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ABSTRACT

Much of the progress made in time-domain astronomy is accomplished by relating observational multi-

wavelength time series data to models derived from our understanding of physical laws. This goal

is typically accomplished by dividing the task in two: collecting data (observing), and constructing

models to represent that data (theorizing). Owing to the natural tendency for specialization, a

disconnect can develop between the best available theories and the best available data, potentially

delaying advances in our understanding new classes of transients. We introduce MOSFiT: the Modular

Open-Source Fitter for Transients, a Python-based package that downloads transient datasets from

open online catalogs (e.g., the Open Supernova Catalog), generates Monte Carlo ensembles of semi-

analytical light curve fits to those datasets and their associated Bayesian parameter posteriors, and

optionally delivers the fitting results back to those same catalogs to make them available to the rest

of the community. MOSFiT is designed to help bridge the gap between observations and theory in

time-domain astronomy; in addition to making the application of existing models and creation of new

models as simple as possible, MOSFiT yields statistically robust predictions for transient characteristics,

with a standard output format that includes all the setup information necessary to reproduce a given

result. As large-scale surveys such as LSST discover entirely new classes of transients, tools such as

MOSFiT will be critical for enabling rapid comparison of models against data in statistically consistent,

reproducible, and scientifically beneficial ways.

Keywords: supernovae: general — methods: data analysis — methods: numerical — methods: sta-

tistical — catalogs

1. INTRODUCTION

The study of astrophysical transients provides a unique

opportunity to explore the interplay of physical laws for

states of matter that are not easily reproducible in Earth-

based laboratories. While the modeling of steady-state

systems can yield valuable information on physics un-

der fixed conditions, the dominance of different physical

processes at different times in a given transient’s evo-

lution means that tight constraints can be placed on

these processes by self-consistent modeling of their time-

dependent, observable features.

Transient characterization extends thousands of years

to the first supernovae observed in antiquity, and the

dataset has grown to be very rich in the past century at

the same time that astronomical methods have become

more rigorous. Over the past several decades, technol-

ogy for collecting time-domain data has changed from

predominantly photographic plates to charge-coupled de-
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vices, and the standards for characterizing the brightness

and color of transients has evolved in tandem. Some of

the best-characterized transients date from an era be-

fore cheap computation and storage became ubiquitous,

and are often not published with enough corresponding

information to enable robust reproduction of observed

data by models (information such as bandset, instru-

ment, and/or magnitude system employed for a given

observation). This means that the first step to modeling

a given transient may involve contacting several people

involved in the original study, a process which greatly

slows the rate of scientific exploration.

The complete collection of observed transient data by

astronomers has grown to a level that is easily charac-

terizable as “big data,” a feature that will become more

pronounced in the era of large-scale all-sky surveys that

will (in the case of LSST) yield ∼ 20 TB of imaging data

every day (Abell et al. 2009). The products that are

of interest for transient modeling (primarily photometry
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and spectra) is however very manageable, with the to-

tal dataset presently being . 10 GB in size (Guillochon

et al. 2017), small enough to fit comfortably on a mod-

ern smart phone. But while the total number of known

transients is expected to grow significantly in the com-

ing decade, the identity of many transients will likely

be difficult to determine given the limited spectroscopic

follow-up available to the community. This lack of iden-

tification and characterization can reduce the utility of

future surveys which have the potential to increase tran-

sient populations by orders of magnitude.

Open catalogs for astronomy (Rein 2012; Guillochon

et al. 2017; Auchettl et al. 2017) aim to address these

issues by agglomerating and crowd-sourcing data asso-

ciated with each transient from the original publica-

tions, private communications, and publicly available re-

sources. Such catalogs enable observers to easily compare

their data to previously published works, identify tran-

sients that are similar to transients in their own datasets,

and combine their own data on individual events with

that from other researchers.

But while the availability of time-domain data has im-

proved significantly, publicly accessible models of tran-

sients have remained elusive (we are aware of one other

service that offers conditional public access to supernova

models, SNAP, Bayless et al. 2017). Individual works

have focused on small subsets of data, offering descrip-

tions of either light curve shapes or distributions of phys-

ical parameters for a given set of transients, but the spe-

cific data products depend heavily on the scientific moti-

vations of the study in question. At present, reproducing

a given model often requires a complete rewrite of the

expressions presented by the original authors who put

forward the model, which means that successful models

are often times those that are simplest for others to im-

plement, as opposed to models that best reproduce the

observations.

Even in the cases where data are readily available, in-

completeness in how the data are presented or ingested

into catalogs can lead to the propagation of errors: for

example, no distinctions between upper limits and de-

tections, or misreporting of the magnitude system used

(AB or Vega). In such cases, applying a well understood

model, ideally calibrated against similar transients in the

literature, can help to flag up potential errors through

unrealistic model parameters or unexpectedly large resid-

uals between model and data. Therefore if models are

built to interact directly with transient catalogs, they al-

low us to use our physical insight about the system to

resolve issues of missing or incorrect metadata.

In this paper we present the Modular Open-Source

Fitter for Transients (MOSFiT), a Python-based package

released under the permissive MIT license that yields

publicly accessible and reproducible models of transients.

This paper is intended to be a descriptive guide of MOSFiT

and its capabilities upon its initial (version 1.0) release,

but for an up-to-date user guide of the code the reader

should consult the online documentation1. We note that

MOSFiT has already been used in the astronomical lit-

erature in at least three studies (Nicholl et al. 2017b,a;

Villar et al. 2017a).

In Section 2 we describe some of the concerns about re-

producibility in astronomy, and lay out the guiding prin-

ciples for the MOSFiT platform and how the code is de-

signed to make time-domain science fully reproducible.

Methods for inputting data into MOSFiT are described in

Section 3, whereas the process for defining models in the

code is described in Section 4. Products of the code, and

how users can share their results, are described in Sec-

tion 5. Assessing model performance is covered in Sec-

tion 6, concluding with a discussion of MOSFiT’s present-

day shortcomings and future directions in Section 7.

2. END-TO-END REPRODUCIBILITY

It is difficult to deny the massive impact the Inter-

net has had upon science, especially open science efforts.

Not only are scientific results immediately available via

a wide range of media, but the full chain of software

used to produce a scientific result is becoming increas-

ingly available, even to the point where the platforms

used to run a piece of scientific software can be repli-

cated by third parties via virtual machines (Morris et al.

2017). This trend solidifies scientific results by ensuring

that others can reproduce them (on a wide range of plat-

forms via continuous integration services), enables third

parties to identify possible problems in the software used

to produce a given result, and fosters follow-up studies

that may only require minor adjustments to an existent

software stack.

These trends toward open access data policies have be-

gun to take shape in the time-domain community, al-

though much remains to be done. For time-domain as-

tronomy, the issue of data access takes on a critical im-

portance as every transient is a unique event whose data

can only be collected once that will, at some level of detail,

differ from every other transient previously observed, a

situation that is far removed from laboratory-based ex-

periments where identical conditions can be tested re-

peatedly. Even if the transients themselves are almost

identical, the observing conditions will almost certainly

differ between transients.

For astronomy, a useful definition of a reproducible

experiment is the series of steps (pipelines) required to

convert raw observational inputs into scientifically-useful

data products. These pipelines can in principle be re-

run at a later date to ensure the data products were

1 http://mosfit.readthedocs.io/

http://mosfit.readthedocs.io/
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produced accurately, or to provide updated data prod-

ucts if the methods contained within the pipeline have

changed and/or more input data has become available in

the interim. As publications do not yet provide reposi-

tory hosting, the free hosting services offered by private

companies such as github has given viable options to ob-

servers wishing to share their pipelines (for a recent ex-

ample see Miller et al. 2017). Describing a transient with

a physical model can be viewed as one of the last steps

in such a pipeline: once the observational data products

have been produced, a piece of modeling software con-

sumes those products and produces higher-level products

of its own.

A complication is that the end-to-end pipeline, which

ideally would extend from raw photon counts/images to

physical parameter inferences, are distributed amongst a

finite number of scientific groups that exchange the data

to one another via scientific publications, private com-

munications, or public data repositories, with no con-

sensus on the best way to exchange such data (see Sec-

tion 5.1). Often times pieces of these pipelines are simply

not available to the wider community, making a result

reproducible only if all pieces of the pipeline are open

and/or cooperative. This issue is particular acute on the

modeling end of the pipeline, with off-the-shelf model-

ing software only being available for the most commonly

studied transients (e.g., SNooPy for Ia SNe, Burns et al.

2011).

While making source code for a project available is one

of the first steps towards enabling others to reproduce

your work (Baker 2016), true reproducibility across plat-

forms is difficult to achieve in practice, especially for com-

piled code where subtle differences in compiler behavior

can yield different outcomes (Colonna 1996), particularly

in chaotic systems (Rein & Tamayo 2017). While some

projects have undertaken heroic efforts to ensure bit-for-

bit consistency across a wide range of platforms (Pax-

ton et al. 2015), the required labor is often infeasible for

smaller projects.

For optimization and sampling where stochastic meth-

ods are employed, bit-for-bit reproducibility is less cru-

cial, as random variations on the initial conditions

should always converge to the same solution(s) anyway.

Stochastic methods offer no guarantee however that they

will converge in a finite time, particularly if they are

prone to getting stuck in local minima, and the users of

such methods should always be wary of this possibility.

The determination of when an algorithm has converged

to the solutions of highest likelihood can be bolstered by

repeated runs of the stochastic algorithm and/or metrics

for convergence that determine if the final distribution of

likelihood realizations are well-mixed (see Section 6).

2.1. Guiding principles and code design

Mindful of the issues mentioned above, the primary

goal of MOSFiT is to make analysis of transient data re-

producible and publicly available. The MOSFiT platform

has been written in Python, the most flexible choice at

present for open source astronomy projects given the

immense amount of development on astronomy-centric

packages such as astropy, astroquery, emcee, and

many others. Similar to the Open Supernova Catalog,

we constructed MOSFiT with a set of principles to guide

us when making various code design decisions. Our goals

for MOSFiT as a platform are:

1. To enable the rapid construction and modifica-

tion of semi-analytical models for transients such

that scientists can react swiftly to newly-discovered

transients and adjust their models accordingly (or

to construct entirely new models).

2. To make the ingestion of historical and contempo-

rary observational data as painless for the user as

possible, and minimizing the need for scientists to

scrape, annotate, and convert data into the proper

input form.

3. To provide fits of models to data that are assessed

by scoring metrics that are related to the total evi-

dence in favor of a given model (as opposed to sim-

ple goodness-of-fit tests), which have the potential

to be used for model comparison.

4. To execute those models in a computationally effi-

cient way that minimizes runtime and encourages

users to optimize critical pieces of code that are

likely shared by many models.

5. To provide predictions of the physical parameters

responsible for an observed transient (e.g., ejecta

mass or explosion energy) rather than shape pa-

rameters that are not simply relatable to physical

processes.

6. To distribute the work of modeling transients

amongst scientists and the public and enabling

sharing of their results to the broader community.

7. Finally, to enabling sharing of user fits to transients

that are publicly accessible on a rapid timescale,

potentially hours after a transient’s data is first

made available.

More succinctly, MOSFiT should be easy, adapt-

able, fast, accurate, transparent, and community-driven.

These goals are all served by making the platform open-

source, well-documented, modular, optimized, and con-

siderate of the astronomy software ecosystem both at

the present day and in the future. MOSFiT is intended to

be used by both observers and theorists, and so should
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Figure 1. Typical interactions of MOSFiT users with the Open Astronomy Catalogs and consumers of their data

products. In the above example, two MOSFiT users (#1 and #2) submit model fits for two different events (A and B)

to a model repository on github via MOSFiT’s upload feature. The data in the model repository is then absorbed by

the Open Astronomy Catalogs such as the OSC, which can then deliver event information to interested parties that

contains observational data, model fits to that data, and any parameters derived from the model fits. The primary

form of data exchange between various users and services are JSON files, displayed as light blue.

be useful to both parties; some should be able to use

MOSFiT as a development platform for constructing new

transient models, whereas others should simply be able to

use MOSFiT as a tool to match well-vetted models against

new transients.

3. DATA INPUT

The story of how a particular photometric dataset

makes its way from collection to publication differs on

where the data was collected, who reduced the data,

and how the data was presented. While any individ-

ual dataset is usually not too difficult to manipulate into

a proper input format for a given code, the process can

be extremely tedious if multiple datasets from multiple

sources need to be converted. MOSFiT aims to simplify

this process greatly by relying upon the Open Astronomy

Catalogs2 to provide sanitized, homogeneously formatted

data, which can be optionally supplemented by the user’s

own private data. The flow of data to and from the Open

Astronomy Catalogs is shown in Figure 1.

Our goal is to make the default choices of algorithms

employed by MOSFiT robust enough such that running a

model fit against new data has the best possible chance

of yielding an ensemble of model parameters that best

explain the data. While there are always likely to be

some transients where the data is not amenable to these

default choices, the platform should be expected to more

often than not return a meaningful result for a wide range

of possible inputs.

2 https://astrocats.space/

3.1. Using data from the Open Astronomy Catalogs

Public data can be accessed directly by name from the

command line using the data available in the Open As-

tronomy Catalogs. As an example, the following com-

mand will download all data for PS1-11ap and prompt

the user to choose a model to fit against it:

mosfit -e PS1-11ap

For the user, this eliminates a significant amount of

labor that might be involved in finding all the literature

on this particular transient, collecting the fittable data

from those sources, and combining the data into a com-

mon format. It also means that independent users will

have access to exactly the same data, which is not guar-

anteed in cases where the original authors need to be

contacted to acquire the data: the best available data

from the original authors may change after publication

as reductions are refined, either by the collection of bet-

ter subtraction data or improvements in the reduction

pipelines, meaning that supernova data is often not en-

tirely stable.

3.2. Using private data and arbitrary input formats

Ideally, part of the pipeline that processes data would

yield data in a common schema that does not vary be-

tween individual observers. A file’s format is one part

of this schema, but a format alone is not enough, as for-

mats do not specify key names or mandate which fields

https://astrocats.space/
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should be accompany a given type of data. The popular

FITS standard3 is an example of a format widely used

for its flexibility, with users appreciating the ability to

specify whatever data structure best suits their partic-

ular science need. But this flexibility comes at the cost

of reproducibility, with the schema of individual FITS

files often being poorly documented, making it difficult

to decipher the data presented in a given FITS file.

Part of MOSFiT’s purpose is to assist the mission of

converting the transient dataset, which is spread over

tens of thousands of differently-formatted ASCII and bi-

nary files, to a single schema, which is presently defined

by the Open Astronomy Catalogs4. While many of the

schema’s current properties have been decided in consul-

tation with a small group of testers, the schema is not

final and is intended to be modified in response to com-

munity feedback.

As a large fraction of the available data is not in this

format, a Converter class (not itself a module as it is not

required for model execution) is provided with MOSFiT

that will perform this conversion and feed the converted

data into the Transient module. This class has been

written to read ASCII data in a large number of com-

mon formats: delimited tables, fixed-width CDS format,

LaTeX tables, etc. As each table provided by a source is

likely to use its own style of data presentation, the con-

verter works through a series of logical steps to attempt

to infer the table’s structure, and then prompts the user

with a “choose your own adventure”-style questionnaire

to determine structure details that it could not determine

automatically. Once this conversion process is complete,

the data is converted to Open Catalog format and fed

into the Transient module.

As an example of the conversion process, consider

the following input file SN2017fake.txt in CSV format,

which presents observations in counts rather than mag-

nitudes:

time,counts,e_counts,band,telescope

54321.0,330,220,B,PS1

54322.0,1843,362,B,PS1

54323.0,2023,283,B,PS1

The user would pass the following command to MOSFiT

to begin the conversion process,

mosfit -e SN2017fake.txt

which would then ask the user a few additional ques-

tions about the dataset that are not discernible from

the input (e.g. “what is the source of data,” “what

instrument was used,” “what is the zero point of the

observations”). MOSFiT would then produce a new file,

SN2017fake.json, containing the data in OAC format:

3 https://fits.gsfc.nasa.gov/fits_documentation.html
4 https://github.com/astrocatalogs/schema

{

"SN2017fake":{

"name":"SN2017fake",

"sources":[

{

"bibcode":"2017FakeJ..123..45N",

"alias":"1"

}

],

"alias":[

{

"value":"SN2017fake",

"source":"1"

}

],

"photometry":[

{

"time":"54321.0",

"band":"B",

"countrate":"330",

"e_countrate":"220",

"e_upper_magnitude":"0.3125",

"magnitude":"22.95",

"telescope":"PS1",

"u_countrate":"sˆ-1",

"u_time":"MJD",

"upperlimit":true,

"upperlimitsigma":"3.0",

"zeropoint":"30.0",

"source":"1"

},

{

"time":"54322.0",

"band":"B",

"countrate":"1843",

"e_countrate":"362",

"e_lower_magnitude":"0.23725",

"e_upper_magnitude":"0.19475",

"magnitude":"21.836",

"telescope":"PS1",

"u_countrate":"sˆ-1",

"u_time":"MJD",

"zeropoint":"30.0",

"source":"1"

},

{

"time":"54323.0",

"band":"B",

"countrate":"2023",

"e_countrate":"283",

"e_lower_magnitude":"0.16375",

"e_upper_magnitude":"0.14225",

"magnitude":"21.735",

"telescope":"PS1",

https://fits.gsfc.nasa.gov/fits_documentation.html
https://github.com/astrocatalogs/schema
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"u_countrate":"sˆ-1",

"u_time":"MJD",

"zeropoint":"30.0",

"source":"1"

}

]

}

}

After conversion, the program will then ask the user

which model they would like to fit the event with out

of the list of available models. This file could now be

shared with any other users of MOSFiT and directly fitted

by them without having to redo the conversion process,

and can also optionally be uploaded to the Open Astron-

omy Catalogs for public use.

3.3. Associating observations with their appropriate

response functions

An important consideration when fitting a model to

data is the transformation between the photons received

on the detector and the numeric quantity reported by

the observer. This transformation involves convolving

the spectral energy distribution incident upon the detec-

tor with a response function; for photometry this func-

tion is a photometric filter with throughput ranging from

zero to one across a range of wavelengths. Ideally, the

filter would be denoted by specifying its letter designa-

tion (e.g., V-band), instrument (e.g., ACS), telescope

(e.g., Hubble), and photometric system (e.g., Vega), as

the response even for observations using a filter with the

same letter designation can differ significantly from ob-

servatory to observatory. Due to temporal variations in

Earth’s atmosphere, actual throughput can vary from

observation to observation even with all of these pieces

of information being known, but it is common practice
for observations to be corrected back to “standard” ob-

serving conditions before being presented.

Some transients may be observed by several telescopes,

each with their own unique set of filters that may or may

not be readily available. The Spanish Virtual Observa-

tory’s (SVO’s) filter profile service (Rodrigo et al. 2012)

goes a long way towards solving this issue by providing

a database of filter response functions5. MOSFiT inter-

faces directly with the SVO, pulling all filter response

functions from the service, with associations between the

functions available on the SVO and combinations of fil-

ter/instrument/telescope/system being defined in a filter

rules file. In cases where a given response function is not

available on the SVO, it is possible to locally define filters

with throughputs as a function of wavelength provided

as a separate ASCII File.

5 http://svo2.cab.inta-csic.es/theory/fps/

3.4. Fitting subsets of data

When fitting data it is often desirable to exclude cer-

tain portions of the dataset, for example to test that

compatible parameters are recovered when fitting against

different subsets of the data, or to exclude data that is

known to not be accounted for by a given model. These

exclusions can be performed in a number of simple ways

by the user via command-line arguments; the user can

limit the data fitted to a range of times, a select few

bands/instruments/photometric systems, and/or specific

sources in the literature. Alternatively, the user can ex-

clude data by manipulating the input JSON files them-

selves.

As described in Section 5.1, fitting against a selected

subset of the input data alters the data’s hash, meaning

that independent fits using the same model but differ-

ent subsets of the data will be regarded as being unique

upon upload. Only fits with identical model and data

hashes will be directly compared by the scoring metrics

described in Section 6.

4. DEFINING MODELS

Each model in MOSFiT is defined via two JSON files,

one that defines the model structure (model name.json,

hereafter the “model” file) and one that defines the pa-

rameters of the problem (parameters.json, hereafter

the “parameter” file). The model file defines how Python

modules interact with one another to read in transient

data and to produce model outputs, such as light curves

and likelihood scores that are used to evaluate models.

In this section, we describe generically how models are

constructed out of modules, then provide a brief synopsis

of the function of each of the built-in modules, and finally

present the models built into MOSFiT that are assembled

from these modules.

4.1. Optimal models: Constructing the call stack

The model file defines how all of the above modules

interact with one another, with each model accepting a

set of inputs and producing a set of outputs that may

be passed to other modules. When executing a model to

produce a desired output, many of the required compu-

tations may be useful for other outputs; as an example

to compute the photometry of a supernova requires one

to calculate the bolometric energy inputted by its power

source.

To ensure that no work is repeated, MOSFiT constructs

“call trees” (Figure 2) that define which modules need to

be chained together for a given output and generates a

flat “call stack” that determines the order those modules

should be processed, ensuring that each module is only

called once. If multiple outputs are desired, multiple call

stacks are constructed and combined into a single call

http://svo2.cab.inta-csic.es/theory/fps/
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Figure 2. Call trees for the (1.) likelihood and (2.) light curve functions of the superluminous supernova model as

defined by its JSON model files. The edges of the above graph show dependencies between the various modules (see

Section 4.2), which are marked here with arbitrary single letter labels. When constructing the JSON files for a model,

the user is responsible for specifying which modules depend on which, but is not responsible for the order in which

the modules are called; MOSFiT determines this order automatically, the results of which are shown in the combined

call stack (3.). This ensures that even if multiple modules depend on a single module (or vice-versa) that no module

is executed more than once.

stack, ensuring that a minimal amount of computation

time is expended in producing the outputs.

4.2. Built-in modules

For the optimization process above to be worthwhile,

the individual modules that comprise the model must

themselves be optimally written for speed and accu-

racy. This motivates development upon a core of built-in

MOSFiT modules that are general enough to be used in a

variety of transient models (this emulates the approach

in other sub-fields of astronomy such as cosmology, Zuntz

et al. 2015). Each module defines a single Python class

(which may inherit from another class) that performs a

particular function, and are grouped into subdirectories

within the modules directory depending on their pur-
pose. These groupings are:

• Arrays: Specialty data structures for storing vec-

tors and matrices that are used by other modules.

Examples include arrays designed to store times of

observation and the kernel used for Gaussian Pro-

cesses (see Section 6.2).

• Constraints: Penalizing factors applied to models

when combinations of parameters enter into disal-

lowed portions of parameter space. An example

constraint would be when the kinetic energy of a

supernova exceeds the total energy input up to that

time.

• Data: Modules that import data from external

sources. At present this grouping contains a sin-

gle Transient module that is used to read in data

provided in Open Astronomy Catalog format.

• Energetics: Transforms of the energetics into

other parameters of interest, for example the ve-

locity of the ejecta in a supernova.

• Engines: Energy injected by a physical process in

a given transient. Examples included the decay of

Nickel and Cobalt in a thermonuclear supernova,

or the fallback of debris onto a black hole following

the tidal disruption of a star.

• Objectives: Metrics used to score the perfor-

mance of a given model as matched to an observed

dataset. A typical choice is the “likelihood” of a

model, the probability density of the observed data

given the prediction of the model as a function of

the parameters (see Section 6).

• Observables: Mock observations associated with

a given transient that could be matched against

collected observations. Currently only photometry

is implemented, but in principle other observables

(such as spectra) can be compared to observed

data.

• Outputs: Processes model outputs for the purpose

of returning results to the user, writing to disk, or

uploading to the Open Astronomy Catalogs.

• Parameters: Defines free and fixed parameters,

their ranges, and functional form of their priors.

• Photospheres: Description of the surface of the

transient where the optical depth drops below unity

and will yield photons that will propagate to the

observer. These modules yield the broad properties

of the photosphere(s) of the transient.
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Table 1. Table of models currently available in MOSFiT.

Model name Description Applicable types Reference(s)

default Nickel-cobalt decay Ia, Ic, PISN, Ca-rich Nadyozhin (1994)

csm Interacting CSM-SNe SLSN-II, IIn, ILOT Chatzopoulos et al. (2013); Villar et al. (2017a)

csmni CSM + NiCo decay SLSN-II See default & csm

exppow Exponential rise, power law decay Any

ia NiCo decay + I-band feature Ia See default

ic NiCo decay + synchrotron Ic See default

magnetar Magnetar engine w/ simple SED SLSN-I Nicholl et al. (2017a)

magni Magentar + NiCo decay SLSN-I Nicholl et al. (2017a)

rprocess r-process decay Kilonova Metzger (2017); Villar et al. (2017a)

kilonova Multi-component r-process Kilonova Villar et al. (2017b)

slsn Magnetar + modified SED + constraints SLSN-I Nicholl et al. (2017a)

tde Tidal disruption events TDE Mockler et al. (2018)

• SEDs: Spectral energy distribution produced by a

given component. A simple blackbody is a common

assumption, but modified blackbodies and sums of

blackbodies, or SEDs built from template spectra,

can be yielded by these routines (at present, only

simple and modified blackbodies are implemented).

Extinction corrections from the host galaxy and the

Milky Way are also applied here.

• Transforms: Temporal transformations of other

functions of time yielded by a given component of

a transient (the central engine, an intermediate re-

processing zone, etc.), examples include reprocess-

ing of the input luminosity through photon diffu-

sion, or a viscous delay in the accretion of matter

onto a central black hole.

• Utilities: Miscellaneous operators that don’t fall

into the above categories. Examples include arith-

metic operations upon the outputs from multiple

input modules, which would be used for example

to sum the energetic inputs of a magnetar and the

decay of radioactive isotopes in a transient where

both sources of energy are important.

4.3. Built-in models

Using the modules described above, a number of tran-

sient models are constructed and included by default

with MOSFiT (see Table 1). While several of the mod-

els are good matches to the observed classes they rep-

resent and have been extensively tested against data,

speed considerations mandate that the models not be

overly complex, with simple one-zone models represent-

ing many of transients. Other models (such as the Ia

model) serve as placeholders that only reproduce a given

transient class’ basic properties, as specialty software ex-

ists for these transients that are superior to MOSFiT’s

model representations. For such transients it is likely

that leveraging the collection of spectra on the Open As-

tronomy Catalogs could yield better model matches, a

feature we expect to add in future versions of the code

(see Section 7.4).

4.4. Modifying and creating models

In Table 1, some of the models are combinations of two

models (e.g., csmni) or simple additions to an existing

model (e.g., ic). These models share much of the code

and setup of the parent models from which they inherit,

and indeed creating them often only involving proper

modification of the appropriate JSON file.

The first modification a user may wish to make is al-

tering the priors on the given free parameters of a model.

By modifying the prior class in the parameters JSON file,

a user for example might swap a flat prior in a parameter,

{

...

"vejecta":{

"min_value":5.0e3,

"max_value":2.0e4

},

...

}

for a Gaussian prior provided by a separate observation,

{

...

"vejecta":{

"min_value":5.0e3,

"max_value":2.0e4,

"class":"gaussian",

"mu":1.0e4,

"sigma":1.0e3

},

...

}

Next, a user might consider altering which modules are

executed in a given model, for example a user might wish
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to switch from a simple blackbody SED to a custom SED

that better describes a transient’s spectral properties (as

schematically shown in Figure 3). In this case, the user

swaps a module (or modules) in the call stack in the

model JSON file, in this example from a blackbody

{

...

"blackbody":{

"kind":"sed",

"inputs":[

"texplosion",

"redshift",

"densecore"

],

"requests":{

"band_wave_ranges": "photometry"

}

},

"losextinction":{

"kind":"sed",

"inputs":[

"blackbody",

"nhhost",

"rvhost",

"ebv"

],

"requests":{

"band_wave_ranges": "photometry"

}

},

...

}

to a custom SED function with a blackbody cutoff,

{

...

"blackbody_cutoff":{

"kind":"sed",

"inputs":[

"texplosion",

"redshift",

"temperature_floor",

"cutoff_wavelength"

],

"requests":{

"band_wave_ranges": "photometry"

}

},

"losextinction":{

"kind":"sed",

"inputs":[

"blackbody_cutoff",

"nhhost",

Model A (Superluminous supernova)

Transient 
data

Free 
parameters

Magnetar 
engine

Photon 
diffusion

Supernova 
photosphere

Spectrum

Photometry

Score

Priors

Extinction

Physics

Model B (Kilonova)

Transient 
data

Free 
parameters

r-process 
deposition

Photon 
diffusion

Kilonova 
photosphere

Spectrum

Photometry

Score

Priors

Extinction

Physics

Figure 3. Simplified schematic of two model trees con-

structed in MOSFiT (not all modules shown, see Fig-

ure 2 for an example of a full tree). The top model

(Model A) shows a collection of modules appropriate for

describing a superluminous supernova model, whereas

the bottom panel shows a model appropriate for a kilo-

nova, constructed by replacing modules in the superlumi-

nous model (replaced modules shown in orange). In the

schematic, green modules are inputs, blue modules pro-

cess data from inputs and other modules, red modules

are outputs, and the arrows connecting them indicate

data exchange.

"rvhost",

"ebv"

],

"requests":{

"band_wave_ranges": "photometry"

}

},

...

}

Note that in the above example the name of the mod-

ule and everything that calls it (in this case just the

losextinction module) was altered to accommodate

the new function.

Lastly, a user may find that none of the modules avail-

able presently in MOSFiT are adequate for their needs,
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for example if they wish to experiment with a new power

source for a transient, and will create new ones to ad-

dress them. In this case they can encode the required

physics in a new Python class in the appropriate group-

ing within the modules directory (see Section 4.3), and

add this module and its associated free parameters to the

two JSON files defining their model.

Writing new code for MOSFiT requires the most care

on the part of the user, as they must be mindful that

the sampling and optimization routines will always be

limited by the execution time of a single model realiza-

tion. The models that ship with MOSFiT are all compu-

tationally simple and have sub-second execution times;

more complicated models that may involve integrations

of systems of differential equations that may take min-

utes to execute per realization and thus will take that

much longer when run within the MOSFiT framework.

4.5. Making models available to the community

If a user wishes to share their model with a broader

audience, the proper way to do so is to fork the MOSFiT

project, add their model and any supporting code, and

submit that as a pull request. In general, it is the de-

sire of the authors of this work that models contributed

adhere to the following guidelines:

1. Parameters are preferred to be correspondent to

physical properties of the transient, i.e. parameters

like ejecta mass versus parameters like post-peak

magnitude decline rate, although non-physical pa-

rameters are sometimes appropriate for difficult-to-

describe phenomena such as spectral line features.

2. Permit broad priors on their input parameters that

remain physically reasonable to support the broad-

est range of transients possible. Ideally, models

should be capable of being applied to a broad range

of transients, many of which they may fit poorly,

and should extend beyond the present observed

range of phenomenology to accommodate newly

discovered extremal events. If a given combina-

tion of parameters is known to be unphysical, the

models should penalize those combinations via con-

straints (see Section 4.2) rather than via narrow

priors that might also excluded allowed portions of

parameter space.

3. Models should utilize as much of the pre-existing

modules as possible as opposed to creating their

own separate stack of modules that they depend

on. This reduces the number of unique points of

failure for individual models.

By following these guidelines, we hope that models can

be largely used “off the shelf” without modification by

the user, which means that a larger proportion of the

provided model fits will originate from the same unique

models that can be more directly compared, where model

uniqueness is assessed as described in Section 5.2. Exact

adherence to these guidelines is not mandatory, and we

are open to including models that may not fit exactly

into our preferred mold.

5. INTERPRETING OUTPUTS

The way data is ingested by a program is only half

of the way we interact with software, equally important

is the way that software outputs its data and the ways

that output can be used. In this section we describe some

of the features MOSFiT provides to make its outputs as

useful to the user as possible.

5.1. Sharing fits

As data reduction software evolves, and scientists move

between institutions, sometimes original data can slip

through the cracks. In order to preserve important re-

search products, it is critical that data be shared in a

way that it remains available indefinitely beyond its pro-

duction date. The sharing of observational transient data

has become increasingly common with public data repos-

itories provided by space agencies (e.g. MAST, ESO),

observing groups (e.g. the CfA, SNDB, Silverman et al.

2012), and third-party agglomerators (e.g. WISeREP,

the OSC, SNaX, Yaron & Gal-Yam 2012; Guillochon

et al. 2017; Ross & Dwarkadas 2017). But for models,

the means to share results is extremely haphazard, with

no standard mechanism for doing so.

In conjunction with the public release of the MOSFiT

software, the authors have extended the functionality of

the Open Astronomy Catalogs to accommodate model

fits. In addition to the observational data, the data pre-

sented on the Open Astronomy Catalogs now contain the

full model descriptions in MOSFiT’s model format, the pa-

rameter combinations associated with each Monte Carlo

realization, and light curves for all realizations, which

are visually accessible on each modeled event’s page as

shown in Figure 4. This data can be directly loaded by

the user back into MOSFiT, where the user can rapidly

reproduce the light curves with a different cadence, set

of photometric bands, or variations on the inferred pa-

rameters (see Section 7.3).

5.2. Model uniqueness

A model can only be expected to be exactly repro-

ducible if the code and data used to generate its output

is identical. Because observing groups tend to operate

independently from one another, the data fitted against

from group to group is different in its time and frequency

coverage, which can lead to different outcomes for pa-

rameter inferences and forward modeling. Differences in
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Figure 4. Screenshot of figure presented on individ-

ual event page for supernova LSQ12dlf (https://sne.

space/sne/LSQ12dlf/). The observed data, shown by

points, is displayed alongside Monte Carlo realizations

of the light curve produced by a MOSFiT slsn run pub-

lished in Nicholl et al. (2017a). A drop-down menu al-

lows the user to select and display other model fits to the

transient.

models used, even at the implementation level, such as

the way an integration is performed, can also lead to real

differences in outcome. Modest edits to model inputs

such as changing the bounding range for a free parame-

ter can also impact the score for a given model (or any

proxy for it such as the WAIC, see Section 6.3).

To ensure that users are comparing identical models

to one another, MOSFiT calculates three hashes for each

fit before it is uploaded to the Open Astronomy Cat-

alogs: a hash of the input data, a hash of the model

dictionary, and a hash of the Python code invoked by

that model. The hashes are generated by serializing the

JSON/Python files associated with the input/model/code

into strings, which are then passed to the sha512 al-

gorithm which generates the hash, of which the first 16

characters are stored. This means that any change to the

input/model/code will result in a different hash output,

which can be used to ensure that the same data and code

were used to analyze a given event. As a simple example,

consider the following event with a single observation,

{

"photometry":[

{

"time":"55123.0",

"magnitude":"13.63",

"band":"V"

}

]

}

which yields a hash value of 1612F22510D5A407. Now

assume that the photometry was later re-reduced and

the magnitude has changed,

{
"photometry":[

{
"time":"55123.0",

"magnitude":"13.47",

"band":"V"

}
]

}

this new data has a completely unique hash relative to

the first, 6B59BB401C31D86D. Together, these hashes help

to reassure the user that the data and the model used to

fit it are identical to what might have been produced by

other users, and prevent inadvertent cross-model com-

parisons. One remaining reproducibility concern that

these hashes do not address are changes to the external

packages that MOSFiT depends on, such as the outputs

of various SciPy routines that may vary with SciPy ver-

sion.

5.3. Choosing a Sampler and a Minimizer

The biggest issue in Monte Carlo approaches is con-

vergence; as these methods are stochastic, there is ab-

solutely no guarantee that they will ever find the best

solutions, nor properly describe the distributions of the

posteriors, in the time allotted to them. MOSFiT em-

braces a “grab-bag” approach of techniques to maximize

the chances of a converged solution.

Because the modeling in MOSFiT is geared towards

physical models of transients, as opposed to empirically-

driven models, the evaluation of even simplistic semi-

analytical models often requires the evaluation of mul-

tiple levels of non-algebraic expressions. Whereas

empirically-driven models are free to choose arbitrary

analytical constructions (e.g. spline fits, combinations

of power laws) that are easily differentiable, purely alge-

braic representations of physical models are not usually

possible. This means that any derivative expressions po-

tentially required by the sampler/minimizer need to be

constructed numerically. So long as the likelihood func-

tion is smooth and continuous, these derivative can be

approximated via finite differencing, but this is prone

to error that can make methods that assume certain

https://sne.space/sne/LSQ12dlf/
https://sne.space/sne/LSQ12dlf/
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constants of motion (e.g. Hamiltonian Monte Carlo,

HMC) to fail to converge to the true global minimum

and/or posterior (Betancourt 2017). The rewards how-

ever are great if one is able to construct one’s problem

into a framework where the derivatives can be calcu-

lated in such a way that derivatives are well-behaved (e.g.

Sanders et al. 2015b,a), which can yield performance that

scales impressively even for problems with thousands of

dimensions.

Unfortunately, little quantitative information can be

gained about the transients from empirically-derived

modeling alone without a concrete connection to the laws

of physics. Ensemble samplers, such as the Goodman

& Weare (2010) affine-invariance algorithm implemented

by emcee (Foreman-Mackey et al. 2013), do not require

any explicit derivative definition, and thus can be used in

situations where the derivatives are not easily evaluated,

and even in cases where a derivative is not even defin-

able, as is the case for discretized parameters. However,

it has been shown that such methods can take an exceed-

ingly long time to converge to simple, well-behaved pos-

terior functions if the number of dimensions m exceeds

∼ O(10) (Huijser et al. 2015). This makes the vanilla

emcee algorithm completely inappropriate for problems

with m � O(10), unless the function evaluations are

cheap enough to run for many thousands of steps. It

also suggests that caution should be exercised when inter-

preting posterior distributions generated by emcee when

fitting models with m & O(10).

So which sampler is appropriate for modeling tran-

sients? For modeling individual transients, the choice

is in favor of ensemble-based methods for their simplic-

ity and flexibility, as physical models of transients are

often able to successfully describe their bulk properties

and make useful quantitative predictions even with mod-

est m ∼ O(10), a regime where ensemble-based methods

can converge to the true posterior in a practical length

of time. For hierarchical modeling of transients (Mandel

et al. 2009, 2011; Sanders et al. 2015a), which can involve

thousands of free parameters, ensemble-based methods

are likely not appropriate unless they are used in con-

junction with other methods that improve their speed of

convergence.

5.4. MOSFiT’s approach

The algorithm MOSFiT uses to advance walker positions

is shown in Figure 5. In this first release, MOSFiT uses the

parallel-tempered version of emcee as its main driver. As

this algorithm has been shown to preserve detailed bal-

ance, it is the only method employed to advance walker

positions during the post-burn-in phase.

As the stretch-move suffers from slow convergence to

the true solution in reasonably high-dimension problems,

a pre-burn phase is performed that uses a variant of

emcee with a Gibbs-like stretch-move that does not pre-

serve detailed balance. Rather than stepping in all di-

mensions simultaneously, the Gibbs-like sampler at each

step selects a random number of dimensions D to vary,

where D ∈ [1 − N ], giving it more agility in the early

phases where it can be easy for the walkers to become

trapped in poor local minima. Once the pre-burn phase

is completed, the algorithm reverts to the vanilla ensem-

ble algorithm, the burn-in time of which has hopefully

been reduced by the pre-burn procedure.

6. ASSESSING MODEL PERFORMANCE

Goodness-of-fit can give us valuable information on a

transient’s properties: it can quantitatively assess which

combination of physical parameters reproduce a given

event, and it can suggest to us which model is best repre-

sentative of a given transient. In this section, we describe

three error models: χ2
red minimization, maximum likeli-

hood analysis, and Gaussian processes, all of which are

available in MOSFiT (Gaussian process being the default).

In much of the historical transient literature, goodness-

of-fit has been assessed by either least squares (in cases

where measurement errors are not known) or the reduced

chi-square metric, χ2
red ≡ χ2/Ndof , where

χ2 =

o∑
i=1

x2i
σ2
i

, (1)

with xi ≡ Oi−Mi is the difference between the ith obser-

vation Oi and model prediction Mi(θ) respectively (θ be-

ing the free parameters), σi is the normal error of the ith

observation (for reference, least squares would set σi = 1,

i.e. observational errors are ignored), Ndof = o − m is

the degrees of freedom, o is the number of observations,

and m is the number of free parameters in the model.

Because of its simplicity, χ2
red has been a favored met-

ric when comparing models to one another. But there is

danger in its simplicity: it assumes that the errors are

best represented by Gaussian distributions of uncorre-

lated noise, an assumption that is likely untrue for ob-

servations in magnitude space and is especially inappro-

priate for quantifying model errors, which are dominated

by systematics. If the best possible model match yields

a χ2
red � 1, the transient is said to be underfitted by

the model, suggesting that the model is incomplete, the

errors in the data underestimated, or that the transient

in question is better represented by different model. If

the best possible match yields χ2
red � 1, that particular

match is overfitted, suggesting the model has parame-

ters that tune the model outputs but are not necessarily

meaningful (e.g., an ad-hoc magnitude offset parameter),

or that the errors in the data are overestimated, a less

likely scenario than an underestimate given many diffi-

cult to quantify sources of error.
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4. Replace
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Figure 5. Schematic representation of the algorithm in MOSFiT for determining the parameter posterior distributions,

where the cyan-colored regions indicate probability density of the likelihood function and the white circles represent

walker positions. In a primary “pre-burn” phase, individual parameter combinations (“walkers”) are evolved using a

Gibbs-like variant of the affine-invariant algorithm of Goodman & Weare (2010) (Step 1), with walkers being selected

(Step 2) periodically for optimization using SciPy’s global optimizers (Step 3), the results of which are substituted

back into the walker ensemble (Step 4). This process is repeated (Step 5) for a predetermined number of cycles,

after which the ensemble is evolved using the vanilla affine-invariant MCMC to ensure detailed balance (Step 6).

Convergence is continuously checked using the Gelman-Rubin statistic (PSRF), which once satisfied triggers the

collection of uncorrelated samples over the MC chain (Step 7), with sample frequency determined by the autocorrelation

time.

Under the assumption that the simple error model

adopted is correct, χ2
red can be directly compared be-

tween models (or different realizations of the same

model), and all models with χ2
red . 1 are acceptable

matches to a given transient. This means that even for

different parameter combinations of the same model that

there is no one “best” fit to a transient, and that all fits

of comparable score should be presented alongside one

another to gauge a model’s performance, with the fre-

quency of a given combination depending on its likeli-

hood: a Bayesian analysis. By considering all parameter

combinations that are capable of matching a sequence

of observations within a prescribed tolerance, parameter

degeneracies can be identified by examining the resulting

posteriors. These degeneracies can be used as a tool to

determine how a model could potentially be improved: as

an example, a hypothetical supernova model that finds

that the progenitor mass and explosion energy parame-

ters are strongly correlated would likely benefit from an

improvement to the model, such as a more-detailed cal-

culation of ejecta velocity based upon the star’s radial

density profile.

So how does one select between two physically different

models if both can yield model fits with χ2
red . 1? One

heuristic approach that has been frequently employed is

to favor the model with the lowest χ2
red, as it has the

most tolerance to future changes to a model and/or data.

But, under a Bayesian interpretation (with a suitably flat

prior), the parameters associated with the fits of mini-

mal χ2
red belong to the region of parameter space for a

given model with the highest posterior probability den-

sity, even if that region of parameter space is infinitesi-

mally small. What is desired is actually the region oc-

cupied by the majority of the probabilistic mass, which

may span a much wider range of parameter combinations.

Given that errors in model and data are likely underes-

timated, even fits that yield “poor” χ2
red could still cor-

respond to reality, a feature that must be marginalized

over to correctly infer a transient’s parameters.

6.1. Identifying plausible matches

A better solution than identifying a single best fit is

for the scientist to map all parameter combinations that

yield plausible fits to their data. Once this map is com-

pleted, the information content of the maps of multi-

ple models can be compared using agreed-upon met-

rics. In a Bayesian analysis, we identify all parame-

ter combinations according to their posterior probability,

p(θ|O) ∝ p(O|θ)p(θ) (where p(θ) is the prior), rather

than finding a single “best-fit” solution by minimizing

the χ2 or maximizing the likelihood p(O|θ).

One can perform a Bayesian analysis using reported

measurement errors alone, in which case the likelihood

is p(O|θ) ∝ exp(−χ2/2). However, when the mini-

mum χ2
red � 1, suggesting underestimated uncertain-

ties, it is common to adopt an error model in which an

additional variance σ2 is added to all measurement er-

rors, representing an additional source of “white noise.”

With this error model, the log likelihood is p(O|θ) =
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∑n
i=1 P (Oi|θ), where the likelihood of a single datum is

log p(O|θ) = −1

2

n∑
i=1

[
x2i

σ2 + σ2
i

+ log 2π
(
σ2 + σ2

i

)]
(2)

where σ2 is now included within the parameter vector θ.

Because the additional variance σ2 enters into both terms

for log p, increasing its value both improves and penal-

izes the score, resulting in a balance where the variance

yielded by Bayesian analysis is the additional error re-

quired to match the given model to the transient with

χ2
red ' 1. Setting σ = 0 recovers a pure χ2

red mini-

mization (Equation (1)) in MOSFiT, which can be accom-

plished via the command line (-F variance 0).

Is the source of this additional error from the observa-

tions, or from the model, or both? Equation (2) assumes

the additional error is normally distributed about the

measurements and/or model (the additional errors could

be viewed as coming from either, or both), a situation

which could arise if, for example, the measurements have

overestimated signal to noise ratios. For transient obser-

vations, typical errors on measurements can vary wildly,

with e.g. the best photometric measurements yielding

errors at the millimag level. Aside from faint detections

near the detection limit of a given instrument, the signal

to noise of such observations is typically well estimated,

and thus a major underestimate of normally distributed

errors is unlikely. As photometry is performed relative

to a set of standard stars, any additional error on top of

the reported stochastic error is more likely to be system-

atic, and is less often estimated and/or presented in the

literature.

For semi-analytical models without a stochastic com-

ponent, predictions can be exact to numerical precision,

and thus all model errors are systematic and depend

upon the level of accuracy prescribed by the computa-

tion. This means that errors in a repeated measurement

(say, observing a transient with a B-band filter) are likely

to be strongly correlated over some timescale, and also

correlated depending on the similarity of two observa-

tions collected at the same time (e.g., the error in si-

multaneous B- and g-band observations are likely to be

strongly correlated). This serial correlation means that

the additional error introduced by a model is poorly rep-

resented by an additional error term that is normally

distributed about the model mean. An error model that

is more representative of serially correlated errors is thus

desirable.

6.2. Gaussian processes

Error models that have become recent favorites are

Gaussian processes, described in depth in Rasmussen

& Williams (2006). Gaussian processes are a non-

parametric method for fitting functions, and have broad

utility in their ability to provide continuous approxima-

tions to time-series data, regardless of the underlying

complexity. This makes them more amendable to so-

lutions where the model and data can be different in a

wider variety of ways, permitting wider deviance at par-

ticular times and/or particular frequencies along a given

transient light curve. Gaussian processes are the default

error model used in all of the transient models included

with MOSFiT.

Gaussian processes describe the error using a covari-

ance matrix K which contains entries Kij that are pop-

ulated by evaluating the kernel function for every pair

of observed input coordinates i and j, from which the

likelihood is computed via the expression

log p(O|θ) = −1

2
xTK−1

ij x− 1

2
log |Kij | −

n

2
log 2π, (3)

where x is the vector of differences between model pre-

dictions and observation. Note that Equation (3) reduces

to Equation (2) if the off-diagonal terms in Kij are set to

zero. A shortcut exists within MOSFiT to zero out the off-

diagonal terms via the command line (-F covariance).

In MOSFiT the default kernel function is the squared

exponential, which is defined by two lengthscales lt and

lλ, corresponding to the time between observations and

the difference in average wavelength between the filters

used in those observations. With the difference in time

lt,ij = ti − tj and average wavelength lλ,ij = λ̄i − λ̄j
between pairs of observations, the covariance matrix re-

sulting from the application of this kernel is

Kij = σ2Kij,tKij,λ + σ2
i δij (4)

Kij,t = exp

(
−
l2t,ij
2l2t

)
(5)

Kij,λ = exp

(
−
l2λ,ij
2l2λ

)
(6)

where σ2 is the extra variance (analogous to the variance

in Equation (2)), σi is the observation error of the ith

observation, t is the time of observation, and λ is the

mean wavelength of the observed band. The kernel is

customizable by the user via the Kernel class, but we

have found that this particular functional form works

well for photometric time series. In the limit of lt and

lλ approaching zero, the GP likelihood becomes identical

to the simpler error model of Equation (2).

If a transient is poorly constrained, e.g. the number

of observations is comparable to the number of model

parameters, a bimodal distribution of solutions can be

returned, where some of proposed solutions are “model-

dominated”, and some solutions are “noise-dominated,”

where the entirety of the time evolution of a given tran-

sient is purely explained by random variation (see Sec-

tion 5.4.1 and Figure 5.5 of Rasmussen & Williams
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2006)6. In such instances, the lengthscales will typically

settle on values comparable to their upper bounds, which

gives the noisy solution the latitude necessary to fit all

variation over a transient’s full duration while still scor-

ing relatively well. These noise-dominated solutions can

often be fixated upon by the optimizer, as the average

brightness of a transient can be achieved through a wide

combination of physical parameters plus a long kernel

length scale. In some cases the noise-dominated solution

can actually perform better than a physical model; this

is highly suggestive that the physical model used is not

appropriate for a given transient.

6.3. Measure of total evidence for a model

In order to evaluate the total evidence of a model with

m free parameters, an m-dimensional integral must be

performed over the full parameter space where the local

likelihood is evaluated at every position. Unless the like-

lihood function is analytic and separable, such an inte-

gration is usually impossible to perform exactly, and can

be prohibitive numerically without computationally eco-

nomical sampling (e.g., nested sampling, Skilling 2004) or

approximations (e.g., variation inference, Roberts et al.

2013).

In ensemble Monte Carlo methods like the one em-

ployed by emcee, entire regions of the parameter space

may remain completely unexplored, particularly if those

regions have a low posterior density as compared to the

region surrounding the global maximum. This means

that the likelihood scores returned by the algorithm at

individual walker locations cannot simply be added to-

gether to determine the evidence for a model.

Instead, heuristic metrics or “information criteria”

that correlate with the actual evidence can be used to

evaluate models. These criteria typically relate the dis-

tribution of likelihood scores to the overall evidence of

a model, an indication of the fractional volume occu-

pied by the ensemble of walkers. While multiple vari-

ants of the criteria exist, a simple one to implement is

the “Watanabe-Akaike information criteria” (Watanabe

2010; Gelman et al. 2014) or “widely applicable Bayesian

criteria” (WAIC), defined as

WAIC = log p(O|θ)− v̂ar [log p(O|θ)] (7)

where ¯p(O|θ) is the posterior sample mean of the like-

lihood, and v̂ar[log p(O|θ)] is the posterior sample vari-

ance of the log likelihood, using samples from the ensem-

ble7.

6.4. Convergence

6 see also http://scikit-learn.org/stable/modules/
gaussian_process.html

7 Note this differs by a factor -1 from Watanabe (2010)’s original
definition.

To be confident that a Monte Carlo algorithm has con-

verged stably to the right solution, a convergence metric

should be evaluated (and satisfied) before the evolution

of a chain terminates. For ensemble-based approaches,

the autocorrelation time has been suggested as a way

to assess whether or not convergence has been achieved

(Foreman-Mackey et al. 2013), and running beyond this

time is a way to collect additional uncorrelated samples

for the purpose of better resolving parameter posteriors.

Ideally, a metric should inform the user how far away

they are from convergence in addition to letting the user

know when convergence has been achieved. In our test-

ing, the autocorrelation time algorithm that ships with

emcee (acor) is susceptible to a number of edge cases

that prevent it from executing successfully, which pro-

vides the user with no information as to how close/far

they are from reaching a converged state.

Instead of using this metric, we instead rely upon the

“potential scale reduction factor” (PSRF, signified with

R̂), also known as the Gelman-Rubin statistic (Gelman

& Rubin 1992), which measures how well-mixed a set of

chains is over its evolution,

R̂ =
N + 1

N

σ̂2
+

W
− L− 1

NL
(8)

σ̂2
+ =

L− 1

L
W +

B

L
(9)

B

L
=

1

N − 1

N∑
j=1

(
θ̄j. − θ̄..

)2
(10)

W =
1

N(L− 1)

N∑
j=1

L∑
t=1

(
θjt − θ̄j.

)2
, (11)

where N is the number of walker chains, L is the length

of the chain, θjt is the tth value of a parameter in the jth

chain, θ̄j. is its sample mean in the jth chain, θ̄.. is its

global sample mean over all chains, B/L is the between-

chain variance, and W is the within-chain variance. To

calculate the PSRF for our multi-parameter models, we

use the maximum of the PSRFs computed for each pa-

rameter, meaning our performance is gauged by the pa-

rameter with the slowest convergence. As described in

Brooks & Gelman (1998), a PSRF of 1.1 strongly sug-

gests that the Monte Carlo chain has converged to the

target distribution; we use this value as MOSFiT’s default

when running until convergence using the -R flag. Run-

ning until convergence only guarantees that a single sam-

pling (with size equal to N) can be performed, users who

wish to produce more samples should use more chains or

run beyond the time of convergence.

The primary advantage of the PSRF over the auto-

correlation time is it is always computable, which gives

the user some sense on how close a given run is to be-

ing converged. In some instances, in particular if two

http://scikit-learn.org/stable/modules/gaussian_process.html
http://scikit-learn.org/stable/modules/gaussian_process.html
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separate groups of walker chains are widely separated in

parameter space, the PSRF may never reach the target

value, this usually suggests the solution is multimodal

and larger numbers of walkers should be used.

7. DISCUSSION

7.1. Stress Testing

With a standardized data format for transient data,

MOSFiT should be capable of yielding fits to any event

provided in the Open Catalog format. To test this, we

ran MOSFiT against the full list of SNe available on the

Open Supernova Catalog with 5+ photometric measure-

ments (∼ 16,000 SNe), and found that the code produced

fits for all events without error. This demonstrated that

MOSFiT is robust despite the broad heterogeneity of the

dataset, with the full list of SNe being composed of data

constructed from observations collected from hundreds

of different instruments.

7.2. Performance

Parameter inference where the number of parameters

exceeds a few can be an expensive task, particularly when

the objective function itself is expensive. In our testing,

a few ten thousand iterations of emcee are typically re-

quired to produce posterior distributions in a converged

state about the global maximum in likelihood space, with

roughly ten times as many walkers as free parameters

being recommended. As the models currently shipping

with MOSFiT are mostly single-zone models with rela-

tively cheap array operations, such runs can take any-

where from a few hours (for events with dozens of detec-

tions) to a few days (thousands of detections), with the

wall time being reducible by running MOSFiT in parallel.

This performance is reasonable and comparable to sim-

ilar Monte Carlo codes, but improvements to the core

modules such as rewriting them in a compiled language

could bring further performance improvements.

7.3. Synthetic Photometry

Once the ensembles of possible parameters have been

determined for a given model, MOSFiT enables the user to

generate synthetic photometric observations for any in-

strument/band combination (Figure 6). In cases where

a particular transient is not being modeled, a user may

wish to generate these synthetic observations from a rea-

sonable set of priors on the physical parameters, which

could then be used to produce mock observations of pop-

ulations of various transients, as is done in Villar et al.

(2017a).

Alternatively, a user may wish to instead generate a

light curve based upon the results of a MOSFiT run. This

might be done if a user wants to supplement the model

outputs with additional data perhaps not provided by the

group that ran the original fit, such as the brightness in a

particular band at a different set of epochs. If the model

parameters and code are available, either via the Open

Astronomy Catalogs or private exchange, the dataset can

be loaded directly into MOSFiT via the -w flag, which

loads data from a previous MOSFiT run,

mosfit -e LSQ12dlf -w previous_run.json -i 0

where the -i 0 flag tells MOSFiT to regenerate its out-

puts without evolving the walker positions. Adding to

this command a few additional flags (such as the -S flag,

which adds more epochs between the first/last observa-

tion, or the -E flag, which extrapolates a number of days

before/after the transient) permits the user to customize

its output to their needs.

7.4. Future versions

While MOSFiT already implements many features re-

quired of a code that ingests, processes, and produces

transient data, there are several potential areas of im-

provement to the code that would further enhance its

utility. Below, we present our feature wish-list for future

releases.

7.4.1. Flux and magnitude model matching

A majority of the transient literature, based on histor-

ical precedent, presents observations in the form of mag-

nitudes as opposed to fluxes. While magnitudes have

the advantage of being a logarithmic scale which can

better display multiple orders of magnitude of evolution

in brightness, the errors in magnitude space are asym-

metric and non-Gaussian, especially as the observations

approach the low signal-to-noise flux limit. For simplic-

ity, MOSFiT currently yields magnitudes for the included

models and compares those magnitudes to the observed

values/errors, but eventually switching the model out-

puts to flux space would confer several advantages, in-

cluding more accurate upper limits and a less approx-

imate Gaussian process error model that could utilize

symmetrical errors.

7.4.2. Improved spectral modeling

For transients with hotter photospheres (e.g. tidal dis-

ruption events, superluminous supernovae), the approx-

imation of the SED as a blackbody or a sum of black-

bodies still yields fairly accurate magnitude estimates for

broadband filters. This assumption quickly breaks down

for transients with cooler photosphere, a prime example

being type Ia supernovae which have deep absorption

lines even near maximum light (see e.g. Figure 1 of Sas-

delli et al. 2016), which leads to large systematic color

errors.

While detailed radiative transfer models can relate pa-

rameters to output spectra (e.g. Botyánszki & Kasen
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Figure 6. Model matching and synthetic observations in MOSFiT. In the left panel, we show the observed data for

LSQ12dlf superimposed with an ensemble of models corresponding to the model posterior (modeled by the slsn

model of Nicholl et al. 2017a). In the right panel, synthetic photometry of an event similar to LSQ12dlf observed by

LSST is generated by MOSFiT in generative mode, where the photometry is generated by selecting a random model

realization from the fits to the observed data and presuming a limiting magnitude of 22.5 in all bands. We have

additionally pruned the data to roughly match the filter cadence expected from LSST.

2017), they are expensive and are not able to span a wide

parameter space if the number of parameters exceeds a

few. An alternative approach is to instead use physi-

cal parameters to predict the continuum flux (as MOSFiT

currently does) and to then superimpose a spectral se-

quence, either observed or synthetic, upon the continuum

(e.g. Hsiao et al. 2007).

7.4.3. Survey simulations

In the generative mode, MOSFiT is able to draw light

curve samples from model priors or posteriors of previ-

ous runs. These light curves can be resampled according

to survey cadence and limiting magnitude to simulate

observations of transient populations in a given survey

(e.g. LSST). Such survey simulations could help deter-

mine the efficacy of the model comparisons we describe in

Section 6.3 for transients of unknown type, and could also

evaluate MOSFiT’s utility as a real-time transient classi-

fier. Currently, this is partially implemented into MOSFiT

using the --limiting-magnitude flag, which will trun-

cate light curves at a specified limiting magnitude. This

command can be supplemented with a specification for

a single cadence for all bands. More sophisticated sur-

vey simulations take into account unique filter cadences

and limiting magnitudes, sky brightness and airmass as a

function of location and time, and injected observational

efficiencies.

7.4.4. Flexible error models

At the present, MOSFiT includes two error models: a

white noise model that adds constant variance(s) to all

observations, and a Gaussian process model where the
kernel is defined by two distances based on observation

time and filter. The user is of course free to create new

modules to implement the error model they would like

to apply, but increased flexibility in the error model such

as adding the option to use different families of kernels

(e.g. OrnsteinUhlenbeck, Matérn, etc.) would be desir-

able for future versions of the code. For large datasets

with O(104) points, kernel choices that lend themselves

to faster inversion, as recently implemented by the code

celerite (Foreman-Mackey et al. 2017), would also be

desirable to include as an error model option.

7.4.5. Better estimates of marginal likelihood

While the WAIC (Section 6.3) provides a useful heuris-

tic for the information content of a given model fit that

can be compared to other models, it is only approximate,

with no measure of the error in the approximation be-

ing provided by the code. Because of this, the score can

be used as a rationale to disfavor models that obviously

underperform relative to others, but any rank-ordering

suggested by the scores of two similarly scoring models

should be done with caution. Better estimates of the in-

formation can be obtained with more walkers, but the

heuristic nature of the WAIC means that its utility as a

ranking mechanism is not total.

A better mechanism for computing the evidence in-

volves substituting a different algorithm for emcee that

evaluates the evidence directly such as nested sampling,

particularly dynamic sampling which typically requires

far fewer function evaluations (Higson et al. 2017). Tests

with this approach using the code dynesty8,9 (Speagle

8 https://github.com/guillochon/MOSFiT/pull/142
9 https://github.com/joshspeagle/dynesty

https://github.com/guillochon/MOSFiT/pull/142
https://github.com/joshspeagle/dynesty
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in prep.) suggests that it can yield direct evidence esti-

mates accompanied by the measured errors of those es-

timates in a fraction of the function evaluations, with

the side-effect of also providing far more samples of the

posterior.

7.5. Concluding remarks

In this paper we describe the motivations behind the

design of the MOSFiT code and highlight its innovations

in regards to data input, processing, and output. With

MOSFiT, we hope to make light curve analysis in time-

domain astronomy more easily reproducible and acces-

sible, but as highlighted in Section 7.4, many aspects

of its functionality can be further improved. We aim for

MOSFiT to be as widely useful as possible within the time-

domain community, and welcome future external contri-

butions to the code that act to improve its performance,

breadth, accuracy, and accessibility.
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Botyánszki, J., & Kasen, D. 2017, ApJ, 845, 176

Brooks, S. P., & Gelman, A. 1998, Journal of computational and

graphical statistics, 7, 434
Burns, C. R., Stritzinger, M., Phillips, M. M., et al. 2011, AJ,

141, 19

Chatzopoulos, E., Wheeler, J. C., Vinko, J., Horvath, Z. L., &
Nagy, A. 2013, ApJ, 773, 76

Colonna, J.-F. 1996, The Visual Computer, 12, 346

Foreman-Mackey, D., Agol, E., Ambikasaran, S., & Angus, R.
2017, AJ, 154, 220

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J.

2013, PASP, 125, 306
Gelman, A., Hwang, J., & Vehtari, A. 2014, Statistics and

Computing, 24, 997

Gelman, A., & Rubin, D. B. 1992, Statistical Science, 7, 457

Goodman, J., & Weare, J. 2010, Communications in applied

mathematics and computational science, 5, 65

Guillochon, J., Parrent, J., Kelley, L. Z., & Margutti, R. 2017,

ApJ, 835, 64

Higson, E., Handley, W., Hobson, M., & Lasenby, A. 2017, ArXiv

e-prints, arXiv:1704.03459 [stat.CO]
Hsiao, E. Y., Conley, A., Howell, D. A., et al. 2007, ApJ, 663,

1187

Huijser, D., Goodman, J., & Brewer, B. J. 2015, ArXiv e-prints,

arXiv:1509.02230 [stat.CO]
Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open

source scientific tools for Python

Mandel, K. S., Narayan, G., & Kirshner, R. P. 2011, ApJ, 731,

120

Mandel, K. S., Wood-Vasey, W. M., Friedman, A. S., & Kirshner,

R. P. 2009, ApJ, 704, 629

Metzger, B. D. 2017, Living Reviews in Relativity, 20, 3

Miller, A. A., Cao, Y., Piro, A. L., et al. 2017, ArXiv e-prints,

arXiv:1708.07124 [astro-ph.HE]
Mockler, B., Guillochon, J., & Ramirez-Ruiz, E. 2018, ArXiv

e-prints, arXiv:1801.08221 [astro-ph.HE]
Morris, D., Voutsinas, S., Hambly, N. C., & Mann, R. G. 2017,

Astronomy and Computing, 20, 105

Nadyozhin, D. K. 1994, ApJS, 92, 527

Nicholl, M., Guillochon, J., & Berger, E. 2017a, ApJ, 850, 55

Nicholl, M., Williams, P. K. G., Berger, E., et al. 2017b, ApJ,

843, 84

Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15

Rasmussen, C. E., & Williams, C. K. 2006, Gaussian processes for

machine learning, Vol. 1 (MIT press Cambridge)

Rein, H. 2012, ArXiv e-prints, arXiv:1211.7121 [astro-ph.EP]
Rein, H., & Tamayo, D. 2017, MNRAS, 467, 2377

Roberts, S., McQuillan, A., Reece, S., & Aigrain, S. 2013,

MNRAS, 435, 3639

Rodrigo, C., Solano, E., & Bayo, A. 2012, SVO Filter Profile

Service Version 1.0, IVOA Working Draft 15 October 2012

Ross, M., & Dwarkadas, V. V. 2017, ArXiv e-prints,

arXiv:1704.05866 [astro-ph.HE]
Sanders, N. E., Betancourt, M., & Soderberg, A. M. 2015a, ApJ,

800, 36

Sanders, N. E., Soderberg, A. M., Gezari, S., et al. 2015b, ApJ,

799, 208

Sasdelli, M., Ishida, E. E. O., Hillebrandt, W., et al. 2016,

MNRAS, 460, 373

Silverman, J. M., Foley, R. J., Filippenko, A. V., et al. 2012,

MNRAS, 425, 1789

Skilling, J. 2004, in American Institute of Physics Conference

Series, Vol. 735, American Institute of Physics Conference

Series, ed. R. Fischer, R. Preuss, & U. V. Toussaint, 395

Speagle, J. in prep.

Villar, V. A., Berger, E., Metzger, B. D., & Guillochon, J. 2017a,

ApJ, 849, 70

Villar, V. A., Guillochon, J., Berger, E., et al. 2017b, ApJL, 851,

L21

Watanabe, S. 2010, Journal of Machine Learning Research, 11,

3571

Yaron, O., & Gal-Yam, A. 2012, PASP, 124, 668

Zuntz, J., Paterno, M., Jennings, E., et al. 2015, Astronomy and

Computing, 12, 45

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009arXiv0912.0201L&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009arXiv0912.0201L&link_type=ABSTRACT
http://dx.doi.org/10.1051/0004-6361/201322068
http://dx.doi.org/10.3847/1538-4357/aa633b
http://dx.doi.org/10.3847/1538-4357/aa633b
http://dx.doi.org/10.1038/533452a
http://dx.doi.org/10.3847/1538-4357/aa831d
http://dx.doi.org/10.3847/1538-4357/aa831d
http://arxiv.org/abs/1701.02434
http://dx.doi.org/10.3847/1538-4357/aa81d8
http://dx.doi.org/10.1088/0004-6256/141/1/19
http://dx.doi.org/10.1088/0004-6256/141/1/19
http://dx.doi.org/10.1088/0004-637X/773/1/76
http://dx.doi.org/10.1007/BF01782232
http://dx.doi.org/10.3847/1538-3881/aa9332
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2013PASP..125..306F&link_type=ABSTRACT
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.3847/1538-4357/835/1/64
http://arxiv.org/abs/1704.03459
http://dx.doi.org/10.1086/518232
http://dx.doi.org/10.1086/518232
http://arxiv.org/abs/1509.02230
http://dx.doi.org/10.1088/0004-637X/731/2/120
http://dx.doi.org/10.1088/0004-637X/731/2/120
http://dx.doi.org/10.1088/0004-637X/704/1/629
http://dx.doi.org/10.1007/s41114-017-0006-z
http://arxiv.org/abs/1708.07124
http://arxiv.org/abs/1801.08221
http://dx.doi.org/10.1016/j.ascom.2017.07.004
http://dx.doi.org/10.1086/192008
http://dx.doi.org/10.3847/1538-4357/aa9334
http://dx.doi.org/10.3847/1538-4357/aa794d
http://dx.doi.org/10.3847/1538-4357/aa794d
http://dx.doi.org/10.1088/0067-0049/220/1/15
http://arxiv.org/abs/1211.7121
http://dx.doi.org/10.1093/mnras/stx232
http://dx.doi.org/10.1093/mnras/stt1555
http://arxiv.org/abs/1704.05866
http://dx.doi.org/10.1088/0004-637X/800/1/36
http://dx.doi.org/10.1088/0004-637X/800/1/36
http://dx.doi.org/10.1088/0004-637X/799/2/208
http://dx.doi.org/10.1088/0004-637X/799/2/208
http://dx.doi.org/10.1093/mnras/stw900
http://dx.doi.org/10.1111/j.1365-2966.2012.21270.x
http://dx.doi.org/10.1063/1.1835238
http://dx.doi.org/10.1063/1.1835238
http://dx.doi.org/10.1063/1.1835238
http://dx.doi.org/10.3847/1538-4357/aa8fcb
http://dx.doi.org/10.3847/2041-8213/aa9c84
http://dx.doi.org/10.3847/2041-8213/aa9c84
http://dx.doi.org/10.1086/666656
http://dx.doi.org/10.1016/j.ascom.2015.05.005
http://dx.doi.org/10.1016/j.ascom.2015.05.005

