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1 Introduction

Superconformal field theories in six dimensions play a fundamental role in our understanding
of M-theory and play a central role in our understanding of quantum field theories in
general through compactification to lower-dimensions. On the other hand, their precise
formulation remains elusive because conventional Lagrangians with manifest six-dimensional
superconformal symmetry do not exist. Despite this difficulty, it is possible to compute many
observables in these theories like correlators of protected operators using holography [1–4],
conformal bootstrap methods [5–10], and chiral algebra conjectures [11, 12].

Although it is not possible to write down a Lagrangian with six-dimensional supercon-
formal symmetry, a more useful (and perhaps fundamental) definition of a Lagrangian is one
which can be used to compute observables such as correlation functions using a path integral.
Indeed a Lagrangian may only manifestly realise some subgroup of the symmetries of the full
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quantum theory, as previously demonstrated by the ABJM theory for M2-branes [13]. In a
recent series of papers we have constructed a class of five-dimensional Lagrangians with 12 or
24 superconformal symmetries and a non-Lorentzian SU(1, 3) spacetime symmetry [14–16],
studied their correlators [17] and constructed explicit instanton solutions [18]. In this paper
we make a proposal as to how these can be used to provide a path integral construction
of correlators of six-dimensional superconformal field theories such as the (2, 0) theory
associated to M5-branes.

In particular here, using path integral methods, we derive the conformal Ward-Takahashi
identities for five-dimensional correlators in the presence of instanton operators. These are
local disorder operators that correspond to changing the second Chern number of the gauge
field around an insertion point (see also [19–21]). The existence of a conserved topological
charge given by the instanton number (or more accurately the second Chern number of the
gauge fields) leads to an additional U(1) symmetry but one under which all the fields in the
Lagrangian are invariant. As we stated above the action has a non-trivial SU(1, 3) symmetry;
however we will show that this symmetry is broken once we allow for non-trivial topological
sectors, corresponding to the insertion of instanton operators. Nevertheless an SU(1, 3)×U(1)
symmetry can be restored in the quantum theory, with instanton operators charged under
the U(1) factor. Thus the path integral defined using the five-dimensional Lagrangian yields
an interacting theory with a manifest and non-trivial SU(1, 3)×U(1) symmetry.

In our previous paper [17] we studied the Ward-Takahashi identities for the symmetry
group SU(1, 3)×U(1) and showed that solutions to them can be obtained from a certain
Fourier expansion of the correlators of a six-dimensional conformal field theory. In this way
we showed that the instanton number can be used to encode the Kaluza-Klein momentum
along an emergent sixth dimension. A novelty of this reduction is that we use the conformal
symmetry of the six-dimensional theory to conformally compactify a null direction. As
a result the Fourier expansion reproduces the full correlation functions of non-compact
six-dimensional Minkowski space. In particular the SU(1, 3) × U(1) symmetry arises
as the subgroup of the conformal group SO(2, 6) that commutes with the Kaluza-Klein
momentum operator.

This therefore leads to a natural proposal about how to go the other way and construct
genuine six-dimensional correlators from the five-dimensional theory. However the key
question is whether or not the resulting correlators can be identified with those of a six-
dimensional Lorentzian conformal field theory. In this paper we discuss some necessary
conditions for correlators of the theory to resum to produce six-dimensional correlators
invariant under the full SO(2, 6). We also argue that once topologically non-trivial sectors
of the theory are included the action is no longer single valued on the space of field
configurations, unless the inverse coupling constant k is a discrete orbifold parameter,
analogous to that of the ABJM theory.

The rest of this paper is organised as follows. In section 2 we briefly review the
Lagrangians described above and their symmetries. In section 3 we allow for more general
topologies of the gauge fields through so-called instanton operators and show how the
SU(1, 3) is broken but then restored by finding a suitable representation of the instanton
operators. We also show that once we consider this expanded configuration space we are
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required to restrict k to discrete values. In section 4 we discuss how to construct correlation
functions of a six-dimensional theory and in particular give some necessary conditions for
these to satisfy the Ward-Takahashi identities of a Lorentzian six-dimensional conformal
field theory. In section 5 we give our conclusions and discussion on future directions. We
also include two appendices.

2 The actions and their symmetries

In this first section, we review the five-dimensional Ω-deformed gauge theory first introduced
in [14] by a reduction of the (2, 0) theory, and recast its known spacetime symmetries [15] in
a language more useful for this paper. There are also (1, 0) versions of these actions where
the fields further decompose into tensor and hyper multiplets and the supersymmetries are
reduced by a half [16]. The form of the action and symmetries is similar but the hyper
multiplet fields are allowed to take values in any representation of the gauge group. In the
interests of not introducing additional notation we will not discuss them here since all the
results in this paper extend directly to these theories too as the main tool we exploit is the
SU(1, 3) symmetry of the action.

2.1 Review of five-dimensional Lagrangian model

Our starting point is a non-Abelian but non-Lorentzian gauge theory in five dimensions
with arbitrary gauge group. We use the coordinates (x−, xi) on R5, with i, j, · · · = 1, . . . , 4.
In addition to its gauge field A = (A−, Ai), the theory has five scalar fields XI , where
I, J, · · · = 6, . . . , 10 and a real 32-component spinor Ψ of Spin(1,10). Finally, we also have
a field Gij = −Gji which is self-dual, Gij = 1

2εijklGkl. All of the fields XI ,Ψ and Gij
transform in the adjoint of the gauge group.

We choose a 32× 32 real representation {Γ0,Γ1, . . . ,Γ10} of the (1 + 10)-dimensional
Clifford algebra with signature (−,+, . . . ,+), and additionally define the combinations
Γ± = (Γ0 ± Γ5)/

√
2 which project onto spinors of definite chirality under Γ05. The fermion

Ψ then satisfies Γ012345Ψ = −Ψ.
The action of the theory is S =

∫
dx−d4xL, with

L = k

4π2 tr
{ 1

2F−iF−i −
1
2D̂iX

ID̂iX
I + 1

2FijGij

− i

2Ψ̄Γ+D−Ψ + i

2Ψ̄ΓiD̂iΨ−
1
2Ψ̄Γ+ΓI [XI ,Ψ]

}
, (2.1)

where F = dA− iA ∧A is the field strength of A, and D−, Di are adjoint gauge covariant
derivatives for the gauge field A−, Ai, i.e. D− = ∂− − i[A−, · ] and Di = ∂i − i[Ai, · ]. In
terms of these more conventional objects, we have used the corresponding Ω-deformed
objects,

D̂i = Di −
1
2Ωijx

jD− ,

Fij = Fij −
1
2Ωikx

kF−j + 1
2Ωjkx

kF−i , (2.2)
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where Ωij is anti-self-dual and normalised as ΩikΩjk = δij . We also define ∂̂i = ∂−− 1
2Ωijx

j∂−
for later use. We see that Gij acts as a Lagrange multiplier, imposing the constraint that
Fij is anti-self-dual, i.e. F+

ij = 0, where F+
ij = 1

2

(
Fij + 1

2εijklFkl
)
.

Note that in previous papers we have included a real variable R with dimensions of
length with ΩijΩjk = −R−2δij . However in the current paper we have chosen to absorb R
into fields and coordinates. Details of this process, and therefore rules on how to reinstate
this parameter, are straightforward and can be found in [22]. As is standard in more
conventional Yang-Mills theories, one can perform simple field redefinitions to bring terms
quadratic in derivatives to canonical normalisation, and in doing so introduce positive
powers of g with g2 = 4π2/k in front of all interaction terms. In this sense, one should
think of this g as the coupling of the theory.

Let us comment on the origin of this theory [14] in the case where the gauge group is
U(N5). The AdS/CFT correspondence tells us that the worldvolume theory for a stack of
N5 M5-branes is dual to M-theory on an AdS7×S4 background. In analogy with the ABJM
construction [13] and following the geometric considerations of [23], one first considers AdS7
as a timelike circle fibration S1 ↪→ AdS7 → C̃P3 over the non-compact complex projective
space C̃P3. One can then write down a non-Abelian action describing the reduction along
the fibre of a stack of M5-branes at fixed C̃P3 radius. The geometry suggests such a theory
should possess eight real supercharges, and it does. Finally, one takes the embedding
radius to infinity, effectively sending the stack of M5-branes to the boundary of AdS7. This
boundary is described by the metric

ds2 = −2 dx+
(
dx− − 1

2Ωijx
idxj

)
+ dxidxi , (2.3)

with x+ ∈ (−π, π) identified as the coordinate along the fibre along which we have reduced.
This metric is of the same conformal class as six-dimensional Minkowski space, and so at
the end of the day we have simply performed a conformal compactification of M5-branes on
flat space.

Note, as we take the limit to the conformal boundary, certain terms in the action
diverge. One is nonetheless able to utilise the technique first described in [24] to propose
the Lagrangian (2.1) to describe the boundary theory.

We can then use the geometry of the M5-brane embeddings to predict the symmetries
of the theory. Since the metric (2.3) is conformal to the six-dimensional Minkowski metric,
any conformal field theory living on it should realise the full conformal algebra so(2, 6) as
its spacetime symmetries. However, the reduction along the x+ direction breaks so(2, 6) to
the maximal subalgebra h = su(1, 3)⊕ u(1) commuting with translations along x+.

Next, the theory has a manifest SO(5) R-symmetry rotating the scalars XI , correspond-
ing simply in the M5-brane picture to rotations in the directions transverse to the branes.

Finally, the circle reduction breaks only one quarter of the superconformal symmetries,
and so we can expect the theory to have 24 real supercharges. This is indeed the case, with 8
realised as rigid supersymmetries, and the remaining 16 as conformal supersymmetries [14].
In the models obtained from (1, 0) superconformal field theories one finds half as many
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supersymmetries and the R-symmetry is SU(2) corresponding to a suitable replacement
of the S5 factor.

2.2 Spacetime symmetry algebra

Let us now review the spacetime symmetry structure of the theory in more detail.1 The
subalgebra h ⊂ so(2, 6) is spanned by the generators B = {P−, Pi, B,Cα, T,Mi+,K+}
along with central element P+, which is simply the generator of translations along the x+

direction along which we have reduced. The other generators have the following action on
the five-dimensional coordinates (x−, xi)

• {P−, Pi} are five translations, which form a non-Abelian subalgebra,

• {B,Cα}, α = 1, 2, 3, form a u(1) ⊕ su(2) subalgebra of four rotations in the xi
directions,

• T is a Lifshitz scaling, under which x− scales twice as quickly as xi,

• {Mi+,K+} are ‘special’ transformations, which play much the same role as special
conformal transformations in the conformal algebra.

A subset of the commutation relations of the algebra is

[Mi+, Pj ] = −δijP+ −
1
2ΩijT − 2δijB + Ωikη

α
jkC

α , [T, P−] = −2P− ,

[T,K+] = 2K+ , [P−, Pi] = 0 ,
[K+, P−] = −2T , [P−,Mi+] = Pi ,

[Mi+,Mj+] = −1
2ΩijK+ , [K+, Pi] = −2Mi+ ,

[T, Pi] = −Pi , [K+,Mi+] = 0 ,
[T,Mi+] = Mi+ , [Pi, Pj ] = −ΩijP− . (2.4)

The rotations B,Cα form an u(1)⊕ su(2) subalgebra;

[B,Cα] = 0 , [Cα, Cβ ] = −εαβγCγ . (2.5)

In particular these generate all rotations in the four-dimensional plane that leave Ωij

invariant. The remaining brackets are neatly summarised by noting that the ‘scalar’
generators S = P−, T,K+ are inert under the rotation subgroup, i.e. [S, B] = [S, Cα] = 0,
while the ‘one-form’ generators Wi = Pi,Mi+ transform as

[Wi, B] = −1
2 ΩijWj , [Wi, C

α] = 1
2η

α
ijWj . (2.6)

If we for a moment exclude the central element P+, then the elements of B form a (somewhat
unconventional) basis for su(1, 3). In fact, the centrally extended algebra h can be realised as
simply h = su(1, 3)⊕u(1), with basis {P−, Pi, B̃, Cα, T,Mi+,K+} for the su(1, 3) factor and
P+ for the u(1) factor. Here, we have B̃ = B + 1

2P+. However, it will be more convenient
for geometric reasons to continue to use B rather than B̃, and thus refrain from making
this direct sum decomposition of h manifest.

1A more comprehensive review can be found in [22].
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2.3 Realisation on coordinates and fields

Let us now investigate how these symmetries are realised by the Lagrangian (2.1). There
is a little nuance here regarding what we should expect. We interpret S as describing N
M5-branes reduced along the direction x+ ∈ (−π, π). Let us first suppose, as in a standard
Kaluza-Klein reduction, that in doing this reduction we have truncated the spectrum of
the theory maximally; in other words, the theory S describes only the zero modes on the
x+ interval. We know then that such modes will fall into representation of h in which P+
is represented trivially (i.e. it annihilates everything); in other words, representations of
su(1, 3). Thus, we expect S to admit an su(1, 3) spacetime symmetry.

Conversely, just as five-dimensional maximal super-Yang-Mills is conjectured to in fact
describe all modes of a spatial compactification of M5-branes through the inclusion of local
operators with non-zero instanton charge [25, 26], we also propose that our action S should
describe all modes of the x+ conformal compactification. Modes with non-zero charge under
P+ are expected to be realised only when the configuration space is extended to allow for
isolated singular points, around which one measures non-zero instanton number.

What we will show first is that if we disallow such configurations, then the theory does
indeed admit an su(1, 3) spacetime symmetry. It will already be clear however at this point
that something goes wrong when the configuration space is extended. We will indeed show
below that in this case we precisely recover modes with non-trivial charge under P+, and
thus the spacetime symmetry algebra is extended to h.

So let us first describe the su(1, 3) spacetime symmetry of the theory, as first discussed
in [15], which is valid when the gauge field is regular throughout R5. Our first step is to
define some action of su(1, 3) on coordinates and fields. As a spacetime symmetry, su(1, 3)
admits a representation in terms of vector fields on R5. Given some G ∈ su(1, 3), we have
corresponding vectors fields G∂ , with

(P−)∂ = ∂− ,

(Pi)∂ = 1
2Ωijx

j∂− + ∂i ,

(B)∂ = −1
2 Ωijx

i∂j ,

(Cα)∂ = 1
2η

α
ijx

i∂j ,

(T )∂ = 2x−∂− + xi∂i ,

(Mi+)∂ =
(1

2Ωijx
−xj − 1

8x
jxjxi

)
∂− + x−∂i + 1

4(2Ωikx
kxj + 2Ωjkx

kxi − Ωijx
kxk)∂j ,

(K+)∂ =
(

2(x−)2 − 1
8(xixi)2

)
∂− +

(1
2Ωijx

jxkxk + 2x−xi
)
∂i . (2.7)

Let us set up our conventions for SU(1, 3) transformations. Given any g = eεG ∈ SU(1, 3),
and any point x ∈ R5, we can denote by xg ∈ R5 the point sitting at a finite distance ε along
the integral curve of G∂ starting at x. Then, we have for g1, g2 ∈ SU(1, 3), x(g1g2) = (xg1)g2,
and so SU(1, 3) admits a natural right action on R5. In this way, we can consider SU(1, 3)
orbits on our spacetime. For infinitesimal G, the leading order term in xg can be read off
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from (2.7), while the finite form of xg for g generated by each of the basis generators can
be found in [22].

Next, we consider how some generic field in the theory, which we denote by ϕ, transforms
under SU(1, 3). Under an active SU(1, 3) transformation g, we have

x −→ x

ϕ(x) −→ ϕ′(x) = gϕ(x) := Rg(xg−1)ϕ(xg−1) , (2.8)

where Rg is some (generically spacetime-dependent) matrix acting on any indices of ϕ,
and satisfying Rg2(xg1)Rg1(x) = Rg1g2(x). Taking g then to act only on fields, so that for
instance g(∂iϕ(x)) = ∂i (gϕ(x)), we have that (g1g2)ϕ(x) = g1 (g2ϕ(x)).

For G infinitesimal, we can write to leading order2 gϕ(x) = ϕ(x) + δGϕ(x), where
δGϕ(x) = −G∂ϕ(x) − rG(x)ϕ(x). rG(x) is a matrix acting on any indices of ϕ(x), and
satisfying [rG1 , rG2 ] + (G1)∂ rG2 − (G1)∂ rG1 = r[G1,G2] for any G1, G2 ∈ su(1, 3). Then, the
variations δG form a representation of su(1, 3), i.e. [δG1 , δG2 ] = δ[G1,G2].

The general form of the rG(x) can be deduced by defining a notion of primaries and
descendants of su(1, 3) [17]. In particular, primaries are annihilated at the origin by the
special transformations Mi+,K+, with descendants generated by the action of P−, Pi. A
primary operator is entirely captured by a Lifshitz scaling dimension ∆ and representations
r[B], r[Cα] under the rotation subalgebra. Explicitly, then, such a primary transforms under
su(1, 3) as

δP−ϕ(x) = − (P−)∂ ϕ(x) ,
δPiϕ(x) = − (Pi)∂ ϕ(x) ,
δBϕ(x) = − (B)∂ ϕ(x)− rϕ[B]ϕ(x) ,
δCαϕ(x) = − (Cα)∂ ϕ(x)− rϕ[Cα]ϕ(x) ,
δTϕ(x) = − (T )∂ ϕ(x)−∆ϕ(x) ,

δMi+ϕ(x) = − (Mi+)∂ ϕ(x)−
(1

2∆Ωijx
j + 2xirϕ[B]− Ωikη

α
jkx

jrϕ[Cα]
)
ϕ(x) ,

δK+ϕ(x) = − (K+)∂ ϕ(x)−
(
2∆x− + 2xixirϕ[B]− xixjΩikη

α
jkrϕ[Cα]

)
ϕ(x) . (2.9)

The gauge field A, scalars XI and fermions Ψ do indeed fall into representations of su(1, 3)
and thus transform as in (2.8) for some non-trivial variations δG. Hence, these fields
can be reorganised (albeit somewhat non-trivially) to be written in terms of such su(1, 3)
primaries [22]. Full details of the infinitesimal transformations of fields can be found in ap-
pendix A, while their finite transformations are also known [22], but will not be needed here.

The Lagrange multiplier Gij is a little different. The variation δGGij depends not only
on Gij but also the field strength F of the gauge field, at least for G = Mi+,K+. Thus,
one should really regard (A,Gij) sitting in a single representation. Further, the algebra of
variations δG only closes on Gij on-shell; more specifically, it closes only on the constraint
surface Fij = − ? Fij .

2In our conventions, δG acts on fields only, so that for instance δG
(
xi∂iϕ(x)

)
= xi∂i (δGϕ(x)).
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Finally, it is notationally convenient to introduce a trivial variation δP+ , acting as
δP+X

I = 0, δP+Ψ = 0, δP+A = 0 and δP+Gij = 0. Then, the {δG}G∈B∪{P+} generate a
representation of h with P+ trivially represented, and we have [δG1 , δG2 ] = δ[G1,G2] for all
G1, G2 ∈ h, with brackets as given in (2.4)–(2.6).

2.4 Variation of the Lagrangian

We have shown that the full field content of the theory falls into representations of h (at
least on the constraint surface, in the case of Gij) under the variations δG. We reiterate,
these are indeed representations of su(1, 3) ⊂ h, as P+ is trivially represented: δP+ϕ = 0 on
all fields ϕ = A,XI ,Ψ, Gij . Further, the Lagrangian (2.1) transforms in a representation3

of su(1, 3) ⊂ h.
So let us state the variation of the Lagrangian L. In addition to the trivial δP+L = 0,

for G ∈ {P−, Pi, B,Cα, T} we find

−δP−L = ∂−L ,

−δPiL = ∂−

(1
2Ωijx

jL
)

+ ∂iL ,

−δBL = ∂i

(1
2Ωijx

jL
)
,

−δCαL = ∂i

(
−1

2η
I
ijx

jL
)
,

−δTL = ∂−
(
2x−L

)
+ ∂i

(
xiL

)
, (2.10)

and hence with suitable boundary conditions on the 4-sphere S4
∞ at infinity, we have

δGS = 0. More care must be taken, however, in the case of G ∈ {Mi+,K+}. We find4

−δMi+L = ?

(
dxi ∧

(
k

8π2 tr (F ∧ F )
))

+ ∂−

[(1
2Ωijx

−xj − 1
8x

jxjxi
)
L − k

16π2x
i tr
(
XIXI)]

+ ∂j

[1
4
(
2Ωikx

kxj + 2Ωjkx
kxi − Ωijx

kxk + 4x−δij
)
L − k

8π2 Ωij tr
(
XIXI)] ,

−δK+L = ?

(
d
(
xixi

)
∧
(
k

8π2 tr (F ∧ F )
))

+ ∂−

[(
2
(
x−
)2 − 1

8(xixi)2
)
L − k

8π2x
ixi tr

(
XIXI)]

+ ∂i

[(1
2Ωijx

jxkxk + 2x−xi
)
L+ k

4π2 Ωijx
j tr
(
XIXI)] . (2.11)

3This is slightly non-trivial, since the algebra does not close off-shell on Gij . However, the corresponding
anomalous extension to the symmetry algebra (A.9) is parameterised by an additional variation δ̄ij , which
explicitly annihilates the Lagrangian. Thus, the algebra does close on L off-shell.

4Here and throughout, we take ? to denote the Hodge star with respect to the Euclidean metric on R5,
which satisfies ?2 = 1 on all forms, and (?d ? ω)α1...αp−1

= ∂βωα1...αp−1β for generic p-form ω.
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If we require that the gauge field A is globally defined and regular everywhere, then we can
write

dxi ∧
(
k

8π2 tr (F ∧ F )
)

= d

(
k

8π2x
itr (F ∧ F )

)
,

d
(
xixi

)
∧
(
k

8π2 tr (F ∧ F )
)

= d

(
k

8π2x
ixitr (F ∧ F )

)
, (2.12)

and hence, in both cases, δGL is a total derivative, and for suitable boundary conditions on
S4
∞ we have δGS = 0.

3 Instantons

We have now seen that the theory described by Lagrangian (2.1) does indeed possess an
su(1, 3) spacetime symmetry when the gauge field A is regular throughout R5. It would
therefore be reasonable to propose that the theory describes only the zero modes of the
compactification on x+ ∈ (−π, π), since it admits a symmetry under h in which nothing is
charged under P+. To move beyond this, we now instead consider a broader configuration
space for the theory.

3.1 Instantons and classical symmetry breaking

Our task now is to broaden the class of spaces we allow our theory to live on, in an effort
to introduce non-trivial topological sectors of the configuration space. Let us now and for
the remainder of this paper specialise to gauge group G = SU(Nc).

It is clear that all principal SU(Nc) bundles P → R5 are trivialisable. Consider
instead however removing a set of points {xa}Ma=1 and considering principal bundles over
M5 = R5 \ {xa}Ma=1. Such bundles are then characterised by the integral of the second
Chern class over small 4-spheres surrounding each of the xa, which are quantised as

na = 1
8π2

∫
S4
a

tr (F ∧ F ) ∈ Z , (3.1)

with S4
a denoting a small 4-sphere surrounding the puncture at xa. We then call each pair

(xa, na) an instanton insertion, with xa ∈ R5 the instanton insertions’s position, and na ∈ Z
its charge. We could also in principle consider allowing for non-zero instanton number on
S4
∞, but we instead consider only configurations with

1
8π2

∫
S4
∞

tr (F ∧ F ) = 0 . (3.2)

Since the finite SU(1, 3) transformations generated by Mi+ and K+ move the point at
infinity [22], this is chosen as a convenience, rather than a restriction.

Note then that since d tr (F ∧ F ) = 0 throughout M5, we have

0 = 1
8π2

∫
S4
∞

tr (F ∧ F ) =
M∑
a=1

1
8π2

∫
S4
a

tr (F ∧ F ) =
M∑
a=1

na . (3.3)
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Thus, the data of the bundle is contained within the set of instanton insertions {(xa, na)}Ma=1,
with the xa distinct and the na summing to zero. Necessarily, M5 must now be covered in a
number of patches, on each of which A is defined. One can however consider a limit of such
an open cover, such that A is now globally defined and regular except along 1-dimensional
strings where it is singular. These strings, which are analogous to the Dirac string, extend
between the insertions xa. Then, the integral of the Chern-Simons 3-form on any S3 through
which such a string is threaded is quantised, ensuring that (3.1) is satisfied. Gauge field con-
figurations with precisely this form were found in [18], but we will not need their details here.

We are now able to extend our field content back to the whole of R5, so long as we
allow for particular singular behaviour of the field strength F . We in particular have

d

( 1
8π2 tr (F ∧ F )

)
= d5x

M∑
a=1

naδ
(5)(x− xa) . (3.4)

Such configurations with maximal symmetry about the points xa will behave as

1
8π2 tr (F ∧ F ) ∼ − na

6π2 ? d

( 1
|x− xa|3

)
, (3.5)

as we approach |x− xa| → 0, where here |x|2 = (x−)2 + xixi. However, we more generally
only expect the pullback to the S4 surrounding xa to behave as

1
8π2 tr (F ∧ F )

∣∣∣∣
S4
∼ naΩ4 , (3.6)

as we approach |x−xa| → 0, where Ω4 encodes angular dependence, and satisfies
∫
S4 Ω4 = 1.

Thus, the components of 1
8π2 tr (F ∧ F )

∣∣∣
S4

in Cartesian coordinates on R5 go as |x− xa|−4

as we approach |x− xa| → 0.
Explicit examples of such configurations on S4 can be constructed by suitable stereo-

graphic projection from corresponding configurations on R4. The minimal such construc-
tion [21], in which the SU(2) BPST instanton of size ρ is mapped to S4, corresponds to
na = ±1, with ρ = 1 producing the spherically symmetric result (3.5). More generally, one
can in principle relate5 any SU(Nc) n-instanton configuration on R4, parameterised by 4nNc

moduli and captured by the ADHM construction [27], to a corresponding configuration
on S4 by stereographic projection. While we will not require any of the finer details of
such constructions, it is important to emphasise that just specifying instanton insertions
{(xa, na)} does not fix the boundary behaviour of the gauge field A in a neighbourhood of
the points {xa}, but rather specifies that such behaviour belongs to a particular continuous
family of instanton profiles.

Further, note that configurations defined over R5 which feature an arbitrary number of
instanton insertions at points xa, as well as vanishing flux on S4

∞ as in (3.2), were found in [18].
Such configurations additionally satisfy the constraint Fij + 1

2εijklFkl = 0 imposed by Gij .

5Note that generically some moduli that are physical on R4 can become gauge redundancies on S4 — for
instance, the three gauge orientation moduli of the single SU(2) instanton.
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So, we now take the configuration space of our theory to be extended to a disjoint
union of subspaces, on each of which we specify instanton insertions {(xa, na)}. Note, for
the sake of later notational convenience, we allow for any of the na to be zero, in which
case F can be smoothly extended to xa.

It is crucial to note that SU(1, 3) still admits an action on this extended configuration
space. In particular, the form of gA ensures that

d

( 1
8π2 tr (F [A] ∧ F [A])

)
= d5x

M∑
a=1

naδ
(5)(x− xa)

=⇒ d

( 1
8π2 tr (F [gA] ∧ F [gA])

)
= d5(xg−1)

M∑
a=1

naδ
(5)(xg−1 − xa)

= d5x
M∑
a=1

naδ
(5)(x− xag) , (3.7)

and hence if A has instanton insertions {(xa, na)}Ma=1, the transformed field gA has instanton
insertions {(xag, na)}Ma=1.

Let us now return to the su(1, 3) variation of the Lagrangian. We find now that in
the presence of instanton insertions, the variation of L under Mi+,K+ is no longer a total
derivative, and the action is no longer invariant. We find

δMi+L = k
M∑
a=1

nax
i
aδ

(5)(x− xa) + ? d (. . . ) ,

δK+L = k
M∑
a=1

nax
i
ax

i
aδ

(5)(x− xa) + ? d (. . . ) , (3.8)

and hence, for suitable boundary conditions on S4
∞, we have

δMi+S = k
M∑
a=1

nax
i
a ,

δK+S = k
M∑
a=1

nax
i
ax

i
a . (3.9)

Thus, we find that the classical action is no longer invariant under SU(1, 3). However, we
note that the variation of the action is local to the punctures {xa}. It is precisely this fact
that allows for a recasting of the classical non-invariance of S as a symmetry deformation
in the quantum theory.

However, before exploring this we finally note the transformation of the action under
the finite transformations generated by Mi+ and K+, which are found by exponentiating
the infinitesimal results (3.9).

Again let ϕ = A,XI ,Ψ, Gij be shorthand for the set of fields of the theory, and suppose
that the gauge field A has insertions {(xa, na)}Ma=1. Then, we find

S[eεiMi+ϕ] = S[ϕ]− ik
M∑
a=1

na log
(
Mε(xa)
Mε(xa)

)
, (3.10)
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where given some 4-vector αi, we define

Mα(x) =
(

1− 1
2Ωijα

ixj + 1
16α

iαixjxj
)
− i

4
(
αiαix− + 2αixi

)
= 1 + z(x, (0, αi))− z(x, 0)− z(0, (0, αi))− i

4α
iαiz(x, 0) , (3.11)

and we have the complex distance

z(x1, x2) =
(
x−1 − x

−
2 + 1

2Ωijx
i
1x
j
2

)
+ i

4(xi1 − xi2)(xi1 − xi2) = −z̄(x2, x1) . (3.12)

Equivalently, we can write

exp
(
iS[eεiMi+ϕ]

)
= eiS[ϕ]

M∏
a=1

(
Mε(xa)
Mε(xa)

)kna
. (3.13)

Similarly, we find

S[eεK+ϕ] = S[ϕ]− ik
M∑
a=1

na log
(1− 2εz̄(xa, 0)

1− 2εz(xa, 0)

)
, (3.14)

or equivalently,

exp
(
iS[eεK+ϕ]

)
= eiS[ϕ]

M∏
a=1

(1− 2εz̄(xa, 0)
1− 2εz(xa, 0)

)kna
. (3.15)

Note that the multiplicative factors appearing on the right hand side of (3.13) and (3.15)
generically have branch points. This suggests that there may exist closed loops in configu-
rations space, around which eiS picks up a non-trivial phase. The existence of such loops
would thus signal a failure of single-valuedness of eiS as a functional on configuration space.
This will be explored in section 3.6.

3.2 Quantum recovery

We now consider the fate of our su(1, 3) symmetry in the corresponding quantum theory.
Despite the non-invariance of the action, we find a set of Ward-Takahashi identities satisfied
by all correlation functions of the theory.

Such identities are of the usual form, in particular involving the divergence of some
vector current; the Noether current for the respective symmetry. The derivation of such
local Ward-Takahashi identities and corresponding currents is left until section 3.4. We
first derive the corresponding global identities — also obtainable by integrating their local
counterparts over R5 — directly, so as to elucidate the quantum recovery of the theory’s
symmetries most straightforwardly.

First suppose we forbid instanton insertions, and define the configuration space of the
theory to have globally regular field strength F . We can then formally define correlation
functions of operators Φ(1), . . . ,Φ(N) by the path integral〈

Φ(1)(x1) . . .Φ(N)(xN )
〉

=
∫
DϕΦ(1)(x1) . . .Φ(N)(xN )eiS[ϕ] , (3.16)
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where, as above, we use ϕ to denote the fields XI , A,Ψ, Gij of the theory, and the Φ(a) are
generically composite functions of ϕ and their derivatives. The partition function is Z = 〈1〉.

Symmetries are then realised by Ward-Takahashi identities for correlations functions.
Under some SU(1, 3) transformation g, we have transformed fields ϕ′ = gϕ. Making use of
the fact that S[ϕ′] = S[ϕ], and assuming Dϕ′ = Dϕ, we have

〈Φ(1)′(x1) . . .Φ(N)′(xN )〉 =
∫
DϕΦ(1)′(x1) . . .Φ(N)′(xN )eiS[ϕ]

=
∫
Dϕ′Φ(1)′(x1) . . .Φ(N)′(xN )eiS[ϕ′]

=
∫
DϕΦ(1)(x1) . . .Φ(N)(xN )eiS[ϕ]

= 〈Φ(1)(x1) . . .Φ(N)(xN )〉 , (3.17)

where viewing Φ[ϕ] as a composite function of the fields ϕ, we have Φ′ = Φ[ϕ′]. This is
the global Ward-Takahashi identity for the symmetry g. We can equivalently write the
infinitesimal form,

N∑
a=1

〈
Φ(1)(x1) . . . δGΦ(a)(xa) . . .Φ(N)(xN )

〉
= 0 , (3.18)

for each G ∈ su(1, 3).
Let us now consider what changes when we allow for instanton insertions. The

configuration space of the theory is now the disjoint union of subspaces on which we
specify instanton insertions {(xa, na)}. Hence, in calculating the correlation function of a
set of operators Φa, we must also specify which of these subspaces we perform the path
integral over. Further, within each of these subspaces we encounter a number of zero modes,
undamped by the path integral. The bosonic zero modes correspond simply to the space of
gauge-inequivalent instantonic gauge field configurations as discussed above, while we also
generically expect fermionic zero modes in each such background. We should therefore also
specify gauge field and fermionic boundary conditions in a neighbourhood of each xa.

This leads us to define〈
Φ(1)(x1) . . .Φ(N)(xN )

〉
{(xa,na), qa}

:=
∫
{(xa,na), qa}

DϕΦ(1)(x1) . . .Φ(N)(xN )eiS[ϕ] . (3.19)

Here, the path integral is performed only over configurations ϕ with instanton insertions
{(xa, na)}Na=1. We additionally include formal multi-indices qa which specify asymptotic
field behaviour in a neighbourhood of the xa, corresponding to the bosonic and fermionic
instanton moduli as mentioned above, and about which we will have more to say in
section 3.3. Note, the operator insertion points are the same as the instanton insertion
points, denoted xa. This is done without loss of generality, since we allow for any of the
operators Φ(a) to be the identity operator 1, and we allow any of the na to vanish.

Next, consider some SU(1, 3) transformation g, with corresponding transformed fields
ϕ′(x) = gϕ(x). If ϕ has instanton insertions {(xa, na)}, then by (3.7) we have that gϕ has
instanton insertions {(xag, na)}. It is important to note that this then induces a right group
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action of SU(1, 3) on the boundary data qa. In particular, if the fields ϕ have instanton
insertions {(xa, na)} with boundary data qa, we can define qag as the boundary data of gϕ
near xag. Hence, again assuming no non-trivial Jacobian factor, we have∫

{(xag−1,na), qag−1}
Dϕ =

∫
{(xa,na), qa}

Dϕ′ . (3.20)

Then, consider in particular g lying in the subgroup of SU(1,3) generated by {P−,Pi,B,Cα,T},
for which we additionally have S[ϕ′] =S[ϕ]. We have then

〈Φ(1)′(x1) . . .Φ(N)′(xN )〉{(xag−1,na), qag−1}=
∫
{(xag−1,na), qag−1}

DϕΦ(1)′(x1) . . .Φ(N)′(xN )eiS[ϕ]

=
∫
{(xa,na), qa}

Dϕ′Φ(1)′(x1) . . .Φ(N)′(xN )eiS[ϕ]

=
∫
{(xa,na), qa}

Dϕ′Φ(1)′(x1) . . .Φ(N)′(xN )eiS[ϕ′]

=
∫
{(xa,na), qa}

DϕΦ(1)(x1) . . .Φ(N)(xN )eiS[ϕ]

= 〈Φ(1)(x1) . . .Φ(N)(xN )〉{(xa,na),qa} , (3.21)

which is a generalisation of (3.17).
We now consider the rest of SU(1, 3). The only difference here is that we no longer

necessarily have S[ϕ′] = S[ϕ]. First consider g = exp
(
εiMi+

)
. Then, we have

〈Φ(1)′(x1) . . .Φ(N)′(xN )〉{(xag−1,na), qag−1}

=
∫
{(xag−1,na), qag−1}

DϕΦ(1)′(x1) . . .Φ(N)′(xN )eiS[ϕ]

=
∫
{(xa,na), qa}

Dϕ′Φ(1)′(x1) . . .Φ(N)′(xN )eiS[ϕ]

=
N∏
a=1

(
M−ε(xa)
M−ε(xa)

)kna
〈Φ(1)(x1) . . .Φ(N)(xN )〉{(xa,na), qa} . (3.22)

Following the same steps, for g = exp (εK+) we have

〈Φ(1)′(x1) . . .Φ(N)′(xN )〉{(xag−1,na), qag−1}

=
N∏
a=1

(1 + 2εz̄(xa, 0)
1 + 2εz(xa, 0)

)kna
〈Φ(1)(x1) . . .Φ(N)(xN )〉{(xa,na), qa} . (3.23)

Hence, through (3.22) and (3.23) we find that in the quantum theory, we still have global
Ward-Takahashi identities corresponding to Mi+,K+. But these identities are deformed
from the naive result (3.17), which holds only in an absence of instanton insertions.

3.3 An alternative perspective, and instanton operators

Before moving on to find the more general local counterparts to these Ward-Takahashi iden-
tities, let us describe an equivalent but nonetheless useful notation we may use to denote in-
stanton insertions in the quantum theory. This reformulation, in terms of instanton operators,
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will in particular allow for a compact infinitesimal form of (3.21)–(3.23), while also making
contact with previous work in Lorentzian Yang-Mills theories in five dimensions [19–21].

In the previous section, we chose to introduce the notion of instanton insertions in the
quantum theory by specifying the path integration domain. At least at a formal level, we
could instead have expanded the space of operators in the theory. Let us denote by Φn(x)
a local operator which, in addition to carrying some representation of SU(1, 3), also carries
charge under the U(1) topological current tr(F ∧ F ). In detail, such an operator satisfies〈(

1
8π2

∫
S4(x)

tr(F ∧ F )
)

Φn(x) . . .
〉

= 〈nΦn(x) . . . 〉 (3.24)

for some n ∈ Z, where here S4(x) is a 4-sphere surrounding x, sufficiently small such that
it does not enclose any other insertions.

However, if we are now to reproduce the path integral manipulations that lead to
the Ward-Takahashi identities (3.21)–(3.23), we need some prescription for how such
topologically charged operators are constructed in practise in terms of the fields of the theory.

In analogy with monopole operators appearing in three-dimensional gauge theory [28],
one can construct the operators Φn through the introduction of disorder operators known
as instanton operators [19–21]. Then, the inclusion in the path integral of some instanton
operators I{q}n (x) is defined in terms of our previous notation by∫

Dϕ I{q1}
n1 (x1) . . . I{qN}nN

(xN )
(
. . .
)

=
∫
{(xa,na), qa}

(
. . .
)

(3.25)

In particular, this path integral vanishes identically unless ∑a na = 0.
It is natural at this point to say a little more about the formal index q, and in particular

its interpretation in canonical quantisation. In some quantisation of the theory, I{q}n is the
creation operator of an instanton-particle. Precisely what state is created is specified by the
index q. In a pure gauge theory, this index would correspond to the physical (as opposed to
gauge-redundant) collective coordinates of an n-instanton on S4 in SU(Nc), which although
complicated are accessible by virtue of the ADHM construction [27]. However, in a theory
with fermions such as the theory considered here, we generically have fermion zero modes
in an instanton background, giving rise to a degenerate ground state. Thus, in acting with
I{q}n on the vacuum, we need the index q to specify which of these vacuum states is created.
The full classification of these fermion zero modes, and thus a precise formulation of the
index q, has been achieved for the case of a single SU(Nc) instanton [20], providing I{q}±1 .
A more general treatment remains an important open problem in five-dimensional gauge
theory. For the purposes of this paper, it is sufficient to assume the existence of such a
complete formulation.

The SU(1, 3) transformation properties of I{q}n are then induced by that of the spacetime
and boundary data q, with I{q}

′
n (x) = gI{q}n (x) := I{qg

−1}
n (xg−1). The change in path

integral measure (3.20) is hence recast simply as∫
Dϕ I{q1}′

n1 (x1)I{q2}′
n2 (x2) . . .I{qN}′nN

(xN )
(
. . .
)

=
∫
Dϕ′ In1(x1)In2(x2) . . .InN (xN )

(
. . .
)
.

(3.26)
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With such a formulation in place, we can now build an operator carrying instanton charge, as

Φn(x) = I{q}n (x)Φ(x) (3.27)

where Φ = Φ[ϕ] is once again simply some composite function of the fields ϕ and their
derivatives.

Then, Φn(x) transforms in a representation of SU(1, 3), which is a tensor product of
the representations of I{q}n and Φ(x). Given some g ∈ SU(1, 3), we have Φ′n(x) = gΦn(x) =
I{qg

−1}
n (xg−1)(gΦ)(x) = Φn(x) + εδGΦn(x) where g = eεG. In particular, δGΦn(x) as always

takes the form δGΦn(x) = −G∂Φn(x)− rG(x)Φn(x) for differential operator G∂ and matrix
rG(x), and defines a representation of su(1, 3). Note, we define, for instance, ∂iI{q}n (x)
by requiring 〈∂iI{q}n 〉 = ∂i〈I{q}n 〉. Further, as with fields, for the sake of later notations
convenience we trivially define δP+I

{q}
n (x) = 0, so that Φn sits in a representation of

h = u(1)⊕ su(1, 3) in which P+ is trivially represented.
We can then reproduce each of the Ward-Takahashi identity derivations of the previous

section, with for instance the manipulation from the first to second line of (3.21) being now
of the form (3.26). We thus arrive at simply

〈Φ(1)′
n1 (x1) . . .Φ(N)′

nN
(xN )〉 = 〈Φ(1)

n1 (x1) . . .Φ(N)
nN

(xN )〉 , (3.28)

when g lies in the subgroup of SU(1, 3) generated by {P−, Pi, B,Cα, T}, or infinitesimally,
N∑
a=1

〈
δGΦ(a)

na (xa)
∏
b 6=a

Φ(b)
nb

(xb)
〉

= 0 . (3.29)

For transformations generated by the remaining two generators G = Mi+,K+ we have

〈Φ(1)′
n1 (x1) . . .Φ(N)′

nN
(xN )〉 =

N∏
a=1

(
M−ε(xa)
M−ε(xa)

)kna
〈Φ(1)

n1 (x1) . . .Φ(N)
nN

(xN )〉 , (3.30)

and

〈Φ(1)′
n1 (x1) . . .Φ(N)′

nN
(xN )〉 =

N∏
a=1

(1 + 2εz̄(xa, 0)
1 + 2εz(xa, 0)

)kna
〈Φ(1)

n1 (x1) . . .Φ(N)
nN

(xN )〉 , (3.31)

respectively. These then have the infinitessimal forms
N∑
a=1

〈(
δMi+ + iknax

i
a

)(
Φ(a)
na (xa)

) ∏
b 6=a

Φ(b)
nb

(xb)
〉

= 0 ,

N∑
a=1

〈(
δK+ + iknax

i
ax

i
a

)(
Φ(a)
na (xa)

) ∏
b 6=a

Φ(b)
nb

(xb)
〉

= 0 . (3.32)

3.4 Local Ward-Takahashi identities

Having now seen that symmetry is restored in the quantum theory, in which Ward-Takahashi
identities are deformed in the presence of instanton operators, let us now present the much
more general local Ward-Takahashi identities. These will in particular determine the
corresponding Noether currents.
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We derive the identities following the standard procedure. We consider the variation
of correlation functions under a broader class of transformations, in which the su(1, 3)
variations are allowed to vary locally according to some function ε(x). Note however that
ε(x) must still be approximately constant in a neighbourhood of the points xa, to ensure
that the resulting transformations still map into the extended configuration space. Then,
taking the functional derivative with respect to ε(x) of the resulting expression, for each
G ∈ su(1, 3) we arrive at

− i
〈
WG(x)

N∏
a=1

Φ(a)
na (xa)

〉
= ?

N∑
a=1

δ(5)(x− xa)
〈
δGΦ(a)

na (xa)
∏
b 6=a

Φ(b)
nb

(xb)
〉
. (3.33)

Note, we have for simplicity restricted to operators Φ(a)
na that depend only on the fields

A,XI ,Ψ and not their derivatives. More generally, one would find additional terms one the
right-hand side of the form ∂ (contact term).

For G ∈ {P−, Pi, B,Cα, T}, the top forms WG are given by

WG = d ? JG , (3.34)

for Noether currents JG. Once again, the story is different for Mi+,K+, for which we find

WMi+ = d ? JMi+ + xi d

(
k

8π2 tr (F ∧ F )
)

= d ? JMi+ + k ?
N∑
a=1

nax
i
aδ

(5)(x− xa) , (3.35)

and

WK+ = d ? JK+ + xixi d

(
k

8π2 tr (F ∧ F )
)

= d ? JK+ + k ?
N∑
a=1

nax
i
ax

i
aδ

(5)(x− xa) . (3.36)

The explicit forms of the Noether currents JG can be found in appendix B.
It is natural then to reorganise terms in (3.33) for G = Mi+,K+, to bring the set of

Ward-Takahashi identities to a more familiar form. We have

− i d ?
〈
JG(x)

N∏
a=1

Φ(a)
na (xa)

〉
= ?

N∑
a=1

δ(5)(x− xa)
〈
δ̃GΦ(a)

na (xa)
∏
b 6=a

Φ(b)
nb

(xb)
〉
, (3.37)

where the new variations δ̃G act as

δ̃GΦn(x) = δGΦn(x) for G ∈ {P−, Pi, B, Cα, T} ,
δ̃Mi+Φn(x) = δMi+Φn(x) + iknxiΦn(x) ,
δ̃K+Φn(x) = δK+Φn(x) + iknxixiΦn(x) . (3.38)
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Then, by integrating (3.37) over R5 and taking suitable boundary conditions on S4
∞, we

recover the global Ward-Takahashi identities (3.29) and (3.32), written compactly in terms
of the δ̃G as

N∑
a=1

〈
δ̃GΦ(a)

na (xa)
∏
b 6=a

Φ(b)
nb

(xb)
〉

= 0 . (3.39)

Let us summarise our findings so far. The classical theory admitted an SU(1, 3) spacetime
symmetry in the absence of instanton insertions. The corresponding infinitesimal variation
of fields is denoted δG for each G ∈ su(1, 3), which form a representation of su(1, 3) when
acting on the gauge field A and matter fields XI ,Ψ. We extended this to include a variation
δP+ that acts trivially on all fields δP+ϕ = 0, and in this way realised the {δG} as a
representation of h, with brackets [δG1 , δG2 ] = δ[G1,G2] as in (2.4)–(2.6).

We found that this symmetry was broken in the classical theory in the presence of
instanton operators. However, this breaking is local to the instanton insertion points xa,
and thus the resulting Ward-Takahashi identities in the quantum theory could nonetheless
be written in the standard form (3.37) in terms of Noether currents JG. Integrating these
local identities over R5, we recovered the infinitesimal form of the global Ward-Takahashi
identities (3.29)–(3.32).

The Ward-Takahashi identities (3.37) are written not in terms of our original variations
δG, but instead in terms of variations δ̃G, which we have defined for each G ∈ B =
{P−, Pi, B,Cα, T,Mi+,K+}. In particular, they differ from the δG for G = Mi+,K+ when
acting on operators carrying non-zero instanton charge, as in (3.38).

We are then lead to ask: are the {δ̃G}G∈B the generators of a representation of su(1, 3)
under commutation, like the δG are? The answer is in fact no. In particular, we find a
single commutator that does not close on su(1, 3), which is

[δ̃Mi+ , δ̃Pj ]Φn(x) =
(
−1

2Ωij δ̃T − 2δij δ̃B + Ωikη
I
jkδ̃Cα − ik δijn

)
Φn(x) . (3.40)

Suppose however that we define a new variation δ̃P+ that acts as

δ̃P+Φn(x) = iknΦn(x) . (3.41)

Equivalently, we have that no fields in the theory are charged under δ̃P+ , but instanton
operators transform as δ̃P+I

{q}
n (x) = ikn I{q}n (x). Then, we have

[δ̃Mi+ , δ̃Pj ]Φn(x) =
(
−δij δ̃P+ −

1
2Ωij δ̃T − 2δij δ̃B + Ωikη

I
jkδ̃Cα

)
Φn(x) . (3.42)

Then, by direct comparison with the algebra (2.4), we find quite remarkably that the
full set of variations {δ̃G}B∪{P+} do generate a representation of h, with the operator Φn

now carrying charge ikn under δ̃P+ . In other words, the operator Φn carries Kaluza-Klein
momentum in an emergent sixth dimension.
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We can then organise our space of operators into primaries and descendants of h [17].
In particular, if Φn is a primary operator then we have

δ̃P+ (InΦ) = ikn(InΦ) ,
δ̃P− (InΦ) =−(P−)∂ (InΦ) ,
δ̃Pi (InΦ) =−(Pi)∂ (InΦ) ,
δ̃B (InΦ) =−(B)∂ (InΦ)−rΦ[B] (InΦ) ,
δ̃Cα (InΦ) =−(Cα)∂ (InΦ)−rΦ[Cα] (InΦ) ,
δ̃T (InΦ) =−(T )∂ (InΦ)−∆(InΦ) ,

δ̃Mi+ (InΦ) =−(Mi+)∂ (InΦ)−
(1

2∆Ωijx
j−iknxi+2xirΦ[B]−Ωikη

α
jkx

jrΦ[Cα]
)

(InΦ) ,

δ̃K+ (InΦ) =−(K+)∂ (InΦ)−
(
2∆x−−iknxixi+2xixirΦ[B]−xixjΩikη

α
jkrΦ[Cα]

)
(InΦ) ,

(3.43)

for scaling dimension ∆ and spin {rΦ[B], rΦ[Cα]}.
We can now extend the local Ward-Takahashi identity to read once again

− i d ?
〈
JG(x)

N∏
a=1

Φ(a)
na (xa)

〉
= ?

N∑
a=1

δ(5)(x− xa)
〈
δ̃GΦ(a)

na (xa)
∏
b 6=a

Φ(b)
nb

(xb)
〉
, (3.44)

which now holds for all G ∈ B ∪ {P+}, where we define

JP+ = − k

8π2 ? tr (F ∧ F ) . (3.45)

It is indeed straightforward to see that for G = P+, (3.44) is satisfied trivially. Further, (3.44)
holds for all G ∈ h with JG1+G2 = JG1 + JG2 and J[G1,G2] = δ̃G1JG2 − δ̃G2JG1 for all
G1, G2 ∈ h. Integrating over R5, we once again arrive at the global identities

N∑
a=1

〈
δ̃GΦ(a)

na (xa)
∏
b 6=a

Φ(b)
nb

(xb)
〉

= 0 , (3.46)

which hold for all G ∈ h. We can equivalently write this in its finite form, as〈
Φ(1)′
n1 (x1) . . .Φ(N)′

nN
(xN )

〉
=
〈

Φ(1)
n1 (x1) . . .Φ(N)

nN
(xN )

〉
, (3.47)

where in this expression, Φ′n(x) = exp(δ̃G)Φn(x). The explicit forms of these finitely-
transformed operators can be found in [22]. Using these forms, it is in particular straight-
forward to then see that (3.47) reproduces the results (3.28), (3.30) and (3.31).

3.5 General solution to Ward-Takahashi identities

The algebra h, its representations and the solutions of the resulting Ward-Takahashi
identities (3.46) have already been studied extensively [17]. Thus we can readily apply those
results here. For instance, if we consider a pair of scalar operators Φ(1)

n1 ,Φ
(2)
n2 of the theory
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with scaling dimensions ∆1,∆2 and instanton charge n1, n2, respectively, the resulting
2-point function is fixed up to an overall constant. It is given by

〈
Φ(1)
n1 (x1)Φ(2)

n2 (x2)
〉

= δ∆1,∆2δ0,n1+n2d(∆1, n1) 1
(z12z̄12)∆1/2

(
z12
z̄12

)n1

, (3.48)

for some constant d(∆1, n1), and z12 = z(x1, x2) = −z̄21 as defined in (3.12).
One can then continue to find the general solution at N -points. This takes a form

familiar from regular conformal field theory: a pre-factor which solves the inhomogeneous
Ward-Takahashi identities, multiplied by an undetermined function H of su(1, 3) invariant
combinations of coordinates. Explicitly, we have [17]

〈Φ(1)
n1 (x1) . . .Φ(N)

nN
(xN )〉

= δ0,n1+···+nN

 N∏
a<b

(zabz̄ab)−αab/2
(
zab
z̄ab

)(na−nb)/N
H ( |zab||zcd|

|zac||zbd|
,
zabzbczca
z̄abz̄bcz̄ca

)
, (3.49)

where zab = z(xa, xb). The constants αab = αba satisfy
∑
b 6=a αab = ∆a for each a = 1, . . . , N ,

and for a suitable choice of the function H can be taken to be

αab = 1
N − 2(∆a + ∆b)−

1
(N − 1)(N − 2)

N∑
a=1

∆a (3.50)

for all N ≥ 3.
The full set6 of su(1, 3)-invariant objects fall into two categories; the familiar cross-

ratios |zab||zcd|/|zac||zbd| of which there are N(N − 3)/2, and the more novel phases
zabzbczca/z̄abz̄bcz̄ca, of which there are (N − 1)(N − 2)/2. In particular, even at N = 3 there
is a single invariant phase, and thus in contrast to regular conformal field theory, the 3-point
function is fixed only up to a function of one variable.

3.6 The quantisation of k

A necessary requirement that the Lagrangian (2.1) gives rise to a well-defined quantum field
theory is that eiS[ϕ] is a single-valued functional on the theory’s configuration space. Such
a constraint can have deep and subtle implications, especially in a theory with non-trivial
topological sectors. Take for instance the three-dimensional Abelian Chern-Simons theory,
whose action SCS is not gauge invariant in the presence of monopole fluxes, and thus fails
to be single-valued on configuration space — defined to be the space of fields modulo gauge
transformations. Nonetheless, eiSCS remains single-valued even in the presence of monopole
fluxes, provided that the Chern-Simons level is quantised in the integers.

In this section, we will prove a comparable result for the theory defined by La-
grangian (2.1). In detail, we will prove the following claim:

Take the configuration space to be a union over sectors of arbitrary instanton
insertions. Then, a necessary condition such that eiS[ϕ] is single-valued on this
configuration space is that k ∈ 1

2Z.
6A proof that this list is exhaustive can be found in [22].
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Our proof is constructive, and in particular does not provide a complete picture of the
global properties of the action as a functional on configuration space.

Let us outline the steps taken to demonstrate the claim. We will first define a one-
parameter family of fields configurations ϕγ , γ ∈ R. In particular, we demonstrate explicitly
that this one-parameter family of configurations in fact defines a closed loop in configuration
space; in other words, it satisfies ϕγ+2π = ϕγ , and so in particular ϕ2π = ϕ0.

Next, we will compute an explicit expression for exp (iS[ϕγ ]) as a function of exp (iS[ϕ0]).
Using this, we find examples of closed loops such that

exp (iS[ϕ2π]) = e4πki exp (iS[ϕ0]) (3.51)

Thus, eiS[ϕ] is generically a multi-valued functional on configuration space. Note, the
construction of a loop satisfying (3.51) will necessarily require that the configurations ϕγ
have non-trivial instanton insertions, and thus this phase ambiguity only arises when we
allow for such non-trivial topological sectors. Hence, we find that for this particular loop in
configuration space, eiS[ϕ] is single-valued only for k ∈ 1

2Z, thus proving the claim.
So let us now explicitly construct the closed loop in configuration space. Note that we

have already computed the finite variation of the action under SU(1, 3) transformations, in
particular finding rather suggestive forms (3.13) and (3.15) for the transformations under
Mi+ and K+, respectively. As such, we can utilise these results — and thus simplify our
calculations here — by seeking a closed loop in configuration space that lies within the
SU(1, 3) orbits.

Let us then consider the following one-parameter family of SU(1, 3) elements,

h(γ) = exp
[
γ

(1
2K+ + P−

)]
. (3.52)

Making use of the expressions in appendix B of [15], one can show that if we take the
su(1, 3) generators to lie in the fundamental representation, then h(γ + 2π) = h(γ). Thus,
h(γ) defines closed loop in the fundamental representation of SU(1, 3), of period 2π.

Next we want to consider the finite transformation of coordinates and fields under
the SU(1, 3) transformation h(γ). Once again, we can make our lives easier by utilising
known results. First, we can use the Baker-Campbell-Hausdorff formula to show that for
all γ ∈ (−π/2, π/2),

h(γ) = exp
[1

2 (tan γ)K+

]
exp

[
(sin γ cos γ)P−

]
exp

[
log (sec γ)T

]
= exp

[
log (cos γ)T

]
exp

[
(sin γ cos γ)P−

]
exp

[1
2 (tan γ)K+

]
. (3.53)

Thus, we can compute the finite variation of coordinates and fields under h(γ) by performing
successive finite transformations under elements generated purely by T, P− and K+.
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First let us consider the coordinates, for which the finite transformations under eεT , eεP−
and eεK+ can be found in appendix A of [22]. Then, we find

(
xh−1(γ)

)−
=

cos 2γ x− − 1
2 sin 2γ

(
1−

(
(x−)2 + 1

16 |~x|
4
))

(cos γ + sin γ x−)2 + 1
16 sin2 γ |~x|4

(
xh−1(γ)

)i
=

cos γ xi + 1
4 sin γ

(
4x−xi − |~x|2Ωijx

j
)

(cos γ + sin γ x−)2 + 1
16 sin2 γ |~x|4

, (3.54)

which are valid for all γ ∈ R. Note then that we do indeed have xh−1(γ + 2π) = xh−1(γ),
and so in particular xh−1(2π) = x.

Let us now consider the orbits in configuration space generated by h(γ). We take some
starting configuration ϕ = {A,XI ,Ψ, Gij}, and then consider the new configuration h(γ)ϕ
obtained by transforming by the SU(1, 3) element h(γ). Explicitly,

h(γ)ϕ = {h(γ)A−, h(γ)Ai, h(γ)XI , h(γ)Ψ, h(γ)Gij} . (3.55)

The form of h(γ)ϕ is then found by exponentiating the known infinitesimal variation of
each field under (1

2δK+ + δP−), as given in appendix A. However, we should be cautious: it
is a priori not clear that we have h(γ + 2π)ϕ = h(γ)ϕ, as for instance fields may lie in a
projective representation of SU(1, 3).

It is straightforward to see that this is not the case for the gauge field A = (A−, Ai)
and scalars XI . For the gauge field, we can simply write down the form of the transformed
fields, which take the standard form

(h(γ)A−) (x) =
[
∂−
(
xh−1(γ)

)−]
A−

(
xh−1(γ)

)
+
[
∂−
(
xh−1(γ)

)i]
Ai
(
xh−1(γ)

)
(h(γ)Ai) (x) =

[
∂i
(
xh−1(γ)

)−]
A−

(
xh−1(γ)

)
+
[
∂i
(
xh−1(γ)

)j]
Aj
(
xh−1(γ)

)
. (3.56)

Then the 2π periodicity of xh(γ)−1 as seen in (3.54) ensures that we do indeed have
h(γ+ 2π)A = h(γ)A. Since our task is to exhibit a closed path in configuration space under
which the action is not invariant it is enough to set the scalars and Fermions to zero, since
if XI ,Ψ = 0 then h(γ)XI , h(γ)Ψ = 0 for all γ.

Finally, we need to address the Lagrange multiplier field Gij . As previously mentioned,
the infinitesimal variation of Gij under the generators of SU(1, 3) is somewhat subtle, and
in particular we do not know a closed form for its finite variation. However, we can work
around this issue in the following way. Our ultimate aim is to compute S[h(γ)ϕ] as a
function on S[ϕ]. Now recall, the Lagrangian (2.1) depends on Gij only through the term
GijFij = GijF+

ij , with F+
ij = 1

2

(
Fij + 1

2εijklFkl
)
. So let us suppose that the gauge field A

of our starting configuration ϕ satisfies F+
ij = 0, and thus S[ϕ] is independent of Gij . Then,

crucially, the constraint F+
ij = 0 is an SU(1, 3) invariant: for all g ∈ SU(1, 3), if A satisfies

F+
ij = 0 then so does the transformed field gA. Hence, we have that for all γ, S[h(γ)ϕ] is

independent of Gij .
Thus, making contact with the language of the above proof outline, let us define the

starting configuration ϕ0 = {A,XI = 0,Ψ = 0, Gij}, while the orbit in configuration space
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is defined to be

ϕγ = {h(γ)A,XI = 0,Ψ = 0, Gij} . (3.57)

In particular, we do not transform Gij . Then, we have already shown that ϕγ+2π = ϕγ
as desired.

Finally, we are ready to compute S[ϕγ ]. First note that, following the discussion above,
the fact that the configuration ϕ satisfies the constraint F+

ij = 0 ensures that we have
S[ϕγ ] = S[h(γ)ϕ]. We can then leverage the factorisation (3.53) along with the finite K+
transformation (3.15) to simply write down

exp
(
iS[ϕγ ]

)
= eiS[ϕ]

N∏
a=1

uγ(xa;na) , (3.58)

where

uγ(x;n) =
(cos γ − sin γ z̄(x, 0)

cos γ − sin γ z(x, 0)

)kn
, (3.59)

and the configuration ϕγ has instanton insertions {(xa, na)}Na=1. We remind the reader that
z(x1, x2) is defined in (3.12).

We can now ask what happens as we pass from γ = 0 through to γ = 2π. Then, for all
x = (x−, ~x) with ~x 6= ~0, we find that as we pass from γ = 0 to γ = 2π, the combination
(cos γ−sin γ z̄(x, 0)) encircles the origin of the complex plane clockwise precisely once. Thus,
we have

uγ+2π(x;n) = e4πkniuγ(x;n) . (3.60)

Conversely, if ~x = ~0, then uγ(x;n) = 1 for all γ, and thus trivially uγ+2π(x;n) = uγ(x;n).
Suppose first then that all instanton insertions {(xa, na)} of the starting configuration

ϕ lie away from the spatial origin, i.e. ~xa 6= ~0 for all a = 1, . . . , N . Then, we have

exp
(
iS[ϕ2π]

)
= exp

(
4πki

N∑
a=1

na

)
eiS[ϕ] = eiS[ϕ] , (3.61)

since ∑a na = 0. Something special happens, however, if any of the instanton insertions lie
at the spatial origin. In particular, taking a single insertion at the origin with charge −1,
we find

exp
(
iS[ϕ2π]

)
= e4πkieiS[ϕ] , (3.62)

as promised in the outline above. More generally, if the sum of the charges of all instanton
insertions at the origin ism ∈ Z, the relevant phase factor is e−4πkmi, and thus the above case
is in this sense minimal. Thus, from (3.62) we find that a necessary condition such that eiS[ϕ]

is single-valued on configuration space is that k takes values in the half-integers, k ∈ 1
2Z.

Next in section 4 we will require k ∈ Z in order that the theory admits a six-dimensional
interpretation. It is unclear whether any such novel interpretation holds when k ∈ {1

2 ,
3
2 , . . . }

or whether a more refined argument to the one above, perhaps by including fermions, can
be made to exclude these cases.
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4 Reconstructing six dimensions

We have seen that the five-dimensional path integral based on the Lagrangian (2.1) leads to
a theory with an SU(1, 3)×U(1) symmetry that acts non-trivially on a Kaluza-Klein-like
tower of operators obtained by inserting instantons. Furthermore the associated Ward-
Takahashi identities are naturally solved by the Fourier modes of a conformally compactified
six-dimensional conformal field theory with the role of Kaluza-Klein momentum replace by
instanton number. Thus we now would like to reconstruct the correlators of a six-dimensional
theory from the five-dimensional path integral.

Owing to the 2π interval over which x+ runs, such an interpretation requires the
eigenvalues of P+ to take discrete integer values [17]. This is indeed the case, so long as
k ∈ Z. Then, δ̃P+Φn(x) = iknΦn(x), which precisely identifies In(x)Φ(x) as the (kn)th

Fourier mode of some six-dimensional operator. In particular, a choice of k = 1 allows for
the realisation of the full spectrum of Fourier modes on the conformal compactification,
while higher k corresponds to a Zk orbifold thereof.

We can now form a coherent state of Fourier modes, and so define the notion of a
six-dimensional operator in our theory. We can then ask when such operators can be
interpreted as those of a six-dimensional conformal field theory.

4.1 Constructing six-dimensional observables

Given a collection of local operators {Φn(x)}n∈Z, we are lead to define six-dimensional
operator

O(x+, x−, xi) :=
∑
n∈Z

e−iknx
+Φn(x−, xi) , (4.1)

for some new coordinate x+. Then, we have

δ̃P+O(x+, x−, xi) = − ∂

∂x+O(x+, x−, xi) , (4.2)

and so P+ is identified as translations along an emergent sixth dimension.7
Indeed, it is straightforward to go a step further, and show that for generic G ∈ h, we

have δ̃GO(x) = −G6d
∂ O(x)− r6d(x)O(x), where as usual r6d acts on any indices of O, while

the six-dimensional vector fields G6d
∂ form precisely the algebra of conformal Killing vector

fields of six-dimensional Minkowski space which commute with (P+)6d
∂ = ∂+. Explicitly,

these are

(P+)6d
∂ = ∂+ ,

(P−)6d
∂ = ∂− ,

(Pi)6d
∂ = 1

2Ωijx
j∂−+∂i ,

(B)6d
∂ =−1

2 Ωijx
i∂j ,

7Note, the sign here is consistent with the convention used to define the δ̃G, since for instance we had
δ̃P−O(x) = −∂−O(x).
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(
CI
)6d

∂
= 1

2η
I
ijx

i∂j ,

(T )6d
∂ = 2x−∂−+xi∂i ,

(Mi+)6d
∂ =xi∂++

(1
2Ωijx

−xj− 1
8x

jxjxi
)
∂−+x−∂i+

1
4(2Ωikx

kxj+2Ωjkx
kxi−Ωijx

kxk)∂j ,

(K+)6d
∂ =xixi∂++

(
2(x−)2− 1

8(xixi)2
)
∂−+

(1
2Ωijx

jxkxk+2x−xi
)
∂i , (4.3)

as first derived in [15].
Let us finally review how one can reconstruct operators defined on six-dimensional

space with the standard Minkowski metric [17]. First, one must perform a Weyl rescaling
in order to arrive at operators Ô,

Ô(x) = cos∆̂(x+/2)O(x)

= cos∆̂(x+/2)
∑
n∈Z

e−iknx
+Φn(x−, xi) , (4.4)

where ∆̂ is the six-dimensional scaling dimension.8 The prefactor corresponds to the
non-trivial conformal factor relating the metric (2.3) to the Minkowski metric ds2

M, as
ds2 = cos2(x+/2)ds2

M.
One may then want to perform a coordinate transformation to standard coordinates

x̂ of six-dimensional Minkowski space, such that ds2
M = −2dx̂+dx̂− + dx̂idx̂i. These are

related to the (x+, x−, xi) by

x+ = 2 arctan
(
x̂+

2

)
,

x− = x̂− − x̂+x̂ix̂i

2 (4 + (x̂+)2) ,

xi =
4
(
x̂i + 1

2Ωij x̂
j x̂+

)
4 + (x̂+)2 . (4.5)

Let us consider for example a scalar operator Ô with six-dimensional scaling dimension
∆̂, for which this coordinate transformation is trivial. Following (4.1), this should be built
from modes Φn that are scalars of h, and which have Lifshitz scaling dimension ∆ = ∆̂.
Then, we can write9

Ô(x̂) = cos∆(x+/2)O(x)

= 2−∆
(
eix

+/2 + e−ix
+/2
)∆ ∑

n∈Z
e−iknx

+Φn(x−, xi)

= 2−∆ ∑
n∈Z

∆∑
l=0

(
∆
l

)
ei∆x

+/2−i(kn+l)x+Φn(x−, xi)

= 2−∆ ∑
n∈Z

∆∑
l=0

(
∆
l

)(
1 + ix̂+√
1 + (x̂+)2

)∆−2(kn+l)

Φn(x−(x̂), xi(x̂)) . (4.6)

8Note, in general the operator Ô constructed this way would not have definite eigenvalue under the
six-dimensional dilatation. However, this can be guaranteed by ensuring that the SU(1, 3) representations of
the Φn differ only by their charge under the central element P+.

9The binomial expansion from the second to third lines only holds for ∆ ∈ Z.
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Thus we have a way to construct six-dimensional operators out of five-dimensional ones. Fur-
thermore in principle we can compute their correlation functions using the five-dimensional
path integral viz.:

〈Ô(1)(x̂1) . . . Ô(N)(x̂N )〉 = cos∆1(x+
1 /2) . . . cos∆N (x+

N/2)
∑

n1,...,nN∈Z
e−ik(n1x

+
1 +...+nNx+

N )

× 〈Φ(1)
n1 (x−1 , xi1) . . .Φ(N)

nN
(x−N , x

i
N )〉 , (4.7)

again for six-dimensional scalars Ô(a) of scaling dimension ∆̂a = ∆a. A generalisation to
higher spin operators is conceptually straightforward, but we do not explore it here.

4.2 Topological Ward-Takahashi identities and the full conformal algebra

We have learnt that for k ∈ Z, the theory (2.1) is able to describe Fourier modes on the
x+ interval of momentum kn for any n ∈ Z. Such a mode Φn can in turn be in principle
constructed by dressing a local operator of the theory with an instanton operator of charge
n. Thus, for general k ∈ Z, we may propose that the theory is a six-dimensional conformal
field theory on the orbifold R1,5/Zk, where the Zk quotient acts on the x+ interval as
x+ → x+ + 2π/k. This leads to a rather curious orbifold in terms of the familiar six-
dimensional coordinates x̂. In general, such an orbifold breaks the full conformal algebra
so(2, 6) precisely down to h = su(1, 3) ⊕ u(1). We have shown that this is indeed the
symmetry obeyed by the theory.

Then something special must happen at k = 1, where there is no orbifold. In particular,
in this case the full six-dimensional conformal symmetry is not broken, and so the theory
should realise the full so(2, 6). We learn that a necessary condition for the theory (2.1) to
describe a six-dimensional conformal field theory is that its symmetries are further enhanced
at strong coupling (k = 1).

Let us briefly note that this enhancement is in some sense analagous with the ABJM
theory for M2-branes, where it is the R-symmetry (rather than the spacetime symmetry)
that is enhanced from su(4) ⊕ u(1) to so(8) at strong coupling. Further details of this
analogy can be found in [17, 22].

So let us fix k = 1. Our aim now is to explore how this symmetry enhancement should
happen. Once again, we will study the theory through the lens of correlation functions,
and in particular the partial differential equations they satisfy. But first, let us make some
comments on the use of five-dimensional operators Φn, which fall into representations of
h ⊂ so(2, 6), as building blocks in the realisation of so(2, 6) representations.

One can consider the action of so(2, 6) on a six-dimensional operator Ô, which is easily
translated to an action on the Weyl rescaled O. This operator is then in turn decomposed as

O(x+, x−, xi) =
∑
n∈Z

e−inx
+Φn(x−, xi) (4.8)

for Fourier modes Φn satisfying δ̃P+Φn = inΦn. The fact that the Fourier expansion breaks
so(2, 6)→ h = su(1, 3)⊕ u(1) is precisely the statement that it is only the subalgebra h of
infinitesimal transformations of O that act on each Fourier level independently; recall, h
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is simply the maximal subalgebra that commutes with P+. This is in contrast to the rest
of so(2, 6), which generically scramble up the Fourier modes. In other words, the Φn fall
into representations of h. As previously mentioned, when Ô is an so(2, 6) scalar primary
of scaling dimension ∆̂, one can show that under h, the Φn must transform precisely as
scalar primaries as defined with respect to h (i.e. r[B] = 0, r[Cα] = 0), with Lifshitz scaling
dimension ∆ under T given simply by the original six-dimensional scaling dimension, ∆ = ∆̂,
and of course P+ momentum n.

We then turn to the question of how to identify the modes Φn of a given operator O
we wish to reconstruct. The first task here is to deduce the required h representation of Φn

given the six-dimensional quantum numbers of O. This is conceptually straightforward, and
in some cases practically immediate too; for instance, a scalar primary in six-dimensions is
built of five-dimensional scalar primaries of h.

With this done, we must now look at the space of operators of the form Φn = I{q}n Φ,
where Φ is some composite of the fields ϕ, and classify them by their h representations. To do
so at general n is an open problem, which in a supersymmetric theory such as ours amounts
to determining which supermultiplet the instanton operator I{q}n lies in. As previously
mentioned, this has been solved in Lorentzian SU(Nc) theories only for n = ±1 [20], while
no results currently exist for non-Lorentzian theories such as ours. Thus, tackling this issue
is an important next step in our programme.

Supposing that we have successfully identified a class of five-dimensional operators in
the correct h representations, we would now like to derive some criteria by which we can
correctly organise them into a particular six-dimensional local operator. Thus, in the rest
of this section we will derive further conditions that must be satisfied by the correlators of
the Φn, which we expect to be crucial in identifying them precisely.

Note, our focus for the remainder of this section is on the reconstruction of local
operators in six dimensions. It is clear however that one can also in principle reconstruct
extended six-dimensional operators, including those extended along the x+ interval. Such
constructions — which will in particular be essential to the construction of defect operators
in six-dimensional CFTs — are left to future work.

So suppose that we think we have correctly identified in our theory the Fourier modes
Φ(a)
n of some six-dimensional scalar primaries Ô(a) of scaling dimension ∆̂a under the six-

dimensional dilatation. These Φ(a)
n are then necessarily scalars of h of Lifshitz dimension

∆a = ∆̂a, and so in turn will generically be some linear combination of dimension ∆a

scalar primaries of the form I{q}n Φ. We now want some purely five-dimensional criteria by
which we can check whether we’ve chosen the Φ(a)

n correctly. We know that the correlation
functions 〈Ô(1)Ô(2) . . . Ô(N)〉 satisfy the Ward-Takahashi identities of so(2, 6), while a priori
we have only so far shown that the five-dimensional correlators 〈Φ(1)

n1 Φ(2)
n2 . . .Φ

(N)
nN 〉 satisfy

those corresponding to the subalgebra h. The additional criteria that the Φ(a)
n must satisfy

is that the six-dimensional correlators they resum to satisfy the full set of so(2, 6) identities.
Let’s see how this works in practise.

Suppose then we take the six-dimensional Ward-Takahashi identity for some G ∈ so(2, 6)
that lies outside h. It is then conceptually straightforward to expand the Ô(a) in terms of
the Φ(a)

n , and thus determine the corresponding equations satisfied by the correlators of
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the Φ(a)
n . However, in contrast to identities (3.39) corresponding to elements of h, this new

identity will necessarily be a partial differential equation relating correlators with different
Fourier mode numbers. From the perspective of the five-dimensional theory, these are
non-trivial relations between correlators calculated in distinct topological sectors, and thus
we refer to such identities as topological Ward-Takahashi identities (TWTIs).

It is instructive to look at a particular example of some G ∈ so(2, 6) that lies outside h.
We consider the N -point function 〈Ô(1)Ô(2) . . . Ô(N)〉. We know that this N -point function
satisfies the Ward-Takahashi identities of so(2, 6), spanned by {P 6d

µ ,M6d
µν , D

6d,K6d
µ }, with

µ ∈ {+,−, i}. Let us focus on the six-dimensional dilatation D6d, which is not preserved by
the Fourier decomposition;10 in other words, D6d /∈ h. Our aim is to understand how the
invariance of the six-dimensional N -point function under D6d manifests in the correlators
of the Φ(a)

n .
Let us now denote by δDÔ(a) the infinitesimal variation of Ô(a) under D6d. Explicitly,

we have

δ̃DÔ(a)(x̂) = −D∂Ô(a)(x̂)−∆aÔ(a)(x̂) (4.9)

in terms of the vector field

D∂ = x̂+∂̂+ + x̂−∂̂− + x̂i∂̂i

= sin(x+)∂+ +
(
x− − 1

4 sin(x+)|~x|2
)
∂− + 1

2
((

1 + cos(x+)
)
xi + sin(x+)Ωijx

j
)
∂i .

(4.10)

The variation of the Fourier modes Φ(a)
n is then fixed by

δDÔ(a) = cos∆a

(
x+

2

)∑
n∈Z

e−inx
+
δDΦ(a)

n . (4.11)

Explicitly, we find

δDΦ(a)
n = −1

2 δ̃TΦ(a)
n −D−Φ(a)

n−1 −D+Φ(a)
n+1 , (4.12)

where we define

D+Φ(a)
n =

(
−1

2n+ 1
4∆a + i

8 |~x|
2∂− + 1

4x
i∂i −

i

4Ωijx
j∂i

)
Φ(a)
n

D−Φ(a)
n =

(
+1

2n+ 1
4∆a −

i

8 |~x|
2∂− + 1

4x
i∂i + i

4Ωijx
j∂i

)
Φ(a)
n , (4.13)

while we can read off δ̃TΦ(a)
n = δTΦ(a)

n from (3.43), as

δ̃TΦ(a)
n = −(T )∂Φ(a)

n −∆aΦ(a)
n . (4.14)

As expected, we see that variation under D6d /∈ h mixes the Fourier modes of Ô(a).
10The five-dimensional Lifshitz scaling T ∈ h is found as T = D6d −M6d

+−.
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So now let us consider the Ward-Takahashi identity for D6d, taking the form∑
a〈Ô(1) . . . δDÔ(a) . . . Ô(N)〉 = 0. Then, expanding in modes and further using the fact that
〈Φ(1)

n1 . . .Φ
(N)
nN 〉 is non-vanishing only for n1 + · · ·+nN = 0, we find that this Ward-Takahashi

identity for the Ô(a) is satisfied if and only if we have all of

N∑
a=1

〈
Φ(1)
n1 (x1) . . . δ̃TΦ(a)

na (xa) . . .Φ(N)
nN

(xN )
〉

= 0 , (4.15)

N∑
a=1

〈
Φ(1)
n1 (x1) . . .D−Φ(a)

na−1(xa) . . .Φ(N)
nN

(xN )
〉

= 0 , (4.16)

N∑
a=1

〈
Φ(1)
n1 (x1) . . .D+Φ(a)

na+1(xa) . . .Φ(N)
nN

(xN )
〉

= 0 , (4.17)

for all n1, . . . , nN = 1, . . . , N . Note, the first equation is trivially satisfied as a result of
the P+ Ward-Takahashi identity whenever n1 + · · ·+ nN 6= 0, while the following two are
similarly trivially satisfied whenever n1 + · · ·+ nN 6= ±1, respectively.

Now, (4.15) is simply the Ward-Takahashi identity for T ∈ h, which is satisfied by
correlators of the theory by virtue of the symmetries of the action, as we saw in section 3. In
contrast, (4.16) and (4.17) are new. They are our first explicit examples of TWTIs, as they
constitute a non-trivial relationship between correlation functions computed in different
topological sectors of the theory. Thus, in order to verify the symmetry enhancement
SU(1, 3)×U(1)→ SO(2, 6) at strong coupling, one must demonstrate that (4.16) and (4.17),
along with all other TWTIs arising from each of the other elements of so(2, 6) outside h,
are satisfied.

As we have seen, the two equations (4.16) and (4.17) descend from the D6d Ward-
Takahashi identity in six dimensions. It is hopefully evident that one can take identical
steps in order to derive further TWTIs that descend from other G ∈ so(2, 6) lying outside
h, although we do not explore such other generators in detail here.

To better illustrate our construction let us investigate the implications of (4.16)
and (4.17) at 2-points. Recall then, that the functional form of the five-dimensional
2-point function of scalar operators is entirely fixed purely by the WTIs for h to be

〈Φn(x1)Φ−n(x2)〉 = d(∆, n) 1
(z12z̄12)∆/2

(
z12
z̄12

)n
. (4.18)

where the Φn have Lifshitz scaling dimension ∆. Then, the TWTIs (4.16) and (4.17) are
satisfied precisely if the coefficients d(∆, n) satisfy(

n+ ∆
2

)
d(∆, n)−

(
n− ∆

2 + 1
)
d(∆, n+ 1) = 0 . (4.19)

Let us look in particular at the case ∆ ∈ 2Z. We then find the general solution

d(∆, n) = C+

(
n+ ∆

2 − 1
n− ∆

2

)
+ C−

(
−n+ ∆

2 − 1
−n− ∆

2

)
, (4.20)
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for some constants C+, C−, where we use the convention

(
α

n

)
=


α(α−1)...(α−n+1)

n! n > 0
1 n = 0
0 n < 0

. (4.21)

Thus, by imposing the TWTI for D6d, we have determined all of the coefficients d(∆, n) up
to the two free variables C+, C−.

Note however that the six-dimensional 2-point function to which these five-dimensional
correlators must resum depends on only a single overall normalisation. However, it turns
out that (4.20) provides the general solution to the full set of TWTIs. To understand
this, note that the additional degree of freedom arises because the five-dimensional 2-point
functions (4.18) are the Fourier modes of a Lorentzian six-dimensional 2-point function.
Crucially, such a 2-point function admits two different values — often parameterised by a
suitable iε prescription [17, 29] — depending on the ordering of the two operators. Then,
the first term in (4.20) corresponds to one choice of ordering, while the second corresponds
to the other.

The important point here is that Ward-Takahashi identities and their solutions are
blind to such an ordering, and so will produce most generally a linear combination of all
possible orderings. Instead, one must rely on the path integral formulation (3.19), or else
some other quantisation of the theory, to fix the ordering of operators. In particular if we
choose the ordering corresponding to C− = 0 then we find

〈Φn(x1)Φ−n(x2)〉 = C+

(
n+ ∆

2 − 1
n− ∆

2

)
1

(z12z̄12)∆/2

(
z12
z̄12

)n
. (4.22)

As a consistency check, we can then use this result to deduce the 2-point function of
the six-dimensional operator Ô = cos∆(x+/2)O, with O written in terms of the Φn as
in (4.8). As shown in [17], upon performing the sum over modes explicitly with suitable iε
regularisation, we find

〈
Ô(x̂1)Ô(x̂2)

〉
= (−4)−∆/2C+
|x̂1 − x̂2|2∆ , (4.23)

which is precisely the correct form for a scalar 2-point function of a six-dimensional conformal
field theory.

5 Conclusions and future directions

In this paper we have explored how the path integral based on five-dimensional Lagrangians
with an SU(1, 3) spacetime symmetry can be used to reconstruct correlation functions of a
six-dimensional conformal field theory. In particular we showed how by including non-trivial
instanton sectors into the theory the SU(1, 3) symmetry of the action is expanded into
SU(1, 3) × U(1) non-perturbatively. We also saw how instanton operators can be used
to construct towers of operators which can be identified with suitable Fourier modes of

– 30 –



J
H
E
P
0
2
(
2
0
2
2
)
1
5
1

six-dimensional operators. Furthermore we saw that once the instanton sectors are included
we must restrict the inverse coupling constant k ∈ 1

2Z, thereby removing any continuous
free parameters. We also explored how imposing the additional symmetries of SO(2, 6) that
are not present in the five-dimensional theory can be used to constrain the construction of
six-dimensional operators.

While still far from the complete story, we have found an encouraging correspondence
between, on one hand, results derived directly from six-dimensional correlators, and on
the other hand the allowed topological sectors of the five-dimensional theory (2.1). These
results support the claim that the path integral formulation (3.19) or some refinement
thereof will be successful in computing correlators in six-dimensional conformal field theory.

There are many outstanding issues to explore but let us highlight a few. It would
be interesting to extend the analysis of section 4.2 to other SO(2, 6) Ward-Takahashi
identities, and then importantly to extend the path integral methods of this paper to
demonstrate that this full set is indeed satisfied at strong coupling. Furthermore our
theories all enjoy significant supersymmetries which we have not exploited. In particular,
the 24 real supercharges realised by the Lagrangian (2.1) can be identified with the full
set of supercharges in the six-dimensional (2, 0) superconformal algebra that are preserved
under the x+ reduction [14], while generalisations with 12 supercharges corresponding to
(1, 0) superconformal symmetry are also known [16]. Related to this are BPS bounds and
superselection rules.

In addition it is clearly of interest to compute higher-point functions. In particular
4-point functions are not fixed by conformal symmetry and therefore encode non-trivial
six-dimensional dynamics. Computing these should in principle be possible using the path
integral methods we have described. Furthermore there has been great progress in the
use of localisation techniques to calculate exact results in supersymmetric field theories
in a variety of field theories. Our hope is that this can be applied to the Lagrangians
discussed here to obtain concrete results for six-dimensional conformal field theories such as
the enigmatic (2, 0) theory of M5-branes. In so doing we hope to open up a window into
the microscopic physics of M-theory.
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A su(1, 3) field variations

It is the norm in Lorentzian theories for the action to be written in a manifestly Lorentz-
invariant way, with the transformations of fields straightforward to write down. For our
theory and its su(1, 3) spacetime symmetry, we do not have this luxury. The transformations
of the fields of the theory can in principle be derived by trial and error. However, there
turns out to be an elegant and useful way to derive them from a diffeomorphism-invariant
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six-dimensional theory, to which the theory is subtly related. The full details of this
construction can be found in [15]. Here we state the results in a notation more useful for
this paper.

We consider a transformation generated by some G ∈ su(1, 3). Then, the components
of the gauge field transform in a standard way,

δGA− = −G∂A− −
(
∂−G

−
∂

)
A− −

(
∂−G

i
∂

)
Ai ,

δGAi = −G∂Ai −
(
∂iG

−
∂

)
A− −

(
∂iG

j
∂

)
Aj , (A.1)

i.e. as (minus) the Lie derivative along the vector field G∂ .
The scalar fields XI also transform under the usual Lie derivative for scalars, except

that they are also subject to a compensating Weyl rescaling for G ∈ {T,Mi+,K+}. This
Weyl factor is given by

ω := 1
4 ∂̂iG

i
∂ , (A.2)

which takes the values

G = T −→ ω = 1 ,

G = Mi+ −→ ω = 1
2Ωijx

j ,

G = K+ −→ ω = 2x− , (A.3)

while vanishing for the remaining generators. Then, we have

δGX
I = −G∂XI − 2ωXI . (A.4)

This is indeed entirely analogous to the familiar interpretation of usual conformal field
theory as a gauge fixing of a theory with both diffeomorphism and Weyl invariance. There,
like here, it is a coordinated combination of a diffeomorphism and Weyl rescaling which
leaves the metric invariant, and thus forms a symmetry of the gauge fixed theory.

For the fermions, we find

δGΨ = −G∂Ψ− 1
2ω (5 + Γ−+) Ψ + Ωij(∂̂jω)Γ+ΓiΨ + 1

4ΛijΓijΨ , (A.5)

where

Λij = (∂̂jGi∂)− ωδij = −Λji . (A.6)

Explicitly, we find that Λij = 0 for G ∈ {P−, Pi, T}, while for the remaining generators,

G = B −→ Λij = 1
2Ωij ,

G = Cα −→ Λij = −1
2η

I
ij ,

G = Mi+ −→ Λjk = 1
2
(
Ωjkx

i + Ωikx
j − Ωijx

k + δikΩjlx
l − δijΩklx

l
)
,

G = K+ −→ Λij = 1
2Ωijx

kxk + Ωikx
kxj − Ωjkx

kxi . (A.7)
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Then, when acting on the fields A,XI ,Ψ, we find that the {δG} with G ∈ B = {P−, Pi, B,
Cα, T,Mi+,K+} are precisely the generators of a representation of su(1, 3).

We finally come to the Lagrange multiplier field Gij , which arises in a more complicated
fashion from the six-dimensional proxy theory. We find

δGGij = −kα∂αGij − 4ωGij −
(
ΛmiGmj − ΛmjGmi

)
+ 2

(
Ωim(∂̂mω)F−j − Ωjm(∂̂mω)F−i + εijklΩkm(∂̂mω)F−l

)
. (A.8)

We note in particular that, in contrast the other fields, the algebra only closes on Gij on
the constraint surface F+ = 0. In particular, for each G1, G2 ∈ B we have [δG1 , δG2 ]Gij =
δ[G1,G2]Gij except for

[δMi+ , δMj+ ]Gkl = δ[Mi+,Mj+]Gkl + δ̄ijGkl ,

[δMi+ , δK+ ]Gjk = δ[Mi+,K+]Gjk + 2xlδ̄ilGjk , (A.9)

where

δ̄ijGkl = 2
(
δikF+

jl − δilF
+
jk − δjkF

+
il + δjlF+

ik

)
. (A.10)

A discussion of the origin of this extension to the algebra can be found in [22].
Note that we have Fklδ̄ijGkl = 0, which ensures that δ̄ is a symmetry of the Lagrangian.

Indeed, since Gij appears only algebraically in L, we have local symmetries ε(x)δ̄ for any
function ε(x), and thus we should think of δ̄ as generating an auxiliary gauge symmetry
which become trivial on the constraint surface.

Finally, note that under Lifshitz scalings as generated by T , we have

XI(x−, xi) −→ ω−2XI(ω−2x−, ω−1xi) ,
A−(x−, xi) −→ ω−2A−(ω−2x−, ω−1xi) ,
Ai(x−, xi) −→ ω−1XI(ω−2x−, ω−1xi) ,
Gij(x−, xi) −→ ω−4Gij(ω−2x−, ω−1xi) ,
Ψ+(x−, xi) −→ ω−3Ψ+(ω−2x−, ω−1xi) ,
Ψ−(x−, xi) −→ ω−2Ψ−(ω−2x−, ω−1xi) , (A.11)

where we denote by Ψ± the components of Ψ with definite chirality under Γ−+ = Γ05, so
that Γ−+Ψ± = ±Ψ±.

B Noether currents

The Noether currents JG for G ∈ B were first derived in [15], albeit without appreciation
for δ-function subtleties due to instanton insertions. We state them here, in a way more
consistent with the notation used in this paper. Note that we use JG to denote a vector
field and 1-form interchangeably, as the musical isomorphism with respect to the Euclidean
metric on R5 that relates them is trivial.
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Our expressions are written in terms of the Lagrangian,

L = k

4π2 tr
{ 1

2F−iF−i −
1
2∇iX

I∇iXI + 1
2FijGij

− i

2Ψ̄Γ+D−Ψ + i

2Ψ̄Γi∇iΨ−
1
2Ψ̄Γ+ΓI [XI ,Ψ]

}
. (B.1)

For G ∈ {P−, Pi, B,CI , T} we find

J−G = − (G∂)− L+ k

4π2 tr
[
−
(
F−i + 1

2Ωjkx
kGij

)
δGAi −

1
2Ωijx

j(D̂iX
I)δGXI

+ i

2Ψ̄
(

Γ+ + 1
2Ωijx

jΓi
)
δGΨ

]
J iG = −(G∂)iL+ k

4π2 tr
[(

F−i + 1
2Ωjkx

kGij

)
δGA− −Gij δGAj +

(
D̂iX

I) δGXI

− i

2Ψ̄ΓiδGΨ
]
.

(B.2)

Whereas for Mi+

J−Mi+
=
(
− k

8π2x
i ? tr (F ∧ F )

)−
− (Mi+)−∂ L

+ k

4π2 tr
[ 1

4x
iXIXI −

(
F−i + 1

2Ωjkx
kGij

)
δGAi

− 1
2Ωijx

j(D̂iX
I)δGXI + i

2Ψ̄
(

Γ+ + 1
2Ωijx

jΓi
)
δGΨ

]
J jMi+

=
(
− k

8π2x
i ? tr (F ∧ F )

)j
− (Mi+)j∂ L

+ k

4π2 tr
[ 1

2ΩijX
IXI +

(
F−i + 1

2Ωjkx
kGij

)
δGA−

−Gij δGAj +
(
D̂iX

I) δGXI − i

2Ψ̄ΓiδGΨ
]
, (B.3)

and K+

J−K+
=
(
− k

8π2x
ixi ? tr (F ∧ F )

)−
− (K+)−∂ L

+ k

4π2 tr
[ 1

2x
ixiXIXI −

(
F−i + 1

2Ωjkx
kGij

)
δGAi

− 1
2Ωijx

j(D̂iX
I)δGXI + i

2Ψ̄
(

Γ+ + 1
2Ωijx

jΓi
)
δGΨ

]
J iK+ =

(
− k

8π2x
jxj ? tr (F ∧ F )

)i
− (K+)i∂ L

+ k

4π2 tr
[

Ωijx
jXIXI +

(
F−i + 1

2Ωjkx
kGij

)
δGA−

−Gij δGAj +
(
D̂iX

I) δGXI − i

2Ψ̄ΓiδGΨ
]
. (B.4)
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