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ABSTRACT
Trapped inertial oscillations (r modes) provide a promising explanation for high-frequency quasi-periodic oscillations (HFQPOs)
observed in the emission from black hole X-ray binary systems. An eccentricity (or warp) can excite r modes to large amplitudes,
but concurrently, the oscillations are likely damped by magnetohydrodynamic (MHD) turbulence driven by the magnetorotational
instability (MRI). We force eccentricity in global, unstratified, zero-net-flux MHD simulations of relativistic accretion discs
and find that a sufficiently strong disc distortion generates trapped inertial waves despite this damping. In our simulations,
eccentricities above ∼0.03 in the inner disc excite trapped waves. In addition to the competition between r-mode damping and
driving, we observe that larger amplitude eccentric structures modify and in some cases suppress MRI turbulence. Given the
variety of distortions (warps as well as eccentricities) capable of amplifying r modes, the robustness of trapped inertial wave
excitation in the face of MRI turbulence in our simulations provides support for a discoseismic explanation for HFQPOs.
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1 IN T RO D U C T I O N

In addition to outbursts, black hole X-ray binaries (BHBs) ex-
hibit quasi-periodic oscillations (QPOs) with frequencies both high
(∼50−450 Hz) and low (∼0.1–30 Hz). The high-frequency QPOs
(HFQPOs) appear during ‘steep power law’ (SPL) or ‘very high’
states of enhanced flux, and are imprinted on the high-energy
emission associated with plasma in a hot corona. They generate
particular interest because their frequencies appear to depend on
the intrinsic properties of the central black hole, such as its mass.
Given this dependence, a robust model for HFQPOs might provide
a valuable measure of black hole spin (for general reviews, see e.g.
Remillard & McClintock 2006; Done, Gierlı́nski & Kubota 2007;
Motta 2016).

Unfortunately, such a model remains elusive. Many potential
explanations have been offered, appealing to relativistic precession
(Stella & Vietri 1998; Stella, Vietri & Morsink 1999; Motta et al.
2014), resonances between the characteristic frequencies of particle
oscillations (Abramowicz & Klúzniak 2001; Klúzniak & Abramow-
icz 2001), the oscillations of geometrically thick fluid accretion tori
(Rezzolla et al. 2003; Blaes, Arras & Fragile 2006; Fragile, Straub
& Blaes 2016), and the ‘discoseismic’ oscillations of relativistic
thin fluid discs (Okazaki, Kato & Fukue 1987; Nowak & Wagoner
1991, 1992; Kato 2001). However, all of the models offered thus
far face several difficulties. For example, they must contend with
uncertainties related to both the geometry of the accretion flow during
the very high state (e.g. Nayakshin, Rappaport & Melia 2000) and
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how to transmit variability to the non-thermal X-ray emission in
which HFQPOs are observed (for a discussion, see Dewberry, Latter
& Ogilvie 2019; Dewberry et al. 2020).

Nevertheless, the discoseismic model has distinct advantages over
its competitors. In addition to producing an innermost stable circular
orbit (ISCO), the non-monotonic variation of the horizontal epicyclic
frequency (κ) close to a black hole introduces trapping regions for
inertial and inertial–acoustic waves. Axisymmetric trapped inertial
waves (frequently named g modes, but here referred to as r modes)
provide a particularly attractive explanation for HFQPOs, since in
hydrodynamic models their annular trapping cavity (defined by the
maximum in κ) is independent of the plunging region within the
ISCO, and their frequencies relate directly to max [κ] (which is in
turn determined primarily by the mass and spin of the central black
hole in thin discs; Okazaki et al. 1987).

Furthermore, excitation via a non-linear coupling with warps or
eccentricities in the disc provides a route to r-mode amplification
(Kato 2004, 2008). Large accretion rates associated with the very
high state may aid the propagation of such distortions to the
inner regions of the black hole accretion disc, where r modes are
trapped (Ferreira & Ogilvie 2009). The excitation mechanism can be
described as a three-mode coupling in which a trapped axisymmetric
r mode grows in amplitude by interacting with the eccentricity or
warp, and a second, non-axisymmetric inertial wave. In Dewberry
et al. (2020) (hereafter Paper I), we numerically demonstrated, with
hydrodynamic simulations of eccentric discs, this amplification and
its subsequent saturation. Paper I verifies and expands on previous
semi-analytical calculations (Ferreira & Ogilvie 2008; Oktariani,
Okazaki & Kato 2010).
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The simulations described in Paper I demonstrate that in a hydro-
dynamic approximation, the saturation of r-mode growth can lead to
the non-linear excitation of higher frequency, vertically unstructured
inertial–acoustic waves (sometimes called p modes, but here referred
to as f modes to differentiate them from purely acoustic oscillations).
The presence of such a secondary coupling supports the idea that the
non-linear interaction of multiple discoseismic oscillations might be
responsible for the appearance of multiple HFQPOs in some sources
(e.g. Ortega-Rodrı́guez et al. 2014). Additionally, the simulations
in Paper I suggest that r modes can redistribute angular momentum
locally, reshaping their own trapping regions and blurring their own
frequencies over time.

However, magnetic fields and magnetohydrodynamic (MHD)
turbulence complicate the picture. Not only do large-scale, coherent
fields alter the geometry of the r-mode trapping region (Fu & Lai
2009; Dewberry, Latter & Ogilvie 2018; Dewberry et al. 2019),
but previous numerical investigations of MHD-turbulent relativis-
tic discs failed to uncover significant r-mode signatures (Arras,
Blaes & Turner 2006; Reynolds & Miller 2009). These numerical
investigations did not include an explicit forcing mechanism for
the oscillations, though, and therefore could only establish that
turbulence driven by the magnetorotational instability (MRI) does
not actively excite them (in fact, r modes are more likely to be
damped by turbulence; Latter & Ogilvie 2006).

In this paper, we seek to answer the question of whether sufficient
excitation by disc eccentricity might overcome r-mode damping by
turbulent fluctuations, generalizing the hydrodynamic simulations
described in Paper I to include magnetic fields and MHD turbulence.
We employ a vertically unstratified, cylindrical framework and
use the outer radial boundary condition described in Paper I to
force eccentricity into discs with pre-saturated MRI turbulence.
When streamlines become sufficiently non-circular, we find that r-
mode signatures appear in the power spectral density (PSD), with
frequencies enhanced by an additional restoring force from magnetic
tension. These signatures reveal for the first time the excitation of
trapped inertial waves in the presence of turbulence driven by the MRI
and support their viability as an explanation for HFQPOs. Inertial–
acoustic wave excitation again accompanies trapped inertial wave
excitation in our simulations. While the non-linear mode coupling
seen in Paper I is less apparent, the additional excitation of f modes
over a range of frequencies suggests that both non-linear interactions
and mode mixing are at play.

Although we focus on intermediate regimes in which the oscil-
lations coexist with turbulent fluctuations, their excitation is further
enhanced by a weakening of the MRI in our eccentric discs: we find
that strongly forced eccentricities suppress the Maxwell stress and
evacuate magnetic fields. We speculate that the MRI suppression is
related to the intense periodic compressions and rarefactions that
fluid blobs experience due to the steepening of the eccentric wave
near the ISCO (such steepening is predicted by non-linear analysis;
see Lynch & Ogilvie 2019; Ogilvie & Lynch 2019). Eccentricity
gradients and twists generically produce variations in density (e.g.
Ogilvie 2001), although the compression may be less significant far
from the black hole. The weakening of the MHD turbulence in our
simulations sets the basis for exciting new work exploring the effects
of strong disc distortion on the MRI in other environments, not least
in black hole accretion discs formed in tidal disruption events.

We describe our numerical setup in Section 2, present our simula-
tion results in Section 3, and provide discussion and conclusions in
Sections 4 and 5. For theoretical background on discoseismology and
the r-mode excitation mechanism, we refer readers to Kato (2001),
Dewberry et al. (2019), and Paper I in this series.

2 N U M E R I C A L M E T H O D S

In this section, we describe our numerical methods, simulation setup,
and diagnostics.

2.1 Equations and code

As in Paper I, we present simulations run with a version of the code
RAMSES (Fromang, Hennebelle & Teyssier 2006; Teyssier 2006)
that solves the equations of ideal MHD on a uniform cylindrical
grid (e.g. Faure, Fromang & Latter 2014),1 under the cylindrical
approximation (no vertical gravity; see e.g. Armitage 1998; Hawley
2001; Sorathia et al. 2012). The continuity, momentum, and induction
equations solved by RAMSES are given by

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂(ρu)

∂t
+ ∇ · (ρuu − BB) + ∇

(
P + B · B

2

)
= −ρ∇�, (2)

∂B
∂t

+ ∇ · (uB − Bu) = 0, (3)

where ρ, u, P, B, and � are the mass density, fluid velocity, gas
pressure, magnetic field, and gravitational potential, respectively.
We supplement equations (1)–(3) with an isothermal equation of
state P = c2

s ρ, for cs the purely constant isothermal sound speed.
The sound speed serves as a direct proxy for temperature and disc
thickness in our idealized model.

Once again, we approximate relativistic effects by utilizing a
Paczynski–Wiita gravitational potential. With the exclusion of ver-
tical gravity, this potential is given in cylindrical polars (r, φ, z)
by

� = −GM

r − 2rg
. (4)

With the gravitational constant G, central black hole mass M, and
speed of light c set to one, the gravitational radius rg = GM/c2 and
frequency ωg = c3/(GM) define code units for space and time. Unless
otherwise stated, velocities are then given in units of c.

Particle orbits with angular velocity 	PW determined by the force
balance r	2

PW = ∂r� deviate from the simple Keplerian rotation law
	K ∝ r−3/2. In particular, our choice of � obliges the square of the
horizontal epicyclic frequency κ2 = 2	[2	 + r∂ r	] to fall below
zero in the inner disc, defining the ISCO at a radius rISCO = 6rg. This
non-monotonic variation in turn produces the maximum in κ that
defines a trapping region for r modes (see fig. 1 in Paper I). Finally,
the orbital period at the ISCO is given by Torb ∼ 61.56ω−1

g .

2.2 Initial conditions

We begin with simulations of circular discs, initializing pure rotation
on cylinders with uφ = r	PW. The saturated states established in
these circular disc simulations provide points of comparison, as
well as initial conditions for runs in which we impose non-circular
streamlines. As in Paper I, we generate disc eccentricity solely with
our choice of outer radial boundary condition (see Section 2.3).

We place the inner boundary at a smaller radius than the ISCO,
within the plunging region; the radial domain is [r0, r1] = [4rg, 18rg]
in most of our runs. In all cases, we include the full azimuthal range.
Unless otherwise stated, we place our vertical boundaries at z = ±H,

1Freely available at https://sourcesup.renater.fr/projects/dumses/
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where H = cs/	PW is the isothermal scale height at 8rg (a radial
location close to the expected r-mode trapping region). For the value
cs = 0.03c taken in all of our simulations, H ∼ 0.5rg, implying an
aspect ratio of H/r ∼ 0.064 at r = 8rg. We have taken a larger sound
speed than those used in Paper I (where cs = 0.01 − 0.02c), in order
to allow greater angular resolution. Inertial wave trapping worsens
with increasing cs (and hence disc thickness), but large azimuthal
resolutions are necessary to resolve MRI turbulence (e.g. Sorathia
et al. 2012). As noted in Paper I, such a thin disc may not provide
an appropriate description for the SPL emission state, during which
large accretion rates make the flow geometry uncertain (see e.g. Laor
& Netzer 1989; Esin, McClintock & Narayan 1997; Nayakshin et al.
2000). In any case, a complete model will need to include dissipation
in a hot corona, which is excluded by our focus on the mid-plane.

Initially, we set the density to a constant ρ0 outside rISCO and
to a floor value within. In order to avoid depletion of the disc due
to turbulent transport, we follow Faure et al. (2014) in adding a
source term to the continuity equation. Outside 7rg, this source term
introduces mass at a rate

∂ρ

∂t
= − (ρ − ρ0)

τ
, (5)

where τ is taken as 10 times the local orbital time-scale.
With regard to magnetic fields, we set Br = Bφ = 0 and initialize

purely vertical fields with radial profiles similar to the zero-net-flux
configurations considered by Sorathia et al. ( 2012). Specifically, we
set

Bz = B0S	 sin[2π (r − rISCO)], (6)

where S = 1 if 6 < r/rg < 16 and 0 otherwise, and B0 scales the
magnetic field such that the wavelength of the fastest growing MRI
mode (λMRI = 2π

√
16/15VA,z/	, where VA,z = Bz/

√
ρ) remains

≤H throughout the simulation domain. This configuration produces
a plasma beta (ratio of gas to magnetic pressure) with a minimum of
β ∼ 80 close to the ISCO.

On top of this MRI-unstable background, we impose white-noise
velocity perturbations |δui| ≤ 10−6cs. We then evolve the MRI-
turbulent, circular disc to a saturated, quasi-steady state before
‘turning on’, at t = 100Torb, an outer boundary condition that
generates the eccentricity. We finally run both the forced and un-
forced simulations for an additional 100Torb.

2.3 Boundary conditions

We implement periodic azimuthal boundary conditions and radial
boundary conditions similar to those implemented in Paper I. A
‘diode’ outflow condition at the inner boundary sets the radial mass
flux in the ghost cells to the value in the innermost active cell if
that value is negative (inflowing), or to zero otherwise. Meanwhile,
we calculate the azimuthal velocity perturbation to the background
orbital motion at the last active cell and add this to an extrapolation
of r	PW in each ghost cell. Density, vertical mass flux, and magnetic
fields are simply matched to their values in the innermost cells of
the active domain. We find that altering this inner radial boundary
condition for the magnetic field has little effect on results.

At the outer radial boundary, we set ur = uz = Bφ = Bz = 0, cal-
culate Br to satisfy the solenoidal condition, and match u = r	PWφ̂.
In simulations of circular discs, we simply set ρ = ρ0 at r1. On the
other hand, to produce non-circular streamlines in a given simulation,
we impose a non-axisymmetric, precessing density profile, ρE(φ, t),
in the outer radial ghost cells. As described in section 3.4 of Paper
I, a non-axisymmetric density profile enforced in the ghost cells

produces a pressure gradient in the outer disc, in turn forcing the
inward propagation of eccentricity. The forcing profile ρE(φ, t) is
chosen to be an eigenmode of the non-linear (Newtonian) secular
theory, evaluated at the outer boundary.2

We calculate these eigenmodes (and their associated precession
frequencies) semi-analytically, following the procedure described
by Barker & Ogilvie (2016), and assume a ratio of outer to inner
boundaries r1/rISCO = 3. The fundamental non-linear solutions
can be uniquely identified by the maximum eccentricity in the
eigenmode, denoted by Af. However, we stress that the actual
eccentricity produced in the simulation domain is significantly lower
than Af, first because we only force the non-axisymmetric density
profile in the ghost cells, and the resulting perturbations in the
active domain are smaller amplitude. Additionally, the simulations
(unlike the semi-analytical secular theory) are relativistic and permit
continual propagation through the inner boundary. Lastly, damping
by dissipation, and more importantly non-linear steepening and
potential shocking of the eccentric wave near the ISCO reduce the
eccentricity amplitude (see Section 3.2).

We implement periodic vertical boundary conditions, which are
appropriate for the cylindrical model. In Paper I, we found that these
lead to the formation of laminar ‘elevator flows’ (steady columns of
constant uz) as r modes’ growth saturates. Enforcing a rigid lid at
z = ±H halts the formation of these (presumed) numerical artefacts
and in hydrodynamic simulations has little effect on the dynamics
other than to force the excited inertial oscillations to form as global
standing modes (rather than vertically travelling waves). We find
that fluctuations associated with MRI turbulence disrupt the elevator
flows in all but the most strongly eccentric discs, and so the need for
an artificially rigid vertical boundary is less compelling.

In the absence of vertical gravity, periodic vertical boundary
conditions usually preclude the formation of coherent standing
waves, which generally need to be inserted by hand (see Appendix A1
in Paper I). We do not fine-tune our initial conditions, and so do not
recover standing mode oscillations. But our simulation setup is still
sufficient to demonstrate the excitation of radially confined inertial
waves. We note that periodic vertical boundary conditions are only
formally appropriate under the cylindrical approximation and can be
problematic in stratified simulations (e.g. Salvesen et al. 2016). Given
the apparent connection between HFQPOs and coronal plasma,
future investigations including vertical structure should certainly
consider using boundary conditions that allow the outflow of mass
and magnetic flux.

2.4 Diagnostics

We use several of the same diagnostics used in Paper I, first of
all denoting volume, azimuthal, and vertical averages for a given
quantity X by

〈X〉V =
∫

V
XdV∫

V
dV

, (7)

〈X〉φ = 1

2π

∫ 2π

0
Xdφ, (8)

2A non-linear theory is necessitated by the amplitude of forcing used in our
simulations. Static sinusoidal profiles for density (associated with an m = 1
linear mode) also induce eccentricity, but we have found that density profiles
and precession frequencies from more precise non-linear calculations produce
a much cleaner quasi-steady state.
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〈X〉z = 1

2H

∫ H

−H

Xdz, (9)

where the volume V covers the radial range [6rg, 16rg]. Angular
momentum transport in MRI-turbulent discs is typically quantified
by considering the Maxwell and Reynolds stresses, and so we define

αR = 〈ρurδuφ〉V
〈P 〉V , (10)

αM = −〈BrBφ〉V
〈P 〉V , (11)

where δuφ = uφ − r	PW. We similarly write the volume-averaged
plasma beta parameter as

β = 〈P 〉V

〈PM〉V , (12)

where PM = |B · B|/2 is the magnetic pressure.
The quantity 〈ρu2

r 〉V /〈P 〉V provides a good quantitative diagnostic
for the strength of disc eccentricity, since eccentric deformations
dominate the radial kinetic energy (Papaloizou 2005). The complex
eccentricity (defined as E = eexp [i� ], where e and � are the
eccentricity and longitude of pericentre), is another measure but is
non-trivial to calculate for the twisted distortions in our simulations,
because of the non-linearity of the flow and the presence of turbulent
fluctuations. For simplicity, we instead use the estimate

Ẽ =
∫ 〈ur〉z cos φdφ

π〈uφ〉φ,z

, (13)

calculated after shifting (globally) in φ to account for the retrograde
precession of the distorted disc. This average tracks the imaginary
part of E, but we stress that it is correct only to first order in
eccentricity, and loses accuracy very close to the ISCO where the
eccentric waves steepen and orbits come close to intersecting.

In the hydrodynamic simulations presented in Paper I, we found an
appropriate diagnostic for r-mode excitation in 〈ρu2

z〉V , as well as the
fraction of vertical kinetic energy contained within an annular domain
encompassing the r-mode trapping region (r ∈ [7rg, 9rg]). This
diagnostic paints a murkier picture in MRI-turbulent simulations,
because the turbulence itself contributes to the vertical kinetic
energy. We therefore follow Reynolds & Miller (2009) in relying
most heavily on timing analysis to search for oscillation excitation.
Specifically, we consider the power spectral density (PSD), defined
as P (ω) ∝ |F (f )|2, where F (f ) is the Fourier transform of the signal
f(t). P(ω) quantifies the power in a given oscillation frequency ω. We
primarily take f to be a suitable average of the radial mass flux and
use angular frequencies in units of ωg throughout.

2.5 Hydrodynamic test simulations

In most of the simulations described in this paper, we use boundary
conditions that force eccentricity more strongly than in Paper I, where
quite weak eccentric structures were sufficient to excite r modes. The
inward-propagating eccentric waves in our MHD simulations, while
producing only modest eccentricities (e � 0.1), are nonetheless
sufficiently non-linear to steepen and circularize near the ISCO
(Lynch & Ogilvie 2019). In addition to this natural, non-linear
decrease in eccentricity relative to linear predictions, we expect the
eccentric waves to suffer turbulent damping due to the MRI. An
interesting question is which of the two effects dominates.

To determine the degree to which the distortions’ propagation
is affected by MHD turbulence vis-a-vis non-linear, conservative
circularization, we have run 2D, purely hydrodynamic simulations

using the same sound speed, resolution, and forcing boundary con-
ditions as in 3D. These simulations are described in Appendix A and
also discussed in Section 3.2.1. In summary, the hydrodynamic 2D
simulations exhibit nearly identical disc deformations to their MHD
counterparts, suggesting that the turbulent damping of eccentricity
does not play a significant role, and that hydrodynamic non-linear
effects control the eccentric wave evolution near the ISCO.

3 SI MULATI ON R ESULTS

In this section, we present the results of our simulations. Table 1
lists the (i) simulation label, (ii) resolution, (iii) forcing amplitude
for eccentricity, (iv) Maxwell stress, (v) Reynolds stress, (vi) plasma
beta, (vii) volume-averaged radial kinetic energy density (normalized
by the kinetic energy associated with sonic motion), and maxima in
Ẽ both throughout the entire domain (viii) and near the trapping
region (ix). As described in Section 2.2, we use the saturated states
achieved by t = 100Torb in the circular runs (zn, znHR, znL, zn2h)
as the initial condition for simulations in which we force eccentricity
from the outer boundary. We then run both the resulting non-circular
discs and the original circular discs for an additional 100Torb. The
values listed in Table 1 have been averaged over the last 50Torb of
each simulation.

The resolution used in our runs provides 16 vertical grid cells
per H, and a grid cell aspect ratio of dr:rdφ:dz ∼2:2:1 at r = 8rg.
The run zn is our fiducial simulation of a circular disc, which we
use to produce the initial condition for most of our eccentric disc
simulations. In znHR, we have doubled both radial and azimuthal
resolution (due to numerical expense, this simulation has been run
only for 100Torb). Meanwhile in znL, we have extended the radial
domain to 30rg, and in zn2h and zn2hAf37, we have doubled the
vertical extent (to z ∈ [ − 2H, 2H]).

3.1 Circular disc simulations

Although our primary focus is on eccentric discs, in this section,
we pause to describe the results of our circular disc simulations.
These circular runs are important to consider, first because the quasi-
steady states that they achieve provide the initial conditions for our
eccentric disc simulations. Secondly, they provide an opportunity to
check the performance of our code, which has been used to explore
the linear (Latter, Fromang & Faure 2015) and non-linear (Faure et al.
2014) evolution of the global MRI in Newtonian but not relativistic
contexts. Lastly, our circular disc simulations provide an important
point of comparison necessary for identifying r modes in our timing
analysis of the eccentric runs (Section 3.2).

3.1.1 Volume-averaged quantities

The plots in Fig. 1 show volume-averaged quantities over time for our
simulations of circular discs. Fig. 1 (top left) illustrates the saturation
of the Maxwell stress at values αM ∼ 0.02 − 0.03. These values
are consistent with analogous simulations run by Sorathia et al.
(2012) with a Newtonian potential. We note that we have also run
simulations initialized with a net-flux vertical field, but, following an
initial transient these simulations produce nearly identical saturated
states to the zero-net-flux runs. We attribute this outcome to advection
of the net-vertical flux through the ISCO and inner boundary, since in
test simulations with a Newtonian potential, we have reproduced the
elevated Maxwell stresses observed by Sorathia et al. (2012) in their
net-flux runs. Future simulations might consider the effects of a more
sustainable source of poloidal magnetic field on disc variability.
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Table 1. Table listing (i) simulation label, (ii) resolution, (iii) maximum eccentricity of the non-linear eigenmode used to
generate the density profile enforced at the outer boundary, (iv) Maxwell stress αM = −〈BrBφ〉V/〈P〉V, (v) Reynolds stress
αR = 〈ρurδuφ〉V/〈P〉V, (vi) plasma beta, (vii) volume-averaged radial kinetic energy density, (viii) maximum in Ẽ (plotted in
Fig. 5), and (ix) maximum in Ẽ between 7rg and 9rg. All values have been averaged over the last 50Torb.

Label Nr × Nφ × Nz Af αM αR β 〈ρu2
r 〉V /〈P 〉V max[Ẽ] maxD[Ẽ]

zn 200 × 800 × 32 0 0.019 0.009 20.7 0.052 – –
znHR 400 × 1600 × 32 0 0.021 0.009 20.9 0.052 – –
znL 384 × 800 × 32 0 0.020 0.010 20.6 0.056 – –
zn2h 200 × 800 × 64 0 0.030 0.010 13.5 0.060 – –

znAf10 200 × 800 × 32 0.10 0.019 0.009 20.8 0.058 0.012 0.007
znAf30 200 × 800 × 32 0.30 0.017 0.012 22.9 0.161 0.045 0.024
znAf35 200 × 800 × 32 0.35 0.012 0.016 29.6 0.250 0.058 0.028
znAf37 200 × 800 × 32 0.375 0.006 0.019 53.7 0.315 0.068 0.030
znAf40 200 × 800 × 32 0.4 0.002 0.025 133.9 0.421 0.077 0.033
zn2hAf37 200 × 800 × 64 0.375 0.019 0.021 20.4 0.329 0.067 0.030

Figure 1. Volume-averaged quantities for our fiducial simulations of circular discs. Top left: Maxwell stress. Top right: Reynolds stress. Middle left: Mass
fraction. Middle right: inverse plasma beta. Bottom left: radial kinetic energy. Bottom right: vertical kinetic energy. These history plots illustrate the saturated,
quasi-steady states after t = 100Torb that provide both the initial conditions and a point of comparison for our eccentric disc simulations.

Fig. 1 (top right) shows somewhat larger Reynolds stresses than
are typically observed in simulations of the MRI, indicating saturated
ratios αM/αR ∼ 2−3 (rather than the usual 4−6). As described in
Section 3.1.2, the additional contribution to the Reynolds stress may
be partially due to inertial–acoustic f modes (i.e. density waves)
originating from the inner disc. Meanwhile, Fig. 1 (middle left) shows
an equilibration of the total mass (normalized by its initial value),
balancing mass accretion through the inner boundary against mass
input from the source term in the continuity equation. Fig. 1 (middle
right) shows saturation of the inverse plasma beta at β−1 ∼ 0.05,
while the bottom panels in Fig. 1 show similar routes to saturation
for the volume-averaged radial and vertical kinetic energy densities.

Our circular disc simulations produce magnetic tilt angles (Guan
et al. 2009) of θB = arcsin (α Mβ)/2 ≈ 11◦−12 ◦, suggesting

marginally resolved turbulence (Sorathia et al. 2012). As indicated
by the values in Table 1 and Fig. 1, znHR and znL (our simulations
with larger resolution and radial domain, resp.) exhibit very similar
saturated states to zn, although in znHR the vertical kinetic energy
saturates at a marginally higher value. In zn2h, doubling the vertical
extent of the disc produces larger stresses, matched by a decrease in β.
This is unsurprising in light of unstratified shearing box simulations
that, with the exclusion of vertical gravity, show a dependence of the
turbulent stress on the vertical extent of the domain (Shi, Stone &
Huang 2016). The cylindrical approximation is invalid on scales
larger than a scale height, however, and including a very large
vertical extent would eliminate the unstratified model’s advantage as
an inexpensive numerical framework. In any case, our circular disc
simulations fulfil our primary requirement of producing quasi-steady

MNRAS 497, 451–465 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/497/1/451/5868821 by U
niversity of C

am
bridge user on 05 August 2020



456 J. Dewberry et al.

Figure 2. Spacetime diagrams illustrating azimuthally averaged (top), vertically averaged (middle), and both azimuthally and vertically averaged (bottom)
radial mass flux over the last 100Torb of runtime for simulation zn. These spacetime diagrams indicate periodic behaviour over a range of radii and frequencies
but provide no evidence of trapped wave excitation.

states characterized by sustained, generic MRI turbulence. Further,
we observe very similar dynamics in zn2hAf37 (an eccentric disc
simulation initialized from zn2h) and znAf37, its counterpart with
the vertical range z ∈ [ − H, H].

3.1.2 Timing analysis for zn

In order to gain a qualitative understanding of the oscillations (or lack
thereof) in the circular disc simulation zn, we consider spacetime
diagrams in time and radius from the last 100Torb. Those shown
in Fig. 2 illustrate radial profiles of radial mass flux. We consider
mass flux rather than velocity in order to exclude fluctuations in
the low-density region within the ISCO. To isolate modes with
different character, we provide spacetime diagrams showing mid-
plane profiles of 〈ρur〉φ (top), φ = 0 profiles of 〈ρur〉z (middle),
and profiles of 〈ρur〉φ, z (bottom). These averages work as dynamical
filters, allowing us to home in on the oscillations of interest. Specifi-
cally, taking an azimuthal average isolates axisymmetric modes with
azimuthal wavenumber m = 0, which are of the most interest to the
r-mode model for HFQPOs. Taking a vertical average, on the other
hand, shifts focus to inertial–acoustic f modes, since they have no
vertical structure (i.e. vertical wavenumber kz = 0). Finally, φ − z

averages isolate ‘fundamental’ axisymmetric inertial–acoustic waves
with kz = m = 0.

We gain more quantitative insight from PSDs P(r, ω) computed
from the spacetime data in Fig. 2, which we show via the heatmaps in
Fig. 3. We normalize P(r, ω) arbitrarily but saturate the colour plots
according to the largest peak at frequencies ω > 0.005ωg. The solid
and dashed lines plot radial profiles for κPW and 	PW calculated for
particle orbits in a Paczynski–Wiita potential. These can differ from
characteristic orbital and epicyclic frequencies calculated from the

actual fluid flow, due to background pressure gradients, magnetic
stresses, or a dynamic redistribution of angular momentum by
oscillations in the disc (see Paper I). We find, however, that in our
MHD-turbulent simulations, restoring forces from magnetic tension
do more to modify inertial waves’ frequencies and trapping than
higher order modifications to κ .

Like Reynolds & Miller (2009), we do not observe explicit
signatures of global trapped inertial waves in our simulations of
circular discs. Qualitatively, the spacetime diagram for 〈ρur〉φ (top
panel) indicates some variability in the inner disc but no dominant
axisymmetric oscillations. The broad-band power concentrated
beneath the profile for κ (at all radii) in the PSD shown in Fig. 3 (left)
suggests that the fluctuations apparent in Fig. 2 (top) are inertial
in nature, since local analyses predict that axisymmetric inertial
waves are evanescent except where ω2 < κ2. The fact that this
power extends to frequencies greater than the horizontal epicyclic
frequency demonstrates that the Alfvénic restoring force can enhance
the frequencies of small-scale inertial wave frequencies (see e.g. Fu
& Lai 2009; Dewberry et al. 2018; Paris & Ogilvie 2018). Figs 2
(top) and 3 (left) do not exclude the presence of trapped r modes,
but the plots support the conclusions of Reynolds & Miller (2009)
that the MRI does not preferentially excite them over the spectrum
of small-scale inertial or, rather, ‘Alfvénic–epicyclic’ waves.

Meanwhile, the spacetime diagrams in Fig. 2 for 〈ρur〉z (middle)
and 〈ρur〉φ, z (bottom) illustrate the propagation of many inertial–
acoustic waves. As described in Paper I, both axisymmetric and
non-axisymmetric f modes may be excited in the inner regions of
black hole accretion discs. They are prone to viscous overstability, for
instance, in viscous models of relativistic discs possessing a transonic
inflow (e.g. Chan 2009; Miranda, Horák & Lai 2015). In discs with
a reflecting inner boundary, on the other hand, non-axisymmetric f
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HFQPOs in MHD, eccentric discs 457

Figure 3. Power spectral densities calculated from the spacetime data shown in Fig. 2. The solid and dashed white lines show the profiles of κPW and 	PW

associated with a Paczynski–Wiita potential. The left-hand PSD for 〈ρur〉φ reveals broad-band inertial power, the middle PSD for 〈ρur〉z shows a spectrum of
inertial–acoustic f modes propagating at all radii, and the right-hand PSD for 〈ρur〉φ, z suggests the localization of an axisymmetric f mode close to the maximum
in κPW.

modes are subject to excitation via a transmission of wave energy
at the corotation radius (where the pattern speed matches the orbital
angular velocity), due to the profile of vortensity in a relativistic disc
(Lai & Tsang 2009; Fu & Lai 2011, 2013).

The PSD for 〈ρur〉z shown in Fig. 3 (middle) reveals a spectrum
of f modes across a broad range of m, this time visible as horizontal
streaks. The PSD for 〈ρur〉φ, z (Fig. 3, right) indicates that one of
these can be identified as an axisymmetric f mode with ω � max [κ],
located at r ∼ 8rg (close to where κ achieves this maximum). A
detailed analysis of the non-axisymmetric f modes indicated by Fig. 3
(middle) is beyond the scope of this work, but PSDs calculated
by taking spatial Fourier transforms in azimuth (rather than time)
show that waves with azimuthal wavenumber m = 2−4 dominate.
This is not inconsistent with the excitation of non-axisymmetric f
modes by the corotational instability considered by Lai & Tsang
(2009), which produces the largest growth rates for m = 2, 3. But
in Paper I, we found (as did Miranda et al. 2015) that placing the
inner boundary within the ISCO and imposing an outflow boundary
condition greatly reduce the impact of this instability, which relies on
reflection at the inner boundary. Further, Fu & Lai (2011) found that
while corotationally excited f-modes’ propagation remains relatively
unaltered by large-scale magnetic fields, their growth rates may
be reduced. These considerations suggest that the MRI turbulence
itself is responsible for exciting the inertial–acoustic waves (see e.g.
Heinemann & Papaloizou 2009a, b, 2012).

3.2 Eccentric disc simulations

In this section, we present the main results of the paper, describing
our eccentric disc simulations. As detailed in Sections 2.2 and 2.3,
we initialize these runs with the quasi-steady states achieved by zn
and zn2h at 100Torb, and then turn on the eccentricity-forcing outer
radial boundary condition. We discuss the inward propagation of
eccentricity caused by this boundary condition in Section 3.2.1, and
its dynamical consequences in Section 3.2.2.

3.2.1 Eccentricity propagation

In each forced simulation, the precessing, non-axisymmetric density
profile enforced at the outer radial boundary induces a travelling
eccentric wave that propagates inward at roughly cs/2. Reaching the
ISCO within ∼10 − 20Torb, these waves saturate as steady, slowly

Figure 4. History plots showing mass fraction (top), volume-averaged radial
kinetic energy density (middle), and Reynolds stress (bottom) in simulations
znAf10-40 (in which we force eccentric distortion). The change and rapid
saturation in these quantities from the initial values provided by the circular
run zn illustrate the transition to quasi-steady, twisted eccentric discs, with
larger distortions produced by larger forcing amplitudes.

precessing distortions. Because the eccentric waves continually
propagate through the ISCO and out of the simulation domain (rather
than reflecting off an inner boundary), the disc deformations in
all simulations manifest as twisted eccentric modes with a radially
varying phase.

The volume-averaged quantities plotted in Fig. 4 illustrate the
rapid saturation of the eccentric distortions in simulations znAf10,
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458 J. Dewberry et al.

Figure 5. First-order estimate [see equation (13)] of the imaginary part of the
complex eccentricity, Ẽ ∼ Im[E] = e sin � , averaged over 50Torb. Larger
forcing amplitudes Af at the outer boundary produce larger eccentricities in
the simulation domain. This linear approximation illustrates the basic radial
structure of the eccentric distortions in our simulations, including a decrease
in eccentricity near the ISCO due to non-linear wave steepening. We note
that as a linear approximation, Ẽ does not accurately capture this non-linear
steepening of the eccentric waves, which is clearer in Fig. 6 (top).

znAf30, znAf35, znAf37, and znAf40. The top panel shows total disc
mass (normalized by the total mass at t = 0 initialized in zn), which
increases marginally, due to the eccentricity-forcing outer boundary
condition, before reaching a new equilibrium. Fig. 4 (middle) plots
〈ρu2

r 〉V /〈P 〉V (a quantity dominated by the eccentric distortion) and
similarly indicates a rapid transition to quasi-steady states with larger
forcing amplitudes giving rise to larger eccentricities. As shown in
the bottom panel, the twisted, travelling eccentric waves enhance the
Reynolds stress αR, because they involve a net angular momentum
flux.

Fig. 5 provides a clearer picture of the structure of the eccentric
distortions in simulations znAf10-40, plotting radial profiles of Ẽ, a
linear approximation to the complex eccentricity (see Equation 13).
We calculate these profiles at a given time t after shifting globally in
azimuth by δφ = |ωP|t, where ωP < 0 is the precession frequency
enforced at r1. This produces profiles of Ẽ that are in phase despite
the different precession frequencies associated with different forcing
amplitudes for eccentricity. The profiles in Fig. 5 have further been
averaged over the final 50Torb of each simulation.

Notably, the plot shows that the eccentric distortions decrease in
amplitude toward the inner disc. This decrease disagrees with linear
theory, which predicts an increase of eccentricity near the ISCO (see
Ferreira & Ogilvie 2009, or the more weakly forced simulations in
Paper I). However, a recent non-linear analysis (Lynch & Ogilvie
2019) shows that the steepening of the wave and the occurrence of
near intersections between neighbouring streamlines may cause the
eccentricity to decrease inwards, even if the angular-momentum flux
is conserved. Furthermore, steepening of the wave can greatly en-
hance dissipation, causing an attenuation of the angular-momentum
flux and therefore the wave amplitude.

One might also ask whether turbulent fluctuations in our simu-
lations are also damping the eccentric waves’ inward propagation.
Indeed, Ferreira & Ogilvie (2009) found that turbulent damping,
parametrized by a bulk viscosity, can hinder the propagation of warps
and eccentricities. However, we have run 2D, purely hydrodynamic
simulations with the same resolution, boundary conditions, and

forcing amplitudes as znAf10-40. These hydrodynamic runs show
very similar distortions to their MHD counterparts (see Appendix A),
demonstrating that the decrease in eccentricity near the ISCO is due
primarily to non-linear steepening of the eccentric waves, rather than
to turbulent damping.

The colour plots in Fig. 6 (top) illustrate this steepening, showing
snapshots of 〈ur〉z (overlaid by streamlines calculated from the
vertically averaged flow) taken 50Torb after initializing our eccentric
forcing in simulations (from left to right) znAf10, znAf30, znAf37,
and znAf40. The colour plots on the bottom of Fig. 6 show mid-plane
snapshots of Maxwell stress taken at the same time. The streamlines
depict the distortion caused by our outer boundary condition, since
circular orbits appear as vertical lines on unfolded polar plots
(although we note that equivalent radial deviations at larger radii
imply smaller eccentricities). In the snapshots from the more strongly
forced simulations, sharp changes in ur and very closely spaced
streamlines illustrate the inherently non-linear wave steepening not
captured by the linear approximation Ẽ plotted in Fig. 5.

3.2.2 Dynamical consequences of eccentricity

Broadly, we identify three dynamical regimes for the simulations
with forced eccentricity, depending on the degree of distortion.
For forcing amplitudes Af � 0.35 (which produce eccentricities of
e ∼ 0.007−0.03 near the trapping region), we do not observe clear
signatures of trapped r modes. However, eccentricities of e � 0.03
produced by larger forcing amplitudes do appear to excite trapped
inertial waves, which leave distinct timing features in the PSD.
Additionally, in this regime, the eccentricity begins to significantly
interfere with the MRI, reducing the Maxwell stress (as illustrated by
the sequence of snapshots in Fig. 6, bottom). In the third regime, even
larger forcing amplitudes (Af � 0.4) produce eccentric distortions that
suppress the MHD turbulence within r � 10rg. Our simulations in this
regime yield similar results to those obtained in hydrodynamic runs
utilizing periodic vertical boundary conditions (see Paper I). In the
following subsections, we discuss each of the regimes of behaviour
depicted in Fig. 6 in turn.

Regime I: low eccentricity
We first discuss simulations znAf10, znAf30, and znAf35, in

which forcing boundary conditions induce eccentricities of e � 0.03
near the expected r-mode trapping region. As illustrated by Fig. 6
(top left), the velocity perturbations associated with the eccentric
distortion in znAf10 possess amplitudes comparable to those of the
turbulent fluctuations. Consequently, the eccentric distortion appears
only with a time average (see the darkest curve in Fig. 5). While the
distortions in znAf30 and znAf35 are more visible, none of the three
runs exhibit signatures of trapped inertial wave excitation.

This absence is indicated both by a lack of distinct variability
in timing analyses like that shown in Fig. 3, and by Fig. 7, which
plots the fraction of vertical kinetic energy contained within the
annular domain r ∈ [7rg, 9rg]. In Paper I, this fraction increased
rapidly in simulations initialized with non-negligible eccentricity, as r
modes trapped near ∼8rg grew large enough in amplitude to dominate
the total vertical kinetic energy. In contrast, znAf10, znAf30, and
znAf35 show little to no change from the saturated value of ∼0.25
produced by zn. Averaged over the final 50Torb, the three simulations,
respectively, produce kinetic energy fractions of ∼0.27, 0.25, and
0.24.

Given that weaker or comparable eccentricities readily excited
r modes in the hydrodynamic simulations in Paper I, this absence
indicates that turbulence driven by the MRI damps the oscillations.
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Figure 6. Unfolded polar snapshots showing vertically averaged radial velocity and overplotted streamlines (top), and mid-plane Maxwell stress normalized by
P0 = c2

s ρ0 (bottom) for simulations (from left to right) znAf10, znAf30, znAf37, and znAf40. The snapshots are taken from simulations with larger and larger
forcing amplitudes for eccentricity (from left to right), 50Torb after turning on the outer boundary condition that drives the deformation. The top plots illustrate
the eccentric distortion of the disc, while the bottom plots suggest a weakening of the MRI turbulence with increasing eccentricity.

Figure 7. The fraction of vertical kinetic energy contained within the annular
domain D defined by r ∈ [7rg, 9rg]. Simulations znAf10, znAf30, and znAf35
show little change from the saturated value provided by the circular run
zn as an initial condition. On the other hand, znAf37 and znAf40 show
larger deviations, hinting at enhanced variability due to trapped inertial wave
excitation.

It is possible that trapped inertial waves excited by the eccentric
structures in these simulations simply do not reach large enough
amplitudes to stand out above the noise, but unlikely that such
oscillations would coexist with turbulent fluctuations without some
interference. Turbulent damping of r modes would align with
the understanding that most contributions from dissipation due to

turbulence in an accretion disc will go toward damping oscillations
(Latter & Ogilvie 2006).
Regime II: trapped wave excitation

We now turn to the intermediate regime in which the eccentric
distortions excite trapped waves but do not completely suppress MRI
turbulence. Simulation znAf37 provides the fiducial example, with a
curve in Fig. 7 that shows (highly variable) enhancements in vertical
kinetic energy within the trapping region r ∈ [7rg, 9rg].

Like Fig. 2, Fig. 8 shows spacetime diagrams calculated from
different averages of the radial mass flux, this time from simulation
znAf37. Since the slow precession of the eccentric disc dominates
the vertical average 〈ρur〉z, we focus on radial profiles of 〈ρur〉φ ,
(top), 〈cos (πz/H)ρur〉φ, z (middle), and 〈ρur〉φ, z (bottom). Azimuthal
averages filter out the disc eccentricity, while the factor of cos (πz/H)
removes vertically homogeneous features (i.e. f modes). This factor
also has the disadvantage of removing inertial waves with higher
vertical wavenumbers, but still serves to isolate the axisymmetric,
vertically structured oscillations of interest. Fig. 9 shows PSDs
calculated from the spacetime data pictured in Fig. 8, sampled
between t = 120−200Torb.

The spacetime diagrams in Fig. 8 show enhanced variability over
those in Fig. 2. Specifically, the oscillations at ∼8rg circumscribed by
a white box in Fig. 8 (middle) produce features near the maximum
of the epicyclic frequency in the PSDs shown in Fig. 9 (left and
middle). In addition to κPW (white line), the plots in Fig. 9 include
radial profiles of κPW + ωAz, where ωAz = πṼAz/H is an estimate
of the Alfvén frequency for modes with kz = π /H, calculated using
a time average of ṼAz = (〈|Bz|2〉φ,z/〈ρ〉φ,z)1/2 from the last 100Torb

of zn. Local analyses and semi-analytic calculations predict that in
the presence of a strong toroidal magnetic field, r-mode frequency
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460 J. Dewberry et al.

Figure 8. Spacetime diagrams showing radial profiles of 〈ρur〉φ , (top), 〈cos(πz/H)ρ ur〉φ, (middle), and 〈 ρ ur〉φ, z (bottom) over time in simulation znAf37.
The white box in the middle plot highlights variability not apparent in the circular disc simulation zn, which we associate with (magnetically enhanced) trapped
inertial waves excited by the eccentricity in the disc.

Figure 9. Power spectral densities calculated from the spacetime data shown in Fig. 8, over the interval t = 120−200Torb. As in Fig. 3, the solid and dashed
white lines show the profiles of κPW and 	PW associated with the Paczynski–Wiita potential, while the dotted line shows κPW + ωAz for a mode with kz = π /H.
The peaks in power near max [κ] apparent in the PSDs for 〈ρur〉φ (left) and for 〈cos (πz/H)ρur〉φ, z (middle) correspond to the trapped oscillations highlighted
in the box in Fig. 8 (middle). The PSD calculated from spacetime data for 〈ρur〉φ, z (right) shows a more complicated spectrum of inertial–acoustic waves than
was excited in the hydrodynamic simulations of Paper I.

enhancements due to the additional restoring force of magnetic
tension will be � ωAz (see Section 3.2 in Dewberry et al. 2019).
Fig. 9 (middle) validates this prediction, showing the preferential
excitation of magnetically altered inertial oscillations close in both
frequency and radius to max [κPW + ωAz].

The spacetime diagram and PSD for 〈ρur〉φ, z shown in Fig. 8
(bottom) and Fig. 9 (right) again illustrate the radial propagation
of axisymmetric inertial–acoustic waves (f modes) but with greater
amplitudes and power than in the analogous timing data for the
circular disc simulation zn (compare against Fig. 2, bottom and Fig. 3,

right). In Paper I, we found that a non-linear self-coupling of trapped
inertial oscillations can produce axisymmetric f modes at twice the
r modes’ frequency. The axisymmetric f modes excited in znAf37
do not produce near-integer ratios as clearly as in Paper I, though,
the amplified inertial–acoustic waves’ power extending over a range
of frequencies both comparable to and greater than those of the
(magnetically enhanced) trapped inertial waves.

Fig. 10 makes a closer comparison between the circular and
eccentric disc simulations zn and znAf37, plotting radially integrated
PSDs for 〈cos (πz/H)ρur〉φ, z (left) and 〈ρur〉φ, z (right) from the two
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HFQPOs in MHD, eccentric discs 461

Figure 10. Plots comparing power spectral densities from simulations zn and znAf37, calculated by integrating the PSD P(r, ω) for 〈cos (πz/H)ρur〉φ, z (left)
and 〈ρur〉φ, z (right) (see Figs 3 and 9), over the radial domain [7rg, 9rg]. The PSDs are sampled over t = 120−200Torb and normalized identically in each panel.
The solid and dashed grey vertical lines indicate max [κPW] and max [κPW + ωAz]. These 1D PSDs highlight an Alfvénic enhancement of trapped inertial wave
frequencies (left), and enhanced f mode power over a range of frequencies (right) in the eccentric disc simulation znAf37.

runs. Simulation znAf37 (orange line) shows enhanced variability
in both PSDs. The variability in 〈cos (πz/H)ρur〉φ, z illustrates the
preferential excitation of (magnetically enhanced) trapped inertial
waves. The signal is clearly only quasi-periodic, showing power
enhancement over a range of frequencies including max [κPW] (solid
grey line) and max [κPW + ωAz] (dashed line), rather than the isolated
peaks exhibited by our more controlled hydrodynamic simulations
(cf., fig. 9, right in Paper I). This may be due in part to the dynamical
nature of the background flow: while idealized, coherent magnetic
fields produce smooth frequency changes in linear r modes, we do
not expect turbulent field fluctuations to provide a time-independent
restoring force (Dewberry et al. 2018). From a numerical standpoint,
without finely tuned initial conditions or the rigid lid employed in
Paper I, we also do not expect the formation of coherent standing
wave oscillations in our unstratified, cylindrical framework.

The integrated PSDs for 〈ρur〉φ, z (Fig. 10, right) further indicate
that significantly more inertial–acoustic waves are excited in the
eccentric disc simulation znAf37 than in zn. Enhanced f-mode
variability at frequencies greater than those of the trapped inertial
waves suggests non-linear coupling, while amplified peaks falling
in the inertial range instead indicate mode mixing.3 However, the
f-mode spectrum covers too broad a frequency range to identify a
frequency commensurability with any confidence.

Lastly, the enhanced Maxwell stress seen in zn2h motivates
discussion of trapped inertial wave excitation in simulations with
a larger vertical extent, although the cylindrical approximation is
formally invalid on vertical scales �H. Simulation zn2hAf37 was
initialized from the saturated state of zn2h and similarly covers the
vertical extent z ∈ [ − 2H, 2H]. PSDs from the simulation show
similar enhancements in variability to those exhibited by znAf37.
The Maxwell stress in zn2hAf37 decreases at the same rate as in
znAf37 (see below) but, starting from a higher initial value, remains
larger at the end of runtime (see Table 1).

Regime III: MRI suppression

3Mixing between vertically structured r modes and vertically un-structured
f modes can occur due to a breaking of symmetry with respect to the mid-
plane by mean magnetic fields with both vertical and toroidal components
(Dewberry et al. 2019).

Figure 11. Plot showing the evolution of the Maxwell stress in simulations
znAf10-40 (note that volume averages are taken over the radial range r =
6 − 16rg). The decreases in αM over time illustrate the weakening of MHD
turbulence by eccentric disc distortion.

In this section, we describe the weakening and even suppression
of the MRI turbulence by increasingly strong disc distortions, best
exhibited by the simulation znAf40. Qualitatively, the sequence of
colour plots in Fig. 6 (top) illustrates a laminarization of the flow,
while the bottom colour plots show a corresponding suppression of
the Maxwell stress. Quantitatively, the eccentric distortions’ impact
on the MRI can be tracked most visibly via the Maxwell stress
αM = −〈BrBφ〉V/〈P〉V, which we plot in Fig. 11. The figure clearly
shows a decrease in αM that becomes more severe with increasing
eccentricity forcing amplitude. While simulations znAf10-37 main-
tain modest but finite values of αM, in znAf40 the disc distortion
nearly completely suppresses the MHD turbulence by the end of the
runtime.

In the absence of MRI turbulence in the inner disc, znAf40 forms
the laminar ‘elevator flows’ described in Paper I. These elevator
flows, which are an artefact of periodic vertical boundary conditions
in the cylindrical model, halt the growth of trapped inertial waves.
They can be eliminated by an artificially rigid vertical boundary
condition, which we have chosen to avoid in order to mitigate any
spurious numerical effects on the MHD turbulence. Alternatively,
the inclusion of vertical gravity and density stratification in future
work should naturally eliminate the elevator flows. Their appearance
in fact highlights the similarity of oscillations excited in znAf40
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to those simulated in Paper I and suggests that in some cases, the
suppression of the MRI by disc distortion might allow hydrodynamic
instabilities (in particular, r-mode excitation) to proceed unimpeded.

4 D ISCUSSION

In this section, we discuss the observational relevance of the
conditions for the trapped inertial wave excitation demonstrated
by our simulations, potential explanations for the weakening and
suppression of MRI turbulence in our more strongly eccentric runs,
and directions for future work.

4.1 Trapped r-mode excitation and HFQPOs

The simulations described in Section 3.2 demonstrate that a suffi-
ciently strong disc eccentricity can enhance variability in the inner
regions of relativistic, MHD-turbulent accretion discs. Our timing
analysis associates this enhanced variability with Alfvénic–epicyclic
inertial waves, excited and radially confined near the maximum in κ .
This demonstration of trapped inertial wave excitation in the presence
of MRI turbulence suggests that magnetic fields may not be as
destructive to r modes as predicted by Fu & Lai (2009) and Reynolds
& Miller (2009). Our simulations therefore provide support for the
discoseismic explanation for HFQPOs, but with important caveats.

For one thing, we find that in the presence of the MRI turbulence,
trapped inertial wave excitation requires a larger eccentricity (e �
0.03) near the ISCO than in the laminar, hydrodynamic simulations
presented in Paper I of this series, suggesting that MRI turbulence
actively damps the trapped modes. This value of eccentricity is
likely a lower limit, since the zero-net-flux vertical magnetic fields
initialized in our simulations produce only moderate levels of
turbulence (α ∼ 0.03−0.04).

As detailed in Section 2.3 of Paper I, eccentric distortions excited
at a 3:1 resonance with the orbit of the X-ray binary (e.g. Lubow
1991) can very reasonably be expected to propagate all the way
to the inner disc, especially in the presence of elevated accretion
rates associated with the SPL state (see fig. 5 in Ferreira & Ogilvie
2009, or fig. 2 in Paper I). Observations of superhumps in BHBs
(O’Donoghue & Charles 1996; Neil, Bailyn & Cobb 2007; Zurita
et al. 2008; Kosenkov & Veledina 2018) indicate that black hole
accretion discs in many of the systems are likely to be eccentric,
although actual eccentricities are difficult to estimate, and to our
knowledge there have been no direct measurements.

On the other hand, decreases in eccentricity within ∼20rg due
to non-linear effects, predicted by Lynch & Ogilvie (2019) and
exhibited by both our MHD and hydrodynamic (see Appendix A)
simulations, may place a limit on eccentricities near the r-mode
trapping region. In discs sustaining more vigorous turbulence than
that produced by our zero-net-flux, non-radiative simulations, this
upper limit on eccentricity may not be enough to overcome turbulent
r-mode damping. On yet another hand, the non-linear steepening of
eccentric waves could provide a more favourable environment for
the distortions’ associated hydrodynamic instabilities (like r-mode
excitation) by first weakening MRI turbulence.

Regardless, we reiterate that the non-linear coupling that excites
trapped inertial waves in our simulations is not unique to eccentric
distortions; warps provide an alternative route to excitation (Ferreira
& Ogilvie 2008). Indeed, early simulations of ‘tilted’ discs exhibited
enhanced variability (Henisey et al. 2009), although in those par-
ticular runs the variability may not have been due to standing mode
oscillations (Henisey, Blaes & Fragile 2012). Practical considerations
motivated our focus on the timing properties of eccentric discs, since

simulating warped discs require the full inclusion of vertical gravity,
at much greater numerical expense (e.g. Liska et al. 2019). But we
expect the fundamental mechanism of r-mode excitation via a non-
linear coupling with a non-axisymmetric distortion to translate from
eccentric to warped accretion discs.

4.2 MRI modification

A complete analysis of the effects of disc distortions on MRI stability
lies beyond the scope of this project. However, the distinct radial
localization of the MRI suppression in our simulations is suggestive
and deserves some commentary. The Maxwell stress is quenched
first near the ISCO, where the eccentricity amplitude is lower but
the quasi-stationary eccentric waves steepen and nearly shock (see
Fig. 6, top); this points to the strong compression associated with
the eccentric wave’s non-linear steepening as a possible cause of the
MRI’s suppression.

The steepening of the eccentric deformations in our simulations
can be described formally by enhancements of the eccentricity
gradient (change in eccentricity with radial coordinate) and twist
(change in longitude of pericentre with radial coordinate). The
variation of eccentricity with radius in our simulations constitutes
an important difference between our setup and that of Chan, Krolik
& Piran (2018), who found persistent instability in their local analysis
of uniformly eccentric discs with net vertical magnetic flux.

Although the eccentric distortions in our simulations are essen-
tially stationary from a global standpoint, their non-axisymmetry
means that orbiting fluid elements will suffer intense and periodic
flow perturbations every orbit. Nearby fluid elements tethered by
magnetic fields will therefore be sucked in and out of a weak shock
on the MRI time-scale. It is reasonable to expect this interference
to disrupt the classical instability mechanism of the MRI involving
angular momentum transport via field lines tethering and pulling
apart nearby fluid blobs. Indeed, the local analysis of Chan et al.
(2018) suggests that even a uniform distribution of eccentricity
(without significant compression) can decrease linear MRI growth
rates.

The non-linear steepening of eccentric waves may additionally
alter the turbulent dissipation of the magnetic field; studies of resistive
plasmas in a variety of contexts indicate that compression can
enhance magnetic reconnection (e.g. Hesse, Birn & Zenitani 2011;
Uzdensky & McKinney 2011). There may also be a parallel with the
suppression of zero-net-flux MRI by gravitoturbulence in vertically
stratified shearing boxes (Riols & Latter 2018), since the gravitational
instability proceeds via spiral density waves with similarly strong
density variations.

While the impact of distortions on the MRI may be less significant
far away from a black hole, where eccentric modes have much
longer wavelengths, compression due to strong eccentricity gradients
may still affect MHD turbulence in a wider variety of astrophysical
environments. The role played by eccentricities in MHD accretion
discs should therefore be explored further in more controlled (i.e.
non-relativistic) numerical simulations. Eccentric (Ogilvie & Barker
2014; Wienkers & Ogilvie 2018) and/or warped (Torkelsson et al.
2000; Ogilvie & Latter 2013; Paardekooper & Ogilvie 2019) shearing
boxes likely offer the best approach to exploring the effects of disc
distortion on the MRI.

4.3 Future work

Along with further investigation into the effects of disc distortion on
MRI turbulence, several other avenues should be explored so as to
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better evaluate the viability of the discoseismic model for HFQPOs.
While our simulations demonstrate that sufficient eccentricity can
excite trapped inertial waves despite damping by MRI turbulence,
we have excluded relevant physics in an effort to simplify a messy
problem. For one thing, in the absence of vertical gravity or the
rigid vertical boundary condition used in Paper I, the trapped inertial
waves excited in our MHD simulations do not form global standing
modes in z. Future work would likely require the full inclusion of
density stratification to realize the formation of bona fide global
modes.

Along with vertical gravity, future investigations of the dis-
coseismic model for HFQPOs in X-ray binaries should include
more detailed radiative and thermal physics relevant to the elevated
states of accretion in which HFQPOs are observed. The connection
between disc oscillations and hot coronal plasma (which produces
the emission on which HFQPOs are imprinted) should also be
an essential component of any comprehensive model. Coherent
magnetic fields might provide such a connection by facilitating
a transfer of variability from oscillations in the disc to time-
dependent reconnection and emission in the corona, but exploring
this possibility will require more sophisticated simulations (perhaps
drawing inspiration from studies of wave interactions in the solar
corona; e.g. Morton, Weberg & McLaughlin 2019; Potter, Brown-
ing & Gordovskyy 2019; Riedl, Van Doorsselaere & Santamaria
2019).

5 C O N C L U S I O N S

This paper describes the results of global, magnetohydrodynamic
simulations of relativistic, eccentric accretion discs. These simu-
lations show that trapped inertial waves (r modes) can grow in
the presence of MHD turbulence if excited by sufficiently strong
disc distortion. These oscillations are important as they may drive
high-frequency, quasi-periodic oscillations seen in the emission
from black hole X-ray binaries. The trapped inertial wave growth
is accompanied by outwardly propagating, axisymmetric inertial–
acoustic waves (f modes). Additionally, our simulations reveal a
disruption of the magnetorotational instability in the inner regions of
sufficiently distorted discs, likely owing to strong, non-axisymmetric
compression associated with steepening and circularization of the
eccentric waves.

Like Reynolds & Miller (2009), we do not observe signatures of
trapped r modes in simulations of circular discs. However, in the
presence of disc eccentricity, which we force into the domain with a
non-axisymmetric density profile imposed at the outer boundary, we
find three dynamical regimes. Simulations with low-amplitude forc-
ing for eccentricity do not exhibit signatures of trapped inertial waves,
likely due to r mode damping by turbulent fluctuations. In runs in
which larger forcing amplitudes produce sufficient eccentricity close
to the ISCO, on the other hand, we do observe signatures of trapped
inertial wave excitation in the power spectral density, along with a
weakening of the Maxwell stresses associated with MRI turbulence.
For eccentricities large enough that the MRI is completely suppressed
and the inner disc is essentially laminar, we observe dynamics similar
to the hydrodynamic simulations presented in Dewberry et al. (2020)
(Paper I).

Our simulations are simplified (isothermal, unstratified, zero-net-
flux), and validation of the discoseismic model for HFQPOs will
require the inclusion of more sophisticated physics. Still, this work
demonstrates that sufficient disc distortion may, in principle, excite
trapped inertial waves in black hole accretion discs despite damping
by MHD turbulence.
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A P P E N D I X A : H Y D RO DY NA M I C S I M U L AT I O N S

In this appendix, we describe 2D, purely hydrodynamic simulations
(summarized in Table A1) that provide a point of direct comparison
for the eccentric distortions driven in our MHD simulations. These
runs are motivated primarily by an inward decrease of eccentricity
amplitude not seen in the much more weakly forced deformations in
Paper I. In exhibiting very similar distortions to the MHD simulations
described throughout this paper, the simulations presented in this
appendix strongly indicate that the inward decrease in eccentricity is
caused primarily by steepening and circularization of the eccentric
waves due to non-linear, purely hydrodynamic effects, rather than
turbulent damping.

Table A1. Table listing (i) simulation label, (ii) eccentricity forcing ampli-
tude, (iii) saturated Reynolds stress, (iv) radial KE, (v) max |Ẽ| within 18rg,
and (vi) max |Ẽ| between 6 − 10rg. The values have been averaged over
30−50Torb for hAf10-40, and 100−150Torb for hlAf40.

Label Af αR 〈ρu2
r 〉V /〈P 〉V max |Ẽ| maxD |Ẽ|

hAf10 0.10 0.0002 0.0089 0.011 0.010
hAf30 0.30 0.0070 0.1298 0.043 0.027
hAf35 0.35 0.0123 0.2217 0.057 0.031
hAf37 0.375 0.0164 0.2933 0.065 0.033
hAf40 0.40 0.0222 0.3944 0.075 0.034
hlAf40 0.40 0.0107 0.1643 0.088 0.037

Figure A2. Same as Fig. 5, but for the 2D, hydrodynamic simulations hAf10-
40. The plot illustrates similar profiles of Ẽ to the runs znAf10-40.

Simulations hAf10-40 use exactly the same sound speed, hor-
izontal resolution, and radial boundary conditions as znAf10-40.
Meanwhile, hlAf40 has been run on the much larger radial grid r/rg

∈ [4, 54], with a resolution of Nr × Nφ = 744 × 800. To generate
an eccentricity-forcing boundary condition for this simulation, we
take the ratio of outer to inner boundaries as r1/rISCO = 9 in
calculating an eigenmode of the non-linear theory considered by
Barker & Ogilvie (2016) (see Section 2.3, or Paper I). Note that
this calculation produces a weaker forcing than that used in hAf40,
which has r1/rISCO = 3, since a larger radial domain implies that

Figure A1. Same as Fig. 6 (top), but for the 2D, hydrodynamic simulations hAf10-40. The snapshots show very similar distortions to those in znAf10-40.
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a shallower eccentricity gradient is required to produce the same
maximum eccentricity in the two (Newtonian) calculations.

The hydrodynamic simulations hAf10-40 produce very similar
distortions to their MHD counterparts znAf10-40. Fig. A1 illus-
trates this similarity, displaying very similar colour plots to those
shown in Fig. 6 (top). The radial profiles of Ẽ plotted in Fig. A2
are understandably smoother than, but still remarkably similar
to, those shown in Fig. 5. Comparing Table A1 with Table 1,
the hydrodynamic simulations show values of Ẽ that are smaller
by �10 per cent than the corresponding MHD simulations in the
outer disc (potentially due to an absence of turbulent velocity
fluctuations), and larger by �5 per cent near the trapping region.
This indicates that the MHD turbulence damps the eccentricity
amplitudes by no more than ∼10−15 per cent. The saturated values
of αR and 〈ρur

2〉V/〈P〉V listed in Table A1 are also similar to the
difference between the circular and eccentric MHD simulations zn
and znAf10-40, although these quantities are not strictly compa-

rable because of the MRI weakening that takes place in the latter
simulations.

Lastly, Fig. A3 describes the eccentric distortion forced in the
larger domain run hlAf40, showing an unfolded polar snapshot of
radial velocity overlaid by streamlines (top left), the density profile
enforced in the outer ghost cells (top right), and a radial plot of
Ẽ (bottom). The figure demonstrates first that the much weaker
forcing at large radii still gives rise to the values of Ẽ ∼ 0.05 − 0.010
observed for hAf40 and znAf40. Secondly, the plots in Fig. A3 show
that the wave steepening observed in our other simulations is not
unique to the shorter radial domain, illustrating an eccentric distortion
with a much larger wavelength at larger radii. Importantly, this rapid
increase in wavelength with radius implies that turbulent eccentricity
damping will be even weaker throughout most of the disc. Eccentric
distortions should therefore face little difficulty in propagating to the
ISCO, especially in the presence of the elevated mass accretion rates
associated with the SPL state.

Figure A3. Top left: colour plot showing radial velocity overlaid by streamlines in hlAf40. Top right: azimuthal profile of the density profile enforced in the
outer radial ghost cells. Bottom: plot of Ẽ ∼ e sin � , illustrating that the eccentric wave circularization occurs primarily within r � 15rg.
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