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Abstract 

Holography is an advanced three-dimensional (3D) imaging and visualisation technology 

capable of reconstructing realistic 3D scenes. Despite decades of concentrated effort, 

holographic 3D displays are still struggling to meet the demands required for a consumer-ready 

solution. This thesis addresses technical challenges in the practical implementation and focuses 

specifically on potential image quality improvements based on algorithmic development.  

The thesis builds a holographic display system prototype and reconstructs established 3D 

scenes and real-world scenes using commercially available RGB-D cameras. By closely 

examining the reconstructed images, experimental reconstruction issues are evaluated. Given 

that image quality degradation is one of the significant issues in holographic displays, the 

gradient descent method is introduced to phase-only CGH optimisation. Contemporary image 

quality metrics (IQMs) considering human visual systems are employed as loss functions to 

improve the reconstructed image quality. Extensive objective and subjective assessment of 

experimentally reconstructed images reveal that the perceived quality improves considerably 

should the appropriate IQM loss be selected. Finally, the gradient descent method is extended 

to 3D hologram generation. While previous work optimises 3D CGH generation primarily on 

the in-focus region, this research further combines the method with an incoherent imaging 

module and a reformulated loss function to improve the defocus effect without sacrificing in-

focus image quality. The experimentally acquired result demonstrates its effectiveness in 

reconstructing realistic 3D images beyond the capabilities of existing 3D hologram generation 

algorithms. 
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Chapter 1 Introduction 

1.1 Holography: Historical View 

In recent years, 3D imaging and visualisation applications have attracted considerable attention 

in virtual and augmented reality, medical, architecture and human-computer interaction. 

Among the many promising technologies in this area, holography stands out for its ability to 

precisely generate arbitrary wavefronts that resemble realistic 3D scenes. Initially invented in 

1948, Gabor proposed holography as a solution for wavefront recording in electron 

microscopy [1]. The term “holography” is derived from the Greek word “holos”, which means 

to contain all information: it includes the amplitude and phase information of the object light 

wave. However, the necessity that the object and reference wave be coherent restricted its 

applicability until the mid-1960s holographic explosion, thanks to the development of laser by 

Yuri Denisyuk [2]. Leith and Upatnieks recorded the first hologram of a three-dimensional 

object in 1964 as a by-product of radar research [3,4], sparking the beginning of the 

holographic technique revolution. 

Analog optical holography uses light wave diffraction and interference to record fringe patterns 

on photosensitive materials. The fringe pattern, also known as a hologram, comprises both the 

amplitude and phase information of the light wave emanating from the object. When 

illuminated by a reference light, a hologram can reconstruct the object light faithfully. This 

optical recording and reconstruction process is purely analogue, inspiring the idea of 

computational holography that can directly generate holograms on computers by simulating 

the physical light propagation and interference of the object light [5–7]. The replacement of 

optical recording with electronic recording leads the computer-generated holograms (CGHs) 

in compact and digital formats. CGHs can recreate realistic 3D images both digitally and 

optically.  
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1.2 Other 3D Display Technologies 

Before introducing the fundamental concept of holography, it is useful to briefly recapitulate 

other typical 3D display technologies. Numerous comprehensive books and reviews on this 

topic [8–12] comprise a substantial body of research in this fascinating field. The primary goal 

of this section is to illustrate the general concepts behind popular 3D display technologies 

rather than detailing specific display designs or implementations. 

Stereoscopy served as the very first strategy developed for the challenge of recording and 

displaying 3D images. Stereoscopic displays exploit the binocular human visual system (HVS) 

by inducing binocular disparity to stimulate depth perception. The display systems require 

users to wear special eyeglasses so that two slightly different views can be delivered to each 

eye. The first stereoscope was proposed in 1838 [13]. Later, colour and polarisation were used 

to encode stereo image pairs and deliver left- and right-eye views [14–16].  

Autostereoscopic displays are also based on stereoscopy but without using special glasses. The 

display systems of this type are realised by different strategies, including using a parallax 

barrier or a lenticular sheet, attempting to provide a fixed viewing zone for one eye while 

blocking it from the other [17,18].  

Multi-view displays convert 3D images into a range of sub-viewing zones in the horizontal 

direction, offering multiple stereoscopic perspectives for one or multiple observers. Despite 

providing a small degree of motion parallax during observer movement, multi-view displays 

have the drawback of flipping when crossing viewing zones and suffer from limited display 

resolution due to the spatially multiplexed design [8].  

However, a crucial issue that may rule out these stereoscopic displays being the perfect 3D 

display technology is the vergence and accommodation conflict (VAC) [19]. Vergence refers 

to the inward or outward rotation of the eyes required to align the images from each eye to 

create the perception of depth. Accommodation, on the other hand, refers to the ability of the 

eye to adjust its focus to different distances. This conflict arises because stimulated 3D images 

are generated on the screen but not at the focusing distance from the viewer. As a result, the 

HVS receives mismatching cues between the projected stereoscopic images (vergence) and the 

actual observation distance of the stereoscopic monitor distance (accommodation). This 

https://en.wikipedia.org/wiki/Vergence
https://en.wikipedia.org/wiki/Accommodation_(eye)
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intrinsic visual conflict forces the HVS to physiologically decouple recognition processes of 

vergence and accommodation, leading to severe visual discomfort or fatigue [8,20–23].  

Some true 3D display technologies, such as integral imaging and volumetric display technology, 

have been proposed concurrently to overcome the VAC conflict. Integral imaging can be traced 

back to 1908 when Lippmann proposed to use a micro-lens array to capture 3D images into a 

set of 2D elemental images with different perspectives [24]. Based on the reverse principle of 

light rays, integral imaging aligns the captured elemental images with a lens array to reconstruct 

3D images that can be observed from different perspectives within a limited viewing angle. 

Integral imaging has attracted substantial interest with diverse applications due to its intuitive 

and straightforward implementation; it provides full motion parallax with incoherent 

illumination. However, it has a limited depth range and significantly sacrifices spatial 

resolution in exchange for directional resolution.  

Volumetric displays directly generate 3D images in true 3D space by occupying an actual 

display volume filled with volume pixels or voxels that can be controlled at any desired spatial 

position. Free-space displays, fixed-volume displays, and swept-volume displays are the three 

most common forms of volumetric displays. Free-space volumetric displays direct laser beams 

in free space to activate voxels through visible fluorescence or scattering. As a straightforward 

extension of 2D display techniques, fixed-volume displays project onto a static volume 

consisting of stacked depth-separated scene layers. Swept-volume displays rotate or translate 

emissive displays, or projection surfaces, where fast rotating or translating screens are 

illuminated by laser beams to create translucent or contour images. Although volumetric 3D 

displays provide physiological and psychological depth cues, they are still not ideal for 

practical applications. Since typical volumetric displays require voxels distributed in a volume 

to generate 3D scenes, the size of the created 3D scene depends on the required volume of such 

displays, which makes them bulky and limits their applicability. Other disadvantages depend 

on the specific implementation types, including the scale-up and multi-colour capability, low 

resolution, crosstalk between voxels, low brightness, and hardware design [11]. Other displays 

including Super multivew displays may also be a great candidate for 3D imaging and display. 

The use of other display technologies, such as Super Multiview displays [25], also present a 

viable option for 3D imaging and display. 



4 

1.3 Thesis Motivation 

Holography can present a virtual window of a 3D scene by optically generating waves that 

match the natural light from a real object by wavefront shaping. Compared to traditional 3D 

display technology, holographic display technology is necessary as it can provide all the depth 

cues required by the HVS to perceive 3D objects, including both vergence and accommodation. 

Holographic displays eliminate the need for special glasses or headsets and reduce eye strain 

and fatigue, making them the most intriguing and elegant technology to visualise 3D images. 

The use of beam modulation to generate images is another distinctive advantage of holography 

over other display technologies that rely on the addition of ancillary optical components to 

block light. This notable distinction yields substantially higher optical efficiency for 

holographic displays, thereby leading to a superior visual experience characterised by enhanced 

contrast, vividness, and realism compared to other true 3D display technologies. Moreover, 

other 3D technologies exhibit resolution limits due to the optical design; a smaller form factor 

increases the diffraction-limited spot size, making the high-resolution optical design more 

challenging. The unique virtue of holography is that it inherently requires a smaller display 

pixel pitch to have a larger field of view (FOV), presenting opportunities for miniaturising the 

system while increasing the output image size.  

The holographic display technique is currently transitioning from laboratory research to 

commercial markets and from two-dimensional to three-dimensional visualisation. For a 

holographic display to be suitable for consumers, it must provide users with a comfortable and 

immersive experience, ensure accessibility, and guarantee reliability. Immersion is related to a 

wide FOV and high resolution, while comfort is characterised by a compact form factor, large 

eyebox, visual image quality, low latency, and high colour accuracy [26]. The holographic 

display should be affordable and accessible to a wide range of consumers, including those with 

disabilities or specific needs. 

Among these requirements, providing a comfortable and immersive viewing experience is the 

most crucial but has yet to be fully achieved due to significant technical challenges in 

developing high-quality 3D holographic displays. One major obstacle in the hardware is the 

limited space-bandwidth product of the core display device, known as the spatial light 

modulator. This limitation is directly proportional to the product of eyebox size and FOV, 



5 

leading to a fundamental compromise between the two. Expanding the eyebox, for instance, 

will lead to a decrease in the FOV and vice versa. Though adding ancillary optics can improve 

the finite space-bandwidth product, it usually involves sacrificing the form factor of the 

device [27,28]. Moreover, despite the current 4K resolution of SLMs being adequate for near-

eye displays, applications, such as teleconferences that require CGH reconstruction from real-

world scenes with significant data compression and transmission, are far from practical. 

Regarding CGH calculation algorithms, simulating light wave diffraction is a computationally 

demanding task; synthesizing high-quality CGHs at real-time frame rates that adequately 

achieve visual comfort for viewers remains impractical. Additionally, representing 3D objects 

with sufficient detail requires large amounts of data presenting difficulties in storage and 

processing. Furthermore, the optimisation of CGHs to satisfy the requirements of SLMs and 

reliably achieve high image fidelity while simultaneously maintaining real-time performance 

poses a significant challenge in CGH algorithms. Therefore, it remains an unsolved challenge 

for holography to deliver 3D image data with genuine 3D display capabilities while 

simultaneously achieving high image quality [26,29].  

This thesis aims to address technical challenges in holographic displays, specifically in 

enhancing the holographic reconstructed image quality. In this regard, the thesis first assesses 

the feasibility of generating CGHs from real-world and computer-generated scenes to support 

high-quality holographic display solutions. Such feasibility is assessed by building a 

holographic display prototype with real-world scene acquisition, addressing practical image 

degradation issues in holographic reconstruction. This thesis then extensively focuses on 

developing next-generation 2D and 3D CGH generation algorithms. The goal is to create 

algorithms that can generate high-quality CGHs in support of a more visually comfortable 

experience for the user. This research will contribute to a better understanding of the technical 

challenges and limitations in holographic displays and the development of next-generation 

algorithms that can enhance the visual quality of holographic images. 

1.4 Thesis Organisation 

The organisation of the dissertation is as follows. Chapter 2 introduces the fundamental theory 

of the holographic display technique and reviews current limitations and research progress 

from the hardware and algorithm perspectives in the field.  



6 

Chapter 3 presents classic algorithms for generating CGHs from 2D and 3D images. The 2D 

CGH algorithms Gerchberg-Saxton and One-Step-Phase-Retrieval are explained in detail. 

CGH methods of generating 3D scenes based on decomposing primitives are reviewed, 

including point-based, polygon-based, and layer-based methods.  

Chapter 4 attempts to build a primitive holographic display system from the 3D data acquisition 

to the 3D data reconstruction. In addition, several practical issues and potential improvements 

to the image reconstruction quality are examined. 

Due to the severe degradation of the perceived quality in holographic reconstruction, Chapter 

5 focuses on 2D CGH, introducing the gradient descent method to phase-only CGH 

optimisation. Contemporary image quality metrics are further introduced in the hologram 

optimisation process as loss functions to improve reconstructed image quality. A 

comprehensive analysis of the relative performance of IQM losses is presented based on 

extensive objective quality assessments as well as subjective comparisons informed by more 

than 10k human judgments.  

Chapter 6 introduces using the gradient descent method for 3D hologram generation. The 

gradient descent method is further extended using an incoherent propagation model to generate 

target images for image quality improvement in the defocused area. Numerical simulation and 

optical experiments validate its capability of reproducing naturally defocused reconstructed 

images. 

Chapter 7 is dedicated to providing a concise conclusion and potential future work. 
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Chapter 2 Fundamentals of Holography 

The mathematical foundations of computer-generated holography are presented in this chapter. 

Although some chapters have different methodology and literature sections, the fundamentals 

utilised throughout the chapters are presented here. This chapter begins by describing the scalar 

diffraction theory. The diffraction theory unfolds the wave propagation process, revealing how 

the amplitudes and phases of the lightwaves from a two-dimensional aperture reach the replay 

plane and form complex-amplitude distributions. The chapter then introduces computer-

generated holography and how to simulate holograms based on the diffraction theory. The last 

section briefly discusses the major limitations of holography displays from both hardware 

implementation and algorithmic development perspectives. 

2.1 Theory and Simulation  

2.1.1 Scalar Diffraction Theory 

In holography, the primary concern is with the wave phenomena of light for hologram 

calculation and reconstruction, including diffraction and interference. Maxwell’s equations can 

analyse the light propagating behaviour as an electromagnetic wave. Although the scalar 

diffraction theory is extensively elucidated with the derivation of the formulae in the literature 

Introduction to Fourier Optics, Holographic Imaging, Optics and lecture notes of 4B11: 

Photonic Systems [5,30–32], it is necessary to review this subject for background concepts and 

notation consistency. 

Maxwell’s equations are vector equations describing the spatial and temporal coupling effects 

between the electric and magnetic fields. When light is propagating through a linear, 

homogeneous, isotropic, and non-dispersive medium, all components of the electric and 
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magnetic field have identical behaviour and can be summarised by a single scalar wave 

equation: 

∇2𝑢(𝑃, 𝑡) −
𝑛2

𝑐2

𝜕2𝑢(𝑃, 𝑡)

𝜕𝑡2
= 0,  2.1 

where 𝑢(𝑃, 𝑡) represents any scalar field components with position 𝑃 in space and time 𝑡. The 

medium refractive index is described by 𝑛, with 𝑐 as the speed of light in the vacuum.  

The spherical wave and the plane wave are the simplest solutions of the above scalar wave 

equation. For a simple harmonic oscillation in space with angular frequency 𝜔, the spherical 

wave at the centre of spherical coordinates (𝑅, 𝜃, 𝜙) is represented by: 

𝑢(𝑅, 𝑡) =
𝑈0

𝑅
𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑅) ,  2.2 

where 𝑘 is the wave number given by the wavelength 𝜆: 𝑘 =
2𝜋

𝜆
 and the source strength is given 

by 𝑈0. The wavefront of a spherical wave will remain itself as a sphere with a larger radius as 

the spherical wave propagates, with the amplitude decaying as 𝑅−1. 

 

Figure 2.1. Huygens-Fresnel Diffraction geometry in Cartesian coordinates. 

Having described the wave propagation in the spherical form, we can introduce diffraction through 

the two-dimensional aperture, as shown in Figure 2.1. Diffraction problems are among the most 

challenging encountered in optics. As such, approximate methods are generally used for 

practical solutions in engineering. Our particular interest is the Huygens-Fresnel principle to 

model the diffraction phenomena due to its adequacy, intuitive appeal, and simplicity in CGH 

calculation. The Huygens-Fresnel principle proposes that every point on a wavefront is the 
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source of a spherical emitting point known as a wavelet; the interference of these spherical 

wavelets forms the secondary wavefront.  

For a diffracting aperture 𝐻 on the (𝜇, 𝜈) plane illuminated by a monochromatic coherent wave 

source with wavelength 𝜆 and wavenumber 𝑘, the principle assumes that any infinitely small 

differential 𝑃0  at the aperture plane (𝜇, 𝜈)  can be treated as a spherical Huygens wavelet 

radiating spherical waves. Considering the boundary condition imposed on the solution of the 

wave equation, the Huygens-Fresnel diffraction formula describes the resulting field 

distribution 𝑅 at a point P on the plane (𝑥, 𝑦) with a distance 𝑟 away from this source in the 

+𝑧 direction as: 

𝑅(𝑥, 𝑦) =
1

𝑗𝜆
∬ 𝐻(𝜇, 𝜈)

𝑒𝑗𝑘𝑟

𝑟
𝑐𝑜𝑠𝜃 𝑑𝜇𝑑𝜈,  2.3 

where the propagating distance 𝑟 is geometrically given by: 

𝑟 = √(𝑥 − 𝜇)2 + (𝑦 − 𝜈)2 + 𝑧2.  2.4 

𝐻(𝜇, 𝜈) is a scalar quantity describing the aperture plane, and 𝑐𝑜𝑠𝜃 is the angle between the 

outward aperture-plane normal vector n̂ and the vector �̂� pointing from the wavelet 𝑃0 to the 

observation point 𝑃. Substitute 𝑐𝑜𝑠𝜃 =
𝑧

𝑟
, equation 2.4 can be rewritten as: 

𝑅(𝑥, 𝑦) =
𝑧

𝑗𝜆
∬ 𝐻(𝜇, 𝜈) 

𝑒𝑗𝑘𝑟

𝑟2
 𝑑𝜇𝑑𝜈 .  2.5 

2.1.2 The Fresnel Diffraction 

Depending on the propagating distance, we can classify the diffraction regions into three: the 

near-field region, the Fresnel region, and the far-field region or the Fraunhofer region, as shown 

in Figure 2.2. The propagating distance in the near field region is so small that the exact formula 

must be used for diffraction calculation. If the distance from the aperture plane is relatively 

large, we can approximate the spherical wavefronts to parabolic wavefronts in the Fresnel 

region. We can further approximate the wavefront as planar if the propagating distance is 

sufficiently large.  
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Figure 2.2. A spherical wave is flattened and approximated during propagation. 

For Fresnel diffraction, binomial expansion is introduced to approximate the distance 𝑟 

between the aperture and the observation plane. The binomial expansion of a square root is: 

√1 + k = 1 +
1

2
k −

1

8
k2+. . .  2.6 

The binomial expansion of the distance 𝑟 discards higher-order terms and factorises z outside:  

𝑟 = 𝑧√1 + (
𝑥 − 𝜇

𝑧
)2 + (

𝑦 − 𝜈

𝑧
)2 ≈ 𝑧 [1 +

1

2
(
𝑥 − 𝜇

𝑧
)2 +

1

2
(
𝑦 − 𝜈

𝑧
)2]. 2.7 

This approximation assumes the emitting point source 𝑃 at the aperture plane has a reasonably 

small propagating angle around the 𝑧 axis, and the distance 𝑟 between the observation plane 

and the aperture is comparatively large. In this case, we apply the binomial approximation 

equation 2.7 to the 𝑟  in the exponential term of equation 2.5 and assume 𝑟 ≈ 𝑧  in the 

denominator. The Fresnel approximation replaces the spherical wavefront from the Huygens 

wavelet with a parabolic wavefront. Applying the approximation of the distance 𝑟, we can 

describe the resulting Fresnel Diffraction formula as: 

𝑅(𝑥, 𝑦) =
𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
∬ 𝐻(𝜇, 𝜈) 𝑒

𝑗𝑘
2𝑧

[(𝑥−𝜇)2+(𝑦−𝜈)2] 𝑑𝜇𝑑𝜈. 2.8 

By factorising out the constant term 𝑒
𝑗𝑘

2𝑧
(𝜇2+𝜈2)

, equation 2.8 is rearranged to: 

 

𝑅(𝑥, 𝑦) =
𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
𝑒

𝑗𝑘
2𝑧

(𝑥2+𝑦2) ∬ {𝐻(𝜇, 𝜈)𝑒
𝑗𝑘
2𝑧

(𝜇2+𝜈2)} 𝑒−
𝑗𝑘
𝑧

(𝜇𝑥+𝜈𝑦)
 𝑑𝜇𝑑𝜈 

=
𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
𝑒

𝑗𝑘
2𝑧

(𝑥2+𝑦2)ℱ {𝐻(𝜇, 𝜈)𝑒
𝑗𝑘
2𝑧

(𝜇2+𝜈2)}. 

2.9 
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This complex-amplitude field 𝑅(𝑥, 𝑦) can be expressed as a Fourier transform of the aperture 

function 𝐻(𝜇, 𝜈)  with an additional quadratic phase term 𝑒
𝑗𝑘

2𝑧
(𝜇2+𝜈2)

 scaled by a factor 

𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
𝑒

𝑗𝑘

2𝑧
(𝑥2+𝑦2)

. Both forms are called Fresnel diffraction integral. 

The Fresnel approximation is valid if the near-field distance boundary satisfies the following: 

𝑧3 ≫
𝜋

4𝜆
[(𝑥 − 𝜇)2 + (𝑦 − 𝜈)2]𝑚𝑎𝑥

2  

 

2.10 

2.1.1 The Fraunhofer Diffraction 

The Fresnel diffraction equation 2.9 can be further simplified by imposing a stronger far-field 

condition: 

𝑧 ≫
𝑘(𝜇2 + 𝜈2)𝑚𝑎𝑥

2
. 

 

2.11 

 

Then the quadratic wavefront from the Huygens wavelet in the Fresnel diffraction equation 2.9 

can be simplified to a planar wavefront by approximating the exponential term of the quadratic 

phase 𝑒
𝑗𝑘

2𝑧
(𝜇2+𝜈2)

 to unity over the entire aperture: 

The observed field 𝑅(𝑥, 𝑦) is then a direct Fourier transform of the aperture function 𝐻(𝑥, 𝑦) 

with a scaling factor 
𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
𝑒

𝑗𝑘

2𝑧
(𝑥2+𝑦2)

. Thus, equation 2.12 is called the far-field diffraction 

integral or the Fraunhofer diffraction integral. 

However, the far-field condition requires an impractical large observation distance 𝑧. For a 

635𝑛𝑚 wavelength laser with an aperture width of 2.54cm, the distance 𝑧 must satisfy 𝑧 ≫

1600m [5,32]. A positive focal length lens is therefore imposed in front of the aperture to 

reduce the required distance, as shown in Figure 2.3, and the far-field diffraction pattern is then 

𝑅(𝑥, 𝑦) =
𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
𝑒

𝑗𝑘
2𝑧

(𝑥2+𝑦2)  ∬ 𝐻(𝜇, 𝜈)𝑒−
𝑗𝑘
𝑧

(𝜇𝑥+𝜈𝑦)
𝑑𝜇𝑑𝜈

=
𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
𝑒

𝑗𝑘
2𝑧

(𝑥2+𝑦2)ℱ{𝐻(𝜇, 𝜈)} 

 

2.12 
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displayed at the focal plane of the lens 𝑧 = 𝑓. The lens introduces a defocus aberration which 

appears as a quadratic phase distortion factor in equation 2.12: 

𝑅(𝑥, 𝑦) =
𝑒𝑗𝑘𝑓

𝑗𝜆𝑓
𝑒

𝑗𝑘
2𝑓

(1−
𝑑
𝑓

)(𝑥2+𝑦2)
 ∬ 𝐻(𝜇, 𝜈)𝑒

−
𝑗𝑘
𝑓

(𝜇𝑥+𝜈𝑦)
𝑑𝜇𝑑𝜈. 2.13 

To eliminate the phase distortion term to unity in the equation introduced by the additional lens, 

we can place the positive focal lens one focal distance 𝑑 = 𝑓 behind the aperture.  

 

Figure 2.3. Fourier lens placed at distance d behind the aperture. 

2.1.2 Discrete Diffraction Functions 

Since physical displays are pixelated structures, the continuous aperture function 𝐻(𝜇, 𝜈) 

needs to be sampled, resulting in a discrete aperture function 𝐻𝑑(𝜇, 𝜈). When the discrete 

aperture function 𝐻𝑑(𝜇, 𝜈) is simulated as a CGH and illuminated by a reconstruction beam, 

the complex-amplitude light field 𝑅(𝑥, 𝑦), whether in the Fresnel or Fraunhofer region, is 

defined as the object field or the replay field. The complex replay field 𝑅(𝑥, 𝑦) is then related 

to the discrete aperture function 𝐻𝑑(𝜇, 𝜈) with a Discrete Fourier Transform (DFT) and other 

factors dependent on the diffraction region. 

The discrete Fresnel diffraction equation is described as follows: 

𝑅(𝑥, 𝑦) =
𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
𝑒

𝑗𝜋
𝜆𝑧

(𝑥2+𝑦2)
 ∑ ∑ {𝐻𝑑(𝜇, 𝜈)𝑒

𝑗𝜋
𝜆𝑧

(𝜇2+𝜈2)
} 𝑒−2𝜋𝑗(

𝜇𝑥
𝑀

+
𝜈𝑦
𝑁

) 

𝑁
2

𝜈=−
𝑀
2

+1

𝑀
2

𝜇=−
𝑀
2

+1

. 

 

2.14 

 

The discrete Fourier (Fraunhofer) diffraction equation is: 
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𝑅(𝑥, 𝑦) =
𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
𝑒

𝑗𝜋
𝜆𝑧

(𝑥2+𝑦2)
 ∑ ∑ 𝐻𝑑(𝜇, 𝜈) 𝑒−2𝜋𝑗(

𝜇𝑥
𝑀

+
𝜈𝑦
𝑁

) 

𝑁
2

𝜈=−
𝑀
2

+1

.

𝑀
2

𝜇=−
𝑀
2

+1

  

 

2.15 

 

2.1.3 The Angular Spectrum Method 

Alternatively, the Angle Spectrum Method (ASM) has been widely applied in CGH calculation 

as it strictly describes the physical process of light propagation in the near field region and 

remains a simple form. The relation between a complex function 𝑈(𝑥, 𝑦)  and its angular 

spectrum 𝐴𝑆𝑈(𝑓𝑥, 𝑓𝑦) is described by the inverse Fourier Transform: 

𝑈(𝑥, 𝑦) = ∬ 𝐴𝑆𝑈(𝑓𝑥, 𝑓𝑦)𝑒𝑥𝑝[2𝜋𝑗(𝑓𝑥𝑥 + 𝑓𝑦𝑦)]𝑑𝑓𝑥𝑑𝑓𝑦. 

 

2.16 

It can be regarded as a decomposition of the complex function 𝑈(𝑥, 𝑦)  into plane-wave 

components with different direction cosines (𝑎, 𝛽, 𝛾): 

𝑎 = 𝜆𝑓𝑥 , 𝛽 = 𝜆𝑓𝑦, 𝛾 = √1 − (𝜆𝑓𝑋)2 − (𝜆𝑓𝑌)2. 
 

2.17 

Then the angular spectrum 𝐴𝑆𝐻(𝑓𝜇, 𝑓𝜈) of the hologram field 𝐻(𝜇, 𝜈) and the angular spectrum 

𝐴𝑆𝑅(𝑓𝑥, 𝑓𝑦) of the replay field 𝑅(𝑥, 𝑦) is related by: 

𝐴𝑆𝑅(𝑓𝑥, 𝑓𝑦) = 𝐴𝑆𝐻(𝑓𝜇 , 𝑓𝜈)exp [𝑗
2𝜋

𝜆
𝑧√1 − (𝜆𝑓𝜇)

2
− (𝜆𝑓𝜈)2]. 

 

2.18 

This equation describes that for light propagating in free space by a distance z, the spectrum of 

the replay field is the product of the spectrum of the hologram field multiplied by a phase factor 

𝑇𝐹(𝑓𝜇, 𝑓𝜈), which is called the spatial frequency transfer function (SFTF): 

Therefore, the diffraction propagation formula described by the angular spectrum method can 

be obtained as follows: 

𝑇𝐹(𝑓𝜇 , 𝑓𝜈) = exp [𝑗
2𝜋

𝜆
𝑧√1 − (𝜆𝑓𝜇)

2
− (𝜆𝑓𝜈)2]. 

2.19 
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2.2   Computer-Generated Holography  

Computer-generated holography can simulate the hologram digitally based on the physical 

principles of light propagation and interference. The simulated hologram, also known as CGH, 

can be presented on a physical display and illuminated to reconstruct the object wave.  

There are three steps to generate a CGH. The first step is to digitally acquire the sampled 

complex amplitude light field of a target object. Input images or 3D scenes we wish to 

reproduce by CGHs are prepared and modelled into a discrete finite set for CGH calculation. 

The second step is to compute CGHs from the sampled input. During this process, we first need 

to compute a complex-amplitude CGH by carrying out the diffraction equations introduced 

above. Due to the physical limitation of current display technologies, we cannot independently 

control the amplitude and phase of the generated CGH. Therefore, we must choose a suitable 

encoding method for the calculated complex amplitude CGH in the hologram plane to be 

displayed on particular physical displays. The last step is to transfer the encoded CGH to the 

chosen physical display. The replay field reconstruction process of a CGH is no different from 

that of an optical hologram.  

2.3 Major Shortcomings of Modern CGHs 

Despite being the ultimate display technology due to its unique capacity to reproduce genuine 

3D scenes, holographic 3D display technology is impeded primarily by three challenges: 

computation of holograms from 3D data, transmission of resulting holograms to the display, 

and optical reconstruction of 3D data from holograms. Transmission and optical reconstruction 

are fundamentally constrained by the limitations of the display hardware, while computation is 

limited by the heavy computational loads required to generate holographic patterns. 

𝑅(𝑥, 𝑦) = ℱ−1{ℱ[𝐻(𝜇, 𝜈)] ⋅ 𝑇𝐹(𝑓𝜇, 𝑓𝜈)}. 2.20 
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2.3.1 Data Transmission Challenge 

The transmission of holographic data poses significant challenges due to the large amount of 

data involved. For instance, a holographic display with a 70cm diagonal screen and an 8μm 

pixel pitch would have approximately 4 × 109 pixels. To ensure a minimum refresh rate of 60 

Hz and at least three channels for RGB colours, each with a grey-level resolution of at least 8 

bits, the required data rate for such a display, excluding any encoding or compression algorithm, 

would be~670.55 Gb/sec(4 × 109 𝑃𝑖𝑥𝑒𝑙s × 60Hz × 8 bits × 3 channel). The limited data 

rate is further exacerbated when considering the need for a smaller pixel pitch to achieve a 

larger FOV and a faster switching speed for time-multiplexing methods. The maximum 

diffraction angle in a holographic display in plane-wave illumination is 𝜃𝑚𝑎𝑥 = 𝑠𝑖𝑛−1(𝜆/2Δ), 

where 𝜆 is the wavelength of the light and Δ is the pixel size of the SLM. For an immersive 

viewing experience with 120° FOV, the pixel pitch would therefore be approximately on the 

order of 300 nm, requiring 3 × 1012 pixels of the same physical size. Fast switching speed, 

which may require refresh rates of up to 10 kHz, further increases the required data rate by 

orders of  103 magnitude. 

Due to the high data rate demands, there is a need for compression and codecs to facilitate the 

transmission of dynamic hologram data. However, no generic compression and codec can be 

applied to holograms with various content while remaining robust and efficient for a high data 

rate. Moreover, currently available off-the-shelf SLMs have limited modulation schemes and 

cannot fully modulate given complex amplitude functions, which further requires a complex-

value coding process during data transmission. Although there are SLMs that can modulate 

phase and amplitude simultaneously, the phase-amplitude coupling effect exists in these SLMs, 

limiting independent modulation. Therefore, generated complex-amplitude CGHs need to be 

encoded into either the amplitude-only or the phase-only type based on the properties of SLMs. 

Since amplitude SLMs limit the transmission of incident light by blocking, phase SLMs are 

typically used, which delay the phase of incident light instead, resulting in high optical 

efficiency. Encoding complex-amplitude CGHs to meet the constraints imposed by current 

phase-only SLMs introduces an additional layer of complexity to the holographic data 

transmission process. 
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2.3.2 Optical Reconstruction Challenge 

A superior holographic display would offer a wide FOV and high-resolution images to enhance 

immersion while supporting comfortable viewing with a large eyebox and excellent visual 

quality in a compact form. These features are intrinsically linked to the characteristics of the 

core display hardware, SLM. 

The FOV refers to the range of angles or distance over which an object is visible, while the 

eyebox refers to the area in front of the display in which the viewer can move their eyes and 

still maintain a clear and undistorted view of the content. In the case of holographic displays, 

the FOV of the display system is determined by the maximum diffraction angle of the SLM, 

which establishes the maximum dimensions of the holographic image. The eyebox is 

determined by the display area of the SLM. For a holographic display, with the maximum 

diffraction angle 𝜃, and width 𝑤, the FOV under paraxial approximation and eyebox are: 

where 𝑓1 is the focal length of the Fourier lens, which places the reconstructed image produced 

by the SLM to its focal plane as discussed in the previous section, and 𝑓2 is an additional lens, 

together with 𝑓1 that composites an 4𝑓 system and relays the image to the eye. Therefore, the 

product of FOV and eyebox, also called étendue [27] along one dimension, is:  

where N is the pixel number of the SLM in one dimension.  

Therefore, the finite and limited number of pixels in SLMs introduces a trade-off between the 

FOV and the eyebox size. For example, high-end commercial SLMs with 4K resolution can 

achieve a horizontal FOV of 90° at 532nm but with an eyebox size of only 1.4 mm, which 

means that even a slight angular deviation of the eye can result in the image disappearing. One 

solution to this issue is to increase the pixel count of the SLM, which also enhances the 

perceived resolution by expanding the space-bandwidth products. However, to achieve a 15 

mm eyebox with a 90° FOV that is comparable to human vision, an SLM with approximately 

𝐹𝑜𝑉 ≈  2
𝑓1

𝑓2
𝜃, 𝑒𝑦𝑒𝑏𝑜𝑥 =

𝑓2

𝑓1
𝑤,  

 

2.21 

 

FOV ∙ 𝑒𝑦𝑒𝑏𝑜𝑥 ≈  2𝜃𝑤 ≈
𝜆𝑤

𝛥
= 𝜆𝑁𝑥, 

2.22 
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4 × 104 pixels in the horizontal axis would be required, which exceeds current technological 

capabilities.  

Moreover, fill rate, refresh rate and other characteristics of current SLMs are also directly 

related to the visual quality in the replay field. Further optimisation of the optical structure of 

existing holographic display systems is also required to realise a compact design, especially for 

near-eye display applications. It is necessary to miniaturise the size of the hardware while 

simultaneously achieving high reconstructed image quality. 

2.3.3 Computational Complexity of Generating CGHs  

The physical model of light propagation has been analytically well defined as mathematical 

equations, but practical computation is far from trivial. As previously mentioned, the vast 

quantity of data to be processed significantly increases the computational load. CGH generation 

algorithms are heavily involved with performing Fourier Transforms, as demonstrated by the 

Fresnel and Fraunhofer diffraction equations. However, Fourier transforming such a large 

amount of data with a high frame rate is still challenging. Even when implementing the Fast 

Fourier Transform (FFT) [33] to perform Fourier Transforms, the process is computationally 

expensive and is scaled with the number of pixels on SLMs. Generating CGHs from 3D images 

further increases computational complexity due to the numerous primitives required for 

calculation.   

Moreover, since no commercially available SLMs can arbitrarily modulate the incident light in 

amplitude and phase simultaneously by far, hologram-generating algorithms are necessary to 

generate compromise solutions that meet the constraints of SLMs. Thus, the CGH generation 

process is changed from analytical computation to an optimisation process that can be 

represented in the following way: find an optimal hologram from a subset of complex number 

spaces imposed by the selected type of SLMs, such that the hologram can maximise the image 

quality in the replay field.  

Another challenge is the realistic rendering of scenes with all depth cues for the 3D CGH 

generation process. While diffractive wave propagation and interference in holography can 

directly address the majority of depth cues, the degree of realism remains limited compared to 

the cutting-edge techniques employed in computer graphics. Several depth cues, including 
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occlusion, shading, defocus blur, and parallax, are often not adequately implemented in CGH 

calculations, thereby restricting the depiction of virtual 3D objects to simple geometries. 

Most CGH generation algorithms are iterative or require additional operations for optimisation, 

which further increases the computational complexity and impedes real-time generation. As a 

result, researchers have explored hardware and algorithmic accelerations to alleviate the 

computational burden of generating CGHs [33,34]. Parallel operations with large processing 

core counts on modern Graphics Processing Units (GPUs) accelerate the CGH computational 

process, allowing real-time hologram generation. Field programmable gate arrays (FPGAs) are 

highly-configurable and hardware-programmable integrated circuits that facilitate flexible 

logical hardware designs. Recent work from the HORN-8 group [35] demonstrated that FPGA 

chips could be integrated into large scale and are more dedicated to real-time CGH generation. 

One of the iconic algorithmic accelerations is the One-Step Phase Retrieval algorithm from the 

work of Cable and Buckley [36], resolving the computational problem by using time-

multiplexing to avoid the iterative optimisation process.  

 



19 

Chapter 3 Hologram Generation Algorithms 

3.1 Introduction 

The preceding chapter introduced the fundamentals of holography. In this chapter, we will look 

into hologram generation algorithms. We will start with classic 2D algorithms that apply the 

diffraction theory to generate CGHs from target images. Furthermore, using the diffraction 

theory, we can numerically calculate the complex-amplitude optical field in the hologram plane 

from a 3D scene. The calculated field is a 2D CGH containing the 3D information of the scene, 

which can be numerical or optical reconstructed later.  

3.2 2D CGH Generation Algorithms 

Encoding an ideal CGH to a phase-only CGH can be done with either iterative or non-iterative 

approaches. Classic Iterative CGH algorithms include Gerchberg-Saxton (GS) [37], and hybrid 

input-output (HIO) [38,39] methods are based on Fourier Transform to find the optimal 

hologram. Direct search (DS) [40] and simulated annealing (SA) [41] algorithms are examples 

of iterative pixel-by-pixel approaches. Non-iterative CGH algorithms such as double phase and 

error diffusion methods can directly encode complex-amplitude diffraction fields into phase-

only holograms to overcome the phase-only restriction imposed by these SLMs. Another option 

is the one-step phase retrieval algorithm (OSPR) [36], which relies on fast-switching SLMs to 

time-multiplex a set of holograms. Parallel to their application in computer vision, trained deep 

learning approaches have also emerged as non-iterative solutions in CGH optimisation [42–

45]. Researchers have also explored other phase-retrieval methods using first-order nonlinear 

optimisation, alternative direction methods for phase retrieval [46,47], and non-convex 

optimisation [48]. The following section mainly introduces the iterative GS algorithm and the 

non-iterative OSPR Algorithm.  
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The GS algorithm was first proposed in 1972 to recover electron microscopy and astronomy 

phase distributions by iteratively alternating between the two fields to satisfy restrictions. The 

OSPR algorithm is a temporal averaging method, displaying multiple phase-only holograms 

within a short time interval to statistically average out errors in the replay field.  

Algorithm 1: Gerchberg Saxton algorithm 

Input: Target image 𝑰(𝒖, 𝒗), Number of iterations N    

Output: Hologram 𝑯𝑵
𝑸

 (𝒙, 𝒚),  

1 Generate a complex-amplitude target object field with a uniform random phase: 

𝑻𝟏(𝒖, 𝒗) =  √𝑰(𝒖, 𝒗) ⋅ 𝒆𝒋𝝋(𝒖,𝒗) 

   For 𝒌 = 𝟏: 𝑵 do 

2 Inverse Fourier Transform the complex-amplitude distribution in the object plane: 

 𝐻k(𝑥, 𝑦) = ℱ−1 {𝑇k(𝑢, 𝑣)} 

3 Extract and quantise the complex-amplitude hologram: 

 𝐻𝑘
𝑄  (𝑥, 𝑦) = 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛{𝐻𝑘(𝑥, 𝑦)} 

4 The hologram is propagated  to the object plane by Fourier Transform: 

 𝑅𝑘(𝑢, 𝑣) = ℱ{𝐻𝑘
𝑄  (𝑥, 𝑦)} = 𝐴𝑘(𝑢, 𝑣)𝑒𝑗𝜑𝑅𝑘

 (𝑢,𝑣)
 

5 Apply the target amplitude to form the new target of the complex replay field: 

 𝑇𝑘+1(𝑢, 𝑣) =  |√𝐼(𝑢, 𝑣)|𝑒𝑗𝜑𝑅𝑘
 (𝑢,𝑣)

 

  end 

3.2.1 Gerchberg-Saxton Algorithm 

Algorithm Description 

The GS algorithm iterates between the hologram and replay fields and applies constraints to 

optimise an initial random phase hologram. In CGH generating application, the constraint in 

the hologram plane is the quantised phase level of each pixel value (and amplitude equals one 

for planar illumination), and the constraint in the image plane is the equality between the replay 

field intensity and the target intensity. It can be shown that GS minimises the mean squared 
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error (MSE) between the two intensities for each iteration and quickly converges to a local 

minimum.  

Algorithm Variants 

The GS algorithm is generalised as an error-reduction algorithm by Fienup [38] and further 

recognised as an alternating projection algorithm by Bauschke [49]. The initial random 

phase can be replaced by a phase vortex with a finite circular aperture [50] to remedy phase 

errors introduced by SLM and other optical components. The Liu-Taghizadeh (LT) and 

Double-constraint GS algorithms modify amplitude or phase constraints in the replay field to 

reduce speckle noise [51–55]. The Ping Pong algorithm utilises another intermediate replay 

plane, resulting in a lower speckle noise [56,57]. The over-compensation algorithm [58] and 

the up-scaling algorithm [59,60] have similarities in applying weights to the changes during 

each iteration. The fractional Fourier transform [61,62] and the gyrator transform [63–65] have 

been explored in replacing Fourier Transform in the GS algorithm. 

3.2.2 One-Step Phase-Retrieval Algorithm 

Algorithm Description 

The algorithm generates a set of independent and identically distributed (i.i.d.) phase-only 

holograms 𝑘  by a direct Fourier Transform from the same target image. The generated 

holograms are displayed within a very short interval so that the HVS responds to the set of 

replay fields instead of a single one. The perceived image is thus the statistically average 

intensities of the replay fields from the set of phase-only holograms:  

The use of OSPR holograms and the temporal averaging method optimises the noise variance 

instead of the total noise energy mean in the replay field. The display of the set of holograms 

within a very short time interval can sum the replay images incoherently in the eye, which 

statistically decreases the noise variance and substantially improves the perceived image 

quality. 

𝐼𝑅𝑒𝑐𝑜𝑛(𝑢, 𝑣) =
1

𝑘
∑|ℱ{𝐻𝑖

𝑄(𝑥, 𝑦)}|
2

𝑘

𝑖=1

 
3.1 
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Algorithm 2: OSPR algorithm 

Input: target image 𝑻(𝒖, 𝒗) 

Output: Hologram: 𝒌 set of phase holograms 𝑯𝒊
𝑸

(𝒙, 𝒚), 𝒊 = 𝟏, 𝟐, . . . 𝒌  

1 Convert an input target image into the amplitude function: 

𝑻(𝒖, 𝒗) =  √𝑰(𝒖, 𝒗) 

   for 𝒊 =  𝟏: 𝒌 do 

2 Add a random phase to the amplitude of the target images  

   𝑇′ (𝑢, 𝑣) =  𝑇(𝑢, 𝑣) ⋅ 𝑒𝑗𝜑𝑖(𝑢,𝑣) 

3 Perform a Fourier Transform to get the hologram 

 𝐻𝑖  (𝑥, 𝑦) = ℱ−1 {𝑇′ (𝑢, 𝑣)} 

4 Quantize the complex hologram to the multilevel phase-only states: 

 𝐻𝑖
𝑄  (𝑥, 𝑦) = 𝑄𝑢𝑎𝑛𝑡𝑖𝑠𝑎𝑡𝑖𝑜𝑛{𝐻𝑖  (𝑥, 𝑦)} 

  end 

Algorithm Variants 

The variant of OSPR, the Adaptive one-step phase-retrieval algorithm (ADOSPR), rectifies the 

noise mean by utilising an adaptive parameter 𝛼 . As a result, the ADOSPR algorithm 

significantly improves the image quality in the replay field than the standard OSPR 

algorithm [66]. 

Other variants combine OSPR with the GS or the LT algorithm to provide better individual 

OSPR frames but may result in higher computational complexity. 

𝑇𝑖+1(𝑢, 𝑣)

=  {√(𝑖 + 1)𝐼(𝑢, 𝑣) −
𝐼𝑅𝑒𝑐𝑜𝑛(𝑢, 𝑣)

𝛼2
                  𝑖𝑓 (𝑖 + 1)𝐼(𝑢, 𝑣) >

𝐼𝑅𝑒𝑐𝑜𝑛(𝑢, 𝑣)

𝛼2

0                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                

     

3.2 
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3.3 3D CGH Generation Algorithms 

The preceding section introduced the algorithms applied to 2D holography. However, the merit 

of holography is primarily reflected in its ability to reconstruct a 3D scene effectively. Many 

algorithms have been proposed to decompose a 3D scene into different primitives for CGH 

calculation, including point cloud, polygon and layer for wave propagation [67,68]. Each 

primitive is then propagated and accumulated in the hologram field to synthesis a CGH for the 

entire 3D scene.  

3.3.1 Point-based Method  

For the point-based method, a 3D scene is decomposed into a sum of object points [69,70]. 

These indexed object points can be regarded as self-illuminating point sources, emitting 

spherical waves in the object field. The corresponding hologram is the interference pattern of 

all these spherical waves propagating to the hologram field. The point-based method is 

straightforward in expressing 3D scene features with points, and the resulting reconstruction 

has high quality. However, numerical propagating spherical waves from enormous object 

points to the hologram plane requires a tremendous computation load, one of the most unsolved 

issues for point-based hologram calculation. Especially when the 3D scene is densely sampled, 

the required computational load in the hologram formation makes it a challenging task in real-

time applications. 

If we assume the coordinates of object points are (𝑥, 𝑦, 𝑧) and the coordinates of the optical 

field in the hologram plane are (𝛼, 𝛽, 𝛾), then the distance 𝑟 between the object point and the 

point on the hologram plane is given by: 

The optical spherical wave propagating from the point source to the hologram plane is given 

by the spatial impulse response of propagation [71]: 

𝑟 = √(𝛼 − 𝑥)2 + (𝛽 − 𝑦)2 + (𝑧 − 𝛾)2 
 

3.3 

𝐻𝑖(𝛼, 𝛽) =
𝐴𝑖

𝑟𝑖
𝑒𝑥𝑝 (−𝑗

2𝜋

𝜆
𝑟𝑖) 

 

3.4 
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Note that a constant complex-amplitude factor representing the initial phase and the amplitude 

in front of the exponential term is neglected. The exponential function 𝐹(𝛼, 𝛽, 𝛾) is sometimes 

referred to as the Fresnel zone plate (FZP): 

For a 3D scene with a total 𝑃 object points, and each point with amplitude 𝐴𝑚 and distance 𝑟𝑚 

from the hologram plane, the optical field on the hologram plane can be computed by summing 

the FZP of each object point. Then the hologram for the entire 3D scene can be expressed as: 

It can be seen from equation 3.6 that the majority of the computational load is involved in 

calculating the FZP of the individual object point. Therefore, the look-up table (LUT) method 

has been proposed to optimise the point-based approach by explicitly trading physical 

computer memory for computational speed [69]. The LUT method pre-computes the FZPs for 

all possible object points and stores the FZPs in the computer memory as a look-up table. 

However, the LUT method requires enormous computer memory to store the pre-computed 

FZP, which is still a challenging issue even for a modern computer. GPU acceleration has also 

been brought up for solving this intensive computation [72–74]. Other modified methods, 

namely, novel-LUT(N-LUT) [75,76], N-LUT with run-length coding [77,78], LUT with non-

uniform sampling [79,80], compressed-LUT(C-LUT) [81,82], split-LUT(S-LUT) [83], have 

been proposed to reduce the computational complexity and mathematical operations. 

More recently, Tensor holography suggests modelling Fresnel diffraction and occlusion using 

a convolutional residual network [44]. Since Fresnel diffraction propagation is the convolution 

of a wave field with many FZPs, tensor holography approximates FZPs with a set of spatially 

invariant kernels. 

3.3.2 Polygon-based Method  

The polygon-based method decomposes the 3D scene into a triangular mesh, a polygon mesh 

typically used in computer graphics. It comprises a set of triangular facets represented by the 

𝐹(𝛼, 𝛽, 𝛾) = exp (−𝑗
2𝜋

𝜆
𝑟) 

 

3.5 

𝐻(𝛼, 𝛽) = ∑
𝐴𝑚

𝑟𝑚
𝐹𝑚

𝑃

𝑚=0

= ∑
𝐴𝑚

𝑟𝑚
𝑒𝑥𝑝 (−

𝑗2𝜋

𝜆
𝑟𝑚)

𝑃

𝑝=0

 3.6 

https://en.wikipedia.org/wiki/Triangle


25 

coordinates of their vertices. The complex amplitude light distribution in the hologram plane 

is calculated from each triangular facet object and added to form the final hologram of the 3D 

scene. Recent reviews and progress on polygon-based computer-generated holography have 

been reported in  [67,84,85]. 

Leseberg first proposed the polygon-based CGH method in 1988 [86], and its core concept, the 

angular spectra of rotated planes, was analysed by [87,88]. Matsushima [89] introduced the 

FFT to calculate holograms from solid shapes. This FFT-based approach calculates the local 

angular spectrum of the individual triangular mesh by the FFT in a local tilted plane of each 

triangle. The local angular spectrum is then resampled and interpolated to obtain the global 

angular spectrum [90–93]. The fully-analytic technique was proposed to find the global angular 

spectrum directly from the analytic formula of the local angular spectrum without performing 

the FFT of individual triangles to the local plane [94–96]. Obtaining the local angular spectrum 

by performing either FFT or analytic formula from individual triangles, both methods consider 

the rotation and translation of the angular spectrum from the local plane to the global plane of 

each triangle and propagate the global angular spectrum to the hologram plane. 

In the fully analytic polygon-based CGH, individual triangles of a 3D scene are modelled as 

triangular apertures illuminated by plane carrier waves. The complex amplitude light 

distribution from each triangular facet object is calculated and added together in the hologram 

plane to form the final hologram of the 3D scene. The global angular spectrums of the 

individual triangle are calculated and added to the hologram plane using the analytic formula 

of the reference triangle in the local plane. Finally, the aggregated global angular spectrum is 

then Fourier transformed in the hologram plane to give the complex wave field. The procedure 

is shown in Figure 3.1.  

Due to the use of the analytic formula on the individual triangle, the reconstruction has a 

uniform amplitude and phase only over the individual triangular area, resulting in a flat shading 

and a noticeable mesh structure of the 3D object. This could be addressed by material functions 

which act as diffusers varying the amplitude of triangles to achieve a smooth structure [97]. In 

the fully analytic method, we assume a homogeneous texture pattern of the 3D model. Further 

research applies texture properties to the triangular mesh [98]. 
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Figure 3.1. Triangular mesh method. The global angular spectrum of a global triangle can be 

calculated from the local angular spectrum of a local reference triangle. The hologram is 

calculated by propagating global angular spectrums from all global triangles. 

The basic polygon-based method does not appropriately incorporate the occlusion effect, which 

is a crucial factor in enhancing the depth of information. The lack of global hidden surface 

removal could result in light from occluded surfaces. Several methods have been proposed, 

including spatial masking techniques and angular spectrum convolution, to realise the 

occlusion effect [99–101]. Finally, speed enhancement is achieved by GPU parallel computing 

and pre-calculated base triangles in [102,103]. 
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3.3.3 Layer-based Method  

Layer-based Method Overview  

Compared with the point-based and the polygon-based methods, the layer-based method 

calculates CGHs rapidly with sufficient quality. In the layer-based method, the calculating 

primitive is the layer. 3D models are sliced into parallel layers that are orthogonal to the 

hologram plane, and each of the layers is numerically propagated and accumulated on the 

hologram plane by the FFT with the Fresnel diffraction form [104–106], angular spectrum 

method [107,108] and other methods [109,110]. The layer-based method has fewer primitives 

than others, sufficiently improving computational speed. However, the limited number of 

layers may lead to a discontinuous and layered appearance in the replay field, and the supported 

viewing angle is limited to several degrees from the axis normal to the hologram plane. 

Layer-based Method Principle  

If we assume the intensity distribution of an object slice at the plane 𝑧 = 𝑧𝑖 is 𝐼(𝜇, 𝜈; 𝑧 = 𝑧𝑖), 

then the complex optical field of this slice is given by: 

where we use a random phase distribution 𝜑(𝜇, 𝜈)  from 0  to 2𝜋 . The random phase 

distribution smooths out the power spectrum of each object layer and works as a diffuser. Since 

the human eye works as an intensity detector and is insensitive to the phase distribution, the 

random phase distribution presented in the complex amplitude of the object slice does not affect 

the image intensity.  

The hologram 𝐻𝑧(𝑥, 𝑦) of a layer is obtained by numerically propagating this layer 𝑈(𝜇, 𝜈, 𝑧 ) 

to the hologram plane using the Fresnel transform: 

𝑈(𝜇, 𝜈;  𝑧 = 𝑧𝑖)  =  √𝐼(𝜇, 𝜈;  𝑧 =  𝑧𝑖) 𝑒𝑗𝜑(𝜇,𝜈), 
 

3.7 

𝐻𝑧(𝑥, 𝑦) =
𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
𝑒

𝑗𝑘
2𝑧

(𝜇2+𝜈2) ∬ {𝑈(𝜇, 𝜈, 𝑧)𝑒
𝑗𝑘
2𝑧

(𝜇2+𝜈2)} 𝑒
−𝑗𝑘

𝑧
(𝜇𝑥+𝜈𝑦)

𝑑𝜇𝑑𝜈 

=
𝑒𝑗𝑘𝑧

𝑗𝜆𝑧
𝑒

𝑗𝑘
2𝑧

(𝜇2+𝜈2) × ℱ {𝑈(𝜇, 𝜈, 𝑧)𝑒
𝑗𝑘
2𝑧

(𝜇2+𝜈2)}. 

3.8 
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We loop over all layers to calculate their corresponding complex-amplitude fields and stack 

them to produce the final hologram 𝑊𝐻: 

where 𝑇 is the total number of layers. The quadratic phase introduced in the Fourier transform 

can be regarded as a lens attached to the layer with a specific focal length. With layers having 

different focal depths, we can propagate the hologram 𝑊𝐻  at multiple depths with their 

corresponding lenses. Since the quadratic phase of each layer can be pre-calculated, the primary 

computational load of the layer-based method is to perform the FFT of each layer. The 

computational load is heavily dependent on the number of layers 𝑇. 

Implementation and Result 

The proposed method is verified for demonstrating purpose using a target 3D space station 

model with 255 layers. The basic idea is to calculate the Fresnel hologram at each depth and 

accumulate them in the hologram plane. In Figure 3.2, (a) depicts the space station model in 

3D space with 255 slices, and (b) depicts the object image.  

 

Figure 3.2. Layered images of the 3D space model (a) and its original picture (b). 

The pixel pitch is 8𝜇𝑚, and the wavelength is 532nm. The first layer of the space station model 

is 𝑧_𝑛𝑒𝑎𝑟 = 0.8𝑚 away from the hologram plane, and the distance between each layer is 

𝑑𝑒𝑙𝑡𝑎_𝑙𝑎𝑦𝑒𝑟𝑠 =  0.001𝑚 . The quadratic phase is computed and added to the Fourier 

transform of each layer, respectively. The generated complex field in the hologram plane from 

each layer is then stacked up as a superposed hologram at a resolution of 1280x1280. The 

amplitude and phase of the superposed hologram are shown in Figure 3.3.  

𝑊𝐻 = ∑ 𝐻𝑧𝑖

𝑇
𝑖=1 = ∑

𝑒𝑗𝑘𝑧𝑖

𝑗𝜆𝑧𝑖
𝑒

𝑗𝑘

2𝑧𝑖
(𝜇2+𝜈2)

× ℱ {𝑈(𝜇, 𝜈; 𝑧 = 𝑧𝑖)𝑒
𝑗𝑘

2𝑧𝑖
(𝜇2+𝜈2)

}𝑇
𝑖=1 , 3.9 
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Two reconstructed fields at layers 5 and 225 of the space station 3D model are calculated and 

shown in Figure 3.4. The in-focus layers are ideally reconstructed without quantisation from 

the complex-amplitude superposed hologram, with the same intensity distribution as the 

corresponding input target layers. The out-of-focus layers appear blurry with speckle. 

According to the Huygens-Fresnel wavelet principle, the speckle effect is due to the 

constructive or destructive interference of defocused layers at different planes. Each pixel of 

the defocused layer emits Huygens wavelets, resulting in either a saturated pixel intensity 

(constructive interference) shown as a bright spot or a deemed pixel intensity (destructive 

interference) in the reconstructed field. This speckle effect is not due to quantisation, and the 

intensity normalisation factor for individual layers could potentially be employed to reduce the 

speckle effect in the simulated reconstruction.  

 

Figure 3.3. The Superposed hologram with the amplitude distribution (a) and the phase 

distribution (b) from the 3D space station model. 

 

Figure 3.4. The reconstructed images are at layer 5 (a) and layer 225 (b) from the superposed 

hologram. 

Discussion 

Although the layer-based method provides fast calculation, the supported viewing angle is 

limited to several degrees from the axis normal to the hologram plane. A larger viewing angle 

would result in apparent gaps between reconstructed image layers. Furthermore, due to the 
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limited viewing angle and independence of image layers, the occlusion and shading effects are 

hard to be implemented in practice. The angular tiling approach divides a 3D scene into several 

groups of sub-views to provide occlusion and shading effects for the layer-based algorithms, 

and each sub-view corresponds to a narrow viewing direction [105,106]. Instead of calculating 

the hologram only from the orthogonal direction, sub-holograms can be calculated by rotating 

the 3D model or dividing the 3D image within narrow viewing angles. The sub-holograms are 

spatially multiplexed to form the whole hologram that can reconstruct the 3D scene with multi-

viewpoints. The layer-based method with the occlusion effect has also been investigated 

in [111] by implementing silhouette mask culling.  

Practically, for SLMs to display the hologram, the layered images go through several iterations 

to optimise their phase-only CGH by the GS algorithm. The adaptive addictive iterative Fourier 

transform algorithm has been reported in [112] to support real-time applications. 

Computational and image processing techniques, including the depth fused 3D (DF3D) method 

and the fraction method, have been proposed in [113]. The DF3D method assigns each point 

in the 3D scenes to its two closest layers instead of one layer in the standard layer-based method, 

and the DF3D principle decides the magnitudes. This method effectively reduces the depth 

error during the depth assignment process and could require fewer layers to support the same 

depth resolution. Sub-sparse two-dimensional Fast Fourier transform (SS-2DFFT) algorithm 

is proposed to reduce the calculation for sparse image layers [114]. The algorithm is further 

accelerated by performing two 1D FFT without calculating zero-value columns and rows. 
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Chapter 4 Holographic Display System  

This chapter is primarily based on “Holographic Rendering of a Real-World Scene Captured 

with a Low-cost RGB-D Camera,” F. Yang, Y. Wang, R. Mouthaan, and T. D. Wilkinson, 

published in Imaging and Applied Optics Congress, The Optical Society (Optica Publishing 

Group, 2020), paper HF4D.3. 

4.1 Introduction  

As the previous chapter introduced 2D and 3D algorithms for computer-generated holography, 

this chapter will demonstrate the outline of building a holographic display. The holographic 

display has long been considered the pinnacle of display technology, offering accurate depth 

and focus cues for digital content to resolve problems such as VAC caused by traditional 

stereoscopic displays. By retaining depth information, holographic displays enable comfortable 

and natural images.  

This chapter proposes a holographic system consisting of a 3D data acquisition module, a data 

processing module, a CGH generating module, and an optical holographic display module. 3D 

data can be generated by gaming engines or acquired by depth cameras, potentially allowing 

the creation of dynamic and interactive holograms required for augmented reality (AR) 

applications. The resulting data is then processed by applying depth-colour alignment, image 

normalisation and resampling for CGH generation. The previously introduced algorithms can 

calculate and reconstruct CGHs of the 3D data. CGHs are then transmitted to the optical 

holographic display module, allowing optical 3D reconstructions. Several artefacts and 

potential approaches in implementation are further demonstrated to improve the reconstruction 

quality. 
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4.2 3D Data Acquisition  

A holographic display system requires 3D data to calculate CGHs. 3D data can be broadly 

divided into two groups: artificial 3D data generated from computer graphics and real-world 

3D data captured by depth cameras. Most of the research on holographic displays utilises 

artificial 3D data as they are easily manipulated and mathematically well-defined by graphic 

descriptions [115,116]. Created from gaming engines and numerous design software, artificial 

3D data consists of object 3D models, object properties and other rendering information for the 

scene.  

On the other hand, in some practical applications, including telecommunications and video 

conferences, real-world 3D data is preferred and has become an active research topic over 

recent years. Kim et al. presented a point source-based CGH method using stereoscopic images 

of a real 3D object captured by a Wasol 3D camera system. The depth image was calculated 

by stereo image matching [116]. Lee et al. obtained a digital hologram of a real 3D object from 

a prototype sensor with a time-multiplexed method for colour and depth image acquisition to 

generate a digital hologram of a real 3D object using the point-based approach. However, pixel 

saturation limits the depth resolution to below 1m [117]. Yamaguchi et al. presented a scanning 

system with a vertical camera array using the ray-sampling plane method and applied it to 

holography [118]. Li et al. extracted 360-degree depth images of a real object from a Kinect 

depth camera and merged depth images into a single 3D model [119]. Yanagihara et al. 

demonstrated a real-time, 3D holographic display using Kinect v2 to reconstruct a 3D video at 

~14 frames per second [120]. Compared with artificial 3D scenes, real-object-based methods 

have accurate spatial imaging and are simple to afford efficient natural visualisation without 

rendering techniques.  

Several existing 3D object datasets recorded from various off-shelf cameras will be introduced 

later, providing pixel-perfect ground truth for quality evaluation and depth quality 

compensation methods for the holographic display acquisition system. Despite RGB-D images 

or point clouds being acquired from various sources, a 3D holographic display acquisition 

module can convert various forms to the same form for CGH calculation. 



33 

4.2.1 3D Data from Unity  

3D models can be represented as RGB-D images. An RGB-D image is a single view of a 3D 

model with colour information typically stored in the RGB image and depth information in the 

depth image. Each pixel in a depth image corresponds to a distance between the image plane 

and its matching object in an RGB image. In Unity, the ray casting technique provides scene 

rendering options scene and can record RGBD images. A ray leaves the camera through a grid 

of pixels in a specific direction and travels until it hits the closest object. RGB intensities of 

each pixel from the contributions of light in all directions with its texture properties are 

calculated at each surface intersection location. The depth information is created by adding a 

depth shader to the camera to calculate the depth of each pixel rendered based on the input of 

the camera depth texture. RGB and depth images are saved separately as 2D images shown in 

Figure 4.1.  

 

Figure 4.1. RGB-D images from the Unity game engine. 

3D data acquisition can also be achieved using 3D models in Unity as point clouds, as shown 

in Figure 4.2. A point cloud defines 𝑋𝑌𝑍 coordinates, which precisely record the geometric 

shapes of 3D models in space. Models are typically represented as the boundary of objects, not 

solid volumetric objects. Each point of 3D models is associated with an RGB intensity value. 

The RGB value of each point is dependent on the rendering options in the scene.  
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Figure 4.2. A point cloud sample from the Unity game engine. 

4.2.2 3D Data Acquisition Using Depth Sensors 

Depth cameras can also achieve 3D data acquisition. The advance of 3D imaging enables 

inexpensive depth sensors in consumer products (e.g. Kinect, Zed Camera, RealSense). These 

depth cameras operate based on Structured Light (SL), Time-of-Flight (TOF) or stereo 

triangulation to measure the depth information in a 3D scene. The acquired depth information 

and colour information from these cameras are then stored as RGB-D images or point clouds.  

An Intel RealSense D435i camera and a Zed camera are used for the 3D image acquisition 

system. Both cameras provide Software Development Kit (SDK) with well-documented 

examples to acquire 3D images represented by point clouds. A quantitative comparison is 

performed between two cameras to decide which is more applicable to the CGH generation.  

Quantitative Depth Quality Comparison 

Various measures could be used to characterise the depth quality acquired by depth cameras. 

The measurement should be based on a standard test environment compatible with different 

depth cameras. A typical example of an acceptable test is a white, flat wall with an 85% 

reflectivity, which has been utilised as the traditional test target for TOF and SL. Intel 

RealSense Camera introduces the depth testing methodology for depth quality evaluation [121]. 
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The methodology introduces primary depth quality metrics, including Z-accuracy, fill rate, 

spatial RMS noise and temporal noise (or uniformity) computed within the desired region of 

interest (ROI) from a camera. These metrics are independent and can be further combined for 

advanced depth quality metrics to evaluate the depth-related performance of cameras. 

Z-accuracy describes the disparity between the measured depth values and ground truth values. 

It is determined by the median value of the signed difference between the depth images 

measured and the ground truth. The fill rate measures the point density and valid pixels (with 

non-zero depth values) of the image. It is the percentile of pixels with a valid depth value 

relative to the total pixels within the ROI. The spatial noise evaluates spatial uniformity by 

measuring the intrinsic variation in depth values. The standard deviation (STD) of the measured 

depth values is utilised to evaluate the variation in the spatial noise within the ROI. Temporal 

noise evaluates the temporal uniformity of the variation in depth values over time, defined by 

STD in depth values within a sequential frame. 

Two cameras are set to high definition (HD) resolution to compare the imaging performance 

with 30 frames per second (FPS). The ROI is 40% at the centre of the image. The testing 

distance ranges from 0.5 to 1.5 metres to capture a depth image from the test target. All other 

configurations are based on their default configurations. 

 

Figure 4.3. Captured point clouds of the test target from Zed (a) and Realsense (b) cameras at 

1.0m. 

Table 4.1 shows the Z-accuracy, fill rate, means 𝜇1, 𝜇2 and STD values 𝜎1, 𝜎2 relative to 

distance and time respectively, for both cameras. We calculate the mean and STD values within 
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five frames to measure the temporal noise. The point clouds in Figure 4.3 are acquired at a 

distance of 1m from the test white wall using the same viewer.  

Both cameras have a Z-accuracy of less than 1% over their ROI, providing accurate depth data 

at a distance of around 1m. As the fill rate shows, the RealSense camera provides less valid 

depth data than the Zed camera. Due to the significant disparity between the colour sensor and 

the depth sensor, the Zed camera is incapable of producing depth pictures for distances less 

than 0.65m. For the spatial noise, The STD values 𝜎2 of the depth error at each distance reveal 

that the point cloud from zed is more uniform and smoother with less amplitude variation than 

the point cloud from the RealSense camera. The RealSense camera has less noise within the 

given time interval than the Zed camera for the temporal noise. Additionally, the zed camera 

sometimes has an unstable issue.  

More quantitative and systematic studies of the capability of Zed and Realsense cameras can 

be found in [122–125]. It should be noted that the overall point cloud quality generated from 

both devices is the combined performances of the depth-sensing hardware with their optimised 

point cloud generating software algorithms.   

Table 4.1. Depth quality comparison for the ZED and the Realsense Camera.  

Device Distance Z-accuracy Fill rate µ1 [m] σ1[m] µ2[m] σ2[m] 

RealSense 0.5m 0.20% 99.68% 0.4938 0.1321 0.4933 0.0462 

Zed 0.5m N/A N/A N/A N/A N/A N/A 

RealSense 0.75m 0.30% 99.68% 0.7529 0.0109 0.7532 0.0081 

Zed 0.75m 0.10% 100.00% 0.7573 0.0105 0.7704 0.0131 

RealSense 1m -0.50% 99.99% 0.9919 0.0420 0.9920 0.0045 

Zed 1m 0.12% 100.00% 0.9973 0.0148 0.9836 0.0273 

RealSense 1.25m 0.16% 99.70% 1.2496 0.0151 1.2495 0.0070 

Zed 1.25m 0.44% 100.00% 1.2518 0.0028 1.2488 0.0201 

RealSense 1.5m 0.01% 99.95% 1.4991 0.0110 1.4989 0.0273 

Zed 1.5m 0.08% 100.00% 1.5039 0.0064 1.5031 0.1317 

 

Qualitative Depth Quality Comparison 

Using a flat wall to compare depth quality is relatively simple. Complex sceneries, on the other 

hand, are challenging to quantify. The performance of both cameras with a complex scene is 

further evaluated to identify essential factors for depth cameras qualitatively. A test scene in 

Figure 4.4 is captured 70 cm away from occluded objects. 
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Figure 4.4. Point clouds of a complex scene from the Zed (a) and the RealSense (b) Cameras. 

Occlusion Effect. The phenomenon of colour and depth images coming from different 

positions that are not entirely aligned could result in the occlusion issue, as shown in Figure 

4.5 (a). This phenomenon arises due to the physical position disparity between colour and depth 

sensors. The position disparity could result in invalid data, showing holes around the object. 

This is most likely to occur along edges. Due to the zed camera having a significant disparity 

between the RGB and the depth sensors, it does not support a proper depth and colour image 

alignment for a short distance.  

 

Figure 4.5. (a) Occlusion due to sensor position disparity. (b) Smeared texture due to the sensor 

FOV disparity. The RGB image boundaries are stretched to match the resolution of the depth 

image. 

Smeared Texture. The available colour boundaries of the RealSense camera are stretched to 

provide texture data to the depth coordinates according to the OpenGL rendering configuration 

shown in Figure 4.5 (b). The texture smearing is a consequence of the depth and colour sensors 

having a different field of view, which is particularly noticeable with the RealSense camera. 
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The colour sensor has a smaller FOV than the depth sensor. Therefore, the area covered by the 

depth sensors does not have corresponding pixels from the colour sensors. In contrast, the depth 

and the RGB camera FOV are more consistent for the Zed camera. 

 

Figure 4.6. (a)The ZED camera uses triangulation to create a depth image, capturing only part 

of the point cloud under dark lighting conditions. (b) The RealSense camera uses ambient light 

and an IR pattern and can work in low-light conditions. 

Lighting and Materials. Since depth cameras have different mechanisms to collect light, it is 

recommended to test depth cameras in different light conditions: dark lighting, natural sunlight, 

and home lighting. Light can come from the depth camera itself or the ambient light in the 

scene. Figure 4.6 depicts the acquired point clouds from both cameras in the dark lighting 

condition. The ZED camera uses triangulation (re-projection) from the geometric model to 

create a depth image, resulting in only a part of the point cloud being captured. The RealSense 

camera uses ambient light and a projected infrared (IR) pattern. IR-based depth-sensing 

methods such as TOF and SL can function under dark lighting conditions. However, the quality 

of the depth data acquired by IR-based sensors can be degraded for materials that do not reflect 

IR. Included in these materials are leather, black clothes and reflective surfaces. Continuous 

reflective surfaces in 3D space can be fragmented into pieces. 

4.2.3 Synthesis Point Cloud Datasets 

The quality of real-world 3D data is compromised by measurement noise, missing depth 

observations, and position disparity of sensors. Several post-processed RGB-D datasets 

obtained from depth cameras have been proposed to meet specific needs that may not be found 

in the original, real data [126–133]. As shown in Figure 4.7, these datasets enable us to set a 

baseline with real-world 3D data acquisition for evaluating and testing hologram-generating 

algorithms. Moreover, these datasets also provide measurement error compensation techniques, 

which can be applied to the depth camera acquisition module.  
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The NYU Dataset v2 is introduced in ECCV 2012, using Kinect v1 to collect real-world 3D 

data [133]. Missing values in the raw depth images result from the disparity between the 

infrared emitter and RGB sensor due to the triangulation-based nature of the Kinect. The 

missing values are filled by the colourisation scheme of Levin et al. [134]. In applications like 

perceptual organisation, amodal completion and semantic segmentation, the missing depth 

observations and in-depth error observation could lead to a nonlinear noise and fragmented 

common surfaces. The lack of time synchronisation between colour and depth channels could 

result in misalignment in the dataset. The same issues have been encountered by the SUN RGB-

D dataset proposed in CVPR 2015 for collecting real-world 3D data from various depth 

cameras, including Kinect and RealSense [129]. The depth quality is degraded mainly by the 

measurement noise, view angle to the regularly reflective surface, and occlusion boundary. 

Issues are resolved by using nearby frames which contain 3D rotation and translation 

information to align and warp the depth image. Recently, Stanford presented a 3D point cloud 

dataset of large-scale indoor areas [135]. The proposed dataset using a Matterport Camera 

collects 70,496 regular RGB images with depth and their corresponding 695,878,620 points, 

semantic annotations, and camera metadata. It is possible to generate holograms utilising this 

large-scale point cloud dataset.  

 

Figure 4.7. Synthesis point cloud datasets: (a) NYUv2  [132], (b) SUN RGBD  [129], (c) 

S3DIS [135]. 

http://www.cs.huji.ac.il/~yweiss/Colorization/
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4.3 Data Processing Module 

The last section introduced the 3D data acquisition module. A depth camera is used to 

simultaneously acquire depth and colour data of real scenes to extract colour point clouds or 

RGB-D images for CGH generation. However, the acquired point clouds or RGB-D images 

from depth sensors often suffer from missing values. Completion methods will be introduced 

to achieve better 3D data quality. The layer-based method for CGH generation considers a 3D 

scene composed of multiple layered images. Therefore, 3D data are resampled into layered 2D 

images with occluded values deleted. These layered 2D images are used for CGH generation. 

4.3.1 Point Cloud Processing for CGH Generation 

Point Cloud Completion 

The point clouds produced by depth cameras usually contain substantial depth information and 

have exact coordinates and colour information. Each point of the real 3D object is represented 

by a six-component vector 𝑣 = (𝑋 , 𝑌 , 𝑍, 𝑅, 𝐺, 𝐵). To achieve a better point cloud, we can use 

the Iterative Closest Point (ICP) algorithm to register point clouds from nearby 

frames [136,137]. ICP algorithm transforms the reference point cloud  𝑄 ≜ {𝒒𝒊}𝑖=1

𝑁𝑞
to the target 

point cloud 𝑃 ≜ {𝒑𝒊}𝑖=1

𝑁𝑝
 set and revises the transformation iteratively to optimal align the 

matched pairs.  

Essentially, for 𝑘𝑡ℎ iteration, the algorithm first establishes a correspondence between the two-

point sets with the last estimated rotation matrix 𝑅𝑘−1 and the translation matrix 𝑇𝑘−1 using the 

MSE metric to minimise the point-to-point matching error and optimise the alignment of each 

source point to its last-founded match. For 𝑁𝑝 points, we find the correspondence 𝐶𝑘(𝑖) which 

gives the best estimate of the closest point in the reference point set to the given point in the 

target point set: 

𝐶𝑘(𝑖) = argmin
𝑗∈{1,2,…𝑁𝑞}

(
1

2
‖(𝑅𝑘−1𝒑𝒊 + 𝑇𝑘−1) − 𝒒𝒋‖

2
) , 𝑓𝑜𝑟 𝑖 = 1,2,3 … 𝑁𝑝 4.1 
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Second, we can compute new transformation matrices 𝑅∗, 𝑇∗  between the last transformed 

point set 𝑇 ≜ {𝑅𝑘−1𝒑𝒊 + 𝑇𝑘−1}
𝑖=1

𝑁𝑝 = {𝑡𝑖}𝑖=1

𝑁𝑝
 and the corresponding closest point set 

{𝒒𝐶𝑘(𝑖)}
𝑖=1

𝑁𝑝
 from the target set 𝑃  by minimising the distance: 

Then 𝑅𝑘 and 𝑇𝑘 are updated according to the new transformation matrices. Using the reference 

point cloud model, we can register other point clouds from nearby frames by using the ICP 

algorithm to synthesise an accurate point cloud 𝑃∗ ≜ {𝒑𝒊
∗}

𝑖=1

𝑁𝑝∗
.  

Depth Layers from Point Clouds 

Having collected a reasonably accurate point cloud 𝑃∗  from the depth camera, we then 

normalise and rasterise the point cloud into depth layers with RGB channels according to the 

𝑧 coordinate information of each point. Each point initially has real-world coordinates and is 

then transformed to match the resolution of the hologram. The z coordinate of all points is 

resampled and indexed into depth grids based on the trade-off between the high fidelity and 

the computational load. All points on each depth grid have the same 𝑧 coordinate or the same 

depth. This step effectively transforms the point cloud into layered 2D images, where the pixels 

of each image represent the points of each depth layer and contains RGB values. The resulting 

layered 2D images can be expressed as 𝐿 ≜ {𝐼𝑖}𝑖=1
𝑇 , where 𝐼𝑖 is an individual RGB image, and 

𝑇 is the number of layers. The layered 2D images 𝐿 are then divided into sublayers for RGB 

channels, where the pixel of each image only contains a single value for each RGB channel. 

The layered 2D images for each channel are represented by 𝐿𝑚 ≜ {𝐼𝑖,𝑚}
𝑖=1

𝑇
Where 𝑚 is the 

colour channel.  

 (𝑅∗, 𝑇∗) = argmin
𝑅𝑇𝑅=𝐼𝑚, det(𝑅)=1

(∑‖(𝑅𝑡𝑖 + 𝑇) − 𝒒𝐶𝑘(𝑖)‖
2

𝑁𝑝

𝑖=1

) 4.2 
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Figure 4.8. The point cloud data processing module. 

The process can be seen in Figure 4.8. We normalise the collected data in Figure 4.8(a) and 

slice the point cloud into layers by the 𝑧 coordinate with RGB channels shown in Figure 4.8(b). 

The sliced layers are shown in  Figure 4.8(c). We resample all the layers and rasterise them 

into grids. The repeated points are overwritten during this process. The resultant layers are 

shown in Figure 4.8(d) for a single RGB channel. 

A zed 3D depth camera captures the experimental point cloud displaying a complex 3D scene 

of a room layout. The captured point cloud is first selected within the ROI to filter out the 

smeared edges and unwanted areas spatially. The ICP algorithm registers the point cloud with 

another one from the nearby frame to improve registration accuracy. The Lidar and Point Cloud 

Processing Toolbox in Matlab implements both the ROI selection and ICP algorithm. The Point 

Cloud Library (PCL) provides point cloud registration functions for C/C++ applications. The 

resulting point cloud is shown in Figure 4.9. 
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Figure 4.9. Registered Point cloud from the Zed camera. 

The point cloud collected has spatial information from the real-world scene. The point cloud is 

normalised and rasterised into depth layers in 1080 × 1080 with red, green, and blue (RGB) 

channels to match the resolution of the simulated  hologram. Thus, the point cloud is stretched 

to 1080 × 1080  in the horizontal plane. The number of layers depends on the trade-off 

between the computational load and the reconstructed image quality. For demonstration 

purposes, we slice the point cloud into 𝑇 = 30 depth layers. Although the limited number of 

layers could result in a discrete reconstruction, each depth plane contained more points and 

gave a better in-focus and defocus impression. The point cloud is first shifted to the centre and 

normalised to match the resolution of the hologram. The z coordinates of all points are rounded 

and indexed into 30 depth layers. The resulting point cloud is shown in Figure 4.10. 
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Figure 4.10. The point cloud is stretched to a 1080*1080*30 grid. 

The round function assigns each point to the nearest layer index and deletes repeated depth 

values, reducing matching errors and enhancing the quality of the reconstruction. Therefore, 

the point cloud contains unique positive integers with fewer matching errors during the layer 

index assignment. The resulting layered 2D images 𝐿 = {𝐼𝑖}𝑖=1
𝑇  is then divided into individual 

RGB channel layered images 𝐿𝑚 = {𝐼𝑖,𝑚}
𝑖=1

𝑇
 by iterating all the images and storing the single 

R, G, B values correspondingly.  

4.3.2 RGB-D Image Processing for CGH generation 

Raw depth images captured with RGB-D cameras could have invalid pixels. The position 

disparity between the RGB and the depth sensors could result in missing data, especially when 

scenes are close to RGB-D cameras. The missing values of depth images acquired from the 

cameras are in-painted using the colourisation scheme [134]. The raw calibrated RGB and 

depth images are shown in Figure 4.11(a), (b) and the in-painted image is shown in Figure 

4.11(c). Both depth images shown are normalised in 8 bits. The colourisation method converts 

RGB images to grayscale and then applies raw depth images as the weighting factor to 

colourise the grayscale images. Therefore, seeing from the other way, the raw depth images are 

in-painted according to the ground truth grayscale images. An essential assumption from the 

algorithm is that if the brightness of two adjacent pixels is similar, their colour values should 

also be similar. This assumption is valid for most cases of the depth inpainting process since 

the missing values most likely occur at the edges of objects due to occlusion, where adjacent 

pixels typically have different brightness. The in-painted depth images have measurement 
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errors during data acquisition and depth estimation errors during depth completion. In-painted 

RGB-D images can be easily converted into individual RGB depth layers by rounding depth 

values to the nearest layer indices. 

 

Figure 4.11. Depth image in-painting using the colourisation scheme. (a) Raw captured RGB 

image. (b) Raw captured depth image. (c) In-painted depth image. 

4.4 CGH Generating Module 

The layer-based method decomposes a 3D model into layered 2D images to calculate CGHs 

on each RGB channel, as shown in Figure 4.12. Each 2D image intensity 𝐼𝑖,𝑚(𝑥, 𝑦; 𝑧 = 𝑧𝑖) can 

formulate a complex amplitude object field 𝑈𝑖,𝑚(𝑥, 𝑦; 𝑧 = 𝑧𝑖) with a random phase distribution 

𝜑𝑖,𝑚(𝑥, 𝑦), where subscript 𝑖  denotes the index of its corresponding depth layer. 𝑘𝑚  is its 

corresponding wavenumber with 𝑚 as the RGB channel. Then the complex amplitude field 

𝐻𝑖,𝑚(𝜇, 𝜈) in the hologram plane per channel at a fixed depth 𝑧 = 𝑧𝑖 can be calculated from 

equation 3.8 by: 

The Fourier Transform with the quadratic phase factor numerically propagates the object field 

to the hologram plane for each layer per channel. Quadratic phase factors for different RGB 

channels can be precalculated to reduce the computational load of the layer-based method. The 

full hologram 𝑊𝑚 per channel is then calculated by stacking the sub-holograms 𝐻𝑖,𝑚 of each 

layer, which can be expressed as:  

𝐻𝑖,𝑚(𝜇, 𝜈) =
𝑒𝑗𝑧𝑖𝑘𝑚

𝑗𝜆𝑧𝑖
𝑒

𝑗𝑘𝑚
2𝑧𝑖

(𝜇2+𝜈2)
× ℱ−1 {𝑈(𝑥, 𝑦; 𝑧 = 𝑧𝑖)𝑒

−
𝑗𝑘𝑚
2𝑧𝑖

(𝑥2+𝑦2)
}. 4.3 

𝑊𝑚 = ∑ 𝐻𝑖,𝑚

𝑇

𝑖=1

 4.4 
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To optical display the resulting hologram on SLMs, we need further encode the complex-

amplitude hologram 𝑊𝑚 into phase-only holograms. The required phase level is dependent on 

the specification of the SLM. For a 256-level phase-only SLM, we can perform the basic GS 

algorithm on each sub-hologram from layers. Then the phase-only sub-hologram can be 

expressed as 𝐻𝑖,𝑚
𝑝 = 𝑔𝑠{ 𝐻𝑖,𝑚} and the full phase-only hologram is 𝑊𝑚

𝑝 = ∑ 𝐻𝑖,𝑚
𝑝𝑇

𝑖=1 .  

 

Figure 4.12. Hologram generation from each layer per channel. 

In summary, the procedure for computing the full-colour CGH of a real 3D object can be 

summarised as follows: 

1. Acquire and process an accurate point cloud or an RGB-D image from the depth camera. 

2. Obtain layered 2D images for each R, G, and B channel. 

3. Generate CGHs based on the layered 2D images for each RGB channel using the layer-

based method. 

4. Combine the RGB CGHs. 

5. Perform the GS algorithm and write the CGHs for the specific SLM display. 
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4.4.1 Numerical Simulation from Real Captures 

We generate CGHs based on the layered 2D images for each RGB channel 𝐿𝑚  by performing 

the layer-based method. The pixel pitch is 8μm; wavelengths are 630nm, 532nm, and 465nm; 

the distance from the hologram plane to the first 2D image 𝐼1,𝑚  𝑧_𝑛𝑒𝑎𝑟 = 0.8𝑚. The distance 

between each layer is set to 𝑑𝑒𝑙𝑡𝑎_𝑙𝑎𝑦𝑒𝑟𝑠 =  5mm, which can be calculated by the range of 

the real-world 𝑧 coordinates from the acquired point cloud.  

 

Figure 4.13. Amplitudes and phases of generated  R (left), G(middle) and B(right) holograms. 

We perform FFT on the optical field 𝑈𝑖,𝑚 for each 2D image 𝐼𝑖,𝑚 and add individual quadratic 

phases, respectively, for each RGB channel based on the layer-based method. The generated 

sub-hologram 𝐻𝑖,𝑚  from each layer per channel is then stacked to form the superposed 

hologram 𝑊𝑚  at a resolution of 1080x1080 . 𝑊𝑚  is a 2D complex-amplitude field in the 

hologram plane which can reconstruct the 3D layered images in the object plane. The amplitude 

and phase of the hologram for each colour channel 𝑊𝑅, 𝑊𝐺 , 𝑊𝐵 are shown in Figure 4.13. 

Two reconstruction fields of the 3D model at layers 3 and 24 are simulated in Figure 4.14. 

Perfect reconstruction can be achieved on the in-focus layers. The defocusing effect can be 

clearly shown in the RGB reconstructed images. However, the defocus effect is rather noisy 

due to the multiplane crosstalk. The direct superposition of sub-holograms does not consider 

the correlation of each complex-amplitude layer, resulting in reconstruction at different depths 

negatively interfering with each other.  
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Figure 4.14. Reconstructed Images in the RGB channel at layers 4(a) and 24(b). 

4.5 Optical System Design 

This section describes the construction process of an experimental holographic display system 

used in this work to reconstruct holograms optically. The holographic display system is a 

prototype demonstrating proof-of-concept and theoretical test conclusion. The optical design 

can be further developed to compensate for the aberration associated with the optical system. 

The schematic diagram outlining the layout of the 3D holographic display is presented in 

Figure 4.15. 

The optical design consists of a 532nm collimated laser source (A) mounted by a rotation 

positioner. A half waveplate (B) rotates the polarisation state of the laser beam from the laser. 

The beam is expended by the lens (C) and spatially filtered by a circular aperture (D) and a slit 

aperture (E). The expanded beam then passes through a collimating lens (F) and is linearly 

polarised by a polariser (G). The collimated beam illuminates the SLM (H), travelling through 

a beam splitter cube (I). The reflected beam from the SLM then passes through a Fourier lens 

(J) to produce a reconstructed image at its focal distance. The reconstructed image is expanded 

by another lens (K) and recorded at the required size on a CCD camera (L). 



49 

 

Figure 4.15. The 3D holographic display schematic diagram. 

The following steps determine the designing parameters of optical elements in the holographic 

display system:  

1. SLM parameters (H) 

The primary element in the holographic display system is the SLM (H). A smaller dimension would 

reduce the required diameter of the collimating beams incident on the SLM, and a smaller pixel 

pitch would increase the scale of the replay field. Our available SLM is a reflective phase-only 

Holoeye LETO SLM, with specifications in Table 4.2. 

2. Laser parameters (A) 

The available laser source is a Thorlabs 532nm, 0.9mW collimated laser source (A) emitting a 

∅3.5mm Gaussian beam. We can calculate the required magnification of the beam dimension 

to illuminate the selected SLM. Since the collimated beam emitting from the laser is a Gaussian 

profile, only the approximately flat-top (or top-hat) region of the Gaussian beam is used to 

illuminate the SLM near-uniformly. Thus, the magnification is determined by the diameter of 

the flat-top region of the Gaussian beam and the diagonal of the SLM. 
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Table 4.2. Holoeye LETO SLM Micro-display Features. 

Display Type: Reflective LCOS (Phase Only) 

Resolution: 1920 x 1080 

Pixel Pitch: 6.4 µm 

Fill Factor: 93 % 

Active Area / Diagonal 12.5 x 7.1 mm (0.55″ Diagonal) 

Addressing 8 Bit (256 Grey Levels) 

Signal Formats HDMI – HDTV Resolution 

Input Frame Rate 60 Hz / 180 Hz 

 

The diameter of the Gaussian beam from the laser source is ∅3.5mm in 1/e2 width, describing 

the radial distribution of the Gaussian beam at 13.5% of its maximum. The equation describing 

the radial intensity profile of the Gaussian beam 𝐼(𝑟) is given by 

where 𝐼0  is the maximum intensity value, 𝑤  is half of the beam width, and 𝑟 is the radial 

distance from the centre axis of the beam. We empirically choose the radial distance at 𝑟𝑑 =

0.2𝑤, so that the intensity is 92.31% of its maximum, which provides a nearly-uniform beam 

in this region. Thus, the ratio between the diameter of the nearly flat-top region to the beam 

diameter is 0.2 and the nearly-uniform collimated laser source diameter 𝐷𝐿𝑎𝑠𝑒𝑟  used for SLM 

illumination is ∅0.7mm . The magnification is given by the ratio between 𝐷𝐿𝑎𝑠𝑒𝑟  and the 

diagonal of the SLM 𝐷SLM. From Table 4.2, 𝐷SLM is 0.55″, corresponding to a diameter of 

13.97mm. Therefore, if the SLM is illuminated by the flattop of the Gaussian beam, the 

magnification required is M𝑆𝐿𝑀/𝐿𝑎𝑠𝑒𝑟 = 𝐷SLM/𝐷𝐿𝑎𝑠𝑒𝑟 ≈ 20. 

3. Lens parameters (C) and (F) 

We use an expanding beam system as required by the magnification to enlarge the collimating 

beam from the laser. The collimated input beam is expanded from the first lens (C) and then 

collimated by the second lens (F). The magnification of the Galilean beam expander and the 

required optical track length 𝐿 are described by: 

𝐼(𝑟) = 𝐼0 exp (−
2𝑟2

𝑤2
), 4.5 
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Thus, to design a relatively compact optical system, the beam expander with a short focal 

distance 𝑓1   lens and a large focal distance 𝑓2  lens is preferable to meet the magnification 

without exceeding the system length requirements. The available lenses are the first lens (C) 

𝑓1 = 13𝑚𝑚 and the second lens (F) 𝑓2 = 250𝑚𝑚, resulting 𝑀𝑓2/𝑓1
≈ 20 and 𝐿 = 263𝑚𝑚. A 

circular aperture (D) and a slit aperture (E) are placed between the lenses to spatially filter out 

the beam. To physically check whether the beam passing through the beam expander is 

collimated, a practical method is to record the beam profiles at a few centimetres and a longer 

distance (~5m) away. The beam profiles should be roughly the same. The collimated beam is 

shown in Figure 4.16. 

 

Figure 4.16. The experimental expanded collimated beam from the laser. 

4. Linear polariser (G) 

Before illuminating the SLM through a beam splitter cube (I), the expanded collimated beam 

is linearly polarised to align the effective polarisation state of the SLM with the half waveplate. 

The chosen SLM modulates the incident laser beam by nematic liquid crystals (NLC), which 

are inherently polarisation sensitive. 

5. Fourier lens (J) parameters 

The SLM modulates the collimated beam and reflects through the beam splitter (I). The Fourier 

lens (J) is placed a focal distance away from the SLM, performing the Fourier transform on the 

modulated beam. The reconstructed image is then shown at its focal distance. This lens (J) has 

a focal length 𝑓3 = 150𝑚𝑚,  chosen according to the propagating parameter in CGH 

generation. 

𝑀𝑓2/𝑓1
=

𝑓2

𝑓1
, 𝐿 = 𝑓1 + 𝑓2. 4.6 
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Figure 4.17. Experimental holographic projector system designed for demonstration. 

6. Lens (K) parameters 

The lens (K) is an objective lens to constitute a 4F system with the CCD camera (L) since the 

camera is already attached to a lens.  The focal length of the lens (K) varies according to the 

focal distance of the CCD camera. This 4F system magnifies the replay field on the CCD 

camera.  

The constructed holographic projector system designed is shown in Figure 4.17. A test 

hologram is generated from the 3D space station model shown in Figure 4.18 based on the 

layer-based method. Sub-holograms 𝐻𝑧𝑖  generated from each layer are optimised into 256-

level phase-only 𝐻𝑧𝑖
𝑄

 using the GS algorithm for 10 iterations. The simulated and optical replay 

fields are shown in Figure 4.18.  

 

Figure 4.18. The simulated (a) and optical (b) reconstructed images of the 3D space station 

model. 



53 

4.6 Demonstrations 

In this section, we demonstrate practical issues of the holographic display system for real-world 

scene acquisition and display. Holographic displays often show poor image quality due to 

severe real-world deviations in data acquisition and reconstruction compared to the ideal 

scenario. Therefore, we demonstrate the holographic reconstruction quality of a real-world 

scene captured with a low-cost RGB-D camera to identify failure modes. We further perform 

experimental holographic reconstruction to demonstrate practical artefacts and possible 

improvements for the reconstruction quality. 

4.6.1 Real-World Scene vs Computer-Generated Scene 

We compare the holographic reconstruction using a Unity-rendered computer-generated (CG) 

scene to demonstrate practical issues with a real-world (RW) scene.  

 

Figure 4.19. RGB and Depth images from RealSense camera (a) (b) and from Unity (c) (d). 

Filled depth image (e) using the colourisation scheme. 

3D data creation and acquisition. A Cornell Box with a 3D printed Stanford bunny placed 

inside is built as a physical model for the RGB-D sensor acquisition process. The Cornell Box 

consists of a light source from a laboratory lamp in the centre of the white ceiling, diffusive 

green and red walls on the left and right sides, and white walls on the back and floor. A Stanford 

bunny is printed with PLA materials is placed in the box. The same scene is then rendered in 

Unity with the ray casting technique. The rendering options of the scene are determined by 

matching the visual properties in Unity to the photograph of the RW scene.  

RGB-D images of the RW scene are acquired with an Intel RealSense D435i camera. Figure 

4.19(a), (b) shows the raw colour and aligned depth images.  The missing values of the depth 

image acquired from the camera were filled, as shown in Figure 4.19(e), using the colourisation 

scheme [134]. We directly capture RGB images of the CG scene once rendered, and the depth 
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information is recorded by adding a depth shader to the viewing camera for calculating the 

depth of each pixel based on the camera depth texture. Captured RGB-D images of the CG 

scene are shown in Figure 4.19(c), (d).  

CGH generation from RGB-D images. The aligned depth and colour images of both scenes 

were normalised and resampled into 30 layered 2D images with RGB channels based on the 

trade-off between the high fidelity and the computational load. Occlusion culling was 

performed by deleting occluded values during the resampling process.  We generated CGHs 

using the layer-based method for each RGB channel from layered images. The generated 

holograms for each colour channel were stacked to form a superposed 720x720 hologram for 

each colour channel.  

 

Figure 4.20. Single R channel holograms with amplitude, phase, and numerical reconstructions 

of the real scene (a) and the CG scene (b) on different focal distances. 

Results and Discussion. The amplitude and the phase of holograms for a single colour R 

channel are shown in Figure 4.20. The full reconstructed fields at two different depth planes 

for the RW and CG scenes are also shown in Figure 4.20, alongside zoomed-in versions.  

The general depth information is conserved, and the real scene can be successfully 

reconstructed at different depths. Comparing the reconstructed real scene in Figure 4.20(a) with 

the CG scene in Figure 4.20(b), reconstructed images are visually similar, with reconstruction 

errors at the boundaries of the bunny. For the same depth plane, the defocus boundaries for the 

RW scene do not entirely coincide with the boundaries of the object and are generally diffuse 

instead of sharp. This is due to the less accurate and noisy depth image at both the acquisition 

completion stages, especially at occlusion boundaries, which contain discontinuities in depth 

and much of the information of object structures. Both measurement errors in data acquisition 

and depth estimation errors in depth completion. Errors are also observed near the complex 

features of the bunny. 
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4.6.2 Implementation Issues on Experimental Reconstruction 

We collect colour and depth images in Unity and generate CGH to demonstrate practical issues 

in experimental holographic reconstruction. The collected colour and depth images of car 

models are shown in Figure 4.21. The depth image is normalised into 255 depth levels. The 

simulated and optical replay fields are reconstructed in the Fresnel region, shown in Figure 

4.22, with highlights on the in-focus parts of reconstructions. 

 

Figure 4.21. RGB-D images of car models from the Unity game engine. 

Zero-order. In the optical reconstruction experiment, the illuminated light cannot be fully 

diffracted due to the limited diffraction efficiency of SLMs, resulting in a zero-order region at 

the origin of optically reconstructed images. The zero-order issue can be resolved by inserting 

a polariser after the SLM to filter out undiffracted light or using apertures for spatial filtering. 

 

Figure 4.22. Simulated (first row) and optical (second row) replay fields of the car models. 

Image quality degradation. Speckle-like artefacts can be observed in the simulated 

reconstruction. The GS algorithm immediately stagnates at a local minimum, having limited 

ability to optimise the image quality of reconstructions. Imperfections due to the laser profile, 

SLM flatness and modulation properties, and aberration in other optical elements reduce the 
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quality of optically reconstructed replay fields. Speckle noise is presented in reconstructed 

images when the observer plane is a diffuse surface illuminated by coherent, collimated lasers. 

Time multiplexing methods such as OSPR can effectively suppress the speckle noise. However, 

generating multiple CGHs for 3D scenarios with a high refresh rate of the spatial light 

modulator to display CGHs in real time is challenging. Alternatively, active feedback optical 

aberration correction techniques can be introduced to suppress speckle noise and other optical 

aberrations. 

 

Figure 4.23. The visual difference in defocus blur under Unity and CGH reconstructions. 

Image Defocus. Figure 4.23 demonstrates the visual difference in defocus blur under typical 

Unity and holographic reconstructions. Intuitively, the Unity construction has a significantly 

smooth spatial variation at the defocus areas. The image defocus generated by CGHs relies on 

coherent light propagation, having different defocus behaviour than typical incoherent light 

propagation rendered in Unity. Further discussion on the difference in defocus behaviours will 

be covered in Chapter 6. 

Gamma correction. Every display has an inherent property known as the gamma value  , 

which describes the transfer function between input and output pixel energy. As a result, 

gamma correction is often applied during an image pre-processing stage to display systems so 

that, visually, the display exhibits compatible gamma characteristics. If such gamma correction is 

not applied, there will be a contrast mismatch between displays displaying the same image. The 

gamma correction curve is simply the inverse of the gamma response curve. A CGH of a grey-

scale ramp is typically calculated to determine the gamma correction function for holographic 

displays [66]. The gamma response curve is obtained by curve fitting the intensity values of 

the ramp area of the captured reconstructed image.  

Tone Mapping. The layer-based method decomposes an image into piecewise smooth base 

layers, resulting in intensity variations between layers. Especially for layers with high intensity 
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with less signal area, the reconstructed image intensity seems brighter than other layers. 

Furthermore, the removal of amplitude information in the hologram plane will perturb the 

energy distribution of the sliced target images in the replay field, increasing the dynamic range 

of the reconstruction. Certain regions of the reconstructed image with low pixel intensity are 

invisible from those with high pixel intensity. Through tone mapping, the intensities of layered 

images can be better distributed, allowing areas of lower local contrast to gain a higher contrast. 

4.7 Conclusion 

This chapter presents the design and operation of a primitive holographic display system 

consisting of a 3D data acquisition module, a data processing module, a CGH calculation and 

encoding module, and an optical holographic display module. The 3D data acquisition is 

performed from two depth cameras, and their qualities are compared for CGH calculation. For 

demonstration purposes, an experimental holographic display is implemented for displaying 

calculated CGHs. This chapter has achieved an end-to-end chain from the 3D data acquisition 

to the 3D data reconstruction through holographic displays. However, the system prototype has 

several practical issues, from data acquisition to optical reconstruction. Moreover, the 

algorithm used to generate CGHs is the standard layer-based method with the GS algorithm 

based on CPU calculation for a 256-level phase-only SLM. The following chapters will address 

more advanced algorithms exploiting high parallel GPUs for computational acceleration to 

improve reconstructed image quality. 

  

https://en.wikipedia.org/wiki/Luminous_intensity
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Chapter 5 CGH Optimisation with Image Quality 

Metrics   

This chapter is primarily based on “Perceptually motivated loss functions for computer 

generated holographic displays”. Yang, F., Kadis, A., Mouthaan, R. et al. Sci Rep 12, 7709 

(2022). 

5.1 Introduction 

Understanding and improving the perceived quality of reconstructed images is key to 

developing hologram generation algorithms. The last chapter demonstrated a holographic 

display system using the layer-based method with the GS algorithm to optimise CGHs. 

However, severe image artefacts occurred in the reconstruction process. The GS algorithm 

relies on iterative applying constraints in both the spatial and Fourier domains with Fourier 

transforms and is prone to local minimum solutions due to its strong enforcement of constraints. 

While the double-phase method offers a straightforward and efficient approach for encoding 

complex amplitude CGHs into phase-only CGHs, the use of the down-sampling operation 

introduces significant noise encoded in the reconstructed image, thereby limiting its 

effectiveness.  

Recent advancement in complex-amplitude differentiation has enabled the gradient descent 

method to be applied to phase-only CGH optimisation [29,43,44,138–142]. Unlike the GS 

algorithm or the double-phase method, the gradient descent method allows for explicit 

optimisation of CGHs based on an objective function, which provides better control and 

flexibility over the optimisation process. This is particularly advantageous for improving the 

quality of reconstructed images in 3D CGHs, where reconstruction is more challenging due to 

the more significant number of constraints and the requirement for high-resolution encoding. 



60 

By optimising the objective function directly, the gradient descent method can avoid issues 

with local minimum solutions and convergence, resulting in a more robust and globally optimal 

solution. 

This chapter focuses on improving the perceived quality of 2D CGHs, introducing the gradient 

descent method to phase-only CGH optimisation, an iterative first-order optimisation algorithm 

typically used in machine learning and deep learning. We validate the proposed method in 

simulation and use an experimental holographic display prototype to demonstrate the improved 

optical reconstruction quality. Furthermore, using the gradient descent method, we introduce 

different image quality metrics (IQMs) as losses for CGH optimisation. We present a 

comprehensive analysis employing extensive objective and subjective assessment of 

experimentally reconstructed images to reveal the relative performance of IQM losses for 

hologram optimisation. This extensive analysis provides guidance for finding a specific 

perceptually-motivated loss function for CGH generation.  

5.2 Gradient Descent Method for CGH Optimisation 

The gradient descent method is an iterative optimisation algorithm typically applied to deep 

learning models to optimise the model weights so that the loss function is as small as possible. 

For deep learning model optimisation, the loss function can be regarded as a parametric 

function with the model weights as parameters. The optimal weights of the model can be 

obtained by calculating the gradient of the loss function with respect to the weights and then 

optimising along the direction of the gradient for a given dataset. The standard loss function 

for image-related applications is the mean squared error, quantifying the per-pixel error 

between the reconstructed and target images. 
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Figure 5.1. CGH optimisation model based on the gradient descent method. 

However, the propagation models are given for CGH optimisation based on the gradient 

descent method, and we need to obtain the optimal input (phase CGHs). In this case, for a 

selected propagation model, the gradient of the loss function is calculated with respect to the 

input, and the input is optimised in the gradient direction. Thus, there are three essential 

components in the gradient descent method for CGH optimisation. First, we need to establish 

the propagation model to determine the direction of the gradient calculation, and second, we 

need to calculate the gradient of the loss function. Finally, we use the gradient to optimise the 

initial phase hologram. 

We can treat the gradient descent method for CGH optimisation as a forward-backward 

optimisation process to minimise a given loss function. In the forward pass, the selected wave 

propagation model propagates a phase hologram to the replay plane to produce a reconstructed 

image, which is used to calculate the loss by comparing it to the target image. In the backward 

pass, the model traverses backwards from the output, collecting the derivatives of the loss 

function with respect to the phase hologram and updating the hologram to minimise the loss. 

The model iteratively goes through the forward pass and backward pass to obtain the optimised 

phase hologram. This process is illustrated in Figure 5.1. 
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5.2.1 Forward Pass 

In the forward pass, we select the angular spectrum method [5,107] with a planar illuminating 

wave as the diffraction propagation model as introduced in section 2.1.3: 

𝑓(𝜙) = ℱ−1 {ℱ{𝑒𝑖𝜙(𝑥,𝑦)} × 𝑒𝑥𝑝 [𝑗2𝜋𝑧√
1

𝜆2
− 𝑓𝑥

2 − 𝑓𝑦
2]}. 5.1 

Here, 𝜙(𝑥, 𝑦) is the phase hologram that has been quantised so that it can be displayed on a 

binary or 8-bit SLM, 𝜆  is the wavelength, 𝑓𝑥 , 𝑓𝑦  are spatial frequencies, and 𝑧  is the 

propagating distance between the hologram plane and the replay field plane. ℱ and ℱ−1 denote 

the Fourier transform and the inverse Fourier transform, respectively. The resulting field 𝑓(𝜙)  

is a complex replay field whose amplitude is related to the reconstructed image intensity by 

𝐼(𝜇, 𝜈) =  |𝑓(𝜙)|2.  

To evaluate the perceived image quality, the amplitude of the replay field 𝐴𝑟𝑝𝑓 is compared 

with the target amplitude 𝐴𝑡𝑎𝑟𝑔𝑒𝑡 using a loss function ℒ. Though intensity-based objective 

functions can also be utilised for image quality evaluation, amplitude-based objective functions 

have been found to yield better algorithmic performance and are preferable in hologram 

optimisation [143,144]. Therefore, the CGH optimisation algorithm aims to find the optimal 

quantised phase hologram �̂� that minimises the loss function ℒ describing the visual quality, 

calculated from the reconstructed image amplitude |𝑓(𝜙)|  and the intended target image 

amplitude 𝐴𝑡𝑎𝑟𝑔𝑒𝑡: 

�̂�  = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜙

ℒ(𝑠 ⋅ |𝑓(𝜙)|, 𝐴𝑡𝑎𝑟𝑔𝑒𝑡), 5.2 

where 𝑠  is a scaling factor for normalisation. The MSE for a 𝑚  by 𝑛  sampling points is 

commonly used as the loss function, computed by averaging the squared amplitude differences 

of reconstructed and target image pixels: 

ℒ𝑀𝑆𝐸 =
1

𝑚𝑛
∑[|𝑓(𝜙)| − 𝐴𝑡𝑎𝑟𝑔𝑒𝑡]

2

𝑚,𝑛

. 5.3 
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5.2.2 Backward Pass 

Having selected the model, in the backward pass, we calculate the gradient  𝜕ℒ/𝜕𝜙𝑘−1 of the 

loss function with respect to the current estimate of the phase hologram 𝜙𝑘−1 to update the 

next estimate phase 𝜙𝑘.  

Since the propagation model is composed of multiple complex amplitude functions, we 

calculate the gradient by the chain rule, which involves the calculation of complex derivatives: 

𝜕ℒ

𝜕𝜙𝑘−1 =
𝜕ℒ

𝜕𝐴𝑟𝑝𝑓
′ ⋅

𝜕𝐴𝑟𝑝𝑓
′

𝜕𝑓
⋅

𝜕𝑓

𝜕𝜙𝑘−1 , 𝑓: ℂ → ℂ. 5.4 

Therefore, in the forward pass, we apply equations 5.1 and 5.3 to calculate the loss function, 

and in the backward pass, we start by calculating the derivatives of the loss function with 

respect to the last result and traverse backwards to recursively calculate the derivatives with 

respect to the one before the last result.  

However, in complex analysis, the holomorphic requirement for functions to be complex-

differentiable is very strict. Wirtinger calculus relaxes this requirement and allows approximate 

complex derivatives of nonholomorphic functions to be more easily calculated using a 

conjugate coordinate system [140,145–147]. Recently, Wirtinger calculus has been 

implemented in automatic differentiation packages in machine learning libraries such as 

TensorFlow and PyTorch. These automatic differentiation packages keep a record of all the 

data and operations done in the forward pass in a direct acyclic graph and automatically 

compute gradients using the chain rule. 

5.2.3 Optimiser Based on the Gradient 

The reason for calculating the gradient of the loss function with respect to the current estimate 

of the phase hologram is to use its gradient to update the next estimate. The gradient descent 

method updates the next estimate of the phase hologram 𝜙k in the opposite direction of the 

gradient of the loss function ∇ℒ(𝜙(𝑘−1)) with respect to 𝜙(𝑘−1). In other words, if we follow 

the direction of the gradient of the loss function downhill, the value of the loss function will 

decrease until we reach a valley. For a learning rate 𝜂, the next estimated phase hologram 𝜙(𝑘) 

is given by: 
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𝜙(𝑘) = 𝜙(𝑘−1) − 𝜂𝛻ℒ(𝑠 ⋅ |𝑓(𝜙(𝑘−1))|, 𝐴𝑡𝑎𝑟𝑔𝑒𝑡). 5.5 

The learning rate η is a tuning hyperparameter that determines the step size at each iteration. 

The optimisation speed is relatively slow for a small learning rate (103). However, as the step 

size is small, the optimisation is relatively smooth and stable to reach a (local) minimum. If the 

learning rate is too big, the optimisation may converge too quickly to a suboptimal result or 

diverge completely. Figure 5.2 demonstrates the optimisation behaviour of the gradient descent 

method for different learning rates. The changing trend of the overall parameters is to make the 

loss function keep getting smaller. A smaller learning rate can guarantee that the method 

gradually approaches the minimum, and a bigger learning rate can result in oscillating before 

converging. 

 

Figure 5.2. Optimisation behaviour of the gradient descent method for different learning rates. 

Several update strategies, such as Adagrad [148] and Adaptive Moment Estimation 

(Adam) [149], propose adaptive learning rates to improve accuracy and convergence speed.  

5.2.4 Hologram Generation based on DIV2K Dataset 

Before we dive into the implementation details of the gradient method for CGH optimisation, 

we first introduce the dataset as target images to generate computer-generated holograms. The 

DIVerse 2K resolution image dataset (DIV2K) was introduced in 2017 for benchmarking 

computer vision topics, including single-image image superresolution [150,151]. It contains 

1000 RGB low-resolution images with corresponding high resolution and diverse image 

contents. For hologram generation, we select 100 images from the DIV2K dataset. The images 

are preprocessed using the same tools such that they are all monochrome and have 1,920 × 

1080 resolution, as shown in Figure 5.3.  
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Figure 5.3.  Monochrome target image amplitudes from the DIV2K dataset 

Based on 100 high-resolution images in the DIV2K dataset, we first compute the phase-only 

holograms by the gradient descent method to validate the method in numerical simulation. For 

the convenience of parameter settings, we use argparse in python to process CGH and 

hyperparameters. CGH parameters include wavelength at 532𝑛𝑚  in green, propagation 

distance at 15𝑐𝑚 , SLM pixel pitch at 6.4𝜇𝑚 , and the total number of iterations at 300. 

Hyperparameters of the Adam optimiser include a 0.05 learning rate and default exponential 

decay rates of 𝛽1 = 0.9 and 𝛽2 = 0.999. Images in the DIV2K dataset are stored as a Dataset 

class in PyTorch and loaded in the DataLoader module. Since holography reconstructs light 

without gamma correction, target images are linearised from sRGB to the linear intensity and 

sequentially converted to image amplitude. The sRGB to linear conversion relationship is given 

by [29,43]:  

𝐼𝑙𝑖𝑛 =
1

12.92
𝐼𝑠𝑅𝐺𝐵     0 ≤ 𝐼𝑠𝑅𝐺𝐵 ≤ 0.04045

𝐼𝑙𝑖𝑛 = (
𝐼𝑠𝑅𝐺𝐵 + 0.055

1.055
)

2.4

.     0.04045 < 𝐼𝑠𝑅𝐺𝐵 ≤ 1

 5.6 

The input sRGB intensity target images are converted to linear space intensity images first and 

then to linear space amplitudes consecutively: 

𝐴𝑡𝑎𝑟𝑔𝑒𝑡,𝑙𝑖𝑛 = √𝐼𝑡𝑎𝑟𝑔𝑒𝑡,𝑙𝑖𝑛 ≈ 𝐼𝑡𝑎𝑟𝑔𝑒𝑡,𝑠𝑅𝐺𝐵
1.1, 5.7 

The DataLoader module then indexes and loads images to establish an iterable dataset. To ease 

computational load, we can precalculate and store the quadratic phase term in the forward and 

backward propagation so that it will not be calculated repeatedly for different images. For each 

image, we forward propagate with the same constant initial phase to generate a reconstructed 

image amplitude, compare it to the target amplitude, and then backwards propagate to obtain 
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the gradient for the loss function, which is used by the Adam optimiser to find the optimal 

phase hologram iteratively. During each iteration, we normalise the amplitude of the replay 

field.  

 

Figure 5.4. The CGH optimisation process over iterations using the gradient descent method. 

The CGH generation is done on a machine with an Intel i7-8700 CPU @ 3.20GHz and a 

GeForce GTX 1080 GPU. PyTorch 1.9.0 and CUDA 10.2 are used to implement complex-

amplitude gradient descent optimisation on the GPU. Computation takes 30 GPU seconds to 

generate the holograms. Figure 5.4 shows the reconstructed images for a target image during 

the optimisation process using the proposed method. The reconstructed image quality gradually 

becomes better with more iterations.  

5.3 Quantitative Comparison to Other Algorithms 

We further conduct a quantitative comparison to evaluate the performance of 2D CGH 

algorithms. The algorithms tested in the experiment include Gerchberg-Saxton (GS) algorithm, 

the double phase hologram (DPH) method, the One-Step-Phase-Retrieval algorithm (OSPR), 
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and the gradient descent (GD) method. The experiment aims to optimise phase patterns using 

different algorithms and evaluate their performance using the peak signal-to-noise ratio (PSNR) 

and structural similarity (SSIM) metrics. 

 

Figure 5.5. CGH algorithm performance comparison. (a) PSNR versus computational speed 

(sec) shown in log scale for DPH, OSPR, GS and GD methods. (b) SSIM versus optimisation 

steps for all methods. (c) and (d) evaluate the PSNR and SSIM for all simulated reconstructed 

images, respectively. 

The experiment uses a phase-only SLM with a resolution of 1,920 × 1,080 pixels and a pixel 

size of 6.4 × 6.4 μm. The target image plane is set at 18cm away from the SLM, and simulated 

light sources are used with wavelengths of 638, 532, and 450 nm for the red, green, and blue 

colour channels, respectively. Iterative algorithms, including the Gerchberg-Saxton algorithm 

and gradient descent method, run 200 iterations for each colour channel until convergence. The 

OSPR algorithm uses 20 phase-only holograms for reconstructed image optimisation. The 

angular spectrum method is used as the wave field propagation operator in all cases for 

consistency in the comparison of the performance of the different CGH algorithms. The dataset 

of target images used in the experiment consisted of 50 test images randomly selected from the 

DIV2K dataset, each with a resolution of 1,920 × 1,080 pixels. To ensure a fair comparison, 

the resulting amplitude of all methods is scaled such that the mean amplitude of the scaled 

reconstructed image matches the mean amplitude of the target image. Subsequently, the scaled 

amplitude is cropped to the centre at a resolution of 1,680 × 960 to reduce the impact of 



68 

ringing artefacts near the image edges. All algorithms are executed on an NVIDIA RTX 2080 

graphics processing unit with Intel i7-9700K @ 3.60GHz using Pytorch. 

Figure 5.5(a) displays the computational time required by each algorithm to generate phase-

only holograms on a logarithmic scale. Figure 5.5(b) illustrates the performance of each 

algorithm based on the SSIM metric. Non-iterative algorithms such as DPH and OSPR are 

represented by single points on the charts and have the potential to achieve real-time frame 

rates. Iterative algorithms, including the GS and GD algorithms, can converge in approximately 

20 seconds while trading off between the number of iterations and the resulting quality. 

However, the GS algorithm is prone to stagnation after around 20 iterations. Figure 5.5(c) and 

(d) present a quantitative comparison of selected algorithms, evaluating the PSNR and SSIM 

for all reconstructed images in the simulation. The PSNR and SSIM values for DPH, OSPR, 

GS, and GD are found to be 22.9 dB (0.62), 15.29 dB (0.65), 21.36 dB (0.59), and 31.02 dB 

(0.92), respectively. The reported values are obtained by taking the mean values for 50 

reconstructed images for each algorithm. Error bars are also calculated to represent the standard 

deviations between scenes. These error bars indicate the variability in the results and suggest 

that the performance of each method is consistent across the scenes.  

Figure 5.6 presents simulated results for DPAC, OSPR, GS, and GD, qualitatively comparing 

nine images for each experiment selected from 50 reconstructed images. For each image, two 

zoomed-in details are indicated with rectangular boxes and are presented side-by-side with the 

image. As can be seen, the reconstructions calculated using the gradient descent method 

outperform others significantly, providing much additional detail in the image and lowered 

speckle noise. The comparison demonstrates that the gradient descent method achieved the best 

results among the tested algorithms. Overall, this comparison provides valuable insights into 

the performance of different CGH algorithms and their potential applications in improving 

image quality for holographic displays. 
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Figure 5.6. For qualitative comparison, the simulated results are selected from 50 reconstructed 

DPH, OSPR, GS, and GD images. Two zoomed-in details are indicated for each image, with 

rectangular boxes presented side-by-side with the image. 

5.4 IQM as Loss Functions 

5.4.1 Motivation 

As we see in previous sections, the gradient descent method predefines a loss function and uses 

its gradient to update the hologram phase at each iteration. The specific loss function selected 

is essential since its gradient drives the hologram phase to the optimal state. A standard choice 

of the loss function is the mean squared error due to its simplicity of use and clear physical 
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meaning. It also remains the standard criterion for evaluating reconstructed image quality in 

CGH generation.  

Though MSE objectively quantifies the per-pixel error in the reconstructed image, it is widely 

criticised for its poor correlation with perceptual quality [152–155]. Two distorted images may 

have completely different types of errors while having the same MSE, and some of the errors 

may be considerably more visible than others. An illustrative example is shown in Figure 5.7, 

where the gradient-based CGH optimisation reconstructs a target image with FSIM (b) and 

MS-SSIM (c) as the loss function. The MSE and the SSIM are given for both reconstructed 

images. Note that both reconstructed images yield nearly identical MSE but are highly different 

in perceived quality.   

 

Figure 5.7. The gradient-based CGH optimisation reconstructs a target image with FSIM (b) 

and MS-SSIM (c) as loss functions. 

Moreover, CGH optimisation involves numerically simulating an interference pattern whose 

pixels carry the target image information and are highly spatial correlated. When employed as 

a loss function to optimise the CGH algorithm, the MSE could potentially ignore the spatial 

correlation and other image features between the target and the reconstructed images. It is thus 

worthwhile to carefully examine the performance of MSE as the loss function, especially its 

suitability for the design of CGH optimisation. 

A promising but less exploited approach is using image quality metrics (IQMs) in the phase-

only CGH optimisation process. IQMs play a vital role in developing and optimising image 

processing and restoration algorithms. In digital holography, the traditional role of IQMs is to 

monitor the optimisation process dynamically and to evaluate the perceptual quality of obtained 

images [156–159].  

The human visual perception system can extract features from images and identify the 

difference between the target and the distorted images. Modern IQMs model assesses visual 

quality based on a priori knowledge regarding the human visual system or uses learned models 
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trained with large datasets, replicating human behaviour to perform tasks. They use image 

features in appropriate perceptual spaces [155,160] for image quality evaluation but have not 

yet been fully exploited in the CGH optimisation process. 

Here, we focus on using IQMs as an alternative to the ubiquitous MSE for the training loss, 

with the intention of using the gradient of these perceptual metrics to strive for a better CGH 

optimisation algorithm. The use of perceptual-motivated loss functions has recently gained 

attention in foveated CGH [161,162], focusing specifically on speckle suppression in the foveal 

region and peripheral perception. Other non-holographic image restoration applications have 

also explored perceptual losses, though it is observed that no single loss function outperforms 

all others across different applications [163–165]. 

5.4.2 Selected IQMs for CGH Optimisation 

Generally, IQMs can be classified into full-reference, reduced-reference, and no-reference 

methods according to the availability of the original reference image. Since the target image is 

available in the CGH optimisation, we only consider full-reference methods as loss functions.  

However, the direct use of IQMs as loss functions is complex and depends on many 

unpredictable parameters, and different IQM implementations can yield significantly different 

results, further complicating the interpretation of our experiment. We, therefore, consider ten 

differentiable full-reference IQMs from existing libraries IQA [164] and PIQ [166], 

benchmarked on common databases, which we believe include a wide range of state-of-art full-

reference IQMs. We also include MAE and MSE as standards for comparison. Therefore, this 

IQM collection includes three error visibility methods: MSE, MAE and NLPD [160], six 

structural similarity methods: SSIM [167], MS-SSIM [168], FSIM [169], MS-GMSD [170], 

VSI [171], HaarPSI [172], one information-theoretical method: VIF [173], and two learning-

based methods: LPIPS [152] and DISTS [174].  

Error visibility methods calculate the image error on a pixel-by-pixel basis. The NLPD method 

first subtracts the local luminance using the Laplacian pyramid construction and normalises the 

image contrast by removing an estimate of local amplitude at the second stage.  

Structural similarity methods consider the perceived variation, including luminance, contrast, 

and structure, often using correlation measures to assess image distortion. The MS-SSIM 
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method downsamples images in different scales by low-pass filters, while the Feature 

Similarity Index Metric (FSIM) uses the phase congruency and the image gradient magnitude 

as complementary HVS features. Phase congruency assumes that the points where Fourier 

components are maximal in phase are the most informative. The gradient magnitude can be 

computed by convolving images with a linear filter to extract discernable structural and contrast 

differences in the gradient magnitude domain. The MS-GMSD method extends the Gradient 

Magnitude Similarity Deviation, or GMSD, to a multiscale version, measuring standard 

deviation based on a pixel-wise gradient magnitude similarity map without using additional 

features to yield accurate quality prediction. The Visual Saliency-Induced Index (VSI) utilises 

the salient visual map to detect the visually discernable region and the gradient magnitude to 

compensate for the contrast sensitivity in the measurement. Similar to FSIM, the Haar Wavelet-

Based Perceptual Similarity Index (HaarPSI) constructs Haar wavelet filters to compute feature 

maps and reduce the computational complexity induced by the calculation of phase congruency 

maps.  

Information-theoretic methods measure some approximation of mutual information between 

the perceived reference and distorted images and quantify the amount of information loss in 

the distorted images. In the Visual Information Fidelity (VIF) metric, the image source is 

statistically modelled using a Gaussian scale mixture and the image distortion is modelled using 

signal attenuation and additive noise in the wavelet domain. The additive white Gaussian noise 

models the visual noise from the human visual system in the wavelet domain. Image fidelity is 

quantified as the mutual information from the target and the reference images from these 

models.  

Learning-based methods propose neural networks trained with numerous pictures to learn a 

metric and assess image quality. The Learned Perceptual Image Patch Similarity, or LIPIPS, 

utilises the existing VGG network and evaluates the Euclidean distance between extracted 

features of two images. The network is trained from the proposed BAPPS image patch dataset, 

which perceptually calibrates the network weights in the feature space. The Deep Image 

Structure and Texture Similarity, DISTS, also modifies the VGG network and combines texture 

similarity measurements based on a parametric texture model with feature maps extracted from 

the VGG in an SSIM-like structure. Several IQMs that evaluate visual quality based on colour 

information are not included in the test since our holograms are reproduced in monochrome. 
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Table 5.1 summarises the library of the IQMs considered, as well as the underlying principle. 

The IQM is reformulated where necessary so that a lower score indicates higher predicted 

quality. For example, if the selected IQM is 𝑆𝑆𝐼𝑀, then ℒ is rewritten as ℒ𝑆𝑆𝐼𝑀 =  1 –  𝑆𝑆𝐼𝑀.  

Table 5.1. The utilised underlying principle of IQM losses for CGH optimisation. 

IQM 

losses 
Library Underlying principle 

MAE Pytorch Pixel-based absolute error with average pooling 

MSE Pytorch Pixel-based squared error with average pooling 

NLPD IQA 
Root MSE in the weighted Laplacian pyramid decomposition 

domain 

SSIM IQA 
A weighted combination of measures: luminance, contrast, 

and structure 

MS-

SSIM 
IQA The Multi-Scale representation of the SSIM 

FSIM PIQ 
A weighted combination of the phase congruency feature and 

the gradient magnitude feature 

MS-

GMSD 
PIQ 

The Multi-Scale representation of GMSD, measuring 

standard deviation based on pixel-wise gradient magnitude 

similarity map  

VSI PIQ Similarities in the gradient magnitude and the visual saliency 

HaarPSI PIQ 
local similarities and the relative importance of image areas 

based on Haar wavelet 

VIF PIQ 
Model the image source using Gaussian scale mixtures on 

wavelet coefficients and quantify mutual information 

LPIPS IQA 
Evaluate the Euclidean distance between image patches based 

on feature maps.  

DISTS IQA 
Combination of SSIM-like structure and texture similarity 

measurements based on the VGG network 

 

Having selected the IQMs as losses for hologram generation, we generate CGHs for each IQM 

for 100 high-resolution images in the DIV2K dataset, and we, therefore, generate a hologram 

dataset with a total of 1200 holograms. In each case, we forward propagate, compare to the 

target, and then backwards propagate to obtain the gradient for the IQM loss, which the Adam 

optimiser uses to find the optimal phase hologram iteratively. In all cases, we use the Adam 

optimiser with a 0.05 stepsize and default exponential decay rates of 𝛽1 = 0.9 and 𝛽2 = 0.999. 

The total number of iterations is empirically set to 1000 with the initial 15 iterations using MSE 

as the loss function. We apply this basic preprocessing step since initial predictions can 

significantly impact the performance of some IQMs. This step is necessary to yield acceptable 

optimisation results and reduce the training time for learning-based IQMs.  

The CGH generation is done on the same machine in section 5.2.4. Computation takes roughly 

190 GPU hours to generate the 1200 holograms to assess all 12 IQMs. Training details and 

computational time for each IQM loss are included below in Table 5.2 and Figure 5.8. 
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Figure 5.8. The computational time of each image and the training details of IQM losses for 

CGH optimisation. We plot all runs of images for each IQM loss function, showing how the 

MSE loss and its own metric loss change with each iteration. 
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Table 5.2. The computational time for each IQM loss. 

5.5 Optical Reconstruction Setup 

In order to verify our image quality from experiments, we develop a new physical optical 

display prototype to acquire an optical reconstruction dataset of IQM optimisation phase 

holograms using a camera. To enable quantitative comparison, we introduce the Canon DLSR 

camera into the holographic display system using python to capture reconstructed images. We 

calibrate captured images to target images for quantitative comparison. The introduced camera 

to the holographic system can provide adaptive feedback to the holographic display system. 

With precise control over the phase of the incident wavefront, holography with cameras can 

further provide aberration correction capabilities to compensate for the errors introduced by 

the imperfect optics or other deviations from the ideal wave propagation in an adaptive 

feedback loop fashion. 

Compared with the alternative option that is directly displaying the experimental reconstructed 

images on a screen for human perceptual judgments, this experimental choice of using a camera 

first to record and then display the reconstructed images for subjective experiment may suffer 

from distortions produced during image acquisition and the replay process, which could 

adversely affect subjective evaluations on the reconstructed image quality. However, since all 

IQM methods go through the same experimental procedure and suffer from the same distortions, 

this experimental choice should have the same effect for all methods and have little impact on 

IQM method comparison. As referenced in [157,175,176], establishing the subjective 

evaluation of experimental CGHs is challenging. First, there is no widely accepted testing 

methodology for objectively evaluating the CGH reconstructed image quality. A common 

practice for subjective evaluation is to numerically reconstruct the CGH and display the 

reconstruction on high-end 2D monitors. Second, there is no widely accepted configuration of 

high-end holographic displays for subjective pair comparison benchmarking. Most holographic 

 MAE MSE NLPD SSIM 
MS-

SSIM 
FSIM 

MS-

GMSD 
VSI HaarPSI VIF LPIPS DISTS 

Time per 

image(min.) 
1.5 1.78 3.72 2.50 2.88 2.52 2.48 2.58 2.40 21.30 33.33 33.33 

Total time (hr.) 2.50 2.97 6.20 4.17 4.80 4.20 4.13 4.30 4.00 35.50 55.56 55.56 
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displays are operated under customized laboratory conditions with no standard procedure for 

calibrating, characterising, and testing holographic displays. 

Moreover, holographic displays suffer from practical issues, including limited FoV, overall 

size, eyebox, laser speckle, eye safety issues with laser illumination, and optical alignment for 

the same testing condition per test subject. Those practical issues add another layer of 

complexity to holographic data benchmarking. Finally, objective and subjective assessments 

of CGH data should be taken under the same visual condition for a fair comparison. Objective 

quality metrics cannot evaluate a direct holographic projection for subjective evaluation 

without recording. 

5.5.1 Holographic Display System Setup with Camera 

The proposed holographic projection system is shown in Figure 5.9. Our system uses an 8-bit 

phase-only SLM (FSLM-2K55-P) with a pixel pitch of 6.4 µm and a resolution of 1920 × 1080. 

The SLM is made by the Xi’an Institute of Optics and Precision Mechanics company and is 

factory pre-calibrated in reflection mode. The first arm comprises a 532nm laser source 

(Thorlabs CPS532), a half waveplate, a 4F lens system, and a polariser. The 4F lens system 

comprises two lenses (lenses 1 and 2) with focal lengths of 13mm and 75mm, respectively, 

used to expand the beam. The expanded beam is then linearly polarised and illuminates the 

SLM. The second arm comprises a beam splitter and a 4F lens system with a spatial filter to 

reduce the DC component of the replay field and other unwanted higher diffraction orders. The 

focal lengths of these lenses (lenses 3 and 4) are 30 mm and 50 mm. The second arm is adjusted 

to relay the reconstructed images onto the camera sensor. A neutral density filter is inserted in 

the second arm to reduce the replay field intensity. Reconstructed images are captured using a 

Canon EOS 6D camera without a camera lens attached. The camera output resolution is 5472 

by 3648 with a gain setting of ISO 125 to minimise amplifier noise. All reconstructed images 

are averaged across three captured images in sRGB, the camera’s native colour space. We 

further applied the image linearisation process that converts the captured image from sRGB 

intensity into monochromatic linear space amplitude mentioned in section 5.2.4. 
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Figure 5.9. Holographic display system setup. (a) Our hardware display prototype with a 

Canon camera for image acquisition. (b) Optical system schematic diagram. 

5.5.2 Python Control over Cannon Camera 

By integrating camera control into the hologram generation process, we can manage the camera 

to capture images automatically and instantly transfer the captured data to the local computer. 

This end-to-end streamline enables quantitative comparison, aberration correction and other 

computational imaging tasks. Canon provides The EOS Digital Software Development Kit 

(EDSDK) to enable the image capture pipeline, controlling both the camera hardware as well 

as underlying software algorithms. Though low-cost off-the-shelf machine learning cameras 

can capture reconstructed images and provide SDKs for applications in Python, the image 

quality is comparatively low. The Canon SDK enables users to program the camera to take a 

series of exposures with configurable settings. A Python wrapper is written to access functions 

from EDSDK in C/C++ language, connecting and controlling a Canon EOS 6D camera in 

Python via USB to the local computer. With the additional python wrappers, programming 

control of the camera is allowed, including taking pictures and changing camera, focus, 

exposure time and ISO. 
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Figure 5.10. The calibration procedure for holographic reconstruction acquisition. (a) A circle 

grid pattern is a target for calibration. (b) The raw reconstructed image. (c) The binary-

thresholded binary image using a morphological ellipse kernel with a gaussian blur. (d) Circle 

contours of the thresholded binary image. (e) Obtain the centre of all circles to compute the 

homography matrix. (f) The Undistorted image from the homography matrix. 

 

5.5.3 Image Calibration 

As captured images contain inaccurate measurements due to camera translation, we perform a 

geometric camera calibration to remap the captured images to the target images and minimise 

other distortion factors in the image-capturing pipeline. Figure 5.10 indicates the calibration 

procedure with a circle grid pattern as the target image. 

A widely used pattern for camera calibration is the circle grid pattern. We use a binary 

symmetric circle grid pattern as the target image to generate a phase hologram. The pattern 

features 22 × 13 circles arranged evenly in rows and columns with an 80-pixel gap between the 

circle centres, measured from the centres of the first and last circle, and the pattern has a region 

of interest with 1,680×960 resolution. We then generate a CGH from the target circle grid 

pattern and display the hologram on the SLM with the proposed holographic projection system. 

The camera captures the reconstructed circle grid pattern, and we calibre the captured image. 

Ideally, we can directly detect the circle grid in the captured image and calculate a 3 × 3 

homography matrix that relates the transformation between the captured image and the target 

image. The homography matrix can then transform the captured image for image undistortion. 

However, the circle detection technique is very sensitive, and circles may not be well 

reconstructed, especially at the edges of the holographic reconstructed image. We can create 
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predefined circles using a morphological ellipse kernel to close small holes inside and apply 

gaussian blur for a loose threshold. We can further fill the circle contours of the thresholded 

binary image for better detection of the centres of all circles. Having a reasonably good 

augmented binary circle grid pattern, we can establish a planar homography matrix and apply 

the matrix to calibrate the original image accurately. Note that this operation can be executed 

before the start of every image capture or once to store the planar homography matrix.  

The simulated reconstruction results based on IQM optimisation models are shown in Figure 

5.11. Corresponding phase holograms and the experimental captured results in sRGB space are 

shown in the second and third rows, respectively.  

5.6 Results Comparison and Discussion 

5.6.1 Qualitative Comparison 

We first make a qualitative comparison across all IQM-optimised methods for experimental 

results. As shown in Figure 5.12 and Figure 5.13, most IQM-based optimisation models 

converge on a reasonable visual quality. We observe that MAE, MSE, NLPD, SSIM, and MS-

SSIM perform well but have undesirable local noise, which can be observed in the image 

patches selected from the reconstructed images. FSIM and VIF amplify high-frequency 

information, leading to structural over-enhancement. VSI, MS-GMSD and HaarPSI preserve 

the overall structures with a smooth appearance but artificially reduce local contrast with 

noticeable artefacts. Models based on deep-learning methods such as LPIPS and DISTS can 

recover the target image details but superimpose textures on the image. The optically 

reconstructed images exhibit laser speckle noise and are subject to optical aberrations, resulting 

in some noticeable common artefacts across all IQMs, including ghost and ripple effects. The 

dynamic range of the camera is limited, and captured images are prone to photometric 

distortions, including reduced contrast and saturation. Complementary qualitative results are 

provided in Figure 5.14, Figure 5.15 and Figure 5.16. 
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Figure 5.11. Simulated and captured results for CGH optimisation using twelve different IQM 

losses. We show the reconstructed image at the top for each loss, with the phase hologram in 

the middle and its corresponding captured results at the bottom. 
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Figure 5.12. Captured reconstruction results. For target images, we display phase holograms 

optimised by IQM losses. Reconstruction results of IQM losses are captured with our 

holographic display prototype for image quality comparison. 
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Figure 5.13.  Captured reconstruction results with zoom-in details. We display phase holograms 

optimised by IQM losses. Reconstruction results of IQM losses are captured with our 

holographic display prototype for image quality. 
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Figure 5.14. Additional experimentally captured results of MAE, MSE, NLPD, and SSIM 

with zoomed-in details. 
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Figure 5.15. Additional experimentally captured results of MS-SSIM, FSIM, MS-GMSD, and 

VSI with zoomed-in details. 



85 

 

Figure 5.16. Additional experimentally captured of HaarPSI, VIF, LPIPS, and DISTS with 

zoomed-in details. 
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Table 5.3. Objective performance of IQM-based model evaluated by IQMs as quality metrics 

 

5.6.2 Quantitative Comparison 

To present a comprehensive analysis of employing contemporary CGH optimisation using the 

gradient descent method, we further introduce a rigorous procedure for evaluating the 

perceptual quality of holographic images based on extensive objective quality assessments as 

well as subjective comparisons informed by human perceptual judgments. 

5.6.2.1 Objective Comparison 

We can use the proposed IQMs as quality measures to evaluate the performance of gradient 

descent based CGH optimisation using different IQM losses. All IQMs are used to evaluate the 

captured results objectively. Scores are averaged over all 100 images for each metric and each 

IQM-based loss shown in Table 5.3. Each element indicates the score of an IQM loss evaluated 

using another IQM as a quality predictor.  

By inspecting each row of the metric table, we find that MAE, NLPD, SSIM, and MS-SSIM 

maintain the best performance among all IQM losses, as previously predicted by the qualitative 

comparison. MS-SSIM loss produces superior reconstruction quality and objectively ranks as 

the best-performing IQM-based CGH optimisation model on most evaluation metrics, while 

IQM 

losses 

Objective image quality metrics 

MAE MSE NLPD SSIM 
MS-

SSIM 
FSIM 

MS-

GMSD 
VSI HaarPSI VIF LPIPS DISTS 

MAE 0.104 0.021 0.754 0.382 0.568 0.770 0.270 0.893 0.264 0.118 0.600 0.265 

MSE 0.120 0.028 0.862 0.315 0.458 0.720 0.276 0.877 0.234 0.078 0.618 0.273 

NLPD 0.118 0.024 0.717 0.365 0.566 0.783 0.258 0.905 0.287 0.117 0.601 0.271 

SSIM 0.107 0.021 0.739 0.371 0.563 0.779 0.262 0.904 0.279 0.112 0.604 0.272 

MS-

SSIM 
0.096 0.018 0.696 0.414 0.610 0.795 0.256 0.913 0.296 0.133 0.589 0.253 

FSIM 0.185 0.058 1.083 0.219 0.305 0.648 0.294 0.795 0.187 0.067 0.664 0.387 

MS-

GMSD 
0.153 0.040 0.833 0.328 0.451 0.744 0.258 0.879 0.274 0.098 0.608 0.283 

VSI 0.158 0.040 0.816 0.299 0.430 0.761 0.256 0.894 0.276 0.079 0.628 0.406 

HaarPSI 0.145 0.035 0.748 0.380 0.526 0.783 0.245 0.901 0.313 0.121 0.589 0.272 

VIF 0.171 0.051 0.895 0.338 0.413 0.633 0.294 0.790 0.200 0.197 0.580 0.314 

LPIPS 0.127 0.029 0.896 0.288 0.430 0.696 0.289 0.852 0.216 0.084 0.635 0.247 

DISTS 0.130 0.030 0.911 0.279 0.415 0.690 0.289 0.852 0.212 0.077 0.636 0.246 
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FSIM ranks as the least preferred method. Several other IQM losses, including NLPD, MAE, 

SSIM, HaarPSI and MS-GMSD, also outperform the MSE loss, objectively validating the use 

of IQMs for CGH optimisation. 

Table 5.4. Objective performance of IQM-based model evaluated on different libraries. 

IQM losses 
Objective image quality metrics 

SSIM MS-SSIM SSIM (piq) MS-SSIM (piq) 

MS-SSIM 0.414 0.610 0.619 0.641 

NLPD 0.365 0.566 0.567 0.601 

HaarPSI 0.380 0.526 0.550 0.591 

MAE 0.382 0.568 0.577 0.602 

SSIM 0.371 0.563 0.568 0.596 

MS-GMSD 0.328 0.451 0.463 0.505 

MSE 0.315 0.458 0.446 0.484 

 

We can further convert Table 5.3 into a 2D ranking plot to give a well-defined and more 

illustrative comparison depicted in Figure 5.17. The horizontal axis indicates IQMs as quality 

measures used to evaluate the objective performance, and the vertical axis indicates IQMs used 

as loss functions for CGH optimisation. The rank order is colour coded from green to red with 

numbers 1–12 to indicate performance from best to worst. 

Since the PIQ library implements its own SSIM and MS-SSIM metrics for image quality 

assessment, we can further evaluate our top-performing models using these metrics, as shown 

in Table 5.4. Though both the IQA and PIQ libraries have been benchmarked on a set of 

common databases and have nearly consistent ranking results in model evaluation, there is 

disagreement with the actual values of performance evaluation, with the IQM library generally 

obtaining lower scores. Hence, in the absence of a standard IQM implementation, it becomes 

more challenging to compare the performance of different algorithms.  
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Figure 5.17. The objective ranking plot of the IQM-based model is evaluated by IQMs as 

quality metrics. 

5.6.2.2 Subjective Comparison 

To subjectively differentiate quality variations of tested models, we gather human perceptual 

judgments by employing a 2-alternative forced choice (2AFC) method. The experiment asks 

subjects to indicate which one of two distorted images is perceptually closer to the reference 

image. Figure 5.18 illustrates the interface for this experiment: an image triplet with a pair of 

experimentally captured images and the corresponding reference image are simultaneously 

presented. Subjects are asked to select the better image between two distorted ones. After the 

selection, two new experimentally captured images optimised according to different IQM 

losses appear on the upper screen in randomized left-right order. Progress is indicated, and a 

pause function is available to reduce visual fatigue. The screen has a 1920 × 1080 pixels 

resolution, with the displayed image resolution at 875 × 500. The user interface supports a 

zoom function for careful inspection of image details.  
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Figure 5.18. The user interface for collecting human judgments on IQM-based CGH 

optimisation. The experimentally captured image pair from two IQM losses and the 

corresponding reference image are shown in the blue and green boxes, respectively. 

Participants are mainly university students and are provided with appropriate instructions, 

including an explanation of the experimental procedure as well as a demonstration session. To 

avoid fatigue, we pause the user interface every 15 mins and allow subjects to take a break at 

any time during the experiment. Experiments are performed at a normal indoor light level with 

reasonably varying ambient conditions according to the recommendations of ITU-R BT 

500 [177]. This subjective experiment was approved by the Cambridge Engineering Research 

Ethics committee and carried out according to the Declaration of Helsinki. We obtained 

informed consent and gathered paired comparisons from 20 subjects. Each subject responded 

to all possible combinations of generated images for a pair of target images, doing so for ten 

pairs of target images, yielding (12
2

) × 10 = 660 stimuli. Data is saved for analysis, including 

time spent for each judgment, the paired-image display order and the results of pairwise 

comparisons. The preferred image of the displayed pair contributes one point to the score of its 

IQM loss. Therefore, for the selected 10 sample images, each paired comparison could receive 

0 to 10 points as the subjective score from the subject. In order to exclude abnormal results, we 

check several sentinels in each observation data that consist of pairs with obvious visual quality 

contrast. Overall, we received 13200 judgments across 12 IQM losses, and each loss is ranked 

1100 times. The average time for one judgment is approximately 3 seconds. 
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Table 5.5. Subjective ranking results from participants. Each column indicates the ranking of IQM losses 

evaluated by a subject. Numbers 1 to 12 denote the rank order from the best to the worst. 

 

We employ the Bradley-Terry model [178,179] to aggregate pairwise comparisons and obtain 

a global ranking of IQM losses for CGH optimisation based on subjective data. From partial 

orderings provided in the data, we wish to infer the ranking order of tested losses and the 

subjective visual quality scores associated with them. If we denote  𝑠 =

[𝑠1, 𝑠2, 𝑠3, … 𝑠𝑚] as subjective scores of the evaluated IQM losses, the Bradley-Terry model 

assumes that the probability of choosing loss 𝑖 over loss 𝑗 is: 

𝑝𝑖𝑗 =
𝑒𝑠𝑖

𝑒𝑠𝑖+𝑒
𝑠𝑗

. 5.8 

Given the observed number of times that IQM loss 𝑖 is favoured over IQM loss 𝑗 as 𝑤𝑖𝑗, We 

then can obtain the likelihood of 𝑖 over 𝑗 as 𝑝
𝑖𝑗

𝑤𝑖𝑗
.Thus, assuming outcomes of each paired 

comparison are statistically independent, the likelihood function of all (𝑖, 𝑗) pairs is defined by: 

Subjects MAE MSE NLPD SSIM 
MS-

SSIM 
FSIM 

MS-

GMSD 
VSI 

Haar

PSI 
VIF LPIPS DISTS 

1 5 4 2 3 1 10 6 11 7 12 9 8 

2 5 2 4 3 1 10 6 11 8 12 9 7 

3 5 2 4 3 1 10 8 11 9 12 7 6 

4 6 2 4 3 1 10 8.5 12 7 11 8.5 5 

5 7 4 3 1 2 10.5 5 10.5 6 12 9 8 

6 5 2 3 4 1 11 6.5 10 6.5 12 8 9 

7 6 4 1 2 3 11 5 10 7 12 9 8 

8 5 3 4 2 1 9 6 10 7 12 8 11 

9 2 1 3.5 5 3.5 10 6 11 7 12 9 8 

10 5 2 4 3 1 10 6 11 7 12 9 8 

11 2 1 5 4 3 11 6 12 7.5 10 9 7.5 

12 5 1 4 2 3 10 6.5 11 8 12 9 6.5 

13 5 2 4 3 1 10 7.5 11 6 12 7.5 9 

14 5 1 3.5 3.5 2 10 6 11 7 12 9 8 

15 3 2 5 4 1 10 6 12 8 11 7 9 

16 5 4 2.5 2.5 1 10 6 12 7 11 9 8 

17 3 2 4.5 4.5 1 10 6.5 11 9 12 8 6.5 

18 5 4 3 1 2 10 8 11 6 12 9 7 

19 4 3 5 1 2 10 6 11 7 12 9 8 

20 5 2 3 4 1 10 6 11 7 12 9 8 
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𝑃 = ∏  𝑀
𝑖=1 ∏  𝑀

𝑗=1
𝑗≠𝑖

𝑝
𝑖𝑗

𝑤𝑖𝑗
. 5.9 

The subjective score for IQM loss 𝑠𝑖  can then be jointly estimated by maximising the log-

likelihood of all pairwise comparison observations: 

ℓ(𝑠𝑖) = ∑  𝑀
𝑖=1 ∑  𝑀

𝑗=1
𝑗≠𝑖

(𝑤𝑖𝑗𝑠𝑖 − 𝑤𝑖𝑗log (𝑒𝑠𝑖 + 𝑒𝑠𝑗)). 5.10 

 

We implement the Bradley-Terry model in R to iteratively solve the given equation Eq.(8) and 

obtain the optimal estimate 𝑠𝑖 for each model. The Bradley-Terry model scores are normalised 

by shifting to zero means, resulting in a global ranking of optimisation performance.  

Table 5.6. Subjective winning matrix voted by all participants. 

 

We converted the pairwise comparisons of generated images from each subject using the B-T 

model to obtain the ranking order of IQM losses shown in each column in Table 5.5. Numbers 

1 to 12 denote the rank order from the best to the worst. Table 5.6 shows the winning matrix 

voted by all participants. Each element in the table indicates the number of votes that the 

column method preferred to the row method. We received an overall of 13200 judgments across 

12 IQM losses. 

  

 MAE MSE NLPD SSIM 
MS-

SSIM 
FSIM 

MS-

GMSD 
VSI 

Haar

PSI 
VIF LPIPS DISTS 

MAE 0 78 104 81 53 178 138 190 131 197 167 162 

MSE 122 0 124 118 71 197 152 198 171 194 174 182 

NLPD 96 76 0 91 93 196 167 200 156 193 168 158 

SSIM 119 82 109 0 85 189 161 196 173 193 177 162 

MS-SSIM 147 129 107 115 0 194 170 199 174 197 190 178 

FSIM 22 3 4 11 6 0 25 115 35 132 63 58 

MS-

GMSD 
62 48 33 39 30 175 0 198 105 183 132 124 

VSI 10 2 0 4 1 85 2 0 8 158 25 42 

HaarPSI 69 29 44 27 26 165 95 192 0 186 120 113 

VIF 3 6 7 7 3 68 17 42 14 0 25 27 

LPIPS 33 26 32 23 10 137 68 175 80 175 0 89 

DISTS 38 18 42 38 22 142 76 158 87 173 111 0 
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Table 5.7. Bradley-Terry scores and p-values of the t-test by comparing adjacent methods. 

 

Table 5.7 indicates the B-T scores calculated from the winning matrix and independent two-

sample t-tests with two-tailed distribution to investigate whether the differences between the 

subjective performance of IQM losses are statistically significant. Specifically, we consider 

that the obtained observations from participants are normally distributed under the null 

hypothesis and compare the ranking scores for any of the two losses. If the comparison cannot 

reject the null hypothesis of no difference at the standard significance level 𝛼 = 0.05, we put 

the evaluated losses in the same group as they are statistically indistinguishable.  

Figure 5.19 shows the scatter plot of the combined subjective and objective performance of 

tested IQM losses for CGH optimisation. Scatter points with the same colour are in the same 

statistical significance group for subjective tests. The objective global ranking score for each 

IQM loss can be obtained by adding ranking orders from all quality metrics derived from Table 

5.3 and normalising them to zero-mean. Scores have been reformulated to ensure that higher 

scores indicate higher predicted quality. 

The scatter plot indicates that the MS-SSIM is the top-ranking loss function, as agreed upon 

by both subjective and objective evaluations. NLPD and SSIM losses are statistically 

indistinguishable from the MSE loss for subjective performance. The MSE loss unexpectedly 

achieves higher performance in the subjective test than HaarPSI, and MAE losses, despite 

performing far worse in objective performance. A similar trend also occurs in VSI and VIF 

losses versus the FSIM loss. This disagreement is due to different objective and subjective 

weighting strategies on image structure similarity, image smoothness, luminance, and contrast.  

 
MS-

SSIM 
MSE SSIM NLPD MAE 

MS-

GMSD 
HaarPSI DISTS LPIPS FSIM VSI VIF 

B-T scores 1.861  1.578  1.409  1.298  0.993  0.146  -0.007  -0.407  -0.553  -1.625  -2.103  -2.591  

P-value 

(adjacent) 
N/A 

1.787e-

02 

1.368e-

01 

7.909e-

02 

4.900e

-03 

1.782e-

05 

5.714e-

03 

1.009e-

01 

2.227e-

02 

3.521e-

10 

6.100e-

06 

3.561e-

04 
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Figure 5.19. Quantitative comparison of IQM-based CGH optimisation. Scatter points represent 

the losses for CGH optimisation. Points with the same colour are statistically indistinguishable 

for subjective results. Vertical and horizontal axes indicate the objective performance and the 

subjective performance of each loss, respectively. 

We further calculate Spearman’s rank order correlation coefficient (SRCC) between objective 

and subjective scores, as shown in Table 5.8. Higher SRCC scores indicate a better correlation 

of a metric with subjective ratings. Although most modern image quality metrics show superior 

performance in existing image databases, we observe that, for the CGH optimisation task, they 

have less correlation than pixel-error-based metrics to human judgments. This may be because 

the most common image databases for benchmarking, such as LIVE [180], TID2008 [181] and 

TID2013 [182], comprise source images with synthetically distorted images. The synthetic 

distortion types, including White Gaussian Noise, JPEG2000 compression, and Gaussian Blur 

with varied distortion levels, attempt to reflect various image impairments in image processing. 

Experimental CGH reconstructed images, such as those seen here, can be rather more complex, 

with more types of distortions produced during the optical reconstruction and image acquisition. 

Furthermore, CGHs are predominantly tainted by noise, whereas some IQMs were developed 

for recognising blurry objects, inferring details in deblurred objects, or super-resolution 

imaging tasks. Current IQMs are not specifically benchmarked well for those real-world and 

CGH distortions. For partial coherent light illumination in the holographic optical system that 

could bring a more blurry effect and contrast reduction in the replay field [29,183], modern 
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IQMs may take advantage of inferring blurry and contrast-reduced information. Therefore, the 

use of IQMs may potentially have better performance in partially coherent holographic displays. 

Table 5.8. SRCC between objective scores and subjective scores of IQM-based CGH optimisation 

Objective image quality metrics SRCC 

MAE 0.846 

MSE 0.825 

NLPD 0.657 

SSIM 0.587 

MS-SSIM 0.839 

FSIM 0.692 

MS-GMSD 0.434 

VSI 0.678 

HaarPSI 0.566 

VIF 0.189 

LPIPS 0.266 

DISTS 0.427 

 

5.7 Discussion 

One of the best-performing IQMs in this study is MS-SSIM for the 2D CGH optimisation, 

which outperformed all the other IQMs, including LPIPS. This superiority can be attributed to 

its characteristics and the well-defined gradient for CGH optimisation.  

MS-SSIM considers the structural similarity of the reconstructed image with the original image 

across multiple scales and incorporates the sensitivity of the human visual system to contrast 

and luminance changes. MS-SSIM is also robust to compression and noise, making it a reliable 

metric for measuring image quality in various contexts. In comparison, characteristics of some 

IQMs may be more sensitive to the choice of image, including phase congruency, saliency map, 

and mutual information considered by FSIM and HaarPSI, VSI and VIF. The idea of visual 

saliency is that certain regions in an image are more important than others for human perception, 

and therefore the quality of an image should be evaluated based on how well those important 

regions are preserved. Phase congruency measures phase consistency across different scales 

and orientations in an image to indicate the change in local image structure. In contrast, The 

VIF computes the mutual information between the natural scene statistics features of the 

original and distorted images to measure the similarity of the information extracted by the HVS 

from the two images. These methods rely on the analysis of visually discernable features or 

properties to perform evaluations, and the effect of such features may be compromised due to 
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the unique nature of the distortions introduced by the CGH optimisation process. Some 

imperceptible image distortions may cause the CGH optimisation algorithm to generate less 

plausible solutions.  

Calculating the gradient from the loss function is critical in gradient descent optimisation. 

Ideally, IQMs used as loss functions should be injective, meaning that distinct inputs should 

map to distinct outputs. However, certain IQMs may not have unique optima to guarantee that 

images close to optimal, resulting in a lack of convergence or poor convergence during 

optimisation. In addition, some IQMs have complex compositions of different features that 

may not have a well-behaved gradient to steer the CGH optimisation process in the right 

direction efficiently. Furthermore, certain IQMs heavily rely on specific features while 

underweighting or even ignoring other perceptual features. This underweighting problem may 

be exacerbated during gradient calculation, resulting in less plausible images during CGH 

optimisation. For instance, MS-GMSD, HaarPSI, VSI, and NLPD are IQMs discard local 

luminance or contrast information essential to human perception of image quality. Therefore, 

choosing IQMs for loss functions considering all perceptually important features is crucial to 

avoid image degradation in CGH optimisation. 

LPIPS is a recent IQM that utilises deep learning techniques to measure perceptual similarity 

between two image patches. While LPIPS has demonstrated promising results in the context 

of perceptual metrics, its performance in CGH optimisation is relatively less plausible. This 

can be attributed to the fact that LPIPS is carefully trained and fine-tuned on a specific dataset 

consisting of common distortions evaluated for four image processing tasks: denoising, 

deblurring, super-resolution, and image compression. However, LPIPS that relies on pre-

trained deep networks for image processing tasks may not necessarily optimise the relevant 

features for the specific CGH task being performed. The explicit representation of fine textures 

in LPIPS may adversely lead to overweighting such features during optimisation, ultimately 

resulting in an undesirable over-enhancement of textures in reconstructed images. Additionally, 

the pooling operations in the hidden layers of the network during feature extraction can lead to 

non-bijective functions, which means that different inputs can result in identical latent 

representations [184]. This can result in poor convergence and instability during optimisation. 

Last, the high computational complexity of two DNN-based models (LPIPS and DISTS) and 

lack of interpretability may hinder their use for CGH optimisation.  
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5.8 Conclusion  

In this chapter, we have validated the gradient descent method to phase-only CGH optimisation 

in simulation. Furthermore, we have comprehensively studied the real-world performance of 

using IQMs as loss functions in the CGH optimisation process. By benchmarking with a 

standard optical reconstruction dataset, we have collected the results of applying 12 distinct 

IQMs as loss functions in both objective and subjective ratings. The results from the 

comparison study show that IQM losses can achieve better image quality than the MSE loss in 

generating holograms, with the MS-SSIM loss outperforming all the other losses. This 

extensive comparison reveals that the perceived image quality improves considerably when the 

appropriate IQM loss function is used, highlighting the value of developing perceptually-

motivated loss functions for hologram optimisation. 

Beyond this study, individual IQM losses can be further combined based on their 

complementarity to incorporate the specific CGH distortions. We recognise that our analysis 

is limited to 2D hologram reconstruction. For 3D holographic applications, we believe several 

extensions to the work conducted in this study, such as the use of blurring distortion, which 

could be a significant perceptual factor to be considered in hologram optimisation. This method 

can be combined with a camera as a feedback optimisation strategy to eliminate optical 

artefacts in experimental setups [43,141]. 
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Chapter 6 Natural Defocused Computer- 

Generated Holography  

6.1 Introduction 

The previous chapter presented using the gradient descent method in phase-only hologram 

optimisation and demonstrated that the perceived quality of reconstruction results improves 

considerably should the gradient descent method with the appropriate IQM loss be selected for 

2D hologram generation. This chapter focuses on extending the gradient descent method to 3D 

hologram generation, enabling high-quality 3D CGH reconstruction. Although recent 

algorithms [29,43–45,138,141,185,186] have made progress in improving the image quality 

and computational speed with the introduction of deep learning techniques, simulating the 

natural defocus blur effect and occlusion effect at depth discontinuities remain the main issues 

in these algorithms; reconstructed scenes often have a large depth-of-field. Additionally, these 

algorithms only optimise the all-in-focus target images to calculate the loss function, leading 

to image quality degradation in the out-of-focus area. 

This chapter first introduces the gradient descent method for 3D hologram generation and 

validates its effectiveness in numerical simulation and optical experiments. Next, a 3D 

hologram generation method is proposed using an incoherent propagation model to generate 

target images. The generated incoherent images can accurately describe natural defocus blur 

and are directly used as target images to compensate for the unrealistic defocus effects. The 

proposed method is validated experimentally, demonstrating its capability of reproducing 

naturally defocused images highly similar to physically rendered 3D scenes and real objects. 
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6.2 Gradient Descent Method for 3D CGH Generation 

6.2.1 Method Description 

Figure 6.1 demonstrates the process of using the gradient descent method as a forward-

backward optimisation for 3D CGH generation. In the forward pass, rather than being 

propagated to a single replay plane as in the 2D case, the phase hologram is propagated to 

replay planes for a set of distances 𝑧{𝑖}, 𝑖 = 1,2,3 … 𝑁 . The reconstructed images from 

complex-amplitude replay fields at various distances are then binary masked to extract the in-

focus regions, which are then summed to form an all-in-focus image. The reconstructed focal 

image is then compared to the target image for calculating the loss function. In the backward 

pass, the optimiser calculates the derivatives of the loss function with respect to the current 

phase hologram and updates the hologram to minimise the loss.  

 

Figure 6.1. The gradient descent method for 3D CGH generation algorithms. 

In the forward pass, the angular spectrum method propagates the phase hologram 𝑒𝑖𝜙(𝜇,𝜈) to a 

distance 𝑧𝑖 with a planar illuminating wave can be expressed as: 

𝑓(𝜙, 𝑧𝑖) = ℱ−1 {ℱ{𝑒𝑖𝜙(𝜇,𝜈)} × 𝑒𝑥𝑝 [𝑗2𝜋𝑧𝑖√
1

𝜆2
− 𝑓𝑥

2 − 𝑓𝑦
2]}, 6.1 
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where 𝑓(𝜙, 𝑧𝑖)  is the resulting complex replay field, and 𝑓𝑥 and 𝑓𝑦 are spatial frequencies. The 

reconstructed image intensity at a distance 𝑧𝑖 is 𝐼(𝑥, 𝑦, 𝑧𝑖) =  |𝑓(𝜙, 𝑧𝑖)|2. As discussed in the 

previous chapter, the amplitude of the complex replay field 𝐴𝑟𝑝𝑓(𝑥, 𝑦, 𝑧𝑖) =  |𝑓(𝜙, 𝑧𝑖)| with 

the target image amplitude is used for optimisation. Due to the fact that the replay field 

𝐴𝑟𝑝𝑓(𝑥, 𝑦, 𝑧𝑖) =  |𝑓(𝜙, 𝑧𝑖)| not only reconstructs the target image at a distance 𝑧𝑖  but also 

reconstructs the blurred images corresponding to other distances,  the reconstructed amplitudes 

are masked according to the corresponding depth layers. The formulated all-in-focus 

reconstructed amplitude by binary masks is then compared to the target image amplitude. 

RGBD images are used as target images for hologram generation, and the depth images can be 

directly quantised and used as thresholding binary masks to extract the signal area of 

reconstructed amplitudes: 

𝐵𝑀(𝑥, 𝑦, 𝑖) = {
1,      if |𝑧𝑖 − 𝐷(𝑥, 𝑦, 𝑖)| < |𝑧𝑗 − 𝐷(𝑥, 𝑦, 𝑖)|, ∀𝑖 ≠ 𝑗

0,      otherwise 
 6.2 

Intuitively, the thresholding binary mask 𝐵𝑀(𝑥, 𝑦, 𝑖) is set to 1 if the value of the depth map 

𝐷(𝑥, 𝑦, 𝑖) matches with the distance 𝑧𝑖. It is necessary to ensure that the energies of all depth 

images are consistent inside each colour channel.  

 

Figure 6.2. The all-in-focus reconstructed image is obtained from reconstructed images at 

various replay planes. 

The phase hologram is propagated to all replay planes and uses the corresponding masks to 

extract the in-focus region of the reconstructed images. The reconstructed focal image 

amplitude is the sum of masked reconstructed amplitudes 𝐴𝑟𝑝𝑓
̅̅ ̅̅ ̅̅ (𝑥, 𝑦, 𝑧𝑖) at all distances: 
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𝐴𝑜𝑢𝑡 = ∑ 𝐴𝑟𝑝𝑓
̅̅ ̅̅ ̅̅ (𝑥, 𝑦, 𝑧𝑖)

𝑁

𝑖

= ∑ 𝐵𝑀(𝑥, 𝑦, 𝑖) ∙ |𝑓(𝜙, 𝑧𝑖)|.

𝑁

𝑖

 6.3 

The bar over the reconstructed amplitudes denotes that amplitudes are binarily masked. The 

generation process of the all-in-focus reconstructed image from reconstructed images at various 

replay planes is shown in Figure 6.2. As such, the goal of the gradient descent CGH generation 

algorithm is to find the optimal quantised phase hologram �̂� that can minimise the loss function 

in describing the visual quality between the target all-in-focus target image amplitude  

𝐴𝑡𝑎𝑟𝑔𝑒𝑡,𝐴𝐼𝐹 with the reconstructed focal stacked image amplitude: 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜙

ℒ (∑ 𝐴𝑟𝑝𝑓
̅̅ ̅̅ ̅̅ (𝑥, 𝑦, 𝑧𝑖)

𝑁

𝑖

, 𝐴𝑡𝑎𝑟𝑔𝑒𝑡,𝐴𝐼𝐹) . 6.4 

With this objective in hand, we can use the standard loss function MSE by comparing the per-

pixel errors between the reconstructed focal amplitude and the target all-in-focus amplitude. 

The overall MSE loss function is: 

ℒ𝑀𝑆𝐸 =
1

𝑚𝑛
∑ [∑ 𝐵𝑀(𝑥, 𝑦, 𝑖) ∙ |𝑓(𝜙, 𝑧𝑖)|

𝑁

𝑖

− 𝐴𝑡𝑎𝑟𝑔𝑒𝑡]

2

𝑚,𝑛

. 6.5 

In the backward pass, we can compute the gradient of the loss function and update the next 

estimate of the phase hologram. Again, deep learning libraries, including PyTorch and 

TensorFlow, have implemented auto-differentiation packages using Wirtinger derivatives to 

calculate the complex amplitude gradients for the gradient descent methods. 

 

Figure 6.3. The sample RGBD image as the input object. 
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6.2.2 Method Implementation 

To validate the suggested method for producing CGHs for 3D models, we use an RGBD image 

as the input object, illustrated in Figure 6.3. We first slice the RGBD images into discrete layers 

according to the depth values of the depth image. In this implementation, we linearly slice the 

depth images into four layers with corresponding distances 𝑧 = {12𝑐𝑚, 13𝑐𝑚, 14𝑐𝑚, 15𝑐𝑚} 

and resolution at 1920 × 1080. This step involves locating an index matrix of out-of-range 

depth values and then using this index matrix to set these depth values to zero for this layer. 

The RGB image intensities are converted into linear space amplitude as the target image for 

optimisation. We store the sliced RGBD image as a tensor with a shape of [𝑁, 𝐶, 𝐻, 𝑊], where 

𝑁 is the number of layers; 𝐶 is the number of channels; 𝐻 is the height of the image; 𝑊 is the 

width of the image. Therefore the 4-layer sliced RGB image is a [4, 3, 1080, 1920] tensor, and 

the sliced depth image is stored as a [4, 1, 1080, 1920] tensor. The mean values of each layer 

per colour channel are recorded to rectify optimised image means. The sliced target RGB 

images are shown in Figure 6.4. 

 

Figure 6.4. The input target RGB image is sliced into different layers. 

The RGBD images are sliced into only four layers due to the computational capacity of the 

GPU. Since the phase hologram optimisation executes in RGB channels simultaneously, the 

GPU manages large amounts of data and could have limited memory available. Therefore, we 

limit the layer number so that the optimisation process would not run out of GPU memory. 

Alternatively, we can optimise the phase hologram per single colour channel for multiple layers 

individually and combine all three colour channels to formulate the RGB phase hologram. 

The initial random phase holograms of RGB channels are propagated to replay fields in 

different depths with the forward transfer functions by the angular spectrum method. To 

improve computational efficiency, the transfer functions are precalculated per depth layer at 

wavelengths [465𝑛𝑚, 532𝑛𝑚, 620𝑛𝑚] of the light source in RGB channels, with the SLM 
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pixel pitch at 6.4𝜇𝑚. The amplitudes of replay fields are then normalised with the mean values 

of RGB layers and compared with target images.  

We use MSE as the loss function for demonstration purposes to evaluate the image quality at 

different depths. The reconstructed images are optimised over 500 iterations using the Adam 

optimiser at a 0.05 learning rate and default exponential decay rates of 𝛽1 = 0.9 and 𝛽2 = 0.999. 

CGHs are generated using a computer with an i7-8700 CPU@3.20GHz and a GeForce 

RTX3060 GPU. PyTorch 1.9.0 and CUDA 10.2 are used to implement complex-amplitude 

gradient descent optimisation on the GPU.  

6.2.3 Simulation Validation 

Figure 6.5 shows the reconstructed all-in-focus image as well as its residual when compared 

with the target image. The residual image is the difference between the noisy reconstructed 

image and the target image, which can be directly calculated by subtracting both images. The 

residual image, therefore, contains the per-pixel error compared with the target image.  

 

Figure 6.5. The reconstructed all-in-focus image with its residual image. 

The proposed method can optimise the initial phase hologram and result in a good-quality 

reconstructed image. The reconstruction result provides a nearly ideal all-in-focus image with 

well-preserved fine details. The noise in the in-focus region of the target image is substantially 

reduced during the optimisation, though some noticeable noise perturbations are shown in the 
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zoomed-in image. We can see significant image quality degradation from the residual image at 

the depth continuities. This degradation can be further confirmed by directly simulating the 

amplitude distribution of the reconstructed image at different planes with details of the out-of-

focus blur effect shown in Figure 6.6. As shown in the figure, though the depth information is 

preserved with a clear defocus effect when viewed from other focused planes, image quality is 

sharply degraded at depth discontinuities, suffering from a severe edge-enhancing artefact. 

Moreover, the proposed method has an unsmooth amplitude distribution in the blurred area, 

with noticeable chromatic artefacts. 

 

Figure 6.6. Simulated amplitude distributions of the reconstructed image at different planes. 

Depth discontinuities contain sharp intensity variations, representing high spatial frequency 

parts of the image. As we only preserve the phase in the CGH encoding process, the amplitude 

information is lost. Though the phase information carries the majority of the spatial 

information, amplitude information loss could result in high-frequency variation during the 

optimisation. Additionally, the proposed method applies amplitude constraints to the in-focus 

parts of each depth layer, resulting in a uniform amplitude distribution in the focus area. 

However, as there are no constraints in the out-of-focus area, the area maintains the initial 

random profile in the reconstructed plane and, on the other side, reserves the degrees of 

freedom for the in-focus area during the optimisation process. Noise in the out-of-focus area is 

left with no constraints and thus cannot be suppressed during the optimisation. Therefore, the 

most affected region is the depth discontinuities between the optimised and the unoptimised 
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regions of the focal stacked reconstructed images. Moreover, the in-focus and defocused areas 

of the image are distinctly separated by binary masks, which may exacerbate image quality 

issues at depth discontinuities. This abrupt separation can introduce edge-enhancing artefacts 

and amplify noise, leading to degraded image quality at the boundary between the two areas. 

Quantitatively, we use SSIM MSE and PSNR metrics to evaluate the reconstructed image 

quality only on the focus-stacked images. We plot the average values of 10 runs, showing how 

the MSE loss changes with each iteration. Figure 6.7(a) shows the optimisation curve and the 

calculation time during the hologram optimisation process. We demonstrate that this gradient 

descent-based 3D CGH optimisation converges exponentially with a few tens of seconds for a 

4-layer RGB image in 500 iterations with RGB channels. As this method is an iterative 

approach and optimises CGH over multiple reconstruction planes, it is hard to compute an 

optimised 3D CGH in real-time. However, recent research  [43–45] demonstrated that neural 

network based approaches could potentially be used for real-time phase hologram generation. 

The neural network-based method explicitly separates the optimisation process into the training 

and inference phases and could potentially compute the 3D phase CGH during the inference 

phase in real-time. Figure 6.7(b) demonstrates the optimisation details of PSNR and SSIM 

metrics during the CGH optimisation. The higher PSNR and SSIM mean the reconstruction 

result is closer to the target all-in-focus image. The proposed method confirms the 

improvements over iterations for all-in-focus reconstructed images.  

 

Figure 6.7. (a) The optimisation curve and the calculation time during the hologram 

optimisation process. (b) PSNR and SSIM metrics in the CGH optimisation. 
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6.2.4 Optical Validation 

We use the monochrome holographic prototype introduced in the last chapter to demonstrate 

the realisation of 3D holography. We only use the green colour channel holograms for 

demonstration, but the system can be upgraded to colour displays by sequentially displaying 

each colour channel of CGHs with RGB laser illumination. The system includes a 532nm laser 

source and an SLM with 8-bit depth, a 6.4 𝜇𝑚 pixel pitch and a 1920 × 1080 resolution. The 

SLM modulates the beam after it has been expanded and collimated by a 4-f optical system. A 

polariser is inserted to match the polarisation direction of the SLM. We update the relay optics 

by using a Canon 35 mm f/2 EF lens with a Canon EF 50mm f/1.4 EF lens to photograph and 

record video of the modulated beams. The image sensor is a Cannon 6D camera to photograph 

the reconstructed images. We mount the camera on a linear translation stage to capture the 3D 

volumes at different distances. Figure 6.8 shows the experimentally captured results of several 

multiplane 3D scenes focused on various distances. 

Apart from algorithm-induced noise in replay planes, other reasons lead to noise and poor 

image quality in the physical holographic display systems, including coherent laser speckle, 

quantisation errors, fill factor and nonlinearities of the SLM, and optical aberration during the 

beam propagation. The experimental implementation shows reasonably good overall quality 

for in-focus regions of the scenes, although the speckle at out-of-focus regions is quite 

significant due to the unconstrained behaviour of out-of-focus regions during the optimisation. 
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Figure 6.8. In-focus and out-of-focus visualisation of images reconstructed at four depths using 

naïve gradient descent method for 3D CGH optimisation. The scene is sliced into four layers 

and placed at 12cm, 13cm, 14cm and 15cm. Rectangular boxes with different colours highlight 

image patches where the scene target distance matches the focused distance.  

6.3 Incoherent Imaging Module 

As demonstrated above, though the gradient descent method can achieve good image quality 

on the focal-stacked images, there are still barriers to achieving realistic visual quality in the 
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defocused areas at depth-varying regions. The current 3D CGH optimisation method only 

forces the focal-stacked reconstructed images at different planes to match the target images, 

leaving the out-of-focus area unconstrained. The ambiguity and complexity of optimising 

image quality in the out-of-focus area remain problematic. On the other hand, the depth of field 

generated by the CGH relies on the coherent imaging model, creating different defocus 

behaviour compared with incoherent illumination in real scenes that are more familiar to human 

perception. 

 

Figure 6.9. Simulated reconstruction for defocusing a rectangle under coherent (first row) and 

incoherent (second row) illuminating conditions, reproduced from [187]. 

The response of an incoherent system to a sharp edge is drastically different from that of a 

coherent system. Figure 6.9 is the simulated reconstruction for defocusing a rectangle under 

two different illuminating conditions, demonstrating the visual difference in defocus blur, 

especially at the sharp edges of the image [187]. We can see that there exhibits a rather 

pronounced ringing effect in the coherent system with steep discontinuities. In contrast, the 

incoherent system has a significantly smooth drop at the edges. The cut-off frequency of 

diffracted coherent-system aperture was elucidated by the experiments and wave theories 

in  [187–189] and [5] in section 7.5.3. The limiting coherent-system aperture leads to a sharp 

cut-off for a coherently illuminated lens. 

Therefore, this section proposes an incoherent rendering model using depth-dependent point 

spread functions (PSFs) to generate natural defocused blur target images. These target images 

can provide natural defocus blur that accounts for incoherent illumination and offer the 

possibility to mitigate the defocus visual quality limitation under the constraint of the coherent 

holographic propagation for multiplane 3D CGH optimisation. 
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Recent advancements in computational imaging enable coded phase apertures to encode 

information for monocular depth estimation [190–193]. The coded phase aperture can generate 

depth-dependent 3D PSFs, which can accurately realise defocused images using image 

formation models. As the defocus effect depends on the complex transmissive function of the 

aperture, we can directly simulate the aperture to control depth-dependent incoherent PSFs. 

The generated PSFs with occlusion-aware image formation models can generate realistic 

incoherent defocused images. The defocused images generated from incoherent imaging can 

be used in 3D CGH generation with coherent light sources to improve image quality, 

fundamentally tackling the coherent CGH optimisation problem.  

 

Figure 6.10. A simple incoherent imaging system capable of reproducing 3D scenes at 

different focal planes. 

6.3.1 Method Description 

We consider a simple incoherent imaging system capable of reproducing 3D scenes at different 

focal planes shown in Figure 6.10. This system takes an all-in-focus RGB image with its 

associated depth map as input and produces reconstruction images with physically natural 

defocus blur at each plane as output. The system consists of a camera with an imaging lens 

focusing the scene on the camera. A customised phase mask can be inserted into its aperture 

plane to control the depth-dependent PSFs of the imaging system. The input RGBD image 

representing the 3D scene is sliced into multiple layers according to the object distances. Layers 

are then convoluted with the PSFs to generate defocused images at different distances. The 

final captured image is the composition of these convoluted layered defocused images. The 
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major components to be simulated in the suggested system are 1) PSFs, which are dependent 

on the wavelength of the light and depth, and 2) an image formation model that correctly 

renders the defocus blur images given an RGBD image as input. 

6.3.2 Point Spread Function 

Based on the Fourier optics [5], for a diffraction-limited imaging system, the image shown on 

the camera is the convolution of the original image with a PSF. In the incoherent case, the PSF 

is proportional to the squared magnitude of the Fourier transform of the pupil function in the 

Cartesian coordinate: 

𝑃𝑆𝐹(𝑥, 𝑦, 𝑧, 𝜆) = |
1

𝜆𝑠
∬ 𝑃(𝑢, 𝑣, 𝑧, 𝜆)𝑒−

𝑖2𝜋
𝜆𝑠

(𝑢𝑥+𝑣𝑦)
𝑑𝑢𝑑𝑣

∞

−∞

|

2

= |
1

𝜆𝑠
∬ 𝑃(𝑢, 𝑣, 𝑧, 𝜆)𝑒−𝑖2𝜋(𝑢𝑓𝑥+𝑣𝑓𝑦)𝑑𝑢𝑑𝑣

∞

−∞

|

2

= |
1

𝜆𝑠
ℱ{𝑃(𝑢, 𝑣, 𝜆)}|

2

, 

6.6 

where the 2D spatial coordinates are defined as (𝑢, 𝑣) and (𝑥, 𝑦) at the aperture plane and the 

camera sensor planes, respectively. The distance between the lens and the camera sensor is 𝑠, 

and the wavelength is 𝜆. The pupil function 𝑃(𝑢, 𝑣, 𝜆), also called the aperture function, is a 

complex-amplitude function describing the relative amplitude and phase change of the incident 

light upon transmission through the optical imaging system on the aperture plane. The pupil 

function can be defined as a complex transmittance function consisting of a defocus factor and 

a complex modulation due to the phase aperture: 

𝑃(𝑢, 𝑣, 𝑧, 𝜆) = 𝐴(𝑢, 𝑣, 𝑧, 𝜆)𝑒𝑖𝜑(𝑢,𝑣,𝑧,𝜆) = 𝐷(𝑢, 𝑣, 𝑧, 𝜆)𝑀(𝑢, 𝑣, 𝜆).  6.7 

The defocus factor 𝐷(𝑢, 𝑣, 𝑧, 𝜆) models the defocus variation caused by the mismatch between 

the actual focusing depth 𝑑 and the focal length 𝑓 of the lens. The thin lens equation gives the 

distance relation 
1

𝑓
=

1

𝑑
+

1

𝑠
. The defocus factor is given by [5,191]: 

𝐷(𝑢, 𝑣, 𝑧, 𝜆) =
𝑧

𝜆(𝑢2 + 𝑣2 + 𝑧2)
𝑒𝑖

2𝜋
𝜆

(√𝑢2+𝑣2+𝑧2−√𝑢2+𝑣2+𝑑2)
. 6.8 

The complex modulation due to the aperture is modelled by the factor 𝑀(𝑢, 𝑣, 𝜆) =

𝐴𝑀(𝑢, 𝑣)𝑒𝑖𝜙𝑀(𝑢,𝑣,𝜆). The amplitude 𝐴𝑀(𝑢, 𝑣) of the aperture can be regarded as a circ function 
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since there is no amplitude attenuation within the aperture. The phase delay 𝜙𝑀(𝑢, 𝑣, 𝜆)  is 

typically caused by the height map ℎ(𝑢, 𝑣) of the coded phase aperture with a refractive index 

𝑛(𝜆): 

𝜙𝑀(𝑢, 𝑣, 𝜆) =
2𝜋

𝜆
(𝑛(𝜆)  − 𝑛𝑎𝑖𝑟)ℎ(𝑢, 𝑣), 6.9 

where 𝑛𝑎𝑖𝑟 is the reflective index of air. However, in our case, we can consider the refractive 

index as a constant and regard the height map as the surface profile of an imaging lens: 

𝜙𝑀(𝑢, 𝑣, 𝜆) = −
𝜋

𝜆𝑓
(𝑢2 + 𝑣2). 6.10 

Since both the defocus factor and the aperture modulation are circular symmetric functions, the 

calculation of the PSF can also be achieved by Fourier-Bessel functions, expressing the PSF 

calculation in polar coordinates [191,193]. This alternative expression is especially helpful for 

learning the height map of the coded phase aperture for depth estimation to save computational 

memory and reduce the complexity of the optimisation process.  

6.3.3 Image Formation Model with Natural Defocus Blur 

We can then reproduce the captured image of a 3D scene on the camera sensor with these 

simulated PSFs. As demonstrated in the 3D CGH data preparation process, the 3D scene is 

represented as an RGBD image and sliced into multiple discrete layers. The RGB image is 

decomposed into a set of 𝑖 =  1 . . . 𝑁  discrete depth layers, with each layered image as 

𝐼𝑖𝑛(𝑥, 𝑦, 𝑖, 𝜆) for a colour channel 𝜆. To simulate the blur effect due to the depth of field, we 

convolve each layer with its corresponding depth-dependent PSF: 𝑙(𝑥, 𝑦, 𝑖, 𝜆) =

𝑃𝑆𝐹(𝑥, 𝑦, 𝑧𝑖, 𝜆) ∗ 𝐼𝑖𝑛(𝑥, 𝑦, 𝑖, 𝜆). The ∗ denotes the 2D convolution operation, and the tilde 

denotes the result from incoherent imaging. The final image is a combination of the in-focus 

and blurred images. The standard image formation model directly uses a simple linear 

convolution of the PSF with corresponding layered images: 

𝐼𝑜𝑢�̃�(𝑥, 𝑦, 𝜆) = ∑ 𝑙(𝑥, 𝑦, 𝑖, 𝜆) + 𝜂

𝑁

𝑖=1

, 6.11 
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where 𝐼𝑜𝑢�̃�(𝑥, 𝑦, 𝜆) is the captured image on the camera for a single wavelength 𝜆. The additive 

noise 𝜂 is typically simulated as Gaussian noise to mimic the noise during the capture. The 

standard linear model can correctly reproduce the defocus effect for most regions. However, 

the image formation model is invalid near the depth discontinuities since the model does not 

consider occlusion [192].  

The conventional linear model directly cascades blurred images together. When adding all 

blurred images, background layers are partly occluded near the borders of foreground layers. 

Therefore, the nonlinear differentiable image formation model has been proposed to overcome 

the inaccurate defocus blur at depth discontinuities with a marginal expanse of computational 

load [191]. The nonlinear differentiable image formation model combines the alpha 

compositing technique with the PSF to generate a more realistic defocus at depth boundaries. 

Rather than directly cascading blurred image layers, the nonlinear image formation model 

generates an alpha channel for soft-edge image composition [194–196].  The alpha channel can 

be used as a matte to control the image composition of generated layered images. The Alpha 

channel is an 8-bit grayscale channel to record the transparency information in the image, 

defining transparent and opaque areas. An alpha of 0, represented as black, indicates full 

transparency, and it is zero for fully occluded points. Fractions are represented in grey, 

corresponding to partial occlusion. Calculating the alpha matte of different layers is possible 

by using PSFs with binary masks that are obtained from the quantised depth layers: 

𝑇(𝑥, 𝑦, 𝑖) = ∏ [1 − 𝐵𝑀(𝑥, 𝑦, 𝑖) ∗ 𝑃𝑆𝐹(𝑥, 𝑦, 𝑧𝑖, 𝜆)]

𝑁

𝑖=𝑖′+1

. 6.12 

Intuitively, we calculate the cumulative occlusion from defocused layers with convoluted 

binary masks rather than directly cascading the entire convoluted blurred images. The alpha 

matte for each layer calculates the weight contribution from each layer to composite the 

rendered image on the camera sensor. These weights given by the alpha mattes can model the 

thin lens geometry. Compared with binary masks used in the linear model, the alpha matte is 

not knife-sharp, as shown in Figure 6.11. We then obtain the rendered image by alpha 

compositing in back-to-front order with the algebra matte to model the imaging system 

accurately: 
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Figure 6.11. The Binary mask in the linear image formation model and the alpha matte used in 

the nonlinear image formation model. 

We further apply normalisation to the convoluted image 𝑙(𝑥, 𝑦, 𝑖, 𝜆)  and the alpha matte 

𝑇(𝑥, 𝑦, 𝑖) for each layer to compensate for the energy reduction during convolution with the 

PSFs. Figure 6.12 shows that compared to the standard linear models, the nonlinear image 

formation model generates a more natural-looking defocused picture with fewer ringing effects 

in the vicinity of depth discontinuities from RGBD input. 

 

 

Figure 6.12.  The generated images are from the standard linear image formation models and 

the nonlinear image formation model. 

  

𝐼𝑜𝑢�̃�(𝑥, 𝑦, 𝜆) = ∑  

𝑁

𝑖=1

 𝑙(𝑥, 𝑦, 𝑖, 𝜆) ∙ 𝑇(𝑥, 𝑦, 𝑖) + 𝜂. 6.13 
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6.4 Natural Defocus CGH  

6.4.1 Method Description 

The realisation of incoherent natural defocus blur in 3D scenes motivates us to train our CGH 

generation model using coherent illumination for both in-focus and out-of-focus regions. The 

most straightforward method to integrate the rendered images with the CGH training process 

is to reformulate the loss function to directly use these incoherent defocused images as target 

amplitudes for coherent CGH optimisation. As such, the 3D CGH optimisation process using 

rendered incoherent images can be shown in Figure 6.13. The schematic diagram comprises a 

coherent CGH optimisation module and an incoherent image rendering module.  

 

Figure 6.13. The gradient descent method for the 3D CGH optimisation using an incoherent 

imaging module. 

In the forward pass, the coherent CGH optimisation module propagates the initial phase 

hologram 𝑒𝑖𝜙(𝜇,𝜈) by the angular spectrum method at a set of distances 𝑧𝑖  with a coherent 

planar wave. The propagated wave is reconstructed at multiple replay planes. In the backward 

pass, the coherent CGH optimisation module computes the gradient of the loss function to 

update the next estimate phase hologram.  
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The incoherent module calculates the wavelength and depth-dependent PSFs and convolutes 

the PSFs with the input RGBD images using the nonlinear image formation model. The 

convolution produces reconstructed images with physically natural defocus blur for out-of-

focus regions. We iterate this process to simulate incoherent reconstructed images at different 

depths so that the rendered images can be used as target images for coherent CGH optimisation. 

Therefore, the reformulated MSE loss function using rendered incoherent images for 

evaluation can be expressed as: 

6.4.2 Result and Discussion 

Simulation Validation 

The proposed method is implemented using PyTorch on an NVIDIA RTX 3060 GPU with 

Adam optimiser. Most parameters remain the same as the naïve 3D CGH generation introduced 

in section 6.2. We optimise the CGH for 1000 iterations with a 0.02 learning rate and 

exponential decay rates of 𝛽1 = 0.9 and 𝛽2 = 0.999.  This modification increases the iteration 

number and reduces the learning rate, enabling close monitoring of the optimisation process.  

The defocused images are rendered at the target depth range 𝑧 = {12𝑐𝑚, 13𝑐𝑚, 14𝑐𝑚, 15𝑐𝑚}, 

and the camera is focused accordingly with a pixel pitch at 6.55𝜇𝑚. The simulated aperture 

has a 35𝑚𝑚 focal length lens with an f-number of 5.0. Parameters of the incoherent imaging 

module can be easily modified to suit different viewing conditions, rendering defocused images 

in various ways. The proposed two-stage CGH optimisation method jointly reproduces 3D 

holograms with natural defocus blur at different depths.  

In our experiments, we first generate the defocused images using the incoherent imaging 

modules, as shown in Figure 6.14. Compared with the coherent reconstruction, the incoherent 

reconstruction simultaneously achieves smooth defocus and speckle-free effects. Using the 

rendered defocused images from the incoherent imaging module, we optimise an initial random 

phase hologram in RGB channels with the proposed method. Benefiting from the rendered 

defocused images, our simulation results in Figure 6.15 show that our method provides the 

most appealing image quality with realistic looking defocus blur.  

ℒ𝑀𝑆𝐸 =
1

𝑚𝑛
∑ [∑ 𝑚𝑖|𝑓(𝜙, 𝑧𝑖)|

𝑁

𝑖

− 𝐴�̃�]

2

,

𝑚,𝑛

 6.14 
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Figure 6.14. Defocused target images generated from the incoherent imaging module show 

smooth defocus and speckle-free effects. 

 

Figure 6.15. Simulated reconstructed image results of CGHs using the incoherent defocused 

images at targets. 

Figure 6.16 compares the simulated reconstructed images by the naïve 3D CGH optimisation 

described in section 6.2 and the proposed method. The naïve method leads to strong artefacts 

at the occlusion boundaries and produces incorrectly defocused images. On the other hand, 

benefiting from the natural defocus estimation of an incoherent imaging module, the proposed 

method can estimate the depth discontinuities between depth layers and effectively removes 

the artefacts. This is due to the fact that the incoherent imaging module can seamlessly combine 
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images at different depth layers using alpha composition and render out natural defocused 

images. Instead of using masks at in-focus regions of reconstructed images, the coherent CGH 

optimisation module of the proposed natural defocus CGH method avoids combining images 

at different layers, which could easily lead to the occlusion problem at depth discontinuities. 

 

Figure 6.16. Simulated reconstructed image comparison between the naïve 3D CGH method 

and the proposed natural defocus CGH method. 

Optical Validation 

We further validate our proposed method experimentally using the same holographic display. 

We upload the 3D holograms of the above scene to the SLM and photograph the reconstructed 

images at different replay planes with the Canon camera.   

Figure 6.17 shows the experimentally captured results of 4 multiplane 3D scenes, with square 

boxes indicating image patches where the scene target distance matches the focused distance. 

The captured results can closely resemble the simulation in Figure 6.15. In contrast to the naïve 

method, the proposed method generates reconstructed images that are more naturally defocused 

and mitigate the out-of-focus speckle behaviour with suppressed artefacts at depth 

discontinuities. As shown in the zoomed-in details, while the proposed natural defocus CGH 

largely enhances the natural defocus effect at occlusion boundaries, the resolution of the in-

focused image is degraded. Specifically, at layer 3, characters on the scale are in-focus for this 

layer and can be easily identified with the naïve gradient descent method; however, it is difficult 

to recognise the characters with the suggested method using incoherent target images.  
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Figure 6.17. In-focus and out-of-focus visualisation of images reconstructed at four depths using 

Natural Defocus CGH. The experimentally captured results of 4 multiplane 3D scenes, with 

square boxes indicating image patches where the scene target distance matches the focused 

distance. 

Discussion on Image Quality Degradation of Proposed Method 

The image degradation in the in-focus region could result from different optimisation 

mechanisms. Firstly, the attention loss in the proposed method may result in low image quality 

and resolution in in-focus regions of the reconstructed image. While both the proposed method 
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and the naïve gradient descent method optimise target images, the latter exclusively focuses on 

in-focus regions and discards out-of-focus regions during optimisation. Attention loss refers to 

the reduction of focus and resources devoted to certain parts of an image during optimisation. 

This can occur when the CGH optimisation process allocates too much attention to the out-of-

focus regions of the reconstructed image, at the expense of enhancing the in-focus regions.  

To address the attention loss issue in the proposed method, a binary weighting parameter can 

be incorporated to focus the optimisation process on the relevant areas of the reconstructed 

image, implicitly introducing visual attention mechanisms. Specifically, the loss function can 

be reformulated manually by specifying weights between the in-focus and out-of-focus regions 

of the reconstructed images. Alternatively, soft attention mechanisms can be used in 

conjunction with the CGH optimisation process, where the weight is learned through forward 

and backward propagation via gradient descent. This approach can maximise the image quality 

in the in-focus regions while minimising the loss of image quality in the out-of-focus regions, 

resulting in an overall improvement in the quality of the reconstructed images. 

Secondly, the direct supervision over multiple layered images could potentially overconstrain 

the optimisation problem, exceeding the available degree of freedom of current SLMs. The 

number of degrees of freedom of a given phase-only SLM is determined by its resolution and 

bit depth, which are finite and directly impact the quality of the reconstructed images. 

Supervision on out-of-focus regions or additional layered images could potentially exceed the 

available degree of freedom, limiting the performance of the proposed natural defocus CGH 

algorithm. However, recent research has demonstrated the feasibility of optimising CGH over 

more than five mutually independent images with limited degradation in overall image quality, 

as shown in [29]. This research indicates that the degree of freedom of current SLMs may be 

sufficient to handle multiple layered images with only a limited degradation in the overall 

image quality (SSIM from 0.8 to 0.72). 

A potential solution to overcome the limited degree of freedom issue is to reduce the resolution 

of the reconstructed image. Previous research has utilised this approach, such as [43], primarily 

to calibrate the resulting image within a confined region of interest. By reducing the resolution 

of the reconstructed images, the number of pixels that need to be optimised is decreased, 

thereby increasing the degree of freedom available for CGH optimisation. However, it is 

essential to note that this increase in image quality comes at the expense of reducing the image 



119 

resolution in the optimised region. Therefore, it is necessary to carefully balance the trade-off 

between image quality and resolution to ensure that the reduced resolution does not 

significantly affect the overall visual experience of the reconstructed images. An alternative 

approach to increasing the degree of freedom in CGH optimisation is to use an SLM with a 

larger resolution. This approach has been demonstrated in a recent study in [197], where a high-

resolution SLM with a resolution of 3840 × 2160 was used to generate full high-definition 

holograms. However, using a higher-resolution SLM can also significantly increase the 

computational time and complexity of the optimisation process. 

The third reason is that the generated incoherent images could lead to noise in the in-focus 

regions of the reconstructed image. Since the generated PSFs are band-limited functions, when 

convoluted with the angular frequencies of the input images, high frequencies of the generated 

incoherent images could be attenuated. This band limitation means that details in the signal 

that contains high-frequency information, such as sharp edges or fine textures, can be lost or 

blurred. As a result, the convolved signal can have reduced sharpness and clarity compared to 

the original signal.  

Several approaches can be adopted to mitigate the noise caused by incoherent images. One 

option is to use a smaller diameter lens in the incoherent imaging module. The smaller diameter 

lens can help increase the depth of field and reduce the defocus effect of the incoherent images, 

resulting in better image quality and reduced noise in the in-focus regions of the reconstructed 

image. Additionally, generating multiplane images with reduced maximum scene depth is 

another approach. Limiting the depth of the scene can reduce the range of distances over which 

the defocus effect occurs, which can lead to sharper and clearer images in the in-focus regions 

of the reconstructed image. These two methods offer effective solutions to mitigate the noise 

issue caused by incoherent images and can significantly improve the quality of reconstructed 

images. 

Quantitative Result  

To investigate the image quality degradation in the all-in-focus regions of the reconstructed 

image by the proposed method, we mask each layer of the reconstructed defocused images 

individually and composite them together to produce the all-in-focus reconstructed image. We 

plot image quality metrics such as MSE, PSNR and SSIM to check the image quality changes 
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over iterations quantitatively. Though the image quality of all-in-focus regions is increasing 

over iterations, compared with the result, we can see that the quality of the proposed method 

evaluated at all-in-focus regions drops significantly, from 0.74 to 0.53 for the SSIM metric and 

from 25.10 to 20.66 for the PSNR metric, indicating that the proposed method though visually 

increases the quality of out-of-in-focus regions, lead to quality degradation in all-in-focus 

regions of the reconstructed images.  

 

Figure 6.18. (a)The optimisation curve and the calculation time of Natural Defocus CGH. (b) 

PSNR and SSIM metrics in the Natural Defocus CGH optimisation. 

6.4.3 Improvement with Attention Mechanism 

We apply the hard attention mechanism in the 3D natural defocus CGH optimisation process, 

reformulating the loss function to introduce more weight on the in-focus regions over the out-

of-focus regions of the reconstructed images. As demonstrated in [187], the weight of the out-

of-focus regions is empirically set to 𝑚0 = 1, and the in-focus weight 𝑚1 = 2.1 for the 𝐿2 loss 

function under statistical criterion. We separate different regions of the in-focus and out-of-

focus regions of the reconstructed images using the binary mask and apply weights 

correspondingly: 

In Figure 6.19, we intuitively validate the effectiveness of the proposed method with an 

attention mechanism to boost the image quality at all-in-focus regions of the reconstructed 

images at various distances. 

Reconstructing at 14cm, the newly proposed natural defocus CGH method with an attention 

mechanism can resolve the scale more clearly than the direct Natural Defocus CGH method, 

ℒ𝑀𝑆𝐸,𝑡𝑜𝑡𝑎𝑙 = 𝑚0ℒ𝑀𝑆𝐸,𝑖𝑛_𝑓𝑜𝑐𝑢𝑠 + 𝑚1ℒ𝑀𝑆𝐸,𝑜𝑢𝑡−𝑜𝑓−𝑓𝑜𝑐𝑢𝑠 6.15 
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owing to the introduced weights. In all results, the proposed method consistently produces less 

speckle for out-of-focus regions compared to the naïve gradient descent CGH method and has 

more realistic depth boundaries using rendered defocused images.  

 

Figure 6.19. In-focus and out-of-focus visualisation of images reconstructed at four depths using 

Natural Defocus CGH with an attention mechanism. The experimentally captured results of 4 

multiplane 3D scenes, with square boxes indicating image patches where the scene target 

distance matches the focused distance. 
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6.5 Comparison to Other Work 

We further present experimental results of the proposed method and compare it with several 

existing approaches, including a multiplane stochastic gradient descent optimisation with 

angular spectrum wave propagation (SGD-ASM) [185], a multiplane 3D model that 

incorporates an alternating direction method of multipliers (ADMM) solver enforcing 

piecewise smooth phase constraints of the in-focus multiplane images (ADMM-ASM) [185], 

and realistic defocus holography (RDH) [187]. To evaluate the performance of these methods, 

we gather 20 2K RGBD images from diverse publicly available datasets [187,198–200] and 

optimise the initial phase of the models at five different target planes. Multiplane 3D images 

are captured and can be optically reconstructed at these target planes within a range of 14cm 

to 16cm from the SLM. Within this range, we uniformly distribute a total of five planes at equal 

physical distances. The models are trained using the same procedure outlined in the original 

paper, and their parameters are set to their original values. Hologram optimisation is conducted 

for 1000 iterations with a learning rate of 0.02 for all models. The RDH uses a target blur size 

of 40 with a blur ratio of 5. Experiments are performed using the same optical system, with a 

532nm laser source, an 8-bit phase-only SLM with 6.4𝜇𝑚 pitch and 1920 × 1080 resolution. 

The reconstructed images are captured using an EOS6D camera attached with an f1.4, 50mm 

EF lens.  

The proposed improved method, natural defocus holography with attention mechanism, 

referred to as NDH, is then compared using experimental results with our implementation of 

the conventional multiplane SGD-ASM, the multiplane ADMM-ASM and RDH. Figure 6.20 

shows experimentally captured results of two multiplane 3D scenes, focused on a near, an 

intermediate, and a far distance. In-focus regions of the images in various areas are enlarged 

using colour-coded rectangular boxes to illustrate image details. 

The results demonstrate that all methods are capable of reconstructing scenes at different 

distances. However, due to its unconstrained out-of-focus behaviour, the SGD-ASM approach 

exhibits more significant noise in the out-of-focus image regions. This unconstrained behaviour 

produces significant speckles in the out-of-focus parts of the image as the wave field propagates 

away from the constrained in-focus areas. The ADMM-ASM method improves the out-of-

focus speckle by imposing constraints on the phase of in-focus regions of reconstructed images, 
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implicitly to smooth the in-focus phase and mitigate the out-of-focus speckle. Although the 

out-of-focus speckle behaviour of ADMM-ASM is superior to that of SGD-ASM, the resulting 

images still lack the natural blur present in the defocused regions of the reconstructed scene. 

NDH and RDH use incoherent defocused images as targets, leading to a visually more pleasing 

defocused appearance. Both proposed models can adequately achieve excellent image quality 

with significantly reduced speckle and better image quality in both in-focus and out-of-focus 

parts of reconstructed images. However, because of using the depth-dependent PSFs with the 

alpha channel blending technique, the proposed method exhibits better visual quality.  

Figure 6.21 presents experimentally captured results of a multiplane 3D scene reconstructed at 

all planes, with additional results shown in Figure 6.22, Figure 6.23 and Figure 6.24. 

Specifically, the top row shows a composite image, which combines only the in-focus parts of 

all captured images alongside images captured at various distances for one scene in 

corresponding rows. The columns compare the proposed method with others, including SGD-

ASM, ADMM-ASM, and RDH. The last column provides ground truth images generated using 

the proposed incoherent imaging module for qualitative and quantitative (PSNR/SSIM in boxes) 

comparison. Although the first two methods, which disregard optimisation of the out-of-focus 

regions, may yield higher image quality in the in-focus areas depicted in the composite all-in-

focus images, the reconstructed image at various planes shows incorrect defocus blur. While 

RDH can produce smooth defocused images, the proposed method can provide a more pleasing 

defocus appearance with higher image quality in the in-focus regions. 
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Figure 6.20. Comparison of 3D CGH methods with experimental captured results. Methods 

include SGD-ASM, shown on the left; ADMM-ASM, shown in the centre left; RDH and the 

proposed method (NDH), shown in the centre right and right, respectively. While the first two 

methods constrain only the in-focus areas resulting in good image quality in those regions, they 

produce significant out-of-focus speckle artefacts. On the other hand, the RDH and NDH 

methods use incoherent defocused images to smooth out-of-focus noise in the image. 
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Figure 6.21. The experimentally captured results of a multiplane 3D scene reconstructed at all 

planes with the all-in-focus images in the first row. The ground truth images are generated using 

the incoherent module and the all-in-focus in-focus parts of several different scenes. The all-in-

focus image is a composite image that combines only the in-focus parts from all planes. 

PSNR/SSIM metrics indicates quantitative comparison at various distance of each method to 

the ground truth. 
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Figure 6.22. Additional experimentally captured images of SGD-ASM, ADMM-ASM, RDH 

and NDH with zoomed-in details at different focal planes. An outdoor scene with characters 

and ‘primitives’ from [187]. 
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Figure 6.23. Additional experimentally captured images of SGD-ASM, ADMM-ASM, RDH 

and NDH with zoomed-in details at different focal planes. ‘gezegenler’ and ‘birds’ from [187]. 
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Figure 6.24. Additional experimentally captured images of SGD-ASM, ADMM-ASM, RDH 

and NDH with zoomed-in details at different focal planes. A living room scene from [198] and 

a ‘statue’ from [199]. 
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Figure 6.25. Quantitative performance of experimental captured images from SGD-ASM, 

ADMM-ASM, and RDH methods in in-focus and out-of-focus regions based on PSNR/SSIM 

metrics. 

In Figure 6.25, we present quantitative assessments of the proposed method as well as other 

methods, including SGD-ASM, ADMM-ASM, and RDH, based on PSNR/SSIM metrics in 

both in-focus and out-of-focus regions using experimentally captures from the 20-image 

dataset. Specifically, the metrics for in-focus regions are evaluated on the all-in-focus images 

and compared to the target image for each experimental reconstruction using each method. The 

metrics for out-of-focus regions are evaluated on each depth plane and compared to its ground 

truth defocused image, and then averaged across all five planes to indicate the overall image 

quality in the defocused regions. Finally, all metrics are averaged across the image dataset to 

indicate the mean values of the comparison results, thereby reflecting both the smoothness of 

the defocus blur and the sharpness of the focused object. 

Based on the PSNR/SSIM values in both in-focus and out-of-focus regions, the proposed 

method NDH outperforms the other three methods (SGD-ASM, ADMM-ASM, and RDH) in 

terms of image quality. Specifically, NDH achieved higher PSNR and SSIM values (16.92 and 

0.58, respectively) in the out-of-focus regions compared to the other three methods, indicating 

better performance in reconstructing the defocus blur. NDH also maintain reasonably good 

PSNR and SSIM values (16.01 and 0.56, respectively) in the in-focus regions, demonstrating 

its ability to capture the sharpness of the focused object. These results also suggest that 

explicitly using incoherent defocused images to smooth out-of-focus part image noise, as in 

the RDH and NDH methods, can lead to better image quality in defocused regions. Overall, 

these qualitative and quantitative experiments demonstrate that the proposed method maintains 
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good image quality in in-focus regions while exhibiting better image quality for out-of-focus 

regions, indicating its superiority over the other methods.  

Note that this work differs from recent works on 3D holography by Shi et al. [44] and Choi et 

al. [185]. Both works train neural networks based on large datasets to approximate the analytic 

wave propagation model and constrain the phase values of the replay field for better image 

quality. The reproduced images are compared only with in-focus images using binary masks, 

and the out-of-focus regions are implicitly optimised by employing the smooth phase constraint. 

Instead of constraining the phase, this work explicitly considers the out-of-focus regions, 

employing an incoherent imaging module to simulate the natural defocus in the replay field. 

The proposed method does not employ neural networks for approximation and imposes phase 

constraints for phase regularisation, potentially alleviating the smooth phase problem discussed 

later. Similar work from Kavakli et al. [187] also aims to improve the image quality of out-of-

focus regions by applying Gaussian kernels to simulate the defocus blur with additional phase 

constraints. This work, however, simulates the depth-dependent point spread functions to 

generate physic-based incoherent defocus blur. The proposed method combines the alpha-

matte-based image formation model to render natural defocused images as target images.  

6.6 Further Discussion 

6.6.1 Further Image Quality Improvement 

The experimental results presented in this study incorporate the use of captured images that 

have undergone further enhancement to achieve a higher image quality, as shown in Figure 

6.26. The implementation details of the imaging techniques used are carefully examined from 

the literature, specifically from Shi et al. [45], Kavaklı et al. [201], and Choi et al. [202], to 

ensure the high quality of the results. 
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Figure 6.26. Comparison of all-in-focus (AIF) images of the original experiment and the 

updated experiments. 

Improvement in image quality is achieved through the precise alignment of the laser source 

polarisation to the SLM and the insertion of an additional polariser to reduce the zeroth and 

higher-order diffraction artefacts. Proper polarisation alignment can maximise the diffraction 

efficiency and contribute to increased brightness and contrast levels in the images. It should be 

noted that the captured images were obtained under ordinary room conditions in the original 

experiment, which could potentially result in image degradation due to ambient light. As such, 

the new experimental images are captured under dark light conditions to ensure the quality of 

the images is not compromised by the artefacts induced by the ambient light condition. 

The calibration process is further improved to carefully align the captured image to the target 

image and reduce the mismatch between simulations and experiments. Instead of capturing a 

single image to compute the homography matrix, the improved approach iteratively performs 

the calibration to find the optimal matrix for the system setup. Additionally, the exposure time 

of the camera is adjusted to improve visual quality. We optimise and evaluate the reconstructed 

images over a confined region of interest at the centre with a resolution of 1680 × 960. The 

primary focus of this approach is to calibrate the resulting images, which not only improves 

the calibration process but also can increase the degree of freedom required in optimisation 

since fewer pixels need to be adjusted. To further improve the image quality of the experiment, 

it is recommended to utilise a horizontal grating to eliminate undiffracted light. 

Current state-of-the-art techniques utilise complex kernels or convolutional neural networks to 

learn and optimise the correlation between a hologram and its optical reconstruction to enhance 

image quality in the presence of optical aberrations and bridge the gap between holographic 
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display simulations and physical displays. A dataset containing multiple phase-only holograms 

and their corresponding image reconstructions is typically necessary to train these techniques. 

For example, Kavaklı et al. [187] used a training dataset of 797 phase patterns and their 

corresponding captured intensity images, employing four million parameters (2x1080x1920 

for amplitude and phase) during the training process. Similarly, Choi et al. [185] utilised ∼65 

million parameters in their CNNpropCNN model for 3D holography, trained on a dataset 

containing 8,800 phase patterns and their corresponding experimental captures. However, the 

need for numerous parameters and a sizable training dataset poses significant challenges in this 

field. Additionally, the approximation of the wave propagation model using convolutional 

neural networks may result in less obvious mapping onto physical representation. 

 

Figure 6.27. Comparison of reconstructed images using conventional methods and the camera-

in-the-loop (CITL) approach. The use of CITL can remove noise and optical system-dependent 

artefacts, as shown by the rectangular boxes.  
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On the other hand, one could also use the camera-in-the-loop technique (CITL) [43]to address 

phase-error compensation during backpropagation in the training process. In Figure 6.27, we 

perform the CITL approach and qualitatively demonstrate its superiority over conventional 

methods in improving the quality of reconstructed images. Specifically, CITL has been found 

to effectively smooth out noise in reconstructed images and remove optical system-dependent 

artefacts through phase compensation in the iterative process, as indicated by the rectangular 

boxes in Figure 6.27. The results demonstrate the ability of CITL to bridge the gap between 

experimental and simulated results, thereby enhancing the quality of experimental 

reconstructed images. 

6.6.2 Is it a Hologram? 

One of the most exciting characteristics of the hologram is that every piece contains an image 

of the whole object. An observer can still perceive the whole image through a small piece of 

the hologram with a limited perspective and a reduced image quality. It is equivalent to looking 

at an object through a small hole in a window. The object stays the same size with a limited 

viewing angle. CGHs that utilise the entire diffraction angle to modulate light are also referred 

to as diffusive holograms [197]. These holograms allow reconstructed 3D objects to be viewed 

from any position within a diffraction angle. In contrast, recent trends in computer-generated 

holography have shifted towards optimising CGH algorithms with smooth target phases, also 

known as non-diffusive holograms. These holograms are primarily focused on enhancing 

reconstructed image quality. However, non-diffusive holograms do not fully utilise the 

diffraction region of the spatial light modulator. This approach only enforces constructive 

interference at the central view perspective, which attenuates other views by destructive 

interference [197,202]. This phenomenon can be intuitively perceived by observing the 

optimised non-diffusive holograms, which contain a significant amount of residual target 

image at the front view. As pointed out in [29], Smooth phase holography has a smaller 

effective Fourier spectrum with concentrated energy in DC, leading to a lack of full parallax 

within the diffraction region of the SLM. Figure 6.28 illustrates the replay field from diffusive 

and non-diffusive holograms, depicting their respective achievable field of view within the 

replay field. The diffusive hologram can modulate the light up to the maximum angle 𝜃max 

bounded by a pixel pitch to the replay field, allowing reconstructed objects to be seen from any 
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position within a field of view. On the other hand, the FOV of non-diffusive holograms is 

limited to the front view, and image quality from other views is heavily attenuated. 

 

Figure 6.28. Comparison of the achievable FOV of diffusive and non-diffusive holograms. The 

diffusive hologram can reconstruct objects from any position within its maximum diffraction 

angle, resulting in a larger and more versatile replay field. In contrast, non-diffusive holograms 

are limited to the front view and suffer from significant attenuation in image quality from other 

views. 

Furthermore, it should be noted that non-diffusive holograms have certain drawbacks. While 

they may produce higher-quality images, the reduction of the numerical aperture and the 

content-dependent defocus pattern can make the coherent properties of light more prominent. 

Specifically, interference patterns generated by Fresnel propagation in non-diffusive 

holograms can differ significantly from the defocus blur observed in real-world objects. This 

inconsistency in defocus patterns can disrupt the relationship between depth and blur, a critical 

factor in depth perception. Additionally, the presence of a clear boundary at the interface 

between objects with different depths, caused by interference, can distort the perception of 

relative depth between objects. Therefore, a combination of the advantages of both diffusive 

and non-diffusive holograms may be necessary to achieve high-quality holograms without 

distortion of depth perception. 

Additionally, the updating strategy of non-diffusive hologram algorithms typically uses smooth 

target phases to update the subsequent estimation. Though resulting in better image quality, 

this strategy establishes a strong phase correlation between adjacent reconstructed points. This 

phase correlation is susceptible to disruption during experimental reconstruction and can cause 

inconsistent defocus patterns that disrupt the relationship between depth and blur as well. 

Therefore, a carefully calibrated system from simulation to optical reconstruction is often 
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required to compensate accurately for the disturbing phase noise. Examples include using the 

camera-in-the-loop technique to compensate for the phase error during backpropagation or 

using specific neural networks that have more degrees of freedom in the propagation process 

to delicately compensate for the phase error during the training process. However, the 

approximation of the wave propagation model using convolutional neural networks may result 

in less obvious mapping onto physical representation; Target images that have less similarity 

to the trained dataset could not be able to produce CGHs through neural networks. Moreover, 

true holography is inherently fault-tolerant; even defective holographic pixels would not 

significantly degrade the reconstructed image quality. 

6.6.3 ASM for Fraunhofer Region 

Through Chapter 5 and Chapter 6, the gradient-based CGH algorithms are performed based on 

the angular spectrum method in the near-field region. Its ability to optimise CGH in the far-

field region has not been validated. The far-field region requires long diffraction distances, 

which could result in a less accurate simulation from aliasing due to under-sampling [5,203]. 

The bandwidth of the hologram is related to the SLM characteristics that generally would not 

be changed, while the bandwidth of the spatial frequency transfer function in the ASM method 

increases with the increase of the propagation distance. Since the bandwidth of reconstructed 

objects is the sum of both, employing the same sampling frequency in the replay field could 

degrade the image quality. Experimental results in [142,186] also demonstrate that high 

frequencies of reconstruction are lost when the propagation distance becomes longer. One 

solution is to increase the size of the hologram resolution by zero-padding prior to the 

simulation [43,203,204]. Another solution is to band limit the spatial frequency transfer 

function of the ASM method as in  [108]. 

Furthermore, we can calculate the diffraction at a long distance using the Fraunhofer diffraction 

function and at the Fresnel region using the Fresnel diffraction function. The far-field 

reconstruction is simply the Fourier transform of the CGH. The Fresnel transform translates the 

reconstruction plane along the optical axis using an additional quadratic phase factor as a virtual 

lens. Both methods can substantially reduce the computational load required for CGH optimisation 

and effectively accelerate the calculation process. 
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6.7 Conclusion 

This chapter has extended the gradient descent method to 3D hologram generation, enabling 

high-quality 3D CGH reconstruction. The proposed method is validated by a monochrome 

holographic prototype and can reproduce reasonably good overall quality for in-focus regions 

of the scenes. However, the image quality of out-of-focus regions is degraded by the speckle 

due to unconstrained behaviour during the optimisation. Therefore, this work combines the 

gradient descent method with an incoherent imaging module to render natural incoherent 

realistic defocused images as targets to supervise the CGH training process. The incoherent 

imaging module controls the depth-dependent point spread function and simulates naturally 

incoherent defocused images with the nonlinear occlusion-aware image formation model. The 

proposed method can closely resemble reconstructed images with more naturally defocused 

regions; however, the image quality is slightly degraded in in-focus regions.  

We further apply the hard attention mechanism, reformulating the loss function to set weights 

on both regions of the reconstructed images manually. In this way, the hard attention 

mechanism introduces more weight on the in-focus regions over the out-of-focus regions of 

the reconstructed images. The effectiveness of the newly proposed method has been 

experimentally demonstrated. In contrast to the directly natural defocus CGH method, this 

method can intuitively resolve more clearly for in-focus regions while reducing the speckle 

noise artefacts at out-of-focus regions and depth discontinuities. 

 



137 

Chapter 7 Conclusion and Future Work 

7.1 Conclusion 

Currently, 3D display technologies are still in the primary stage of development, and how to 

function as a “magic window”  through which viewers can perceive truly natural 3D scenes is 

the key to 3D display technology. Among these technologies, holographic 3D display 

technology is one of the most promising 3D technologies that can perfectly reconstruct 3D 

scenes with all depth cues. However, its technical implementation imposes significant 

challenges in practice. This thesis addresses these challenges based on hardware system design 

and algorithmic development to improve reconstructed image quality. 

This thesis has established an experimental holographic display from acquisition to optical 

reconstruction for generating CGHs from established 3D scenes or real-world scenes using 

commercially available RGB-D cameras. Though calculating a CGH from a real-world scene 

has been successfully achieved by depth completion, reconstruction errors of real-world scenes 

have been observed close to boundaries and near complex features. The reconstruction errors 

have been recognised due to the inaccurate depth information examined by comparing with a 

CGH calculated from a CG version of the same scene produced in Unity. Other experimental 

reconstruction issues such as zero-order, image quality degradation, inaccurate image defocus, 

and gamma correction have been evaluated.  

Given that image quality degradation is one of the significant issues in holographic displays, 

the gradient descent method is introduced to phase-only CGH optimisation. However, this 

method is typically optimised using mean squared error, which is widely criticised for its poor 

correlation with perceptual quality. Therefore, contemporary image quality metrics (IQM) 

considering human visual systems are employed as loss functions to improve the reconstructed 

image quality. Extensive objective and subjective assessments of experimentally reconstructed 
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images reveal that the perceived quality improves considerably with the selected MS-SSIM 

loss, highlighting the value of finding a specific perceptually-motivated loss function for CGH 

generation.  

The gradient descent method is then extended to 3D hologram generation, validated in 

simulation and experimentally demonstrated on a holographic display prototype. While 

previous works have attempted to optimise 3D CGH generation only on the in-focus area, there 

are still barriers to achieving realistic visual quality in the defocused and depth-varying regions. 

Therefore, an incoherent imaging module is introduced to the gradient-decent-based 3D 

hologram generation process, simulating the natural defocus blur and occlusion effects at depth 

discontinuities. Additionally, the loss function is reformulated using an attention mechanism 

to maintain reconstructed image quality at the in-focus regions while reducing the speckle noise 

artefacts in the out-of-focus ones. The experimentally captured result presents its effectiveness 

of using Natural Defocus CGH with an attention mechanism for 3D CGH synthesis, 

demonstrating its potential to reconstruct realistic 3D images beyond the capabilities of existing 

3D hologram generation algorithms. 

7.2 Future work 

7.2.1 Holographic Display System Advancement  

Although this thesis has realised the construction of a holographic display system from 

acquisition to optical reconstruction, the prototype is still at the laboratory stage for 

demonstration purposes only and is not well calibrated to reduce optical aberration correction.  

A 2D holographic display system with a volume of around 57 cm3 was made by Cable in 2006 

using an SLM with a 13.62 m pixel pitch and axillary optics [66]. Additional engineering effort 

system is needed to further miniaturise the system to an ultra-compact form that may support 

applications such as mobile phones or head-mounted displays. Although residual image 

artefacts in 2D holographic display systems due to optical aberration can be reduced using 

automated testbeds for factory-assembled holographic projectors [205,206] or recent hardware 

feedback systems [43,141], the aberration correction for 3D holographic display systems has 

not been systematically studied yet. As CGHs can directly support aberration correction from 

algorithmic perspectives, 3D holographic displays inherently are more favourable than any 
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other display technologies, especially for near-eye AR applications where users with ametropia 

may need additional corrective lenses. 

The proposed holography display system utilises stereoscopic RGB-D cameras for scene 

acquisition, which could be further replaced with holographic cameras in the near future. Ideal 

holographic cameras would potentially direct support real-time, real-world scene recording as 

digital holograms, which can be optical reconstructed using SLMs. Furthermore, the core 

device SLM is currently limited to modulating only the phase of light. A programmable fast-

switching complex-amplitude spatial light modulation would reduce the computational 

complexity of phase-only CGH optimisation and fundamentally accelerate real-time CGH 

generation. Additionally, present SLMs only provide holographic displays with a relatively 

limited eyebox. Higher-resolution SLMs with a smaller pixel pitch could help mitigate this 

issue. Ultimately, SLMs are expected to function as magical surfaces that can switch modes to 

display on-screen images or floating 3D images behind the screen. 

The holographic system can add a CGH compression and transmission module to support real-

time CGH cloud computing. We can transmit the captured real-time 3D data on the cloud, and 

the calculated CGH can be compressed, encoded and transmitted to the local server and 

decoded for local holographic display. However, there are no generic CGH compression and 

transmission techniques. Dynamic high-resolution CGHs require high bandwidth for data 

transmission, which would not be feasible without compression techniques. Moreover, the 

statistical properties of the holographic data are different from the conventional photographic 

data. Standard compressing techniques such as JPEG and MPEG may not be applicable to 

CGHs.  

7.2.2 Algorithmic Advancement  

The algorithms in this thesis are all based on iterative algorithms, which are time-consuming 

with a high computational load. The study of high-quality non-iterative algorithms has always 

been one of the most exciting tasks for researchers in the CGH field. One potential research 

direction is to use deep learning techniques to calculate CGHs. The trained neural network 

could generate real-time CGHs while maintaining the same image quality. The trained neural 

network can be further combined with existing networks in head-up display (HUD) 

applications, supporting optical 3D object detection and annotation in augmented driving. 
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However, this technique may not be generic enough when CGH-related parameters vary in 

different conditions, including propagation distances, input data type, and CGH resolution. 

Analytic solutions that consider both the wave physical propagation process and the complex 

amplitude to phase-only encoding process are preferable to generate high-quality 3D CGHs. 

Evaluating the CGH reconstructed image quality requires a widely accepted subjective testing 

methodology. The common practice for subjective evaluation is to utilise a camera first to 

record and display the reconstructed images on high-end 2D monitors. The alternative option 

is to display the hologram directly on a screen for subjective perceptual judgments on the 

experimental reconstructed images. Subjective benchmarking algorithms are preferable from a 

widely accepted configuration of high-end holographic displays with standard procedures for 

display calibrating, characterising, and testing. Furthermore, typical objective testing 

methodologies for image quality are based on 2D images. Objectively characterisation the 

quality of 3D CGH reconstructed images counting the defocus effect has not yet been 

accomplished. With the 3D holographic image characterisation, hologram generation 

techniques can be further improved by using numerical feedback systems.  

The extension of IQMs to 3D CGH optimisation represents a promising research direction with 

the potential to enhance the quality of 3D reconstructed holographic images significantly. One 

potential approach is to directly utilise 2D IQMs as loss functions in 3D CGH optimisation. In 

using 2D IQMs as a loss function, the in-focus parts of the 3D reconstructed image are 

constrained to match the target RGB image through the application of binary masks at each 

plane, which is computed from the target depth map. An alternative approach that could fully 

utilise the potential of 2D IQMs in 3D CGH optimisation is extending their ability to access 

the out-of-focus regions of the reconstructed image. In contrast to binary masking the 

reconstructed image, IQMs can directly access both the in-focus and out-of-focus regions by 

comparing these regions to simulated incoherent target images. Using IQMs as loss functions, 

this approach has the potential to further improve the quality of the reconstructed holographic 

images, especially in out-of-focus regions. While the above approach can be applied to 2D 

image slices, it is important to note that CGH optimisation can also be performed on other data 

formats, such as polygon models or point clouds. These primitives can be transformed into 2D 

planes to apply 2D IQMs as loss functions, but other direct quality assessment methods may 

be more suitable for these primitives and result in better image quality in CGH optimisation. 
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Directly using IQMs as loss functions may also result in increased complexity and 

computational cost. Furthermore, combining IQMs with other optimisation techniques, such as 

regularization terms, may lead to even further improved results. 

This thesis reconstructs a 3D scene using a preliminary algorithm by adding an extra incoherent 

imaging module with an attention mechanism to improve the defocus effect without sacrificing 

in-focus image quality. However, generating photorealistic defocused layer images may be 

challenging while maintaining real-time CGH optimisation. Incoherent image rendering is 

time-consuming, and it is therefore preferable to incorporate this process with modern 

rendering techniques such as ray tracing to accelerate the computational speed. Furthermore, 

rather than implicitly optimising the defocus areas using incoherent images as targets, 

alternative hologram-generating approaches that explicitly consider the defocusing effect and 

other human visual cues, such as occlusion and motion parallax, are desirable for holographic 

3D displays in the future. 
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