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Abstract
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instability in a 2-state non-homogeneous Markov chain with logistic crisis

incidence. A long-run frequency measure is defined and calibrated for 17

advanced economies from 1870-2016. It is found that historical (implied)

crisis frequencies display a V (J )-pattern over time. A key implication is that

policies strengthening capital adequacy contribute more to systemic stability

than expanding deposit insurance or curbing credit booms.
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1 Introduction

What are the long-term implications of the view that excessive credit growth pre-

cipitates financial crises? The short-term link between credit cycles and systemic

banking crisis likelihood in advanced economies has been modeled with a convex

(logistic) function by Ajello et al. (2019), Jordà et al. (2017b), Schularick and

Taylor (2012) and Taylor (2015), among others, but the implications for banking

crises’ long-run frequency have not been explored.1

In this study I embed three key determinants of crisis frequency in a two-state

Markov chain with time-varying convex crisis incidence. Each state’s implied long-

run frequency (ergodic probability) is driven by credit fundamentals (their mean,

persistence and volatility); crises’ expected duration, a key input to severity indices

(Reinhart and Rogoff (2014)); and the elasticity of the crisis incidence rate to

credit conditions, that has declined since the post-war adoption of deposit insurance

(Bordo and Meissner (2016), Schularick and Taylor (2012)). The resulting long-

run frequency measure consists of a certainty-equivalent component—increasing in

average credit growth, the elasticity of crisis incidence and average crisis duration—

and a positive uncertainty wedge.

1To determine historical crisis frequency (share of years in a crisis), researchers have focused

on binary crisis indicators based on financial events, including bank runs and official interventions

(Bordo et al. (2001), Reinhart and Rogoff (2009)), events of systemic importance (Jordà et al.

(2017a), Taylor (2015)), and fluctuations in bank share prices (Baron et al. (2019)). Bordo and

Meissner (2016) contrast the alternative long-run perspectives. The duration of banking crises

since 1970 has been rigorously documented by Laeven and Valencia (2013, 2018). Recently, Romer

and Romer (2017) have proposed a narrative-based, non-binary financial distress index.

1



Calibrating the model for three periods, excluding wars, over which credit data

are available for 17 advanced economies accords with a V-shape for historical crisis

frequency: banking crises since 1970 have tended to be as frequent as in the pre-war

era, consistent with leading crisis chronologies. By contrast, a J -pattern emerges

for model-implied frequency: as low as 5-7 percent from 1947-2008, but around 10

percent since 1970, or one crisis episode per decade on average. With the “ascent

of credit” (Schularick and Taylor (2012)) having moderated in the globalization

era, the post-1970 increase is likely due to longer crisis expected duration. Both

frequency measures concur the 1947-2008 period was a “remarkable exception”

(Admati and Hellwig (2013)) from a long-term perspective.

An advantage of the Markov-switching framework is that it directly computes

the long-run crisis frequency implied by credit-driven, short-run crisis incidence,

facilitating comparison with the historical measures listed above. Further, the

present approach complements research on Early Warning Indicators (EWI ) of

banking crises, which employs a range of leading indicators to detect the short-term

build-up of financial vulnerability.2 A limitation of the implied frequency measure is

that it excludes demand-side drivers of instability, such as swings in bank deposits;

it also abstracts from multiple crises triggered by cross-market contagion.

There are two contributions. Mapping fundamental and policy-influenced cri-

sis drivers to ergodic probabilities extends the influential rare disaster literature,

where these probabilities are assumed fixed (Rietz (1988), Barro (2006), Tambakis

2Aldasoro et al. (2018) review the EWI literature, including indicators of household and cross-

border debt build-up. Simorangkir (2012) finds a univariate model of Markov-switching bank

deposit growth serves as an effective EWI for Indonesia.
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(2014)) or exogenously time-varying (Gabaix (2012), Wachter (2013)). The present

frequency measure can thus inform estimates of welfare losses (Barro (2009)) or

bailout costs of systemic events (Haldane (2010)). Concerning crisis prevention,

the implied frequency’s sensitivity to key parameters informs the macro-prudential

debate on the desired bank capital ratio for long-term financial stability.3 Specif-

ically, I find shorter average durations yield a greater decline in crisis frequency

than less excessive credit cycles and/or more extensive liability guarantees. With

crises lasting considerably less for better capitalized banking systems (Cerutti et al.

(2015), Jordà et al. (2017b)), the policy implication is that Basel III-type capital

build-up (BIS (2017)) is more effective at containing systemic instability.

2 The model

Let {Zt}t≥0 be a discrete, homogeneous 2-state Markov chain such that Zt = 0

when the economy is in state st = 0 (normal) and Zt = 1 if st = 1 (crisis).

The transition probabilities are pij ≡ Pr{st+1 = j|st = i} with pii + pij = 1 and

0 < pij < 1, i, j ∈ {0, 1}. Denoting crisis incidence and exit rates by p and q,

with crisis expected duration T1 ≡ q−1, M =

1− p p

q 1− q

 and the ergodic

3Extensive theoretical and empirical research suggests that higher bank equity capital counters

the risk-taking incentives created by limited liability; in addition to Admati and Hellwig (2013),

see Merton (1974), Collard et al. (2017) and Hanson et al. (2011).
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(stationary) distribution is the 2x1 vector π ≡ [π0, π1]
′ solving π = Mπ:4

lim
T→∞

[
T∏
t=1

M ] =

π0 π1

π0 π1

 (1)

π1 =
p

q + p
∈ (0, 1) , π0 = 1− π1 (2)

As is well known (Wachter (2013)), the incidence rate and ergodic probability

only coincide for transient crisis events (q → 1, p → 0), else π1 > p. Against this

benchmark, let crisis incidence be a logistic function of state-independent stochastic

fundamental, Lt, with unconditional moments E[Lt] = µL and var[Lt] = σ2
L:

pt+1 ≡ p(Lt) = Pr{st+1 = j|st = i, Lt} =
eh0+h1Lt

1 + eh0+h1Lt
∈ (0, 1)⇒ (3)

p ≡ p(E[Lt]) = Pr{st+1 = j|st = i, E[Lt]} =
eh0+h1µL

1 + eh0+h1µL
(4)

where h0 is a scaling constant and h1 > 0 is the elasticity of crisis incidence to Lt.
5

As pt(·) is strictly convex left of its unique inflexion point, expected crisis likelihood

exceeds its certainty-equivalent by Jensen’s inequality:

E[pt+1]− p > 0 (5)

4ZT = 1
T

∑T
t=1 Zt and ZT ∼ N

(
π1,

1
T
pq(2−p−q)

(p+q)3

)
by a central limit theorem for non-i.i.d.

variables (Kelbert and Suhov (2008)). Convergence follows MT =

π0 π1

π0 π1

+ λT

p+q ·

 p −p

−q q

,

where λ = 1− p− q < 1 is the real-valued eigenvalue.
5By controlling the steepness of the logistic function, h1 determines the sensitivity of the

probability of switching state to the fundamental. This is a simple version of Benigno et al.’s

(2020) medium-scale structural model; these authors also endogenize the crisis exit rate.
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where E[pt+1] = 1
T

∑T
t=1 p(Lt) and p =

[
1 + e−h0−h1

∑T
t=1 Lt
T

]−1
. The Markov

transition matrix Mt+1 =

1− pt+1 pt+1

q 1− q

 is now non-homogeneous, and its

ergodic distribution is given by the∞-step-ahead transition, defined as [π∞0 , π
∞
1 ]′ ≡

limT→∞[
∏T

t=1Mt]. Equalizing the expected probabilities of entering and exiting

each state yields:

π∞1 q = (1− π∞1 )E[pt]⇒

π∞1 =
E[pt]

q + E[pt]
, π∞0 = 1− π∞1 (6)

Ergodic probability (long-run frequency) π∞st measures the share of time an

economy is in state st ∈ {0, 1}. By inequality (5), π∞st and its certainty-equivalent

in eq. (2) evaluated at p, denoted πst(p) are monotonically ordered such that, for

given q, the crisis (normal) state probability includes a strictly positive (negative)

uncertainty wedge:

π∞1 (h1, µL, σL, q) > π1(p(h1, µL, q)) (7)

π∞0 (h1, µL, σL, q) < π0(p(h1, µL, q))

Note that fundamental uncertainty only impacts π∞st , while model uncertainty

about h1 influences both ergodic probability measures.
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3 Empirical application

3.1 Baseline calibration

In this section I calibrate the ergodic probability measure to the historical credit

cycles of 17 advanced economies (ADV) and the United States. Following Ajello et

al.’s (2019) credit dynamics and restricting their inflation and output gap response

coefficients to zero, wlog, yields a stationary AR(1) process:6

Lt = φ0 + ρLLt−1 + ξt , ρL < 1 (8)

Lt is the real bank loan growth rate (annualized average) with unconditional

mean and variance µL = φ0
1−ρL

, σL =
σξ√
1−ρ2L

; ξt ∼ N(0, σξ) are i.i.d. Gaussian

credit shocks. Table 1 summarizes annual real loan growth statistics (real growth

of total bank loans to the non-financial sector) and calibrated parameter values for

the pre-World War II, post-war through 2008, and 1970-2016 periods:

TABLE 1 HERE — Credit cycle descriptive statistics with calibrated

and estimated parameter values, by period

Post-war credit growth in advanced economies rose over 50 percent above its

pre-war average (columns 2-3), but subsided in the globalization period since 1970

(column 4); these trends are also evident in the U.S. (columns 5-7). Coupling the

6Allowing feedback from the target variables to credit growth does not affect the main insight.

I adopt these authors’ baseline parameter values ρL = 0.80, h0 = −3.396, h1 = 1.88 (σh = 1.14)

for ADV, and estimate the AR(1) persistence coefficient for the U.S.
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calibrated and estimated parameters with average crisis durations generates model-

implied ergodic probabilities, π1(p) and π∞1 .7 Table 2 compares them to historical

frequencies imputed from three leading crisis chronologies:

TABLE 2 HERE — Historical and implied frequencies of systemic

banking crises, by period

There are two lessons from the calibration exercise. First, for the application at

hand implied crisis frequency is dominated by its certainty-equivalent component,

π1(p). The uncertainty wedge (column 7 minus column 6) does not exceed 0.1

percent of the time, echoing Ajello et al.’s (2019) results in their optimal policy

setting under uncertainty. Second, historical crisis frequencies display a V-pattern

across all three periods, documented also by Bordo and Meissner (2016) and Taylor

(2015).8 Further, the implied frequencies lie broadly within their post-war historical

ranges but well below the corresponding pre-war ones, reflecting Schularick and

Taylor’s (2012) “two eras of finance”—1870-1939 and 1945-2008—with the latter

marked by secular credit expansion. Hence, a J -shape emerges for π1(p): a slight

post-war decline followed by a steep rise since 1970. With comparatively subdued

credit growth (cf. Table 1), Table 2 indicates this is driven by longer average crisis

duration in the financial globalization era. This finding validates earlier suggestions

7The certainty-equivalent crisis incidence rate, p, ranges from 3.5 to 3.8 percent annually;

Schularick and Taylor’s (2012) annual unconditional crisis likelihood is nearly 4 percent.
8Baron et al. (2019) report higher historical frequencies because their bank equity-based crisis

identification reveals more ‘quiet’ episodes. Similarly, da Rocha and Solomou (2015) find that

non-systemic crises had a long-lasting impact on inter-war industrial production.
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that “ [...] when the recent wave of crises is fully factored in, the apparent drop

will likely be even less pronounced” (Reinhart and Rogoff (2009), p.151).9

3.2 Sensitivity analysis

Long-run crisis frequency π1(p) is sensitive to uncertainty about fundamentals (σL)

and model parameters (h1), as well as episodes’ expected duration (T1). On the

latter, Jordà et al. (2017b) show that, conditional on the crisis state, countries

with above-average capitalized banking sectors experience milder recessions (over

13 percent cumulatively lower GDP per capita) and swifter recoveries (up to 3

years); see also Cerutti et al. (2015). Regarding h1, Schularick and Taylor (2012)

estimate significantly lower credit elasticities post-war, with deposit insurance and

lender of last resort facilities preventing banking crises from becoming panics.

Against these stylized facts, Fig. 1 displays π1(p) as crisis duration varies from

1 ≤ T1 ≤ 10 years (1 ≥ q ≥ 0.1) for the σL and h1 estimates of the 1947-2008 U.S.

credit cycle, along with 95 percent confidence intervals:

FIGURE 1 HERE

Implied crisis frequency and confidence intervals: U.S. 1947-2008

Ceteris paribus, less (more) volatile financial conditions (Panel A) result in

9To gauge the robustness of post-1970 ADV (pre-war U.S.) implied frequencies to the Global

Financial Crisis and Great Recession (Great Depression) outliers—lasting 5 or more years for many

economies—in column 3 I also report π1(p) and π∞1 for median duration. The mean-median gaps

are comparable to Reinhart and Rogoff’s (2014) peak-to-trough measure. Crisis frequencies fall

by 1.5-2 percent, but the J-shape remains as the 1947-2008 decline appears less pronounced.
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marginally lower (higher) long-run crisis frequency than a stronger (weaker) policy

backstop (Panel B). However, as π1(p) declines at hyperbolic rate with q, by eq.

(2), it is far more responsive to expected duration than σL or h1. For example, crisis

frequency would drop from 10 to nearly 5 percent if the average episode lasted 1.5

rather than 3 years, a plausible shift given crisis aftermath heterogeneity.10 In turn,

this would halve a tax charge on Globally Systemically-Important Banks (GSI-B)

to US$5 billion per year; see BIS (2017) and Haldane (2010).

4 Concluding observations

This study nested systematic evidence for credit growth-fuelled financial instability

in a 2-state non-homogeneous Markov chain with logistic crisis incidence. It was

shown that a V (J )-pattern characterizes historical (implied) crisis frequencies over

time. Insofar as crisis episodes are less protracted when banks are better capitalized,

sensitivity analysis suggested that bolstering capital ratios—which declined strongly

from 1870 until the mid-20th century, remaining low but stable thereafter—yields

sharply lower crisis frequencies. The policy lesson is that Basel III-type measures

strengthening bank capital adequacy enhance long-term systemic resilience more

than expanding deposit insurance or curbing sustained credit booms.

Disclosure statement: The author reported no potential conflict of interest.

10Reinhart and Rogoff’s (2014) study of 63 financial crises in advanced economies (1857-2013)

reports a mean (median) duration of 2.9 (2 ) years for peak-to-trough contractions of per-capita

GDP; Romer and Romer’s (2017) real-time narrative index for OECD countries (1967-2012) also

reveals wide dispersion in recovery times.
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Table 1. Credit cycle descriptive statistics with calibrated and

estimated parameter values, by period

1870-1939 1947-2008 1970-2016 1870-1939 1947-2008 1970-2016

Statistics ADV U.S.

Mean µL 4.5 6.5 4.3 3.9 5.3 3.1

S.D. σL 10.6 6.9 5.8 6.4 5.6 4.7

Parameters

Intercept φ0 0.9 1.3 0.9 1.4 2.8 0.7

Persistence ρL 0.80 0.80 0.80 0.64∗∗∗ 0.48∗∗∗ 0.78∗∗∗

Adj. R2 – – – 0.41 0.22 0.61

S.E. σξ 6.4 4.1 3.5 4.9 4.9 2.9

Obs. 1007 1044 793 69 62 46

Note: All entries except φ0 and ρL are in percent. Columns 1-7 display the average and

standard deviation of annual real loan growth rates for 1870-1939, excluding war years,

1947-2008 and 1970-2016 periods for Australia, Belgium, Canada, Denmark, Finland,

France, Germany, Italy, Holland, Norway, Japan, Portugal, Spain, Sweden, Switzerland,

the United Kingdom and the United States, from Jordà et al. (2017a). The intercept

and standard error of eq. (8) are calibrated as φ0 = (1 − ρL)µL and σξ =
√

1− ρ2LσL.

∗∗∗ denotes significance at the 1 percent level.

Data: Mean and st.dev. of total bank loans to non-financial sector (annualized) from

Jordà, Schularick and Taylor (2017a), www.macrohistory.net/data consulted on 09.02.2020.
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Table 2. Historical and implied frequencies of systemic banking crises, by

period

Period Historical Implied

Ave. Duration Frequency Frequency

T1 (years) π1 (percent) π1(p) π∞1

1870-1939 ADV 2.3 13.5 T 14.5 BVX 7.6 7.7

U.S. 2.5 mean 18.1 T 21.7 BVX 8.0 8.1

2.0 median 14.5 T 17.4 BVX 6.5 6.6

1947-2008 ADV 1.9 3.4 LV 5.6 BVX 6.4 6.5

U.S. 1.5 4.9 LV 6.4 BVX 5.1 5.1

1970-2016 ADV 3.7 mean 8.5 LV 14.2 BVX 11.5 11.6

3.0 median 6.9 LV 11.5 BVX 9.6 9.7

1970-2016 U.S. 3.0 12.2 LV 18.4 BVX 9.4 9.4

Note: The crisis frequencies are reported in percent of time (share of country-years spent

in crisis state in each period). Given average duration T1 in column 3, the historical crisis

frequencies in columns 4-5 are computed as π1 = T1∗Episodes
Country−years . π1(p) in column 6 is eq.

(2) evaluated at p in eq. (4) and q = T−11 . The model-implied frequency in column 7

is computed as π∞1 = 1
K [
∏T
t=1Mt](1, 2) for K = 1000 sample paths, each of length 1000

credit growth realizations drawn from Lt ∼ N(µL, σL) such that ELt =
∑K
k=1
K

[∑T
t=1 Lt
T

]
converges to µL. The parameter values are in Table 1.

Data: All crisis average durations are from Laeven and Valencia (2018) except 1870-1939

from Bordo et al. (2001), Table 1 (ADV) and Reinhart and Rogoff (2009), Table A.4.1

(U.S.) Historical frequencies consistent with the crisis indices of Baron et al. (2019),

Laeven and Valencia (2018) and Taylor (2015) are denoted BVX, LV and T, respectively.
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