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A spatial model of the plant circadian clock reveals
design principles for coordinated timing
Mark Greenwood1,2,† , Isao T Tokuda3,* & James C W Locke1,**

Abstract

Individual plant cells possess a genetic network, the circadian
clock, that times internal processes to the day-night cycle. Mathe-
matical models of the clock are typically either “whole-plant” that
ignore tissue or cell type-specific clock behavior, or “phase-only”
that do not include molecular components. To address the complex
spatial coordination observed in experiments, here we imple-
mented a clock network model on a template of a seedling. In our
model, the sensitivity to light varies across the plant, and cells
communicate their timing via local or long-distance sharing of
clock components, causing their rhythms to couple. We found that
both varied light sensitivity and long-distance coupling could gen-
erate period differences between organs, while local coupling was
required to generate the spatial waves of clock gene expression
observed experimentally. We then examined our model under
noisy light-dark cycles and found that local coupling minimized
timing errors caused by the noise while allowing each plant region
to maintain a different clock phase. Thus, local sensitivity to envi-
ronmental inputs combined with local coupling enables flexible
yet robust circadian timing.
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Introduction

The circadian clock is a 24-h genetic oscillator found in many organ-

isms. The clock consists of a circuit of interlocking feedback loops

of mRNAs and proteins that generate daily oscillations in circuit

component levels. Signals from the environment align the timing of

these oscillations to the day-night cycle (Webb et al, 2019). Once

set, circadian clocks act as an internal timing signal, allowing bio-

logical processes to anticipate the external environmental cycles.

The clock modulates a diverse range of processes in plants,

including cell division, tissue growth, flowering time, and scent

emission (Nozue et al, 2007; Fenske et al, 2018; Fung-Uceda et al,

2018; Greenwood & Locke, 2020). Altogether this daily timing pro-

vides a significant fitness advantage to the plant (Green et al, 2002;

Dodd et al, 2005).

Individual plant cells possess a robust circadian clock (Gould et

al, 2018). However, substantial differences in the period and phase

of clock rhythms across the plant have been observed. Time-lapse

imaging experiments with luciferase and fluorescent reporter genes

in the model plant Arabidopsis thaliana have shown that rhythms

in core clock genes oscillate with different speeds in different organs

under constant light (LL) (Thain et al, 2002; James et al, 2008; Yakir

et al, 2011; Takahashi et al, 2015; Bordage et al, 2016; Gould et al,

2018). Further, experiments under a range of conditions have

shown that differences in clock speed and phase can be caused by

organs having different sensitivity to environmental signals (James

et al, 2008; Bordage et al, 2016; Greenwood et al, 2019; Nimmo et

al, 2020). Differences in the clock network between tissues may also

contribute to generating differences in rhythms across the plant, as

although the clock genes are broadly expressed (Bordage et al,

2016), some are tissue enriched (Endo et al, 2014), and mutations

can affect organs differently (Takahashi et al, 2015; Lee & Seo,

2018; Nimmo et al, 2020).

The observed differences in clock rhythms across the plant raise

the question of how clocks in different cells and tissues remain coor-

dinated with each other. One mechanism would be for cells to com-

municate their timing with their neighbors, effectively coupling

their rhythms. High-resolution experiments have measured or

inferred local coupling of clock rhythms between cells (Fukuda

et al, 2007, 2012; Wenden et al, 2012; Endo et al, 2014; Takahashi

et al, 2015; Gould et al, 2018; Greenwood et al, 2019), and local cou-

pling can drive spatial waves of clock gene expression across the

plant (Fukuda et al, 2007, 2012; Wenden et al, 2012; Gould et al,

2018; Greenwood et al, 2019). Longer distance coupling between

clocks is also possible. For example, EARLY FLOWERING 4 (ELF4)

communicates circadian temperature information over long dis-

tances by moving from the shoot to the root (Takahashi et al, 2015;

Chen et al, 2020), and light information may be piped down the

stem to entrain the root (Nimmo, 2018).
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Mathematical modeling has played a crucial role in gaining a

mechanistic understanding of plant circadian clocks. Models of the

network have increased in complexity over time in parallel with the

growing number of experiments (Locke et al, 2005a, 2005b, 2006;

Zeilinger et al, 2006; Pokhilko et al, 2010, 2012; Fogelmark &

Troein, 2014). Recently, these detailed molecular models have been

used to probe the differences between the shoot and root clock

(Bordage et al, 2016). However, the coupling of clocks between cells

was not considered. For this, more computationally tractable

models of the clock network are necessary. Reduced models of the

network have already been constructed that capture many of the

features of the single-cell clock dynamics (Akman et al, 2012; De

Caluw�e et al, 2016; Foo et al, 2016; Tokuda et al, 2019). However,

these models have not been applied to study spatial dynamics.

Instead, “phase-only” models that lack any genetic network infor-

mation and only consider the phases of individual cellular rhythms

have been preferred (Fukuda et al, 2007, 2012; Wenden et al, 2012;

Gould et al, 2018). Although these models allow the simulation of

general oscillatory behavior, owing to their simplicity they are

unsuitable for investigating molecular mechanisms of the clock.

Recently, we used a “phase-only” Kuramoto model (Kuramoto,

1975) to propose a mechanism for whole-plant coordination of

clocks (Gould et al, 2018; Greenwood et al, 2019). In order to match

experimentally measured rhythms, we fixed clock periods to differ-

ent speeds in each region of the plant. We assumed faster rhythms

in the cotyledons, hypocotyl, and root tip, and slower rhythms in

the rest of the root, as observed experimentally. With these periods

fixed, cells were allowed to communicate clock phase through local

cell-to-cell coupling. With these assumptions, simulations of the

model generated waves of clock gene expression within and

between organs, as observed experimentally (Gould et al, 2018;

Greenwood et al, 2019). Thus, local cell-to-cell coupling could

enable coordination between organs in plants.

Multiple questions remain about how the plant clock coordinates

rhythms that cannot be addressed using a “phase-only” model. For

example, how are the periods set differently in different parts of the

plant? What communication mechanisms allow the coupling of

clock rhythms from cell-to-cell? How can the plant clock network

“filter” both internal and environmental noise to robustly entrain to

the environment? To begin to address these questions, in this work

we developed a spatial network model of the plant circadian system.

We modified a previously generated simplified network model and

implemented it on a multicellular template of a seedling. In our

model, the sensitivity to light varies across the plant, which can

account for period differences between organs. We explore scenar-

ios where cells communicate via local or long-distance transport of

clock components. Simulations with local coupling capture the spa-

tial waves observed under LL, demonstrating a plausible mechanism

of circadian coordination. In contrast, simulations with long-

distance coupling between the shoot and the root tip did not create

spatial waves but could drive fast periods in the root tip. We applied

our model with spatial differences in light sensitivity and local cou-

pling to examine how plants keep time under noisy light-dark (LD)

cycles. We found that regional differences persist even under LD

cycles, but cell-to-cell coupling minimized the error in timing caused

by the noise. Thus, the combination of regional differences in sensi-

tivity to inputs and local cell-to-cell coupling allows for coordinated

timing in noisy environments.

Results

A locally coupled spatial model of the plant circadian
clock network

We first implemented a reduced network model of the A. thaliana

circadian clock, hereafter referred to as the De Caluw�e model (De

Caluw�e et al, 2016). To decrease the complexity of the model, the

authors grouped functionally similar genes into single entities (Fig 1

A). The compact network model incorporates known light inputs to

the network including “acute” activation of CIRCADIAN CLOCK

ASSOCIATED 1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and

PSEUDO-RESPONSE REGULATOR 9 (PRR9)/PRR7 at dawn, a con-

stant increase in the synthesis of CCA1/LHY and ELF4/LUX

ARRHYTHMO (LUX) under light, and altered degradation of several

components in the light or dark (Fig 1A). The model qualitatively

recapitulates clock dynamics under both LD cycles and LL, and at

only 9 equations and 34 parameters is also computationally tracta-

ble for spatial simulations. We modified the De Caluw�e model to

include a repression rather than activation interaction between

CCA1/LHY and PRR9/PRR7 and included a term for CCA1/LHY

repressing its own transcription, as these interactions have recently

been shown experimentally (Adams et al, 2015). We also adjusted

the degradation rate of PRR5/TOC1 to be higher in the dark, as sev-

eral studies have established that the degradation of both proteins is

increased in the dark (M�as et al, 2003; Kiba et al, 2007; Kim et al,

2007; Fujiwara et al, 2008) (Appendix Table S1, Materials and

Methods). The identified parameter values were robust to at least

5% variation (Appendix Fig S1, Materials and Methods).

We implemented the modified De Caluw�e model on a simplified

template of a seedling. The template consisted of approximately 800

cells, classified into cotyledon, hypocotyl, root, and root tip regions

(Fig 1B, Materials and Methods). Although a number of studies have

demonstrated local cell-to-cell coupling between clocks in A. thaliana

(Fukuda et al, 2007, 2012; Wenden et al, 2012; Endo et al, 2014; Taka-

hashi et al, 2015; Gould et al, 2018; Greenwood et al, 2019), the iden-

tity of the coupling signal, or signals, is unclear. Initially, to model the

signal, the level of CCA1/LHY mRNA in one cell (Fig 1C, black

squares) was assumed to be coupled to the average level of the cell’s

neighbors (Fig 1C, white squares). The coupling strength, Jlocal, deter-

mines the extent that molecules are shared (Materials and Methods).

Although we did not model diffusion directly, this coupling function

was designed to simulate the passive movement of molecules which

commonly occurs through plasmodesmata in plants (Faulkner, 2018).

To simulate period variation between cells, at each time step, we multi-

plied the level of the mRNA and protein by a “scaling” parameter. For

each cell, this parameter was randomly selected from a normal distri-

bution to give a unique value for each cell through the simulation

(Materials and Methods). This approach generates between-cell but not

within-cell period differences, allowing us to focus on the one source of

variation. Further, we could set the range of the distribution differently

for each organ, as informed by experimental data (Appendix Fig S2).

Different light sensitivities can explain organ-level differences in
phase and period

We next attempted to recapitulate in our model the differences in

clock period and phase in different organs that have been observed
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in experiments using a single-cell CCA1-YFP reporter (Gould et al,

2018) and a GIGANTEA luciferase reporter (Greenwood et al, 2019).

In these experiments, faster rhythms were observed in the cotyle-

don, hypocotyl, and root tip, with slower rhythms in the rest of the

root. We first reanalyzed existing luciferase data (Greenwood et al,

2019) and confirmed that these relationships held for several of the

core clock genes in our model, PSEUDO-RESPONSE REGULATOR 9

(PRR9), TIMING OF CAB EXPRESSION 1 (TOC1), and ELF4 (Fig 2A).

Whereas in our previous “phase-only” model, we fixed the periods

to be different in each part of the plant, with our spatial network

model, we could now investigate what causes the differences in

periods. Previously it has been hypothesized that varied sensitivities

to light alter periods across the plant (Bordage et al, 2016; Green-

wood et al, 2019; Nimmo et al, 2020). This was based on previous

experiments demonstrating: (i) period differences between organs

when exposed to equal amounts of light (Bordage et al, 2016; Green-

wood et al, 2019); (ii) the loss of some period differences in the

light-sensing mutant phyb-9 (Greenwood et al, 2019; Nimmo et al,

2020); and (iii) the spatial expression pattern of PHYB and other

light-sensing genes (Somers & Quail, 1995; Bogn�ar et al, 1999; T�oth

et al, 2001). Experiments, however, are confounded by changes in

metabolism and development caused by light (Nozue et al, 2011).

We therefore tested the light-sensitivity hypothesis in our spatial

model, by setting the sensitivity to light to differ depending on the

region, and examining whether this could generate the period differ-

ences observed across the plant.

We entrained the cells in our simulations to LD cycles for 4 days

before releasing them into LL for a further 6 days and measured the

periods, as carried out in previous experiments (Greenwood et al,

2019). We initially set the local cell-to-cell coupling parameter, Jlocal,

to 2. When assuming high sensitivity to light in the cotyledon

(Lsens = 1.6) and hypocotyl (Lsens = 1.0), but lower in the root

(Lsens = 0.65) and root tip (Lsens = 0.95), all regions entrained to

the LD cycles (Appendix Fig S3). Upon transfer to LL, we were able

to generate different periods (Fig 2B and C) and phases (Fig 2D–F
and Appendix Fig S4) in each organ, matching those observed

experimentally. This is due to higher light sensitivity causing the

clock to run faster in our simulations (Appendix Fig S5), as expected

for a diurnal organism (Aschoff & Pohl, 1978). Finally, by setting

the sensitivity to light in our locally coupled model to be zero in all

regions of the seedling, we were also able to simulate the loss of

period differences observed in the light-sensing mutant phyb-9

(Greenwood et al, 2019) (Fig EV1A and B). Thus, our results

revealed that different sensitivities to environmental inputs are suffi-

cient to generate the experimentally observed spatial differences in

period and phase across the plant.

Local sharing of clock components can drive spatial waves of
clock gene expression

Previously we observed two waves of clock gene expression, one

traveling up, and one down the root, in CCA1, PRR9, and GI

reporters (Gould et al, 2018; Greenwood et al, 2019). These waves

could be explained in a “phase-only” model by local cell-to-cell cou-

pling (Fukuda et al, 2007, 2012; Gould et al, 2018; Greenwood et al,

2019). We next tested whether a plausible mechanism for cell-to-

cell coupling, sharing of mRNA between cells (Maizel et al, 2020),

can recapitulate the experimental observations. To provide a bench-

mark, we first analyzed the seedlings carrying transcriptional

reporters for PRR9, TOC1, and ELF4 (Greenwood et al, 2019) at the

sub-tissue level (Materials and Methods). As in previous studies

(Fukuda et al, 2007, 2012; Wenden et al, 2012; Gould et al, 2018;

Greenwood et al, 2019), space-time plots revealed spatial waves of

gene expression within and between organs (Fig 3A, Appendix Fig

S6A and C and Movie EV1). The direction of the waves could be

clearly observed in plots of the final peaks of expression (Fig 3B and

A CB
Cotyledon

Hypocotyl

Root

Root tip

 

PRR5 /
TOC1

PRR9 /
PRR7

CCA1 /
LHY

ELF4 /
LUX

CCA1/LHY
in focal cell 

CCA1/LHY
in neighbor cell 

Figure 1. The structure of the spatial circadian clock model.

A Summary of the modified compact circadian clock model used for simulations. The original compact model (De Caluw�e et al, 2016) was modified to update the
regulatory interactions and light inputs (Materials and Methods). Yellow arrows represent light-induced synthesis, yellow circles light-induced degradation, and black
circles dark-induced degradation. “T” arrows represent molecular repression.

B The network was implemented within each cell on a simplified template of a seedling, with cells classified as either cotyledon (blue), hypocotyl (yellow), root (purple),
or root tip cells (green). Cells have a light sensitivity, Lsens, that depends on the region (Materials and Methods).

C To simulate local coupling, the level of CCA1/LHY mRNA in the focal cell (black squares) was assumed to be coupled to the average level of the cell’s neighbors (white
squares). The strength of the coupling is set by the Jlocal parameter. We initially assumed coupling to occur through CCA1/LHY and also tested coupling through other
components.
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Figure 2. Regional differences in light sensitivity can generate the period structure observed experimentally.

A Period estimates of PRR9::LUC, TOC1::LUC, and ELF4::LUC for different organs imaged under LL. Each data point represents a period estimate from the organ of a
single seedling. The horizontal black line shows the mean.

B, C Period estimates of simulated PRR9/PRR7 expression, measured from regions within the seedling template (B) or individual cells of the seedling template (C). In (B),
the black line indicates the mean and the red shaded area one SD of 9 independent simulations. In (C), the color of the cell represents the periods of the individual
oscillations. By assuming higher light sensitivity of cells in the cotyledon, hypocotyl, and root tip, the model approximates the period differences observed between
regions in experiments. A noise parameter was set to a different value for each region, as informed by single-cell experiments (Appendix Fig S2). Simulations
assumed local cell-to-cell coupling (Jlocal = 2).

D–F Times of the final peaks of simulated PRR9/PRR7 and PRR9::LUC (D), simulated PRR5/TOC1 and TOC1::LUC (E), or simulated ELF4/LUX and ELF4::LUC (F), in different
organs measured under LL. Simulations assumed varied light sensitivities and local cell-to-cell coupling (Jlocal = 2). Data points represent the 25-th percentile,
median, and the 75-th percentile for the peak times of oscillations scored as rhythmic, n = 9 simulations.

Data information: Experimental data is an analysis of Arabidopsis time-lapse movies carried out previously (Greenwood et al, 2019). For PRR9::LUC data N = 4; TOC1::LUC
data N = 3; ELF4::LUC data N = 3. For all, n = 7–18. N represents the number of independent experiments and n the total number of organs tracked.
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Appendix Fig S6E and G). For each gene, the wave directions

appeared similar, traveling from the faster oscillating regions to the

slower oscillating regions. Particularly distinct were the waves con-

verging from the hypocotyl and root tip to the slower oscillating root

region.

We next analyzed at the sub-tissue level the simulations

performed with varied light sensitivity and local coupling (Appendix

Fig S7B, Materials and Methods), to see if they capture the spatial

dynamics. For each gene, the wave patterns appeared similar to

experiments, traveling from the fast oscillating regions that are more

sensitive to light, into the slower regions with lower sensitivity to

light (Fig 3C and D, Appendix Fig S6B, D, F and H, and Movie EV2).

These waves required cell-to-cell coupling through the local sharing

of clock components, as we only observed waves with coupling

strengths, Jlocal, above approximately 1 (Fig 3E and Appendix Fig

S8). Similar simulation results were found when keeping regional

differences of light sensitivity and local cell-to-cell coupling, but

assuming no cell-to-cell variability within regions (Appendix Fig

S9). We also found that our simulation results were qualitatively

similar when using different clock gene mRNA (Fig EV2A) or pro-

tein (Fig EV2B) as the coupling component, suggesting that any cell-

to-cell sharing of clock components could explain the experimen-

tally observed spatial dynamics. Additionally, we ran simulations

assuming local coupling between 8 rather than 4 neighbor cells, and

simulations assuming global (all-to-all) coupling. Increasing the

local coupling to be between 8 neighbor cells gave similar results

(Fig EV3A and B). However, with global coupling all cells adopted

the same phase at higher coupling strengths, regardless of position

in the plant (Fig EV3C). Finally, we further analyzed our simula-

tions in which we set the sensitivity to light input to be equal in all

regions of the seedling. At the sub-tissue level, we observed the loss

of spatial waves (Fig EV1D and F) seen in the light-sensing mutant

phyb-9 (Greenwood et al, 2019) (Fig EV1C and E). Taken together,

these results show that the assumptions of local cell-to-cell coupling

and differential light sensitivity between regions are the key aspects

of our model that allow a match to experimental data.

Long-distance sharing of clock components can generate
period differences

In addition to local coupling, the long-distance shoot-to-root move-

ment of ELF4 has been proposed to couple clocks in different organs

(Chen et al, 2020). We simulated seedlings assuming that ELF4 pro-

tein expressed from cells in the shoot is shared with cells in the root

tip region. We did this to approximate a known destination for

phloem signals in plants (Oparka et al, 1994), and the location that

ELF4 is observed in experiments (Chen et al, 2020). In these simula-

tions, the peak times of cells in the root tip became closer to those

in the shoot, but we did not see the spatial waves of gene expression

observed in experiments (Fig 4A). We then simulated seedlings with

combinations of local and long-distance coupling, to see if together

they improved the match to experimental data. In these simulations,

we saw a clear spatial structure with waves of clock gene expression

(Fig 4B), matching previous simulations with only local coupling

(Fig 3). These simulations confirm that it is the local, not long-

distance, coupling that drives the spatial waves of gene expression.

We hypothesized that long-distance coupling instead contributes

by matching clock periods between different organs of the plant, as

has been proposed for ELF4 (Chen et al, 2020) and light piping from

the shoot to the root (Nimmo, 2018). To test this in our model, we

removed the assumption of high light sensitivity at the root tip

(Materials and Methods), and re-simulated the model with combina-

tions of local and long-distance coupling. Without long-distance

coupling (Jlong = 0), as expected, cells were slower at the root tip,

and the spatial wave up the root was lost (Fig 4C, black). However,

with Jlong above approximately 0.1, we observed an increase in the

speed of cells at the root tip, and the recovery of spatial waves up

the root (Fig 4C, yellow). This approximated the typical spatial

structure observed with higher light sensitivity at the root tip (Fig 4

B). Together, this suggests that although long-distance coupling

does not generate spatial waves, it can create period differences

between regions of the plant. Further experiments will be required

to understand the extent of long-distance clock coupling during

plant development, so henceforth we focus on our model assuming

different sensitivities to light and only local coupling.

Local flexibility persists under LD cycles

We simulated our locally coupled model, with the sharing of CCA1/

LHY mRNA, under LD cycles to investigate whether local flexibility

persisted with rhythmic input. We first simulated idealized LD

cycles, where light is fully on during the daytime and off at night

(Fig 5A, left; Materials and Methods). The sensitivity of cells to light

during the daytime varied between regions, as with LL simulations,

and we included local cell-to-cell coupling. Under LD cycles, cells

had more similar timings than under LL; however, inspection of the

peaks of PRR9/PRR7 expression revealed differences between

regions (Fig 5B, black dots). These phase differences were qualita-

tively the same as observed under LL (Fig 3) and persisted even at

high coupling strengths (Fig 5B, black dots). Also as observed under

LL, with Jlocal above approximately 1, spatial waves could be

observed (Fig 5B, black dots). These simulations qualitatively

match the experimentally observed spatial waves under LD cycles

(Greenwood et al, 2019). A similar structure was observed in the

other clock genes (Appendix Fig S10, black dots), although spatial

waves of PRR5/TOC1 and ELF4/LUX were altered because their

peaks coincided with the LD transition which had a synchronizing

effect (Appendix Fig S10C and D, black dots). Simulations also cap-

tured whole-plant experimental data under short or long days (Fig

EV4) and predicted that a spatial structure remains under these con-

ditions (Appendix Fig S11).

Cell-to-cell coupling improves timing under noisy LD cycles

Our modeling suggested that different sensitivities to environmental

inputs across the plant allow the clock to be locally flexible, by

allowing it to adopt different phases across the plant even under LD

cycles. However, it was not clear whether a locally flexible clock

would still entrain to environmental cycles and maintain a stable spa-

tial structure of phase differences when the environment is noisy, as

is the case outside of the laboratory. To test this, we simulated more

realistic LD cycles containing fluctuations in the light intensity (Fig 5

A, right). We first considered the scenario where the fluctuations in

light intensity are uncorrelated for neighboring cells, to simulate

microenvironmental differences (Materials and Methods). Without

cell-to-cell coupling (Jlocal = 0) the peak times of PRR9/PRR7
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expression were highly variable within a region and any spatial struc-

ture was difficult to resolve (Fig 5B, red dots). However, with

increasing strengths of coupling we observed a decrease in variabil-

ity, revealing a spatial structure (Fig 5B, red dots) similar to that

observed under idealized LD cycles (Fig 5B, black dots). A similar

effect was observed for the remaining clock genes (Appendix Fig S10,

red dots). Overall, local cell-to-cell coupling appears to reduce the

within-region variability of cellular rhythms. Yet, despite the stabiliz-

ing effect of the coupling, between-region differences persist, due to

the between-region differences in sensitivity to the environment.

This emergence of spatial structure suggests that local coupling

improves the timing of individual cells under noisy environments.

To quantify this effect, we measured the timing of the peaks (Fig 5C

and Appendix Fig S12) and troughs (Fig 5D and Appendix Fig S12)

of expression relative to simulations without noise in the LD cycle

(Materials and Methods). The timing of each gene was mis-timed

under noisy LD cycles compared to idealized LD cycles. For exam-

ple, with Jlocal = 0, there was a timing error of 0.48 � 0.02 h

(mean � SD) for the peaks, and 0.46 � 0.02 h for the troughs of

PRR9/PRR7 expression. Each gene showed a differing degree of error

A

Cotyledon

Hypocotyl

Root &
root tip

1 mm

0

1

C

Cotyledon

Hypocotyl

Root &
root tip

20 'cells'

0

1

Simulated PRR9/PRR7, Jlocal = 2

PRR9::LUC

E

Cotyledon

Hypocotyl

Root &
root tip

B
PRR9::LUC

Cotyledon

Hypocotyl

Root &
root tip

D

Jlocal = 0 = 0.01 = 0.1 = 1 = 2 = 4

Cotyledon

Hypocotyl

Root &
root tip

Simulated PRR9/7, Jlocal = 2

Figure 3. Local sharing of clock components can reproduce experimentally observed spatial waves of clock gene expression.

A Representative intensity plot of PRR9::LUC expression measured from longitudinal sections of a single seedling under LL.
B Times of the final peaks of the PRR9::LUC intensity plot.
C Representative intensity plot of simulated PRR9/PRR7 expression measured from longitudinal sections of a single seedling under LL. Simulations assumed varied light

sensitivities and local cell-to-cell coupling (Jlocal = 2).
D Times of the final peaks of the simulated PRR9/PRR7 intensity plot.
E Times of the final peaks of simulated PRR9/PRR7 intensity plots, each simulated under LL with increasing strengths of local cell-to-cell coupling.

Data information: Experimental data is an analysis of Arabidopsis time-lapse movies carried out previously (Greenwood et al, 2019). N = 4 and n = 7–14, where N
represents the number of independent experiments and n the total number of organs tracked. Data in (D) is replotted within (E) as “Jlocal = 2” and Fig EV2A as “CCA1/LHY
coupled”. (E) is replotted as Fig EV3A and Appendix Fig S8A.
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in their peak (Fig 5C and Appendix Fig S12) and trough (Fig 5D and

Appendix Fig S12) times, which reflects differences in their regula-

tion under light and dark conditions (Appendix Fig S12 and Appen-

dix Table S1). For example, the troughs of ELF4/LUX expression

were synchronized (Fig 5D, blue line) due to rapid degradation in

the dark (Appendix Fig S12D). However, for each gene, we observed

a decrease in the timing error with increasing strengths of local cell-

to-cell coupling (Fig 5C and D). This is consistent with local cou-

pling having a stabilizing effect on cellular oscillations, increasing

their robustness to perturbation from the noisy environment. Local

cell-to-cell coupling similarly reduced the timing error when we

assumed weak correlations in the LD cycles that cells are exposed

to, to simulate shared microenvironments (Appendix Fig S13A–C,
Materials and Methods). However, local coupling no longer reduced

the timing error when we assumed stronger correlations in the LD

cycles, as neighboring cells experienced more similar LD cycles

(Appendix Fig S13D and E). Taken together, our results show that

by averaging fluctuations between neighboring cells, local cell-to-cell

A

Cotyledon

Hypocotyl

Root &
root tip

B

Cotyledon

Hypocotyl

Root &
root tip
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Jlong = 0
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Jlong = 0 = 2 = 4

C
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 = 2;
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Hypocotyl
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Figure 4. Long-distance sharing of clock components does not generate spatial waves but does generate period differences between organs.

A, B Times of the final peaks of the simulated PRR9/PRR7 intensity plot simulated under LL. Simulations were performed with increasing strengths of long-distance
coupling, Jlong, without (A) or with (B) local cell-to-cell coupling (Jlocal = 2). Both long and local coupling acts through the sharing of ELF4/LUX. The schematics
represent the long-distance (red arrow) and local (black arrows) coupling present in the adjacent simulations.

C Times of the final peaks of simulated PRR9/PRR7 intensity plot under LL, without the assumption of higher light sensitivity in the root tip. Simulations were
performed with local cell-to-cell coupling (Jlocal = 2) and without (black dots) or with (yellow dots) increasing strengths of long-distance coupling.

Data information: Data in (B) (“Jlocal = 2; Jlong = 0”) is replotted within Fig EV2B as “ELF4/LUX coupled”.
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coupling can improve timing accuracy of individual cells under noisy

environments. Because coupling acts locally, between-region differ-

ences in phase, due to between-region differences in light sensitivi-

ties, are able to persist despite the averaging effect of cell-to-cell

coupling.

Discussion

Here, we developed a spatial network model for the plant clock and

used it to examine the design principles of clock coordination in plants.

We found that regional differences in sensitivity to light and local cell-

to-cell coupling through the sharing of clock components can capture

the period differences and phase waves across the plant observed in

previous time-lapse experiments. In addition, we found that long-

distance coupling can generate period differences between regions but

cannot on its own generate spatial waves. Our simulations found that

local coupling combined with regional differences in sensitivity to light

allows phase flexibility between regions to persist under noisy LD

cycles while minimizing timing errors. We therefore found that the

plant circadian clock system can combine regional differences in envi-

ronmental signaling with local cell-to-cell coupling to enable robust, yet

flexible, circadian timing under noisy environmental cycles.

In this work, we found that regional differences in timing can be

explained by varied sensitivities to the environment. The assumption

of regional differences in sensitivity is based on previous experi-

ments demonstrating that period differences across the plant are

dependent on light input through PHYB (Greenwood et al, 2019;

A

B

Cotyledon

Hypocotyl

Root &
root tip

Jlocal = 0 = 0.01 = 0.1 = 1 = 2 = 4
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Figure 5. Local coupling reduces cell timing errors under noisy LD cycles.

A Schematic of idealized (left) and noisy (right) LD cycles, without or with fluctuations in light levels during the daytime, respectively. Each line represents the LD
cycle for a single cell.

B Times of the final peaks of simulated PRR9/PRR7 intensity plots, simulated under idealized (black dots) or noisy (red dots) LD cycles with increasing strength of
local cell-to-cell coupling.

C, D The cell timing error was calculated from the peaks (C) or troughs (D) of simulated gene expression, with increasing strength of local cell-to-cell coupling. Data
points represent the mean � SD, n = 9 simulations.

Data information: Data in (B) (“Jlocal = 2”) is replotted within Appendix Fig S11B as “12-h day”. (B) is replotted as Appendix Fig S10B. (C) and (D) are replotted as
Appendix Fig S13A.
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Nimmo et al, 2020). For example, in WT seedlings, the root tip oscil-

lates faster than the root, but this difference is lost in the phyb-9

mutant (Greenwood et al, 2019). We represent this in the model by

assuming the root tip is more sensitive to light than the rest of the

root. Also, mutations in the evening complex components, ELF3,

ELF4, and LUX, have different effects on the clock in roots compared

to shoots (Nimmo et al, 2020), suggesting organ-specific functions,

and the evening complex is known to interact with PHYB (Huang &

Nusinow, 2016), suggesting it may mediate between-organ differ-

ences in environmental inputs.

This mechanism of local differences in environmental sensitivity

could allow regions to adapt their entrainment to local environmen-

tal conditions. Another mechanism that can generate differences in

timing is that biochemical parameters, such as degradation rates,

can vary between regions of the plant (Vanselow et al, 2006; Rel�ogio

et al, 2011; Yoo et al, 2013). In the future, it will be interesting to

compare these two different mechanisms of generating differences

in clock timing. One possibility is that regional differences in sensi-

tivity to the environment allow better entrainment to the complex

and changing environments found in the natural environment. For

example, temperature is an entraining cue for the clock that is phase

shifted between the air and soil, with the size of the phase shift

varying seasonally (Dawson & Fisher, 1964). Although technically

challenging, experiments under more complex environments, with

differences in conditions between the shoot and the root, will be

important for testing this hypothesis. Promising advances in this

direction include the GLO-Roots system (Rell�an-�Alvarez et al, 2015),

and the robotics of Bordage et al (2016), which allow the root to be

maintained in a different environment.

We investigated two different mechanisms contributing to clock

coordination across the plant: local cell-to-cell coupling and long-

distance transport. Our simulations, as well as previous experiments

(Fukuda et al, 2007, 2012; Gould et al, 2018; Greenwood et al,

2019), suggest that local cell-to-cell coupling can coordinate

rhythms across Arabidopsis seedlings. Local cell-to-cell coupling has

also been proposed to coordinate rhythms in other plant systems,

including Lemna gibba fronds (Muranaka & Oyama, 2016; Ueno et

al, 2021). The long-distance movement of clock proteins and light

piped from the shoot has also been proposed to coordinate rhythms

(Nimmo, 2018; Chen et al, 2020). In our long-distance simulations

presented here, we assumed ELF4 levels in the root tip are coupled

to ELF4 levels in the hypocotyl. We based this assumption on the

work of Chen et al, 2020, which showed that when shoots overex-

pressing an ELF4-GFP construct are grafted to elf4 roots, ELF4-GFP

is observed in cells close to the phloem unloading zone at the root

tip (Chen et al, 2020). Our simulations suggest that this long-

distance transport could contribute to the period structure within a

plant but alone cannot generate the spatial waves of gene expres-

sion observed in the experiment. However, we did not consider sec-

ondary unloading sites of long-distance transport (De Schepper et

al, 2013). Further, we did not consider the time lag due to the trans-

port of molecules (Knox et al, 2018), which may destabilize

rhythms. In future work it will be important to monitor rhythms

within Arabidopsis plants throughout their development, in order to

understand the contribution of different mechanisms to whole-

organism coordination.

The molecular agents driving the coordination of the plant circa-

dian system are still being deciphered. As discussed above, ELF4

protein and light piping have been proposed to mediate long-

distance coupling (Nimmo, 2018; Chen et al, 2020). Although the

signals mediating local cell-to-cell coupling are unclear, it is known

that long-distance signals must also move locally in order to reach

the translocation stream (Faulkner, 2018). This raises the possibility

that long-distance coupling signals additionally couple cells locally.

Further, as explored in our simulations, it is possible that other

clock components also act as local coupling signals. Of particular

interest will be TOC1 and GI, as grafting combined with transcrip-

tomics has shown that their mRNA can move between the shoot

and the root (Thieme et al, 2015), indicating they could be candi-

dates as local and/or long-distance coupling signals.

In the future, it will also be important to increase the realism of

the model. For example, in our simulations, we focused on

between-cell variations in timing using a “scaling parameter”

approach, which scales the mRNA and protein levels in each cell

in order to generate cell-to-cell variability in periods (Materials

and Methods). This approach is computationally simple while

allowing us to set different levels of between-cell period variability

in each organ, as observed experimentally, but it does not explic-

itly model the noise in the molecular reactions. Modeling molecu-

lar noise explicitly by means of stochastic equations has

previously revealed unexpected properties of circadian clocks, such

as robustness to low molecule numbers (Gonze et al, 2002; Forger

& Peskin, 2005; Zhang & Gonze, 2021) and improved re-

entrainment (Guerriero et al, 2014). Such an approach applied to

our spatial model would allow an in-depth investigation of both

between and within cell period variation, and may reveal further

roles for intercellular coupling.

Previous models of the plant circadian clock have proven impor-

tant for understanding aspects of plant physiology, including starch

metabolism and flowering (Seaton et al, 2014, 2015). However, it

was recently shown that the clock controls physiology in a tissue-

specific manner. For example, clocks in the epidermis regulate

growth, whereas those in the vasculature regulate flowering (Shi-

mizu et al, 2015). In future, our spatial model could be extended to

investigate circadian control of physiology at the cell and tissue

level. An interesting example will be cell division, which is regu-

lated by the clock (Fung-Uceda et al, 2018), and occurs in meriste-

matic regions of the plant (Meyerowitz, 1997). It will be interesting

to see if, and how, flexibility of the circadian system impacts tightly

controlled phenotypes such as this.

The plant circadian system, with local inputs to cells that are

coupled together, represents a decentralized structure. This is in

contrast to the centralized mammalian circadian system, where the

suprachiasmatic nucleus in the brain receives the key entraining sig-

nal of light and then couples rhythms across the body (Bell-

Pedersen et al, 2005). Here we found that this decentralized struc-

ture can afford plants flexibility, filtering noise but allowing regions

to adopt different phases.

Materials and Methods

Single-cell molecular model

As a model for the plant circadian clock, we utilized the compact

model introduced by De Caluw�e et al (2016). The original compact
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model consists of 9 ordinary differential equations. Among them, 8

equations describe the temporal evolution of the mRNA and protein

levels of the core clock genes. The clock genes are grouped into four

sets of pairs labeled as: CL (CCA1 and LHY), P97 (PRR9 and PRR7),

P51 (PRR5 and TOC1), and EL (ELF4 and LUX). The 9-th equation is

for protein P, a yet-identified protein which mediates the acute acti-

vation of transcription by light observed in experiments (Ito et al,

2005; Locke et al, 2005b).

In our modeling, we modified the original De Caluw�e model.

According to the experiments reported in Para et al (2007), the com-

pact model assumed that the P97 variable is activated by CL. How-

ever, more recent work has shown that LHY acts as a repressor of

PRR9 and PRR7 (Fogelmark & Troein, 2014; Adams et al, 2015). We

therefore replaced the activation term that represents the connection

from CL to P97 with a repression. In addition, we added a term for

CL repressing its own transcription, as this has also recently been

observed for CCA1 and LHY (Adams et al, 2015).

We also made modifications to the light input mechanism. In the

original De Caluw�e model, light signals feed into the network at

multiple levels: (i) The transcription of CL and P97 is acutely acti-

vated at dawn by the dark-accumulating protein P; (ii) The tran-

scription of EL is increased continuously by light; (iii) The

translation of CL is increased by light; (iv) The degradation rate of

CL mRNA is increased by light; (v) The degradation rate of P51 pro-

tein is increased in the light; and (vi) The degradation rates of P97

and EL proteins are increased in the dark. In our model, we adjusted

the degradation rate of P51, as several studies have established that

the degradation of both PRR5 and TOC1 are also increased in the

dark (M�as et al, 2003; Kiba et al, 2007; Kim et al, 2007; Fujiwara

et al, 2008) (Appendix Table S1).

Additionally, we introduced Lsens, to represent the cellular sensi-

tivity to light. In the presence of light L = 1, a cell senses light

according to its sensitivity, Lsens L > 0. In the absence of light

L = 0, the cell does not sense light, Lsens L = 0. We include Lsens in

the terms describing protein P degradation, EL and CL translation,

and CL mRNA degradation, as in these terms light increases the

rates of reaction. We additionally include Lsens in the term describ-

ing the degradation of the EC, as it has previously been suggested

that ELF3 degradation (an EC component not explicitly modeled in

De Caluw�e) is increased in the light (Pokhilko et al, 2012). Lsens was

set to 1 in the single cell implementation of the model, but varied

between cells in the multicellular implementation (see “Spatial

molecular model”). The revised single-cell model is now described

by the following differential equations:

dc
mð Þ
CL

dt
¼ v1 þ v1LLsens L tð ÞPð Þ 1

1þ c
pð Þ
CL

K0

� �2

þ c
pð Þ
P97

K1

� �2

þ c
pð Þ
P51

K2

� �2

� k1LLsens L tð Þ þ k1DD tð Þð Þc mð Þ
CL ;

dc
pð Þ
CL

dt
¼ p1 þ p1LLsens L tð Þð Þc mð Þ

CL � d1c
pð Þ
CL ;

dc
mð Þ
P97

dt
¼ v2LLsens L tð ÞP þ v2Að Þ 1

1þ c
pð Þ
P51

K4

� �2

þ c
pð Þ
EL

K5

� �2

þ c
pð Þ
CL

K5b

� �2
� k2c

mð Þ
P97;

dc
pð Þ
P97

dt
¼ p2c

mð Þ
P97 � d2DD tð Þ þ d2L L tð Þð Þc pð Þ

P97;

dc
mð Þ
P51

dt
¼ v3

1

1þ c
pð Þ
CL

K6

� �2

þ c
pð Þ
P51

K7

� �2
� k3c

mð Þ
P51;

dc
pð Þ
P51

dt
¼ p3c

mð Þ
P51 � d3DD tð Þ þ d3L L tð Þð Þc pð Þ

P51;

dc
mð Þ
EL

dt
¼ Lsens L tð Þv4 1

1þ c
pð Þ
CL

K8

� �2

þ c
pð Þ
P51

K9

� �2

þ c
pð Þ
EL

K10

� �2
� k4c

mð Þ
EL ;

dc
pð Þ
EL

dt
¼ p4c

mð Þ
EL � d4DD tð Þ þ d4LLsens L tð Þð Þc pð Þ

EL ;

dP

dt
¼ 0:3 1� Pð ÞD tð Þ � Lsens L tð ÞP:

c mð Þ
α and c pð Þ

α represent the concentrations of the α-th mRNA and

protein (or protein complex) respectively, for α = CL, P97, P51,

and EL. P represents the activity of the dark accumulated protein

P. The parameters vj, kj, pj, and dj represent the reaction rates for

transcription, mRNA degradation, translation, and protein degrada-

tion respectively, for the various reactions j = 1. . . (Appendix

Table S1). Kj represent a scaling factor for the protein concentra-

tions. D represents a dark signal, which is equal to 1 when L = 0

and equal to 0 when L > 0. This explicit representation of a dark

signal is commonly used in circadian clock models to capture the

different reaction rates observed under dark conditions in experi-

ments (Pokhilko et al, 2012; Fogelmark & Troein, 2014; De Caluw�e

et al, 2016).

Parameter optimization

The original De Caluw�e model contains 34 parameters, the values of

which have been obtained previously through automated optimiza-

tion (De Caluw�e et al, 2016). Firstly, we adjusted the value of d3L to

be less than d3D. We did this to account for the fact that several

studies have demonstrated that the degradation of both PRR5 and

TOC1 are increased in the dark (M�as et al, 2003; Kiba et al, 2007;

Kim et al, 2007; Fujiwara et al, 2008). We then used automated opti-

mization to find the values related to the modified interaction

between CL and P97 (K0; K4; K5; and K5b). We optimized by mini-

mizing a cost function, combining Sobol search and simulated

annealing to optimize within the range Ki ∈ ½0:1; 10� for

i ¼ 0; 4; 5; 5b.

We computed the cost function as follows. First, we simulated

the model under 12-h light–12-h dark conditions for a total of

60 days and then released to LL for 60 days, followed by constant

darkness (DD) for 60 days. In each light condition, we discarded

the first 55 days as a transient dynamic. To ensure detectable

rhythmicity under LL and DD conditions, we required that all vari-

ables must have a minimum value of 0.1, as well as a minimum

difference of 10% between their minimum and maximum values.

We penalized any solution that did not meet these criteria with an

arbitrarily large score. Then, we calculated the free-running period

from CL gene expression using the chi-square periodogram
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(Sokolove & Bushell, 1978) at a significance level of 1%. We gave

a score of 0 to a solution having a free-running period between 24

and 25 h under LL and between 25 and 28 h under DD. For solu-

tions with free-running periods outside these ranges, we allocated

the scores of 2 (τLL − 24.5)2/(0.1⋅24.5)2 and 2 (τDD − 26.5)2/

(0.1⋅26.5)2, where τLL and τDD represent free-running periods

under LL and DD respectively. Under 12-h light–12-h dark cycles,

we penalized solutions that did not entrain to the LD cycles with

an arbitrarily large score. We assigned entrained solutions a score

of 0 for each gene that attained peak expression within � 1 h of

the expected ZT, which were as follows: CL = 1.5, P97 = 6,

P51 = 12, and EL = 9. We scored expression peaks lying outside

these intervals as (ZTCL − 1.5)2/(0.1⋅24)2, (ZTP97 − 6)2/(0.1⋅24)2,
(ZTP51 − 12)2/(0.1⋅24)2, (ZTEL − 9)2/(0.1⋅24)2, where ZT repre-

sents the peak time measured from the corresponding genes

expression. Finally, we penalized solutions that showed a large

phase shift, Δ, when transferred from LD cycles to LL. The phase

shift was scored as Δ2/(0.1⋅24)2. The optimized parameter values

together with the original values determined by De Caluw�e et al

(2016) are listed in Appendix Table S1. The free-running period of

the revised model was 25.5 h under LL (L = 1; D = 0) and

27.4 h under constant darkness (L = 0; D = 1). Under LD cycles,

the peak times (ZT) of the gene expressions were CL = −0.3 h,

P97 = 6.0 h, P51 = 11.8 h, and EL = 9.7 h.

Parameter sensitivity analysis

To test the robustness of the single cell model we carried out a

parameter sensitivity analysis. We distributed all 34 parameters uni-

formly in the � 5% range of their optimized value. For 50,000 sets

of randomized parameter values, the free running period under LL

(25.5 � 0.4 h), free running period under DD (27.4 � 0.5 h), ampli-

tude under LL (0.9 � 0.1), and amplitude under DD (1.4 � 0.2) of

CL expression were calculated. The values were distributed in a nar-

row range centered at their target values, indicating that they are

not sensitive to the selected values of the 34 parameters (Appendix

Fig S1). Our sensitivity analysis could in future be extended (e.g.,

by using Approximate Bayesian Computation) to calculate confi-

dence intervals for the parameter estimates.

Characterizing clock periods from experiments

We analyzed experimental luciferase and confocal data to charac-

terize the periods within a seedling. We previously completed an

organ-level analysis of period and phase for PRR9::LUC, ELF4::

LUC, and TOC1::LUC expression (Greenwood et al, 2019). In this

analysis, 315 µm diameter regions of interest (ROI) were defined

to represent the cotyledon, hypocotyl, root, and root tip regions of

the seedling (Greenwood et al, 2022). These ROI were used to

generate time series, from which period estimates were made

across a number of individual seedlings. Here, we pooled esti-

mates made from individual seedlings carrying PRR9::LUC, ELF4::

LUC, or TOC1::LUC reporter genes, and calculated the mean for

each region (Fig 2A). Only periods from time series classified as

rhythmic (as defined previously (Greenwood et al, 2019)) were

used in the calculation.

To characterize the variability of the periods, we measured the

between-cell variation of clock periods in each region of the plant

(Appendix Fig S2). To do this we analyzed a dataset of single cell

time-lapse microscopy, CCA1::CCA1-YFP fusion protein reporter

data (Gould et al, 2018). We defined cells as being within the root

tip region if they are less than 315 µm from the most distal cell of

the root tip. Where there are multiple imaging sections in the same

organ, cells are pooled to give one region for the cotyledon, hypo-

cotyl, and root. Variability was estimated using the coefficient of

variation (CV; SD/mean) of all cells within these regions. Only

periods from time series classified as rhythmic (as defined previ-

ously (Gould et al, 2018)) were used in the calculation.

Spatial molecular model

We implemented our optimized molecular model on a simplified

template of a seedling. The template consisted of approximately 800

cells, classified into cotyledon, hypocotyl, root, and root tip regions

(Fig 1B). Each cell contained an implementation of the revised com-

pact model. To simulate growth of the seedlings, we added a row of

cells to the root tip every 24 h. During this growth, we kept the root

tip region of the template fixed in size. To do this, after the addition

of new cells, the previously uppermost root tip cells became root

cells instead.

We set the light sensitivity of the cell, Lsens, to vary depending on

the position within the template. In doing so, we found that modest dif-

ferences in Lsens were sufficient to generate period differences between

regions. To approximate the period differences that we observed

between regions in experiments (Fig 2A) we set Lsens = 1.6 for cotyle-

don cells, Lsens = 1.0 for hypocotyl cells, Lsens = 0.65 for root cells,

and Lsens = 0.95 for root tip cells. As the template grows, the upper-

most root tip cells become root cells, so the light sensitivity of these

cells decreases so that they have a sensitivity characteristic of root cells,

Lsens = 0.65. This caused the clock period of these cells to slow.

As the coupling agents have yet to be clearly identified by

experimental studies, we initially assumed individual cells to be

coupled through CL. Our model for coupled plant cells is described

as follows:

τi
dc

mð Þ
CL;i

dt
¼ v1 þ v1LLsens;i L tð ÞP� � 1

1þ c
pð Þ
CL

K0

� �2

þ c
pð Þ
P97

K1

� �2

þ c
pð Þ
P51

K2

� �2

� k1LLsens;i L tð Þ þ k1DD tð Þ� �
c
mð Þ
CL þ Jlocal c

mð Þ
CL;i � c

mð Þ
CL;i

� �
;

τi
dc

pð Þ
CL;i

dt
¼ p1 þ p1LLsens;i L tð Þ� �

c
mð Þ
CL;i � d1c

pð Þ
CL;i;

τi
dc

mð Þ
P97;i

dt
¼ v2LLsens;i L tð ÞP þ v2A

� � 1

1þ c
pð Þ
P51

K4

� �2

þ c
pð Þ
EL

K5

� �2

þ c
pð Þ
CL

K5b

� �2

�k2c
mð Þ
P97;i;

τi
dc

pð Þ
P97;i

dt
¼ p2c

mð Þ
P97;i � d2DD tð Þ þ d2L L tð Þð Þc pð Þ

P97;i;

τi
dc

mð Þ
P51;i

dt
¼ v3

1

1þ c
pð Þ
CL

K6

� �2

þ c
pð Þ
P51

K7

� �2
� k3c

mð Þ
P51;i;
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τi
dc

pð Þ
P51;i

dt
¼ p3c

mð Þ
P51;i � d3DD tð Þ þ d3L L tð Þð Þc pð Þ

P51;i;

τi
dc

mð Þ
EL;i

dt
¼ Lsens;i L tð Þv4 1

1þ c
pð Þ
CL

K8

� �2

þ c
pð Þ
P51

K9

� �2

þ c
pð Þ
EL

K10

� �2
� k4c

mð Þ
EL;i;

τi
dc

pð Þ
EL;i

dt
¼ p4c

mð Þ
EL;i � d4DD tð Þ þ d4LLsens;i L tð Þ� �

c
pð Þ
EL;i þ Jlong c

pð Þ
EL;long � c

pð Þ
EL;i

� �
;

τi
dP

dt
¼ 0:3 1� Pð ÞD tð Þ � Lsens;i L tð ÞP:

As in the revised single-cell model, c mð Þ
α and c pð Þ

α represent the

concentration of the α-th mRNA and protein (or protein complex)

respectively for α = CL, P97, P51, and EL, in the i-th cell

(i ¼ 1; 2; . . . ;N). P again represents activity of the dark accumulated

protein P. To generate cell-to-cell variability in periods, we multiply

the derivative with respect to the time of each molecular species by

the time scaling parameter τ. τ is a real number randomly selected

from the normal distribution N(1, 0.059), N(1, 0.028), N(1, 0.073),

N(1, 0.089) for cells from the cotyledon, hypocotyl, root, or root tip

respectively, as informed by the analysis of single-cell experimental

data (see “Characterizing clock periods from experiments”).

In the first equation, the CL gene is locally coupled to its neigh-

boring cells, where Jlocal is the coupling strength and

c
mð Þ
CL;i ¼ 1

4∑j∈N ið Þc
mð Þ
CL;j represents averaged expression level over 4

neighboring cells (left, right, above, and below). In the case of local

coupling between 8 neighboring cells (left, right, above, below, left

above, left below, right above, and right below) or global coupling,

the averaged expression becomes c
mð Þ
CL;i ¼ 1

8∑j∈N ið Þc
mð Þ
CL;j or

c
mð Þ
CL;i ¼ 1

N ∑
N
j¼1c

ðmÞ
CL;j respectively. In Fig EV2 we varied the identity of

the local coupling component. Here, the averaged expression

becomes c
mð Þ
α;i ¼ 1

4∑j∈N ið Þc
mð Þ
α;j or c

pð Þ
α;i ¼ 1

4∑j∈N ið Þc
pð Þ
α;j for coupling

through mRNA or protein respectively, for α = CL, P97, P51, EL.

The coupling term is appended to the equation of the corresponding

molecular species. We set the local coupling strength as Jlocal = 0,

0.01, 0.1, 1, 2, or 4.

In Fig 4, we simulated long-distance coupling between the hypo-

cotyl and root tip cells through the movement of ELF4. To imple-

ment this, a long-distance coupling term is appended to the

equations describing EL protein in root tip cells, where Jlong is the

long-distance coupling strength and c
pð Þ
EL;long ¼ 1

NR
∑j∈Rc

pð Þ
EL;j represents

the averaged expression level over cells in the hypocotyl, R. We set

the long-distance coupling strength as Jlong = 0, 0.01, 0.1, 1, 2, or 4.

Analysis of peaks and periods of expression

To assess our model, we quantified the times of the peaks and peak-

to-peak times of simulated gene expression. We firstly did this from

ROI averages to allow for comparison to experimental data (e.g.,

Fig 2) (Greenwood et al, 2019). We defined 5-by-3 (width-by-

height) pixel ROI on the seedling template, approximating the posi-

tions used in the experimental analysis (Appendix Fig S7A). We

took the mean of these ROI at each time point to give the simulated

time series. We identified the peaks of the time series within 24–
144 h after transfer to LL using the “findpeaks” MATLAB (Math-

Works, UK) function. We imposed that peaks must be more than

19 h apart and greater than the mean of the time series. Next, we

measured the period as the mean of the times between consecutive

peaks. In Figs 2 and 3, we plotted the analysis of the simulated data

with previously collected experimental data (Greenwood et al,

2019) for comparison. For visual clarity, only peaks in which all

organs completed the full cycle within the time window were plot-

ted. Additionally, only peaks from the experimental time series clas-

sified as rhythmic (as defined previously (Greenwood et al, 2019))

were plotted.

Space-time intensity plots

To visualize the spatial clock dynamics, we created space-time

intensity plots of experimental and simulated gene expression

(e.g., Fig 3A and C). We made plots of PRR9::LUC, ELF4::LUC, and

TOC1::LUC expression as described previously (Greenwood et al,

2019). In brief, we average expression across sections that are per-

pendicular to the primary axis of the seedling. For simulations, we

take the mean expression from 1-by-5 cell cross-sections through

the primary axis of the template (Appendix Fig S7B, yellow lines).

We additionally plotted the times of the final peaks of expression

of the space-time plots (e.g., Fig 3B and D). We detected peaks as

before (see “Analysis of peaks and periods of expression”), but

restricted the detection to within a 24 h window of the expected

time of the final peak of expression. If more than one peak was

detected we plotted the peak with the greatest height. However,

under some conditions, we consistently observed two peaks of

TOC1 expression within 24 h. We therefore plotted the earliest

peak of TOC1 expression.

Simulations under LD cycles

We simulated light-dark cycles with a day length of 8, 12, or

16 h. We termed these cycles without noise “idealized LD” (Fig 5

A, left). To simulate fluctuations in the light cycle we utilized an

algorithm developed previously (Pittayakanchit et al, 2018),

which approximates meteorological data (Gu et al, 2001). Fluctua-

tions lasted an interval of time drawn randomly from an expo-

nential distribution of mean 2.4 h. The intensity of light during

each fluctuation was drawn randomly from a second function of

uniform distribution in the range 0.5 to 1.5. We termed this con-

dition “noisy LD” (Fig 5A, right). LD cycles were input to the

molecular model through the parameter L.

Individual plant cells may not experience a unique noisy LD

cycle but instead have some correlation in the light cycle between

one another. To examine the dependence of our results on the cor-

relation, we extended our algorithm to consider two types of fluc-

tuations, global and individual. The global fluctuation, ξglobal, is

applied commonly to all cells, while the individual fluctuation,

ξindividual, is applied only to individual cells. The global and indi-

vidual fluctuations are drawn randomly from the same distribu-

tions as before, but are statistically independent from each other.

By combining the two fluctuations, each cell receives a light input

as L tð Þ ¼ 1� f λ ξglobalðtÞ þ ð1� λÞ ξindividualðtÞ g with a mixture ratio

of 0 ≤ λ ≤ 1. If λ ¼ 1, the same fluctuation is applied to all the

cells. If on the other hand λ ¼ 0, fluctuations applied to individual

cells are all independent from each other. We simulate noisy LD

cycles with λ = 0, 0.1, 0.25, 0.5, and 1.
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Timing error analysis

We introduced the cell timing error as a relative measure of clock

precision under noisy LD cycles. For all cells of a simulation

(h = 1, 2 ,..., N), we computed the times of the final peaks of

expression T. We computed the peaks under the noisy LD condition

Tnoisy, and the idealized LD condition, Tidealized, with a matching

strength of local coupling. The latter condition acted as a bench-

mark for the cell’s ideal time of expression, in order to estimate the

error caused by the noise. We then calculate the timing error E at

each coupling strength as

E ¼ 1

N
∑
N

h¼1

Th
idealized � Th

noisy

��� ���:

Statistical methods

In the experimental analysis, we excluded seedlings from the analy-

sis if they were not rhythmic, as described in the previous experi-

mental studies (Mockler et al, 2007; Gould et al, 2018; Greenwood

et al, 2019). We plotted the mean and SD when the results of the

analysis were normally distributed, and otherwise plotted the

median, 25-th, and 75-th percentile. We chose representative seed-

lings for the space-time intensity plots. For simulations, we

performed 9 simulations under each condition. We performed each

simulation with a different distribution of the time scaling parame-

ter, τ, (see “Spatial molecular model”). We matched these distribu-

tions between different conditions to allow for comparison.

Summary statistics and representative space-time intensity plots

were presented, as for experiments. We did not use statistical tests

to select the sample size or perform blinding during the analysis.

Data availability

Source data for main and extended view figures, as well as the model

code produced in this study is available from our project GitLab page

(https://gitlab.com/slcu/teamJL/greenwood_etal_2022).

Expanded View for this article is available online.
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