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Abstract We have analysed the response of cells on

a bed of micro-posts idealized as aWinkler foundation

using a homeostatic mechanics framework. The

framework enables quantitative estimates of the

stochastic response of cells along with the coupled

analysis of cell spreading, contractility and mechano-

sensitivity. In particular the model is shown to

accurately predict that: (i) the extent of cell spreading,

actin polymerisation as well as the traction forces that

cells exert increase with increasing stiffness of the

foundation; (ii) the traction forces that cells exert are

primarily concentrated along the cell periphery; and

(iii) while the total tractions increase with increasing

cell area the average tractions are reasonably

independent of cell area, i.e. for a given substrate

stiffness, the average tractions that are normalized by

cell area do not vary strongly with cell size. These

results thus suggest that the increased foundation

stiffness causes both the cell area and the average

tractions that the cells exert to increase through higher

levels of stress-fibre polymerization rather than the

enhanced total tractions being directly linked through

causation to the larger cell areas. A defining feature of

the model is that its predictions are statistical in the

form of probability distributions of observables such

as the traction forces and cell area. In contrast, most

existing models present solutions to specific boundary

value problems where the cell morphology is imposed

a priori. In particular, in line with observations we

predict that the diversity of cell shapes, sizes and

measured traction forces increase with increasing

foundation stiffness. The homeostatic mechanics

framework thus suggests that the diversity of obser-

vations in in vitro experiments is inherent to the

homeostatic equilibrium of cells rather than being a

result of experimental errors.
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1 Introduction

Living cells sense and respond to their mechanical,

chemical and topological environments. For example,

Engler et al. [1] have shown that cell spreading is

strongly affected by substrate stiffness with the

projected cell area increasing with increasing substrate

stiffness. Similar observations showing that cell shape

as characterized by aspect ratio is also dependent on

substrate stiffness [2] have also been reported. This

dependence of direct visual observables to substrate

stiffness is linked to the forces that cells exert on the

substrate with the total traction forces also increasing

with increasing substrate stiffness [3, 4]. However,

while the statistics of these behaviours are highly

reproducible, cells display a fluctuating response that

results in a diversity of observables in nominally

identical tests. Importantly, this experimental vari-

ability is not only a function of the cell type but also a

function of the environment with the standard devi-

ation in all the quantities mentioned above decreasing

with decreasing substrate stiffness. The variability in

direct observables such as cell shape, area and

cytoskeletal protein arrangements is also linked to

other critical cell functionality. In particular, mechan-

ical, geometric and topological cues direct the differ-

entiation of mesenchymal stem cells (MSCs) [5–7].

However, this behaviour is stochastic such that MSCs

differentiate mainly but not exclusively into bone cells

when cultured on stiff substrates while the probability

to differentiate into neuronal cells increases on soft

substrates [5]. Thus, the observed responses of cells

are always characterised in terms of statistics rather

than unique outcomes. A mechanistic understanding

of this stochastic behaviour of cells will have far-

reaching implications in aiding the interpretation of a

wide range of cell functionalities and responses.

Cytoskeletal tension plays an essential role in the

way cells sense and respond to their environment with

the above discussed sensitivities suppressed when

inhibitors such as cytochalasin D are added to

diminish myosin contractility [5, 8, 9]. This under-

standing has spurred extensive experimental activity

to measure the traction forces that cells exert. The

main approaches include traction force microscopy

[10, 11] and using deformable micro-post arrays

[12–15]. The key conclusions from these studies are:

(i) the so-called total traction forces rise with increas-

ing substrate stiffness; and (ii) cells spread to a greater

extent on stiffer substrates. In fact, both these

processes are coupled in the sense that cells undergo

remodelling and reorganize their cytoskeleton in

response to their mechanical environment, with the

cytoskeletal structure controlling both cell shape/area

as well as the traction forces that are generated.

A number of modelling approaches have been

developed to model the mechano-sensitive response of

cells with the aim of using models to try and interpret

the traction force measurements. Early attempts

included modelling the cytoskeleton as an interlinked

structure of passive filaments [16] or modelling

contractility as a thermal contraction [17]. Deshpande

et al. [18] introduced a bio-chemo-mechanical model

for cell contractility that subsequently has been

adapted in a number of studies [19–21]. These models

rationalised a number of the observations of cells on

elastic substrates but inherently solved a boundary

value problem such that the size and shape of the cell

was specified a priori. In reality, contractility and the

shape that cells adopt by spreading are interlinked with

both, in turn, depending on environmental parameters

such as substrate stiffness and ligand density [1].

Comprehensive intricate coupling among cell config-

uration, traction forces and the elastic environment is

missing in all these modelling approaches. Moreover,

they necessarily give only deterministic predictions

for the response of cells while the measured responses

are clearly stochastic.

The key assumption in all the models mentioned

above is that they presume, either implicitly or

explicitly, that a system comprising the cell and the

substrate attains equilibrium at its minimum value of

Gibbs free-energy. However, such a system that

excludes the nutrient bath surrounding the cell is an

open system with the cell exchanging (chemical)

species with the nutrient bath (Fig. 1a). In fact,

thermodynamic equilibrium of this open system is

achieved when the chemical potentials of all mobile

species within the cell and nutrient bath equalise but

living cells never achieve such an equilibrium state

(e.g. all living cells maintain a resting potential

between the cell and the surrounding nutrient bath

by actively regulating the concentration of various

ions within the cell). Hence, cells are inherently in a

non-equilibrium state from a conventional thermody-

namic perspective. Shishvan et al. [22] have recently

proposed a homeostatic ensemble to describe the

dynamic equilibrium of cells in an attempt to resolve
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this critical limitation in all previous modelling

approaches. This framework therefore inherently

allows us to make quantitative predictions of the

stochastic response of cells with cell shape and size no

longer imposed via a boundary value problem but

rather the distribution of configurations that cells

adopt being an outcome of the homeostatic equilib-

rium in the given environment.

The homeostatic statistical mechanics description

for cells [22] has already been shown to successfully

capture a range of observations for smooth muscle

cells seeded on elastic substrates [22, 23] and for

myofibroblasts seeded on substrates micropatterned

with stripes of fibronectin [24, 25] as well as for the

differentiation of hMSCs in response to a range of

environmental cues including stiffness of substrates

and sizes of adhesive islands [26]. These give us

confidence in utilizing the homeostatic mechanics

framework to investigate the response of cells on a

dense array of micro-posts.

1.1 Cells on a dense array of micro-posts

Here we consider the problem of a cell on a bed of

micro-posts arranged in a cubic pattern with spacing L,

as sketched in Fig. 1a. The posts have a height H and

Fig. 1 a Sketch of a cell on a bed of micro-posts. b Sketch of the
cell on a Winkler foundation used to approximate the bed of

micro-posts. In a and b the nutrient bath has been illustrated and

a small selection of the species being exchanged between the

cell and the bath are labelled. c The two-dimensional (2D)

approximation of a cell on the Winkler foundation analysed in

this study
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in line with most experimental studies [12–15] are

assumed to have a circular cross-section of radius a, as

sketched in Fig. 1a. The bending stiffness S of the

posts is then

S ¼ 3pEa4

4H3
; ð1Þ

where E is the Young’s modulus of micro-posts. If a

representative spread dimension R of the cell in the

x1 � x2 plane is much greater than the post spacing, i.e.

R � L, then it suffices to approximate the bed of posts

as an effective Winkler foundation with smeared-out

isotropic stiffness j ¼ S=L2 in the x1 � x2 plane

(Fig. 1b). In this study we shall analyse the behaviour

of smooth muscle cells (SMCs) on a dense array of

micro-posts using this Winkler approximation. We

emphasize that theWinkler-foundation approximation

implies that the precise post geometry does not enter

the analysis explicitly. Rather the analysis only

depends on the Winkler stiffness j.
The outline of the paper is as follows. We first

briefly review the model of Vigliotti et al. [27] as

modified in [22] to calculate the free-energy of a

system comprising the cell and foundation. Living

cells, however, do not attain thermodynamic equilib-

rium and thus do not equilibrate at a minimum free-

energy state. Next, we briefly describe the homeostatic

mechanics framework [22] to account for the dynam-

ical equilibrium that living cells attain. Finally, we

present predictions using the homeostatic mechanics

framework for the responses of cells on arrays of

micro-posts in an attempt to identify correlations or

the lack of them in the dependences of cell area, cell

shape and traction forces on the stiffness of the micro-

post arrays.

2 Free-energy of a cell on a dense array of posts

Consider a cell in a nutrient bath on a bed of micro-

posts (approximated as a Winkler foundation), as

sketched in Fig. 1b. We define a system comprising

the cell and foundation but absent the nutrient bath

which is considered as the environment. This of course

has the advantage that it is not then required to model

the nutrient bath but rather only model the parts of the

experimental setup on which observations are being

directly conducted. The state of the system changes as

the cell moves, spreads and changes shape on the

foundation and here we shall give a prescription to

calculate the free-energy of the cell in a specific

configuration ðjÞ where the connections of material

points on the cell membrane to the foundation surface

are specified (with the remainder of the cell surface

and foundation assumed to be traction-free). In broad

terms the adhesion of the cell membrane to the

foundation specifies the shape of the cell and subse-

quently we shall refer to each such configuration as a

morphological microstate ðjÞ of the system.

2.1 The model for the Gibbs free-energy

With the system comprising of the cell and the

foundation within a constant temperature and pressure

nutrient bath, the Gibbs free-energy GðjÞ of the system
in morphological microstate ðjÞ is given by

GðjÞ ¼
Z

Vcell

fdV þ
Z

V foun

wdV; ð2Þ

where f is the specific Helmholtz free-energy of the

cell and w the strain energy density of the foundation.

We emphasize that the analysis presented here is for

the system under atmospheric pressure conditions and

thus without loss of generality we set p ¼ 0 (i.e. use

gauge pressure). Thus, a pressure term does not appear

in (2). The equilibrium free-energy GðjÞ is then the

value of GðjÞ at dGðjÞ ¼ 0. Here, we briefly describe the

model for the calculation of GðjÞ. In the following, for

the sake of notational brevity, we shall drop the

superscript ðjÞ that denotes the morphological micro-

state as the entire discussion refers to a single

morphological microstate.

With the cell exerting a spatial distribution of

tractions T1ðxiÞ and T2ðxiÞ on the foundation, the

strain energy density w is given by

wðxiÞ �
1

2j
T2
1 þ T2

2

� �
: ð3Þ

The total foundation strain energy

Ffoun �
Z

A

wdA; ð4Þ

where the spatial integration is carried out over the

current cell area A. We now proceed to summarise the

model of Vigliotti et al. [27] for the cell as modified in

[22] for a non-dilute concentration of stress-fibres.
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Here, we restrict ourselves to a two-dimensional (2D)

approximation of the cell (Fig. 1c) such that the cell

lies in the x1 � x2 plane with no variation of properties

in the through thickness x3-direction.

The Vigliotti et al. [27] model assumes only two

elements within the cell: (i) a passive elastic contri-

bution from elements such as the cell membrane,

intermediate filaments and microtubules and (ii)

contractile acto-myosin stress-fibres that are modelled

explicitly. Consider a 2D cell of thickness b0 and

volume V0 in its elastic resting state. The representa-

tive volume element (RVE) of the stress-fibres within

the cell in this resting configuration is assumed to be a

cylinder of volume VR ¼ pb0
nR‘0
2

� �2
where ‘0 is the

length of a stress-fibre functional unit in its ground-

state and nR is the number of these ground-state

functional units within this reference RVE. The total

number of functional unit packets within the cell is NT
0

and we introduce N0 ¼ NT
0VR=V0 as the average

number of functional unit packets available per RVE;

N0 shall serve as a useful normalisation parameter.

The state of the stress-fibres at location xi within the

cell is described by their angular concentration

gðxi;/Þ, and there are nðxi;/Þ functional units in

series along the length of each stress-fiber in the RVE.

Here, / is the angle with respect to the x1 direction

(Fig. 1c). Vigliotti et al. [27] argue that an applied

stretch is shared equally among all subunits, so that the

strain within each functional unit, ~enom, is initially

equal to the nominal strain enomðxi;/Þ in direction /.
Subsequent addition or removal of subunits modifies

the subunit stretch proportionally so that, at steady-

state, the number nss of functional units within the

stress fibers is given by

n̂ss � nss

nR
¼ 1þ enomðxi;/Þ½ �

1þ ~essnom
; ð5Þ

where ~essnom is the strain at steady-state within a

functional unit of the stress-fibres. It now remains to

specify the steady-state angular concentration of the

stress-fibres. The chemical potential of the functional

units within the stress-fibres is given by [22]

vb ¼
lb
nR

þ kT ln
pĝn̂ss

N̂u 1� ĝ
ĝmax

� �
0
@

1
A

1
nss

N̂u

pN̂L

� �2
64

3
75; ð6Þ

where k and T are Boltzmann constant and tempera-

ture, respectively, and the normalized concentration of

the unbound stress fiber proteins is given by

N̂u � Nu=N0. With ĝ � gnR=N0, the maximum nor-

malised value of ĝ, denoted by ĝmax, corresponds to

full occupancy of all available sites for stress-fibres.

Here, N̂L is the number of lattice sites available to

unbound proteins. The enthalpy lssb of nR bound

functional units at steady-state is given in terms of the

isometric stress-fibre stress rmax and the internal

energy lb0 as

lssb ¼ lb0 � rmaxX 1þ ~essnom
� �

; ð7Þ

where X is the volume of nR functional units. By

contrast, the chemical potential of the unbound

proteins is independent of stress and given in terms

of the internal energy lu as

vu ¼
lu
nR

þ kT ln
N̂u

pN̂L

� �
: ð8Þ

For a fixed configuration of the 2D cell (i.e. a fixed

strain distribution enomðxi;/Þ), the contribution to the

specific Helmholtz free-energy of the cell, f , from the

stress-fibre cytoskeleton follows as

f cyto ¼ q0 N̂uvu þ
Z p=2

�p=2
ĝn̂ssvbd/

 !
; ð9Þ

where q0 � N0=VR is the number of protein packets

per unit reference volume available to form functional

units in the cell. However, we cannot yet evaluate f cyto

as N̂uðxiÞ and ĝðxi;/Þ are unknown. These will follow
from the chemical equilibrium of the cell as will be

discussed in Sect. 2.2.

The total stress Rij within the cell includes contri-

butions from the passive elasticity provided mainly by

the intermediate filaments of the cytoskeleton attached

to the nuclear and plasma membranes and the

microtubules as well as the active contractile stresses

of the stress-fibres. Thus, in line with the existing

literature on active stress mechanics, we write the total

Cauchy stress in an additive decomposition as

Rij ¼ rij þ rpij; ð10Þ
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where rij and rpij are the active and passive Cauchy

stresses, respectively. In the 2D setting with the cell

lying in the x1 � x2 plane, the active stress is given in

terms of the volume fraction F 0 of the stress-fibre

proteins as

r11 r12
r12 r22

� 	
¼ F 0rmax

2

�
Zp=2

�p=2

ĝ 1þ enomð/Þ½ � 2 cos2/� sin 2/�

sin 2/� 2 sin2/�

" #
d/;

ð11Þ

where /� is the angle of the stress-fibre measured with

respect to xi and is related to / by the rotation with

respect to the undeformed configuration. The passive

elasticity in the 2D setting is given by a 2D special-

ization of the Ogden [28] hyperelastic model as

derived in [22]. The strain energy density function of

this 2D Ogden model is

Uelas �
2l
m2

kI
kII

� �m
2

þ kII
kI

� �m
2

� 2

" #
þ K

2
kIkII � 1ð Þ2;

ð12Þ

where kI and kII are the principal stretches, l and K are

the shear modulus and in-plane bulk modulus, respec-

tively, and m is a material constant governing the non-

linearity of the deviatoric elastic response. Moreover,

since the cell is assumed to be incompressible we set

the principal stretch in the x3-direction

kIII ¼ 1=ðkIkIIÞ. The (passive) Cauchy stress then

follows as rpijp
ðkÞ
j ¼ rpkp

ðkÞ
i in terms of the principal

(passive) Cauchy stresses rpk � kkoUelas=okk and the

unit vectors p
ðkÞ
j ðk ¼ I; IIÞ in the principal directions.

The total specific Helmholtz free-energy of the cell is

then f ¼ fcyto þ Uelas.

We emphasize here that the constitutive formula-

tion differs considerably from the formulations

employed for the inelastic deformation of non-active

materials. In such non-active materials, a multiplica-

tive decomposition of the deformation gradient in

terms of the elastic and inelastic parts is assumed. By

contrast, for the active behaviour of cells we assume

that there is no inelastic deformation with the total

deformation gradient equal to the elastic deformation

gradient. However, an active stress resulting from the

stress fibres is assumed to act in parallel to the passive

elastic stress.

2.2 Equilibrium of the morphological microstate

Shishvan et al. [22] have shown that equilibrium of a

morphological microstate reduces to two conditions:

(i) mechanical equilibrium with Rij;j ¼ 0 throughout

the system and (ii) chemical equilibrium such that

vuðxiÞ ¼ vbðxi;/Þ ¼ constant, i.e. the chemical poten-

tials of bound and unbound stress-fibre proteins are

equal throughout the cell. The condition vu ¼ vb
implies that ĝðxi;/Þ is given in terms of N̂u by

ĝðxi;/Þ ¼
N̂uĝmax exp

n̂ssðlu�lbÞ
kT

h i

pn̂ssĝmax þ N̂u exp
n̂ssðlu�lbÞ

kT

h i ; ð13Þ

and N̂u follows from the conservation of stress-fibre

proteins throughout the cell, viz.

N̂u þ
1

V0

Z
Vcell

Zp=2

�p=2

ĝn̂ssd/dV ¼ 1: ð14Þ

Knowing N̂u and ĝðxi;/Þ, the stress Rij can now be

evaluated and these stresses within the system (i.e. cell

and foundation) need to satisfy mechanical equilib-

rium, i.e. Rij;j ¼ 0. In this case, the mechanical

equilibrium condition is readily satisfied as the stress

field Rij within the cell is equilibrated by a traction

field Ti exerted by the foundation on the cell such that

bRij;j ¼ �Ti, where bðxiÞ is the thickness of the cell in
the current configuration. Tractions calculated in this

manner are then directly used in Eqs. (3) and (4) to

obtain the foundation elastic energy.

The equilibrium value of G denoted by G is then

given as G ¼ Fcell þ Ffoun where

Fcell � q0V0vu þ
Z

Vcell

UelasdV ; ð15Þ

and Ffoun is specified by Eq. (4). Here, vu is given by

Eq. (8) with the equilibrium value of N̂u obtained from

Eq. (14). For the purposes of further discussion, we

define the equilibrium value Fcyto � q
0
V0vu as the

cytoskeletal free-energy of the cell and Fpassive �R
Vcell

UelasdV as the passive elastic energy of the cell.

The free-energy G can be decomposed as

G ¼ ! ? !0, where !0 ¼ q0V0 lu=n
R � kT½
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ln pN̂L

� �
� is independent of the morphological micro-

state. It is thus natural to subtract out !0 and define a

normalised free-energy as

Ĝ � !
GS � !0j j ¼

G� !0

GS � !0j j ; ð16Þ

where GS is the equilibrium free-energy of a free-

standing cell (i.e. a cell in suspension with traction-

free surfaces). Analogously, we define the normalised

passive and cytoskeletal free-energies of the cell as

F̂passive �
Fpassive

GS � !0j j ; ð17Þ

and

F̂cyto �
Fcyto � !0

GS � !0j j ; ð18Þ

respectively. We shall present all energies in these

normalised forms.

2.3 Model parameters

The simulations were performed with the parameters

taken from Shishvan et al. [22] and are representative

of smooth muscle cells (SMCs). All simulations are

reported at a reference thermodynamic temperature

T ¼ T0, where T0 ¼ 310K. The passive elastic

parameters of the cell are taken to be l ¼ 1:67 kPa,

K ¼ 35 kPa and m ¼ 6. For SMCs, the maximum

contractile stress rmax ¼ 240 kPa consistent with a

wide range of measurements on muscle fibres [29] and

the density of stress-fibre proteins was taken as q0 ¼
3� 106 lm�3 with the volume fraction of stress-fibre

proteins F 0 ¼ 0:032. Following Vigliotti et al. [27],

we assume that the steady-state functional unit strain

~essnom ¼ 0:35 with lb0 � lu ¼ 2:3kT0 and

X ¼ 10�7:1 lm3. The maximum angular stress fibre

concentrations was set to be ĝmax ¼ 1 based on the

assumption that the local density of bound stress-fibre

proteins cannot exceed q0. All results are presented for
a cell that is assumed to be circular with a radius R0

and thickness b0 in its undeformed state with

b0=R0 ¼ 0:2. Since results are presented with energies

normalised as per (16)–(18), the quantities lu; n
R and

N̂L do not need to be explicitly specified. With these

parameters, the equilibrium free-energy of the free-

standing cell is ðGS � !0Þ=ðV0kT0Þ 	 �5:6�

106 lm�3 where V0 ¼ pR2
0b0 is the cell volume. In

this free-standing state the equilibrium configuration

of the cell is a spatially uniform cylinder with radius


 0:92R0.

2.4 Competition between elastic and cytoskeletal

free-energy

One of the key features of the constitutive model of

Vigliotti et al. [27] is the competition between the

elastic free-energy Fpassive and the cytoskeletal free-

energy Fcyto of the cell that sets the free-energy of the

cell. To illustrate this competition, we consider the

highly simplified problem of a circular cell on a rigid

foundation and constrain ourselves to morphological

microstates wherein the strain distribution within the

cell is spatially uniform. We emphasize here that this

is an unrealistic restriction of the phase-space of

morphological microstates that the cell will attain and

this restriction is relaxed when the homeostatic

mechanics is introduced in Sect. 3. However, for the

purposes of illustrating the basic physics of the free-

energy model we present this restrictive analysis here

in which a morphological microstate is described by

one scalar variable, e.g. the area A of the cell.

For the case of a cell on a rigid foundation, there is

no contribution to the Gibbs free-energy of the system

from the foundation and so G ¼ Fcell. The normalised

free-energy of the system Ĝ is plotted in Fig. 2a as a

function of the normalised cell area Â � A=A0, where

A0 is the area of the undeformed cell. There is a clear

minimum of Ĝ at Âopt 	 1:44. To understand this

minimum, the variations of the free-energies F̂passive

and F̂cyto with Â are also included in Fig. 2a. The

elastic energy increases with increasing jÂ� 1j as the
cell is strained away from its undeformed configura-

tion. By contrast, F̂cyto decreases monotonically with

increasing Â. This competition between F̂passive and

F̂cyto with varying Â gives rise to the minimum in Ĝ.

Assuming that the cell is evolving towards a minimum

free-energy configuration (this is clearly not true and

we shall show in Sect. 3 that low Gibbs free-energy

states are just more probable), we can say that the

stress-fibre cytoskeleton drives cell spreading. This is

consistent with a large number of observations [8, 9]

that indicate that inhibiting stress-fibres via reagents

such as cytochalasin D and blebbistatin reduces cell
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spreading. In fact, the model predicts reduced spread-

ing as the available stress-fibre proteins are reduced

and this is illustrated in Fig. 2b where we show the

dependence of Âopt on q0 keeping all other parameters

fixed. With decreasing q0 the area Âopt at which the

Gibbs free-energy is minimized becomes closer to the

undeformed state with Âopt ¼ 1.

At face value, stress-fibres driving cell spreading is

rather counter-intuitive as stress-fibres exert contrac-

tile forces and hence one would expect them to

contract the cell rather than promote spreading. To

understand this apparent contradiction, recall that the

number of functional units in the bound state increases

with increasing strain as quantified in Eq. (5). This

decreases the number of unbound stress-fibre proteins

N̂u that in turn decreases vu and therefore reduces

F̂cyto. Another way to view this is to recall that the

enthalpy of functional units in the bound state is lower

than their corresponding enthalpy in the unbound state

due to the tensile stress rmax within the stress-fibres;

see Eq. (7). Chemical equilibrium dictates that all

stress-fibres proteins are at equal chemical potentials.

This immediately implies that the cytoskeletal free-

energy decreases with increasing strain as the bound

protein numbers rise with increasing strain. Thus, it is

the formation of stress-fibres with tensile stresses that

tends to reduce the Gibbs free-energy of the cell and

drives cell spreading. Adding reagents such as

cytochalasin D that inhibit the formation of stress-

fibres will have the effect of diminishing the reduction

in F̂cyto with increasing strain and therefore tend to

reduce cell spreading. We emphasize that cell spread-

ing requires kinetic processes such as polymerization

of meshwork actin along the cell periphery and in

lamellipodia. These processes are not accounted for

here but rather we argue that the overall driving force

for spreading is the reduction in the Gibbs free-energy

of the system and the availability of kinetic pathways

is the means of achieving this reduction in the Gibbs

free-energy.

3 Homeostatic mechanics for cells

The systemmodelled above comprised the cell and the

foundation but excluded the nutrient bath that not only

maintains the system at a constant temperature and

pressure but also furnishes the cell with nutrients.

While cells are alive they maintain a resting potential

between themselves and the surrounding nutrient bath

by actively regulating the concentration of various

ions within the cell [30] via a very large number of

complex inter-linked metabolic reactions such as (but

not restricted to) ion-pumps, osmosis, diffusion and

cytoskeletal reactions. Hence, from a conventional

thermodynamics perspective cells are inherently in a

non-equilibrium state [31]. Remarkably, the metabolic

processes maintain the concentrations of all species

within the cell to be very nearly constant over a

Fig. 2 a The normalised Gibbs free-energy Ĝ, passive elastic

energy F̂passive and the cytoskeletal free-energy F̂cyto as a

function of the normalised area Â of the cell (using the reference

properties). The minimum value of Ĝ corresponding to an area

Âopt has been labelled. b The dependence of Âopt to the number

of protein packets q0 per unit volume available to form

functional units in the cell. In both a and b, the morphological

microstates are constrained to comprise only uniformly strained

circular cells
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sustained period of time (e.g. the interphase period of

the cell cycle) and this phenomenon is known as

cellular homeostasis. Shishvan et al. [22] developed a

new thermodynamic framework whereby they for-

mally defined the (dynamic) homeostatic equilibrium.

We shall use this framework to analyse the distribution

of states that cells assume on elastic Winkler founda-

tions that idealise the array of micro-posts. In this

section, we briefly review this homeostatic mechanics

framework for cell mechanics with readers referred to

[22] for details.

3.1 Brief overview of the homeostatic ensemble

The homeostatic statistical mechanics description for

cells is applicable over a timescale from a few hours to

a few days covering the interphase period of the cell

cycle when the cell remains as a single undivided

entity. Controlling only macro variables (i.e. macro-

state) such as the temperature, pressure and nutrient

concentrations in the nutrient bath results in inherent

uncertainty (referred to here as missing information)

in micro variables (i.e. microstates) of the system. This

includes a level of unpredictability in homeostatic

process variables, such as the spatio-temporal distri-

bution of chemical species, that is linked to Brownian

motion and the complex feedback loops in the

homeostatic processes. Thus, this system not only

includes the usual lack of precise information on the

positions and velocities of individual molecules asso-

ciated with the thermodynamic temperature, but also

an uncertainty in cell shape resulting from the

homeostatic processes not being precisely regulated.

The consequent entropy production forms the basis of

this new statistical mechanics framework motivated

by the following two levels of microstates:

(i) Molecular microstates Each molecular micro-

state has a specific configuration (position and

momentum) of all the molecules within the

system.

(ii) Morphological microstates (Fig. 1b) Each

morphological microstate is specified by the

mapping (connection) of material points on the

cell membrane to material points on the

foundation. In broad terms, a morphological

microstate specifies the shape and size of the

cell.

In the homeostatic state, the system is in (dynamic)

equilibrium with no net change in the internal state of

the system but with a net flux of species between the

system and nutrient bath (e.g. there is an overall flux of

glucose into the cell while the net flow of carbon

dioxide is in the opposite direction). Shishvan et al.

[22] identified this (dynamic) equilibrium state by

entropy maximisation. Thus, subsequently, we shall

simply refer to this state as an equilibrium state to

emphasise that it is a stationary macrostate of the

system inferred via entropy maximisation as in a

conventional equilibrium analysis. The total entropy

of the system is written in terms of the conditional

probability PðijjÞ of the molecular microstate ðiÞ given
the morphological microstate ðjÞ and the probability

PðjÞ of morphological microstate ðjÞ as

IT ¼
X
j

PðjÞI
ðjÞ
M þ IC: ð19Þ

In Eq. (19), I
ðjÞ
M � �

P
i2j P

ðijjÞ lnPðijjÞ and IC �
�
P

j P
ðjÞ lnPðjÞ are the entropies of molecular micro-

states in morphological microstate ðjÞ and the mor-

phological microstates, respectively. Equilibrium then

corresponds to molecular and morphological macro-

states that maximise IT subject to the appropriate

constraints. By identifying the fact that the evolution

of the molecular and morphological macrostates is

temporally decoupled, Shishvan et al. [22] showed

that Eq. (19) can be maximised by independently

maximising I
ðjÞ
M at the smaller timescales to determine

the equilibrium distribution of molecular microstates

(i.e. molecular macrostate) for a given morphological

microstate and then maximising IC at the larger

timescale to determine the equilibrium distribution of

the morphological microstates (i.e. morphological

macrostate).

Over the (short) timescale on the order of seconds,

the only known constraint on the system is that it is

maintained at a constant temperature, pressure and

strain distribution. The equilibrium of a given mor-

phological microstate ðjÞ obtained by maximising I
ðjÞ
M

corresponds to molecular arrangements that minimise

the Gibbs free-energy with GðjÞ and S
ðjÞ
M being the

equilibrium values of the Gibbs free-energy and

entropy of morphological microstate ðjÞ, respectively.
Since the connection between the cell and the

foundation is fixed for a given morphological
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microstate, determination of GðjÞ is a standard bound-

ary value problem as described in Sect. 2. Over the

(long) timescale on the order of hours, the equilibrium

distribution P
ðjÞ
eq is determined by maximising IC but

now with the additional constraint that the cell is

maintained in its homeostatic state. For the case of a

cell on an elastic foundation in a constant temperature

and pressure nutrient bath, the homeostatic constraint

translates to the fact that the average Gibbs free-

energy of the system, over all the morphological

microstates it assumes, is equal to the equilibrium

Gibbs free-energy GS of an isolated cell in suspension

(free-standing cell), i.e. the homeostatic processes

maintain the average biochemical state of the system

equal to that of the cell in suspension. In deriving this

result, Shishvan et al. [22] did not consider every

individual homeostatic process but rather just used the

coarse-grained outcome of the homeostatic processes,

viz. over the homeostatic state, the average numbers of

all species within the cell are maintained at a fixed

value independent of the extracellular environment.

The application of this coarse-grained constraint is the

key element of the homeostatic mechanics framework

with the morphological entropy IC parameterising the

information lost by not modelling all the variables

associated with the homeostatic processes.

The maximisation of IC while enforcingP
jP

ðjÞGðjÞ ¼ GS gives the homeostatic equilibrium

state such that

PðjÞ
eq ¼ 1

Z
exp �fGðjÞ
� �

; ð20Þ

where Z �
P

j exp �fGðjÞ� �
is the partition function of

the morphological microstates and the distribution

parameter f follows from homeostatic constraint

1

Z

X
j

GðjÞ exp �fGðjÞ
� �

¼ GS: ð21Þ

The collection of all possible morphological

microstates that the system assumes while maintaining

its homeostatic equilibrium state is referred to as the

homeostatic ensemble. The homeostatic ensemble can

therefore be viewed as a large collection of copies of

the system, each in one of the equilibrium morpho-

logical microstates. While GðjÞ of each copy is not

known exactly, the copies are distributed in the

ensemble as per the exponential distribution P
ðjÞ
eq with

the distribution parameter f. A crucial difference

between the canonical and homeostatic ensembles is

that unlike T in the canonical ensemble, f is not a

property of the nutrient bath but rather set by the

homeostatic state that the system attains. Of course,

from Eq. (20) we see that morphological microstates

with lower free-energy are more probable (i.e. some

sort of justification for the minimum free-energy

discussion presented in Sect. 2.4) but of course the

homeostatic ensemble will also contain morphological

microstates with much higher free-energies, depend-

ing on the distribution parameter f.

The equilibrium morphological entropy SC ¼
�
P

j P
ðjÞ
eq lnP

ðjÞ
eq (i.e. maximum value of IC) is related

to f via the conjugate relation oSC=oGS ¼ f. Thus,
analogous to 1=T that quantifies the increase in the

uncertainty of the molecular microstates (i.e. molec-

ular entropy S
ðjÞ
M ) with average enthalpy, f specifies the

increase in the uncertainty of the morphological

microstates (i.e. morphological entropy SC) with the

average Gibbs free-energy. We therefore refer to 1=f
as the homeostatic temperaturewith the understanding

that it quantifies the fluctuations on a timescale much

slower than that characterised by T .

3.2 Numerical procedure to sample

the homeostatic ensemble

We employ Markov Chain Monte Carlo (MCMC) to

construct a Markov chain that is representative of the

homeostatic ensemble. This involves three steps: (i) a

discretisation scheme to represent a morphological

microstate ðjÞ, (ii) calculation of GðjÞ for a given

morphological microstate ðjÞ and (iii) constructing the
Markov chain comprising these morphological micro-

states. Here, we briefly describe the procedure which

was programmed inMATLABwith readers referred to

[22] for further details.

In the general setting of a three-dimensional (3D)

cell, a morphological microstate is defined by the

connection of material points on the cell membrane to

the surface of the foundation. In the 2D context, this

reduces to specifying the connection of all material

points of the cell to the foundation, i.e. a displacement

field u
ðjÞ
i ðXiÞ is imposed on the cell with Xi denoting

the location of material points on the cell in the

undeformed configuration and these are then displaced
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to x
ðjÞ
i ¼ Xi þ u

ðjÞ
i in morphological microstate ðjÞ:

These material points located at x
ðjÞ
i are then connected

to material points on the foundation at the same

location x
ðjÞ
i and this defines the morphological

microstate in this 2D setting.

The cell is modelled as a continuum and thus u
ðjÞ
i is

a continuous field. To calculate the density of the

morphological microstates, we define u
ðjÞ
i via Non-

Uniform Rational B-splines (NURBS) such that the

morphological microstate is now defined by M

weights U
ðjÞ
L (L ¼ 1; . . .;M). In all the numerical

results presented here we employ M ¼ 32 with 4� 4

weights governing the displacements in the x1 and x2
directions, respectively. The NURBS employ third

order base functions for both the x1 and x2 directions

and the knots vector included two nodes each with

multiplicity three, located at the extrema of the

interval. We emphasise here that this choice of

representing the morphological microstates imposes

restrictions on the morphological microstates that will

be considered. Therefore, the choice of the discreti-

sation used to represent u
ðjÞ
i needs to be chosen so as to

be able to represent the microstates we wish to sample,

e.g. the choice can be based on the minimum width of

a filopodium one expects for the given cell type. Given

u
ðjÞ
i we can calculate GðjÞ using the model described in

Sect. 2.

We construct, via MCMC, a Markov chain that

serves as a sample of the homeostatic ensemble. This

is done using the Metropolis [32] algorithm in an

iterative manner using the following procedure:

(i) Assume a value of f and use the undeformed

cell configuration as the starting configura-

tion and label it as morphological microstate

j ¼ 0 with equilibrium free-energy Gð0Þ cal-
culated as described above.

(ii) Randomly pick two of theM weightsU
ðjÞ
L and

perturb them by two independent random

numbers picked from a uniform distribution

over the interval ½�D D�.
(iii) Compute the new free-energy GðjÞ of this

perturbed state and thereby the change in

free-energy DG ¼ GðjÞ � Gðj�1Þ.
(iv) Use the Metropolis criterion to accept this

perturbed state or not, i.e.

(a) if DG� 0, accept the perturbed state;

(b) if DG[ 0, compute Pacc ¼
expð�fDGÞ and accept the perturbed

state if Pacc [R, whereR is a random

number drawn from a uniform distri-

bution over ½0 1�:

(v) If the perturbed state is accepted add it to the

list of samples as a new morphological

microstate else restore the configuration prior

to step (ii) in the sample list and return to step

(ii).

(vi) Keep repeating this procedure until a con-

verged distribution is obtained. Here, we

typically use the criterion that the average of

GðjÞ within the generated sample list (labelled

hGðjÞi) changes by less than 1% over 100,000

steps of the Markov chain. Typical Markov

chains comprised in excess of 4 million

samples.

(vii) If hGðjÞi is within �2% of GS we will accept

this distribution else we will modify f and

repeat from step (i).

4 Predictions of the response of cells on a dense

array of micro-posts

We present results for the response of cells on a bed of

micro-posts approximated as a Winkler foundation

with a normalised stiffness ĵ � jR0=l (see Sect. 2.3

for details of model parameters). The predictions are

representative of experiments [12–15] where these is a

low seeding density of cells and that there is no cell–

cell interaction. Therefore, the simulations are per-

formed for single cells. Moreover, for the range of

Winkler stiffnesses ĵ considered here we have

confirmed that the cell tractions remain sufficiently

small so that the two critical assumptions used within

the Winkler foundation stiffness derivation (1), viz.

(i) there is no post–post interaction and (ii) the post

deflections are sufficiently small that linear beam

theory suffices, remain valid.

The aim here is to demonstrate the application of

the model in the general sense rather than aim tomodel

a specific cell type or experiments. Hence, in the

following we restrict ourselves to qualitative compar-

isons with existing experimental data. Predictions of
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the probability density functions pðĜÞ /
wðĜÞ expð�f̂ĜÞ of the normalised Gibbs free-energy

Ĝ are shown in Fig. 3a for selected values of the

foundation stiffness ĵ with wðĜÞ denoting the density

of states (i.e. the fraction of total number of morpho-

logical microstates that have a normalised free-energy

in the range Ĝ to Ĝþ dĜ). Two key features emerge:

(i) probability of low free-energy states decreases with

decreasing foundation stiffness and (ii) the probability

density functions become more peaked with decreas-

ing foundation stiffness. The normalised homeostatic

temperature 1=f̂ associated with these distributions is

plotted in Fig. 3b where f̂ � fjGS � !0j. Consistent
with the more uniform distributions pðĜÞ for the stiffer
foundations, 1=f̂ increases with increasing ĵ. These
results can be understood in terms of the competition

between cytoskeletal and elastic energy discussed in

Sect. 2.4 as follows.

With increasing cell area, the concentration of

bound stress-fibres increases and therefore the con-

centration of the unbound proteins reduces. This

increases the entropy of the stress-fibre proteins and

reduces their contribution to Ĝ, i.e. contribution from

the cytoskeleton becomes more negative as seen from

the corresponding probability distribution of F̂cyto in

Fig. 3c. On the other hand, the elastic energy of the

cell increases with increasing area and this gives rise to

a minimum free-energy of the cell (Fig. 2a). We shall

subsequently show that cells with larger areas exert

higher tractions on the foundation. However, for stiff

foundations, these tractions introduce small elastic

energies in the foundation and consequently the

minimum system free-energy Ĝmin for spread cells

on stiff foundations is relatively low. By contrast,

these same spread configurations introduce large

elastic energies in compliant foundations with the

consequence that Ĝmin of the system with a soft

foundation is higher than that for a stiff foundation.

This implies that the system with a stiff foundation

will explore free-energy configurations with a higher

Ĝ so as to compensate and maintain the average free-

energy to be equal to GS. A wider distribution pðĜÞ
with a high 1=f̂ and a mode at lower Ĝ then ensues for

stiff foundations. We emphasize that the homeostatic

temperature 1=f is much greater than the thermody-

namic temperature T for the high stiffness foundations

and thus the homeostatic ensemble permits larger

fluctuations than those allowed by the conventional

statistical ensembles. The physical origins of these

high fluctuations are the exchange of high energy

species such as glucose between the cell and the

nutrient bath. This exchange causes large energy

fluctuations that ultimately give rise to the large

observed variability in experiments as we shall

proceed to show.

To illustrate the multiplicity of morphological

microstates with the same free-energy, some selected

configurations of the cells on the ĵ ¼ 22 and 2880

foundations are included in Fig. 4a, b, respectively.

All these morphological microstates have Ĝ values in

the very close vicinity of the mode of the distribution

(Fig. 3a). For each configuration, we have also

included the distributions of the stress-fibre concen-

trations as parameterised by

Fig. 3 Predictions of the a probability density functions pðĜÞ of
the normalised Gibbs free-energy, b the normalised homeostatic

temperature 1=f̂ and c probability density functions pðF̂cytoÞ of

the normalised cytoskeletal free-energy for selected values of

the normalised foundation stiffness ĵ. In b we have indicated

that cells in suspension have a zero homeostatic temperature

123

1646 Meccanica (2021) 56:1635–1651



N̂b ¼
Zp=2

�p=2

ĝn̂ssd/: ð22Þ

It is clear that even for a given fixed free-energy, the

cells can attain a large diversity of cell shapes, areas

and distributions of cytoskeletal proteins. Thus, even

though we have only shown a very small sample of

highly probable states, these results are very much in

line with the diversity of observations in experiments.

Moreover, in line with observations [12, 15], the

images of the cells in Fig. 4a, b indicate that both the

cell area and the level of actin polymerisation as

parameterised by N̂b increase with increasing founda-

tion stiffness. In particular, cells on stiff foundations

have a high concentration of polymerised stress fibres

at the cell periphery and in filopodia-like structures

that set the cell polarity. We now proceed to quantify

the dependence of such observables on the foundation

stiffness.

4.1 Foundation stiffness affects traction forces

and cell spreading

We focus on two key observables that are widely

reported in micro-post experiments: (i) the cell area

and (ii) the traction forces. With this in mind, we

define a normalised cell area as Â � A=A0, where A

and A0 are the deformed and undeformed cell areas,

respectively, while the normalised traction at location

xi is

T̂ðxiÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2

q

l
: ð23Þ

The normalised average traction then follows as

T̂avg �
1

A

Z
A

T̂dA: ð24Þ

Probability density functions pðÂÞ and p T̂avg

� �
are

included in Fig. 5a, b, respectively, for a range of

foundation stiffnesses. Similar to pðĜÞ, pðÂÞ and

p T̂avg

� �
become more peaked with decreasing foun-

dation stiffness with the mode of the distribution

simultaneously shifting to a lower Â and T̂avg. Thus, in

line with experimental measurements [15] we predict

that not only do the observed cell areas decrease with

decreasing foundation stiffness but also the increas-

ingly peaked distributions with decreasing ĵ imply

smaller standard errors in measurements. The overall

reason for this is similar to that discussed above

whereby cells on stiff foundations can spread more to

lower their free-energy without introducing a large

elastic penalty from the foundation and thus can

sample a wider variety of morphological microstates.

We note in passing that another observable typically

reported in experiments is the cell aspect ratio as

defined by the ratio of the major to minor axes of a best

fit ellipse. For the cases investigated here the aspect

ratio distribution was relatively insensitive to the

foundation stiffness with the cell having a mean aspect

ratio 	 2:7 in all cases.

The Markov Chain Monte Carlo calculations used

in the simulations are able to determine the entire

probability distribution functions (Fig. 5) by sampling

in excess of few million equilibrium morphological

microstates. On the other hand, experiments typically

report statistics based on observations of 10–50 cell

configurations [12–15] and are therefore unable to

generate distributions of the type in Fig. 5. Rather,

experimentalists commonly plot statistics in the form

of so-called box-and-whisker diagrams. Hence to

make more definitive contact with measurements,

the data in Fig. 5 is re-plotted in Fig. 6a, b in the form

of box-and-whisker diagrams for the distributions of Â

and T̂avg, respectively. The box plots depict the

Fig. 4 Selected morphological microstates of the cells (all at

the mode of the Ĝ distribution) on foundations with normalised

stiffness a ĵ ¼ 22 and b ĵ ¼ 2880. The stress-fibre concentra-

tions as parameterised by N̂b are indicated in each case. The

scale bar indicates the radius R0 of the undeformed cell
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median and first and third quartiles of the distributions

of these observables calculated from the sample list

generated by the MCMC while the whiskers show the

5th and 95th percentiles of the distributions. Clearly,

the median values of Â and T̂avg increase with

increasing ĵ with the asymptote of the infinitely stiff

foundation being approximately attained for

ĵ[ 3000. Moreover, the box-plots also clearly show

that the diversity of observations increases with

increasing ĵ and this is most clearly seen in the wider

spread of the whiskers with increasing ĵ.

4.2 Correlation of traction forces and cell area

Consistent with measurements, the model predicts that

the average tractions T̂avg increase with increasing

foundation stiffness. However, this rise in T̂avg is

accompanied by enhanced cell spreading (i.e. larger

cell area) with increasing ĵ. Thus, it is unclear whether
cells of a given area exert higher tractions on

foundations with higher stiffness or if the increase

seen in Fig. 6b is solely due to the increased cell area

affecting T̂avg. Here we attempt to decouple these two

effects.

Spatial distributions of T̂ for selected morpholog-

ical microstates chosen from the mode of the Ĝ

distributions are shown in Fig. 7a, b for foundations

with stiffness ĵ ¼ 22 and 2880, respectively (these

morphological microstates are the same as in Fig. 4).

Consistent with the data in Figs. 5b and 6b and a host

of measurements [12–15], we see that the cells exert

smaller tractions on the more complaint foundations.

Moreover, as clearly seen in Fig. 7b the tractions are

generally highest along the cell periphery. Of course,

cells assume a large diversity of shapes and sizes even

on the mode of the Ĝ distribution (the diversity being

Fig. 5 Predictions of the probability density functions of a the normalised cell area Â and b normalised average traction T̂avg exerted by

the cell on the foundation. The probability distributions are shown for selected values of the normalised foundation stiffness ĵ

Fig. 6 Box-and-whisker diagrams for a the normalised cell area

Â and b normalised average traction T̂avg exerted by the cell on

the foundation of normalised stiffness ĵ. The boxes show the

median and the quartiles while the whiskers represent the 5th

and 95th percentiles of the distributions. The normalised

stiffness ĵ is shown on the x-axis using a logarithmic scale
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larger for the cell on the stiffer foundation) and

therefore it is not possible to decouple the effects of

cell size and foundation stiffness directly from Fig. 7.

We thus examine the homeostatic ensemble as sam-

pled by the Markov chain as follows. For a given cell

area, the Markov chain has a large number of

morphological microstates and thus we can determine

the distribution of observables for a given cell area.

Here, we consider two observables, viz. the average

traction T̂avg and the nominal traction T̂T � T̂avgA=A0.

The average and nominal tractions are equivalent to

the average and total forces that are typically reported

in experiments [12, 15] of cells on arrays of micro-

posts.

Predictions of the variation of the three quartiles

(25th percentile, median and 75th percentile) of T̂avg

and T̂T are plotted in Fig. 8a, b, respectively, as a

function of the spread cell area Â for cells on

foundations with stiffness ĵ ¼ 22, 180 and 2880. For

a given foundation stiffness ĵ, the dependence of T̂avg

on Â is relatively mild (Fig. 8a). As a corollary, the

nominal tractions T̂T increase nearly linearly with Â

(Fig. 8b). However, it is clear from Fig. 8a that for a

given cell area Â, T̂avg increases with increasing ĵ and

consequently T̂T too is higher for cells with the same

area on stiffer foundations (Fig. 8b).We thus conclude

that the increased average tractions exerted by the cell

on stiffer foundations are primarily due to the forma-

tion of a more concentrated stress-fibre cytoskeleton in

response to stiffer foundations, but is not due to larger

cell size per se. Of course the stiffer foundations also

cause increased cell spreading but while this results in

the cell exerting a larger total force (i.e. nominal

tractions), the increased cell spreading does not

significantly increase the average tractions. Finally,

we note that consistent with experiments [15], even for

a given cell area there is a greater diversity in the

tractions exerted by cells on stiffer foundations

compared to the equivalent diversity for cells on more

compliant foundations (note the logarithmic axis scale

for tractions in Fig. 8). Thus, the larger diversity of

tractions on stiffer foundations (Figs. 5b, 6b) is not

solely due to the larger diversity of cell areas that the

cell assumes on stiffer foundations. This is understood

Fig. 7 Spatial distributions of the traction T̂ in selected

morphological microstates of the cells (all at the mode of the

Ĝ distribution) on foundations with normalised stiffness a ĵ ¼
22 and b ĵ ¼ 2880. The scale bar indicates the radius R0 of the

undeformed cell. The morphological microstates are the same as

those in Fig. 4

Fig. 8 Predictions of the variation of the normalised a average

traction T̂avg and b nominal traction T̂T as a function of the

normalised cell area Â for cells on foundations with three

selected values of the normalised stiffness ĵ. To illustrate the

diversity of tractions that the cells of a given area can exert, we

have indicated in each case the 1st quartile, median and the 3rd

quartile of the distributions of the tractions
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by recalling that a morphological microstate is not

solely characterised by a single observable such as cell

area: the higher homeostatic temperature on stiffer

foundations (Fig. 3b) implies that the cell assumes a

great diversity of morphological microstates all with

the same area and these microstates can exert a large

range of tractions.

5 Concluding remarks

We have used the homeostatic mechanics framework

of Shishvan et al. [22] to analyse the response of cells

on a dense array of micro-posts idealised as a Winkler

foundation. The framework enables the quantitative

prediction of the stochastic response of cells with

contractility, cell spreading and the traction forces that

the cells exert on the foundation all coupled to the

foundation stiffness. We show that in line with

observations, the model accurately predicts that:

(i) the extent of cell spreading, stress-fibre

polymerisation and traction forces that the

cells exert on the foundation increase with

increasing foundation stiffness;

(ii) the traction forces are primarily concentrated

along the cell periphery; and

(iii) while the total tractions increase with increas-

ing cell area, the average tractions are

reasonably independent of cell area, i.e. for

a given substrate stiffness, the average trac-

tions that are normalized by cell area do not

vary strongly with cell size.

These results thus clarify the question on the source

of the increased tractions with increasing foundation

stiffness. In particular, they suggest that the stronger

tractions that cells exert on stiffer foundations are a

result of the higher levels of stress-fibre polymerisa-

tion and not directly linked to the larger levels of cell

spreading that also occur on stiffer foundations.

A key feature of the model is that the predictions are

statistical with cell shape, size, tractions and all other

observables being outcomes of the predictions in the

form of probability distributions. In fact, in line with

observations, the framework predicts that the diversity

of most observables such as cell area and tractions

increases with increasing foundation stiffness. The

homeostatic mechanics framework thus suggests that

the variability in experimental observations is inherent

to the homeostatic equilibrium of cells rather than

being a result of in vitro experimental errors.
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