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One Sentence Summary 

Crosstalk signalling from mTOR to eIF2 in response to the chemotherapeutic doxorubicin 

mediates cell migration  
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Abstract 

Following exposure to cytotoxic chemotherapeutics, tumour cells alter their translatome to 

promote cell survival programmes through the regulation of eukaryotic initiation factor (eIF) 4F 

and ternary complex.  Compounds that block mTOR signalling to eIF4F complex formation, 

such as rapamycin and its analogues, have been used in combination therapies to enhance 

cell killing, although their success has been rather limited.  This is likely to result from the fact 

that the crosstalk between signalling pathways which co-ordinate eIF4F regulation with ternary 

complex formation following treatment with genotoxic therapeutics has not been fully explored. 

Herein, we describe a regulatory pathway downstream of p53 whereby inhibition of mTOR, 

following DNA damage, promotes crosstalk signalling and leads to eIF2 phosphorylation.  

We show that eIF2 phosphorylation does not inhibit protein synthesis, but is instead required 

for cell migration.  Importantly, blocking this pathway by chemical intervention with either ISRIB 

or Trazadone limits cell migration, supporting the notion that therapeutic targeting of eIF2 

signalling could restrict tumour cell metastasis and invasion and would be beneficial to subsets 

of cancer patients. 
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Introduction 

Protein synthesis is one of the most energy-consuming cellular metabolic processes (1), and 

in response to stress or damage, mammalian cells rapidly reprogram protein synthesis to 

reduce energy demands and adapt to the stress imposed (2).  Control of protein synthesis is 

complex, with many regulatory signalling pathways converging on the factors regulating cap-

dependent mRNA translation, which is a three step process (initiation, elongation and 

termination). The process of mRNA translation is predominantly regulated through the 

modification of the phosphorylation status of eukaryotic initiation (eIF) and elongation (eEF) 

factors (3).  

Regulation of protein synthesis at initiation is controlled by two critical rate-limiting steps; eIF4F 

assembly and ternary complex (TC) formation (3).  The eIF4F complex (comprised of the cap-

binding protein eIF4E, the DEAD-box helicase eIF4A, and the scaffold protein eIF4G) 

assembles at the 5’ cap structure of mRNA.  eIF4E bioavailability, and thus eIF4F complex 

formation, is regulated by a family of eIF4E-binding proteins (4E-BPs) that compete with eIF4G 

for a single binding site on eIF4E (4). Through this mechanism, 4E-BPs inhibit cap-dependent 

translation by preventing the subsequent recruitment of the 43S complex. The capacity of 4E-

BPs to bind eIF4E is regulated by mechanistic target of rapamycin complex 1 (mTORC1). In 

response to growth factors and amino acids, mTORC1 positively regulates translation initiation 

through the phosphorylation of 4E-BPs and p70 S6K (5). Upon mTORC1 activation, 4E-BPs 

are hyper-phosphorylated, inhibiting binding to eIF4E and thereby enabling eIF4F formation. 

Conversely, in response to mTORC1 inhibition, 4E-BPs are hypo-phosphorylated, promoting 

their binding to eIF4E and inhibition of eIF4F formation (6).  

The TC is comprised of eIF2 in complex with GTP and the initiator tRNA (tRNAimet), and 

functions to deliver this tRNA to the 43S complex during translation initiation. After start codon 

recognition, eIF2 undergoes GTP hydrolysis and is released from the initiation complex as 

eIF2-GDP, which is then recycled by the guanine nucleotide exchange factor (GEF) eIF2B 
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back to eIF2-GTP (3). eIF2 is phosphorylated within the  subunit (eIF2) in response to a 

range of stresses, which enhances the affinity of eIF2-GDP for eIF2B, thus decreasing the 

availability of TC and inhibiting translation initiation (7). Four eIF2 kinases (eIF2Ks) have been 

identified in mammalian cells: GCN2 (general control non-derepressible-2), PKR (protein 

kinase double-stranded RNA-dependent), PERK (PKR-like ER kinase), and HRI 

(hemeregulated inhibitor), which phosphorylate eIF2 in response to a range of stress stimuli 

including amino acid deprivation, UV-induced DNA damage, viral infection, endoplasmic 

reticulum (ER) stress and heme deficiency (8). In addition to inhibiting global protein synthesis, 

eIF2 phosphorylation enables the cell to  reprogram translation (2) and selectively translate 

mRNAs containing upstream open reading frames (uORFs) (7), which encode proteins 

required for the stress response. For example, in response to bulky DNA adducts-inducing 

agents, including anti-cancer chemotherapeutics such as cisplatin, protein synthesis is rapidly 

inhibited via GCN2-dependent phosphorylation of eIF2α (9–11), while the translation of uORF-

containing mRNAs which encode proteins that regulate DNA-damage repair pathways is 

simultaneously enhanced (10, 11).   

The formation of TC and eIF4F were originally thought to be distinct processes that converged 

to regulate translation initiation. However, it has been shown recently that TC availability and 

eIF4F formation are exquisitely co-ordinated to provide a robust response to cellular stress. 

For instance, acute activation of mTORC1 inhibits 4E-BPs and enhances eIF4F formation 

while simultaneously decreasing eIF2 phosphorylation through a mechanism dependent on 

the phosphorylation of eIF2, to increase TC availability (12). Conversely, catalytic mTORC1 

inhibition has been shown to enhance eIF2 phosphorylation via the PP6c-dependent 

activation of GCN2 (13). Furthermore, PERK/GCN2-dependent eIF2α phosphorylation 

induced by oxidative stress was shown to diminish mTORC1 activity (14), whereas mTORC1 

hyper-activation in TSC2 deficient cells diminishes PERK activity and eIF2α phosphorylation 

(15). Moreover, Akt has been implicated in maintaining an inhibitory phosphorylation site on 

PERK, preventing its activation (16). These studies suggest that mTOR- and eIF2K-signalling 
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are closely intertwined, and enable a cell to form a co-ordinated, specific and robust response 

to cell stress, as it is not beneficial for a cell to expend energy on forming TC when eIF4F is 

not present to recruit the 43S subunit.  

During tumorigenesis, the same pathways that limit protein synthesis under stressed 

conditions permit survival and the increased proliferation of cancer cells in the unfavourable 

growth conditions within the tumour microenvironment.  Therefore, the signalling pathways 

and proteins that are involved in these processes provide attractive therapeutic avenues for 

cancer treatments (17–19). Initially, mTOR inhibitors such as rapamycin and its analogues 

(rapalogues), including temsirolimus and everolimus, were tested in a wide spectrum of human 

tumours, as both monotherapies and combination treatments with doxorubicin (Adriamycin) 

(20, 21), although response rates in clinical trials are modest.  More recently, there has been 

increased research into the consequences of inhibition of signalling from eIF2Ks to restrict 

activation of the pro-survival unfolded protein response in tumour cells, with some promising 

data in this regard (22, 23). However, what is poorly understood and has not been investigated 

is the extent of crosstalk between mTOR- and eIF2K-signalling in response to cancer 

chemotherapeutics, and how combination therapies based on the inhibition of these pathways 

impact on cell survival.  Here, we set out to address these questions by studying the regulation 

of protein synthesis in response to doxorubicin-induced DNA damage, and since p53 is pivotal 

in this response we chose to use the model cell line MCF10A, which is non-tumour derived, 

and a parallel MCF10A cell line where p53 is deleted (MCF10Ap53-/-). Importantly, we have 

identified a novel, DNA-damage specific, crosstalk signalling pathway between mTOR and 

eIF2 in response to a physiological and clinically relevant stimulus. We show that doxorubicin 

inhibits protein synthesis via the p53-dependent inhibition of mTOR signalling, and that 

doxorubicin-induced mTOR inhibition enhances the phosphorylation of eIF2 via the 

activation of GCN2 and PERK.  Moreover, we show that this signalling pathway is functional 

in a range of cancer cell lines and our data suggest that phosphorylation of eIF2 is not 

necessary for protein synthesis shut down, but rather under stress conditions it is required for 
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cell migration, and therefore these data have important implications for the use of inhibitors of 

these pathways in a clinical setting.  
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Results 

Doxorubicin inhibits global protein synthesis via the mTOR axis 

Doxorubicin acts as a topoisomerase II poison at concentrations in excess of 400 nM (24, 25) 

and at higher doses can generate DNA damage through indirect mechanisms (25), including 

the generation of ROS (26).  Many studies that use cell culture assays to investigate the 

mechanism of action of doxorubicin employ concentrations in excess of 1 M, and although 

this has provided valuable insights, it should not be considered clinically relevant.  Therefore, 

we chose to study the effects of doxorubicin using a concentration of 500 nM (Fig S1A). 

To determine the effect of doxorubicin on global protein synthesis, radiolabelled [35]S-

methionine incorporation was used. Protein synthesis was not significantly inhibited until 9 

hours after treatment with doxorubicin (Fig 1A), a considerable delay from the initial 

recognition of DNA damage, culminating in a total reduction of over 50% at 24 hours. Sucrose 

density gradient centrifugation was used to measure the distribution of ribosomes between 

subpolysomes (free ribosomes) and polyribosomes, and to determine if doxorubicin inhibits 

ribosome recruitment to mRNA. After treatment with doxorubicin for 6 hours, global protein 

synthesis was not inhibited (Fig 1A) and this was reflected in the polysome profile analysis, 

where a minimal decrease in polysomes and increase in subpolysomes was observed (Fig 

S1B). In contrast, the number of polysomes decreased dramatically when protein synthesis 

was inhibited at 24 hours, suggesting that the inhibition of initiation blocked ribosome loading 

onto mRNA (Fig 1B). During a block in translation initiation, ribosomes would ordinarily 

dissociate from polysomes and accumulate as free ribosomes in subpolysomes. However, 

ribosomes lost from polysomes did not accumulate within the subpolysomes in response to 

doxorubicin, suggesting that this treatment does not result in the “classical” initiation block, 

such as that observed in response to the mTOR inhibitor AZD8055 (Fig S1C). However, these 

data are consistent with prolonged treatment with doxorubicin resulting in either ribosome 
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degradation or accumulation of ribosomes within non-soluble stress granules, as has been 

observed in response to UV-induced DNA damage in yeast (27) and mammalian cells (28).  

mRNA translation initiation is inhibited at the initiation stage by the phosphorylation of 4E-BPs 

and eIF2, regulating eIF4F and TC formation respectively (Fig 1C). To understand the 

regulation of eIF2 and 4E-BPs in relation to the inhibition of translation initiation, western blot 

analysis was used out to determine the cellular signalling response to doxorubicin. The DNA-

damage response (DDR) was activated within 3 hours of treatment, as shown by the 

phosphorylation of ATM and its substrate checkpoint kinase 2 (Chk2) (Fig 1D). Interestingly, 

eIF2 phosphorylation was not observed until 12 hours after treatment with doxorubicin, at a 

point when protein synthesis had been robustly inhibited. Moreover, eIF2 phosphorylation 

was preceded by the inhibition of mTOR signalling, and the dephosphorylation of 4E-BP1 

observed at 6-9 hours after treatment (Fig 1D) correlated with the inhibition of protein 

synthesis. 

As eIF2 phosphorylation was only observed after mTORC1 inhibition and did not correlate 

with the initial inhibition of proteins synthesis, it was important to establish the role played by 

eIF2 phosphorylation in this regard. To address this question we used the integrated stress 

response inhibitor (ISRIB), which has been demonstrated to reverse the inhibitory effect of 

eIF2 phosphorylation on global protein synthesis (29). ISRIB does not inhibit the activity of 

eIF2Ks or the phosphorylation of eIF2 (29), but relieves all eIF2 phosphorylation-dependent 

signalling, such as the induction of ATF-4 expression (30). To demonstrate the functionality of 

ISRIB in MCF10A cells, thapsigargin was used to induce ER stress and inhibit protein 

synthesis, and this inhibition was reversed by the addition of ISRIB (Fig 1 Ei). However, when 

MCF10A cells were treated with doxorubicin in the presence of ISRIB, ISRIB did not rescue 

the reduction in protein synthesis (Fig 1 Eii), indicating that doxorubicin-induced translation 

inhibition is not dependent on eIF2 phosphorylation. In agreement with previous studies (30), 

immunoblot analysis showed that thapsigargin-induced ATF4 expression was abolished by 
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co-treatment with ISRIB and thapsigargin-induced eIF2 phosphorylation was unaffected (Fig 

1F). However, ISRIB surprisingly abolished doxorubicin-induced eIF2 phosphorylation (Fig 

1F), indicating that when cells are subjected to prolonged stress in the presence of ISRIB, the 

compound may lead to off-target effects or modulate the stress response in an alternative 

way. Moreover, doxorubicin did not enhance the expression of ATF4 (Fig 1F and S1D) or other 

proteins that are upregulated during the ISR (Fig 1F). It was somewhat surprising that ATF4 

expression was not upregulated in the presence of high levels of eIF2α phosphorylation, 

however, this was most likely due to a lack of availability of the ATF4 mRNA, as it has been 

shown  previously that ATF4 expression is dependent on the co-ordinated transcriptional and 

translational regulation during the integrated stress response (ISR) (31).  Importantly, 

regardless of the effects of ISRIB on doxorubicin-induced eIF2 phosphorylation, these data 

strongly suggested that eIF2 phosphorylation did not make a major contribution to 

doxorubicin-induced inhibition of protein synthesis and instead this was most likely regulated 

by the inhibition of mTORC1 signalling.  

p53 is required for doxorubicin-induced mTORC1 inhibition  

p53 is an important mediator of the DDR, arresting the cell cycle to enable to the repair of 

DNA, or initiating cell death pathways. It has been shown previously that p53 functions as a 

negative regulator of mTOR signalling (32) (Fig 2A) and mTOR activity is enhanced in p53-

deficient tumours (33).  Therefore, we investigated the role of p53 in doxorubicin-induced 

mTORC1 inhibition using an MCF10A p53 knockout cell line (p53-/-).  

MCF10A cells with wild-type or deleted p53 (p53+/+/p53-/-) were treated with doxorubicin or the 

catalytic mTOR inhibitor AZD8055 for 16 hours, and signalling pathways analysed by western 

blotting (Fig 2B).  As expected, p53 was stabilised and the expression of p53-dependent 

transcripts such as Sestrin 2 were enhanced in response to doxorubicin in p53+/+ cells, 

whereas these where both abolished in p53-/- cells (Fig 2B). Interestingly, dephosphorylation 

of p70 S6K induced by doxorubicin was also abolished in p53-/- cells and the reduction of p-
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4E-BP1 was modestly relieved (Figs. 2B and 2C). Crucially, catalytic inhibition of mTOR with 

AZD8055 robustly inhibited mTOR signalling in both p53+/+ and p53-/- cell lines (Figs. 2B and 

2C), suggesting that p53 may be regulating signalling pathways upstream of mTORC1. This 

hypothesis was further supported using a siRNA specific to p53 (sip53) to deplete p53 in p53+/+ 

cells. After treatment with doxorubicin, p53-depleted cells lost the reduction of p-p70 S6K that 

was observed in p53+/+ cells transfected with a non-targeting siRNA (Figs. 2D and 2E). 

However, there was minimal change in the level of p-4E-BP1 (Figs. 2D and 2E), suggesting 

that an additional signalling mechanism may also regulate 4E-BP1 activity. Tuberous sclerosis 

complex (TSC) is an important negative regulator of mTORC1 activity (34) that has been 

shown to be activated in response to DNA damage (35) (Fig S2A). Importantly, by depleting 

TSC2 and hence inactivating TSC, our data show that doxorubicin-induced mTORC1 

inhibition was independent of TSC (Fig S2B and Fig S2C). 

Analysis of polysome profiles, and quantification of the area under the curve of the polysomes 

and subpolysomes obtained from p53+/+ cells treated with doxorubicin, showed a large 

reduction in polysomally-associated mRNAs (Figs. 1B, 2F and 2G) compared to p53-/- cells 

(Fig 2G). Moreover, using [35]S-methionine incorporation, doxorubicin-induced inhibition of 

global protein synthesis was also shown to be partially restored after knockout or knockdown 

of p53 (Fig 2H), supporting the polysome profile data. Taken together, these data are 

consistent with the notion that p53 mediates mTORC1 inhibition in response to doxorubicin. 

mTOR inhibition enhances eIF2 phosphorylation  

Communication between mTOR and eIF2 signalling pathways has recently been described 

(12–15), which enables the co-ordination of TC with eIF4F formation in response to cellular 

stress or growth stimulation.  Importantly, our data show that mTORC1 inhibition preceded the 

phosphorylation of eIF2 after treatment with doxorubicin, suggesting that mTORC1 could 

regulate eIF2 phosphorylation in response to DNA damage. To investigate this further, both 

p53+/+ and p53-/- MCF10A cells were treated with either doxorubicin or the catalytic mTORC1/2 
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inhibitor AZD8055.  The data show that p53-/- cells lost the capacity to enhance eIF2 

phosphorylation in response to doxorubicin (Figs. 3A and 3B), suggesting that mTOR inhibition 

was required for doxorubicin-induced eIF2 phosphorylation. The phosphorylation of eIF2 

was still enhanced in p53-/- cells in response to catalytic mTOR inhibition (Figs. 3A and 3B), 

indicative of functional signalling downstream of mTOR. These data strongly suggest that p53-

dependent mTOR inhibition was critical for the subsequent phosphorylation of eIF2.   

To further explore the correlation between mTOR signalling and eIF2 phosphorylation, 

MCF10A p53+/+ cells were treated with the mTORC1/2 inhibitors Torin 1 and AZD8055, or the 

allosteric mTORC1 inhibitor Rapamycin. The phosphorylation of eIF2 is enhanced after 

treatment with all three mTOR inhibitors between 3-6 hours (Fig 3C), which corresponds to 

the delay observed between mTORC1 inhibition and eIF2 phosphorylation in response to 

doxorubicin (Fig 1D). To confirm that doxorubicin inhibited mTORC1 and not mTORC2, 

MCF10A p53+/+ cells were treated with either doxorubicin or the catalytic mTORC1/mTORC2 

inhibitor AZD8055, and mTORC2-dependent phosphorylation of Akt (at residue S-473) was 

monitored by immunoblot analysis. As expected, treatment with AZD8055 reduced 

phosphorylation of Akt at S-473, however, Akt phosphorylation was unaffected following 

treatment with doxorubicin (Fig S3A), strongly suggesting that doxorubicin inhibited mTORC1. 

To determine if mTOR-eIF2 crosstalk signalling was also functional in tumour cells, the 

mechanism was investigated in a range of cancer cell lines. Using the lung cancer cell line, 

A549, the data show that doxorubicin inhibited mTORC1 signalling and that both doxorubicin 

and AZD8055 significantly enhanced eIF2 phosphorylation (Figs 3Di and 3Dii). Moreover, 

mTOR-eIF2 crosstalk signalling mechanism was also present in HeLa cells (Fig S3B). 

Furthermore, in support of data obtained in MCF10A cells, siRNA knockdown of p53 in A549 

cells abolished both doxorubicin-induced mTORC1 inhibition and eIF2 phosphorylation, 

whereas AZD8055-induced eIF2 phosphorylation was maintained (Figs 3Ei and 3Eii).  
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The breast cancer cell line BT474 contains a temperature sensitive p53 mutation within the 

DNA binding domain that results in impaired p53 function (36). Therefore, to further validate 

the functional role of p53 and mTOR-eIF2 crosstalk signalling in tumour cells, we incubated 

cells at 37oc to maintain the inactivating p53 mutation or at 32oc to restore p53 function. As 

expected, doxorubicin treatment did not inhibit mTORC1 signalling or enhance the 

phosphorylation of eIF2 at 37oc when mutant p53 was present (Figs 3Fi and 3Fii). However, 

when p53 function was restored at 32oc, treatment with doxorubicin inhibited mTORC1 

signalling and subsequently enhanced the phosphorylation of eIF2 (Figs 3Fi and 2Fii). Taken 

together, these data strongly suggest that mTORC1-eIF2 crosstalk signalling is a general 

mechanism found in many different tissue or cell types and importantly is functional in tumour 

cells.  

In MEFs, it has been reported previously that inhibition of mTORC1 leads to the activation of 

GCN2, via the removal of an inhibitory phosphorylation site by protein phosphatase 6 (PP6) 

(13). To address the role of PP6 in human p53+/+ MCF10A cells, the catalytic component of 

PP6, PP6c, was depleted using a specific siRNA. The data show that inactivation of PP6 

abolished both doxorubicin- and AZD8055-dependent phosphorylation of eIF2 without 

reversing mTOR inhibition (Fig S4A), and suggest that PP6 may mediate the signalling 

response downstream of mTOR in response to DNA damage, consistently with other studies 

(13).  However, it is challenging to assign a precise role to PP6 in this pathway given its wide 

range of functions (37) and the fact that PP6c knock-down also has an inhibitory effect on 

global protein synthesis rates under control conditions (Fig S4B).  

mTOR-induced eIF2 phosphorylation is mediated by GCN2 and PERK 

Having established that DNA damage-dependent eIF2 phosphorylation requires mTORC1 

inhibition, it was important to determine the identity of the relevant eIF2 kinase. To answer this 

question, we used specific siRNAs to deplete the predominant eIF2Ks in MCF10A cells: 

PERK, GCN2 and PKR (Fig 4A). AZD8055-induced eIF2 phosphorylation was diminished 
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after depletion of either GCN2 or PERK, whereas depletion of PKR had a minimal effect (Fig 

4B). Moreover, combined reduction of GCN2 and PERK unsurprisingly resulted in the greatest 

reduction of eIF2 phosphorylation after treatment with AZD8055, but the simultaneous 

depletion of GCN2, PERK and PKR did not impair the phosphorylation of eIF2 further (Fig 

4C). These data are consistent with previous studies (13), in that GCN2 enhances the 

phosphorylation of eIF2 after prolonged mTOR inhibition; however, in human MCF10A cells, 

PERK was also capable of enhancing eIF2 phosphorylation. Surprisingly, individual 

depletion of eIF2Ks did not diminish doxorubicin-induced eIF2 phosphorylation (Figs 4Di and 

4Dii), although this was achieved with combined depletion of PERK and GCN2 (Fig 4E). In 

this case, the reduction of AZD8055- and doxorubicin-induced eIF2 phosphorylation was 

comparable, suggesting that both AZD8055 and doxorubicin promote crosstalk signalling via 

a common mechanism.  

Crosstalk between mTOR and eIF2 is required for cell migration 

A range of inhibitors targeting the eIF2 axis in cancers, either as a single agent or as 

combination therapies, are currently under development.  However, the function of eIF2 

phosphorylation in protein synthesis regulation is complex and very dependent on cell context. 

Thus in advanced prostate cancer, eIF2 phosphorylation with loss of PTEN was shown to be 

associated with poor patient survival (23), whereas in malignant melanoma it is associated 

with resistance to anti-PD-1 immunotherapy and increased cell migration (22). We therefore 

addressed how the crosstalk between eIF2 and mTOR pathways following treatment with the 

cytotoxic chemotherapeutic doxorubicin could impact upon cell migration. 

Trazodone is an anti-depressant which has been recently repurposed to treat 

neurodegeneration in mice (38). Like ISRIB, trazodone relieves eIF2α phosphorylation-

mediated translational repression. However, whereas ISRIB functions by enhancing eIF2B 

activity, it has been suggested that trazodone acts more directly to minimise the reduction of 

TC in response to eIF2α phosphorylation (Fig 5A) (38). Therefore, we used both chemical 
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compounds to determine the role of eIF2α phosphorylation in the regulation of cell migration 

in a wound healing assay. Importantly, treatment of MCF10A p53+/+ cells with doxorubicin 

causes cell cycle arrest at both G1/S and G2/M checkpoints (Figs 5B and S5B) and eIF2 

phosphorylation was maintained after treatment with doxorubicin for up to 72 hours (Fig S5A). 

Therefore, MCF10A p53+/+ cells were treated for 24 hours with doxorubicin in combination with 

ISRIB or trazodone, prior to inflicting the wound. Untreated cells start to migrate back into the 

wound within 48 hours (Fig 5C), and as expected, the migration of doxorubicin-treated cells is 

slower compared to untreated cells (reduced by ~70%) (Figs 5C and Fig 5D). However, 

consistent with a role for eIF2 signalling in migration following DNA damage, cells treated with 

doxorubicin and ISRIB show an even greater inhibition of migration into the wound (reduced 

by ~85%) compared to untreated cells (Figs 5C and 5D). Moreover, combining doxorubicin 

and trazodone almost completely abolishes cell migration and significantly reduces migration 

compared to treatment with doxorubicin alone (Figs 5C and Fig 5D). Doxorubicin induced a 

small but significant amount of cell death after 72 hours (Fig 5E), however, this small amount 

of death was unlikely to be sufficient to induce the observed changes in migration. Moreover, 

doxorubicin-induced cell cycle arrest was maintained after 72 hours in the presence of both 

ISRIB and trazodone (Fig 5F), strongly suggesting that observed changes in migration were 

not dependent on cell cycle regulation. 

As the inhibition of wound healing was greater using a combination of doxorubicin with 

trazodone, and that trazodone is already FDA approved with more clinical potential than 

ISRIB, the migration of cells treated with doxorubicin and trazodone was quantified using the 

xCELLigence RTCA DP instrument. This technique enables the real-time label free 

quantification of cell movement from an upper chamber (containing low serum media) to a 

lower chamber (containing high serum media). As cells migrate through a microporous 

membrane they pass over microelectrodes which measures impedance and enables the 

quantification of cell movement. MCF10A p53+/+ cells were treated with doxorubicin in 

combination with trazodone for 24 hours prior to seeding onto the xCELLigence RTCA DP 
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instrument and migration was quantified for 48 hours. Consistent with the data obtained from 

the wound healing assay, doxorubicin significantly reduced cell migration compared to 

untreated cells (Figs. 5G and 5H), and importantly, co-treatment of doxorubicin with trazodone 

again significantly reduces cell migration compared to cells treated with only doxorubicin (Fig 

5H).  

As doxorubicin-induced mTOR-eIF2 crosstalk signalling was shown to be functional in A549 

cells (Fig 3D and Fig 3E), and that eIF2 phosphorylation was maintained up to 72 hours after 

treatment (Fig S5C), the rate of A549 cell migration was analysed using the xCELLigence 

RTCA DP instrument. Interestingly, A549 cells treated with doxorubicin showed a greater 

capacity to migrate than MCF10A cells, albeit to a lesser extent than untreated cells (Figs 5I 

and Fig 5J). Importantly, in support of data obtained from MCF10A cells, co-treating A549 

cells with doxorubicin and trazodone significantly inhibited cell migration (Figs 5I and Fig 5J). 

A549 cells were more sensitive to doxorubicin-induced cell death at 72 hours (Fig S5D), 

however, the non-significant difference in cell death between cells treated with doxorubicin 

and co-treatment with trazodone were also unlikely to induce the significant inhibition of cell 

migration. Moreover, cell cycle arrest was maintained in A549 cells treated with doxorubicin 

and co-treatment with trazodone for up to 72 hours (Figs S5E and S5F), strongly suggesting 

that changes in migration were not dependent on differential cell cycle regulation. 

Taken together these findings indicate that eIF2 phosphorylation promotes the migration of 

cells in response to doxorubicin, perhaps via translational reprogramming that may enable 

tumour cell adaptation, and thus have implications for survival rate of patients with certain 

types of cancers and could provide new therapeutic avenues to limit cancer migration and 

metastasis.  
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Discussion 

As part of the response to cell stress, eIF4F complex and TC formation are co-ordinated to 

permit reprogramming of the translatome (12), a process which is frequently utilised by tumour 

cells to promote survival programmes following exposure to cytotoxic chemotherapeutics. 

mTOR inhibitors including rapamycin, temsirolimus and everolimus, have been used clinically 

to block translation reprogramming mediated through eIF4F, however in comparison, little 

work has been carried out to assess the modulation TC formation.  Herein, we describe a new 

regulatory pathway downstream of p53, whereby crosstalk via mTOR to eIF2 

phosphorylation, following DNA damage, is required for cell migration (Fig 6).  Moreover, 

blocking this pathway by chemical intervention limits cell migration, supporting the notion that 

therapeutic targeting of eIF2α signalling to minimise tumour cell metastasis and invasion, 

could be of therapeutic benefit to specific groups of cancer patients (Fig 6).        

In comparison to other studies, e.g. UVB-induced DNA damage (9, 10), we show that there is 

an extensive delay in the reduction of protein synthesis rates following doxorubicin treatment 

and an increase in eIF2α phosphorylation.  Additionally, our data show that the shutdown of 

mRNA translation occurs through inhibition of mTORC1, and that this is, in part, dependent 

on transcriptional pathways induced by p53. It has been shown previously in MEFs that p53-

dependent Sestrin2 expression regulates the inhibition of mTORC1 signalling, and de-

phosphorylation of 4E-BPs, in response to DNA damage induced by etoposide and cisplatin 

(39). Moreover, depletion of Sestrin1 and Sestrin2 in MCF10A cells abolished IR-mediated 

protein synthesis inhibition (40). Here, Sestrin2 expression was enhanced after treatment with 

doxorubicin, but abolished after knockout or depletion of p53 and correlating with the relief of 

mTOR inhibition (Fig 2B and 2D). Moreover, doxorubicin-induced mTORC1 inhibition was 

independent of TSC, which inhibits mTORC1 by regulating levels of RHEB-GTP. These data 

are consistent with the notion that doxorubicin could inhibit mTOR signalling via the expression 

of Sestrin proteins, which can regulate the translocation of mTOR to the lysosome for 

activation (41), however this requires further investigation.  
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Our results demonstrate that doxorubicin-dependent crosstalk signalling from mTOR to eIF2 

requires GCN2 and PERK, and suggest a role for PP6 in this process (Fig 6).  These data are 

broadly consistent with previous studies, albeit using different inducers of cell stress. For 

example, catalytic inhibition of mTORC1 was shown to increase the activity of PP6, which 

through the removal of an inhibitory phosphorylation site on GCN2, enhanced eIF2 

phosphorylation (13). In this case, the co-ordination of mTOR inhibition and eIF2 

phosphorylation induced autophagy. Interestingly, mutations of PP6c which promote 

stabilisation of this protein, and are linked to therapeutic resistance in melanoma, also induce 

autophagy (37).  Moreover, a previous study has suggested that in melanoma, cell stress 

caused by the tumour microenvironment promotes an evolutionarily conserved starvation 

response requiring eIF2 phosphorylation, which results in cell migration and invasion (22).  

Our data show that crosstalk signalling following doxorubicin-induced DNA damage results in 

cell migration.  Importantly, inhibition of this pathway with either ISRIB or Trazadone, blocks 

cell migration, suggesting that these compounds would be of therapeutic benefit to block 

metastasis.   

When treating patients with chemotherapeutics that inhibit protein synthesis it is essential to 

understand the degree of crosstalk between mTOR and eIF2K signalling.  Moreover, it is also 

important to examine how combination therapies, which include the inhibition of the distinct 

arms of pathways that signal to protein synthesis, impact on cell fate.  The data obtained thus 

far suggests that the degree of crosstalk from mTOR to eIF2K signalling is dependent on a 

range of factors including the DNA damaging agent used and acquired mutation status of the 

tumour.  Our data strongly suggest that combination therapy, including an agent that blocks 

crosstalk signalling from mTOR to eIF2 phosphorylation, holds great potential to reduce 

migration and metastasis.  However, there needs to be careful patient stratification, in terms 

of the DNA-damaging agent used and an understanding of the how these signalling pathways 

are activated in the tumour samples to ensure effectiveness of such treatments.   
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Materials and Methods 

Cell culture 

MCF10A cells are a non-transformed human breast epithelial cell line. MCF10A cells were 

cultured in Dulbecco’s modified Eagle’s medium (DMEM)/F12 (1:1) supplemented with horse 

serum (5%), recombinant human EGF (20 ng/ml), human insulin (10 g/ml), hydrocortisone 

(500 ng/ml) and cholera toxin (10 ng/ml). p53 wild-type MCF10A (p53+/+) cells were obtained 

from ATCC and p53 knockout MCF10A (p53-/-) cells were obtained from Sigma. A549, HeLa 

and BT474 cell lines were obtained from ATCC and cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% FBS. 

Treatment of cells 

DNA damage was induced by treating cells with doxorubicin (500 nM or 1 M) (Sigma) for 0-

48 hours. mTOR was catalytically inhibited by treating cells with AZD8055 (100 nM) 

(Selleckchem), Torin 1 (100 nM) (Cell Signalling Technologies) or Rapamycin (100 nM) (Cell 

Signalling Technologies) for 0-24 hours. Cells were treated with Thapsigargin (250 nM) 

(Sigma) for 1 hour to induce ER stress, and treated with ISRIB (200 nM) (Sigma) or Trazodone 

(50 μM) (Sigma) to reverse the effects eIF2 phosphorylation.  

Cell transfections 

Cells were transfected with siRNAs using lipofectamine RNAiMAX reagent (Invitrogen) in 6-

well plates as per manufacturer guidelines for 24-72 hours. ON-TARGETplus siRNAs 

purchased from Dharmacon: GCN2 (LQ-005314-00-0002), PERK (LQ-004883-00-0002), 

PKR (LQ-003527-00-0002), PP6c (LQ-009935-00-0002), TSC2 (LQ-003029-00-0002), and 

non-targeting siRNA (D-001810-01-05). siRNA specific for p53 was purchased from 

ThermoFisher scientific (Silencer select siRNA, catalogue number: 4390825). 

Western blot analysis 
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Whole cell extracts were prepared in lysis buffer (50 mM Tris pH 7.5, 150 mM sodium chloride, 

1% Triton X-100, 0.1% SDS, 0.5% sodium deoxycholate, 1X Roche protease inhibitor cocktail 

and 1X Roche PhosStop phosphatase inhibitor cocktail) and protein concentration of each 

sample was quantified using Pierce BCA protein assay kit (ThermoFisher scientific). Extracts 

were diluted in SDS loading buffer (50 mM Tris pH 6.8, 2% SDS, 10% glycerol, 0.1% 

bromophenol blue, 50 mM DTT) and total protein (20-30 g) was separated according to mass 

using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins 

were transferred to PVDF membrane and incubated with the appropriate antibody at the 

manufacturers recommended dilution. Primary antibodies used: eIF2α (CST, #9772), 

phospho-eIF2 (S-51) (Abcam, #32157), phospho-4E-BP1 (S-65) (CST, #9456), 4E-BP1 

(CST, #9644), phospho-p70 S6K (T-389) (CST, #9205), p70 S6K (CST, #2708), p-Akt (S-473) 

(CST, #4058), Akt (CST, #9272), p53 (Dako, #M7001), Sestrin 2 (Abcam, ab178518), 

phospho-ATM (S-1981) (Abcam, #81292), ATM (Abcam, #32420), phospho-Chk 2 (T-68) 

(CST, #2661), Chk 2 (#2662), GCN2 (CST, #3302), PKR (CST, #12297), PERK (CST, #3192), 

ATF-4 (CST, #11815), PP6c (Abcam, #131335), TSC2 (CST, #4308S), BIP (Proteintech, 

#11587-1-AP), CHOP (Proteintech, #15204-1-AP) and -tubulin (CST, #2146). 

For ECL detection, membranes were incubated with HRP-conjugated -mouse (Dako, 

#P0447) or -rabbit (GE healthcare, #NA934V) secondary antibodies. Signal was developed 

by incubating membranes in ECL-prime solution for 5 minutes, and X-ray film was exposed to 

the membrane to visualize luminescence. For LI-COR detection, membranes were incubated 

with IR-dye labelled -mouse (CST, #5257S) or -rabbit (CST, #5366S) secondary antibodies.  

Fluorescent signal was detected using LI-COR Odyssey imaging system (LI-COR 

biosciences) and images analysed with LI-COR image studio software (package version 

5.2.5). Quantification of signal from both ECL and LI-COR detected blots was carried out using 

LI-COR image studio.  

Sucrose density centrifugation 
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Sucrose gradients were used to separate subpolysomal and polysomal ribosomes. 10%-50% 

(w/v) sucrose gradients were prepared in gradient buffer (300 mM NaCl2, 15 mM MgCl2, 15 

mM tris-HCL pH 7.5, 1 mM DTT, 0.1 mg/ml cycloheximide). Cells were seeded on a 15 cm 

dish, washed in PBS-cyclohexamide (100 g/ml), and scraped into lysis buffer (300 mM 

NaCl2, 15 mM MgCl2, 15 mM tris-HCL pH 7.5, 1 mM DTT, 0.2 M sucrose, 0.1 mg/ml 

cycloheximide, 0.5% IGEPAL, 5 μl RNasin per 1 ml). Lysates were incubated on ice for three 

minutes prior to pelleting cells at 1300 x g for 5 minutes. The supernatant was layered onto 

the gradient and centrifuged at 38,000 rpm (acceleration 9, deceleration 6) for 2 hours at 4oC 

using a Beckman Coulter ultracentrifuge. Gradients were fractioned using a gradient 

fractionation system (Presearch Ltd) and fractions were collected at 1 minute intervals using 

FOXY Jr collection system (Presearch Ltd), at a flow rate of 1 ml/minute. Absorbance was 

measured constantly at 254 nm using a UA-6 UV-VIS detector (Presearch Ltd). The relative 

rate of translation was estimated by calculating a ratio of polysomes/subpolysomes, by 

measuring the area under the curve within the subpolysomes (fractions 1-5) and the 

polysomes (fractions 6-10). 

Radioisotope incorporation 

For [35]S-methionine incorporation, cells were incubated with radiolabelled [35]S-methionine for 

30 minutes at normal cell culture conditions. Cells were washed with PBS and lysed with 

passive lysis buffer (Promega). For [3]H-uridine incorporation, cells were incubated with 

radiolabelled [3]H-uridine for 30 minutes at normal growth conditions. Cells were washed with 

PBS and lysed with whole cell lysis buffer. Protein was precipitated using trichloroacetic acid 

(TCA) at a final concentration of 25% and protein was captured on glass fibre filter paper (GE 

Healthcare). Captured protein was washed with 70% IMS and acetone prior to the addition of 

2 ml ecoscint scintillation cocktail (National Diagnostics) and radioisotope incorporation was 

quantified using a Wallac winspectral 1414 liquid scintillation counter. Each sample was 

carried out in triplicate and spectral counts per minute were normalised to the total amount of 

protein for each sample.  
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Flow cytometry 

All treatments were carried out using a 6-well plate and all flow cytometry data was acquired 

using BD FACS Aria II, BD FACS Canto II and  BD LSRFortessa (BD bioscience). 10,000 

counts were acquired for each experimental condition and all flow cytometry data was 

analysed with FlowJo data analysis software (version 10.1) (FlowJo LLC, Ashland, USA). 

Cell death was quantified by measuring Annexin-V-FITC binding to externalized 

phosphatidylserine (with a 488 nM laser), and Draq7 uptake in the cell (with a 561 nM laser). 

Cells were collected and washed in PBS prior to resuspension in annexin buffer (BD 

bioscience) and incubation with Annexin-V and Draq7 for 20 minutes prior to analysis.  

For cell cycle analysis, cells were incubated with the thymidine analogue 5-ethynyl-2’-

deoxyuridine (EdU) (20 M) for 90 minutes to quantify cells within S-phase; and FxCycle violet 

stain (4', 6-diamidino-2-phenylindole, dihydrochloride), which binds to double-stranded DNA, 

to determine populations of cells within G1 and G2 phases of the cell cycle. Cells were 

collected and fixed in ice cold 70% ethanol. EdU incorporation within fixed cells was quantified 

using Click-iT EdU Flow Cytometry Assay Alexa Fluor 647 azide (Life technologies), following 

manufacturers protocol, and detected with a 640 nM laser. To additionally quantify the 

population of cells within G1 and G2 stages of the cell cycle, FxCycle violet stain (Invitrogen) 

was incubated with EdU incorporated cells for 16 hours at 4oC and detected with a 405 nM 

laser. 

Cell migration and scratch assay 

Cell migration assays were performed in a standard CO2 incubator using the xCELLigence 

RTCA DP instrument (ACEA Biosciences) according to manufacturer’s instructions. Briefly, 

3x104 MCF10A cells and 2.5x104 A549 cells were seeded in the upper chamber of a 16 well 

migration plate (CIM-16 plate) in 100 μl of media containing only 0.1% serum. Cells migrate 

to a lower chamber containing 160 µl of supplemented media via a microporous membrane. 
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Microelectrode sensors are embedded on the underside of the microporous membrane. As 

cells move across the microelectrodes into the lower chamber, they generate impedance 

measurements which enables label free quantification of cell migration. Cells were treated with 

the indicated compounds for 24 hours prior to seeding, and migration was continuously 

monitored in real time for 48 hours. 

For wound healing assays, cells were grown to confluence and treated with the indicated 

compounds for 24 hours prior to a scratch being made with a p200 pipette tip. The migration 

of cells back into the wounded area was monitored using phase contrast optics and a Zeiss 

Axiovert 200M microscope after 48 hours. A percentage of wound closure (42) was calculated 

by quantifying the area of the wounds at 0 hours and 48 hours using Image J. 

Statistical analysis 

All statistical analysis testing for significance used an unpaired student’s t-test. A P-value 

<0.05 (*), <0.01 (**) and <0.001 (***) were considered to be statistically significant from three 

independent experiments.  
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Supplementary Materials 

Figure S1. Doxorubicin inhibited protein synthesis and induced cell death In MCF10A cells. 

Figure S2. Doxorubicin-induced mTOR inhibition was not dependent on TSC activity.   

Figure S3. Doxorubicin inhibits mTORC1 signalling 

Figure S4. Knockdown of PP6 activity reduced protein synthesis rates  

Figure S5. eIF2α-mediated cell migration was not caused by changes in cell death or cell cycle 

regulation  



24 
 

References 

1.  F. Buttgereit, M. D. Brand, A hierarchy of ATP-consuming processes in mammalian 

cells. Biochemical Journal. 312, 163–167 (1995). 

2.  K. A. Spriggs, M. Bushell, A. E. Willis, Translational Regulation of Gene Expression 

during Conditions of Cell Stress. Molecular Cell. 40, 228–237 (2010). 

3.  A. G. Hinnebusch, The scanning mechanism of eukaryotic translation initiation. 

Annual Review of Biochemistry. 83, 779–812 (2014). 

4.  S. Mader, H. Lee, A. Pause, N. Sonenberg, The translation initiation factor eIF-4E 

binds to a common motif shared by the translation factor eIF-4 gamma and the 

translational repressors 4E-binding proteins. Molecular and Cellular Biology. 15, 

4990–7 (1995). 

5.  R. A. Saxton, D. M. Sabatini, mTOR Signaling in Growth Control and Disease. Cell. 

168, 960–976 (2017). 

6.  A. Gingras, B. Raught, N. Sonenberg, Regulation of translation initiation by FRAP / 

mTOR. Genes & Development. 15, 807–826 (2001). 

7.  J. Somers, T. Pöyry, A. E. Willis, A perspective on mammalian upstream open 

reading frame function. International Journal of Biochemistry and Cell Biology. 45, 

1690–1700 (2013). 

8.  N. Donnelly, A. M. Gorman, S. Gupta, A. Samali, The eIF2α kinases: Their structures 

and functions. Cellular and Molecular Life Sciences. 70, 3493–3511 (2013). 

9.  J. Deng, H. P. Harding, B. Raught, A. C. Gingras, J. J. Berlanga, D. Scheuner, R. J. 

Kaufman, D. Ron, N. Sonenberg, Activation of gcn2 in uv-irradiated cells inhibits 

translation. Current Biology. 12, 1279–1286 (2002). 

10.  I. R. Powley, A. Kondrashov, L. A. Young, H. C. Dobbyn, K. Hill, I. G. Cannell, M. 



25 
 

Stoneley, Y. W. Kong, J. A. Cotes, G. C. M. Smith, R. Wek, C. Hayes, T. W. Gant, K. 

A. Spriggs, M. Bushell, A. E. Willis, Translational reprogramming following UVB 

irradiation is mediated by DNA-PKcs and allows selective recruitment to the 

polysomes of mRNAs encoding DNA repair enzymes. Genes and Development. 23, 

1207–1220 (2009). 

11.  J. Somers, L. A. Wilson, J. P. Kilday, E. Horvilleur, I. G. Cannell, T. A. A. Pöyry, L. C. 

Cobbold, A. Kondrashov, J. R. P. Knight, S. Puget, J. Grill, R. G. Grundy, M. Bushell, 

A. E. Willis, A common polymorphism in the 5’ UTR of ERCC5 creates an upstream 

ORF that confers resistance to platinum-based chemotherapy. Genes and 

Development. 29, 1891–1896 (2015). 

12.  V. Gandin, L. Masvidal, M. Cargnello, L. Gyenis, S. McLaughlan, Y. Cai, C. 

Tenkerian, M. Morita, P. Balanathan, O. Jean-Jean, V. Stambolic, M. Trost, L. Furic, 

L. Larose, A. E. Koromilas, K. Asano, D. Litchfield, O. Larsson, I. Topisirovic, 

mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nature 

Communications. 7, 11127 (2016). 

13.  J. Wengrod, D. Wang, S. Weiss, H. Zhong, I. Osman, L. B. Gardner, Phosphorylation 

of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for 

autophagy and is aberrant in PP6C-mutated melanoma. Science Signaling. 8, 27 

(2015). 

14.  K. Rajesh, J. Krishnamoorthy, U. Kazimierczak, C. Tenkerian, A. I. Papadakis, S. 

Wang, S. Huang, A. E. Koromilas, Phosphorylation of the translation initiation factor 

eIF2α at serine 51 determines the cell fate decisions of Akt in response to oxidative 

stress. Cell Death & Disease. 6, e1591 (2015). 

15.  J. Krishnamoorthy, C. Tenkerian, J. Gupta, N. Ghaddar, S. Wang, C. Darini, K. A. 

Staschke, A. Ghosh, V. Gandin, I. Topisirovic, A. S. Kristof, M. Hatzoglou, G. Simos, 

A. E. Koromilas, Downregulation of PERK activity and eIF2α serine 51 



26 
 

phosphorylation by mTOR complex 1 elicits pro-oxidant and pro-death effects in 

tuberous sclerosis-deficient cells article. Cell Death and Disease. 9, 1–12 (2018). 

16.  C. Tenkerian, J. Krishnamoorthy, Z. Mounir, U. Kazimierczak, A. Khoutorsky, K. A. 

Staschke, A. S. Kristof, S. Wang, M. Hatzoglou, A. E. Koromilas, mTORC2 balances 

Akt activation and eIF2alpha serine 51 phosphorylation to promote survival under 

stress. Molecular Cancer Research. 1, 1377–1388 (2015). 

17.  Y. Martineau, R. Azar, C. Bousquet, S. Pyronnet, Anti-oncogenic potential of the 

eIF4E-binding proteins. Oncogene. 32, 671–677 (2012). 

18.  C. de la Parra, B. A. Walters, P. Geter, R. J. Schneider, Translation initiation factors 

and their relevance in cancer. Current Opinion in Genetics & Development. 48, 82–88 

(2018). 

19.  L. M. Lindqvist, K. Tandoc, I. Topisirovic, L. Furic, Cross-talk between protein 

synthesis , energy metabolism and autophagy in cancer. Current Opinion in Genetics 

& Development. 48, 104–111 (2018). 

20.  J. W. Moroney, M. P. Schlumbrecht, T. Helgason, R. L. Coleman, S. Moulder, A. 

Naing, D. C. Bodurka, F. Janku, D. S. Hong, R. Kurzrock, A phase I trial of liposomal 

doxorubicin, bevacizumab, and temsirolimus in patients with advanced gynecologic 

and breast malignancies. Clinical Cancer Research. 17, 6840–6846 (2011). 

21.  R. K. Basho, M. Gilcrease, R. K. Murthy, T. Helgason, D. D. Karp, F. Meric-Bernstam, 

K. R. Hess, S. M. Herbrich, V. Valero, C. Albarracin, J. K. Litton, M. Chavez-

MacGregor, N. K. Ibrahim, J. L. Murray, K. B. Koenig, D. Hong, V. Subbiah, R. 

Kurzrock, F. Janku, S. L. Moulder, Targeting the PI3K/AKT/mTOR pathway for the 

treatment of mesenchymal triple-negative breast cancer: Evidence from a phase 1 

trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab. 

JAMA Oncology. 3, 509–515 (2017). 



27 
 

22.  P. Falletta, L. Sanchez-del-Campo, J. Chauhan, M. Effern, A. Kenyon, C. J. Kershaw, 

R. Siddaway, R. Lisle, R. Freter, M. J. Daniels, X. Lu, T. Tüting, M. Middleton, F. M. 

Buffa, A. E. Willis, G. Pavitt, Z. A. Ronai, T. Sauka-Spengler, M. Hölzel, C. R. Goding, 

Translation reprogramming is an evolutionarily conserved driver of phenotypic 

plasticity and therapeutic resistance in melanoma. Genes and Development. 31, 18–

33 (2017). 

23.  H. G. Nguyen, C. S. Conn, Y. Kye, L. Xue, C. M. Forester, J. E. Cowan, A. C. Hsieh, 

J. T. Cunningham, C. Truillet, F. Tameire, M. J. Evans, C. P. Evans, J. C. Yang, B. 

Hann, C. Koumenis, P. Walter, P. R. Carroll, D. Ruggero, Development of a stress 

response therapy targeting aggressive prostate cancer. Science Translational 

Medicine. 10, 1–12 (2018). 

24.  D. A. Gewirtz, A critical evaluation of the mechanisms of action proposed for the 

antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. 

Biochemical Pharmacology. 57, 727–741 (1999). 

25.  F. Yang, S. S. Teves, C. J. Kemp, S. Henikoff, Doxorubicin, DNA torsion, and 

chromatin dynamics. Biochimica et Biophysica Acta. 1845, 84–89 (2014). 

26.  J. H. Doroshow, K. J. A. Davies, Redox cycling of anthracyclines by cardiac 

mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl 

radical. Journal of Biological Chemistry. 261, 3068–3074 (1986). 

27.  H. Gaillard, A. Aguilera, A Novel Class of mRNA-containing Cytoplasmic Granules 

Are Produced in Response to UV-Irradiation. Molecular Biology of the Cell. 19, 4980–

4992 (2008). 

28.  M. T. Moutaoufik, R. El Fatimy, H. Nassour, C. Gareau, J. Lang, R. M. Tanguay, R. 

Mazroui, E. W. Khandjian, UVC-induced stress granules in mammalian cells. PLoS 

ONE. 9 (2014). 



28 
 

29.  C. Sidrauski, D. Acosta-Alvear, A. Khoutorsky, P. Vedantham, B. R. Hearn, H. Li, K. 

Gamache, C. M. Gallagher, K. K. H. Ang, C. Wilson, V. Okreglak, A. Ashkenazi, B. 

Hann, K. Nader, M. R. Arkin, A. R. Renslo, N. Sonenberg, P. Walter, Pharmacological 

brake-release of mRNA translation enhances cognitive memory. eLife. 2013, 1–22 

(2013). 

30.  C. Sidrauski, A. M. McGeachy, N. T. Ingolia, P. Walter, The small molecule ISRIB 

reverses the effects of eIF2α phosphorylation on translation and stress granule 

assembly. eLife. 4, 1–16 (2015). 

31.  S. Dey, T. D. Baird, D. Zhou, L. R. Palam, D. F. Spandau, R. C. Wek, Both 

transcriptional regulation and translational control of ATF4 are central to the 

integrated stress response. The Journal of Biological Chemistry. 285, 33165–33174 

(2010). 

32.  L. E. Horton, M. Bushell, D. Barth-Baus, V. J. Tilleray, M. J. Clemens, J. O. Hensold, 

p53 activation results in rapid dephosphorylation of the eIF4E-binding protein 4E-BP1, 

inhibition of ribosomal protein S6 kinase and inhibition of translation initiation. 

Oncogene. 21, 5325–5334 (2002). 

33.  N. Akeno, A. L. Miller, X. Ma, K. . . Wikenheiser-Brokamp, p53 suppresses carcinoma 

progression by inhibiting mTOR pathway activation. Oncogene. 34, 1–11 (2015). 

34.  K. Inoki, Y. Li, T. Xu, K. L. Guan, Rheb GTpase is a direct target of TSC2 GAP activity 

and regulates mTOR signaling. Genes and Development. 17, 1829–1834 (2003). 

35.  Z. Feng, H. Zhang, A. J. Levine, S. Jin, The coordinate regulation of the p53 and 

mTOR pathways in cells. Proceedings of the National Academy of Sciences of the 

United States of America. 102, 8204–8209 (2005). 

36.  M. Christgen, M. Noskowicz, C. Heil, E. Schipper, H. Christgen, R. Geffers, H. Kreipe, 

U. Lehmann, IPH-926 lobular breast cancer cells harbor a p53 mutant with 



29 
 

temperature-sensitive functional activity and allow for profiling of p53-responsive 

genes. Laboratory Investigation. 92, 1635–1647 (2012). 

37.  T. Ohama, The multiple functions of protein phosphatase 6. Biochimica et Biophysica 

Acta - Molecular Cell Research. 1866, 74–82 (2019). 

38.  M. Halliday, H. Radford, K. A. M. Zents, C. Molloy, J. A. Moreno, N. C. Verity, E. 

Smith, C. A. Ortori, D. A. Barrett, M. Bushell, G. R. Mallucci, Repurposed drugs 

targeting eIF2α-P-mediated translational repression prevent neurodegeneration in 

mice. Brain. 140, 1768–1783 (2017). 

39.  M. Cam, H. K. Bid, L. Xiao, G. P. Zambetti, P. J. Houghton, H. Cam, P53/TAp63 and 

AKT regulate mammalian target of rapamycin complex 1 (mTORC1) signaling through 

two independent parallel pathways in the presence of DNA damage. Journal of 

Biological Chemistry. 289, 4083–4094 (2014). 

40.  S. Braunstein, M. L. Badura, Q. Xi, S. C. Formenti, R. J. Schneider, Regulation of 

protein synthesis by ionizing radiation. Molecular and Cellular Biology. 29, 5645–56 

(2009). 

41.  A. Parmigiani, A. Nourbakhsh, B. Ding, W. Wang, Y. Kim, K. Akopiants, K. L. Guan, 

M. Karin, A. Budanov, Sestrins Inhibit mTORC1 Kinase Activation through the 

GATOR Complex. Cell Reports. 9, 1281–1291 (2014). 

42.  P. Y. K. Yue, E. P. Y. Leung, N. K. Mak, R. N. S. Wong, A Simplified Method for 

Quantifying Cell Migration/Wound Healing in 96-Well Plates. Journal of Biomolecular 

Screening. 15, 427–433 (2010). 

 

  



30 
 

Acknowledgements 

We thank Dr Lucia Pinon and Dr David Read for assistance with flow cytometry and 

microscopy analysis. We also thank Dr Mariavittoria Pizzinga and Professor Martin Bushell for 

the critical reading of the manuscript.  

Funding 

RFH was supported by MRC studentship and Wellcome Trust [grant number: 110071/Z/15/Z]. 

AEW, TAAP and MS were supported by MRC programme funding [MC_UP_A600_1023]. 

Author contributions 

RFH performed the experiments. RFH, TAAP, MS and AEW designed the experiments and 

interpreted results. RFH and AEW wrote the manuscript. 

Conflict of interest 

The authors declare that they have no conflict of interest.  



0.0

0.2

0.4

0.6

0.8

1.0

1.2

*****

ns

ns

M
et

hi
o

ni
ne

 in
co

rp
or

at
io

n
(F

ol
d 

ch
an

ge
)

A C

A
 2

54

Doxorubicin

Untreated

Sucrose density

B

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

**
*

** **

ns
ns

Doxorubicin (500 nM)

M
et

hi
on

in
e

 in
co

rp
or

at
io

n
(F

ol
d 

ch
an

ge
)

D

eIF2KsmTORC1

eIF4F formation

4G

4E

4A    
eIF2

GTP

eIF2

P

4E-BPs

P

TC formation

0.0

0.2

0.4

0.6

0.8

1.0

1.2
*

*

M
et

hi
on

in
e

 in
co

rp
or

at
io

n
(F

ol
d 

ch
an

ge
)

Tg

ISRIB

- + +
- +-

Dox

ISRIB

- + +
- +-

-
+

E (i) E (ii)

F

ISRIB- + - + - +

Dox

-

PERK

ATF-4

CHOP

p-4E-BP1 (S-65)

BIP

p-eIF2α (S-51)

β-tubulin

eIF2α

4E-BP1

Figure 1

p-eIF2α (S-51)

p-ATM (S-1981)

p-Chk2 (T-68)

p-4E-BP1 (S-65)

β-tubulin

9 12 16 2463

+ +- - + - + - + - + -

eIF2α

ATM

Chk2

4E-BP1

Dox

Hours



32 
 

Figure 1. Doxorubicin-induced DNA damage inhibited global protein synthesis 

rates. 

A. MCF10A cells were treated with doxorubicin (500 nM) for the indicated time and 

pulse-labelled with [35]S-methionine for 30 minutes. Total counts per minute were 

normalised to total protein and values are shown as a fold change relative to 

untreated control samples for each time point. Error bars represent mean  SD (n 

= 3), **P = <0.01, *P = <0.05, by unpaired student’s t-test (n.s = not significant). 

B. Comparison of polysome profiles from MCF10A cells untreated or treated 

continuously with doxorubicin (500 nM) for 24 hours. Cytoplasmic lysates were 

centrifuged at 38000 rpm through 10%-50% sucrose gradients at 4oC for two hours, 

and absorbance was measured at 254 nm using a flow rate of 1 ml/min. 

C. Schematic representation of the regulation of translation initiation via mTOR-

dependent regulation of eIF4F complex formation, and eIF2K-depednent 

regulation of ternary complex (TC) formation. 

D. MCF10A cells were treated with doxorubicin (500 nM) for the indicated time, lysed 

and analysed by immunoblotting with the indicated antibodies. Blots shown were 

representative of three independent repeats.  

E. (i) MCF10A cells were treated with thapsigargin (250 nM for 1 hour), with or without 

ISRIB (200 nM), and pulse-labelled with [35]S-methionine for 30 minutes. (ii) 

MCF10A cells were treated with doxorubicin (500 nM for 16 hours), with or without 

ISRIB (200 nM), and pulse-labelled with [35]S-methionine for 30 minutes. Total 

counts per minute were normalised to total protein and values are shown as a fold 

change relative to untreated control samples for each time point. Error bars 

represent mean  SD (n = 3), ***P = <0.001, **P = <0.01, *P = <0.05, by unpaired 

student’s t-test (ns = not significant). 
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F. Samples prepared in parallel to (E) were lysed and analysed by immunoblotting 

with the indicated antibodies. Blots shown were representative of three 

independent repeats. 
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Figure 2. Doxorubicin-induced mTOR inhibition was dependent on p53 

activity 

A. Schematic representation depicting the regulation of mTOR signalling. Blocked arrows 

indicate the inhibition of the following protein, whereas arrows indicate the 

phosphorylation or activation of the downstream protein. 

B. Wild-type p53 MCF10A cells (p53+/+) and p53 knockout MCF10A cells (p53-/-) were 

treated with doxorubicin (500 nM) or AZD8055 (100 nM) for 16 hours. Cells were lysed 

and analysed by immunoblotting with the indicated antibodies. Blots shown were 

representative of three independent repeats. 

C. Quantification of (i) p70 S6K phosphorylation at Thr-389, and (ii) 4E-BP1 

phosphorylation at Ser-65 from blots shown in A. Error bars represent mean  SD (n 

= 3), ***P = <0.001, **P = <0.01, *P = <0.05, by unpaired student’s t-test (ns = not 

significant). 

D. p53+/+ MCF10A cells were transfected with an siRNA specific toward endogenous p53 

(sip53) or a non-specific scrambled control siRNA (siCt). Following two consecutive 

24-hour transfections, cells were treated with doxorubicin (500 nM) or AZD8055 (100 

nM) for 16 hours. Cells were lysed and analysed by immunoblotting with the indicated 

antibodies. Blots shown were representative of three independent repeats. 

E. Quantification of (i) p70 S6K phosphorylation at Thr-389, and (ii) 4E-BP1 

phosphorylation at Ser-65 from blots shown in C. Error bars represent mean  SD (n 

= 3), **P = <0.01, *P = <0.05, by unpaired student’s t-test (ns = not significant). 

F. Comparison of polysome profiles from MCF10A p53-/- cells untreated or treated 

continuously with doxorubicin (500 nM) for 24 hours. Cytoplasmic lysates were 

centrifuged at 38000 rpm through 10%-50% sucrose gradients at 4oC for two hours, 

and absorbance was measured at 254 nm using a flow rate of 1 ml/min.  

G. Polysome/subpolysomal ratio from p53+/+ and p53-/- cells treated with doxorubicin for 

24 hours. Ratio was calculated from the area under the curve of polysome profiles 
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separated into polysomal and subpolysomal regions. Error bars represent mean  SD 

(n = 3), **P = <0.01, *P = <0.05, by unpaired student’s t-test (ns = not significant). 

H. MCF10A p53+/+ and p53-/- cells, as well as p53+/+ cells transfected with siRNA specific 

for p53 or a control non-targeting siRNA, were pulse-labelled with [35]S-methionine for 

30 minutes. Total counts per minute were normalised to total protein and values are 

shown as a fold change relative to untreated control samples for each time point. Error 

bars represent mean  SD (n = 3), **P = <0.01, *P = <0.05, by unpaired student’s t-

test.  
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Figure 3. mTOR inhibition enhanced the phosphorylation of eIF2 through a 

crosstalk signalling cascade. 

A. Wild-type p53 MCF10A cells (p53+/+), p53 knockout MCF10A cells (p53-/-), and p53+/+ 

cells transfected with either control non-targeting siRNA (siCt) or siRNA specific for 

p53 (sip53) were treated doxorubicin (500 nM) or AZD8055 (100 nM) for 16 hours. 

Cells were lysed and analysed by immunoblotting with the indicated antibodies. Blots 

shown were representative of three independent repeats. 

B. Quantification of eIF2 phosphorylation at Ser-51 from blots shown in B. Error bars 

represent mean  SD (n = 3), **P = <0.01, *P = <0.05, by unpaired student’s t-test (ns 

= not significant). 

C. MCF10A p53+/+ cells were treated with mTOR inhibitors: Torin 1 (100 nM), AZD8055 

(100 nM) or Rapamycin (100 nM); for the indicated time. Cells were lysed and analysed 

by immunoblotting with the indicated antibodies. 

D. (i) A549 cells were treated with doxorubicin (500 nM) or AZD8055 (100 nM) for 16 

hours and analysed by immunoblotting with the indicated antibodies. Blots shown were 

representative of three independent repeats. (ii) Quantification of p70 S6K 

phosphorylation at T-389 and eIF2 phosphorylation at Ser-51 from blots shown in (i). 

Error bars represent mean  SD (n = 3), ***P = <0.001, **P = <0.01, *P = <0.05, by 

unpaired student’s t-test.  

E. (i) A549 cells were transfected with either control non-targeting siRNA (siCt) or siRNA 

specific for p53 (sip53) were treated doxorubicin (500 nM) or AZD8055 (100 nM) for 

16 hours. Cells were lysed and analysed by immunoblotting with the indicated 

antibodies. Blots shown were representative of three independent repeats. (ii) 

Quantification of p70 S6K phosphorylation at T-389 and eIF2 phosphorylation at Ser-

51 from blots shown in (i). Error bars represent mean  SD (n = 3), ***P = <0.001, *P 

= <0.05, by unpaired student’s t-test (ns = not significant).  

F. (i) BT474 cells were grown at either 37oc (leading to loss of p53 function) or 32oc 

(restoring p53 function) and treated doxorubicin (500 nM) or AZD8055 (100 nM) for 16 
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hours. Cells were lysed and analysed by immunoblotting with the indicated antibodies. 

Blots shown were representative of two independent repeats. (ii) Quantification of p70 

S6K phosphorylation at T-389 and eIF2 phosphorylation at Ser-51 from blots shown 

in (i). Error bars represent mean  SD (n = 2).  
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Figure 4. Doxorubicin-induced eIF2 phosphorylation was mediated by eIF2Ks 

GCN2 and PERK 

A. Schematic representation of the phosphorylation of eIF2 in response to the activation 

of eIF2Ks: PERK, GCN2 and PKR, in response to the indicated stimuli. 

B. p53+/+ MCF10A cells were transfected with individual siRNAs specific toward 

endogenous eIF2Ks PERK (1 nM), PKR (1 nM) and GCN2 (2 nM). 48-hours post-

transfection, cells were treated with AZD8055 (100 nM) for 16 hours. (i) Cells were 

lysed and analysed by immunoblotting with the indicated antibodies. Blots shown were 

representative of three independent repeats. (ii) Quantification of eIF2 

phosphorylation (ser-51). Error bars represent mean  SD (n = 3), *P = <0.05, by 

unpaired student’s t-test (ns = not significant). 

C. p53+/+ MCF10A cells were transfected with combinations of siRNA specific toward 

endogenous eIF2Ks PERK (1 nM), PKR (1 nM) and GCN2 (2 nM). 48-hours post-

transfection, cells were treated with AZD8055 (100 nM) for 16 hours. (i) Cells were 

lysed and analysed by immunoblotting with the indicated antibodies. Blots shown were 

representative of three independent repeats. (ii) Quantification of eIF2 

phosphorylation (ser-51). Error bars represent mean  SD (n = 3), *P = <0.05, **P = 

<0.01, by unpaired student’s t-test (ns = not significant). 

D. p53+/+ MCF10A cells were transfected with individual siRNAs specific toward 

endogenous eIF2Ks PERK (1 nM), PKR (1 nM) and GCN2 (2 nM). 48-hours post-

transfection, cells were treated with doxorubicin (500 nM) for 16 hours. (i) Cells were 

lysed and analysed by immunoblotting with the indicated antibodies. Blots shown were 

representative of three independent repeats. (ii) Quantification of eIF2 

phosphorylation (ser-51). Error bars represent mean  SD (n = 3) and significance was 

calculated by unpaired student’s t-test (ns = not significant). 
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E. p53+/+ MCF10A cells were transfected with combinations of siRNA specific toward 

endogenous eIF2Ks PERK (1 nM), PKR (1 nM) and GCN2 (2 nM). 48-hours post-

transfection, cells were treated with doxorubicin (500 nM) for 16 hours. (i) Cells were 

lysed and analysed by immunoblotting with the indicated antibodies. Blots shown were 

representative of three independent repeats. (ii) Quantification of eIF2 

phosphorylation (ser-51). Error bars represent mean  SD (n = 3), *P = <0.05, **P = 

<0.01, by unpaired student’s t-test (ns = not significant). 
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Figure 5. Doxorubicin-induced mTOR – eIF2 crosstalk signalling mediates cell 

migration 

A. Schematic representation of mTOR-eIF2 crosstalk signalling and the alleviation of 

eIF2α phosphorylation-dependent translational repression. 

B. Cell cycle analysis of wild-type p53 MCF10A cells (p53+/+) treated with doxorubicin 

(500 nM) for the indicated time period. Cells were incubated with EdU (10 μM) for the 

final 1.5 hours of treatment (to quantify S-phase cells) and stained with FxCycle violet 

dye (to quantify cells within G1 and G2 phases) and analysed by flow cytometry. Data 

values were an average of three independent experiments and error bars represent 

mean  SD (n = 3). 

C. Wound healing assay following treatment with doxorubicin (500 nM), ISRIB (200 nM) 

or trazodone (50 μM) for 24 hours. The wound was made with a p200 pipette tip (0 hr) 

and migration into the wound was analysed by microscopy after 48 hours. Dashed 

lines represent the area of the initial wound and the scale bar represents 500 µM. 

Images are representative from three independent experiments.   

D. Quantification of cell migration into the wounded area from (C) using Image J. All 

values are displayed relative to the migration of the untreated sample. Error bars 

represent mean  SD (n = 3), *P = <0.05, **P = <0.01, by unpaired student’s t-test. 

E. Quantification of cell death using Annexin-V-FITC and Draq7 staining of MCF10A 

p53+/+ cells treated with a combination of doxorubicin (500 nM), ISRIB (200 nM) or 

trazodone (50 μM) for 72 hours. Error bars represent mean  SD (n = 3), ***P = <0.001, 

*P = <0.05, by unpaired student’s t-test (ns = not significant).  

F. Quantification of cell cycle state using FxCycle staining in MCF10A p53+/+ cells treated 

with a combination of doxorubicin (500 nM), ISRIB (200 nM) or trazodone (50 μM) for 

72 hours. Error bars represent mean  SD (n = 2). 

G. Cell migration profiles from xCELLigence RTCA DP instrument. MCF10A cells were 

treated for 24 hours with doxorubicin (500 nM) or trazodone (50 μM) prior to seeding 
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in the upper well of the migration CIM-16 plate, and migration was monitored for 48 

hours. Media containing only 0.1% horse serum was used as a negative control. Data 

values were an average of three independent experiments and error bars represent 

mean  SD (n = 3). 

H. Quantification of cell migration relative to the untreated sample from (G) at 48 hours. 

Error bars represent mean  SD (n = 3), **P = <0.01, ***P = <0.001, by unpaired 

student’s t-test. 

I. Cell migration profiles from xCELLigence RTCA DP instrument. A549 cells were 

treated for 24 hours with doxorubicin (500 nM) or trazodone (50 μM) prior to seeding 

in the upper well of the migration CIM-16 plate, and migration was monitored for 48 

hours. Media containing only 0.1% FBS was used as a negative control. Data values 

were an average of three independent experiments and error bars represent mean  

SD (n = 3). 

J. Quantification of cell migration relative to the untreated sample from (I) at 48 hours. 

Error bars represent mean  SD (n = 3), *P = <0.05, ***P = <0.001, by unpaired 

student’s t-test. 
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Figure 6. A model of doxorubicin-induced mTOR-eIF2K crosstalk signalling. 

Doxorubicin-induced DNA damage leads to the activation of p53 and subsequent 

inhibition of mTOR via TSC independent mechanisms, most likely resulting in the 

inhibition of global protein synthesis. Inhibition of mTOR activity directly promotes the 

activation of both GCN2 and PERK, possibly in a PP6 dependent manner, to enhance 

the phosphorylation of eIF2 and decrease the availability of ternary complex. 

Moreover, crosstalk signalling-mediating eIF2 phosphorylation is required for cell 

migration. Our data suggest that in a tumour setting this signalling pathway could 

regulate cell adaptation to promote invasion and metastasis.  

 

  



A
 2

54

AZD8055 (100 nM)
Untreated

Sucrose density

B

Sucrose density

A
 2

54

6 hr Dox (500 nM)
6 hr Untreated

A

0

10

20

30

40

50

Ct 500 nM 1 µM

**

*

Doxorubicin

**

C
e

ll 
d

e
a

th
 (

%
)

C

Dox (500nM)

9hr 12hr 16hr 24hr6hr0hr 3hr

+  +  - - - +  - +  - +  - +  -
ATF-4

Tg

β-Tubulin

D

Supplementary Figure 1



49 
 

Figure S1. Doxorubicin inhibited protein synthesis and induced cell death In 

MCF10A cells.  

A. Quantification of cell death using Annexin-V-FITC and Draq7 staining in wild-type 

p53 MCF10A cells (p53+/+) treated with doxorubicin (500 nM or 1 M) for 24-hours. 

Error bars represent mean  SD (n = 3), **P = <0.01, *P = <0.05, by unpaired 

student’s t-test. 

B. Comparison of polysome profiles from MCF10A p53+/+ cells untreated or treated 

continuously with doxorubicin (500 nM) for 6 hours. Cytoplasmic lysates were 

centrifuged at 38000 rpm through 10%-50% sucrose gradients at 4oC for two hours, 

and absorbance was measured at 254 nm using a flow rate of 1 ml/min.  

C. Comparison of polysome profiles from MCF10A p53+/+cells untreated or treated 

continuously with catalytic mTOR inhibitor AZD8055 (100 nM) for 3 hours. 

Cytoplasmic lysates were centrifuged at 38000 rpm through 10%-50% sucrose 

gradients at 4oC for two hours, and absorbance was measured at 254 nm using a 

flow rate of 1 ml/min.  

D. ATF4 expression was monitored in MCF10A cells treated with doxorubicin (500 

nM) for the indicated time by immunoblotting. Thapsigargin (1 µM for 1 hour) was 

used as a positive control to upregulate ATF4 expression. Blots shown were 

representative of three independent repeats.  
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Figure S2. Doxorubicin-induced mTORC1 inhibition was not dependent on TSC 

activity.   

A. Schematic representation of the regulation of Tuberous sclerosis complex (TSC) and 

its subsequent regulation of mTORC1 activity. 

B. p53+/+ MCF10A cells were transfected with siRNA specific toward TSC2 (1 nM) to 

downregulate TSC1/2 activity. 48-hours post-transfection, cells were treated with 

doxorubicin (500 nM) for 24 hours, lysed and analysed by immunoblotting with the 

indicated antibodies. Blots shown were representative of two independent repeats. 

C. p53+/+ MCF10A cells were transfected with siRNA specific toward TSC2 (1 nM) to 

downregulate TSC1/2 activity. 48-hours post-transfection, cells were treated with 

doxorubicin (500 nM) for 24 hours and pulse-labelled with [35]S-methionine for 30 

minutes. Total counts per minute were normalised to total protein. Error bars represent 

mean  SD (n = 2). 
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Figure S3. Doxorubicin inhibits mTORC1 signalling 

A. MCF10A cells were treated with doxorubicin (500 nM) or AZD8055 (100 nM) for 16 

hours and analysed by immunoblotting with the indicated antibodies. Blots shown were 

representative of three independent repeats. 

B. HeLa cells were treated with doxorubicin (500 nM) or AZD8055 (100 nM) for 16 hours 

and analysed by immunoblotting with the indicated antibodies.  
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Figure S4. Knockdown of PP6 activity reduced protein synthesis rates  

A. p53+/+ MCF10A cells were transfected with an siRNA specific for PP6c and treated with 

doxorubicin (500 nM) or AZD8055 (100 nM) for 16 hours. Cells were lysed and 

analysed by immunoblotting with the indicated antibodies. Blots shown were 

representative of three independent repeats. 

B. p53+/+ MCF10A cells were transfected with an siRNA specific for PP6c for 48 hours 

and pulse-labelled with [35]S-methionine for 30 minutes. Total counts per minute were 

normalised to total protein and values are shown as a fold change relative to non-

targeting siRNA (siCt). Error bars represent mean  SD (n = 3). 
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Figure S5. eIF2α-mediated cell migration was not caused by changes in cell 

death or cell cycle regulation 

A. MCF10A p53+/+ cells were treated with doxorubicin (500 nM) for the indicated time 

points and eIF2α phosphorylation was monitored by immunoblotting.  

B. Quantification of cell cycle state using FxCycle staining in MCF10A p53+/+ cells treated 

with a combination of doxorubicin (500 nM), ISRIB (200 nM) or trazodone (50 μM) for 

24 hours. Error bars represent mean  SD (n = 3). 

C. A549 cells were treated with doxorubicin (500 nM) for the indicated time points and 

eIF2α phosphorylation was monitored by immunoblotting.  

D. Quantification of cell death using Annexin-V-FITC and Draq7 staining of A549 cells 

treated with a combination of doxorubicin (500 nM), ISRIB (200 nM) or trazodone (50 

μM) for 72 hours. Error bars represent mean  SD (n = 3), *P = <0.05, by unpaired 

student’s t-test (ns = not significant).  

E. Quantification of cell cycle state using FxCycle staining in A549 cells treated with a 

combination of doxorubicin (500 nM), ISRIB (200 nM) or trazodone (50 μM) for 24 

hours. Error bars represent mean  SD (n = 3). 

F. Quantification of cell cycle state using FxCycle staining in A549 cells treated with a 

combination of doxorubicin (500 nM), ISRIB (200 nM) or trazodone (50 μM) for 72 

hours. Error bars represent mean  SD (n = 2). 

 

 

 

 

 




