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Abstract 

Pressure swing adsorption (PSA) is an energy-efficient technology for gas separation, while 

the multiobjective optimization of PSA is a challenging task. To tackle this, we propose a 

hybrid optimization framework (TSEMO + DyOS), which integrates two steps. In the first step, 

a Bayesian stochastic multiobjective optimization algorithm (i.e., TSEMO) searches the entire 

decision space and identifies an approximated Pareto front within a small number of 

simulations. Within TSEMO, Gaussian process (GP) surrogate models are trained to 

approximate the original full process models. In the second step, a gradient-based deterministic 

algorithm (i.e., DyOS) is initialized at the approximated Pareto front to further refine the 

solutions until local optimality. Therein, the full process model is used in the optimization. The 

proposed hybrid framework is efficient, because it benefits from the coarse-to-fine function 

evaluations and stochastic-to-deterministic searching strategy. When the result is far away from 

the optima, TSEMO can efficiently approximate a trade-off curve as good as a commonly used 
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evolutional algorithm, i.e., Nondominated Sorting Genetic Algorithm II (NSGA-II), while 

TSEMO only uses around 1/16th of CPU time of NSGA-II. This is because the GP-based 

surrogate model is utilized for function evaluations in the initial coarse search. When the result 

is near the optima, the searching efficiency of TSEMO dramatically decreases, while DyOS 

can accelerate the searching efficiency by over 10 times. This is because, in the proximity of 

optima, the exploitation capacity of DyOS is significantly higher than that of TSEMO.  

 

Keywords: Bayesian optimization; gradient-based deterministic optimization; pressure swing 

adsorption 

1. Introduction 

Pressure swing adsorption (PSA) is an energy-efficient gas separation technology [1-3] that 

has been widely used in the industry for drying [4], air separation [5, 6], and hydrogen 

production [7, 8]. Over the last two decades, academia has seen a growing interest in applying 

PSA for CO2 capture [9, 10]. PSA possesses significant advantages over the conventional 

amine-based CO2 capture technology with regards to emissions to the environment and energy 

consumption [3, 11]. Since no amine solvent is involved in the PSA system, no organic waste 

is disposed to the environment.  

The optimal design and operation of PSA processes is a challenging task due to the inherent 

cyclic and dynamic behavior of the system and highly nonlinear process models [12]. Since 
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the column pressure varies over time, the PSA process can never reach a steady-state operating 

point. Instead, it eventually comes to a cyclic steady state (CSS), where the trajectories of state 

variables are the same for consecutive cycles. From an industrial operation perspective, PSA 

is required to operate at CSS as to achieve a constant process performance. However, it is 

difficult to analytically calculate CSS, which generally requires a numerical simulation [13-

15]. Additionally, multiple (conflicting) objectives co-exist, including product purity, recovery 

rate, energy consumption, and operating cost [11, 16, 17]. The process design and operation 

problems often involve nonconvex functions [18-20], where multiple local optimal solutions 

may exist. Further, PSA may be operated in more complicated modes, e.g., multiple columns 

integrated with recycles [3, 11, 12, 17].  Overall, the above-mentioned factors contribute to the 

difficulty for the optimization of PSA processes.  

In the previous literature, stochastic optimization algorithms have been used to optimize PSA 

processes [11, 16, 21]. Stochastic optimization algorithms consider the simulation as a black-

box function. They vary the values of decision variables and run the PSA simulation until CSS. 

Following this procedure, the values of objectives and constraints are returned to the optimizer 

for evaluations. Haghpanah et al. used a genetic algorithm (GA) to optimize the PSA operation, 

while the time-consuming feature of PSA simulation leads to the slow performance of the 

overall optimization [11]. Capra et al. [16] reported a multi-level coordinate search (MCS) 

algorithm, where the decision space is divided for parallel computing on multiple workers to 

speed up the overall optimization. Stochastic algorithms can search the decision space globally. 

However, the optimality cannot be guaranteed in finite time [22], and thus the solution found 

through stochastic optimization does not satisfy Karush-Kuhn-Tucker (KKT) optimality 

conditions [23].  

Deterministic algorithms belong to another type of method that can be used for PSA 

optimization, where gradient information is used to guide the search direction (thus, it is often 
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referred to ‘gradient-based optimization’). There are two common approaches for the gradient-

based optimization of dynamic systems, i.e., the simultaneous and the sequential approaches 

[23]. The simultaneous approach discretizes the state and decision variables. Herein, both 

temporal and spatial domains of partial differential equations (PDEs) are discretized, resulting 

in a large set of algebraic equations and eventually large-scale nonlinear programming (NLP) 

problems. Tsay et al. proposed a pseudo-transient optimization framework to identify the final 

cycle of PSA under CSS using a ‘tear-recycle’ method, in which the temporal domain is 

significantly reduced [24]. The sequential approach is well-suited to problems with a few 

decision variables and complex dynamic behavior. The integrator solves the differential 

equations and provides the gradient to the NLP solver. However, in the case of PSA, a 

significant amount of computational time is required to calculate the sensitivity information 

and its integration over many PSA cycles for the gradient. Additionally, the sensitivity 

integration may fail due to the highly nonlinear PSA model [13]. Jiang et al. focused on one 

PSA cycle [𝑡!	𝑡"#$] and applied the sequential approach to converge the initial conditions (𝑡!) 

to the endpoint (𝑡"#$) of state variables [13]. This concept can dramatically accelerate the 

simulation to reach CSS. However, the spatial-discretized PSA model contains over 1,000 state 

variables, and thus the convergency of them is still a large optimization problem.  

Besides the extensive work on applying various optimization algorithms to PSA, researchers 

have exerted effort on developing surrogate models to represent the dynamic behavior of PSA. 

Surrogate models are cheap-to-evaluate and can approximate the relationship between inputs 

and outputs of physical models. Jiang et al. employed a Lagrange interpolation polynomial to 

approximate the profiles of state variables, as to simplify the convergence problem. 

Nevertheless, such approximation was reported to introduce inaccuracy for the further optimal 

design of PSA process [13]. Agarwal et al. demonstrated that proper orthogonal decomposition 
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(POD) can be employed to replace the stiff PDEs of PSA. A POD can achieve a significant 

reduction of state variables and thus lead to low-order surrogate models [25].  

With the recent increasing attention to machine learning, Artificial Neural Networks (ANNs) 

and Gaussian processes (GP) surrogate models have become prominent options for replacing 

computationally expensive models [26-28]. Subraveti et al. applied the ANN-based surrogate 

model to represent the original model, which was coupled with nondominated sorting genetic 

algorithm II (NSGA-II) for multiobjective optimization. The CPU time was reported to be 10 

times shorter compared to NSGA-II coupled with the original PSA model [17]. Leperi et al. 

employed individual ANN-based surrogate models to represent typical PSA stages. Then, these 

surrogate-based PSA stages can synthesize different types of cycles (three-stage, four-stage or 

five-stage cycle) [21]. Boukouvala et al. applied a grey-box method to capture both the 

analytical information of the physical models and noise information by a GP-based surrogate 

model [29]. With this method, PSA processes with different materials were optimized 

successfully within acceptable computational time [29]. However, surrogate models are often 

criticized for their inaccuracy and lack of generalization [30].  

In summary, prior studies on PSA optimization are based on (1) stochastic algorithms using 

expensive full-order models, in which optimality cannot be guaranteed, (2) deterministic 

algorithms which require the expensive-to-obtain gradient information, or (3) surrogate 

formulations in which accuracy might be compromised. A hybrid method may integrate the 

complementary advantages of the individual methods. The concept of hybrid optimization 

methods – a synthesis of a global solver with a local solver – has been proposed initially by 

computer scientists to solve nonconvex problems many years ago [31-33]. Similarly, a concept 

of ‘coarse-to-fine’ search also proposes to transform the original problem into a coarse 

approximation for the initial search and then gradually approach the actual problem for refined 

search [34]. The efficiency of these concepts has been proven in the areas of computer vision 
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[34], speech signal processing [35], and image processing [36]. Nevertheless, these concepts 

are not frequently used in the chemical industry. 

Therefore, we propose a hybrid strategy: a stochastic algorithm for the initial search and then 

a gradient-based algorithm for the local refinement of the solution. This work achieves efficient 

multiobjective optimization of the PSA system by hybrid optimization framework. 

The efficiency of the hybrid optimization framework benefits from:  

- the stochastic-to-deterministic search strategy; 

- the coarse-to-fine function evaluations: initially GP-based surrogate model for the 

rough evaluation, then the rigorous process model for the refined evaluation.         

The remaining sections are structured as follows. Section 2 briefly describes the process model 

of PSA. Section 3 introduces the state-of-the-art algorithms used in the hybrid framework. 

Section 4 presents the optimization formulation of PSA using a hybrid optimization framework. 

Section 5 shows results, followed by the discussion on why the overall optimization efficiency 

of the hybrid framework is competitive in Section 6. The final section presents conclusions and 

outlook. 

2. Model description of pressure swing adsorption 

PSA is operated in a cyclic mode that alternates between adsorbing the desired gas species at 

a higher pressure and releasing them at a lower pressure (Figure 1). Due to the variations in 

time and space, the PSA system is mathematically described by PDEs, which are based on the 

mass, energy and momentum balances listed in the Supplementary Information (SI, equation 

S1-S19). Notably, discontinuities are introduced by a sequence of frequent control actions of 

pressure levels, thus resulting in multiple discrete stages, e.g., adsorption, blowdown, 

evacuation and feed pressurization, while each stage is operated continuously. Hence, the 
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overall process belongs to a class of combined discrete/continuous systems, which requires 

additional effort in the model formulation and numerical solution [37].  

 

Figure 1. Four-stage PSA for CO2 capture 

The process model of PSA is based on the work of Haghpanah et al. [11] and implemented in 

Modelica using Dymola. The weighted essentially nonoscillatory (WENO) method, a finite 

volume method, is applied to discretize the PDEs into DAEs using 30 finite volumes. The 

combined discrete/continuous feature of PSA can first be described by a superstructure 

formulation of all PSA stages (SI, equation S.19), and then external controls (binary variables, 

refers to Table S2 in SI) are imposed to determine which stage to execute. As such, the 

combined discrete/continuous PSA is transformed into a set of continuous subsystems. Each 

subsystem is mathematically described by DAEs. The simulation of PSA requires the 

numerical integration of a series of initial value problems (IVP). The PSA cycle is repeatedly 

simulated and eventually reaches CSS. The simulation result is listed in the S3 section in the 

supplementary information (SI), because it is not the key finding in this work. Haghpanah’s 
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model has been validated experimentally [38, 39] and our simulation result is in good 

agreement (SI, Table S2) with those reported by Haghpanah et al. [11].  

3. State-of-the-Art of Hybrid Optimization Framework 

The hybrid optimization framework integrates TSEMO [40] with DyOS [41]. The 

characteristics of the methods are summarized in Table 1. TSEMO uses the input-output dataset 

of simulation results to train a GPs-based surrogate model, which is refined iteratively by 

sampling new input data points for more simulation results. Thompson sampling is the 

acquisition function for updating the dataset. In each iteration, the surrogate model is used as 

the evaluation function for multiobjective optimization [40]. With these characteristics, 

TSEMO belongs to Bayesian optimization [42]. NSGA-II is the optimizer within TSEMO, so 

the searching strategy of TSEMO is stochastic and the optimality cannot be guaranteed. DyOS 

contains a local sequential dynamic optimization solver, so the searching strategy belongs to 

gradient-based (deterministic) optimization and the optimality can be secured. The original 

dynamic process model is required to calculate the gradient information, and thus the function 

evaluations of DyOS are based on the rigorous process model.  

Table 1. Characteristics of TSEMO, DyOS and hybrid framework 

 Searching strategy Function evaluations Optimality 

TSEMO                

(Bayesian optimization) 
Stochastic (global search) GP-based surrogate model NO 

DyOS 
Gradient-based 

(deterministic) 
Rigorous model YES 

Hybrid framework                 

(TSEMO + DyOS) 
Stochastic to deterministic 

Surrogate to rigorous model 

(coarse-to-fine) 
YES 
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The proposed hybrid optimization framework consists of two steps. In Step 1, TSEMO searches 

the decision space globally to generate an approximate trade-off curve, which contains the best 

points obtained by TSEMO. In Step 2, DyOS is initialized at one of the best points obtained in 

Step 1 and improves the solution until local optimality is reached. DyOS can only improve one 

point per time, so the second step needs to be repeated to ‘one-by-one’ improve all of the best 

points obtained in Step 1. Overall, the searching strategy is stochastic-to-deterministic, and the 

function evaluations are ‘coarse-to-fine’ type: initially the GP-based surrogate for rough 

evaluations, then the rigorous model for the refined evaluations. The overall optimization 

framework is implemented in MATLAB, as illustrated in Figure 2. The model in Dymola can 

be compiled into an executable file (Dymosim.exe) and Functional mock-up Unit (FMU), 

which can be seamlessly integrated into the MATLAB environment. In Step 1, the PSA model 

is coupled to TSEMO as an executable. In Step 2, the model is coupled to DyOS through the 

functional mock-up interface (FUM), and then MATLAB calls DyOS through a mex interface.    

 

Figure 2. Illustration of the integrated platform for modeling and optimization of PSA. Process 

models of PSA are programmed using Modelica language in Dymola. The Modelica model can 

be translated and compiled into an executable Dymosim.exe and called directly from Matlab. 

Alternatively, the Modelica model can be compiled as a functional mock-up unit (FMU) [43]. 
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TSEMO runs Dymola through Dymosim.exe for simulation-based stochastic optimization, 

while DyOS takes an FMU as a model input for gradient-based optimization. 

As a reference, we also employ the NSGA-II, a well-established evolutionary algorithm, to 

optimize the original process model of PSA.  

4. Optimization formulation of PSA using the hybrid framework 

One of the challenges in PSA optimization is owed to multiple (conflicting) criteria for the 

final product. In this work, we employ PSA for CO2 capture, and two optimization objectives 

are considered: (i) the recovery rate and (ii) the purity of the product gas CO2 are maximized.  

 Recovery =
CO%	in	product	within	a	CSS	cycle

CO%	fed	into	column	within	a	CSS	cycle
× 100% (1) 

 Purity =
CO%	in	product	within	a	CSS	cycle

total	gas	in	product	within	a	CSS	cycle × 100% (2) 

The details of the hybrid approach (1st TSEMO + 2nd DyOS) are formulated in this section. 

4.1 First Step: Optimization formulation using TSEMO 

TSEMO can deal with multiobjective optimization problems directly, and two objectives can 

be inserted in the solver without any further reformulation. The formulation is constrained by 

the process equations (cf. SI, S.1-S.19). The evaluation and optimization of PSA are only 

meaningful after the process reaches CSS. As an evaluation method for CSS, a small tolerance 

value, δ , is used to check the difference between state variables 	x  over one cycle. When 

Cx(t) − x(t + t&'&())C ≤ δ , PSA is deemed to be under CSS. Overall, in the TSEMO 

optimization framework, the PSA optimization problem is formulated as follows, Eqs. (3)-(5): 

 max
𝛉
(Recovery, 	Purity) (3) 

s.t. Dynamic	process	model (SI, S.1-S.19) (4) 
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 CSS = Cx(t) − x(t + t&'&())C ≤ δ (5) 

where θ is a vector of six decision variables of four-stage PSA system including the duration 

of the first stage - adsorption (tads), the duration of the second stage - blowdown (tbd), the 

duration of the third stage - evacuation (tevac), two pressure setpoints - intermediate pressure 

(PI), low pressure (PL), respectively as well as feed velocity (vfeed). The lower and upper bounds 

of the decision variables are given in Table 2. In this work, the highest pressure is fixed at 1 

bar. The duration of the pressurization stage (the fourth stage) is reported to have a negligible 

effect on the operation of PSA; therefore, it is fixed to 20 s [11].  

Table 2. The ranges of the decision variables in the PSA optimization via TSEMO. 

𝛉 t+,- [s] t., [s] t)/+& [s] P0 [bar] P1 [bar] v2)), [m/s] 

range 20-100 30-200 30-200 0.07-0.5 0.005-0.05 0.1-2 

 

4.2 Second step optimization formulation of PSA using DyOS 

DyOS is designed to solve single-objective optimization problems. Herein, we reformulate our 

multiobjective optimization problem into a series of single-objective optimization problems 

via the epsilon-constrained method [44]. In other words, the recovery remains to be the 

objective, while the purity is reformulated as an inequality constraint. Following the results 

from the first step, the constraint and the initial values of decision variables are based on the 

results obtained from TSEMO. In case that the constraint is too tight, a relaxation coefficient 

(𝜂 = 0.99) is given for the purity constraint (Eq. 8). When optimizing PSA using DyOS, the 

system is assumed to reach CSS at the same number of cycles as the optimization using 

TSEMO (Eq. 9). The set-up of DyOS for PSA optimization is illustrated in Figure S5 (SI). The 

formulation of PSA optimization in DyOS is as follows, Eqs. (6)-(9):  
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 max
3!

Recovery (6) 

s.t. dynamic	process	equations	(SI, S.1-S.19) (7) 

 purity ≥ purity45678 ∙ 𝜂 (8) 

 N = N9:;<= (9) 

The PSA optimization via DyOS is conducted with respect to three decision variables: 

intermediate pressure, low pressure and inlet flowrate, as shown in Table 3. In the initial trials 

with DyOS we included the duration variables, which caused the method not to converge, likely 

because sensitivity integration over time is highly related to duration variables. Since the reason 

for unsuccessful termination is unclear at this time, we did not include the duration variables 

into the optimization.   

Table 3. The ranges of the decision variables in the PSA optimization via DyOS. 

θ> P0 [bar] P1 [bar] v2)), [m/s] 

Range 0.07-0.5 0.005-0.05 0.1-2 

 

5. Results  

5.1 First step: optimization using TSEMO 

To initialize TSEMO, 30 random sets of inputs were sampled using a Latin Hypercube 

Sampling (LHS) method, and then the simulation inputs and outputs (i.e., recovery and purity) 

are used to train the initial GPs. Then, random samples were drawn from the GPs and 

multiobjective optimization is performed. Following this, new inputs for simulations were 

recommended by the algorithm to improve the objectives. Then, the new data points were 

added to the whole dataset for GP surrogate training in the next iteration. In this case study, we 

discuss the optimization results after 50, 100, 200, 300, 400, 500, and 600 PSA simulations, 
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which were recommended by TSEMO. Figure 3 (a) shows the obtained Pareto front, which 

represents the trade-off between recovery and purity through different numbers of simulations. 

The hypervolume can be used as an indicator to quantify the performance of multiobjective 

optimization [45, 46]. Figure 3 (b) shows that the hypervolume improves with the increase in 

the number of simulations. A significant improvement for the estimated Pareto front between 

50 and 100 simulations is observed while only moderate change is observed when further 

increasing the number of simulations. The growth in the hypervolume is negligible once the 

number of iterations is above 200 (Figure 3b). This result might be explained in two ways: one 

explanation is that the estimated Pareto front is almost close to the actual Pareto front and 

leaves little space for further improvement; an alternative explanation is that the searching 

efficiency of TSEMO considerably drops when the identified solutions are approaching 

optimality. This is a known issue of any stochastic search algorithm: the convergence is only 

guaranteed in the limit of an infinite number of function evaluations.   
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(a)  

(b)  

Figure 3. Multiobjective optimization of PSA via TSEMO. (a) optimization results through 

100 simulations recommended by TSEMO: to initialize TSEMO, LHS generated 30 

simulations, shown as the blue points; the algorithm recommended additional 100 

simulations, shown as the red crosses. The estimated Pareto front was evolved, shown as the 

black circles. (b) hypervolume quantification (reference point is [0, 0]) varying from 50 to 

600 simulations recommended by TSEMO.  

5.2 Second step: optimization using DyOS 

One issue with the stochastic global search is the lack of local refinement of the identified 

solutions. In particular, TSEMO does not use gradient information to improve approximate 

solutions further. Hence, it is desired to perform further gradient-based optimization that is 



 15 

initialized from the approximate solution points obtained in the first step. Following 600 

simulations via TSEMO, we selected 22 non-dominated points with purity over 80% and 

recovery over 75%, which are the starting points in the second step. For every individual point, 

DyOS is called to perform gradient-based optimization using the full model. As shown in 

Figure 4, DyOS slightly improves the estimated Pareto front until local optimality is satisfied. 

When referring to the hypervolume in Table 4, the improvement is not significant, which 

indicates that the estimated Pareto front based on the limited number of TSEMO simulations 

is very close to the local refined solution by gradient-based optimization.  

 

Figure 4. The result of the hybrid approach for the multiobjective optimization of PSA 

Table 4 presents the optimization performance. The hypervolume quantification indicates that 

DyOS does further improve the results from TSEMO. Nevertheless, the CPU time of DyOS is 

almost three times that of TSEMO. This is because TSEMO uses cheap-to-evaluate surrogate 

models and parallel computing is possible for surrogate models. By contrast, DyOS relies on 

gradients calculated from the sensitivity integration over all PSA cycles, and thus a large 

percentage of time is consumed to obtain the gradient information. Notably, the full-order 
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physical model is evaluated to ensure the result’s accuracy, which further increases the CPU 

cost in the second step. Hence, the second step is time-consuming.  

Table 4. Optimization performance via TSEMO and DyOS (reference point of hypervolume 

quantification is [0, 0]). 

 First step -TSEMO (600 simulations) Second step - DyOS 

CPU time [h] 29.5 81.7 

Hypervolume [-] 9,896 9,932 

 

6. Discussion 

To demonstrate the efficiency of this hybrid framework, we firstly compare the performance 

of TSEMO with that of NSGA-II. As shown in Figure 5, the estimated Pareto front from 

TSEMO is comparable to that of NSGA-II, while NSGA-II requires a significantly larger 

number of simulations than TSEMO. As shown in Table 5, TSEMO with 100 simulations has 

a closed hypervolume value the same as the NSGA-II with 2,400 simulations, while TSEMO 

only uses around 1/16th of the CPU time of NSGA-II. This is reasonable because TSEMO trains 

the GP-surrogate for the function evaluations during optimization, so it is not CPU-intensive 

as the rigorous model. NSGA-II is actually the optimizer within the TSEMO framework, so 

TSEMO has a similar exploration capacity as NSGA-II. TSEMO also employs Thompson 

sampling (acquisition function) to choose new sampling points, thus improving the exploitation 

capability. Therefore, the efficiency of TSEMO is higher than NSGA-II.    
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Figure 5. Comparison between Pareto set of solutions obtained by TSEMO – 100 simulations 

and NSGA-II – 2,400 simulations. 

Table 5. Optimization performance between NSGA-II and TSEMO (reference point of 

hypervolume quantification is [0, 0]). 

 NSGA-II 

2,400 simulations 

TSEMO 

100 simulations 

CPU time [h] 63.2 3.9 

Hypervolume [-] 9,877 9,875 

From Table 4, we noticed that the optimization result from TSEMO is closed to that of DyOS, 

but DyOS costs significantly more CPU time. However, it is important to notice that the 

deterministic local search also offers distinct advantages for the considered case study. Firstly, 

DyOS verifies that the optimization result of TSEMO is ‘good enough’. Without the 

verification, there are no criteria to check the optimality only by TSEMO. Secondly, DyOS 

indeed improves the optimization result. A slight improvement of operating condition may only 

introduce little difference in one hour for a laboratory set-up. However, such improvement can 
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be significant for an annually operated industrial PSA plant. Last but not least, the searching 

efficiency of DyOS is higher than TSEMO when the optimization result is near optima. We 

introduce a value to quantify the searching efficiency:  

 𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
ℎ𝑦𝑝𝑒𝑟𝑣𝑜𝑙𝑢𝑚𝑒	𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡

𝐶𝑃𝑈	𝑡𝑖𝑚𝑒  (10) 

As shown in Figure 6a, the growth of hypervolume slows down with the increase of iteration 

of TSEMO, while the CPU time starts to increase gradually. Thus, the search efficiency of 

TSEMO dramatically decreases after 3rd iteration. DyOS is initialized based on the result of 

the 7th iteration of TSEMO. The searching efficiency of DyOS is over 11 times that of TSEMO 

on its 7th iteration (Table 6). This means that TSEMO requires much more than 11 times CPU 

time to achieve the same trade-off curve calculated from DyOS, given the searching efficiency 

of TSEMO keeps going down.  

(a)  
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(b)                       

Figure 6. (a) Hypervolume and CPU time via TSEMO and DyOS (The reference point of 

hypervolume quantification is [0, 0]). (b) the average hypervolume improvement when a 

new simulation is added. Iterations 1 – 7 refer to the influence of TSEMO, which 

recommends 50, 100, 200, 300, 400, 500, and 600 simulations, respectively. Iteration 8 

refers to the influence of DyOS based on 22 data points.  

TSEMO belongs to a stochastic search algorithm. Theoretically, TSEMO can only converge to 

optimality in the limit of an infinite number of function evaluations. In other words, the 

searching efficiency of TSEMO declines inevitably and approaches 0 eventually. That is an 

inherent characteristic of the stochastic method – focusing on space-filling, rather than the 

improvement of individual points as gradient-based methods. Both TSEMO and DyOS tend to 

find better results than the last iteration, but the improvement on individual points is quite 

different. As shown in Figure 6b, the average hypervolume improvement on an individual point 

drops significantly with the increase of TSEMO iteration, while DyOS can still take advantage 

of the gradient to further optimize the individual point (operating conditions for new 

simulation). As shown in Table 6, the difference can be 553 times when comparing between 

DyOS and the last iteration of TSEMO, regarding the hypervolume improvement of an 

individual point. In other words, in the proximity of an optimal solution, DyOS possesses a 

significantly higher exploitation capacity than TSEMO.  
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Table 6. Searching efficiency via TSEMO and DyOS (reference point of hypervolume 

quantification is [0, 0]). 

 First step -TSEMO 

(7th iteration) 
Second step - DyOS 

CPU time [h] 7.38 81.7 

Hypervolume improvement [-] 0.3 36.5 

Searching efficiency [1/h] 0.04 0.45 

No. of updated data points [-] 100 22 

Hypervolume improvement per point [-] 0.003 1.66 

 

7. Conclusions and outlook 

When solving the multiobjective optimization problem of PSA deterministically, the main 

challenge is the high computational cost. In this work, a hybrid (TSEMO + DyOS) optimization 

framework is developed to secure a high searching efficiency and accuracy for a four-stage 

PSA system with an application in CO2 capture.   

In the hybrid optimization framework, the first step employs our open-source Bayesian 

optimization algorithm, TSEMO, to search the full decision space efficiently. This step 

identifies an approximate Pareto front of two objectives, CO2 purity and recovery. In the second 

step, DyOS starts from the most promising objective points obtained in the first step and further 

improves the optimization result of PSA until optimality. The small improvement in the 2nd 

step indicates that TSEMO can achieve nearly optimal operation conditions of PSA within the 

limited number of simulations. 

The hybrid optimization framework possesses an excellent optimization efficiency. Such 

efficiency benefits from the coarse-to-fine function evaluations and stochastic-to-deterministic 
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searching strategy. TSEMO employs GP-surrogates for function evaluations in the initial 

coarse search. Hence, the efficiency of TSEMO is higher than NSGA-II. However, the 

searching efficiency of TSEMO dramatically drops on the nearly-optimal condition, where the 

hybrid framework can use DyOS to further improve the searching efficiency by over 10 times. 

This is because TSEMO belongs to stochastic methods, which are weaker in exploitation than 

deterministic methods, when the optimal solution is nearly optimal. Therefore, the overall 

searching efficiency on PSA optimization can be ranked as follows, hybrid (TSEMO + DyOS) 

framework > TSEMO > NSGA-II. 

Ideally, the hybrid framework can be implemented iteratively as follows, (TSEMO à DyOS) 

à (TSEMO à DyOS) à (TSEMO à DyOS) … An iterative way can help balance the 

exploration and exploitation better, thus leading to fast convergence to the optimal solution. In 

the case study of PSA, the optimization result from TSEMO was thought to be ‘good enough’, 

which can be referred to the result of NSGA-II (2400 simulations / 63 hours in total) and DyOS. 

Also, the second step on DyOS consumed significantly more time. As a result, the iterative 

way for the hybrid framework was set aside. In the future, two factors might make the iterative 

way more appealing and practical: 1) fast evaluation of PSA process model: reformulate the 

PSA model to make the system efficiently converge to cyclic steady state; 2) parallel 

computing in DyOS: initialize the exploitation for all individual points simultaneously.  

This hybrid multiobjective optimization framework can be used to explore other competing 

criteria, such as energy consumption and productivity of PSA. Further, this approach can be 

extended to optimization of any other complex expensive-to-evaluate dynamic processes. 

TSEMO seems to already deliver a ‘good-enough’ trade-off curve among multiple criteria in a 

relatively low time cost, while the hybrid framework can be used to accelerate the trade-off 

curve to converge to the real ‘good-enough’ solution. Pursing the optimality can be especially 
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meaningful to high-value processes because a slight improvement of the operating condition 

can make a significant impact on an annually operating industrial plant.    
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Figure S1. Four-stage PSA for CO2 capture 

S1 Model Equation 

The PSA process is operated in a cyclic mode between absorbing desired gas species at a higher 

pressure and releasing them at a lower pressure. A typical PSA consists of four stages: the gas 

mixture flows into the column at the high pressure (PH); then the undesired gas species are extracted 

out due to their weaker interactions with absorbents, while the column pressure decreases to an 

intermediate pressure - the blowdown pressure (PI); further, the column continues to be evacuated 

to an even lower pressure – evacuation pressure (PL) and the desired product is expected to be 

extracted in the meanwhile; following this, the column is fed with the gas mixture until the high 

pressure (PH). In some cases, the high pressure (PH) is set to vacuum level to pursue a higher 

absorption capacity and lower energy consumption, thus resulting in vacuum swing adsorption 

(VSA). These four stages make up one cycle of PSA and the repeating cycles purify the desired 

product in a cyclic way. This work is mainly focused on a four-stage pressure swing adsorption 

(PSA) process model for CO2 capture (Figure S1) as reported at Haghpanah’s work [1]. A column 
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packed with solid adsorbent is considered, and the following assumptions are used to derive the 

balance equations： 

(1) A one-dimensional dispersed plug flow model is applied to simulate the bulk fluid flow in the 

axial direction. 

(2) No mass, temperature, or pressure gradient exists in the radius direction. 

(3) Ideal gas law is applied for the state of the gas phase. 

(4) Ergun equation is used for the pressure drop in the axial direction. 

(5) The thermal equilibrium between the gas and solid phase is established instantaneously. 

(6) Diffusion through adsorbent pores is considered as molecular diffusion in the macropores. 

(7) Multisite Langmuir model is applied to calculate the solid phase saturation loading.  

Total mass balance in gas phase: 
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Component mass balance in solid phase: 
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Energy balance in the column wall: 
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Pressure drop by Ergun Equation: 
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The mass transport coefficient given by  
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∗ is obtained from a dual-site Langmuir model: 
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where >!, @! are the solid phase saturation loadings of sites 1 and 2, respectively. They can be 

calculated based on Arrhenius-type temperature dependence: 

 >! = >4,!exp	(−
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S2 Boundary conditions 

The model equations for four stages of PSA are exactly same while different stages are 

distinguished from each other by their boundary conditions of pressure: Adsorption (Ads), 

Blowdown (Bd), Evacuation (Evac) and Feed pressurization (Press). $%5%67 refers to the time point 

spent in a PSA cycle. $%5%67 is always initialized as 0 when starting a new PSA cycle. 

 

Ads $%5%67 ∈ [0, $830]   
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Bd $%5%67 ∈ [$830, $830 + $13]	   
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Evac $%5%67 ∈ [$830 + $13 , $830 + $13 + $7A8%]	   
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Press $%5%67 ∈ [$830 + $13 + $7A8% , $830 + $13 + $7A8% + $(B700]	   
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S3 Simulation of PSA 

The model equations are discretized using a finite volume method and partial differential equations 

(PDEs) are turned into a set of differential-algebraic equations (DAEs). This DAEs system was 

initially set up in Matlab and later we transferred the model to Dymola, a Modelica platform. If the 

column is discretized as 30 equal volumes (“30” is recommended based on both accuracy and 

efficiency by Haghpanah [1]), 1220 equations are generated. In numerical solving, MATLAB tends 

to proceed equation line by line, builds a large sparse matrix and solves equations in an iterative 

way. By contrast, Modelica is an objected-oriented modelling language [2], and all equations are 

solved simultaneously. Eventually, the DAEs are implemented and numerically integrated by the 

Dassl solver using the Modelica language in Dymola 2018. The full model of PSA can be the sum 

of four stages multiplied by corresponding binary variables (S.19). Through varying binary 

variables [M$, M/, MC, MD], the four stages of PSA model can be simulated continuously.  

 "NO = M$N830 + M/N13 + MCN7A8% + MDN(B700	 (S.19.)  

 

Table S1. Binary variables for four stages 

 N830 N13 N7A8% N(B700 

M$ 1 0 0 0 

M/ 0 1 0 0 

MC 0 0 1 0 

MD 0 0 0 1 

 

After completing four stages, re-initialize the cycle time ($%5%67) as 0 and then start the simulation 

of another one cycle of PSA. As a consequence, the PSA cycle is simulated iteratively until a cyclic 

steady state (CSS) is reached. Theoretically, when a CSS is reached, the column profile is expected 

to the same between the same step in two subsequent cycles. In the mathematical language, when 

Px(t) − x(t + tEFEGH)P < δ, PSA is deemed to be under CSS. The dynamic simulation of PSA can 

be found in Figure S2. 
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Figure S2. The dynamic behavior of PSA 
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S4 Validation of the PSA model 

As shown in Table S2, this model is validated by comparison to the energy consumption in the literature [1]. Given the same operating 

condition, the simulation result can be well-reproduced.  

 

Table S2. Validation of simulation results by comparison with the literature values reported by Haghpanah et.al.[1] 

 Literature simulation 
reproduce 1 

simulation 
reproduce 2 

simulation 
reproduce 3 

 Energy 
[kWh/(t CO2)] 

Energy 
[kWh/(t CO2)] 

Energy 
[kWh/(t CO2)] 

Energy 
[kWh/(t CO2)] 

Operation I 213.22 213.01 213.01 213.01 

Operation II 176.14 177.96 177.96 177.96 

Operation III 148.96 150.22 150.22 150.22 
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S5 Flowchart of TSEMO 

TSEMO is an in-house algorithm to solve multiobjective optimization problems [2]. This algorithm 

aims to identify Pareto front between multiple objectives of expensive-to-evaluate models. First, a 

small dataset of simulations is collected using a space-filling design method (e.g., Latin Hypercube 

Sampling). Subsequently, two individual GP surrogate models are trained on the two objectives. 

Then, TSEMO takes random samples of the GPs and uses a multiobjective genetic algorithm to 

identify the Pareto front of the two sampled functions. Among the final population of the genetic 

algorithm, TSEMO selects the next sample point based on an expected hypervolume improvement. 

Within the approach, the randomness of the samples balances the effort for exploration of the 

experimental domain (reduction of model uncertainty) and exploitation of the objectives (finding 

regions of optimality). The algorithm terminates when a desired number of simulations is reached 

(stopping criteria is the allocated experimental budget). The framework of TSEMO can be referred 

to the Figure S3.    
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Figure S3. Framework of TSEMO [2]. 

Two essential characteristics of TSEMO are: (i) the built-in GP-surrogates learning, and (ii) the 

adaptive sampling method. Adaptive sampling applies a hypervolume indicator to provide a 

‘sampling direction’. Hypervolume is a quantitative method to estimate how well is the Pareto front 

approximated [3, 4]. TSEMO will search the new sampling points, which can improve the 

hypervolume indicator. 
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S6 Framework of DyOS 

DyOS is a framewor for adaptive direct sequential multi-stage dynamic optimization [5]. DyOS 

integrates different non/linear equation solvers, integration, optimization NLP solvers, and is 

designed for large-scale multi-stage dynamic optimization problems. Based on direct adaptive 

shooting algorithms, DyOS is tailored to DAEs, and it can integrate multi-stage process models 

continuously. Initial guesses are given to the decision variables. Several integrators are available 

for the DAEs to integrate time-dependent variables and gradient over the time horizon of all stages. 

Following this, function values and gradient values are passed to NLP solver for optimization. 

DyOS can be set up in either Matlab or Python. The framework of DyOS is shown in Figure S4.  

 
Figure S4. Framework of DyOS [4]. 
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S7 Optimization set-up of PSA on DyOS 

The guessed values of decision variables are required to initialize DyOS. One cycle of full-order 

PSA model is programmed in the Modelica language, which is then compiled to Functional 

Mockup Unit (FMU) as a model input to DyOS. DyOS calls the FMU repeactedly until CSS, the 

objective (recovery) and the constraint (purity) are evaluated in the last cycle. Full state mapping 

links the state variables between two subsequent cycles, which can overcome the 

discrete/continuous issue of PSA. Through the integrator and NLP solver within DyOS, the optimal 

values for decision variables can be determined.   

   

 
Figure S5. Optimization set-up of PSA on DyOS
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S8 Values of decision variables by the hybrid approach  

Table 1. hybrid approach for the multiobjective optimization of PSA: the corresponding decision variables. 

TSEMO decisions – 600 simulations DyOS decisions 
PL/1000 PI/10000 vfeed tads/100 tbd/100 tevac/100 PL/1000 PI/10000 vfeed 
0.5 0.880487 0.347208 0.60115 0.999232 1.89142 0.5 0.7 0.229774 
0.5 0.7 0.22804 0.930513 0.342909 1.257679 0.5 0.7 0.22804 
0.779682 0.700341 0.281475 0.833384 1.700676 1.261054 0.5 0.7 0.294035 
0.684084 0.7 0.611681 0.391217 1.149653 1.635953 0.5 0.7 0.632977 
0.576999 0.7 0.488979 0.572768 0.725114 1.472715 0.5 0.7 0.493956 
0.657376 0.840852 0.740873 0.49467 0.755455 1.835819 0.5 0.7 0.608736 
0.5 1.001157 0.710936 0.673961 0.3 2 0.5 0.7 0.474782 
0.5 0.7 0.926407 0.449104 1.051403 1.782759 0.5 0.7 0.926407 
0.572962 0.7 1.131029 0.450885 1.903985 2 0.5 0.7 1.14114 
0.515198 0.7 1.387293 0.360134 0.3 1.426807 0.5 0.7 1.388694 
1.334989 0.7 1.121346 0.411061 1.665885 1.988835 0.5 0.7 1.304453 
0.5 0.7 0.891859 0.669812 1.677351 1.405318 0.5 0.7 0.891859 
0.706421 0.7 1.693612 0.361687 1.868023 1.959067 0.5 0.7 1.735485 
0.647267 0.7 1.613504 0.439415 0.868861 2 0.5 0.7 1.638038 
0.5 0.727163 1.191254 0.685667 0.677946 1.892645 0.5 0.7 1.153165 
0.81764 0.7 1.017771 0.719202 0.332629 1.345802 0.507727 0.7 1.043587 
0.5 0.726966 2 0.431704 1.61266 1.892487 0.5 0.7 1.937147 
0.660234 0.720004 1.265342 0.745474 1.48701 2 0.5 0.7 1.249492 
0.5 0.702484 1.668763 0.57197 1.904343 1.981857 0.5 0.7 1.663736 
0.89 0.708067 0.881114 0.999932 1.630597 1.444556 0.533983 0.7 0.897656 
1.750526 0.770418 1.376968 0.806094 1.733595 2 1.130517 0.705417 1.371464 
1.36108 0.7 1.512352 0.733896 1.844054 1.86276 0.654316 0.712248 1.650399 

Table 1 shows the values of the decision variables corresponding to the Pareto front shown in Error! Reference source not found.. The 

evacuation pressure (PL) and blowdown pressure (PI) are driven to the lower bound following the gradient in DyOS, while the inlet flowrate 
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changes little. Haghpanah et al. reported that a lower evacuation pressure (PL) can remove side-products and improve CO2 recovery [1], 

which is consistent with our result. 
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S9 Reproducing the multiobjective optimization result via TSEMO 

A1 

 

B1 

 

C1 

 

A2 

 

B2 

 

C2 

 

A1, A2 – trial 1 B1, B2 – trial 2 C1, C2 – trial 3 
Figure S6. Multiobjective optimization of PSA via TSEMO. (A1, B1, C1) optimization results through 100 simulations recommended by 
TSEMO: to initialize TSEMO, LHS generated 30 simulations, shown as the blue points; the algorithm recommended additional 100 simulations, 
shown as the red crosses. The estimated Pareto front was evolved, shown as the black circles. (A2, B2, C2) hypervolume quantification 
(reference point is [0, 0]) varying from 50 to 600 simulations recommended by TSEMO.  
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We ran the TSEMO three times. In trial 1 and trial 2, we started the TSEMO from the same initial sampling points. In trial 3, we 
initialized TSEMO from different initial sampling points. Hypervolume is used as an indicator to quantify the performance of 
multiobjective optimization. In the initial several iterations, the deviation of results is significant, while the deviation becomes smaller 
with the increase of iterations. The deviation can be negligible in the last iteration (600 simulations). 
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