
Mayo: A Framework for Auto-generating
Hardware Friendly Deep Neural Networks

Yiren Zhao
∗

University of Cambridge

Cambridge, UK

yaz21@cam.ac.uk

Xitong Gao
†

Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences

Shenzhen, China

xt.gao@siat.ac.cn

Robert Mullins

University of Cambridge

Cambridge, UK

robert.mullins@cam.ac.uk

Chengzhong Xu

Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences

Shenzhen, China

cz.xu@siat.ac.cn

ABSTRACT
Deep Neural Networks (DNNs) have proved to be a convenient

and powerful tool for a wide range of problems. However, the ex-

tensive computational and memory resource requirements hinder

the adoption of DNNs in resource-constrained scenarios. Existing

compression methods have been shown to signi�cantly reduce the

computation and memory requirements of many popular DNNs.

�ese methods, however, remain elusive to non-experts, as they

demand extensive manual tuning of hyperparameters. �e e�ects

of combining various compression techniques lack exploration be-

cause of the large design space. To alleviate these challenges, this

paper proposes an automated framework, Mayo, which is built on

top of TensorFlow and can compress DNNs with minimal human

intervention. First, we present overriders which are recursively-

compositional and can be con�gured to e�ectively compress indi-

vidual components (e.g. weights, biases, layer computations and

gradients) in a DNN. Second, we introduce novel heuristics and

a global search algorithm to e�ciently optimize hyperparameters.

We demonstrate that without any manual tuning, Mayo generates

a sparse ResNet-18 that is 5.13× smaller than the baseline with

no loss in test accuracy. By composing multiple overriders, our

tool produces a sparse 6-bit CIFAR-10 classi�er with only 0.16%

top-1 accuracy loss and a 34× compression rate. Mayo and all com-

pressed models are publicly available. To our knowledge, Mayo is

the �rst framework that supports overlapping multiple compres-

sion techniques and automatically optimizes hyperparameters in

them.

CCS CONCEPTS
•Computingmethodologies→Computer vision; •Mathematics
of computing→ Arbitrary-precision arithmetic; •So�ware and
its engineering→ So�ware libraries and repositories;

KEYWORDS
Deep Neural Network, Pruning, �antization, Automated Hyper-

parameter Optimization

∗†
Xitong Gao and Yiren Zhao contributed equally to this work.

1 INTRODUCTION
Deep Neural Networks (DNNs) achieve state-of-the-art perfor-

mance on both vision [17] and speech [9] applications by leveraging

parameter-rich networks learning from massive amount of data.

Traditionally, the substantial computational resources required by

DNNs are prohibitively expensive in low-powered environments,

making the deployment of large neural networks a challenging

endeavour.

DNNs are, in general, inherently redundant, which means that

many operations in DNNs compute highly-correlated results. We

can exploit this fact to accelerate DNNs without a detrimental

impact on accuracies. Researchers have proposed various com-

pression techniques. For instance, sparsity-inducing regularization

methods [21] encourage sparsity in DNNs, enabling us to prune

computations by skipping those of negligible importance. �antiza-

tion techniques [12] use low-precision arithmetic instead of 32-bit

�oating-points traditionally used by CPUs and GPUs. Low-rank

approximation (LRA) [15] identi�es redundancies in DNNs by sin-

gular value decomposition, then eliminates them by reducing the

rank of the singular matrix. �ese optimizations directly engender

computation or memory savings in a custom hardware design.

Although these techniques demonstrate high e�ectiveness in

compressing DNNs with minimal loss of accuracies, they are o�en

associated with large hyperparameter design spaces. For instance,

the compression of di�erent components (weights, activations, etc.)
in each layer can be con�gured di�erently. �e search process of

suitable hyperparameters that provide high compression rates and

minimal impact on accuracies in DNNs is o�en time-consuming,

and demands expertise in the respective methods and the underly-

ing network structure. In addition, it has been shown that many of

these compression methods can be used jointly [7]. �e composi-

tional nature encourages us to chain them to achieve even higher

compression rates, yet it further exacerbates the di�culty in �nd-

ing the optimal se�ings, due to the combinatorial explosion of the

hyperparameter design space and the fact that the interplay among

these compression methods is not well-understood.

In this paper we present a new framework, Mayo, to assist the

explorations of various compression techniques with hardware



design in focus, as the �rst step toward a fully automated DNN

architecture optimizer that rivals manual tuning by human experts.

A typical layer computation in a DNN forward pass can generally

be represented by xi = fi (xi−1,Θi ), where of the i-th layer, fi is

the underlying algorithm, xi−1 is the input, and Θi represents the

trainable parameters. Our framework contains a wide range of oper-

ations which we call overriders that can be fully customized to over-

ride various components in the computation above. For instance,

the layer computation can be replaced with xi = ˜fi (xi−1, Θ̃i ), where

the parameters Θ̃i and the function
˜fi are hardware-e�cient vari-

ants of Θi and fi generated by the respective overriders. Overriders

can also be composed by chaining multiple overriders in sequence.

Finally, Mayo can e�ciently explore the design space of hyperpa-

rameters within overriders to achieve high compression rates while

minimizing the impact on the accuracies of DNNs. Mayo can be

easily applied in the scenarios including but not limited to:

• trade o� inference speed and accuracy; and

• slim large models on a smaller dataset with fewer labels

using transfer learning [26].

�is paper makes the following contributions:

• We introduce the Mayo framework by discussing the sup-

ported compression techniques, and explain how we use

novel heuristics to automatically derive some hyperparam-

eters based on input conditions (Section 3.1).

• We propose a resource-aware search algorithm that can au-

tomatically optimize hyperparameters in overriders while

minimizing the impact on accuracies (Section 3.2).

• Building upon the contributions above, we present two

case studies. First, we demonstrate how Mayo can obtain

state-of-the-art compression rates automatically with �ne-

grained pruning (Section 6.1). In the second case study,

we show the optimization results of chaining pruning and

quantization methods, and further demonstrate that non-

linear quantization works be�er than the linear variants

on pruned DNNs (Section 6.2).

2 RELATEDWORKS
2.1 Compression Techniques
A wide range of compression techniques have proven to be e�ec-

tive for lowering the computation and memory requirements in a

pretrained DNN.

Pruning directly reduces the number of connections. Guo et al. [5]

propose dynamic network surgery for �ne-grained pruning, using

adjustable threshold conditions to remove individual weights and

their connections from the DNN. Mao et al. [24] show the extra

overhead of �ne-grained pruning on SIMD architectures, but sug-

gest that a coarse-grained variant has a faster inference time at the

cost of a lower compression rate. �e granularity of pruning and

the pruning ratio are therefore o�en varied to provide a suitable

trade-o� between performance and DNN’s accuracy.

�antization methods enable each parameter to be represented

with much narrower bit-width than the 32-bit single-precision

�oating-point typically used in CPU- or GPU-based DNN imple-

mentations. In the extreme case, the parameters can be binary

values [11]. �is signi�cantly reduces the memory requirements

for parameters. Furthermore, quantized intermediate computations

in DNNs use low-precision arithmetic, which in turn save com-

putational resources. �ese methods use number representations

and arithmetics based on, for instance, �xed-point arithmetic [6],

logarithmic [20], powers of 2 [27], etc. Similar to pruning, quan-

tization provides diverse design trade-o�s among speed, energy

expenditure and accuracy.

Besides these techniques, there are many alternative compres-

sion methods. For instance, low-rank approximation [15, 23] re-

duces the rank of the weight matrix while minimizing the deviation

from the original.

Han et al. [7] further demonstrate that combining a series of com-

pression algorithms gives even higher compression rates, and show

that many popular large-scale DNNs can be compressed in size

dramatically. �eir methodology, however, tweaks hyperparame-

ters by hand. With compositionality in mind, we design Mayo to

scalably explore the design space, steering the interaction of multi-

ple compression methods to automatically optimize the trade-o�

relationship between speed and accuracy.

2.2 Existing Tool-chains and Frameworks
Various frameworks have been developed to �ne-tune DNNs for

resource-constrained scenarios. Gysel et al. [6] propose Ristre�o
to compress models mainly using �xed-point quantizations. Milde

et al. [25] introduce ADaPTION which also performs �xed-point

quantizations, but further extends them to to support stochastic

round-o� behaviours. Zhou et al. [28] present DoReFa-Net with

TensorPack, and they are the �rst to propose training with limited-

precision gradients.

3 OPTIMIZATIONS
�antization methods allow us to con�gure hyperparameters (e.g. the

bit-widths) used by individual components in a DNN, directly re-

ducing the hardware resource usage while increasing the round-o�

and over�ow errors incurred. �e resulting search space of hyper-

parameters to trade o� resources with accuracy may however be

infeasible to traverse exhaustively. In this section we explain how

to automate and accelerate the search procedure. Our approach

is two-fold. In Section 3.1, we �rst introduce various quantization

methods used in Mayo, and the corresponding heuristics to sen-

sibly determine some of the hyperparameters. We then continue

to explain in Section 3.2 how all remaining hyperparameters are

selected automatically.

3.1 �antizations and Heuristics
For custom hardwares, the most pervasive quantization method

is �xed-point quantization. An n-bit �xed-point number with a

binary point position p can represent a real value x with:

x = 2
−p ×m1m2 . . .mn, (1)

where the bitsm1m2 . . .mn denote a binary integer in 2’s-compliment.

It is clear from Equation (1) that the range of representable val-

ues are bounded by [−2
−p

2
n
, 2
−p (2n − 1)], and values outside this

range are quantized by saturation, i.e. represented by one of the

bounds accordingly. Moreover, the choice of p also a�ects accuracy

as p yields round-o� error bounded by 2
−p

.

2



We observe that saturated values o�en have greater impact on

accuracy than the precision p used. We thus iteratively adjust p for

each set of parameters such that the mean quantization error, i.e. the

mean of the sums of round-o� and saturation error, i.e. ‖x − x̃ ‖1,

the `1-distance between the data and the quantized variant, is

minimized. In contrast to Courbariaux et al. [3], our algorithm is a

search procedure, which prevents p to oscillate between consecutive

iterations.

Mayo additionally implements a mini-�oat quantization, which

follows the IEEE-754 �oating-point standard [14], but allows arbi-

trary bit-widths to be used. A mini-�oat can represent real values

with:

x = (−1)s × 2
e−b × 1.m1m2 . . .mp, (2)

where s is the sign bit, the exponent e is a k-bit non-negative integer,

the bias b is a constant o�set applied to e , and the p-bitm1m2 . . .mp
represent the mantissa bits, here 1.m1m2 . . .mp indicates an un-

signed �xed-point number in binary.

A mini-�oat quantization scheme (k, b, p) has three hyperparam-

eters, the combinations of all possible values are thus infeasible to

explore exhaustively. We therefore reduce the search space to the

bit-width n = k + p, and algorithmically determine the quantiza-

tion scheme from n and the input data by minimizing the incurred

quantization error. Our approach is similar to the algorithm de-

scribed for �xed-point. For a given bit-width n, we iterate through

mantissa widths p ∈ [0, n], and use k = n − p as the exponent

widths. With given k and p, it is now possible to compute a bias b
so that no over�ow occurs in the quantized values. Using the above

(k, b, p), we can deduce the round-o� error in a way similar to the

�xed-point case, and �nally �nd the hyperparameter combination

that minimizes the error.

�antization with powers of 2 is a degenerate form of the mini-

�oat that uses no mantissa, i.e. p = 0. Our heuristic search process

also works for this specialized form to search for b, given k and

the input data. �is method results in the following representable

values:

x = (−1)s × 2
e−b. (3)

In hardware implementations, multiplications with powers of 2 can

be achieved with barrel shi�ers, which in general are much cheaper

than multipliers.

It is noteworthy that Mayo approximates all quantization meth-

ods using �oating-point numbers, this approximation may intro-

duce round-o� error that are not captured in this tool.

3.2 Automated Hyperparameter Optimization
�e techniques detailed above reduce quantization design to the

choice of quantization bit-widths, signi�cantly reducing the size of

the hyperparameter exploration space. In this section we further

extend our methodology to automatically explore the remaining

hyperparameters.

Without a loss of generality, here we adopt the view that a hyper-

parameter γ is associated with a prede�ned performance penalty

cost(γ ) monotonic to γ . For instance, we may use the computa-

tional or memory utilization estimates as the penalty function of

γ . With this notion, we greedily decrement the hyperparameter γt
with the highest cost until the accuracy requirement can no longer

be met.

Algorithm 1 Hyperparameter Optimization

1: procedure Optimize(N ,α
budget

, Γ,∆, s)
2: B ← �
3: while Γ changed ∨ I(Γ)/B , � do
4: t ← argmaxt ∈I(Γ)/Bcost (γt )
5: γt ← γt − δt
6: α ← train (N , Γ, s)
7: if α ≥ α

budget
then

8: continue
9: if δt ≥ ϵt then

10: backtrack(N , Γ)
11: δt ← δt

2

12: else
13: B = B ∪ {t}

Algorithm 1 is a high-level description of our greedy search

with backtracking, which accepts a DNN N and produces a �ne-

tuned N with a set of minimized hyperparameters Γ as its output,

while satisfying the desirable accuracy target α
budget

. Here, the

input Γ initializes all hyperparameters to their upper bounds, and ∆
speci�es the stride sizes used to decrement hyperparameters. �e

function train(N , Γ, s) �ne-tunes N with Γ for s steps and returns

the �nal accuracy of N , I(Γ) denotes the indices that can be used

to address hyperparameters, backtrack(N , Γ) returns N and Γ to

their previous states. Finally, δt ∈ ∆ is the stride used to decrement

γt , ϵt is the lower bound on δt , and B blacklists hyperparameters

that can no longer be minimized without degrading the accuracy

below α
budget

.

4 FEATURES
Mayo is built on top of TensorFlow [1] and specializes in DNN

compression with quantization methods in Section 3.1, pruning

techniques [5], LRA [15], etc. �ese methods are implemented as

objects called overriders in Mayo. Overriders can be �exibly applied

to not only parameters Θi , but also the underlying algorithm fi ,
and even the gradient of each layer computation xi = fi (xi−1,Θi ).
�e design of overriders provides an abstraction for various com-

pression techniques.

An overrider д ∈ G, con�gured with suitable hyperparameters,

takes a multi-dimensional array as input, and produces a new array

with the same shape as the compressed variant. Parameters Θi can

thus be simply substituted using any overrider дparam ∈ G:

Θ̃i = дparam(Θi ). (4)

Moreover, overriders can be used to customize other components

in a DNN. For example, we can customize the activation function

to replace fi with
˜fi , using an overrider дactivation ∈ G, where for

any input xi−1 and parameters Θi , we have:

˜fi (xi−1,Θi ) = дactivation (fi (xi−1,Θi )) . (5)

Finally, overriders are recursively-compositional. Multiple over-

riders can be chained in sequence, which in turn provides greater

compression opportunities. For example, given a pruning overrider

д and a quantizing overrider h, the composition of them is also an

overrider that can be applied to any components, i.e. h ◦ д ∈ G. In

3



Mayo Ristre�o ADaPTION DoReFa

Pruning

�ne-grained 3 7 7 7

coarse-grained 3 7 7 7

�antization

�xed-point 3 3 3 3

dynamic �xed-point 3 3 3 7

mini-�oat 3 3 3 7

log 3 7 7 7

shi� 3 3 3 7

Layer-wise customization 3 3 3 7

Automated hyperparameter optimization 3 7 7 7

Compression method chaining 3 7 7 7

Customizable components w/a/g w/a w/a w/a/g

Con�guration format YAML Ca�e Ca�e Python

Table 1: A comparison: Ristretto [6], ADaPTION [25], DoReFa [28] and Mayo.

this case, for any parameters Θ:

Θ̃ = h (д (Θ)) . (6)

InMayo, DNNs are described in a readable format called YAML [2].

Individual components (e.g. weights, biases, activations and gra-

dients) of each layer can be �exibly customized by specifying the

overriders and the associated hyperparameters to use. Each com-

ponent in each layer can therefore be customized di�erently by

having di�erent overriders.

5 COMPARISONS TO EXISTING
FRAMEWORKS

Table 1 compares the features of Mayo to the compression frame-

works mentioned in Section 2.2. Here, the customizable components

w, a and g respectively denote the weight parameters, activation

and gradients of each layer computation. Most of the existing frame-

works focus purely on quantizations. In contrast, quantization is

just one of the many classes of overriders in Mayo. Mayo further

supports other compression techniques such as �ne- and coarse-

grained pruning, and LRA. Additionally, Mayo is highly �exible: it

can customize the compression techniques used by any individual

components in each layer. It is also the �rst tool that supports

chaining multiple compression techniques.

Mayo further automates hyperparameter optimization. Both

Ristre�o and ADaPTION support �ne-tuning quantized DNNs, but

the process of manual hyperparameter optimization is o�en time-

consuming and requires extensive knowledge in both the compres-

sion method and the underlying network structure. For example, a

common �ow in ADaPTION is to manually allocate bit-widths in a

layer-wise manner and tweak them repeatedly until the accuracy

and bit-width criteria are met. Mayo completely automates the

manual process, and provides a trade-o� between the compression

rate and test accuracy.

6 EXPERIMENTS
In this section, we present two case studies. �e �rst one applies

�ne-grained pruning on a wide range of vision DNNs to demon-

strate our automated hyperparameter optimization in Section 3.2.

�e second showcases the quantization methods in Section 3.1, and

examines the e�ects they have on a DNN and its pruned variant.

6.1 Fine-grained Pruning
In this case study, we override weight parameters of each layer

using a �ne-grained pruning method known as dynamic network

surgery (DNS) [5], where each layer is associated with a hyper-

parameter to trade-o� sparsity with the network accuracy. We

use automated hyperparameter optimization to compress a wide

range of DNNs. Our optimization is resource-aware, as we de�ne

the penalty function of each hyperparameter to be the number of

remaining active parameters in the layer. Table 2 shows 2–90×
compression rates on them, where ER and CR respectively denote

error rate and compression rate. Here, LeNet-5 [18] classi�es the

MNIST dataset [19]. CifarNet is a custom-built classi�er for the

CIFAR-10 dataset [16]. Finally, AlexNet [17], SqueezeNets [13] 1.0

and 1.1, MobileNetV1 [10], and ResNet-18 [8] classify images in Im-

ageNet [4]. Moreover, Mayo fully supports the depthwise-separable

convolution layers and residual connections respectively found in

MobileNetV1 and ResNet-18.

Table 3 shows our automated pruning comparing against other

published results with manual optimization. �e �rst (Naı̈ve) and

the second (Deep Compression) methods produced by Han et al. [7]

respectively show �ne-grained pruning with and without �ne-

tuning to regain the lost accuracy due to pruning. As Han et al. ap-

plies multiple compression passes, we only consider their pruning

results for a consistent comparison. �e third method is the original

DNS used by Guo et al. [5]. �ey manually tailored the hyperpa-

rameters to obtain a compression rate of 17.7×. In Mayo, although

the top-1 error increases by 1.05%, we managed a much higher

compression rate at 21.8×, as we allow each layer to adopt di�erent

hyperparameter values. For the larger DNNs such as MobileNetV1

4



and ResNet-18, Mayo respectively achieves compression rates of

2.97× and 5.13×, with top-1 accuracy losses of only 0.76% and

−0.28%.

Model Name Original ER Increase in ER CR

LeNet-5 [18] 0.7%/0% 0%/0% 90.1×
CifarNet 8.63%/0.34% 0.25%/-0.04% 6.39×
AlexNet [17] 44.14%/21.40% 1.27%/0.20% 21.83×
SqueezeNet 1.0 [13] 43.55%/20.76% 0.27%/0.11% 2.07×
SqueezeNet 1.1 [13] 43.01%/20.22% 0.73%/0.36% 2.16×
MobileNetV1 [10] 29.25%/10.47% 0.76%/1.58% 2.97×
ResNet-18 [8] 31.02%/11.32% -0.28%/-0.55% 5.13×

Table 2: Fine-grained pruning with automated hyperparam-
eter optimization.

Model Error rates Compression rate

Naı̈ve [7] 57.18%/23.23% 4.4×
Deep Compression [7] 42.77%/19.67% 9×
DNS (Original) [5] 43.09%/19.99% 17.7×
DNS (Mayo) 44.14%/21.40% 21.8×

Table 3: A comparison of �ne-grained pruning results on
AlexNet [17].

6.2 �antized Sparse and Dense Models
Our next case study is based on CifarNet, which has a top-1 accuracy

of 91.37% and only 1.3M parameters. Our baseline is signi�cantly

smaller than the VGG-based CIFAR-10 classi�er (top-1 93.66% with

20M parameters) in [22]. We consider a pretrained CifarNet and

its pruned variant as the dense and sparse models, and respec-

tively apply �xed-point, dynamic �xed-point, shi� and mini-�oat

quantizations.

�e quantization results on the sparse and dense CifarNet base-

lines are shown in Table 4. For the dense model, Mayo quantizes the

networks to a bit-width of 4, and the sparse variants are quantized

to 6.

Figure 1 shows the weight distributions of the pre-quantized base-

lines. For the dense model, a large number of parameters are cen-

tralized around zero and quantization methods that can faithfully

represent near-zero values give be�er test accuracies (mini-�oat

and shi�). In contrast, representable �xed-point values distribute

evenly across the entire quantized range, and thus they struggle

to accommodate a largely uneven distribution. Shi� quantization

shows the worst performance on sparse models but has relatively

good performance on dense models. As it quantizes values close to

zero with much less round-o� error, it �ts the weights distribution

of the dense models be�er than that of the sparse variant. Overall,

for CifarNet, Mayo achieves a compression rate of 33.92x with only

0.16% top-1 accuracy loss by jointly using �ne-grained pruning and

mini-�oat quantization.

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
Values

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f e
le

m
en

ts

(a) Dense weights

0.03 0.02 0.01 0.00 0.01 0.02 0.03
Values

0

50

100

150

200

250

Nu
m

be
r o

f e
le

m
en

ts

(b) Sparse weights

Figure 1: Weight distributions of the �nal convolutional
layer in dense and sparse CifarNets.

7 CONCLUSION
In this paper, we present the Mayo framework that can automat-

ically compress a pretrained neural network for saving the com-

putational and memory resources. It optimizes the quantization

procedure and reduces the exploration space. In addition, it per-

forms a greedy search to �nd optimal combinations of parameters

for multiple overriders, thus fully automates the process of model

compression. In terms of features, Mayo specializes in chaining

various compression techniques and can �exibly customize individ-

ual components (weights, activations, gradients, etc.) using them

in a DNN.

�e results demonstrate that Mayo can achieve compression rates

exceeding the previous state-of-the-art results using �ne-grained

pruning, without any manual hyperparameter tuning. Furthermore,

we show results of di�erent quantization methods on an original

and pruned DNN, and observe that non-linear approaches provides

be�er trade-o�s between accuracy and compression rate than linear

quantization for both sparse and dense models. Mayo and the

compressed networks used in the paper are released to the public.
∗

∗
Available at: h�ps://github.com/deep-fry/mayo.

5

https://github.com/deep-fry/mayo


Method Bit-width Density Compression rate Top-1/top-5 accuracies

Baseline 32 100% - 91.37%/99.67%

Fixed-point (Fixed-p) 4 100% 8× 89.64%/99.74%

Dynamic Fixed-point (DFP) 4 100% 8× 90.63%/99.68%

Shi� 4 100% 8× 91.16%/99.65%

Mini-�oat (MF) 4 100% 8× 91.83%/99.72%

Fine-grained pruning (FPrune) 32 15.65% 6.39× 91.12%/99.70%

FPrune + Fixed-p 6 15.65% 33.92× 90.59%/99.68%

FPrune + DFP 6 15.65% 33.92× 91.04%/99.70%

FPrune + Shi� 6 15.65% 33.92× 89.28%/99.68%

FPrune + MF 6 15.65% 33.92× 91.21%/99.73%

Table 4: �antizations on the sparse and dense CifarNets.

ACKNOWLEDGMENTS
�is work is supported by the Chinese National Basic Research

Program (973 Program, No. 2015CB352400), the National Natu-

ral Science Foundation of China (Grant U1401258), and the Sci-

ence and Technology Planning Project of Guangdong Province

(2015B010129011). We thank EPSRC for providing Yiren Zhao his

doctoral scholarship.

REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,

B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zhang.

TensorFlow: A system for large-scale machine learning. In USENIX Conference
on Operating Systems Design and Implementation, 2016.

[2] O. Ben-Kiki, C. Evans, and B. Ingerson. YAML ain’t markup language. yaml.org,

2005.

[3] M. Courbariaux, Y. Bengio, and J.-P. David. Training deep neural networks

with low precision multiplications. In International Conference on Learning
Representations, 2015.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale

hierarchical image database. In IEEE Conference on Computer Vision and Pa�ern
Recognition, 2009.

[5] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for e�cient DNNs. In

Advances in Neural Information Processing Systems, 2016.

[6] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi. Ristre�o: A framework for

empirical study of resource-e�cient inference in convolutional neural networks.

IEEE Transactions on Neural Networks and Learning Systems, 2018.

[7] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural

networks with pruning, trained quantization and Hu�man coding. International
Conference on Learning Representations (ICLR), 2016.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In IEEE Conference on Computer Vision and Pa�ern Recognition, 2016.

[9] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks

for acoustic modeling in speech recognition: �e shared views of four research

groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dree�o, and H. Adam. MobileNets: E�cient convolutional neural networks for

mobile vision applications. CoRR, abs/1704.04861, 2017.

[11] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized

neural networks. In Advances in Neural Information Processing Systems. 2016.

[12] K. Hwang and W. Sung. Fixed-point feedforward deep neural network design

using weights +1, 0, and −1. In Signal Processing Systems, 2014.

[13] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer.

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model

size. CoRR, abs/1602.07360, 2016.

[14] IEEE standard for �oating-point arithmetic. IEEE Std 754-2008, 2008.

[15] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural

networks with low rank expansions. CoRR, abs/1405.3866, 2014.

[16] A. Krizhevsky, V. Nair, and G. Hinton. �e CIFAR-10 and CIFAR-100 datasets.

h�p://www.cs.toronto.edu/ kriz/cifar.html, 2014.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classi�cation with deep

convolutional neural networks. In Advances in Neural Information Processing
Systems 25. 2012.

[18] Y. LeCun, L. Bo�ou, Y. Bengio, and P. Ha�ner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[19] Y. LeCun, C. Cortes, and C. J. Burges. �e MNIST database of handwri�en digits.

[20] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong. LogNet: Energy-

e�cient neural networks using logarithmic computation. In IEEE International
Conference on Acoustics, Speech and Signal Processing, 2017.

[21] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy. Sparse convolutional

neural networks. In IEEE Conference on Computer Vision and Pa�ern Recognition,

2015.

[22] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning e�cient con-

volutional networks through network slimming. In International Conference on
Computer Vision, 2017.

[23] P. Maji and R. Mullins. 1D-FALCON: Accelerating deep convolutional neural

network inference by co-optimization of models and underlying arithmetic

implementation. In International Conference on Arti�cial Neural Networks, 2017.

[24] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally. Exploring the

regularity of sparse structure in convolutional neural networks. IEEE Conference
on Computer Vision and Pa�ern Recognition, 2017.

[25] M. B. Milde, D. Neil, A. Aimar, T. Delbrück, and G. Indiveri. ADaPTION: Tool-

box and benchmark for training convolutional neural networks with reduced

numerical precision weights and activation. CoRR, abs/1711.04713, 2017.

[26] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 2010.

[27] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental network quantization:

Towards lossless CNNs with low-precision weights. International Conference on
Learning Representations (ICLR), 2017.

[28] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou. DoReFa-Net: Training

low bitwidth convolutional neural networks with low bitwidth gradients. CoRR,

abs/1606.06160, 2016.

6


	Abstract
	1 Introduction
	2 Related Works
	2.1 Compression Techniques
	2.2 Existing Tool-chains and Frameworks

	3 Optimizations
	3.1 Quantizations and Heuristics
	3.2 Automated Hyperparameter Optimization

	4 Features
	5 Comparisons to Existing Frameworks
	6 Experiments
	6.1 Fine-grained Pruning
	6.2 Quantized Sparse and Dense Models

	7 Conclusion
	References

