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ABSTRACT 

Human speech comprehension is remarkable for its immediacy and rapidity. The listener 

interprets an incrementally delivered auditory input, millisecond by millisecond as it is heard, 

in terms of complex multi-level representations of relevant linguistic and nonlinguistic 

knowledge. Central to this process are the neural computations involved in semantic 

combination, whereby the meanings of words are combined into more complex 

representations, as in the combination of a verb and its following direct object (DO) noun 

(e.g., eat the apple). These combinatorial processes form the backbone for incremental 

interpretation, enabling listeners to integrate the meaning of each word as it is heard into 

their dynamic interpretation of the current utterance. Focusing on the verb/DO noun 

relationship in simple spoken sentences, we applied multivariate pattern-analysis and 

computational semantic modelling to source-localised electro/magnetoencephalographic 

(EMEG) data in order to map out the specific representational constraints that are 

constructed as each word is heard, and to determine how these constraints guide the 

interpretation of subsequent words in the utterance. Comparing context-independent 

semantic models of the DO noun with contextually constrained noun models reflecting the 

semantic properties of the preceding verb, we found that only the contextually constrained 

model showed significant fit to the brain data. Pattern-based measures of directed 

connectivity across the left hemisphere language network revealed continuous information 

flow between temporal, inferior frontal and inferior parietal regions, underpinning the verb’s 

modification of the DO noun’s activated semantics. These results provide a plausible neural 

substrate for seamless real-time incremental interpretation on the observed millisecond 

time-scales. 

 

Keywords: speech, EEG/MEG, computational modelling, RSA, directed connectivity 
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Significance Statement 

The rapid comprehension of speech is a remarkable but poorly understood human capacity. 

Central to this process is the integration of the meaning of each word, as it is heard, into the 

listener’s interpretation of the current utterance.  Here we focus on the real-time flow of 

neural activity that underpins this combinatorial process, using multivariate pattern-analysis 

and computational semantic models to discover the contextual constraints that are 

constructed as each word is heard, and to determine how these constraints guide the 

interpretation of future words in the utterance. This novel combination of methods reveals 

continuous information flow across the left-hemisphere language system, strongly 

constraining the immediate activation of word meanings and providing a neural substrate for 

seamless real-time speech comprehension. 
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INTRODUCTION 

Understanding spoken language involves an extensive and complex set of neural 

computations. Central to these are the processes involved in semantic composition, whereby 

the meanings of words are combined into more complex representations, such as the 

combination of a modifier and noun (e.g., green chutney) or, as in the current study, a verb 

and its direct object noun (e.g., eat the apple). These combinatorial processes form the 

backbone of the incremental interpretation of spoken language, enabling listeners to 

integrate the meaning of each word as it is heard into a dynamically modulated multi-level 

representation of the preceding words of the utterance.  

There has been a long-standing, broadly-based interest in semantic combination, initially 

involving behavioural studies of how contextual constraints affect semantic access (1) and 

semantic flexibility (2), and more recently focussing on the neural substrates for these 

processes. In this more recent literature, the combination of word meanings has principally 

been discussed either as a process of integration or unification involving interactions between 

the left inferior frontal gyrus (LIFG) and left posterior middle temporal regions (LpMTG) (3-6) 

or as a syntactically licensed combination of individual word meanings involving primarily the 

left anterior temporal lobe (LATL) (7, 8). Recent neuroimaging studies have also identified left 

angular gyrus (LAG) (9-11) as well as LATL (12, 13) as regions involved in semantic 

combination, with a recent MEG study showing that LATL activity precedes activity in frontal 

cortex during combinatory semantic processing (13). However, while this research provides 

an overall picture of the brain regions underpinning semantic combination, relatively little is 

known about the specific neural dynamics of these processes, nor about the combinatorial 

mechanisms by which the meaning of each word is selectively integrated into its utterance 

context. Historically, most studies have either used poorly time-resolved fMRI methods, or 

depended on ERP measures - most saliently the N400 - that are spatiotemporally diffuse and 

not in themselves fully understood. Many studies, moreover, depend on relatively blunt 

contrasts of phrases or sentences against lists of words or pseudo-words that cannot be 

combined (10, 12-17), and have not directly modelled the semantics of the individual words 

tested, nor have been able to measure the precise timing of the specific processes involved.  
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Building on the important but incomplete picture provided by earlier research, the present 

study combines real-time neuroimaging measurements with recent developments in 

multivariate statistics and computational linguistics to probe directly the specific 

neurocomputational content of what is being computed during incremental semantic 

combination and to determine where and when in the brain these computations take place.  

We used topic modelling - a corpus-based computational linguistic method that has been 

widely used in machine learning and natural language processing (18) - to build explicit, 

quantifiable models of the semantics of successive words - focusing here on the integration 

of the semantics of a verb and its direct object (DO) noun in verb-DO noun sequences (e.g., 

“ate the apple”) placed in short contexts such as “the elderly man ate the apple”. The topic-

modelling method makes it possible to specify the context-independent semantics of each 

DO noun, and to test how the specific semantic constraints provided by the preceding verb 

interact with the activation of DO noun semantics, millisecond by millisecond as the noun is 

heard. Critically, using these probabilistic semantic models, we employed spatiotemporal 

searchlight representational similarity analysis (ssRSA) (19, 20), operating in 

electro/magnetoencephalographic (EMEG) source space, to compare the similarity structure 

of contrasting models of DO noun semantics with the similarity structure of observed patterns 

of brain activity, making it possible to determine which specific semantic contents of the DO 

noun are encoded across the brain over time. We also used a novel measure of dynamic 

directed connectivity to probe the precise timing and the directionality of information flow 

between critical brain regions (21, 22). Whole-brain EMEG data was collected as participants 

listened naturally to these sequences (with no overt task), and was source-localised for all the 

analyses reported here. 

This novel combination of methods not only provides uniquely detailed access to the neural 

infrastructure for human language comprehension in general, but also enables us to address 

the long-standing but still controversial issue of how and whether word meanings are flexibly 

interpreted in the context in which they occur (23-28) or whether they have context-

independent properties that are always present in the neural instantiation of the meaning of 

a word (29, 30). Previous psycholinguistic studies have shown that a word’s meaning is flexibly 

interpreted in the context in which it occurs (23, 24) with, in the strongest case, only the 

contextually relevant meaning of a word ever being activated (25-28). We test this hypothesis 
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for contextualised semantic representation using topic modelling to transparently represent 

the semantic contents of each successive word and to determine how and when these 

contents change as a function of dynamic neurally represented contextual constraints. 

In the next section of the paper we present the progression of integrated, interdependent 

analyses, using a range of different methods, that are necessary to construct and validate an 

account of the detailed neurocomputational underpinnings of dynamic semantic combination 

in a spoken sentential context. The starting point (Section A) is the construction of 

quantifiable semantic models of the specific semantic properties of each verb and each DO 

noun, using the topic modelling approach. The neurocomputational goodness of fit of these 

models is then tested against EMEG brain data using ssRSA (Section B), for a set of models of 

verb semantics. Following the demonstration of significant verb semantic model fit, Section 

C focuses on the verb-DO noun interaction, comparing the brain data model fit of content-

independent models of DO noun semantics against contextualised DO noun models that 

reflect verb semantic constraints. Given the strong constraint effects observed in these 

comparisons, we then go on to investigate the neuroanatomical locations of the interactions 

between verb semantic constraints and DO noun semantics (Section D), and to establish the 

timing and directionality of neural information flow between these critical regions (Section 

E). 

 

RESULTS 

A. Topic modelling for verb and DO noun semantics 

To probe the neural mechanisms underpinning how verb semantic constraints are generated 

and used to constrain the semantic interpretation of the upcoming DO noun, we constructed 

sets of six spoken sentences of the form “subject noun phrase (SNP) + verb + DO noun” (e.g., 

The elderly man ate the apple). To generate a broad range of variation in degree of constraint 

between the verb and the DO noun, three different verbs were selected for each sentence 

set with each verb being paired with two different DO nouns. Sixty sets of this type were 

constructed, giving a total of 360 sentences (see Methods). For each DO noun, the three 

preceding verbs varied in both the content and strength of the semantic constraints they 

placed on it. For example, ‘eat’ constrains its DO noun towards something edible, ‘hold’ is 
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more likely to be followed by objects that are small or light, while ‘want’ has less specific 

preferences over a following DO noun.  

To model the semantics of the verbs and the DO nouns, we adopted the topic modelling 

method known as Latent Dirichlet Allocation (LDA) (31). This is a generative probabilistic 

approach aimed at extracting the latent semantic topics from large-scale corpora. Using the 

co-occurrence frequency between verb and DO noun as training data (32), LDA resulted in 

200 topics (see Methods and SI Appendix, Section 4), where each topic is a probabilistic 

distribution over the whole vocabulary of DO nouns from the large-scale corpora included in 

model training. Importantly, the meaning of a topic can be inferred from the highest-ranking 

words in terms of their probability, i.e., P(DO noun|topic). For example, if a topic prefers 

words like, ‘meal’, ‘meat’, ‘cake’ and ‘bread’, then it could be plausibly labelled as a ‘food’ 

topic (Fig. 1, lower panel). Each verb can be represented as a verb topic vector which 

quantifies its semantic constraints on the following DO noun as a unique distribution over the 

200 topics, i.e., P(topic|verb) (Fig. 1, middle panel). Similarly, a noun topic vector can be 

obtained to model the semantics of a DO noun (see Methods), which is also a distribution 

over the same 200 topics, i.e., P(topic|DO noun). In this way, we quantified verb and noun 

semantics separately using vectors in the semantic space constructed by the 200 latent 

semantic topics (Fig. 2, left and middle panels).  

Within the framework of ssRSA, these verb and noun topic vectors were then used to 

construct a series of model representational dissimilarity matrices (model RDMs) which were 

correlated with data RDMs extracted from source-localised EMEG data within a spatial-

temporal searchlight moving across a bilateral language mask (33-35) (Fig. 3, and Methods). 

This enabled us to assess the neurocomputational goodness of fit of these distributional 

semantic models, and, thereby, to determine whether, when and where the information 

captured by these computational models is encoded in the brain. 

 

B. Neural model fit for verb semantic models 

Testing initially for the neural distribution of verb semantic constraints, as defined by topic 

modelling, we constructed a verb topic model RDM based on the cosine distance between 
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the topic vectors of verbs in different sentences. The verb topic RDM was tested against 

source-localised EMEG data RDMs within an epoch aligned to verb onset and extending 

600ms forward from this point (verb duration (mean ± std): 487ms ± 116ms). The recognition 

point (RP) of the verb - the point in the speech input at which it differentiates from other 

cohort candidates and can be uniquely identified (36) - was 339ms ± 82ms after verb onset as 

estimated using CELEX (37) (Fig. 4). During this epoch we found significant model fit (i.e., 

Spearman’s rank correlation between model RDM and data RDM) for the verb topic RDM in 

the left posterior middle temporal gyrus (LpMTG). Weak model fit can be seen already at verb 

onset, with stronger effects emerging within 50-100ms after onset and peaking close to verb 

RP in LpMTG. The effects extended anteriorly into the LATL as verb RP approached and spread 

posteriorly into the left supramarginal gyrus and angular gyrus (SMG/AG) and persisted until 

verb offset (Figs. 4A & 6A) (vertex-wise p<0.01, cluster-wise corrected p<0.05 with 5000 

nonparametric permutations (38), as applied to all reported ssRSA results). Note that the verb 

topic effects detectable at verb onset are likely to reflect the shared properties of the subject 

noun and verb (see Fig. S2 for examples of the shared properties) which are already activated 

as soon as the subject noun is recognised (SI Appendix, Section 1). Critically, however, for the 

purposes of the current study, these further analyses show that only verb-specific model fit 

is seen after verb RP, continuing until verb offset (Fig. S3). 

The verb topic vector provides information about both the content (i.e., what topics a verb 

constrains towards) and the strength of semantic constraints (i.e., the shape of the 

distribution over topics, with a more focused distribution indicating higher constraint 

strength and lower uncertainty). Although these two aspects together determine a verb’s 

semantic constraints, we can separate out the strength of constraint by calculating the 

entropy embedded in verb topic vectors (see Methods). A verb exhibits high constraint 

strength by showing preferences for only a few topics (i.e., low entropy), which results in less 

uncertainty about the likely properties of the following DO noun and vice versa for low 

constraint verbs. The wide range of the strength of semantic constraint across the verbs used 

in this study is captured by the distribution of verb topic entropy (Fig. S4). We constructed 

the verb topic entropy RDM by taking the absolute difference between the entropy of each 

verb topic vector. Significant model fit for this model RDM, exhibiting sensitivity to constraint 

strength, emerged much later than for the verb topic RDM, first appearing in LMTG at 310ms 
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from verb onset, around verb RP, and then extending briefly into the LATL and L SMG/AG 

before focusing around LpMTG towards verb offset (Figs. 4B & 6B).  

 

C. Verb semantic constraints and the activation of noun meaning? 

In the context of these results for models of verb semantic constraints, we can then ask how 

these constraints interact with the access and interpretation of the following DO noun. Are 

only the subset of noun semantics preferred by the verb significantly activated when listeners 

hear the DO noun? Or are the initially activated semantics of the noun unaffected by verb 

constraints, providing evidence for exhaustive access to its context-independent semantics? 

To model the potential effects of a verb’s semantic constraints on its DO noun, we 

constructed verb-weighted noun topic vectors through element-by-element multiplication 

between the verb topic and noun topic vectors. This results in a verb-weighted noun topic 

vector which contains only topics preferred by both the verb and its DO noun (Fig. 2, right 

panel). Since each topic is a probabilistic distribution over the vocabulary of DO nouns from 

the large-scale corpora, the verb topic vector reflects the semantic constraints of a verb, that 

is, what a verb “expects”. In contrast, the noun topic vector models the semantic contents of 

a DO noun by specifying what it potentially “offers”. Hence, although the multiplication 

between topic vectors is a symmetrical manipulation, the verb-weighted noun topic vector 

depicts the DO noun’s semantic representation in the directional context of the prior verb’s 

semantic constraints. The resulting verb-weighted topic RDM and noun topic RDM captured 

verb-constrained noun semantics and context-independent noun semantics respectively. 

These model RDMs were obtained by calculating the cosine distances between the 

corresponding topic vectors. Note that the noun topic RDM is considered to capture context-

independent semantics because the topic modelling included every occurrence of a DO noun 

across very large corpora, resulting in DO noun semantic representations that are not biased 

by any specific context.  

We generated an epoch aligned to DO noun onset, 640ms in length (DO noun duration: 523ms 

± 114ms). The RP of these DO nouns in their sentential contexts was on average 233ms ± 

95ms from noun onset, as estimated by a behavioural gating test (39, 40) (see Methods). The 

verb-weighted noun topic RDM showed significant effects in both left temporal regions and 
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LIFG concurrently with the identification of the noun (around noun RP), starting from 198ms 

and 244ms after noun onset respectively (Fig. 5A). The temporal lobe effects first emerged 

anteriorly, in the LATL, and then propagated to posterior temporal regions with stronger 

model fit, finally ceasing before noun offset (Figs. 5A & 6C). Effects in the LIFG began slightly 

after those in temporal cortex and peaked in BA47 after noun RP, lasting until noun offset. In 

striking contrast, the context-independent noun topic RDM showed no significant effects at 

any point across this epoch (Fig. 5B). These results, taken together, are strong support for the 

hypothesis that only the subset of a word’s semantics constrained by the current sentential 

context is initially activated (25-28). 

 

D. Interactions between verb semantic constraints and noun semantics 

To investigate the neural substrates subserving the strong interaction we observed between 

verb semantic constraints and noun semantics, we partialled out both the verb topic RDM 

and the noun topic RDM from the verb-weighted noun topic RDM. Any remaining model fit 

across the DO noun epoch can be attributed to the interaction between the verb and its DO 

noun. We found significant effects primarily in left BA45 around noun RP, followed by later 

model fit in left BA47 (Figs. 5C & 6D). In contrast to the verb-weighted noun effects, which 

peaked in left BA47 (Fig. 6C), the relatively stronger effects in BA45 for the verb-DO noun 

interaction may reflect the different roles played by these subdivisions of LIFG (41-43).   

We also constructed a verb constraint error RDM to quantify the processing load involved, 

during the process of semantic integration, in fitting DO noun semantics to the constraints 

placed by the prior verb. Verb constraint error was defined as the cosine distance between 

the verb topic and noun topic vectors. The greater the overlap between a verb’s semantic 

constraints and the following DO noun’s semantics, the smaller the distance between the 

corresponding topic vectors, as reflected by lower constraint error. Significant effects of this 

model RDM initially appeared in left BA45 and LATL around DO noun RP and then extended 

into more posterior temporal regions as well as L SMG/AG, peaking in the LpMTG after the 

DO noun was identified (Figs. 5D & 6E).  
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E. Mechanisms of combination: Temporal patterns of information flow between active 

brain regions 

To understand the neural mechanisms underpinning how different brain regions cooperate 

to generate semantic constraints during the meaning composition of adjacent words, we 

adopted a data-driven method to estimate the information flow between brain regions using 

their data RDMs (21, 22). The underlying logic here is the same as that of Granger Causality 

Analysis (GCA) (44), that is, if region A has causal effects on region B, then the current activity 

of B is better explained by taking the previous activity of A into account rather than only using 

the previous activity of B itself. We quantified the directed connectivity from A to B as the 

partial correlation coefficient between the activity of A at a previous time-point and the 

current activity of B (as captured by their data RDMs), partialling out the previous activity of 

B itself (Fig. 7, upper panel). To avoid possible bias due to the choice of any specific previous 

time-point, we calculated directed connectivity based on a series of time-points ranging from 

2ms to 120ms before the current time-point (see Methods). Based on this extended temporal 

dimension (i.e., dt in the lower panel of Fig. 7) we can determine to what extent the current 

activity in the target region is correlated with the source region’s activity at each time point 

within the previous 120ms, which can be used to further infer the delay and duration of 

potential directed connectivity effects. This method differs from traditional GCA by providing 

a highly time-resolved profile for the temporal dynamics of information flow between brain 

regions, adding additional precision to the investigation of the neural dynamics underpinning 

incremental speech interpretation.    

Looking first at the verb epoch, the most significant model fit for the verb topic RDM was 

found in the LpMTG and L SMG/AG (Fig. 6A). On the assumption that the simultaneous model 

fit in these two areas reflected likely information flow between them, we examined the 

potential directed connectivity between these two regions. As shown in the lower panel of 

Fig. 8A, prominent effects of directed connectivity from LpMTG to L SMG/AG consistently 

showed up with a dt value of around 20ms, indicating that the current activity in L SMG/AG 

was significantly correlated with the activity in LpMTG 20ms earlier. This suggests that 

information originating in LpMTG was constantly delivered to L SMG/AG with a delay of 

around 20ms as the verb unfolded over time. In contrast, the inferred information flow from 
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the L SMG/AG to LpMTG could only be detected after the verb recognition point (Fig. 8A, 

upper panel).  

Turning to the DO noun epoch (Fig. 8B), we calculated the directed connectivity for the 

regions in LMTG and LIFG that showed most significant model fits for the verb-weighted noun 

topic RDM (Fig. 6C). Information flow from LMTG to LIFG showed a similar temporal pattern 

to the relationship between LpMTG to L SMG/AG in the verb epoch, with a continuous 

correlational relationship rapidly updated at delays of around 20ms (Fig. 8B, lower panel). 

However the correlation effects associated with these pulses were more short-lived, generally 

dying away within 40ms. In contrast, responses from the LIFG to LMTG were relatively slower 

but long-lasting, characterized by delays over 20ms and sustained effects as long as 100ms 

(Fig. 8B, upper panel). In addition, while LIFG to LMTG effects are somewhat stronger after 

the noun RP, clear evidence of information flow from LIFG to LMTG is already seen at noun 

onset, suggesting that the early processing of the DO noun may be subject to LIFG-generated 

cognitive control.   

Although the regions in the directed connectivity analyses were selected based on their 

significant effects for particular model RDMs, this method is still largely data-driven. Two 

further sets of control analyses were therefore conducted to investigate whether our findings 

are specific to speech comprehension or simply driven by intrinsic interactions between brain 

regions. The results support the former account (see SI Appendix, Section 3).  

 
DISCUSSION 

This study investigated the neural mechanisms underpinning semantic composition - the 

rapid combinatorial processes which support the integration of the meanings of successive 

spoken words in an utterance, and the ways in which the meaning of one word affects the 

interpretation of an upcoming word during real-time incremental speech comprehension. 

The specific instance we focused on concerns how a DO noun is flexibly interpreted in the 

context of the preceding verb in a short sentence. Given our focus on semantic composition, 

we held the syntactic context constant, using the same simple sentential structure across all 

the stimulus materials. In the following sections, we lay out the framework that emerges from 

this study, providing spatiotemporally well-specified insight into the qualitative and 
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quantitative properties of the neural processes that underpin core aspects of incremental 

interpretation. 

 

Accessing and integrating verb semantics 

To develop an account of how verb semantics interacts with the semantic properties of the 

following DO noun first requires an understanding of how the relevant semantic properties 

of the verb are themselves activated and made available as constraints on following words. 

These processes were assessed here using two model RDMs based on topic-modelling 

estimates of verb semantics - the verb topic RDM and the verb topic entropy RDM. The model 

fit for these RDMs across the verb epoch, as summarised in Figs. 6A and 6B, implicates a 

network of regions across the left temporal lobe, from LATL to posterior temporal cortex, and 

extending dorsally into SMG and AG, with the strongest model fit seen in LpMTG and 

SMG/AG. The verb topic RDM, in particular, engages LpMTG throughout the verb epoch (Fig. 

6A). The nature of the processing interactions between these regions is illuminated by the 

directed connectivity analyses during this epoch (Fig. 8A). 

The verb-topic RDM captures the representational content of verb semantic constraints. It 

shows weak early model fit in LMTG from verb onset, with stronger effects emerging around 

100ms later. Model fit spreads from the initial focus in LpMTG to both LATL and L SMG/AG 

around verb RP, as the verb is being recognised. The directed connectivity between LpMTG 

and L SMG/AG - the two regions that showed the strongest model fit to the verb topic RDM 

(Fig. 6A) - suggests that information flow originating from LpMTG is continuously delivered to 

L SMG/AG at very short delays (generally around 20ms) throughout the verb epoch (Fig. 8A, 

lower panel). In contrast, information flow in the opposite direction, from L SMG/AG to 

LpMTG, is much more intermittent and does not begin until verb RP, 300ms from verb onset 

(Fig. 8A, upper panel). These patterns of connectivity suggest that information about verb 

semantic content is continuously generated in LpMTG, as the speech input accumulates (34, 

45-47), and is continuously delivered to L SMG/AG (among other regions) for further 

integration, consistent with the widespread view that L SMG/AG plays an important role in 

semantic integration, at both phrasal and sentential levels (10, 11, 48-50). The timing of 

information flow from SMG/AG to LpMTG, occurring only as the verb is recognised, suggests 
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that this reflects modulation of lexical analysis activities in LpMTG, triggered by the 

integration of verb semantic properties into the current utterance representation. 

The critical role of verb RP, where the semantics of the actual verb come to dominate the 

neural response to different models, is reflected in the timing of model fit for the verb topic 

entropy model (Fig. 4B). This model RDM does not reflect the representational content of the 

verbs, but rather how constraining that representation is. A verb with preferences for fewer 

topics is more constraining, and therefore has lower entropy, resulting in less uncertainty 

about the likely properties of the following DO noun. This information is critical for processes 

of incremental combination, since it determines how strongly different semantic constraints 

can be placed on the upcoming word. These entropy values can only be computed once the 

topic distribution of the actual verb is known, and it is precisely around verb RP that model fit 

for this RDM is first seen (Fig. 4B). Consistent with this account and the proposed role in 

semantic integration for LATL and L SMG/AG (50), the topic entropy RDM shows strong model 

fit in both these two regions as well as in LpMTG (Fig. 6B).   

Finally, in considering the semantic constraints projected by the verb (in the context of its 

preceding subject noun) on the following DO noun, it is important to define the likely nature 

of these constraints. Given that a topic is a probabilistic distribution over the whole 

vocabulary of DO nouns rather than specific semantic features of a concept, the constraints 

represented by the verb topic vector typically take the form of general semantic categories 

such as food, rather than specific entities such as bread. This suggests that a broad semantic 

representation which shares the topics preferred by the verb is generated after the verb has 

been recognised. This broad semantic set is then used to guide the interpretation of the 

following DO noun (51). In fact, the topic vector may represent semantic structure in terms 

of category organization, with a topic representing, for example, concepts relating to food, 

plant or animal, and so forth, which provides a plausible account for the involvement of the 

left posterior inferior temporal cortex for the verb topic effects, given its important role in 

processing categorical semantic information (47, 52, 53).  

 

Contextual constraints in semantic combination 
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Turning to the DO noun epoch and the access of noun semantics as the noun is heard, we 

addressed the controversial issue of how the meaning of an upcoming word is modulated by 

its context (25-30). The combination of topic modelling, EMEG source space, and ssRSA 

allowed us to ask (and answer) this basic question about flexible meaning by constructing 

model RDMs of DO noun semantics that were either context-independent or context-

sensitive, and determining which of these models showed significant fit to neural activity as 

the DO noun was heard, and when and where these effects occur. The verb-weighted noun 

topic RDM contained only topics preferred by both a verb and its DO noun, while the noun 

topic RDM represented the full context-independent semantics of the noun.  

The results reveal a striking contrast in model fit over the noun epoch. The verb-weighted 

noun topic RDM shows significant effects in LIFG and LMTG, beginning around the noun RP 

and continuing through to noun offset (Figs. 5A, 6C). But the context-independent noun topic 

RDM shows no significant model fit at any point throughout the noun epoch (Fig. 5B). This 

seems direct evidence that the DO noun is flexibly interpreted in the context of the semantic 

preferences of its preceding verb. In first-pass processing of the speech input, the semantic 

properties of the word that are not prioritised in the prior context are either only very weakly 

activated, such that they are not detected by the methods used here, or else they are not 

activated at all. 

The issue of how DO noun semantics is selectively activated was addressed by two further 

model RDMs designed to probe different aspects of the processes supporting semantic 

combination. These were the verb and noun interaction RDM (Fig 5C), designed to identify 

the processing mechanisms involved, and the verb constraint error RDM (Fig 5B), which 

tapped into the variations in processing activity generated by the process of integration itself 

- the contact between noun semantic representations and the semantic preferences 

projected by the preceding verb. Both models, as does the verb-weighted noun model, show 

strong model fit in LIFG - in all cases either around or after noun RP.  

The LIFG is widely regarded as a key region for semantic retrieval (47), especially for the 

controlled selection of semantic knowledge (54, 55), and it plays a central role in semantic 

integration in the MUC model (3-6). Different subdivisions of LIFG are generally assigned 

different roles in semantic controlled processing, with BA45 likely to be more involved in 
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selection and integration, while BA 47 is more engaged in semantic retrieval (41-43). 

Consistent with this, the verb-weighted noun topic RDM, which captures the contextualised 

semantic representation generated as the noun is heard, shows effects peaking in BA47 from 

noun RP to noun offset, with varying degrees of anterior and posterior L temporal 

engagement (Figs. 5A, 6C). In contrast, BA45 is more strongly engaged by the verb and noun 

interaction RDM, which generates model fit primarily in BA45 and only extends later to BA47 

(Figs. 5C, 6D), while the verb constraint error RDM similarly shows model fit at noun RP for 

BA45, extending into BA47 over the next 200ms (Figs. 5D, 6E). This is consistent with a 

dominant role for BA45 in the control processes that select contextually relevant semantic 

properties (41). Note, however, that the peak effects of the verb constraint error RDM were 

found in LpMTG (Fig 6D), suggesting its strong involvement in representing the relevant 

semantic properties of the verb and its DO noun during the process of semantic combination. 

The salient role of the LIFG in these noun epoch RDMs is reflected in the directed connectivity 

between LIFG and LMTG (Fig. 8B). Despite the absence of model fits to the DO noun-relevant 

RDMs before DO noun recognition point, information flow between LIFG and LMTG in both 

directions was found from noun onset. Similar to the pattern revealed during the verb epoch, 

information flow from LMTG was rapidly updated with a delay of 20ms, suggesting that 

retrieved lexical-semantic properties were immediately projected to LIFG for further neural 

computations. This finding is consistent with the results of a recent MEG study that specified 

the middle temporal regions as an outflow hub sending widespread output to other language-

relevant brain areas (56). In the opposite direction, information flowing to the left MTG is 

characterised by intermittent occurrence, longer delays and relatively sustained effects as 

long as 100ms. Importantly, however, directed connectivity effects from the LIFG to LMTG 

were already present at DO noun onset, implying that the semantic interpretation of the 

upcoming noun was already subject to probabilistic verb semantic constraints at noun onset. 

While neurocognitive models have highlighted the general role of LIFG in combining individual 

words into larger units (3, 4), these directed connectivity results shed new light on the 

temporal structuring of these processes.      

 

Conclusions 
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In this study, we developed quantitative semantic models based on topic modelling and 

tested them against real-time brain activity recorded by source-localised EMEG using ssRSA, 

to reveal the spatiotemporal neural dynamics of how the prior semantic context drives the 

semantic interpretation of an upcoming noun. Further directed connectivity analysis revealed 

distinct temporal patterns of top-down and bottom-up information flow between critical 

language regions, which reveal the neural mechanisms underpinning an essential property of 

spoken language - our ability to combine sequences of words into meaningful expressions.  
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METHODS 

Participants 

Sixteen right-handed native British English speakers participated in this study (aged 18-39 

years, 10 female) and provided written consent. All participants had normal hearing, and 

none had any pre-existing neurological condition or mental health issues. This study was 

approved by the Cambridge Psychology Research Ethics Committee. 

 

Stimuli 

We constructed 60 sets of six spoken sentences of the form “subject noun phrase (SNP) + 

verb + direct object (DO) noun” (e.g., The elderly man ate the apple). Fourteen different 

human subjects (e.g., man, neighbor) were used to build SNPs modified by an adjective (e.g., 

the elderly man, the next-door neighbor), making them likely to be interpreted as the agent 

of the actions depicted by the verb. The frequent repetition of the same SNP (each was 

repeated 25.7 ± 9.0 times (mean ± std)) was intended to minimize their influence on the 

semantic interpretation of the verb. To generate, in contrast, a wide range of variation in 

constraint between the verb and the DO noun across the stimulus set, three different verbs 

were selected for the six sentences in each set and each verb was paired with 2 different 

concrete DO nouns, giving 360 sentences in total. Verbs were in the past tense, and there was 

a determiner (‘the’) between the verb and its DO noun. All the verbs used in this study had a 

strong preference for a DO complement phrase according to their subcategorization (SCF) 

distribution provided by VALEX (57) (average probability of DO SCF = 0.60 ± 0.17). Thus, we 

constructed sentences in which the combined meaning of the verb and DO noun is highly 

semantically transparent in the sense that the semantic relationships between them are 

consistent with the syntactic structure (7), and where this syntactic structure (as simple active 

declarative sentences) was held constant across the stimulus set. For each DO noun, the 3 

verbs varied in both the content and strength of their semantic constraints. Verb constraint 

strength was quantified by verb topic entropy (Fig. S4; see further description in topic 

modelling section). The lemma frequency, familiarity and imageability are, respectively, 106.5 

± 240.4, 519.2 ± 72.5 and 456.3.5 ± 96.1 for the verbs, and 55.1 ± 62.7, 559.9 ± 52.1 and 605.5 
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± 31.1 for the DO nouns. Lemma frequency was obtained from CELEX (37), familiarity and 

imageability were obtained from MRC psycholinguistic database (58).  

 

Procedure 

Participants were required to listen attentively and to answer occasional questions which 

appeared on the screen in front of them with a response box to maintain alertness (treated 

as filler trials). These filler trials were excluded from the subsequent analyses.  Instructions 

were visually presented on a monitor screen situated in front of the participant. Auditory 

stimuli were delivered binaurally through MEG-compatible ER3A insert earphones (Etymotic 

Research Inc., IL, USA). There was a 26ms ± 2ms delay in sound delivery due to the 

transmission of auditory signal from the stimulus computer to participants’ ears. To ensure 

that participants were able to hear the stimuli through both earphones, a short hearing test 

was conducted before the main experiment.  

The experimental stimuli (360 spoken sentences) were equally divided into four blocks with 

90 experimental trials in each. To maintain participants’ attention, the experimental trials in 

each block were interspersed with 9 filler trials consisting of questions related to the 

preceding sentence. These questions were presented in written form on the monitor screen 

and a ‘yes’ or ‘no’ response was required. Each filler trial was followed by an additional filler 

sentence to ensure no residual task effects would be picked up in the next experimental trial. 

The order of blocks as well as that of trials within blocks were pseudorandomized across 

participants. Each experimental trial began with a fixation cross presented at the centre of 

the screen for 650ms which was followed by a variable gap (750ms or 1350ms) before 

sentence onset. Participants were asked to avoid blinking while they were listening to 

sentences, there was silence for 1000ms at the end of each sentence followed by a ‘blink’ cue 

that lasted for 1400ms during which participants could blink. E-Prime Studio version 2 

(Psychology Software Tools Inc., PA, USA) was used to present stimuli and record participants’ 

responses. 

 

Gating pre-test 
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We used a behavioural gating task (39, 40) to determine the recognition point (RP) of the DO 

noun in the sentential context. The RP is the point in speech input at which the word can be 

uniquely differentiated from its phonological competitors and therefore the point at which 

the word is recognized (36). Twenty-four native British English speakers (aged 18-40) who did 

not participate in the main experiment were recruited for the gating test. The same sentences 

used in the main experiment were presented in 50ms segments from the onset of the DO 

noun. For example, participants heard ”The elderly man ate the...”, ”The elderly man ate the 

a...", ”The elderly man ate the app..." over headphones in a sound-attenuated room. They 

were required to provide a continuation word with a confidence score scaled from 1 to 7 

(where 1 = not confident at all, 7 = very confident). The same sentence was repeated with 

increasing increments of 50ms until the participant provided the same response with a 

confidence score of 7 twice. Noun RP was defined as the gate where 80% of participants gave 

the correct response twice in a row.  

 

EMEG and MRI acquisition 

Participants were seated in a magnetically shielded room (IMEDCO GMBH, Switzerland) with 

their head placed in the helmet of the MEG scanner. MEG data were collected using a 

Neuromag Vector View system (Elekta, Helsinki, Finland) with 102 magnetometers and 204 

planar gradiometers at 1kHz sampling rate. Simultaneous EEG was recorded at 1kHz sampling 

rate from 70 Ag-AgCl electrodes within an elastic cap (ESACYCAP GmbH, Herrsching-

Breitbrunn, Germany). Vertical and horizontal eye movements were recorded by two EOG 

electrodes attached below and lateral to the left eye, cardiac signals were recorded by two 

ECG electrodes attached separately to the right shoulder blade and left torso. Five head 

position indicator (HPI) coils were used to monitor head motion. A 3D digitizer was used to 

record the position of EEG electrodes, HPI coils and approximately 100-150 head points on 

participants’ scalp relative to the 3 anatomical fiducials (i.e., nasion and bilateral preauricular 

points). To source localize EMEG data, T1-weighted MPRAGE structural MRI image with 1mm 

isotropic resolution was acquired using a Siemens Prisma 3T scanner (Siemens, Erlangen, 

Germany). All EMEG and MRI data were collected at the MRC Cognition and Brain Sciences 

Unit, University of Cambridge. 
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EMEG preprocessing and source localization 

Maxfilter (Elekta, Helsinki, Finland) was applied to raw MEG data for bad channel removal and 

head-motion compensation. Signals outside the brain were removed using the temporal 

extension of signal-space separation (59). EMEG data were then down-sampled to 500Hz. 

Independent component analysis (ICA) was conducted using EEGLAB (SCCN, UCSD), 

components related to blink, eye-movement and physiological noises were removed 

according to the correlation with EOG, ECG signals and further visual inspection. The following 

preprocessing steps were conducted using SPM12 (Wellcome Trust Centre for Neuroimaging, 

UCL). A low-pass 5th order bidirectional Butterworth filter at 40Hz was applied to ICA de-

artifacted EMEG data. Two epochs were extracted from continuous data with auditory 

delivery delay corrected, one was aligned to verb onset and extended to 600ms afterwards, 

the other was aligned to noun onset and extended to 640ms afterwards. Epoch length was 

determined by the summation of the mean and one standard deviation of the duration of the 

verb or DO noun speech input (verb: 487ms ± 116ms, DO noun: 523ms ± 114ms). Baseline 

correction was performed by subtracting the time-averaged signal of a silent period (i.e., -

200ms to 0ms relative to sentence onset) from the epoched data. Finally, automatic artefact 

rejection was conducted to exclude trials with signals that exceeded amplitude thresholds (60 

ft/mm for gradiometers, 3000 ft for magnetometers and 200uV for EEG electrodes). The 

mean ratio of rejected trial was 4.5% for the verb epoch and 5.2% for the noun epoch. 

EMEG data source localization was performed using SPM12. Source space was modelled by a 

cortical mesh consisting of 8196 vertices. The sensor positions were co-registered to 

individual T1-weighted structural image by aligning fiducials and the digitized head shape to 

the outer scalp mesh. MEG forward model was constructed using the single-shell model (60), 

while EEG forward model was built using the boundary element model (61). Inversion of 

EMEG data was conducted for verb epoch and noun epoch separately using the least-squares 

minimum norm method (62) and an empirical Bayesian MEG and EEG data fusion scheme (63) 

implemented in SPM12. In general, MEG is insensitive to radially oriented sources which are 

prominent in EEG, while EEG suffers from relatively lower spatial resolution in source 

localization due to distortion caused by heterogeneous electrical conductivity through the 

skull and scalp. The combination of EEG and MEG gives more accurate reconstructions by 

integrating the complementary information provided by the two modalities (63-66). 
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Topic modelling  

Topic modelling was adopted in a novel way to quantify verb and DO noun semantics. The 

specific topic modelling algorithm we used was Latent Dirichlet Allocation (LDA) (31). LDA is 

a generative probabilistic model originally proposed to discover the latent semantic topics 

within massive collections of documents(18). Topics are represented by multinomial 

distributions over the whole vocabulary consisting of words from all documents in large-scale 

corpora. The generative process of topic modelling assumes that each document is created 

by first being assigned with a distribution over topics, then each word in this document is 

chosen from a topic selected according to this document’s distribution over topics. The 

training of LDA aims at revealing the hidden topics and each document’s distribution over 

topics.  

Given the distributional hypothesis of semantics, that is, words that are used and occur in the 

same contexts tend to have similar meanings (67, 68), LDA was used to quantify a verb’s 

semantic constraints based on its co-occurrence frequency with DO nouns. Specifically, we 

used the Local Mutual Information (LMI) from the Distributional Memory tensor (32) which is 

calculated based on the raw co-occurrence frequency count between a verb and its DO noun 

and has considerable computational advantages (e.g., it avoids bias towards overestimating 

the significance of low-frequency items). Based on the co-occurrence frequency (i.e., LMI 

value) between a verb and its DO nouns, we can construct a verb document which includes 

all the DO nouns of this particular verb. In such a verb document, each DO noun is repeated 

N times, where N is the co-occurrence frequency between the verb and this DO noun. Hence, 

a verb document depicts the semantic constraints of this verb through the DO nouns with 

which it co-occurs in large-scale corpora. The training of LDA was restricted to the relationship 

between a verb and its DO nouns with the intention of focusing on semantic modelling by 

keeping the syntactic structure constant (i.e., verb and DO noun). Note that although the verb 

document is not a realistic document, the verb and DO noun co-occurrence embedded in it is 

indeed extracted from real corpora containing 2.83 billion tokens (32). The training data set 

consisted of 4,217 verb documents (all transitive verbs with a non-zero DO SCF probability 

according to VALEX) with a vocabulary of 20,373 DO nouns (92.5 million tokens) from the 
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corpora. The topics inferred from these verb documents constitute a semantic space in which 

each verb’s semantics can be characterized by a verb topic vector (i.e., the unique distribution 

over topics given a verb, 𝑃(𝑡𝑜𝑝𝑖𝑐|𝑣𝑒𝑟𝑏)). On the other hand, the multinomial distribution of 

topics provides the probability of each DO noun given a certain topic, 𝑃(𝐷𝑂 𝑛𝑜𝑢𝑛|𝑡𝑜𝑝𝑖𝑐). By 

applying Bayes’ theorem, we can also obtain the distribution over topics given a DO noun.  

𝑃(𝑡𝑜𝑝𝑖𝑐|𝐷𝑂 𝑛𝑜𝑢𝑛) = 𝑃(𝐷𝑂 𝑛𝑜𝑢𝑛|𝑡𝑜𝑝𝑖𝑐) × 𝑃(𝑡𝑜𝑝𝑖𝑐)/𝑃(𝐷𝑂 𝑛𝑜𝑢𝑛) 

Thus, noun semantics can be represented by a noun topic vector. By doing so, verb and noun 

semantics were represented using the same set of topics.  

Topic modelling was conducted using an open-source implementation of Bayesian variational 

method for LDA (https://github.com/blei-lab/lda-c). The optimal number of topics was 

determined by evaluating the results for topic models with different topic numbers (SI 

Appendix, Section 4). As mentioned above, each topic is a distribution over the whole 

vocabulary from the corpora, however, the degree of semantic dispersion can vary across 

topics, which potentially undermines the estimation of topic entropy (see definition in 

Cognitive models). For example, the entropy of a verb with less specific semantic constraints 

(e.g., want, like) could be underestimated if the uncertainty of its constraints is reflected by 

the preference for only a few less informative topics (i.e., a more concentrated pattern over 

topics) which leads to a low entropy value. We quantified the informativeness of each topic 

and applied it to the loading of this topic in both verb and noun topic vectors to alleviate the 

semantic dispersion across topics (see SI Appendix, Section 5).   

 

Cognitive models 

A series of computational cognitive models were constructed using verb and noun topic 

vectors obtained from LDA. Verb topic vectors provide information about both the content 

of constraints (i.e., which topics are preferred) and the strength of constraints (i.e., whether 

they show a focused or distributed pattern over topics). The strength of semantic constraints 

can be isolated by calculating the entropy embedded in the verb topic vector. 

𝐻(𝑣) = − ∑ 𝑃𝑖 ⋅ 𝑙𝑜𝑔(𝑃𝑖)

𝑖
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Here 𝑃𝑖  is the probability (i.e., normalized loading) of the 𝑖th topic for verb 𝑣.  

The verb topic RDM was constructed by calculating the cosine distance between verb topic 

vectors, while the verb topic entropy RDM was a difference matrix constructed by calculating 

the absolute difference between the entropy values of verb topic vectors. The noun topic 

RDM which captures the semantics of DO nouns was constructed by calculating the cosine 

distance between noun topic vectors. To model the verb-constrained DO noun semantic 

representation, we built the verb-weighted noun topic RDM through element-by-element 

multiplication between verb topic vector and noun topic vector. Thus, within the noun topic 

vector, only topics preferred by both the verb and the DO noun are preserved, while those 

irrelevant to the verb are suppressed. The cosine distance between verb-weighted noun topic 

vectors was used to construct the verb-weighted noun topic RDM which captured the 

semantic representation of a DO noun in the context of the preceding verb. 

In a further analysis, we also partialled out both verb and noun topic RDMs from the verb-

weighted noun topic RDM on the hypothesis that any remaining effects would be due to the 

interaction between the verb and DO noun semantics. Finally, we quantified the ease of fitting 

the noun into the semantic constraints of the preceding verb by calculating verb constraint 

error, which was defined as the cosine distance between the verb topic vector and noun topic 

vector. The smaller the verb constraint error, the easier it is to fit the noun into the verb 

semantic constraints. The verb constraint error RDM was a difference matrix constructed by 

calculating the absolute difference between verb constraint error values of different verb and 

DO noun combinations. All of the model RDMs described above had the same matrix size (360 

x 360), each off-diagonal element indicates the dissimilarity between two of the 360 spoken 

sentences the participants were exposed to. 

 

Spatio-temporal searchlight representational similarity analysis (ssRSA) 

The ssRSA method combines both temporal and spatial multivariate patterns to reveal the 

neural substrates underlying cognitive processes by correlating the dissimilarity generated by 

cognitive models with the dissimilarity generated by the corresponding brain activity (19, 20). 

We used a spatio-temporal searchlight with a 10mm spatial radius and 30ms temporal radius 
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(i.e., a 60ms sliding time window) which was mapped across the source space of EMEG. The 

ssRSA analysis was restricted to a bilateral language mask that covered regions that have been 

consistently reported in studies on language processing, including bilateral temporal cortex, 

inferior frontal gyrus, supramarginal gyrus, and angular gyrus (33-35). To construct data RDMs 

for each searchlight, we composed data vectors by extracting source-localized EMEG data 

corresponding to each of the 360 spoken sentences and calculated the pairwise Pearson’s 

correlation distance (i.e., 1 - Pearson’s r) among them, which resulted in a 360 x 360 data 

RDM. Multivariate normalisation was applied to data RDMs to improve the reliability of 

distance measures and reduce the task-irrelevant heteroscedastic structure across trials and 

vertices (69). The data RDM of a searchlight centred at each vertex and time-point was 

compared against the cognitive model RDMs using Spearman’s rank correlation, which 

resulted in a time-course of model fit for each vertex. In the verb epoch, we tested verb topic 

RDM and verb topic entropy RDM. In the noun epoch, we tested verb-weighted noun topic 

RDM, noun topic RDM, verb & noun interaction RDM (partialling out both verb and noun topic 

RDMs from verb-weighted noun topic RDM) and verb constraint error RDM. For each time 

point, a one-tailed one-sample t-test was conducted at each vertex with the fits of all 

participants for one model RDM to test whether the mean model fit is larger than zero. Cluster 

permutation tests were performed for multiple comparison correction with 5000 

nonparametric permutations (38), vertex-wise p<0.01 and cluster-wise p<0.05. 

 

Information flow between brain regions 

To reveal how information is transferred between brain regions, we calculated directed 

connectivity based on the data RDMs of two regions that showed significant model fits for a 

specific model RDM (21, 22). The logic is that if region A has causal effects on region B, then 

the activity of A at a previous time point could be used to explain the current activity in B 

better than simply using the previous activity of B alone. We define the data RDM of region X 

at time point t as D(X, t), the directed connectivity from A to B is quantified as the partial 

correlation coefficient between D(A, t-dt) and D(B, t) partialling out D(B, t-dt), where dt is the 

time interval between the current time-point and the previous time-point used to calculate 

directed connectivity. To avoid bias due to the choice of dt, we calculated directed 
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connectivity with a series of dt ranging from 2ms to 120ms, which precisely described the 

onset and duration of the directed connectivity between two brain regions. Note that data 

RDMs were re-calculated by only using data at each time-point instead of that within a sliding 

time-window to avoid contamination from neighboring time-points. ROIs were determined 

by selecting the 100 most significant vertices, as quantified by the summation of t-values (for 

a particular model RDM) at each significant time-point within an epoch, restricted to the 

anatomical areas defined by the automated anatomical labeling (AAL) template (70).  

 

Data availability 

Scripts and data used in this study are available upon request.  
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Fig. 1 Example of topic modelling results. Each verb (upper panel, e.g., eat) is represented as 

a distribution over 200 semantic topics (middle panel, P(topic|verb)), which reflects its 

semantic constraints over the DO noun. Each topic is a distribution over the vocabulary 

consisting of all the DO nouns from the large-scale corpora (lower panel, P(DO noun|topic)). 

Moreover, the meaning of a topic can be readily interpreted by the top words ranked by 

probability (e.g., topic #50 is a food topic). 
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Fig. 2 Example of verb (left panel) and noun (middle panel) topic vectors that separately 

capture verb semantic constraints and DO noun semantics. The verb-weighted noun topic 

vector (right panel) models the meaning of the DO noun in the context of a prior verb by 

emphasising topics that are preferred by the preceding verb through element-by-element 

multiplication between verb and noun topic vectors.  
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Fig. 3 Illustration of the pipeline for ssRSA which correlates the dissimilarity generated by 

topic modelling (i.e., model RDM) and that encoded by brain activity (i.e., data RDM) using a 

spatio-temporal searchlight moving within a bilateral language mask at each time-point 

during speech input. Model fits reflect when and where the information captured by the 

model is represented in the brain. ssRSA: spatio-temporal searchlight representational 

similarity analysis, RDM: representational dissimilarity matrix. 
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Fig. 4 ssRSA results of model RDMs during the verb epoch (aligned to verb onset, extending 

600ms afterwards to cover one standard deviation of verb duration). (A) Verb topic RDM that 

captured verb semantics. (B) Verb topic entropy RDM that modelled the strength of a verb’s 

semantic constraints. Significance was determined by 5000 nonparametric permutations with 

vertex-wise p<0.01 and cluster-wise p<0.05. Horizontal orange bars indicate periods during 

which different model RDMs showed significant effects. Grey shading indicates the range of 

one standard deviation for verb RP and verb offset. ssRSA: spatio-temporal searchlight 

representational similarity; RP: recognition point. 
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Fig. 5 ssRSA results of model RDMs during the noun epoch (aligned to noun onset, extending 

forward by 640ms to cover one standard deviation of noun duration). (A) Verb-weighted noun 

topic RDM that captured noun semantics as modified by the prior verb. (B) Noun topic RDM 

that modelled the context-independent semantics of the DO noun. (C) Verb & noun 

interaction RDM reflecting the interaction between verb and noun semantics. (D) Verb 

constraint error RDM that measured the ease with which the DO noun fits into the semantic 

constraints placed by the prior verb. Significance was determined by 5000 nonparametric 

permutations with vertex-wise p<0.01 and cluster-wise p<0.05. Horizontal orange bars 

indicate significant periods for different model RDMs. The grey shading indicates the range of 

one standard deviation for noun RP and noun offset. ssRSA: spatio-temporal searchlight 

representational similarity, DO: direct object, RP: recognition point. 
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Fig. 6 Vertex-wise peak t-value and significance duration of model RDMs during the verb 

epoch: (A) verb topic RDM, (B) verb topic entropy RDM, and during the noun epoch: (C) verb-

weight noun topic RDM, (D) verb & noun interaction RDM, (E) verb constraint error RDM.  
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Fig. 7 Directed connectivity analysis based on data RDMs constructed separately from two 

brain regions. Left panel: The logic is that if region A has causal effects on region B, then the 

activity of A at a previous time point can be used to explain the current activity in B better 

than only using the previous activity of B alone, which is quantified by the partial correlation 

coefficients. Right panel: the horizontal axis indicates the real-time by which the speech 

unfolds, the vertical axis indicates the time interval between the current time-point and the 

previous time-point used to calculate directed connectivity, thereby providing additional 

temporal information about the onset and duration of directed connectivity. t0: current time-

point, dt: time interval between current and previous time-points. 
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Fig. 8 Directed connectivity results between (A) L SMG/AG and LpMTG that showed significant 

model fit to the verb topic RDM during the verb epoch, (B) LIFG and LMTG that exhibited 

significant model fits to the verb-weighted noun topic RDM during the noun epoch. 

Significance was determined by 5000 nonparametric permutations with timepoint-wise 

p<0.001 and cluster-wise p<0.01. dt: time interval between the current time-point and the 

previous time-point used to calculate directed connectivity, PCC: partial correlation 

coefficient. 

 


