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Understanding and optimizing passive scalar mixing
in a diffusive fluid flow at finite Péclet number Pe =
Uh/κ (where U and h are characteristic velocity and
length scales, and κ is the molecular diffusivisity of the
scalar) is a fundamental problem of interest in many
environmental and industrial flows. Particularly when
Pe � 1, identifying initial perturbations of given
energy that optimally and thoroughly mix fluids of
initially different properties can be computationally
challenging. To address this challenge, we consider the
identification of initial perturbations in an idealized
two-dimensional flow on a torus that extremize
various measures over finite time horizons. We
identify such ‘optimal’ initial perturbations using
the ‘direct-adjoint looping’ method, thus requiring
the evolving flow to satisfy the governing equations
and boundary conditions at all points in space and
time. We demonstrate that minimizing multiscale
measures commonly known as ‘mix-norms’ over
short time horizons is a computationally efficient
and robust way to identify initial perturbations that
thoroughly mix layered scalar distributions over
relatively long time horizons, provided the magnitude
of the mix-norm’s index is not too large. Minimization
of such mix-norms triggers the development of
coherent vortical flow structures which effectively
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mix, with the particular properties of these flow structures depending on Pe and also the time
horizon of interest.

This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics
(part 1)’.

1. Introduction
Understanding how fluids mix together is of central importance in the modelling of the climate,
the environment and myriad industrial processes. Mixing of a passive scalar is composed of an
initial stirring action and then diffusion [1] to homogenize the concentration field. At finite Péclet
number, Pe (loosely the ratio of advective to diffusive transport, more precisely defined below),
diffusion is stronger in areas of high shear caused by the stirring in a mechanism known as ‘Taylor
dispersion’ [2,3]. However, there is as yet no unified mathematical theory and thus quantifying
and describing the phenomenon of mixing is still of research interest.

A first step in describing mixing is how to quantify the ‘mixedness’ of a passive scalar.
Classically, the L2 norm has been used as when applied to a mean-zero field the variance is
essentially a measure of homogenization [4]. Mathematically, this choice of norm fails in the
absence of diffusion and so a different measure must be sought [5]. This issue motivated the
development of the so-called mix-norm, as a way to quantify mixing using a Sobolev norm of
index −s = − 1

2 [6]. This work was extended to show that any negative index Sobolev norm (i.e.
for a variety of values of the index s) is consistent with the rigorous ergodic theory of mixing [7].
The mix-norm is a Sobolev norm of negative index, and here we define it for a passive zero-mean
scalar θ on a two-dimensional torus Ω as

‖θ‖2
H−s(Ω) =

∑
k�=0

|k|−2s|θ̂k|2, (1.1)

where s is the index, k is the wave vector and θ̂k are the Fourier coefficients of θ . Definition (1.1)
will be the mix-norm we refer to for the remainder of this paper with the variance (for zero-mean
scalars) corresponding to the special case s = 0 [5].

Quantifying mixing is also clearly necessary in circumstances where it is of interest either to
enhance or suppress mixing. It has been conjectured that an appropriate way to enhance mixing
is through maximization of the time-averaged energy growth using a cost functional approach
[8,9]. While this does indeed lead to a well-mixed result, the problem is actually not designed to
maximize mixing directly and it is natural to ask whether a more direct approach can lead to a
more ‘efficient’ well-mixed solution with less energy injection. In order to examine this problem,
an optimization method based on the fully nonlinear Navier–Stokes equations is desirable. Such a
method involving ‘adjoint’ Lagrange multipliers (that impose the governing equations) has been
developed to consider a variety of optimization problems arising in fluid dynamics [10,11], and
is often referred to as the ‘direct-adjoint-looping’ (DAL) method.

In particular, the DAL method [12] has been used to study mixing problems in a variety of
flows [13–15]. These studies have been based on a minimization of the mix-norm (typically with
s = 1) and compared with the results for variance minimization as well as energy maximization.
It was observed that inferior mixing of the passive scalar occurs in the case of energy growth
maximization for perturbations of the same initial energy. It was also shown that such mix-norm
minimization appears to act well as a proxy for the variance-optimized strategy at finite target
time, which is the natural measure for the Pe < ∞ case. Specifically, perturbations that minimized
the mix-norm (with index s = 1) over relatively short target times led to time-variation of the
variance (and hence the mixing properties of the flow) typically very similar to the perturbations
that minimized the variance over relatively long target times. This apparent property has several
attractions, in particular in that the required computational demands using the DAL method are
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significantly smaller and more robust for the short-target-time mix-norm calculations compared
with long-target time variance calculations, especially for flows at higher Pe.

In this paper, we are interested in answering three questions that have naturally arisen from
these previous studies. Firstly, is there a range of indices s that make the mix-norm a good proxy (in
the above computationally efficient and robust sense) for variance-based strategies? We find that there
are indeed indices that work well in this respect while others are not suitable, as they lead
to sub-optimal flow behaviour, which we refer to as ‘demixing’, and is physically associated
with long-lived vortical coherence in the time-evolving flow. Secondly, how does the choice of
index qualitatively change the mixing dynamics of the flow? It is observed that changing the index
can deprecate or enhance small-scale structures which can enhance or deprecate the mixing,
depending on the particular choice of index s. Thirdly, what comparisons, if any, can be made between
the variation of the index at relatively low and high Pe? As one might expect, the higher Péclet
number flows tend to favour small-scale structures, due to the lesser initial influence of diffusion.
This actually makes the phenomenon of demixing more clearly apparent at higher Pe, and the
observation of deprecating certain scales leading to inferior mixing holds even more clearly than
in the lower Péclet number case.

The rest of this paper is structured as follows. In §2, we state the problem and methodology
following the work of [16]. In §3, we present the results of our work. Specifically, in §3a, we study
the use of mix-norm with various indices as proxies for variance minimization. In particular,
we show that a flow field that minimizes a mix-norm for relatively small target time can lead
to similar and in some cases eventually superior mixing to those fields that minimize variance
at larger times. In §3b, we show the results of how changing the index s and the target time
corresponds to a qualitative change in the mixing paradigm at a relatively low choice of Pe. We
discuss analogous results for flows at higher Pe in §3c, comparing the two cases. Finally, in §4, we
present brief conclusions and suggest further avenues for future study.

2 . Methods
There are three control parameters that determine the optimal initial flow field in this paper.
These are the mix-norm index s, the target time T of the optimization problem and the Péclet
number Pe (defined below). We keep the Schmidt number Sc = ν/κ = 1 (where ν is the kinematic
viscosity and κ is the scalar diffusivity) fixed, so that the flow Reynolds number Re = Pe, and also
fix the initial perturbation energy density. Solutions of the optimization algorithm corresponding
to these parameters will be denoted by OA(s, T, Pe). We choose to study problems with Pe = 50
and 500, s = 0.5, 1, 2, 5 for the index of the mix-norm and T = 0.5, 1, 2, 5. We also consider for
comparison the behaviour of solutions for the variance with target time T = 5 for the two choices
of Pe, i.e. OA(0, 5, 50) and OA(0, 5, 500).

We use the nonlinear DAL method [12] to compute the initial velocity field that will minimize
the value of the mix-norm (for various indices s) and variance (i.e. for s = 0) at a given target
time T. The flow takes place in a two-dimensional torus of length 2π with x and y denoting
the horizontal and vertical directions, respectively. The velocity field u = (u, v) and pressure p
are governed by the incompressible Navier–Stokes equations and the passive scalar field θ is
governed by a conventional advection–diffusion equation. Therefore, the non-dimensionalized
equations governing the evolution of these variables are

∂u
∂t

+ u · ∇u = −∇p + Re−1∇2u, (2.1)

∇ · u = 0 (2.2)

and
∂θ

∂t
+ u · ∇θ = Pe−1∇2θ , (2.3)
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where Pe and Re denote the Péclet number and Reynolds number, respectively, and are defined
by

Pe = Uh
κ

and Re = Uh
ν

, (2.4)

where U, h are the characteristic velocity and length scales and ν, κ are the kinematic viscosity and
scalar diffusivity, respectively. As already noted, since we require Sc = ν/κ = 1, Re = Pe.

As the scalar field is passive, we may solve equations (2.1)–(2.3) separately. As an initial scalar
distribution, we choose

θ (x, 0) := θ0(x) = tanh
(

6
(

x − π

2

))
− tanh

(
6

(
x − 3π

2

))
− 1. (2.5)

This corresponds to a smooth zero-mean scalar distribution with a vertical stripe, centred at x = π

of width π of positive θ � 1, bordered by stripes of negative θ � −1. We also require an initial
condition for the velocity field u0 = u(x, 0) in order to solve the system. For the very first loop of
the DAL method, we set u0 to be random noise. After each iteration of the loop, we update u0 to
give us our initial condition to evolve the system (2.1)–(2.3).

In order to identify the initial perturbation that optimizes the mixing of the initially striped
fluid, we seek to minimize an objective functional subject to a constraint on the kinetic energy of
the initial perturbation

||u0||2L2(Ω) = 2e0μ(Ω), (2.6)

where e0 = 0.03 is the perturbation energy density and μ denotes the ‘volume’ (i.e. the area) of the
flow domain Ω . This perturbation energy density is chosen to be sufficiently large to allow for the
identification of non-trivial initial flow structures, and yet sufficiently small so that there is still
the possibility to distinguish the mixing efficacy of different initial perturbation structure.

We define the objective functional as

J (θ (T)) = 1
2
||θ (x, T)||2H−s(Ω), (2.7)

i.e. (half) the value of the Sobolev norm of (negative) index −s (which we refer to as the mix-
norm of index s) at the target time T. We may then define the constrained optimization problem
of interest as

argmin J (θ (T)) subject to ||u0||2L2(Ω) = 2e0μ(Ω), (2.8)

where {u, θ} solve the system (2.1)–(2.3). The initial condition u0 does not appear explicitly in
the objective functional, but nevertheless it affects J through the evolution of the flow variables
which are constrained by the system (2.1)–(2.3). These constraints must be imposed of course.
This is done by the use of Lagrange multipliers, the spatially and temporally evolving so-called
adjoint variables denoted by {u†, p†, θ†} = {v, q, η}. This is explained in detail in (for example) [16]
and we follow their approach here. We may define a Lagrangian as

L=J (θ (T)) − ΣI∈{NS,AD,C,IC} JI, (2.9)

where

JNS =
∫T

0

∫
Ω

v ·
(

∂u
∂t

+ u · ∇u + ∇p − Re−1∇2u
)

, (2.10)

JAD =
∫T

0

∫
Ω

η

(
∂θ

∂t
+ u · ∇θ − Pe−1∇2θ

)
, (2.11)

JC =
∫T

0

∫
Ω

q∇ · u (2.12)

and JIC =
∫
Ω

v0 · (u(x, 0) − u0). (2.13)
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Variation with respect to adjoint variables yields equations (2.1)–(2.3). Similarly, variation with
respect to the direct variables {u, p, θ} results in the so-called adjoint Navier–Stokes equations

∂v
∂t

+ u · ∇v = −∇q − Re−1∇2v + η∇θ , (2.14)

∇ · v = 0 (2.15)

and
∂η

∂t
+ u · ∇η = −Pe−1∇2η. (2.16)

At t = 0, T, we also produce the following terminal and initial conditions:

v(x, T) = 0, (2.17)

η(x, T) =
∑
k�=0

|k|−2sRe{θ̂k(T) exp (ik · x)}, (2.18)

v0 = v(x, 0) (2.19)

and ∇u0L= v0, (2.20)

where θ̂k are the Fourier coefficients of θ and the Re{·} denotes real part. Due to the negative
diffusion terms −Re−1∇2v and −Pe−1∇2η, equations (2.14)–(2.16) must be integrated backwards
in time to avoid numerical instability. These equations are then integrated backwards from t = T
to t = 0, thus forming a ‘direct-adjoint loop’. Using a numerical technique from [17] and with un

and vn known as the direct and adjoint velocities at t = 0 after n loops of this DAL method, the
updated guess un+1 can be calculated by

un+1
0 = cos(φ)un

0 + sin(φ)wn,

where w denotes the scaled (by the energy constraint) adjoint veclocity projected onto the
hypersurface tangential to the energy hypersphere at un

0 , as described in detail in [18]. The angle
of rotation φ is calculated by using a backtracking line search [19]. This looping procedure is
repeated until convergence has been reached as measured by the normalized residual r, defined
by

r =
||∇u0L⊥||2L2(Ω)

||∇u0L||2L2(Ω)

,

where the symbol ⊥ denotes projection onto the hyperplane tangential to the energy
hypersurface. Since the energy is fixed, a small residual (r ∼ O(10−3)) implies the gradient can
only change by varying its magnitude which is not permissible due to the (explicitly imposed)
energy constraint.

The direct and adjoint equations are solved with a fourth-order mixed Crank–Nicholson
Runge–Kutta scheme with incompressibility enforced through a fractional step method [13,20].
Simulations for Pe = 50 and Pe = 500 were performed with N = 128 and N = 256 grid points in
both directions, respectively. For the plots, the mix-norm and variance are scaled by the evolution
of the purely diffusive passive scalar defined as

Ms(t) =
||θ (x, t)||2H−s(Ω)

||θd(x, t)||2H−s(Ω)

(2.21)

and

V(t) =
||θ (x, t)||2L2(Ω)

||θd(x, t)||2L2(Ω)

, (2.22)

where θd is the solution of equation (2.3) but with the advective term dropped, and the
dependence of the (scaled) mix-norm on the index s is labelled by the subscript.
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3. Results
We now analyse the data obtained for various control parameter combinations. Mixing is
measured by (scaled) variance decay as defined in equation (2.22), corresponding to the
homogenization of the passive scalar.

(a) Mix-norm as a proxy
The mix-norm was introduced to resolve the issue with variance as a mixing measure in non-
diffusive systems [5]. In previous studies, the fields calculated via mix-norm minimization
over short target times approach the long-time behaviour of variance-minimizing flows with
significantly larger target times. This is an attractive feature of using mix-norms as objective
functionals as they can produce very good (and robust) approximations to exact variance-based
strategies over longer target times but at significantly cheaper computational cost. There are
(apparently) two reasons for this cheaper computational cost. First, integrating around loops
with shorter target times clearly is cheaper than integrating around longer time loops. Second,
and somewhat more subtly, it appears that mix-norm iterations converge more rapidly towards
the required optimal solution, apparently due to more efficient identification of appropriate flow
structures which mix well. This also contributes to the ‘robustness’ of the method, in that the
initial perturbations identified for shorter target time problems are still set ‘on the right path’
through time and continue to mix (through rapid variance reduction) for times significantly
longer than the imposed target time.

These characteristics are presumably related to the fundamental attractive property of
multiscale measures such as mix-norms, in that large scales in the scalar distribution will
correspond to large values of the mix-norm. Therefore, searching for flows that minimize
mix-norms will tend to deprecate large scales within the flow, thus encouraging a cascade to
smaller scales more conducive to homogenization and mixing. In this section, we investigate the
mix-norm as a mixing proxy (in the sense described above) for various values of the index s.

Figures 1 and 2 show this comparison at Pe = 50 and Pe = 500, respectively. As can be seen
from early times, the mix-norm optimal perturbations (for various s) follow a very similar path
to the variance-optimized perturbations with T = 5, consistent with previous studies [13–15].
Interestingly, for T ≥ 2, and a range of s, the mix-norm-optimized perturbations significantly
outperform the variance-optimized perturbations for times appreciably longer than its target time
of T = 5, demonstrating the (valuable) robustness of using such mix-norms in the DAL method.

In the case of Pe = 50, combining a high index with sufficiently long target time gives the
best proxy. This is apparent for s = 1, 2 with T = 2, for example, as the initial variance decay
in these cases is very similar to the variance-optimizing perturbation OA(0, 5, 50) but continues
to decay significantly beyond t = 5, implying a higher quality mixture. Clearly, then, this near
identical initial behaviour followed by further mixing gives further evidence that the mix-norm
is an excellent proxy for the variance measure and motivates its use in optimization problems.
However, one must be cautious with the index and target time choice, as certain combinations
perform better than others.

The mix-norm also appears to be a good proxy at larger Pe. As shown in figure 2, for flows
with Pe = 500, we can see that the optimal perturbation OA(0, 5, 500) has the steepest decay for
early times, unlike in the Pe = 50 case where all fields had a similar decay. In fact, we observe that
the variance-optimal field continues to decay up until at least the time t = 64. This is in contrast
to what was observed at Pe = 50 where the plot approaches a constant value, indicating purely
diffusive mixing, with no advection-enhanced homogenization. This is due to the persistence of
small-scale structures in flows at higher Pe which continue mixing after the chosen target time.

For later times t � 5, there are also choices of s that yield better mixing properties than the
variance-based optimal perturbations. Mix-norms with any of the choices of index with a large
enough target time appear to outperform the mixing properties of the flow associated with
the variance-optimal perturbation OA(0, 5, 500). Interestingly, in some cases, particularly with
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Figure 1. Evolution with time of scaled variance V(t), as defined in (2.22) for flows initially seeded with perturbations that
minimize mix-norms (for a variety of the values of index s) over different target times T for flows with Re= Pe= 50. For
comparison, the dotted black line shows the evolution for the perturbation thatminimizes the variance for T = 5 in a flowwith
Re= Pe= 50. (Online version in colour.)

smaller target times, such as OA(1, 1, 500), these superior mixing properties are only temporary,
eventually being outperformed by the mixing properties associated with the variance-optimal
perturbation OA(0, 5, 500). Furthermore, in the cases of larger indices for T = 5, i.e. the optimal
perturbations OA(2, 5, 500) and OA(5, 5, 500), there are clear bumps in the scaled variance decay
for 15 � t � 25, which will be discussed in the next sections. Using any of the indices with the
intermediate target time T = 2 proves to be a good proxy for the variance-based strategy and, as
in the lower Pe case, can actually lead to superior mixing properties at later times.

(b) Mix-norm evolution for Pe= 50
We now analyse in more detail how the time evolution of the mix-norm differs qualitatively with
index for flows with the lower Péclet number Pe = 50, as shown in figure 3. We observe that
increasing target time T leads to smaller values of the mix-norm across all values of s. However,
larger values of s also appear to produce a qualitative change in the dynamics. For example,
despite approaching pure diffusion as t → ∞, the time evolution of M5(t) for the optimal initial
perturbation OA(5, 5, 50) exhibits demixing, in the specific sense that Ms(t) does not monotonically
decay at intermediate times as seen in figure 3. This is an undesirable quality as a solution is
only ergodic mixing if the mix-norm decays with time, and appears to be associated with the
(relatively) poor decrease in the variance for this perturbation as can be seen in the fourth panel
of figure 1.
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Figure 2. Evolution with time of scaled variance V(t), as defined in (2.22) for flows initially seeded with perturbations that
minimize mix-norms (for a variety of the values of index s) over different target times T for flows with Re= Pe= 500. For
comparison, the dotted black line shows the evolution for the perturbation thatminimizes the variance for T = 5 in a flowwith
Re= Pe= 500. (Online version in colour.)

Studying the plots of time variation of scaled mix-norm and variance proves that the choice
of control parameters can produce qualitatively different results for mixing fluids. It is therefore
natural to ask exactly how these choices, particularly for the index s, determine the structure
of the initial condition u0 and thus at what scales mixing occurs. A deeper understanding of
this question can distinguish between desirable and undesirable structures to homogenize a
particular passive scalar distribution. A natural way to consider the flow dynamics is to calculate
the vorticity, ω, defined for such a two-dimensional flow as

ω = ∂v

∂x
− ∂u

∂y
. (3.1)

The vorticity for the various initial perturbations calculated for flows with Pe = 50 are shown in
figure 4. These plots show two different types of initial structure. The first type, associated with
optimizations for low index s and target time T, has a large number of small-scale alternating
sign vortices arranged along the interfaces of the passive scalar. The second type, associated with
optimizations for high index s and T, has a significantly smaller number of larger-scale alternating
sign vortices along the interface. This trend also appears to hold when varying just one of s and
T and keeping the other parameter fixed. Comparing figure 4 with the plots in figure 1, it is clear
that more vortices yield the optimal result over shorter times, but actually lead to less thorough
mixing at long times. Increasing the initial size and reducing the number of the vortices leads to
lower variance at a later time. However, there is a ‘sweet spot’, as if there are too few vortices then
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Figure 3. Evolution with time of scaled mix-normMs(t), as defined in (2.21) for flows initially seeded with perturbations that
minimize mix-norms (for a variety of the values of index s) over different target times T for flows with Re= Pe= 50. (Online
version in colour.)

the demixing phenomenon occurs and the homogenization process actually slows and leads to
weaker mixing overall.

To show how these initial distributions actually affect the time-dependent mixing dynamics,
we plot in figure 5 the evolution of the passive scalar at various snapshots during the flow (with
animations available as electronic supplementary material). We consider the evolution of the
flows associated with the initial conditions shown along the diagonal of figure 4. For the flow
associated with the optimal perturbation OA(0.5, 0.5, 50), shown in the first column of figure 5,
we see the large number of small-scale vortices rapidly expend the available kinetic energy to
distort the two interfaces leading to the dominance of diffusion for the rest of the evolution.
Significantly, the vortices are too small to disrupt completely the initial vertically striped structure,
and the vertical striping survives to later times. This dynamical evolution is largely similar to the
evolution of the flow associated with OA(1, 1, 50), as shown in the second column. However, for
this flow, the vortices in this case are fewer and larger which leads to more disruption of the
interfaces between the regions of high and low concentration and thus a somewhat better mixing
outcome at later times as shown in figure 1. In both of these cases, the kinetic energy is still used
up too quickly to disrupt completely the central stripe and so diffusion becomes the dominant
factor in the mixing process early in the evolution.

The behaviour of the other two flows is qualitatively different. The vortices associated with
the initial optimal perturbation OA(2, 2, 50) clearly act on a larger scale, and in particular the
dynamics generated manage to fold and stretch the interfaces to break the central stripe with
diffusion dominating at later times leading to a close to well-mixed scalar. The flow induced by
the initial perturbation OA(5, 5, 50) (shown in the right-most column) is similar, but in this case
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Figure 4. Vorticity distribution of the optimal perturbations identified formix-normminimization for flowswith Pe= 50with
various combinations of index s (rows) and target time T (columns). (Online version in colour.)

the lower number of initial vortices does not disrupt the central stripe as quickly. The passive
scalar is homogenized quite well but the final panel shows that the larger vortices have actually
led to sustained patchiness (and hence poorer mixing) for the flow associated with the largest
index s = 5. This is a manifestation of the demixing phenomenon mentioned above, in particular
in that the originally negative values of the scalar, initially associated with the edges of the flow
domain (and coloured blue) have been advected in the central region, without being thoroughly
mixed with the positive scalar (coloured yellow), which conversely has been advected from the
centre to the edges of the flow domain.

We also note that there are some qualitative differences in the symmetry of the optimal initial
perturbations identified by the DAL method. A particular clear example is shown in the T = 2
column of figure 4, where the optimal perturbation OA(0.5, 2, 50) is antisymmetric about the
vertical midline, while the optimal perturbation OA(5, 2, 50) is symmetric. It is worth asking
whether or not these symmetry properties have an important role in the mixing of the passive
scalar. To investigate this, we plot in figure 6 the evolution of the passive scalar (left columns)
and the vorticity (right columns) for the flows associated with the s = 0.5 (antisymmetric)
and s = 5 (symmetric) indices for T = 2 (with animations available as electronic supplementary
material). As can be seen from these plots, the symmetrically aligned vortices mix the passive
scalar essentially antisymmetrically, while the antisymmetric vortices mix the passive scalar
essentially symmetrically. Furthermore, the symmetrically-aligned vortices break the central
stripe somewhat more easily as it results in more stretching and folding and hence both
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Figure 5. Snapshots at various times (rows) of the evolution of the passive scalar fields mixed by optimal initial perturbations
OA(s, T , 50) for various choices of s= T (columns). (Online version in colour.)

filamentation and regions of high scalar gradient, naturally conducive to enhancement of mixing
at later times. Conversely, the initially antisymmetrically aligned vortices lead to counter-rotating
vortices approaching one another along the same horizontal level, making the folding more
difficult, and so the mixing less thorough.

(c) High Péclet number
We now compare and contrast the behaviour of the flows with Pe = 500 with the flows associated
with Pe = 50. The evolution of the various mix-norms Ms(t) for flows with Pe = 500 are shown in
figure 7. (The equivalent time evolution of the variance for these flows is shown in figure 2.) For
the T = 0.5 fields, we observe that initially all Ms(t) follow the same decay for early times t � 20.
After this initial decay, there is some separation, with M0.5(t) decaying the quickest. The solutions
for T = 1 do not follow this behaviour, with M2(t) and M5(t) eventually decaying the quickest.
Interestingly, the various optimal perturbations with target time T = 2 behave in a very similar
fashion, all leading to very small values at relatively early times. Finally, the qualitative picture is
different again for the various perturbations for the target time T = 5. As seen in the low Péclet
number case, demixing (in that Ms(t) is non-monotonic) occurs for the larger indices s = 2 and 5,
clearly associated with the ‘bump’ observed in the fourth panel of figure 2.

As in the case of Pe = 50, variation of the control parameters produces qualitatively different
mixing for flows with Pe = 500, with again a tendency for optimal perturbations with short target
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Figure 6. Snapshots of the evolution of the passive scalar (left) and vorticity (right) for the flows associated with the
optimal perturbations OA(0.5, 2, 50) on the first two columns and OA(5, 2, 50) on the second two columns. Snapshot times are
t = 5, 10, 15. (Online version in colour.)

times being associated with smaller scales and more rapid dissipation of perturbation kinetic
energy.

To investigate further the differences and similarities between flows with Pe = 50 and Pe = 500,
we plot in figure 8 the initial vorticity of the various optimal perturbations for Pe = 500. Similarly
to the optimal initial perturbations for Pe = 50, increasing target time decreases the number of
vortices and thus increases the length scale. With the exception of the T = 5 case, changing index
does not appear to have as large an effect on the initial structure, in contrast to the optimal
perturbations for flows with Pe = 50 (shown in figure 4).

An apparent difference between the perturbations for lower and higher Pe is the shape of
the vortices. For initial perturbations in flows with Pe = 50, the vortices are (close to) circular
counter rotating vortices aligned along the interface between regions of low and high passive
scalar. However, this is not the case for the perturbations in flows with Pe = 500, where the vortices
take more of a diamond quadrilateral shape, with finer-scale structure being apparent, with two
different types of structure for the perturbations associated with shorter and longer target times.

For the perturbations associated with shorter target times, the vortices take on a quadrilateral
shape with sharp corners, while for longer target times, two of the quadrilateral ‘corners’ become
somewhat elongated.

To investigate the difference between these two structures, we plot in figure 9 the evolution
of the vorticity and passive scalar for optimal perturbations OA(1, 1, 500) (with the ‘pure’
quadrilateral initial vortices) and OA(2, 2, 500) (with the ‘cornered’ initial vortices). (Once again,
animations are available as electronic supplementary material.) For both these higher Péclet
number flows, the vortices stretch and fold the interfaces of the passive scalar effectively by t = 5.
The vortices then deform to increase further the stretching and folding of the interface, acting with
diffusion to mix the fluid. The difference between the ‘pure’ and ‘cornered’ quadrilateral initial
vortices becomes more apparent in the range 10 < t < 20, with a clearer ‘V’ developing in the flow
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Figure 7. Evolution with time of scaled mix-normMs(t), as defined in (2.21) for flows initially seeded with perturbations that
minimize mix-norms (for a variety of the values of index s) over different target times T for flows with Re= Pe= 500. (Online
version in colour.)

associated with the OA(2, 2, 500) initial perturbations, which remain more organized than those
associated with the OA(1, 1, 500) initial perturbations, and thus more able to mix the initial vertical
striping of scalar. However, for both flows, it is apparent that the scalar field is imperfectly mixed,
with the initial vortices still remaining too small to disrupt and homogenize entirely the initial
vertical striping of the scalar field.

In flows associated with the longest target time considered, i.e. T = 5 with Pe = 500, the
dynamical significance of the ‘cornered’ initial vortices becomes apparent. In figure 10, time
evolution of the flows associated with OA(0.5, 5, 500) (left-most columns) and OA(5, 5, 500) (right-
most columns) are shown. As can be seen from figure 7, the OA(5, 5, 500) exhibits ‘demixing’
behaviour, which can now be understood in terms of the observed physical flow evolution.
For both the flows shown in figure 10, the cornered vortices become sufficiently horizontally
elongated to perturb the entirety of the scalar field. For the flow evolving from the optimal initial
perturbation OA(0.5, 5, 500), the vortices are both sufficiently small and sufficiently regular to lead
to a smooth, organized, perturbation and diffusion of the scalar field, leading to homogenization
at relatively early time. On the other hand, the vortices associated with the OA(5, 5, 500) are larger,
and so actually remain more coherent at t = 15. As they remain (more) coherent, they advect the
scalar field too strongly, leading to an inversion in the vertical striping, leading to a negative
scalar field stripe (shown in blue) in the middle of the flow domain at intermediate time, an even
stronger demixing effect than seen before in figure 5 for the Pe = 50 flows with high index s = 5.
This organized inversion of the scalar field distribution manifests itself in the non-monotonic
variation in the mix-norm M5(t) as shown in figure 7, and demonstrates that the ‘best’ choice of
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Figure 8. Vorticity distribution of the optimal perturbations identified for mix-norm minimization for flows with Pe= 500
with various combinations of index s (rows) and target time T (columns). (Online version in colour.)

index for such optimization problems is in general likely to be Pe-dependent, particularly if the
mixing problem of interest has a finite time horizon of interest.

4. Conclusion
We have used the DAL method to identify optimal initial perturbations for passive scalar mixing
in a two-dimensional toroidal geometry for different choices of the key parameters: s the index
of the mix-norm, target time T and Péclet number of the flow Pe. We have demonstrated that
mix-norms (with various indices) can indeed be used as a proxy for variance-based strategies,
which both converge relatively rapidly and robustly identify flow evolutions that minimize
variance over times significantly longer than the chosen target time T. We have also investigated
the qualitative change in mixing dynamics at both low and high Péclet number, demonstrating
substantial qualitative variability both in the optimal initial perturbations and the subsequent
flow evolution. Specifically, for flows with Pe = 50, a highly symmetrical arrangement of initial
vortices leads to optimal mixing.

However, for flows with Pe = 500, there is evidence of a trade-off, in that larger, highly
organized vortices can actually lead to ‘demixing’, with too vigorous advection not allowing
diffusive processes to homogenize the scalar distribution, at least at intermediate times. Since
higher values of the mix-norm index strongly deprecate small scales, this behaviour strongly
suggests that the mix-norm is most useful in such mixing optimization problems when the index
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Figure 9. Snapshots of the evolution of the passive scalar (left) and vorticity (right) for the fields OA(1, 1, 500) on the first two
columns and OA(2, 2, 500) on the second two columns. Snapshot times are t = 5, 10, 15. (Online version in colour.)
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Figure 10. Snapshots of the evolution of the passive scalar (left) and vorticity (right) for the optimal perturbations
OA(0.5, 5, 500) (shown in the two left-most columns) andOA(5, 5, 500) (shown in the two right-most columns). Snapshot times
are t = 5, 10, 15. (Online version in colour.)
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used is not too large, i.e. choosing s ∼ 1 − 2 seems the most practical choice. It would clearly be of
interest if that could be established rigorously.

We therefore conjecture that the mix-norm may be used to identify organized initial
perturbations that lead to a flow evolution that is optimal for mixing (for a given initial energy
cost), and highlighted, particularly for the flows with Pe = 500, the importance of initial vortical
perturbations with fine-scale structure, which we referred to as ‘corners’, apparent in figure 8 for
higher target times. However, initial energy density and Schmidt number were kept constant at
e0 = 0.03 and Sc = 1, respectively. We suggest that further studies should vary these parameters
as well to get a more comprehensive picture of the structure of perturbations that actually lead
to optimal mixing. We also suggest varying the index in different geometries and applying an
external force to compare with existing studies.

We conclude with the observation that despite having different indices, different mix-norms
lead to very similar temporal evolution of variance (and hence mixing properties). This appears
to be evidence in support of a hypothesis from [21] that there exists a range of indices that decay
at very similar rates, although of course further detailed investigation is necessary.
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