mammary epithelium resulted in an increased
ErbB2/Neu-induced tumor burden.55 On the other hand, STAT1
was shown to suppress Neu mediated tumorigenesis through both
immune cell regulatory mechanisms and tumor specific effects.56

Conclusion

Development of the adult mammary gland is critically dependent
on several members of the STAT family of transcription factors.
STAT5 and STAT6 are sequentially activated to promote the

development of the alveolar lineage. STAT5 is also required to
regulate the expression of milk protein genes, and Elf5, a master
regulator of alveologenesis. STAT6 induces expression of the
cytokines IL-4 and IL-13 and the transcription factor Gata-3,
which is required for the maintenance of the luminal alveolar cells.
Following lactation, the involution process requires STAT3,
which regulates a lysosomal pathway of cell death and controls the
balance of inflammatory and anti-inflammatory signaling to effect
tissue remodeling.

In addition to their role in transducing cytokine signals, STATs
have been shown to act as functional repressors57 where they could
suppress the expression of genes associated with a different cell
fate. With the advent of technologies that allow genome-wide
mapping of STAT binding, additional roles for STATs as
mediators of epigenetic modifications are emerging.
Interestingly, a comparison of ChIP-seq data for STAT5 and
STAT6 in TH2 cells showed that some of their target genes
overlap.57 It is likely that this would apply also to mammary
alveolar cells where STAT5 and STAT6 are both involved in
establishing the alveolar lineage. In contrast, STAT3 and STAT5
can have opposing functions in regulating IL-17 expression58 and
this resonates well with their opposing roles in mammary gland
development. Further work is needed to delineate and understand
the landscape of STAT target genes in mammary gland.

It is intriguing that multiple members of the STAT family of
transcription factors have essential roles in the development of the
mammary gland. These STATs all have specific functions in other
tissues and we can speculate that, as a late evolving tissue, the
mammary gland has hijacked programs of gene expression
controlled by individual STATs to drive such diverse events as
differentiation and milk production, programmed cell death, and
immune cell mediated tissue remodeling.
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