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Abstract: We propose a method for transforming probability distributions so that parameters of interest
are forced into a specified distribution. We prove that this approach is the maximum-entropy choice,
and provide a motivating example, applicable to neutrino-hierarchy inference.
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1. Introduction

In Bayesian analysis, a simple prior on inference parameters can induce a nontrivial prior on critical
physical parameters of interest. This arises, for example, when estimating the masses of neutrinos from
cosmological observations. Here, three parameters are inferred corresponding to the mass of each of the
three neutrino species, (m1, m2, m3). Cosmological observations, however, are mainly sensitive to their
sum, m1 + m2 + m3. Simple priors, for example, log-uniform priors on individual masses, can induce
undesired informative priors on their sum [1].

Another example arises in nonparametric reconstructions. Here, one infers underlying physical
function from the data, where the data are a reprocessing of the target function by some physical or
instrumental transfer function. Typical approaches involve decomposing the target function into bins,
principal component eigenmodes, or generally into any other basis functions. Simple priors on the
amplitudes of basis functions can lead to undersized priors on physical quantities derived from the target
function. Consideration of these effects is particularly important, for example, when reconstructing the
history of cosmic reionization [2].

A natural remedy is to importance-weight the original prior such that the nontrivial distribution on
the parameter of interest is transformed to a more desirable one. In this paper, we show that this natural
approach is the maximum-entropy prior distribution [3]. Often, the more desirable prior is a uniform
distribution, but our proof also holds for any desired target distribution. Our observation provides
a powerful justification for the natural solution, as it is the distribution that assumes the least information,
and is therefore particularly appropriate for choosing priors [4].

In Section 2, we demonstrate the key ideas with a toy example before providing a rigorous proof in
Section 3. We then apply these ideas to a more complicated example, appropriate for constructing priors
on neutrino masses, in Section 4.
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2. Motivating Example

We begin with a simplified example. Consider a system with two parameters (a, b), with a uniform
distribution q(a, b) on the unit square. Analogous to the sum of neutrino masses mentioned earlier, suppose
that a derived parameter, c = a + b, is of physical interest. Effective distribution q(a + b) is not uniform,
but instead symmetric and triangular between 0 < c < 2, as graphically illustrated in the left-hand side of
Figure 1. If one wished to construct a distribution p(a, b) that was uniform in a + b, one could do so by
dividing out the triangular distribution:

p(a, b) =
q(a, b)

q(a + b)
. (1)
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Figure 1. (Left-hand panels) uniform distribution on two parameters q(a, b) inducing triangular distribution
on their sum q(a + b). (Right-hand panels) constructing new distribution by dividing out triangular
distribution p(a, b) = q(a, b)/q(a + b) renders a uniform distribution induced on the sum p(a + b). Figures
were constructed from the analytic forms of the distributions in Python using the Matplotlib package [5].

The resulting transformed distribution is illustrated in the right-hand side of Figure 1. More weight
is given to low and higher values of a and b, so that the tails of triangular distribution q(a + b) are
counterbalanced. This comes at the price of altering the marginal distributions of a and b, which
become p(a) = − log[a(1 − a)]/2 (similarly for b), but which now give a uniform prior, p(a + b).
The transformation can be viewed as an importance weighting of the original distribution, and is intuitively
the simplest way to force p(a + b) to be uniform.

The aim of this paper is to show that the above intuition is well-founded, as (1) is in fact the
maximum-entropy solution. The entropy of a distribution p(x) with respect to an underlying measure
q(x) is:

H(p|q) =
∫

dx p(x) log
[

q(x)
p(x)

]
. (2)
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The maximum-entropy approach [6,7] finds distribution p that maximises H, subject to user-specified
constraints. As it maximises entropy, solution p is generally interpreted as the distribution that assumes
the least information given the constraints.

In the next section, we show that (1) is the maximum-entropy solution, subject to the constraint that
p(a + b) is uniform. We further generalize to a derived parameter that can be any arbitrary function of the
original parameters, for which the desired distribution is in general nonuniform.

In a more usual maximum-entropy setting, user-applied constraints typically take the form of either
a domain restriction such as x ∈ [−1, 1] or x > 0, or linear functions of distribution p, such as a specified
mean µ =

∫
xp(x)dx, or variance σ2 =

∫
(x− µ)2 p(x)dx. In this work, our constraints contrast with the

traditional approach in that, instead of a discrete set of constraints, by demanding that a derived parameter
has a distribution in a specified functional form, our constraints form a continuum. In other words, instead
of a discrete set of Lagrange multipliers, one must introduce a continuous Lagrange multiplier function.

3. Mathematical Proof

Theorem 1. If one has a D-dimensional distribution on parameters x with probability density function q(x) along
with a derived parameter f defined by a function f = f (x), then the maximum-entropy distribution p(x) relative to
q(x) satisfying the constraint that f is distributed with probability density function to r( f ) is:

p(x) =
q(x)r( f (x))
P( f (x)|q) , (3)

where P( f |q) is the probability density for the distribution induced by q on f = f (x).

Proof. If we have some function f (x) defining a derived parameter f = f (x), then cumulative density
function C( f |p) of f = f (x) induced by p can be expressed as a D-dimensional integral over the region
Ω( f ) = {x : f (x) < f } with D-dimensional volume element dx:

C( f |p) =
∫

f (x)< f
dx p(x). (4)

Differentiating (4) with respect to f yields the probability density function of f induced by p, which
via the Leibniz integral rule can be expressed as a (D− 1)-dimensional integral over the boundary surface
∂Ω( f ) = {x : f (x) = f }, with the induced (D− 1)-dimensional volume element dS(x):

P( f |p) = d
d f

C( f |p) ≡
∫

f (x)= f
dS(x) p(x). (5)

We aim to find distribution p that maximises entropy H(p|q) from (2), subject to the constraint that
P( f |p) takes a given form with probability density r( f ) and cumulative density c( f ):

C( f |p) = c( f ) ⇔ P( f |p) = r( f ) = c′( f ) (6)

The solution can be obtained via the method of Lagrange multipliers, wherein we maximise the
functional F:

F(p) = H(p|q)− λ
∫

p(x)dx−
∫

d f µ( f )
∫

f (x)< f
dx p(x), (7)
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subject to normalisation and distribution constraints∫
p(x)dx = 1, (8)∫

f (x)< f
p(x)dx = c( f ) ⇔

∫
f (x)= f

dS(x) p(x) = r( f ). (9)

Here, we introduced a Lagrange multiplier λ for the normalisation constraint (8), and a continuous
set of Lagrange multipliers µ( f ) for the distribution constraints (9).

Functionally differentiating (7) yields:

0 =
δF

δp(x)
= −1 + log

p(x)
q(x)

− λ−
∫

f (x)< f
d f µ( f ), (10)

⇒ p(x) = q(x)e1+λ+
∫

f (x)< f d f µ( f )
= q(x)M( f (x)), (11)

where in (10) we have used the fact that:

δ

δp(x)

∫
f (x′)< f

dx′ p(x′) =

{
1 : f (x) < f
0 : otherwise,

(12)

and, in (11), defined the new function:

log M(g) = 1 + λ +
∫

g< f
d f µ( f ). (13)

All that remains to be done is to determine M from Constraints (8) and (9). Taking the right-hand
form of distribution Constraint (9), and substituting in p(x) = q(x)M( f (x)) from (11), we find:

r( f ) =
∫

f (x)= f
dS(x) q(x)M( f (x)) = M( f )

∫
f (x)= f

dS(x) q(x) = M( f )P( f |q), (14)

where we have used the fact that M( f (x)) is constant over the surface f (x) = f , and Definition (5) for
a constrained probability distribution function. We now have the form of M to substitute into (11), yielding
Solution (3).

Result (3) is precisely what one would expect. The distribution that converts q(x) to one, which
instead has f = f (x) distributed according to r( f ), is found by first dividing out the distribution on f
induced by q, and then modulating by desired distribution r( f ).

Provided that r( f ) is correctly normalised, Expression (3) automatically satisfies normalisation
Constraint (8): ∫

dx
q(x)r( f (x))
P( f (x)|q) =

∫
d f
∫

f (x)= f
dS(x)

q(x)r( f (x))
P( f (x)|q)

=
∫

d f
r( f )

P( f |q)
∫

f (x)= f
dS(x)q(x) =

∫
d f r( f ) = 1. (15)

In the above, we first split the volume integral into a set of nested surface integrals, drew out the
functions that were constant over the surfaces, applied the definition of induced probability density P( f |q),
and then used the normalisation of r. A similar manipulation may be used to confirm that functional
Form (3) satisfies distribution Constraint (9).
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The proof may be generalised to multiple derived parameters without modification, simply taking
f = f (x) to represent a vector relationship, and the cumulative distribution functions to be their
multiparameter equivalents.

4. Example: Neutrino Masses

In the past year, there has been interest in the cosmological and particle-physics community regarding
the correct prior to put on neutrino masses. Simpson et al. [8] controversially claimed that, with current
cosmological parameter constraints (∑ν mν < 0.13 eV [9,10]), the normal hierarchy of masses was
strongly preferred over an inverted hierarchy, in contrast with the results of Vagnozzi et al. [11]. Later,
Schwetz et al. [1] showed that the controversial claim was mostly due to a nontrivial prior that had been
put on the neutrino masses. Since then, other choices of prior have been proposed by Caldwell et al. [12],
Long et al. [13], Gariazzo et al. [14] and Heavens and Sellentin [15], which reduce the strength of the claim.

Using our methodology, a possible alternative prior to put on the masses can be constructed.
Typically, one chooses a broad independent logarithmic prior on each of the masses of the three neutrinos
(m1, m2, m3). However, cosmological probes of the neutrino masses typically place a constraint on the sum
of the masses m1 + m2 + m3. Simple logarithmic priors on the masses place a nontrivial prior on their
sum. Using our approach, we can transform the initial distribution into one that has more reasonable
distribution on the sum of the masses. Such considerations can be particularly important when determining
the strength of cosmological probes.

A concrete example is illustrated in Figure 2. As the original distribution, we take an independent
Gaussian prior on the logarithm of the masses. This induces nontrivial distribution on the sum of the
masses, approximately log-normal, but with a shifted centre. If one demands that the sum of the masses is
instead centred on zero, then the maximum-entropy approach creates a distribution with tails toward low
masses in order to compensate for the upward shift in the distribution of the sum of the masses. This tail
enters a region of parameter space that would be completely excluded by the original prior; thus, choosing
the transformed prior could influence the strength of a given inference on the nature of the neutrino
hierarchy. It should be noted that we are not advocating this as the most suitable prior to put on neutrino
masses, but merely to show that you may use our procedure to straightforwardly transform a distribution,
should one wish to put a flat prior on the sum of the masses. A more physical cosmological example in the
context of reionization reconstruction can be found in Millea and Bouchet [2].
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Figure 2. Distribution q (illustrated in blue) is defined as a three-dimensional spherical Gaussian on the
logarithm of parameters m1, m2, m3, centred on zero with a standard deviation of five log units on each
parameter. Nontrivial distribution is induced on the mean of masses 〈m〉 = 1

3 (m1 + m2 + m3), which
is approximately log-normal, but with a shifted centre and width. If one demands that the mean of the
masses is log-normal centred on zero with width five, as for the original individual masses, then the
maximum-entropy approach creates the distribution p, illustrated in orange. Parameters are forced to have
a tail toward low values in order to compensate for the upward shift in q-mean distribution.

5. Conclusions

In this paper, we proposed an approach for transforming probability distribution to force a derived
parameter into a specified distribution. One importance-weights the original distribution by dividing
out the induced distribution on the parameter of interest, and reweights by the desired distribution.
We proved that the resulting distribution is the maximum-entropy choice. Finally, we provided some
motivating examples.
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