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One-dimensional half-metallic interfaces of two-dimensional honeycomb insulators
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We study zigzag interfaces between insulating compounds that are isostructural to graphene, specifically II-VI,
III-V, and IV-IV two-dimensional honeycomb insulators. We show that these one-dimensional interfaces are polar,
with a net density of excess charge that can be simply determined by using the ideal (integer) formal valence
charges, regardless of the predominant covalent character of the bonding in these materials. We justify this finding
on fundamental physical grounds by analyzing the topology of the formal polarization lattice in the parent bulk
materials. First-principles calculations elucidate an electronic compensation mechanism not dissimilar to oxide
interfaces, which is triggered by a Zener-like charge transfer between interfaces of opposite polarity. In particular,
we predict the emergence of one-dimensional electron and hole gases, which in some cases are ferromagnetic
half metallic.
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Since the first two-dimensional material (graphene) was
successfully synthesized by mechanical exfoliation,1 a grow-
ing number of studies have been devoted to other planar
systems. These include BN monolayers,2 layered transition
metal oxides,3 dichalcogenides,4,5 and topological insulators
such as Bi2Te3 or Bi2Se3.6 Of particular note in this context
are a number of II-VI, III-V, and IV-IV compounds, whose
stable bulk phase is wurtzite but which may adopt a planar
graphitic phase in ultrathin films. These were first predicted
theoretically several years ago7,8 and were later grown in the
laboratory.9,10

Recent improvements in growth techniques allow joining
these nanosheets together. In addition to the many heterostruc-
tures studied so far involving graphene and BN, obtained by
modified stacking11 or segregated nanosheets,12,13 there are
and will be coplanar heterostructures,14,15 made from different
insulators on the same sheet, with many of them having
a significant degree of ionic character. This brings up the
important question of whether “polar discontinuities”16 might
play a role in these low-dimensional systems. Vertical stacking
of nanosheets is not dissimilar to oxide interfaces,17 and
polarity effects will resemble those of ultrathin films already
discussed in the literature.7,8 However, to our knowledge,
coplanar interfaces between two-dimensional (2D) insulators
have not been addressed from first principles, except for a
qualitative discussion of the electrostatics.18

Compared with the case of polar oxide interfaces, there
are a few additional challenges that are specific to the 2D
case. First, the electrostatics is somewhat more complicated:
unlike a plane of charge [interface between three-dimensional
(3D) materials], which generates a uniform electric field in the
whole space [essentially a one-dimensional (1D) problem], a
line of charge (interface between 2D materials) produces a

logarithmically divergent potential with inhomogeneous stray
fields in the vacuum region. Second, the symmetry group
(with a main sixfold rotation axis but no center of symmetry)
gives rise to different polarization classes than the ones
found in centrosymmetric insulators.19 This calls for special
care in the application of the modern theory of polarization,
particularly of the interface theorem,20 for the determination
of the excess “bound” charge at a given interface. Moreover,
the lack of center of symmetry implies that these materials are
piezoelectrically active.

Here we perform extensive density-functional theory cal-
culations to show that (i) there indeed exists a net charge
at the 1D zigzag interface between two chemically distinct
polar insulating honeycomb domains, (ii) the linear charge
density is uniquely determined from bulk properties of
the participating materials and is related to the nontrivial
topology of their respective polarization lattice, (iii) the
divergent electrostatic potential produced by the lines of charge
triggers a Zener-like breakdown mechanism in the limit of
increasingly wide domains, and (iv) such a mechanism gives
rise to spin-polarized one-dimensional electron/hole gases
(1DEG/1DHG). Notice that points (i) and (ii) are completely
general and are applicable to any 1D interface in 2D materials,
including grain boundaries. In what follows, we proceed by
addressing points (i) to (iv) in the same sequential order.

According to the modern theory of polarization20 and as
further elucidated in Refs. 21–23, the net charge at the interface
between two compounds can be exactly given by invoking only
bulk properties of the parent materials. In particular, one needs
to consider the lattice (Fig. 1) of allowed values for the so-
called formal polarization P of either crystalline constituent.
Then, based on the interface orientation and termination,23

one can readily deduce the interface net charge. An intuitive
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FIG. 1. (Color online) (a) The position of the Wannier centers
(small circles) in the primitive unit cell of ZnO, AlN, and SiC. The
“cation” (Zn, Al, Si) is represented by squares, and the “anion”
(O, N, C) is represented by circles. Here a is the cell parameter
(3.316, 3.121, and 3.110 Å for ZnO, AlN, and SiC, respectively),
and λ is the distance of the sp2 Wannier centers from the anion
(λ = 0.431, 0.491, 0.677 Å, respectively), which increases with the
bond covalency. (b) The triangular lattice of allowed polarization
values for the II-VI (red circles), III-V (black triangles), and IV-IV
(blue squares) 2D honeycomb compounds. Each symbol represents
a polarization vector, indicated by P . The box highlights the values
obtained with “Wannier anions” (see text). (c) Sketch of the zigzag
interface between two compounds (AaBa in red and AbBb in blue)
with an example simulation box indicated by dashed lines.

way to do this is by representing the electronic structure of
the material in terms of localized Wannier functions.24–26 For
polarization purposes, these effectively map the continuous
charge density distribution of the periodic crystal into a discrete
set of classical point charges, located at the Wannier centers27

shown in Fig. 1(a). Then the formal polarization of the crystal
is simply given by the total dipole moment of the ensemble of
these charges and the ion cores divided by the unit-cell volume.
Of course, there are infinite possible choices for the primitive
basis of atoms and Wannier orbitals, hence the multivaluedness
of the formal P [see Fig. 1(b)].

A particularly convenient approach is that of combining
the valence Wannier functions with their nearest-neighbor
ion core, obtaining a negatively charged object that we call
a “Wannier anion.”23 This way, we obtain polarization lattices
that include only a subset of the original points [larger symbols
in Fig. 1(b)]. More specifically, each of these restricted points
simply corresponds to the dipole moment of a system of two
integer point charges Q = ±Ne, placed at two arbitrarily
chosen lattice sites, where N is the “formal valence” of the
cation in each compound. Note that, due to the threefold
symmetry of these structures, both the Wannier anion and
the cation carry zero dipole moment; hence, the formal
polarization only contains the point-charge contribution.23

This has some analogies with the LaAlO3/SrTiO3 case, where
it was shown that covalency effects are also irrelevant to
charge-counting purposes.23,28

Each arbitrary choice of atomic basis, in turn, yields a well-
defined interface termination once the unit cell is periodically
repeated to generate a semi-infinite domain. For the zigzag
interfaces considered in this work, the appropriate choice of the
bulk unit cell (i.e., one of the many choices that tile the whole
system without leaving any unpaired ion at the interface) is
that shown by shaded regions in Fig. 1(c). The dipole moment
along y of such a unit cell is given by d = −Qa/(2

√
3),

yielding a formal polarization of Py = −Q/3a. The interface
theorem relates differences in formal polarization to the net
bound charge at the interface, and we have

σbound = P (b)
y − P (a)

y = −�Q

3a
. (1)

This implicitly assumes that both parent compounds are
hexagonal and have the same equilibrium lattice parameter. In
practice there is always a small lattice mismatch, and to realize
a pseudomorphic interface one or both constituents need to
be strained. Then, Eq. (1) must be corrected by piezoelectric
contributions on Py .

The electrostatic potential produced by this interfacial net
charge diverges in the limit of increasingly wide domains and
needs to be somehow neutralized. To investigate a possible
compensation mechanism, we use explicit first-principles
calculations of 2D superlattices, which are constructed by
periodically repeating two compositionally distinct nanorib-
bons along the stacking direction (y), so that the interface
direction (x) follows the zigzag edge of the hexagonal lattice
[see Fig. 1(c)], consistent with the above discussion of the
bulk polarity. Similar heterostructures made from C and BN
domains have been discussed before in the literature.30,38 We
chose SiC, AlN, and ZnO as representative compounds for
groups IV-IV, III-V, and II-VI, respectively. The periodicity
of the superlattices is controlled by varying the nanoribbon
width m (given by the number of AB zigzag chains). Only
stoichiometric compounds are considered, which means that
two chemically distinct interfaces are present in our super-
lattices: one of type AaBaAbBb (Aa: cation of material a,
Bb: anion of material b, etc.) and one of type AbBbAaBa .
Along the normal direction to the sheet we include a vacuum
layer of 20 Å, sufficiently thick to obtain converged results
(no significant differences are observed with a vacuum layer
of up to 200 Å). The calculations are performed using the
spin-polarized Perdew-Burke-Ernzerhof (PBE) exchange cor-
relation functional31 as implemented in the SIESTA code.32,33

Norm-conserving pseudopotentials34 and a double-ζ polarized
basis set are used to represent the valence electrons.35 Atomic
forces are relaxed to less than 20 meV/Å.

Figure 2(a) shows the spin-resolved layer-by-layer density
of states (DOS) of the AlN-SiC (m = 16) superlattice (III-
V/IV-IV). The presence of a macroscopic sawtooth-like po-
tential, corresponding to electric fields of opposite polarity in
the two material regions, is clearly visible from the plot. These
fields are generated by the net interfacial charges discussed
above. Under this potential generated by the polarization
discontinuity and for increasing thickness, the valence band
maximum (VBM) at the p-type (Al-C) interface eventually
becomes higher in energy than the conduction band minimum
(CBM) at the n-type (Si-N) interface, and a charge transfer
becomes favorable in energy. The resulting Zener charge
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FIG. 2. (Color online) (a) Spin-resolved layer-by-layer density of
states of the AlN-SiC (m = 16) superlattice. The top half corresponds
to the AlN slab, and the bottom half corresponds to the SiC slab, with
the interface terminations indicated. The solid black line shows the
macroscopically averaged electrostatic potential. (b) The density of
free electrons (or holes) calculated as a function of slab width m

for the two superlattice systems studied (AlN-SiC and ZnO-SiC).
Theoretical values corrected by piezoelectric effects are marked by
dashed lines. (c) The spatial (plane-averaged) charge distribution
computed from the local density of states (LDOS; shaded curves
are macroscopically averaged LDOS).

transfer gives rise to an accumulation of free carriers along the
interfaces which produce the aforementioned 1DEG/1DHG,
whose spatial localization can be appreciated from their
calculated planar-averaged densities, plotted in Fig. 2(b). The
1DEG/1DHG, in turn, partially neutralize the net charge at
either interface, reducing the potential offset. This feedback
mechanism results in an effective pinning of the p VBM
and the n CBM, which remain close in energy regardless of
the value of m after breakdown occurs. Thus, many aspects

of the present electronic mechanism resemble those already
reported for oxide superlattices.28 However, we stress that the
electrostatics of this system is different and analogous to that
of an infinite array of alternating positive and negative linear
charge densities.

At smaller ribbon widths (not shown) the associated
potential drop is smaller than the electronic band gap of
either participating compound, and the system can remain
insulating (i.e., no “Zener breakdown” occurs). In the large-m
limit, on the other hand, the 1DEG/1DHG densities tend to
the “ideal” value, which corresponds to perfectly neutralizing
the discontinuity in the normal component of the bulk
P, according to Eq. (1). This dependence of the charge
transfer with ribbon width is shown in Fig. 2(c) for both
AlN-SiC (III-V/IV-IV) and ZnO-SiC (II-VI/IV-IV) interfaces.
This nicely shows a crossover scenario from a short-period
uncompensated regime to a longer-period regime where a
Zener-like breakdown mechanism occurs, similar to the case
of a LaAlO3-SrTiO3 superlattice. The precise details of the
crossover depends on the band gaps and alignments between
the two materials, which might not be properly given by
density functional theory calculations,30 although the physical
mechanism remains valid. Note that the asymptotic limits
[dashed lines in Fig. 2(c)], in fact, do not correspond exactly
to the ideal rational values (1/3 and 2/3) of Eq. (1). This is
due to piezoelectric effects, which again are accounted for by
macroscopic bulk properties of the participating materials. In
particular, the lattice mismatch between SiC and ZnO forces
a compression in the ZnO ribbon (and a minor expansion in
SiC), resulting in a shift of its formal polarization lattice along
the axis normal to the interface, hence decreasing PSiC-PZnO.

We find that the 1D gases of carriers at the interfaces of
these insulating materials are fully spin polarized. To further
investigate magnetic effects, we plot in Fig. 3 the band structure
near the Fermi level Ef for a AlN-SiC superlattice with
a thickness that corresponds to the uncompensated regime
[Fig. 3(a)] and a partially compensated superlattice with a
larger thickness [Figs. 3(b)–3(b)]. There are three dispersive
π bands close to Ef that are involved in the compensation
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FIG. 3. (Color online) The band structure of the AlN-SiC su-
perlattices for (a) m = 8 and m = 16 with (b) paramagnetic (NM),
(c) antiferromagnetic (AF), and (d) ferromagnetic (FM) solutions.
Solid black and dashed red lines correspond to bands with different
spin components. The inset in (b) shows the Fermi-level crossing of
bands at the zone boundary.
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mechanism, one occupied and mostly localized at the Al-C
interface and two empty and mostly localized at the Si-N
interface. The flat bands at X for the nonmagnetic solutions
[Figs. 3(a) and 3(b)] very much resemble the edge states in
graphene nanoribbons described with a simple tight-binding
model for the π electrons.36 The corresponding high density
of electronic states at Ef suggests magnetic ordering due to a
Stoner instability.

Indeed, two spin-polarized phases with ferromagnetic
orderings along the interface are lower in energy than the
paramagnetic solution and correspond to the transfer of charge
(electrons) with well-defined spin from one interface (p VBM)
to the other (n CBM): when the spin is preserved in the transfer,
as in Fig. 3(c), the electronic magnetization at both interfaces
is antiferromagnetically aligned (AF), whereas a spin flip of
the transferred charge gives the ferromagnetic (FM) solution
[Fig. 3(d)]. The two solutions, AF and FM between interfaces,
are almost degenerate in energy because the 1DEG and the
1DHG are decoupled by the wide insulating ribbon. Notice
that the whole system is half metallic for the AF solution, with
full spin polarization of the conducting electrons.

It is generally agreed that a one-dimensional metal is
unstable with respect to a symmetry-lowering modulation
of the charge.37 The coupling between lattice vibrations and
electrons near the Fermi level drives Peierls distortions that
open a gap. Such a deformation could also be a way to resolve
the instability due to the large density of states at the Fermi
level shown in Fig. 3(b). To address the stability of the 1DEG
against Peierls distortions, calculations using zone-folding
techniques were performed for the AlN-SiC (m = 16) super-
lattice, including up to three or four unit cells along the x axis
(in the limit of large m a supercell with three unit cells should
be enough to accommodate symmetry-lowering deformations
capable of opening a gap in the right region of the Brillouin
zone). We did not detect any trace of bond-length alternations
in our tests, all of which remained in a metallic state. This is
in agreement with previous studies that showed that Peierls
distortions can open a gap in similar edge bands only for
narrow (<6Å) graphene38 and graphane nanoribbons.39

In addition to competing structural/electronic ground states,
another factor that could thwart experimental realization of
the 1DEG/1DHG predicted here is charged defects, similar
to those discussed in C/BN superlattices.29 Nevertheless, the
defect concentration that would be required is of the scale of
one every few interface atoms, which may be thermodynami-
cally stable, but its appearance would crucially depend on the
kinetics of its formation. Although the study of these processes
is beyond the scope of this Rapid Communication, we simply
notice here that the growth of the pristine interface vs charged
chemical defects will depend on the growth conditions and
procedure, and it is likely possible to favor one over the other
by tuning growth parameters. The typical ppm scale of defects
would have hardly any effect in this sense. Low concentrations
of defects might, however, modify the properties of the 1DEGs
and enable engineering of the electronic properties of the
1DEGs for potential applications in spintronics, sensing, and
electronics.

In conclusion, we have shown that polar compensa-
tion mechanisms can give rise to fully spin-polarized one-
dimensional electron and hole gases at the interface between
two coplanar insulating bidimensional materials, in close
analogy with the 3D case of the LaAlO3/SrTiO3(001) interface.
The net charge at the interface can be determined solely from
bulk properties (the polarization) of the parents’ materials,
as required by the interface theorem.20 The polarization is
given by a simple charge-counting procedure, irrespective of
covalency/ionicity, that results in three distinct sets of allowed
polarization lattices for the II-VI, III-V, and IV-IV compounds
and in the formation of new electronic states (1DEGs) at
the interface between two domains corresponding to different
polarization classes.
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