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Abstract. In this paper we demonstrate that the alternative form, derived by us in an earlier
paper, of the n-level densities for eigenvalues of matrices from the classical compact group USp(2N)
is far better suited for comparison with derivations of the n-level densities of zeros in the family of
Dirichlet L-functions associated with real quadratic characters than the traditional determinantal
random matrix formula. Previous authors have found ingenious proofs that the leading order term
of the n-level density of the zeros agrees with the determinantal random matrix result under certain
conditions, but here we show that comparison is more straightforward if the more suitable form
of the random matrix result is used. For the support of the test function in [1,−1] and in [−2, 2]
we compare with existing number theoretical results. For support in [−3, 3] no rigorous number
theoretical result is known for the n-level densities, but we derive the densities here using random
matrix theory in the hope that this may make the path to a rigorous number theoretical result
clearer.

1. Introduction

In the 1990s Katz and Sarnak [18, 19] considered statistics of zeros of L-functions near the
critical point (the point at which the real axis crosses the critical line on which the complex zeros
are expected to lie). They predict that in a natural family of L-functions these zeros would, when
averaged across the family, display the same statistical behaviour as the eigenvalues near 1 of
matrices chosen at random with respect to Haar measure from the classical compact groups U(N),
O(N) or USp(2N). To see this correspondence with random matrix theory it is necessary to scale
the zeros by their mean density and a natural asymptotic limit is taken. Under these conditions,
local statistics of the zeros are expected to match the equivalent statistics of eigenvalues of random
matrices of large dimension.

There has been a large body of work aiming to prove the Katz-Sarnak correspondence under
various conditions and for various families of L-functions. Some of these papers consider just the
leading order terms of the statistics in the asymptotic limit (for example [1, 7, 9, 11, 13, 15, 17,
20, 23, 27, 28, 29, 31]). Others (for example [10, 14, 16, 24, 25, 26]) match lower order terms with
conjectures for the lower than leading order behaviour given by, for instance, the Ratios Conjectures
[3, 4]. Ratios conjectures combine knowledge from random matrix theory with non-rigorous number
theoretical arguments to produce very precise formulae for averages of ratios of L-functions, and
hence the zero statistics that can be derived from these ratios.
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Here we will concentrate just on the leading order behaviour of the n-level densities (in some
communities they are given the name n-point correlation functions) of the zeros of one particular
family of L-functions, although the random matrix formulae presented can be compared equally
well with any family of L-functions with statistics like USp(2N). The family is that of Dirich-
let L-functions associated with real quadratic characters. Members of the family are given, for
fundamental discriminants d, by the Dirichlet series

(1.1) L(s, χd) =
∞∑
n=1

χd(n)

ns
,

valid for <s > 1, where χd(n) is Kronecker’s symbol. In keeping with the literature on this subject,
we denote the set of d’s in our family by D(X) = {d fundamental discriminant : X/2 ≤ |d| < X},
although from the random matrix point of view the full range from 0 to X would also be acceptable.

The quest to provide evidence for the Katz-Sarnak philosophy for this family dates back to the
work of Özlük and Snyder [28] who demonstrated that the 1-level density for the family of quadratic
Dirichlet L-functions matches, in the scaling limit, with the 1-level density of eigenvalues from large
USp(2N) matrices. The method for obtaining level density statistics of zeros involves sampling a
test function at the positions of the zeros. All the known rigorous results require a restriction on
the support of the Fourier transform of this test function. In the case of [28], the Fourier transform
of the test function has support in [−2, 2].

This work was extended to all n-level densities by Rubinstein [29]. The test function in this case

takes n variables and Rubinstein chooses a Fourier transform of the form
∏n
i=1 f̂i(ui) and requires

it to be supported on
∑n

i=1 |ui| < 1, where

(1.2) f̂(u) =

∫ ∞
−∞

f(x)e2πixudx.

Gao [13] succeeded in writing down the n-level densities when the support is extended to∑n
i=1 |ui| < 2, but was only able to verify that these agree, at leading order, with random ma-

trix theory for n ≤ 3. Levinson and Miller [20] extended this to n ≤ 7.

Recently Entin, Roditty-Gershon and Rudnick [9] proved that all n-level densities match with
random matrix theory at leading order for

∑n
i=1 |ui| < 2 by an ingenious method using comparison

with the equivalent statistic for function field zeta functions.

One reason that there has been so much difficulty in confirming that the scaling limit of the
n-level density agrees with random matrix theory is that until recently the most obvious form of
the n-level density of USp(2N) eigenvalues that number theorists had to compare their results to
was the determinantal formula (written for simplicity for a test function f that is symmetric under
permutation of all variables):
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lim
N→∞

∫
USp(2N)

∑
j1,...,jn
distinct

f
(
N
π θj1 , . . . ,

N
π θjn

)
dµHaar

= lim
N→∞

1

n!

∫ π

0
· · ·
∫ π

0
f
(
N
π θj1 , . . . ,

N
π θjn

)
det
n×n

(
KUSp(2N)(θk, θj)

)
dθ1 · · · dθn

=
1

n!

∫ ∞
0
· · ·
∫ ∞
0

f(θ1, . . . , θn) det
n×n

KUSp(θk, θj)dθ1 · · · dθn,(1.3)

where

(1.4) KUSp(2N)(x, y) = S2N+1(y − x)− S2N+1(y + x)

with

(1.5) SN (x) =
1

2π

sinNx/2

sinx/2
,

and

(1.6) KUSp(x, y) = S(y − x)− S(y + x)

with

(1.7) S(x) =
sinπx

πx
.

In the above the eigenvalues of a matrix A ∈ USp(2N) are denoted e±iθ1 , . . . , e±iθN .

The derivation of formula (1.3) is a beautiful piece of mathematics (see for example [22] or [2]),
and the determinantal structure is very important in random matrix theory, but this formulation
causes two problems when trying to compare it with n-level densities of zeros of L-functions.

The first difficulty is the condition that the sum is over distinct eigenvalues. In number theory,
the sums naturally occur as sums over unrestricted n-tuples of zeros. Therefore the first step in
comparing a number theoretical result with random matrix theory is to do combinatorial sieving to
remove duplicate zeros from the sum. This can be achieved, but adds an extra layer of complication.

The second difficulty is that the number theoretical n-level densities don’t naturally take the
structure of a determinant. It is the task of trying to artificially create the determinantal form, or
alternatively of unpicking the determinantal form on the random matrix side, that has made this
problem so challenging.

Conrey and Snaith [5] demonstrated for the case of unitary matrices, that if one forgoes the
beautiful machinery that leads to the determinantal form of the n-level density and instead pro-
ceeds via averages of ratios of characteristic polynomials of U(N) matrices then you arrive at a
different formula for the densities (also called correlation functions). They show [6] that with the
alternative formula it is much more straightforward to reproduce the work in which Rudnick and
Sarnak [30] show that for test functions with limited support, the leading order correlations of the
zeros of automorphic L-functions are the same as those of eigenvalues of random unitary matrices.
Proceeding via conjectures for averages of ratios of L-functions is one way to obtain very detailed
formulae for lower order terms in the correlations of zeros, as demonstrated in [5] for the Riemann
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zeta function. So, the conclusion is that if you follow a number theoretical method in random ma-
trix theory then you arrive at a formula for the n-level density that is not as clean as (1.3) but is far
more useful for comparison to number theory. Almost simultaneously with [6], Entin gave another
method [8] for reproducing Rudnick and Sarnak’s work without their complicated combinatorics.
He uses a comparison with Artin-Schreier function field L-functions.

In a recent paper [21] we derive an alternative formula for the n-level densities of eigenvalues from
matrices in SO(2N) and USp(2N) that is calculated, as in [5], via averages of ratios of characteristic
polynomials. In the present paper we will demonstrate that armed with this alternative formula, it
is relatively straightforward to reproduce the work done by Rubinstein [29] for

∑n
i=1 |ui| < 1 and

Gao [13], Levinson and Miller [20] and Entin, Roditty-Gershon and Rudnick [9] for
∑n

i=1 |ui| < 2
to match their number theoretical formulae with random matrix theory. We will also write down
a formula for the limiting random matrix n-level density for support in

∑n
i=1 |ui| < 3 that closely

follows the form of Gao’s expression. As far as we know there are no rigorous number theoretical
results for this range of support and we hope that presenting the result explicitly in a helpful form
may bring nearer the day when such a rigorous result is obtained.

We will see that that the n-level density of the zeros of quadratic Dirichlet L-functions in the
limit of large conductor does not contain arithmetic information specific to the family, so the proof
given here that it coincides with random matrix theory also holds for any other symplectic family
if the n-level density is worked into the form of (4.3) or (5.1). The n-level densities of orthogonal
families have almost identical structure, but with a few plus and minus signs exchanged, so no new
results would be needed to compare the n-level density of an orthogonal family with the orthogonal
formula in [21].

We restate here the alternative n-level density formula from Section 7.2 of [21]. So that we can
extend our contours of integration to infinity in analogy with the number theory case, we extend
the eigenangles of the matrices periodically (note that this notation is slightly different from that in
[21] but the idea is the same). So, if we have a matrix in USp(2N) with eigenvalues e±iθ1 , . . . , e±iθN ,
we can define for integer k and for r = ±1, . . . ,±N , with θ−r = −θr, the sequence of angles

(1.8) θr + 2kπ =


θr+2kN if r > 0 and k ≥ 0
θr+2kN−1 if r > 0 and k < 0
θr+2kN+1 if r < 0 and k > 0
θr+2kN if r < 0 and k ≤ 0

Theorem 1.1. (Mason and Snaith [21]) For a matrix in USp(2N) with eigenvalues e±iθ1 , . . . , e±iθN

extended periodically as above and a test function that is holomorphic and decays rapidly in each
variable in horizontal strips, we have∫

USp(2N)

∞∑
j1,··· ,jn=−∞
j1,...,jn 6=0

F (θj1 , · · · , θjn) dµHaar

=
1

(2πi)n
∑

KtLtM={1,··· ,n}

(2N)|M |

×
∫
(δ)|K|

∫
(−δ)|L|

∫
(0)|M|

J∗USp(2N) (zK t −zL)F (iz1, · · · , izn) dz1 · · · dzn.

(1.9)
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where

J∗USp(2N)(A) =
∑
D⊆A

e
−2N

∑
d∈D

d

(−1)|D|

√
Z(D,D)Z(D−, D−)Y (D−)

Y (D)Z†(D−, D)2

×
∑

A/D=W1t···tWR

|Wr|≤2

R∏
r=1

HD(Wr)

(1.10)

and

HD(Wr) =



∑
d∈D

(
z
′

z
(α− d)− z

′

z
(α+ d)

)
+
z
′

z
(2α) Wr = {α}(

z
′

z

)′

(α+ β) Wr = {α, β}

1 Wr = ∅

(1.11)

with

z(x) =
1

1− e−x
,(1.12)

Y (A) =
∏
α∈A

z(2α),(1.13)

Z(A,B) =
∏
α∈A
β∈B

z(α+ β).(1.14)

The dagger on Z adds a restriction that a factor z(x) is omitted if its argument is zero.

Here A is a set of complex α. D− = {−α : α ∈ D}, A\D = {α ∈ A,α 6∈ D} and the notation
K tLtM = {1, · · · , n} and A/D = W1 t · · · tWR means a sum over disjoint subsets. |M | is the

size of set M . The contour of integration denoted (δ)|K| means all the z variables with index in K
are integrated on the vertical line with real part δ. In (1.9) J∗USp(2N) is evaluated at zs with index

in the set K or L. The zs with index in L appear with a negative sign.

The test function that we will be working with in this paper satisfies the symmetry property

(1.15) F (x1, . . . , xn) = F (±x1, . . . ,±xn),

which allows us to write (1.9) as∫
USp(2N)

∞∑
j1,··· ,jn=−∞
j1,...,jn 6=0

F (θj1 , · · · , θjn) dµHaar

=
1

(2πi)n
∑

QtM={1,··· ,n}

(2N)|M |

×
∫
(δ)|Q|

∫
(0)|M|

2|Q|J∗USp(2N) (zQ)F (iz1, · · · , izn) dz1 · · · dzn.

(1.16)



6 A.M. MASON AND N.C. SNAITH

To obtain this we make a change of variables z` → −z` in (1.9) and then combine the sets K and
L into the set Q. However, since any j ∈ Q could have originated in either K or L, we acquire a
factor of 2|Q|.

As in the unitary case [6] the formulae in Theorem 1.1 simplify dramatically when the support
of the Fourier transform of the test function is restricted. Assume a test function of the form
f1(x1) · · · fn(xn) so its Fourier transform has the form

∏n
i=1 f̂i(ui), with the definition of f̂ at (1.2).

Assume further that
∏n
i=1 f̂i(ui) 6= 0 only if

∑n
j=1 |ui| < q for some integer q.

The definition of the inverse Fourier transform allows us to write

(1.17) f
(
N
π iz
)

=

∫ ∞
−∞

f̂(u)e2Nzudu.

Thus if we are considering the n-level density of eigenvalues scaled by their mean density

(1.18)

∫
USp(2N)

∞∑
j1,··· ,jn=−∞
j1,...,jn 6=0

f1

(
N
π θj1

)
· · · fn

(
N
π θjn

)
dµHaar

then in the contour integral on the right hand side of (1.16) there will be a factor with magnitude

|exp (2Nz1u1 + · · ·+ 2Nznun)| = e2Nδ(q−ε),(1.19)

for some ε > 0. If we consider only sets D in (1.10) where |D| ≥ q, we can see the exponential term

e−2N
∑

d∈D d in J∗USp(2N)(A) is bounded by∣∣∣e−2N∑
d∈D d

∣∣∣ ≤ e−2Nδq.(1.20)

Hence the product of these two factors in 1.19 and 1.20 tends to zero as δ → ∞ as we move the
contours of integration off to the right and only terms with |D| < q survive.

Define

J∗USp(2N),q(A) =
∑
D⊆A
|D|<q

e
−2N

∑
d∈D

d

(−1)|D|

√
Z(D,D)Z(D−, D−)Y (D−)

Y (D)Z†(D−, D)2

×
∑

A/D=W1t···tWR

|Wr|≤2

R∏
r=1

HD(Wr),

(1.21)

for use when the support of the Fourier transform of the test function is in
∑n

j=1 |uj | < q.

2. Results

The first purpose of this paper is to use the form of the n-level density in [21] to demonstrate
for q = 1 or q = 2 that for test functions f1, . . . , fn with the product of their Fourier transforms
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i=1 f̂i(ui) having support in

∑n
i=1 |ui| < q,

lim
X→∞

1

|D(X)|
∑

d∈D(X)

∞∑
j1,...,jn=−∞
j1,...,jn 6=0

f1

(
Lγ

(j1)
d

)
· · · fn

(
Lγ

(jn)
d

)

= lim
N→∞

∫
USp(2N)

∞∑
j1,...,jn=−∞
j1,...,jn 6=0

f1

(N
π
θj1

)
· · · fn

(N
π
θjn

)
dµHaar,(2.1)

where the eigenangles θji are counted as described at Theorem 1.1 and

(2.2) L =
logX

2π
,

and

(2.3) 1/2 + iγ
(j)
d , j = ±1,±2, . . . ,

are the nontrivial zeros of L(s, χd) with

(2.4) 0 ≤ <γ(1)d ≤ <γ
(2)
d ≤ <γ

(3)
d · · ·

and

(2.5) γ
(−j)
d = −γ(j)d .

Here L(s, χd) are Dirichlet L-functions associated with real quadratic characters. Note that this
result is not new in itself but the point is to demonstrate that the use of (1.16) makes matching
the left hand side with the right hand side of (2.1) much easier than if the determinantal form is
used. In Section 4 we rederive the result of Rubinstein [29] for

∑n
i=1 |ui| < 1 and in Section 5 we

reproduce the result of Gao [13], Levinson and Miller [20] and Entin, Roditty-Gershon and Rudnick
[9] for

∑n
i=1 |ui| < 2.

Secondly, in Section 6 we move to support
∑n

i=1 |ui| < q with q = 3 and write (1.16) in the style
of Gao. We note that no significant new ideas are needed for this beyond those used for q = 1 and
q = 2, so on the random matrix side it seems that there is no fundamental barrier to writing down
a formula like Gao’s for any range of support - one just has to work with more involved formulae.
However, extending the support beyond q = 2 in a rigorous number theoretical context seems to
require completely new ideas and it is our hope that by writing down explicitly the final answer
for q = 3 in Section 6 we may bring closer the day when such a calculation can be accomplished
rigorously.

We note that the calculations are carried out here for the quadratic family of Dirichlet L-
functions, but no new results would be needed to compare the n-level density of any family of
orthogonal or symplectic L-functions as long as the n-level density of the zeros was written in the
form of Rubinstein or Gao by applying the explicit formula in a similar way.

To prove our result we need the following key lemmas. In all of the following we have the
definition

(2.6) z(x) = (1− e−x)−1,
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and we assume the following about the test functions:

(2.7)

a) the test function has the form of a product f1(x1)f2(x2) · · · fn(xn);
b) each component is even, fj(x) = fj(−x);
c) fj(xj) is an entire function;
d) For any fixed real y, |fj(x+ iy)| �y |x|−2 as |x| → ∞.

The integrals are on the vertical lines with real part δ > 0 or −δ, as indicated.

The first three relatively simple lemmas are all that is needed if the support of the Fourier
transform of the test function is restricted to

∑n
i=1 |ui| < 1.

Lemma 2.1. For test functions with the properties at (2.7),

lim
N→∞

4

(2πi)2

∫
(δ)

∫
(δ)

(
z′

z

)′
(z1 + z2)f1(

N
π iz1)f2(

N
π iz2)dz1dz2

= 2

∫ ∞
−∞

f̂1(u)f̂2(u)|u|du.(2.8)

Lemma 2.2. For test functions with the properties at (2.7),

lim
N→∞

2

2πi

∫
(δ)

z′

z
(2s)f(Nπ is)ds

= −1

2

∫ ∞
−∞

f̂(u)du.(2.9)

Lemma 2.3. For test functions with the properties at (2.7),

(2.10)
2N

2πi

∫
(−δ)

f(Nπ iz)dz =

∫ ∞
−∞

f(y)dy

The fourth lemma is needed when support is extended to
∑n

i=1 |ui| < 2.

Lemma 2.4. For disjoint sets A t B = {1, . . . ,m} with |B| ≥ 1 and B\{d} denoting the set B
excluding the element d, and for test functions with the properties at (2.7),

lim
N→∞

∑
d∈B

2

2πi

∫
(δ)
−e−2Nzdz(−2zd)

(∏
k∈A

−2

2πi

∫
(δ)

z′

z
(zk + zd)fk

(
N
π izk

)
dzk

)

×

 ∏
j∈B\{d}

2

2πi

∫
(δ)

z′

z
(zj − zd)fj

(
N
π izj

)
dzj

 fd

(
N
π izd

)
dzd

=
−1

2
2|AtB|(−1)|B|

∫
(R≥0)AtB∑

k∈A uk≤(
∑

k∈B uk)−1

∏
k∈AtB

f̂k(uk)
∏

k∈AtB
duk.(2.11)

The final lemma is needed only when support is extended to
∑n

i=1 |ui| < 3.
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Lemma 2.5. For disjoint sets A1 tB1 tA2 tB2 = {1, . . . ,m} with |Bi| ≥ 1 and B\{d} denoting
the set B excluding the element d, and with test functions having the properties in (2.7),

lim
N→∞

∑
d∈B1

∑
g∈B2

4

(2πi)2

∫
(δ)

∫
(δ)

(
e−2N(zd+zg)

z(zd + zg)z(−zd − zg)z(−2zd)z(−2zg)

z(zd − zg)z(zg − zd)

)

×

∏
k∈A1

2

2πi

∫
(δ)
−z
′

z
(zk + zd)fk

(
N
π izk

)
dzk


×

 ∏
j∈B1\{d}

2

2πi

∫
(δ)

z′

z
(zj − zd)fj

(
N
π izj

)
dzj


×

∏
k∈A2

2

2πi

∫
(δ)
−z
′

z
(zk + zg)fk

(
N
π izk

)
dzk


×

 ∏
j∈B2\{g}

2

2πi

∫
(δ)

z′

z
(zj − zg)fj

(
N
π izj

)
dzj


×fd

(
N
π izd

)
fg

(
N
π izg

)
dzddzg )

= 2m(−1)|B1tB2|
∫

(R≥0)|A1tB1tA2tB2|∑
k∈A1

uk≤(
∑

k∈B1
uk)−1∑

k∈A2
uk≤(

∑
k∈B2

uk)−1

1

4
−

−∑
k∈A2

uk +
∑
j∈B2

uj − 1



× δ

− ∑
k∈A1tB2

uk +
∑

j∈B1tA2

uj

 ∏
k∈{1,...,m}

f̂k(uk)
∏

k∈{1,...,m}

duk.(2.12)

3. Proof of key lemmas

We will now present the proof of the key lemmas. The first three are fairly straightforward, but
we will prove each for completeness. It is useful to note the following behaviour for x of small
magnitude:

z(x) :=
1

1− e−x
∼ 1

x
+O(1),(3.1)

z′

z
(x) ∼ −1

x
+O(1),(3.2) (

z′

z

)′
(x) ∼ 1

x2
+O(x−1).(3.3)
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Proof of Lemma 2.1. We start with the left hand side of the statement of Lemma 2.1 and perform
a change of variables:

lim
N→∞

4

(2πi)2

∫
(δ)

∫
(δ)

(
z′

z

)′
(z1 + z2)f1(

N
π iz1)f2(

N
π iz2)dz1dz2

= lim
N→∞

4

(2Ni)2

∫
(
Nδ
π )

∫
(
Nδ
π )

(
z′

z

)′
( πN z1 + π

N z2)f1(iz1)f2(iz2)dz1dz2.(3.4)

Since the fj have no poles in the right half-plane and
(
z′

z

)′
(x) has a pole only at zero, the contours

can be shifted back to (δ) for convenience. Here and elsewhere we can ignore horizontal segments
of the contour of integration when shifting contours as these will be negligible due to the rate of
decay of fj(s) when the absolute value of the real part of the argument gets large (see (2.7)). Note
that in the above integral there is a i multiplying the argument of fj so when the imaginary part
of z1 or z2 is large then the integrand is small.

Now we apply the large N limit and use (3.3) to obtain

4

(2πi)2

∫
(δ)

∫
(δ)

1

(z1 + z2)2
f1(iz1)f2(iz2)dz1dz2(3.5)

=

∫ ∞
−∞

∫ ∞
−∞

f̂1(u1)f̂2(u2)
4

(2πi)2

∫
(δ)

∫
(δ)

1

(z1 + z2)2
e2πz1u1+2πz2u2dz1dz2du1du2.

where we have inserted the definition of the Fourier transform of the fjs from (1.2).

We now notice that if either of the variables u1 or u2 is negative, then we could close the
corresponding z integral in the right half plane with a contour on the vertical line with real part R
and as R→∞ the contribution of closing the contour would go to zero due to the factor e2πzjuj . As
there are no poles of the integrand in the right half plane, this means that if either of the variables
u1 or u2 is negative then the whole integral is zero.

Thus we are left looking at

(3.6)

∫ ∞
0

∫ ∞
0

f̂1(u1)f̂2(u2)
4

(2πi)2

∫
(δ)

∫
(δ)

1

(z1 + z2)2
e2πz1u1+2πz2u2dz1dz2du1du2.

As the ujs are positive, closing the z2 contour to the far left will result in negligible contribution
from that contour of integration. However, the contour will enclose the pole at z2 = −z1, resulting
in a residue

(3.7) Res
z2=−z1

(
1

(z1 + z2)2
e2πz1u1+2πz2u2

)
= 2πu2e

2πz1(u1−u2).

Thus (3.6) becomes ∫ ∞
0

∫ ∞
0

f̂1(u1)f̂2(u2)
4

2πi

∫
(δ)

2πu2e
2πz1(u1−u2)dz1du1du2

= 4

∫ ∞
0

∫ ∞
0

f̂1(u1)f̂2(u2)u2δ(u1 − u2)du1du2,(3.8)
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where we have shifted the z1 contour onto the imaginary axis, made a change of variables z1 → −iz1,
and then used the expression for a delta-function

(3.9) δ(x) =

∫ ∞
−∞

e−2πiyxdy.

Thus we have that (3.6) is

4

∫ ∞
0

f̂1(u)f̂2(u)udu = 2

∫ ∞
−∞

f̂1(u)f̂2(u)|u|du,(3.10)

using the property that f̂j are even functions. �

Proof of Lemma 2.2. We start with the left hand side of Lemma 2.2, perform the same change of
variables and the same procedure for taking the N → ∞ limit, although this time using (3.2), as
in the proof of Lemma 2.1. This leads us to

lim
N→∞

2

2πi

∫
(δ)

z′

z
(2z)f(Nπ iz)dz

=
−1

2πi

∫
(δ)

1

z
f(iz)dz.(3.11)

We now write f in terms of its Fourier transform (1.2). So, the above equation equals

(3.12)
−1

2πi

∫ ∞
−∞

f̂(u)

∫
(δ)

1

z
e2πzudzdu.

If u < 0 then the z contour could be closed far to the right and would give a zero contribution. So,
we look at

(3.13)
−1

2πi

∫ ∞
0

f̂(u)

∫
(δ)

1

z
e2πzudzdu,

and close the z contour far to the left, picking up a pole at z = 0 with residue 1.

Thus our final result is

(3.14) −
∫ ∞
0

f̂(u)du,

which, due to f̂ being even, equals

(3.15) −1

2

∫ ∞
−∞

f̂(u)du.

�

Proof of Lemma 2.3. This is very straightforward indeed. We merely perform a change of variable
z = −πiy/N and use the fact that f has no poles to see that

(3.16)
2N

2πi

∫
(−δ)

f(Nπ iz)dz =

∫ ∞
−∞

f(y)dy.

�
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The three lemmas above are all that are needed to compare with Rubinstein’s result with support
on
∑n

i=1 |ui| < 1 in Section 4.

Proof of Lemma 2.4. We write out the left hand side of the equality in the lemma

lim
N→∞

∑
d∈B

2

2πi

∫
(δ)
−e−2Nzdz(−2zd)

(∏
k∈A

−2

2πi

∫
(δ)

z′

z
(zk + zd)fk

(
N
π izk

)
dzk

)

×

 ∏
j∈B\{d}

2

2πi

∫
(δ)

z′

z
(zj − zd)fj

(
N
π izj

)
dzj

 fd

(
N
π izd

)
dzd.(3.17)

We perform the same steps as at the start of the proof of Lemma 2.1. That is, we change variables
zi → π

N zi and then for large N approximate the z functions asymptotically using (3.1) and (3.2).
Thus we arrive at∑

d∈B

2

2πi

∫
(δ)

(
−e−2πzd −1

2zd

)

×

(∏
k∈A

2

2πi

∫
(δ)

1

zk + zd
fk(izk)dzk

) ∏
j∈B\{d}

2

2πi

∫
(δ)

−1

zj − zd
fj(izj)dzj

 fd(izd)dzd.(3.18)

Note that after the change of variables we have brought all the contours back to their original
positions. This does not have to be done carefully because although there appear to be poles when
zj = zd for each j ∈ B, in fact they all cancel out. Consider, for example, z1 and z2 when 1, 2 ∈ B.
When d = 1,

Res
z1=z2

−e−2πz1−f1(iz1)
2z1

×
∏
k∈A

fk(izk)

zk + z1
×

∏
j∈B\{1,2}

−fj(izj)
zj − z1

× −f2(iz2)
z2 − z1


= −e−2πz2−f1(iz2)

2z2
×
∏
k∈A

fk(izk)

zk + z2
×

∏
j∈B\{1,2}

−fj(izj)
zj − z2

f2(iz2),(3.19)

whereas when d = 2,

Res
z1=z2

−e−2πz2−f2(iz2)
2z2

×
∏
k∈A

fk(izk)

zk + z2
×

∏
j∈B\{1,2}

−fj(izj)
zj − z2

× −f1(iz1)
z1 − z2


= e−2πz2

−f2(iz2)
2z2

×
∏
k∈A

fk(izk)

zk + z2
×

∏
j∈B\{1,2}

−fj(izj)
zj − z2

f1(iz2).(3.20)

Thus these two residues cancel each other out.

The fact that there is no pole for any z in the right half plane also means that we can spread
the contours slightly. We will define a sequence 0 < δ1 < δ2 < · · · < δm and zi will be integrated
on the vertical line at δi.
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We now substitute each f with its definition in terms of its Fourier transform. After these
manipulations, (3.17) equals

∑
d∈B

2

2πi

∫ ∞
−∞
· · ·
∫ ∞
−∞

(∏
k∈A

f̂k(uk)

)∏
j∈B

f̂j(uj)

∫
(δd)

(
−e2πzd(ud−1)−1

2zd

)

×

(∏
k∈A

2

2πi

∫
(δk)

e2πukzk

zk + zd
dzk

) ∏
j∈B\{d}

2

2πi

∫
(δj)

−e2πujzj
zj − zd

dzj

 dzddu1 · · · dum.(3.21)

We consider first the term in the sum over d where d < j,∀j ∈ B\{d}. So, d is the smallest
element in B. For convenience we will label the elements of B in ascending order: j1 < j2 <
. . . < j|B|. The integrals over the u variables run from −∞ to ∞ but we note that the behaviour
of the exponentials exp(2πuizi) and exp(2πujzj) depends on whether the u variable is positive or
negative. Thus we consider separately the case where each u is greater than or less than zero. We
observe that if any uj < 0, j ∈ A t B\{j1}, then for the term corresponding to d = j1 in (3.21)
the integral over the corresponding zj , j ∈ A, or zj , j ∈ B\{j1}, can be closed to the right and the
contribution incurred by closing the contour will be zero since e2πujzj goes to zero for zj with large
real part and uj < 0. We also note that in closing the contour to the right, we don’t enclose any
poles (because the zj1 contour is to the left of all the other contours and so no pole zj = zj1 would
be encountered). See Figure 1 for a sketch of how the contours are arranged (it shows the general
case where d is not necessarily j1). Thus the contribution to the term corresponding to d = j1 is

2

2πi

∫ ∞
−∞

∫ ∞
0
· · ·
∫ ∞
0

(∏
k∈A

f̂k(uk)

)∏
j∈B

f̂j(uj)

∫
(δj1 )

(
−e2πzj1 (uj1−1) −1

2zj1

)

×

(∏
k∈A

2

2πi

∫
(δk)

e2πukzk

zk + zj1
dzk

) ∏
j∈B\{j1}

2

2πi

∫
(δj)

−e2πujzj
zj − zj1

dzj

 dzj1

 ∏
j∈AtB\{j1}

duj

 duj1 .(3.22)

Now we are left with uj > 0 for all j 6= j1. We can therefore close all the contours corresponding
to zk, k ∈ A, and zj , j ∈ B\{j1}, to the left. This picks up residues at zk = −zj1 , for k ∈ A, and
at zj = zj1 , for j ∈ B\{j1}. The result is that (3.22) equals

=
2|AtB|

2πi

∫ ∞
−∞

∫
(R≥0)|B\{j1}|

(∏
k∈A

f̂k(uk)

)∏
j∈B

f̂j(uj)

∫
(δj1 )

(
−e2πzj1 (uj1−1) −1

2zj1

)

×

(∏
k∈A

e−2πukzj1

) ∏
j∈B\{j1}

−e2πujzj1

 dzj1

 ∏
j∈AtB\{j1}

duj

 duj1 .(3.23)

Here we introduce notation that we will use throughout. For a set B, (R ≥ 0)|B| means that all
variables with subscripts in set B are integrated over [0,∞).

Note that if
∑

k∈A uk > (
∑

j∈B uj)− 1 then exp(2πzj1(−
∑

k∈A uk + (
∑

j∈B uj)− 1)) will decay
on a loop closing the zj1 contour far to the right, yielding no contribution at all. However, if
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k∈A uk ≤ (

∑
j∈B uj)−1 then we close the zj1 contour to the left, enclosing the residue at zj1 = 0.

Thus we have that (3.23) equals

2|AtB|(−1)|B|
(
−1

2

)∫ ∞
−∞

∫
(R≥0)|B\{j1}|∑

k∈A uk≤(
∑

j∈B uj)−1

( ∏
k∈AtB

f̂k(uk)

) ∏
j∈AtB\{j1}

duj

 duj1

= 2|AtB|(−1)|B|
(
−1

2

)∫ ∞
0

∫
(R≥0)|B\{j1}|∑

k∈A uk≤(
∑

j∈B uj)−1

( ∏
k∈AtB

f̂k(uk)

) ∏
j∈AtB\{j1}

duj

 duj1

+2|AtB|(−1)|B|
(
−1

2

)∫ 0

−∞

∫
(R≥0)|B\{j1}|∑

k∈A uk≤(
∑

j∈B uj)−1

( ∏
k∈AtB

f̂k(uk)

) ∏
j∈AtB\{j1}

duj

 duj1

= 2|AtB|(−1)|B|
(
−1

2

)∫
(R≥0)|B|∑

k∈A uk≤(
∑

j∈B uj)−1

( ∏
k∈AtB

f̂k(uk)

) ∏
j∈AtB

duj


+2|AtB|(−1)|B|

(
−1

2

)∫
(R≥0)|B|

(
∑

k∈A uk)+uj1≤(
∑

j∈B\{j1}
uj)−1

( ∏
k∈AtB

f̂k(uk)

) ∏
j∈AtB

duj

 .(3.24)

For the final equality we have made a change of variable in the second integral zj1 → −zj1 . As

fj1 is even, f̂j1 is also even, but the sign of uj1 changes in the inequality controlling the domain of
integration. We notice that the first term after the final equality above is exactly the answer we
want to prove the lemma. We will now show that the second term cancels out when we sum over
all d ∈ B.

We have labelled the elements of B as j1 < j2 < . . . < j|B|. We now consider a term in (3.21)
corresponding to d = jd 6= j1. So, jd is some element of B other than the smallest element. We will
define B<d = B ∩{1, . . . , d− 1} and B>d = B ∩{d+ 1, . . . ,m}. We repeat the steps carried out for
d = j1, noting that each zk, for k ∈ A, encounters a pole at zk = −zjd and each zj , for j ∈ B\{jd}
encounters a pole at zj = zjd . However here we notice that for elements j ∈ B<d, in the region
where uj > 0, when we close the zj-contour to the far left we enclose no poles. For j ∈ B<d in the
region where uj ≤ 0 when we close the contour far to the right,we pick up the pole at zj = zjd .
This is due to the fact that before (3.21) we spread the contours so that 0 < δ1 < δ2 < · · · < δm.
See Figure 1 for a sketch of how the contours of integration are arranged. Thus we find that the
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Figure 1. A sketch of the arrangement of the contours of integration employed in
evaluating (3.21). The sign of uj determines whether the contour of integration of
the corresponding zj (marked with a j on the sketch) can be closed to the right or
the left due to exp(2πujzj) in the integrand being small when the exponent is large
and negative. In the sketch the shaded region indicates the region enclosed by the
zj contour. A star indicates the situations when this contour encloses a pole. Note
that we have poles at zj = −zjd , for j ∈ A, meaning that it makes no difference
whether the j contour lies to the left or the right of the jd contour. For j ∈ B\{jd}
we have poles at zj = zjd .

term in (3.21) corresponding to d = jd is

2|AtB|

2πi

∫
(R≤0)|B<d|

∫ ∞
−∞

∫
(R≥0)|B>d|

( ∏
k∈AtB

f̂k(uk)

)∫
(δjd )

(
−e2πzjd (ujd−1) −1

2zjd

)

×

(∏
k∈A

e−2πukzjd

) ∏
j∈B<d

e2πujzjd

 ∏
j∈B>d

−e2πujzjd

 dzjd

×

 ∏
j∈AtB>d

duj

 dujd

 ∏
j∈AtB<d

duj


=

2|AtB|

2πi

∫ ∞
−∞

∫
(R≥0)|B\{jd}|

( ∏
k∈AtB

f̂k(uk)

)∫
(δjd )

(
−e2πzjd (ujd−1) −1

2zjd

)

×

(∏
k∈A

e−2πukzjd

) ∏
j∈B<d

e−2πujzjd

 ∏
j∈B>d

−e2πujzjd

 dzjd

×

 ∏
j∈AtB\{jd}

duj

 dujd .(3.25)
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Note that for j ∈ B<d we close the contour to the right in a clockwise direction, resulting in the
residue picking up an extra minus sign with respect to closing a contour to the left in a counter-
clockwise direction (see the second line of (3.25)). Now we just have the zjd integral to perform.
We will close this contour to the far left and pick up the residue at zjd = 0 under the condition
that

∑
k∈A uk +

∑
j∈B<d

uj ≤ (
∑

j∈B>d
uj) + ujd − 1. So (3.25) equals

2|AtB|(−1)|B>d|
(
−1

2

)∫ ∞
−∞

∫
(R≥0)|B\{jd}|∑

k∈A uk+
∑

j∈B<d
uj≤(

∑
j∈B>d

uj)+ujd−1

( ∏
k∈AtB

f̂k(uk)

)

×

 ∏
j∈AtB\{jd}

duj

 dujd

= 2|AtB|(−1)|B>d|
(
−1

2

)∫
(R≥0)|B|∑

k∈A uk+
∑

j∈B<d
uj≤(

∑
j∈B>d

uj)+ujd−1

( ∏
k∈AtB

f̂k(uk)

)

×

 ∏
j∈AtB

duj


+2|AtB|(−1)|B>d|

(
−1

2

)∫
(R≥0)|B|

(
∑

k∈A uk+
∑

j∈B<d
uj)+ujd≤(

∑
j∈B>d

uj)−1

( ∏
k∈AtB

f̂k(uk)

)

×

 ∏
j∈AtB

duj

 .(3.26)

For the final equality we have split the ujd integral into the intervals [0,∞) and (−∞, 0) and made
a change of variables ujd → −ujd in the second integral. We see that the integral corresponding
to [0,∞) for d cancels with the integral corresponding to (−∞, 0) in the case d− 1. Similarly, the
integral corresponding to (−∞, 0) for d cancels with the [0,∞) term for d + 1. In the case that
jd is the largest element of B, the term corresponding to (−∞, 0) is zero because there is no way
to satisfy the condition (

∑
k∈A uk +

∑
j∈B<d

uj) + ujd ≤ (
∑

j∈B>d
uj) − 1 because all the us are

positive and B>d is the empty set.

Thus the only term that survives is

(3.27) 2|AtB|(−1)|B|
(
−1

2

)∫
(R≥0)|B|∑

k∈A uk≤(
∑

j∈B uj)−1

( ∏
k∈AtB

f̂k(uk)

) ∏
j∈AtB

duj


from (3.24) and this proves the lemma. �

The final lemma is only needed when support is extended to
∑n

i=1 |ui| < 3.

Proof of Lemma 2.5. The proof of this lemma goes through exactly the same steps as the proof of
Lemma 2.4. Taking the large N limit, spreading the contours of integration so that 0 < δ1 < · · · <
δm (noting as before that there are no poles at zi = zj when the whole double sum is considered),
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and then replacing the f ’s with their expression in terms of their Fourier transforms we find the
left hand side of the statement of the lemma is∑

d∈B1

∑
g∈B2

4

(2πi)2

∫
(δd)

∫
(δg)

(
−e−2π(zd+zg) (zd − zg)(zg − zd)

(zd + zg)(zd + zg)(2zd)(2zg)

)

×

∏
k∈A1

2

2πi

∫
(δk)

1

zk + zd
fk(izk)dzk

×
 ∏
j∈B1\{d}

2

2πi

∫
(δj)

−1

zj − zd
fj(izj)dzj


×

∏
k∈A2

2

2πi

∫
(δk)

1

zk + zg
fk(izk)dzk

×
 ∏
j∈B2\{g}

2

2πi

∫
(δj)

−1

zj − zg
fj(izj)dzj


×fd(izd)fg(izg)dzgdzd

=
∑
d∈B1

∑
g∈B2

∫ ∞
−∞
· · ·
∫ ∞
−∞

∏
k∈{1,...,m}

f̂k(uk)
4

(2πi)2

∫
(δd)

∫
(δg)
−e2π(zd(ud−1)+zg(ug−1))

× (zd − zg)(zg − zd)
(zd + zg)(zd + zg)(2zd)(2zg)

×

∏
k∈A1

2

2πi

∫
(δk)

e2πzkuk

zk + zd
dzk

×
 ∏
j∈B1\{d}

2

2πi

∫
(δj)

−e2πzjuj
zj − zd

dzj


×

∏
k∈A2

2

2πi

∫
(δk)

e2πzkuk

zk + zg
dzk

×
 ∏
j∈B2\{g}

2

2πi

∫
(δj)

−e2πzjuj
zj − zg

dzj

 dzgdzd du1 · · · dum.(3.28)

We now perform the contour integration for all variables except zd and zg, paying careful attention
to the ordering 0 < δ1 < · · · < δm as at (3.25). So (3.28) equals

2m

(2πi)2

∑
d∈B1

∑
g∈B2

∫ ∞
−∞

∫ ∞
−∞

∫
(R≥0){1,...,m}\{d,g}

∏
k∈{1,...,m}

f̂k(uk)

∫
(δd)

∫
(δg)
−e2π(zd(ud−1)+zg(ug−1))

× (zd − zg)(zg − zd)
(zd + zg)(zd + zg)(2zd)(2zg)

×

∏
k∈A1

e−2πzduk

 ∏
j∈B1

<d

e−2πzduj

 ∏
j∈B1

>d

−e2πzduj


×

∏
k∈A2

e−2πzguk

×
 ∏
j∈B2

<g

e−2πzguj

 ∏
j∈B2

>g

−e2πzguj


×dzgdzd

 ∏
j∈{1,...,m}\{d,g}

duj

 duddug,(3.29)

where here B1
<d is the set {j ∈ B1 : j < d}, and similarly with the other notation.
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The variable zg has a pole at zg = 0 and another at zg = −zd. Computing these residues, we
find that

Res
zg=0

(
−e

2πzg(ug−1−
∑

k∈A2
uk−

∑
j∈B2

<g
uj+

∑
j∈B2

>g
uj) (zd − zg)(zg − zd)

(zd + zg)(zd + zg)(2zd)(2zg)

)
=

1

4zd
(3.30)

and, with some miraculous cancelation,

Res
zg=−zd

(
−e

2πzg(ug−1−
∑

k∈A2
uk−

∑
j∈B2

<g
uj+

∑
j∈B2

>g
uj) (zd − zg)(zg − zd)

(zd + zg)(zd + zg)(2zd)(2zg)

)
(3.31)

= −2π

ug − 1−
∑
k∈A2

uk −
∑
j∈B2

<g

uj +
∑
j∈B2

>g

uj

 e
−2πzd(ug−1−

∑
k∈A2

uk−
∑

j∈B2
<g

uj+
∑

j∈B2
>g

uj)
.

These poles both lie to the left of the δg line, so we only pick up a contribution when 0 <
ug − 1−

∑
k∈A2

uk −
∑

j∈B2
<g
uj +

∑
j∈B2

>g
uj , meaning we are able to close the contour to the left,

making the zg integral equal to 2πi times the sum of the enclosed residues. Thus we have that after
performing the zg integral, (3.29) equals

2m
∑
d∈B1

∑
g∈B2

∫ ∞
−∞

∫ ∞
−∞

∫
(R≥0){1,...,m}\{d,g}∑

k∈A2
uk+

∑
j∈B2

<g
uj<ug−1+

∑
j∈B2

>g
uj

∏
k∈{1,...,m}

f̂k(uk)

×(−1)|B
1
>d|(−1)|B

2
>g | 1

2πi

∫
δd

e
2π(zd(ud−1−

∑
k∈A1

uk−
∑

j∈B1
<d

uj+
∑

j∈B1
>d

uj)

×

 1

4zd
− 2π

ug − 1−
∑
k∈A2

uk −
∑
j∈B2

<g

uj +
∑
j∈B2

>g

uj


× e
−2πzd(ug−1−

∑
k∈A2

uk−
∑

j∈B2
<g

uj+
∑

j∈B2
>g

uj)
)
dzd

 ∏
j∈{1,...,m}\{d,g}

duj

 duddug.(3.32)
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We now address the zd integral and (3.32) equals:

2m
∑
d∈B1

∑
g∈B2

∫ ∞
−∞

∫ ∞
−∞

∫
(R≥0){1,...,m}\{d,g}∑

k∈A1
uk+

∑
j∈B1

<g
uj<ud−1+

∑
j∈B1

>g
uj∑

k∈A2
uk+

∑
j∈B2

<g
uj<ug−1+

∑
j∈B2

>g
uj

∏
k∈{1,...,m}

f̂k(uk)

×1

4
(−1)|B

1
>d|(−1)|B

2
>g |

 ∏
j∈{1,...,m}\{d,g}

duj

 duddug

−2m
∑
d∈B1

∑
g∈B2

∫ ∞
−∞

∫ ∞
−∞

∫
(R≥0){1,...,m}\{d,g}∑

k∈A2
uk+

∑
j∈B2

<g
uj<ug−1+

∑
j∈B2

>g
uj

∏
k∈{1,...,m}

f̂k(uk)

×

∫ ∞
−∞

ug − 1−
∑
k∈A2

uk −
∑
j∈B2

<g

uj +
∑
j∈B2

>g

uj


× e

2πizd(ud−ug−
∑

k∈A1tB1
<d

tB2
>g

uk+
∑

j∈B1
>d

tA2tB2
<g

uj)
dzd

)

×(−1)|B
1
>d|(−1)|B

2
>g |

 ∏
j∈{1,...,m}\{d,g}

duj

 duddug.(3.33)

This simplifies, using the definition of the delta function at (3.9), to

2m
∑
d∈B1

∑
g∈B2

∫ ∞
−∞

∫ ∞
−∞

∫
(R≥0){1,...,m}\{d,g}∑

k∈A1
uk+

∑
j∈B1

<g
uj<ud−1+

∑
j∈B1

>g
uj∑

k∈A2
uk+

∑
j∈B2

<g
uj<ug−1+

∑
j∈B2

>g
uj

∏
k∈{1,...,m}

f̂k(uk)

×

1

4
−

ug − 1−
∑
k∈A2

uk −
∑
j∈B2

<g

uj +
∑
j∈B2

>g

uj


× δ(ud − ug −

∑
k∈A1tB1

<dtB
2
>g

uk +
∑

j∈B1
>dtA2tB2

<g

uj)


×(−1)|B

1
>d|(−1)|B

2
>g |

 ∏
j∈{1,...,m}\{d,g}

duj

 duddug.(3.34)

We note that above we can impose the condition
∑

k∈A1
uk +

∑
j∈B1

<g
uj < ud − 1 +

∑
j∈B1

>g
uj on

both integrals from (3.33) because the delta function forces it to hold if the condition
∑

k∈A2
uk +∑

j∈B2
<g
uj < ug − 1 +

∑
j∈B2

>g
uj holds.

Similarly to the proof of Lemma 2.4, changing the sign of the variable on the negative half of
the line of integration of ud and ug results in a change of sign of that variable in the inequalities

governing the region of integration and in the factor in square brackets above, but not in the f̂s as
the Fourier transforms of the test functions are each even functions. We will denote the quantity
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in the square brackets above as SQ(ud, ug) as a space saving device. SQ depends on the other u
variables as well, but ud and ug are the only ones that will change sign in the next equation so we
list only those two explicitly. Thus we end up with four terms

2m
∑
d∈B1

∑
g∈B2

∫ ∞
0

∫ ∞
0

∫
(R≥0){1,...,m}\{d,g}∑

k∈A1
uk+

∑
j∈B1

<g
uj<ud−1+

∑
j∈B1

>g
uj∑

k∈A2
uk+

∑
j∈B2

<g
uj<ug−1+

∑
j∈B2

>g
uj

∏
k∈{1,...,m}

f̂k(uk)

×
(

1

4
− SQ(ud, ug)

)
(−1)|B

1
>d|(−1)|B

2
>g |

 ∏
j∈{1,...,m}\{d,g}

duj

 duddug

+2m
∑
d∈B1

∑
g∈B2

∫ ∞
0

∫ ∞
0

∫
(R≥0){1,...,m}\{d,g}

ud+
∑

k∈A1
uk+

∑
j∈B1

<g
uj<−1+

∑
j∈B1

>g
uj∑

k∈A2
uk+

∑
j∈B2

<g
uj<ug−1+

∑
j∈B2

>g
uj

∏
k∈{1,...,m}

f̂k(uk)

×
(

1

4
− SQ(−ud, ug)

)
(−1)|B

1
>d|(−1)|B

2
>g |

 ∏
j∈{1,...,m}\{d,g}

duj

 duddug

+2m
∑
d∈B1

∑
g∈B2

∫ ∞
0

∫ ∞
0

∫
(R≥0){1,...,m}\{d,g}∑

k∈A1
uk+

∑
j∈B1

<g
uj<ud−1+

∑
j∈B1

>g
uj

ug+
∑

k∈A2
uk+

∑
j∈B2

<g
uj<−1+

∑
j∈B2

>g
uj

∏
k∈{1,...,m}

f̂k(uk)

×
(

1

4
− SQ(ud,−ug)

)
(−1)|B

1
>d|(−1)|B

2
>g |

 ∏
j∈{1,...,m}\{d,g}

duj

 duddug

+2m
∑
d∈B1

∑
g∈B2

∫ ∞
0

∫ ∞
0

∫
(R≥0){1,...,m}\{d,g}

ud+
∑

k∈A1
uk+

∑
j∈B1

<g
uj<−1+

∑
j∈B1

>g
uj

ug+
∑

k∈A2
uk+

∑
j∈B2

<g
uj<−1+

∑
j∈B2

>g
uj

∏
k∈{1,...,m}

f̂k(uk)

×
(

1

4
− SQ(−ud,−ug)

)
(−1)|B

1
>d|(−1)|B

2
>g |

 ∏
j∈{1,...,m}\{d,g}

duj

 duddug.(3.35)

The right hand side of Lemma 2.5 is the first term in (3.35) in the case that d is the smallest
element in B1 and g is the smallest element in B2.

To see that all the other terms cancel out we start by labelling the elements of B1 as j1 <
j2 < · · · < j|B1| and the elements of B2 as k1 < k2 < · · · < k|B2|. Then we pick a single term
in the double sum with conditions

∑
k∈A1

uk + uj1 + · · · + ujp < ujp+1 + · · · + u|B1| − 1 and∑
k∈A1

uik + uk1 + · · ·+ ukq < ukq+1 + · · ·+ u|B2| − 1. That term can arise in four different ways.
It could come from the term in the double sum where d = jp+1 and g = kq+1. We will refer to this
term as carrying an overall plus sign. Also, the same term will appear when d = jp and g = kq+1

(this would be a term like that in the second line of (3.33)). It would then have an overall minus
sign because there would be more element in B1

>d. The same expression would come up when
d = jp+1 and g = kq (as in the third line above): again this would occur with an extra minus sign.
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The fourth occurrence would be in the term d = jp and g = kq. This would have a plus sign. Thus
we can see that these four terms would cancel. The only situation under which these four terms
would not exist is if p + 1 = 1 or if q + 1 = 1. If p + 1 = 1 but q + 1 6= 1 then there exists no
term with d = p and only two of the four terms exist, but those two still cancel as their signs are
opposite. Similarly if p+ 1 6= 1 and q+ 1 = 1. If both p+ 1 = 1 and q+ 1 = 1 then this is the term
that gives us the right hand side of Lemma 2.5. (It is also helpful to note that there is no term
where jp or kq are the largest elements in the sets B1 or B2, respectively, because in this case the
inequality can never be satisfied.)

Thus we are left with just the first term in (3.33) in the case that d is the smallest element in
B1 and g is the smallest element in B2:

2m(−1)|B1tB2|
∫

(R≥0)|A1tB1tA2tB2|∑
k∈A1

uk≤(
∑

k∈B1
uk)−1∑

k∈A2
uk≤(

∑
k∈B2

uk)−1

1

4
−

−∑
k∈A2

uk +
∑
j∈B2

uj − 1



× δ

− ∑
k∈A1tB2

uk +
∑

j∈B1tA2

uj

 ∏
k∈{1,...,m}

f̂k(uk)
∏

k∈{1,...,m}

duk.(3.36)

�

4. Support
∑
|uj | < 1

In this Section we demonstrate that with the Lemmas 2.1 to 2.3 it is straightforward to show that
Rubinstein’s n-level density [29] of the zeros of quadratic Dirichlet L-functions agrees in the limit
with the random matrix result for the n-level density of eigenvalues from large matrices selected
with Haar measure from USp(2N). Note that Rubinstein does not assume a generalised Riemann
Hypothesis. Rubinstein’s result states the n-level density for test functions with Fourier transform,∏n
i=1 f̂i(ui), supported on

∑n
i=1 |ui| < 1. He proves that the limit matches random matrix theory,

but here we show that the job is made easier by comparing with (1.16) instead of the determinantal
form of the n-level density.

That is, we give a straightforward proof of the following:

Theorem 4.1. For test functions f1, . . . , fn with properties as at (2.7) and with the product of

their Fourier transforms
∏n
i=1 f̂i(ui) having support in

∑n
i=1 |ui| < 1,

lim
X→∞

1

|D(X)|
∑

d∈D(X)

∞∑
j1,...,jn=−∞

f1

(
Lγ

(j1)
d

)
· · · fn

(
Lγ

(jn)
d

)

= lim
N→∞

∫
USp(2N)

∞∑
j1,...,jn=−∞
j1,...,jn 6=0

f1

(N
π
θj1

)
· · · fn

(N
π
θjn

)
dµHaar,(4.1)

where the eigenangles θji are counted as described at Theorem 1.1.

In [29], Rubinstein’s first step is to prepare a sum over zeros that are distinct. We do not need
to make this combinatorial argument because, unlike the determinantal form of the n-level density,
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the result in (1.16) sums over all n-tuples of zeros, not just those containing distinct zeros. Thus
we rewrite Rubinstein’s result to make this simplification.

Rubinstein chooses a test function of the form

(4.2) f(x1, x2, . . . , xn) =
n∏
i=1

fi(xi),

where each fi is even and in S(R) (i.e., smooth and rapidly decreasing). Removing the restriction
of summing over distinct zeros, the quantity Rubinstein calculates is the n-level density

Theorem 4.2 (Rubinstein [29]). With the product of the Fourier transforms of the test functions,∏n
i=1 f̂i(ui), having support in

∑n
i=1 |ui| < 1,

lim
X→∞

1

|D(X)|
∑

d∈D(X)

∞∑
j1,...,jn=−∞

f1

(
Lγ

(j1)
d

)
· · · fn

(
Lγ

(jn)
d

)

=
∑

QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)

×

( ∑
S2⊆Q
|S2| even

((
− 1

2

)|Sc
2| ∏
`∈Sc

2

∫ ∞
−∞

f̂`(u)du

)( ∑
(A;B)

2|S2|/2
|S2|/2∏
j=1

∫ ∞
−∞
|u|f̂aj (u)f̂bj (u)du

))
.(4.3)

where notation is given at the start of Section 2 and some explanation is given below.

Rubinstein uses the explicit formula, a familiar tool in number theory that relates sums over
zeros of L-functions to sums over primes, in the form

(4.4)
∞∑

j=−∞
f(Lγjd) =

∫ ∞
−∞

f(x)dx+O
( 1

logX

)
− 2

logX

∞∑
m=1

Λ(m)

m1/2
χd(m)f̂

( logm

logX

)
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to perform the following manipulations

lim
X→∞

1

|D(X)|
∑

d∈D(X)

∞∑
j1,...,jn=−∞

f1

(
Lγ

(j1)
d

)
· · · fn

(
Lγ

(jn)
d

)

= lim
X→∞

1

|D(X)|

n∏
j=1

(∫ ∞
−∞

fj(x)dx+O
( 1

logX

)
− 2

logX

∞∑
m=1

Λ(m)

m1/2
χd(m)f̂j

( logm

logX

))

=
∑

QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)

×

(
lim
X→∞

1

|D(X)|
∑

d∈D(X)

∏
k∈Q

(
− 2

logX

∞∑
m=1

Λ(m)

m1/2
χd(m)f̂k

( logm

logX

))

=
∑

QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)

×

( ∑
S2⊆Q
|S2| even

((
− 1

2

)|Sc
2| ∏
`∈Sc

2

∫ ∞
−∞

f̂`(u)du

)( ∑
(A;B)

2|S2|/2
|S2|/2∏
j=1

∫ ∞
−∞
|u|f̂aj (u)f̂bj (u)du

))
.(4.5)

The last line follows from Rubinstein’s Lemma 1 [29] and we will not go into details here. The
sum over Q and M is over disjoint subsets of {1, . . . , n}. The sum over S2 is over all subsets of
Q whose size is even. Sc2 is the complement of S2 in Q.

∑
(A;B) is a sum over all the ways of a

pairing up the elements of S2. To use Rubinstein’s example, if Q = {1, 2, 5, 7}, the possible S2’s are
∅, {1, 2}, {1, 5}, {1, 7}, {2, 5}, {2, 7}, {5, 7}, {1, 2, 5, 7}. If S2 = {1, 2, 5, 7} then the possible (A;B)’s
are (1, 2; 5, 7), (1, 2; 7, 5), and (1, 5; 2, 7). These correspond, respectively, to matching 1 with 5, 2
with 7, 1 with 7 and 2 with 5, 1 with 2 and 5 with 7. Note that this notation is not unique, but is
sufficient for our purposes.

Proof of Theorem 4.1. We start with the expression for the n-level density of eigenvalues of matrices
from USp(2N) given at (1.16)

lim
N→∞

∫
USp(2N)

∞∑
j1,...,jn=−∞
j1,...,jn 6=0

f1

(N
π
θj1

)
· · · fn

(N
π
θjn

)
dµHaar

= lim
N→∞

1

(2πi)n
(4.6)

×
∑

QtM={1,...,n}

(2N)|M |
∫
(δ)|Q|

∫
(0)|M|

2|Q|J∗USp(2N)(zQ)f1

(N
π
iz1

)
· · · fn

(N
π
izn

)
dz1 · · · dzn.

Since the support of the Fourier transforms is in
∑n

i=1 |ui| < 1, we can replace J∗USp(2N)(zQ) with

J∗USp(2N),1(zQ) as described at (1.21). We also separate out of the integral the variables in M and
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use Lemma 2.3 to tidy them up. This leads us to

∑
QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)

×

(
lim
N→∞

2|Q|

(2πi)|Q|

∫
(δ)|Q|

J∗USp(2N),1(zQ)
∏
k∈Q

fk

(N
π
izk

)
dzQ

)
(4.7)

=
∑

QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)

×

(
lim
N→∞

1

(2πi)|Q|

∫
(δ)Q

∑
Q=W1t···tWr

|Wr|≤2

2|Q|
R∏
r=1

H∅(Wr)
∏
k∈Q

fk

(N
π
izk

)
dzQ

)
,(4.8)

using the definition of J∗USp(2N) from Theorem 1.1. Note that the sum over the Wr splits Q up into

pairs and singletons of zs, just as in Rubinstein’s result in Theorem 4.2.

Now we rewrite this using Rubinstein’s summing notation:

∑
QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)( ∑
S2⊆Q
|S2| even

( ∏
`∈Sc

2

lim
N→∞

2

2πi

∫
(δ)
H∅(z`)f`

(N
π
iz`)dz`

)

×
( ∑

(A;B)

|S2|/2∏
j=1

lim
N→∞

( 4

(2πi)2

∫
(δ)

∫
(δ)
H∅(zaj , zbj )faj

(N
π
izaj

)
fbj

(N
π
izbj

)
dzajdzbj

))
.(4.9)

Note that

H∅(z`) =
z′

z
(2z`)(4.10)

H∅(z1, z2) =
(z′
z

)′
(z1 + z2),(4.11)

and so we have, using Lemmas 2.1 and 2.2,

∑
QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)( ∑
S2⊆Q
|S2| even

( ∏
`∈Sc

2

−1

2

∫ ∞
−∞

f̂`(u)du

)

×
( ∑

(A;B)

|S2|/2∏
j=1

2

∫ ∞
−∞
|u|f̂aj (u)f̂bj (u)du

))
.(4.12)

This is exactly the form of Rubinstein’s Theorem 4.2.

�
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5. Support
∑
|uj | < 2

In this section we show that we can use (1.16) to match the n-level density of zeros from quadratic
Dirichlet L-functions derived by Gao [13] to the n-level density of eigenvalues of matrices from
USp(2N).

We start by writing out Gao’s result (Theorem II.1 of [12], with minor changes of notation)
without the restriction that the zeros must be distinct. This can also be compared with Theorem
7.2 in the paper [9], which is identical to Gao’s expression. Both [13] and [9] use the family
of Dirichlet L-functions L(s, χ8d) (with odd, positive, square-free d) as it simplifies the workings
somewhat, but this does not make a material difference to the end result and does not affect the
comparison with random matrix theory as the family is still expected to have zeros showing the
behaviour of eigenvalues from USp(2N).

Theorem 5.1. (Gao [13]) Assume GRH and assume that fi is even and in S(R) and
∏
i f̂i(ui) is

supported in
∑n

i=1 |ui| < 2. Then

lim
X→∞

π2

4X

∑
d∈D(X)

∑
j1,...,jn

f1(Lγ
(j1)
8d ) · · · fn(Lγ

(jn)
8d )

=
∑

QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)∑
S2⊆Q

(−1

2

)|Sc
2| ∏
`∈Sc

2

∫ ∞
−∞

f̂`(u)du


×

(1 + (−1)|S2|

2

)
2|S2|/2

∑
S2=(A:B)

|S2|/2∏
k=1

∫ ∞
−∞
|uk| ˆfak(uk)f̂bk(uk)duk

−1

2

∑
S3(S2
|S3| even

2|S3|/2

 ∑
S3=(C:D)

|S3|/2∏
k=1

∫ ∞
−∞
|uk|f̂ck(uk) ˆfdk(uk)duk



×
∑
I(Sc

3

(−1)|I|(−2)|S
c
3|
∫

(R≥0)S
c
3∑

k∈I uk≤(
∑

k∈Ic uk)−1

∏
k∈Sc

3

f̂k(uk)
∏
k∈Sc

3

duk

 .(5.1)

Here Q t M = {1, . . . , n} denotes partitioning {1, . . . , n} into two disjoint sets. Sc2 denotes
the complement of S2 in Q. The sum denoted (A : B) indicates summing over all partitions
{{a1, b1}, . . . {a|S2|/2, b|S2|/2}} of S2.

In the above theorem we use the convention that empty products are 1 and empty sums are 0,
but note that the empty set is an allowed set in a sum over sets. In particular, if S3 is empty then
the sum over (C : D) is 1. If Q is empty then the sum over S2 is 1. If S2 is empty then the sum
over S3 is zero.

We aim to use (1.16) to prove the theorem:
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Theorem 5.2. Assuming GRH, for test functions f1, . . . , fn with the properties at (2.7) and with

the product of their Fourier transforms
∏n
i=1 f̂i(ui) having support in

∑n
i=1 |ui| < 2,

lim
X→∞

π2

4X

∑
d∈D(X)

∑
j1,...,jn

f1(Lγ
(j1)
8d ) · · · fn(Lγ

(jn)
8d )

= lim
N→∞

∫
USp(2N)

∞∑
j1,...,jn=−∞
j1,...,jn 6=0

f1

(N
π
θj1

)
· · · fn

(N
π
θjn

)
dµHaar,(5.2)

where the eigenangles θji are counted as described at Theorem 1.1.

Proof of Theorem 5.2. We start, as in the previous section, with (4.6). As the support of the
Fourier transforms is in

∑n
i=1 |ui| < 2, this time we replace J∗USp(2N)(zQ) with J∗USp(2N),2(zQ) as

described at (1.21). Thus, in analogy with (4.7), we have

lim
N→∞

∫
USp(2N)

∞∑
j1,...,jn=−∞
j1,...,jn 6=0

f1

(N
π
θj1

)
· · · fn

(N
π
θjn

)
dµHaar

=
∑

QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)

×

(
lim
N→∞

2|Q|

(2πi)|Q|

∫
(δ)|Q|

J∗USp(2N),2(zQ)
∏
k∈Q

fk

(N
π
izk

)
dzQ

)
.(5.3)

We will concentrate on the factor containing J∗USp(2N),2(zQ). We will use (1.10) (or alternatively

see (1.21)) and keep only terms with |D| = 0 (first line of (5.4) below) or 1 (second line below).

J∗USp(2N),2(zQ) =
∑
R⊂Q
|R| even

(∏
`∈Rc

H∅(z`)

) ∑
R=(A:B)

|R|/2∏
j=1

H∅(zaj , zbj )



+
∑
d∈Q
−e−2Nzdz(−2zd)

∑
R⊂Q\{d}
|R| even

(∏
`∈Rc

H{d}(z`)

) ∑
R=(A:B)

|R|/2∏
j=1

H{d}(zaj , zbj )

 .(5.4)

We now note that in the definition of

(5.5) H{d}(z`) =
z′

z
(z` − zd)−

z′

z
(z` + zd) +

z′

z
(2z`)

there is the term z′

z (2z`) =: H∅(z`). Also it is clear that H{d}(zaj , zbj ) = H∅(zaj , zbj ). In (5.4)
we multiply out the product over H{d}(z`) and rearrange the terms, grouping together the H∅(z`)
factors. Again, in (5.6), the first line corresponds to terms with |D| = 0 and the later lines to
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|D| = 1.

J∗USp(2N),2(zQ) =
∑
S2⊂Q

∏
`∈Sc

2

z′

z
(2z`)

1 + (−1)|S2|

2

∑
S2=(A:B)

|S2|/2∏
j=1

(
z′

z

)′
(zaj + zbj )

+
∑
S3(S2
|S3| even

 ∑
S3=(C:D)

|S3|/2∏
j=1

(
z′

z

)′
(zcj + zdj )



×

∑
I(Sc

3

∑
d∈Ic

(∏
k∈I
−z
′

z
(zk + zd)

) ∏
j∈Ic\{d}

z′

z
(zj − zd)

(−e−2Nzdz(−2zd)
) .(5.6)

We note that S3 6= S2, so there must be at least one element in Sc3, the complement of S3 in S2.
Similarly, there must be one element in Ic, so we know the sum over d always exists, meaning we
always have one variable playing the role of d from the second line of (5.4), while the other variables
in Q are spread between the factors of H∅(z`), H∅(zaj , zbj ) or factors of the form of the the first or
second term of (5.5).

Therefore (5.3) equals

∑
QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)

×

(
lim
N→∞

∑
S2⊂Q

∏
`∈Sc

2

2

2πi

∫
(δ)

z′

z
(2z`)f`

(
N
π iz`

)
dz`


×

1 + (−1)|S2|

2

∑
S2=(A:B)

|S2|/2∏
j=1

4

(2πi)2

∫
(δ)

∫
(δ)

(
z′

z

)′
(zaj + zbj )faj

(
N
π izaj

)
fbj

(
N
π izbj

)
dzajdzbj

+
∑
S3(S2
|S3| even

 ∑
S3=(C:D)

|S3|/2∏
j=1

4

(2πi)2

∫
(δ)

∫
(δ)

(
z′

z

)′
(zcj + zdj )fcj

(
N
π izcj

)
fdj

(
N
π izdj

)
dzcjdzdj



×

∑
I(Sc

3

∑
d∈Ic

2

2πi

∫
(δ)

(
−e−2Nzdz(−2zd)

)(∏
k∈I

2

2πi

∫
(δ)
−z
′

z
(zk + zd)fk

(
N
π izk

)
dzk

)

×

 ∏
j∈Ic\{d}

2

2πi

∫
(δ)

z′

z
(zj − zd)fj

(
N
π izj

)
dzj

 fd

(
N
π izd

)
dzd

)(5.7)

We can now apply Lemmas 2.1, 2.2 and 2.4 (with A = I and B = Ic) to achieve the desired result.
(Note that the set Sc3 = I t Ic is not necessarily a set of consecutive integers {1, 2, . . . ,m} as stated
in Lemma 2.4, but it it certainly a set of positive integers with no duplications, which one can easily
imagine mapping onto {1, 2, . . . ,m} without changing the proof of Lemma 2.4 in any way.) �
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6. Support
∑
|uj | < 3

To our knowledge, there is no symplectic or orthogonal family of L-functions where the level
densities can be written down when the support of the Fourier transform of the test function
extends beyond

∑
|uj | < 2 - including in the function field case. So, in this section we write down

the random matrix n-level densities that hold in the range
∑
|uj | < 3 in a form similar to Gao’s

Theorem 5.1. In doing this we hope it may lead to a number theoretical result being proven for
a specific family. We note that although more terms survive as the support increases, and so the
formulae appear more unwieldy, in fact the ideas used in this section are just those used in the
previous section for support in

∑
|uj | < 2. So, it seems in the random matrix case there is no

barrier, besides more convoluted formulae, to extending the support as far as need be.

We start with the formula, analogous to (4.7), featuring J∗USp(2N),3(zQ) and valid for
∑
|uj | < 3,

lim
N→∞

∫
USp(2N)

∞∑
j1,...,jn=−∞
j1,...,jn 6=0

f1

(N
π
θj1

)
· · · fn

(N
π
θjn

)
dµHaar

=
∑

QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)

×

(
lim
N→∞

2|Q|

(2πi)|Q|

∫
(δ)|Q|

J∗USp(2N),3(zQ)
∏
k∈Q

fk

(N
π
izk

)
dzQ

)
.(6.1)

Similarly to the previous section, we examine J∗USp(2N),3(zQ). We use (1.10) and keep only terms

with |D| = 0, 1, 2 (see discussion at (1.21)):

J∗USp(2N),3(zQ) =
∑
R⊂Q
|R| even

(∏
`∈Rc

H∅(z`)

) ∑
R=(A:B)

|R|/2∏
j=1

H∅(zaj , zbj )



+
∑
d∈Q
−e−2Nzdz(−2zd)

∑
R⊂Q\{d}
|R| even

(∏
`∈Rc

H{d}(z`)

) ∑
R=(A:B)

|R|/2∏
j=1

H{d}(zaj , zbj )


+
∑
d,g∈Q

e−2N(zd+zg)
z(zd + zg)z(−zd − zg)z(−2zd)z(−2zg)

z(zd − zg)z(zg − zd)

×
∑

R⊂Q\{d,g}
|R| even

(∏
`∈Rc

H{d,g}(z`)

) ∑
R=(A:B)

|R|/2∏
j=1

H{d,g}(zaj , zbj )

 .(6.2)

Once again, in the definition of

(6.3) H{d,g}(z`) =
z′

z
(z` − zd)−

z′

z
(z` + zd) +

z′

z
(z` − zg)−

z′

z
(z` + zg) +

z′

z
(2z`)
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there is the term z′

z (2z`) =: H∅(z`). Also it is clear that H{d,g}(zaj , zbj ) = H∅(zaj , zbj ). As in the
previous section, we rearrange terms, grouping together the H∅(z`) terms. Note that we could also
pull together the H∅(zaj , zbj ) terms that occur in each line of (6.2) to save a bit of space, but here
we will leave them separated to make the end result as similar to Gao’s theorem as possible, to aid
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those who have worked with his result. So we have that (6.1) equals∑
QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)

×

(
lim
N→∞

∑
S2⊂Q

∏
`∈Sc

2

2

2πi

∫
(δ)

z′

z
(2z`)f`

(
N
π iz`

)
dz`


×

[
1 + (−1)|S2|

2

∑
S2=(A:B)

|S2|/2∏
j=1

4

(2πi)2

∫
(δ)

∫
(δ)

(
z′

z

)′
(zaj + zbj )faj

(
N
π izaj

)
fbj

(
N
π izbj

)
dzajdzbj

+
∑
S3(S2
|S3| even

 ∑
S3=(C:D)

|S3|/2∏
j=1

4

(2πi)2

∫
(δ)

∫
(δ)

(
z′

z

)′
(zcj + zdj )fcj

(
N
π izcj

)
fdj

(
N
π izdj

)
dzcjdzdj


×

{ ∑
ItIc=Sc

3
|Ic|≥1

∑
d∈Ic

2

2πi

∫
(δ)

(
−e−2Nzdz(−2zd)

)(∏
k∈I

2

2πi

∫
(δ)
−z
′

z
(zk + zd)fk

(
N
π izk

)
dzk

)

×

 ∏
j∈Ic\{d}

2

2πi

∫
(δ)

z′

z
(zj − zd)fj

(
N
π izj

)
dzj

 fd

(
N
π izd

)
dzd

}

+
∑
S4(S2
|S4| even

 ∑
S4=(G:H)

|S4|/2∏
j=1

4

(2πi)2

∫
(δ)

∫
(δ)

(
z′

z

)′
(zgj + zhj )fgj

(
N
π izgj

)
fhj

(
N
π izhj

)
dzgjdzhj


×

{ ∑
I1tI2tIc1tIc2=Sc

4
|Ic1 |≥1, |Ic2 |≥1

∑
d∈Ic1

∑
g∈Ic2

4

(2πi)2

∫
(δ)

∫
(δ)

(
e−2N(zd+zg)

z(zd + zg)z(−zd − zg)z(−2zd)z(−2zg)

z(zd − zg)z(zg − zd)

)

×

∏
k∈I1

2

2πi

∫
(δ)
−z
′

z
(zk + zd)fk

(
N
π izk

)
dzk


×

 ∏
j∈Ic1\{d}

2

2πi

∫
(δ)

z′

z
(zj − zd)fj

(
N
π izj

)
dzj


×

∏
k∈I2

2

2πi

∫
(δ)
−z
′

z
(zk + zg)fk

(
N
π izk

)
dzk


×

 ∏
j∈Ic2\{g}

2

2πi

∫
(δ)

z′

z
(zj − zg)fj

(
N
π izj

)
dzj


×fd

(
N
π izd

)
fg

(
N
π izg

)
dzddzg )

}])
.
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We now use Lemma 2.5 for the last six lines of (6.4), and noting that the first seven lines of (6.4)
are all familiar from the previous section, our final result is

Theorem 6.1. For test functions f1, . . . , fn with properties (2.7) and with the product of their

Fourier transforms
∏n
i=1 f̂i(ui) having support in

∑n
i=1 |ui| < 3,

lim
N→∞

∫
USp(2N)

∞∑
j1,...,jn=−∞
j1,...,jn 6=0

f1

(N
π
θj1

)
· · · fn

(N
π
θjn

)
dµHaar

=
∑

QtM={1,...,n}

( ∏
m∈M

∫ ∞
−∞

fm(x)dx

)
×

( ∑
S2⊂Q

(−1

2

)|Sc
2| ∏
`∈Sc

2

∫ ∞
−∞

f̂`(u)du


×

[
1 + (−1)|S2|

2
2|S2|/2

∑
S2=(A:B)

|S2|/2∏
k=1

∫ ∞
−∞
|uk| ˆfak(uk)f̂bk(uk)duk

−1

2

∑
S3(S2
|S3| even

2|S3|/2

 ∑
S3=(C:D)

|S3|/2∏
k=1

∫ ∞
−∞
|uk|f̂ck(uk) ˆfdk(uk)duk


×

{ ∑
ItIc=Sc

3
|Ic|≥1

(−1)|I
c|2|S

c
3|
∫

(R≥0)S
c
3∑

k∈I uk≤(
∑

k∈Ic uk)−1

∏
k∈Sc

3

f̂k(uk)
∏
k∈Sc

3

duk

}

+
∑
S4(S2
|S4| even

2|S4|/2

 ∑
S4=(G:H)

|S4|/2∏
k=1

∫ ∞
−∞
|uk|f̂gk(uk) ˆfhk(uk)duk



×

{ ∑
I1tI2tIc1tIc2=Sc

4
|Ic1 |≥1, |Ic2 |≥1

(−1)|I
c
1tIc2 |2|S

c
4|
∫

(R≥0)|S
c
4|∑

k∈I1
uk≤(

∑
k∈Ic1

uk)−1∑
k∈I2

uk≤(
∑

k∈Ic2
uk)−1

1

4
−

−∑
k∈I2

uk +
∑
j∈Ic2

uj − 1



× δ

− ∑
k∈I1tIc2

uk +
∑

j∈Ic1tI2

uj

 ∏
k∈Sc

4

f̂k(uk)
∏
k∈Sc

4

duk

}])

where the eigenangles θji are counted as described at Theorem 1.1. Here Q t M = {1, . . . , n}
denotes partitioning {1, . . . , n} into two disjoint sets, and analogously for other instances of similar
notation. Sc2 denotes the complement of S2 in Q. The sum denoted (A : B) indicates summing over
all partitions {{a1, b1}, . . . {a|S2|/2, b|S2|/2}} of S2.

In the above theorem we use the convention that empty products are 1 and empty sums are 0,
but note that the empty set is an allowed set in a sum over sets. In particular, if S3 is empty then
the sum over (C : D) is 1. If Q is empty then the sum over S2 is 1. If S2 is empty then the sum
over S3 is zero, and so forth.
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