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Pseudo Ray-Tracing: Deep Leaning Assisted
Outdoor mm-Wave Path Loss Prediction

Kehai Qiu, Student Member, IEEE, Stefanos Bakirtzis, Member, IEEE, Hui Song, Jie Zhang, Senior Member,
IEEE, and Ian Wassell

Abstract—In this letter we present our results on how deep
learning can be leveraged for outdoor path loss prediction in the
30GHz band. In particular, we exploit deep learning to boost the
performance of outdoor path loss prediction in an end-to-end
manner. In contrast to existing 3D ray tracing approaches that
use geometrical information to model physical radio propagation
phenomena, the proposed deep learning-based approach predicts
outdoor path loss in the urban 5G scenario directly. To achieve
this, a deep learning model is first trained offline using the data
generated from simulations utilizing a 3D ray tracing approach.
Our simulation results have revealed that the deep learning based
approach can deliver outdoor path loss prediction in the 5G
scenario with a performance comparable to a state-of-the-art
3D ray tracing simulator. Furthermore, the deep learning-based
approach is 30 times faster than the ray tracing approach.

Index Terms—Ray tracing, radio propagation, deep learning,
covolutional neural network, 5G.

I. INTRODUCTION

IRELESS network planning entails conducting multi-
Wple simulations to identify signal coverage and signal
strength, such that the best location for the base station
can be found while minimizing deployment resources. The
tools employed to accomplish this task typically build on ei-
ther empirical or deterministic propagation models. Empirical
propagation models leverage observations and measurements
to estimate the path loss in particular environments and were
favored owing to their speed, despite their lack of accuracy [1].
On the other hand, deterministic propagation models can be
more accurate, but they require detailed site-specific informa-
tion of each propagation environment. Three dimensional (3D)
ray tracing, which is based on the geometrical optics approx-
imation, is one of the state-of-the-art deterministic path loss
modeling methods [2]. At the high frequency limit, Maxwell’s
equation can be transformed into an eikonal and a transport
equation. Then, the propagating fields can be approximated as
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rays or ray-tubes, whose phase and amplitude are estimated
through the eikonal and the transport equation, respectively
[3]. Ray tracing simulations can provide high-accuracy esti-
mates of the wireless channel characteristics, however, they
require significantly larger computational resources.

More recently, the use of artificial neural networks (ANNs)
in radio propagation modeling has become popular [4], [5].
Such models can acquire and generalize knowledge through
experience, and they have been considered for the prediction of
the received signal strength or the path loss in outdoor environ-
ments. By using layered network structures and raw data, one
can automate feature engineering, however, the performance
of adaptive models such as ANNSs is limited by the features
used. Hence, the utilization of deep learning in wireless com-
munication has been documented by several authors [6]-[10].
In 2019, Imai et al. [8] proposed a convolutional neural
network (CNN)-based radio propagation modeling method,
which focused primarily on short range environmental factors,
i.e., those within 128 meters of the transmitter. The proposed
model yielded a modest root-mean-square error of 10 decibels
(dB). In [9] Levie et al. introduced RadioUNet as a method
for estimating path loss, considering only the Dominant Path
Model and a limited number of reflections, ignoring other
paths with relatively small energies. Ozyegen et al. [10]
also explored use of the U-Net architectures with inception
modules for fast radio propagation prediction. However, due
to the localized receptive field of U-Net like architectures,
long distance dependence between transmitter and receiver are
ignored.

In this paper, a path loss-Prediction-Net (PPNet) is proposed
along with a unique post-processing method for fast and
reliable urban path loss prediction. Motivated by Zhang et
al. [11], we utilized a 3D ray tracing simulator to generate a
path loss data set in urban scenarios. The major contributions
of this paper can be summarized as follows.

1. A novel map pre-processing method is introduced, in
which information regarding the city layout and the distance
between the receiver and the transmitter is conveyed through
the input tensor. In addition, the location of the transmitter
is represented using a Gaussian kernel which boosts training
efficiency and benefits accuracy of prediction.

2. We introduced a deep learning-based propagation model
that can accurately estimate the path loss for varying outdoor
environments and various location of the serving base station.
The data set used for training is collected from simulation in-
spired by [11] and it poses a difficult path loss prediction task,
requiring a methodology that can yield accurate predictions in



previously unacquainted environments.

3. Building on the efficiency and the robustness of the
SegNet architecture [12], PPNet guarantees rapid and reliable
path loss prediction. In particular, it employs a modified
pooling method that memorizes the initial location of pixels in
high-level feature maps, and consequently exploits these maps
during the up-sample phase to achieve a higher edge resolution
in the prediction.

II. DATA COLLECTION AND DATA POST-PROCESSING
A. Data Collection

Our fixed-region data set contains 50,000 samples, each
representing a radio propagation scenario in a 1140 m by
1140 m area with a resolution of 5 meters in both directions.
To train our model, we simulated the path loss for multiple
outdoor environments, an example of which is shown in Fig. 1,
generated by 3D-ray-tracing software (Ranplan Professional).
The grid size for each sample is W x H = 228 x 228 pixels,
and the color density of each pixel represents the path loss,
i.e., the difference between the transmitting signal strength and
the actual received signal strength measured in dB in a 5x5
m? area. To augment our data set, we randomly rotate each
input and target image by 90°, 180° or 270°, hence effectively
increasing the size of our training data set the by a factor of
3.

Signal Coverage Map

Pathloss(dB)
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Fig. 1. Sample of signal coverage map.

B. Data Post-Processing

We then processed each sample to yield two equal-sized 2D
images, one with three layers and one with a single layer. The
single-layer image is used as the target output tensor of our
model and it comprises the values of the path loss for each city
layout, simulated via a 3D ray-tracer. The three-layer image
conveys information related to the geometry of the problem
and it is used as our model’s input. An example of the input
image is shown in Fig. 2. The first layer (blue channel) depicts
the city layout, where the height of each building is encoded
via the blue color pixel intensity. The second layer indicates

the location of the transmitter, representing it as a green dot,
enlarged through to the use of a 2D Gaussian kernel:

X5 +y
G(x,y) = 1 ¢ 202 1
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where x4 and y, are the distance from the transmitter in the
horizontal and vertical dimension, respectively, and o is the
standard deviation of the Gaussian distribution. After fine-
tuning, o was selected to be equal to 3. Through (1), we
can fuse to the input tensor a surface whose contours are
concentric circles with a Gaussian distribution from the center
of transmitter, and thus better highlight the transmitter location
information, avoiding the use of a sparse matrix in this layer.

The third layer is the positional encoding layer, where the
distance from the transmitter is represented by the intensity of
the red color. This layer helps our model to have a better
understanding regarding the impact of distance on signal
attenuation. The three-layer image is used as the input for
the model training phase.

(® Transmitter m Buildings mmm Positional Encoding ]

Fig. 2. Example of the three-channel input tensor.

Our goal is to transform the three-layer input image into a
radio coverage map at the form shown in Fig. 1. As mentioned,
the path loss within the simulated grid is calculated through a
ray tracing simulator which is used to train our model at the
first stage. This task is similar to semantic segmentation with
one major difference. In semantic segmentation the predicted
per pixel values are discrete and they represent a certain
classification class, while in our case, they are real numbers
representing continuous path loss values. To address this
problem, in our work we divided the path loss value into 150
classes from 0 dB to 150 dB, where each class represents a
range of path loss values within 1 dB. We have found that such
treatment enables a faster optimization of the loss function and
more accurate path loss predictions, since our model is called
to choose between a limited number of discrete values, instead
of performing a regression over continuous path loss values.
We note that the fine granularity, i.e., 1 dB of the simulated
path loss prediction values has a negligible impact on the
wireless network design decisions. For all the simulations we
use omnidirectional antennas for transmission and reception,
and the transmitting frequency is 30 GHz. The base station



transmitting power and height of the antenna are 30 dBm and
25 m, respectively. The receive antenna is at the height of 1.5
m above the ground level.

III. MODEL SELECTION AND TRAINING

In order to predict path loss in outdoor environments, we
employed two CNNs: (i) U-Net, which is used in some
previous works [10], [12] and (ii) the PPNet which builds
on the SegNet architecture. Both SegNet and U-Net are fully
convolutional encoder-decoders, designed to perform a pixel-
by-pixel transformation of input image to a target output
image through supervised learning. By removing all fully
connected layers in both network architectures, the number
of trainable parameters is significantly reduced, resulting in
improved computational efficiency. Also, fully convolutional
networks (FCN)-based architecture enables the model to work
with scenarios of a non-fixed size that helps generalization to
a non-fixed size region data set.
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[0 N

6464 64 128128128 256256256 512 512512512 512512512256 256 256256 128 12812864 64 64

[ comenniran ]
Down Sampling

[ Upsampling__|

Fig. 3. An illustration of the SegNet [12] architecture used to implement the
PPNet.

The SegNet architecture shown in Fig. 3 passes the pooling
indices from the compression path to the expansion path,
enabling less memory to be used while keeping location
information during up-sampling. Also, in our specific task,
pooling indices help the model capture the information related
to the geographical location. From now on we will refer to the
deep learning-based propagation model that leverages SegNet
and applies the data post-processing outlined at Section II.B
as PPNet. The difference between the pooling layers of PPNet
and other conventional fully convolutional networks, such
as U-Net, is shown in Fig. 4. The max-pooling layer in
conventional FCN, such as U-Net, only passes the largest
values to the next layer, therefore, the precise locations of
the path loss values are missing during the decoding phase.
However, in PPNet the pooling layers keep the locations
of the largest value and use them in the decoding phase.
This allows our deep learning-based propagation model to
benefit from the geometrical information and consequently
outperformed U-Net based approaches. We note that the U-
Net architecture, shown in Fig. 5, transfers feature maps with
different resolution from the encoding to the decoding path.
This helps the model to capture correlations of the input
image at different scales but at the cost of losing geographical
information.

To evaluate the performance ouf model we use the mean
average error (MAE) and the root-mean-squared error (RMSE)
the defined as:
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Fig. 4. Max-pooling indices (first introduced in SegNet).
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Fig. 5. An illustration of the U-Net architecture.
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Our model is trained with 50,000 samples, and the resolu-
tion of input and output images is the same. The data set is
divided into a training set and a validation set according to
the ratio of 7:3. All the models are trained on an NVIDIA
RTX3090 24GB GPU with a batch size of 8. The loss
function to be optimized is the cross-entropy, and we use the
Adam optimization algorithm with initial learning rate equal
to 0.001, and the exponential decay rates set to 0.9 and 0.999,
respectively [13].

IV. RESULTS AND ANALYSIS

The simulated and predicted coverage maps for nine test set
samples are shown in Fig 6, which shows the ground truth,
prediction and the absolute error between the ground truth
and the predicted path loss, for both known and unknown
geometries. As can be observed, the widely adopted U-Net
model gives acceptable prediction results in open areas while
the prediction accuracy is poor close to the building edges and
in dense areas. Also, as the distance between transmitter and
receiver increases, the quality of prediction generated by U-
Net deteriorates significantly due to its limited receptive field.

We also tested the performance of our proposed post-
processing method in a quantitive way and compared them
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Fig. 6. Ground Truth, Prediction and Difference results (dB scale) for PPNet
(top) and U-Net (bottom).

with U-Net. The performance of the models is presented in
Table I. As can be seen, the PPNet with pooling indices
exhibits a stronger generalization ability and it can model
better the path loss. In addition, it can be seen from the
result of ablation experiments, our model also benefits from
the positional encoding and the Gaussian kernel assisted pre-
processing.

TABLE I
PERFORMANCE OF MODELS
Model MAE (dB) RMSE (dB)
U-Net 3.29 8.22
PPNet w/o. Positional Encoding 1.14 6.08
PPNet w/o. Guassian Kernal 1.27 6.12
PPNet 1.08 5.78

As mentioned previously, we also calculated the accuracy
of our path loss prediction for different values of the error
tolerance. We consider the prediction to be accurate if the
error between prediction and ground truth in one cell (5§ X 5
m2) is lower than the tolerance level, and define the prediction
reliability to be the number of accurate cells divided by the
total number of cells in one prediction. In this case, PPNet
improves average prediction reliability by more than 10%
compared to that of U-Net, for each tolerance level. Also,
attributable to the end-to-end encoding decoding process, our
proposed PPNet significantly improves the speed of prediction
compared with a 3D ray tracing approach. For our tested urban
scenarios, our proposed method takes 1.5 s to complete, while
the 3D ray tracing method takes 49.6 s. Thus, the prediction
speed is improved by a factor in excess of 30.

V. CONCLUSIONS

In this letter, the SegNet architecture, which enhances the
operation of pooling layers through max-pooling indices, is
leveraged to create a deep learning-based propagation model
that can be used for fast and reliable urban scale path loss
prediction. We demonstrate that the SegNet architecture, which
was originally used for semantic segmentation, can be also
exploited in the field of radio propagation modeling, outper-
forming other state-of-the-art architectures used in previous
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Fig. 7. Pathloss prediction accuracy with different error tolerance of PPNet
and UNet

work. The performance of our model is augmented via the
positional encoding and the Gaussian kernel layer used during
the data pre-processing phase. That helps our model generalize
better and improves the accuracy of its prediction. Experimen-
tal results show that our method significantly improves the
accuracy compared with other U-Net based methods and also
provides a rapid path loss prediction compared with the 3D-
ray-tracer.
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